WorldWideScience

Sample records for cell photosynthesis impact

  1. PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Donald A. [Pennsylvania State Univ., University Park, PA (United States)

    2002-06-21

    The Gordon Research Conference (GRC) on PHOTOSYNTHESIS was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  2. Photosynthesis

    DEFF Research Database (Denmark)

    Pribil, Mathias; Leister, Dario Michael

    2017-01-01

    on the genetic engineering of developmental or bioenergetic processes, such as photosynthesis. These approaches offer the prospect of a renewal of the Green Revolution, which is urgently required tomeet the continuously increasing demand for superior high-yield crop varieties for human sustenance and industrial...... by exponential population growth and increased demand for crop plants as sources of renewable energy or high-value products. The foreseeable intensification of competition between agronomical and industrial use makes it imperative that the available supply of cropland be used more efficiently. During the Green...... Revolution that began in the 1960s, significant increases in yield could be achieved by more effective farming strategies, innovations in fertilization, and the introduction of dwarfing genes into important crop species like rice (Oryza sativa) and wheat (Triticum aestivum). The last resulted in a shift...

  3. Measurement of solar spectra relating to photosynthesis and solar cells: an inquiry lab for secondary science.

    Science.gov (United States)

    Ruggirello, Rachel M; Balcerzak, Phyllis; May, Victoria L; Blankenship, Robert E

    2012-07-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar cells. This laboratory was used with high-school science teachers who then took this experience back to their classrooms. During this exercise, teachers used an economical spectroradiometer to measure the solar spectrum and relate this to photosynthetic light absorption by determining the quality of light beneath trees. Following this investigation, teachers learned about the plant-inspired dye-sensitized solar cells and constructed one. To connect their light quality investigation to the efficiency of photosynthesis and solar cells, teachers then collected data at locations with varying quality and intensity of light. In sum, this investigation provides a crucial connection between photosynthesis and cutting edge research on solar energy technologies. Our learning experience provides a new instructional model for understanding a little investigated aspect of photosynthesis and connects to authentic scientific research. Copyright © 2012 Wiley Periodicals, Inc.

  4. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    Science.gov (United States)

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2006-02-01

    Full Text Available is the nano- crystalline TiO2dye- sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using simple materials. The production process generates...

  6. Dye-sensitised solar cell (artificial photosynthesis)

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2005-07-01

    Full Text Available A novel system that harnesses solar energy is the nano-crystalline TiO dye-sensitised solar cell (DSC), in conjunction with several new concepts, such as nanotechnology and molecular devices. An efficient and low-cost cell can be produced by using...

  7. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    Science.gov (United States)

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  8. Impact of the ion transportome of chloroplasts on the optimization of photosynthesis.

    Science.gov (United States)

    Szabò, Ildikò; Spetea, Cornelia

    2017-06-01

    Ions play fundamental roles in all living cells, and their gradients are often essential to fuel transport, regulate enzyme activities, and transduce energy within cells. Regulation of their homeostasis is essential for cell metabolism. Recent results indicate that modulation of ion fluxes might also represent a useful strategy to regulate one of the most important physiological processes taking place in chloroplasts, photosynthesis. Photosynthesis is highly regulated, due to its unique role as a cellular engine for growth in the light. Controlling the balance between ATP and NADPH synthesis is a critical task, and availability of these molecules can limit the overall photosynthetic yield. Photosynthetic organisms optimize photosynthesis in low light, where excitation energy limits CO2 fixation, and minimize photo-oxidative damage in high light by dissipating excess photons. Despite extensive studies of these phenomena, the mechanism governing light utilization in plants is still poorly understood. In this review, we provide an update of the recently identified chloroplast-located ion channels and transporters whose function impacts photosynthetic efficiency in plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Climate changes and photosynthesis

    Directory of Open Access Journals (Sweden)

    G.Sh Tkemaladze

    2016-06-01

    Solar energy is environmentally friendly and its conversion to energy of chemical substances is carried out only by photosynthesis – effective mechanism characteristic of plants. However, microorganism photosynthesis occurs more frequently than higher plant photosynthesis. More than half of photosynthesis taking place on the earth surface occurs in single-celled organisms, especially algae, in particular, diatomic organisms.

  10. Modeling photosynthesis of Spartina alterniflora (smooth cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference

    International Nuclear Information System (INIS)

    Wu Wei; Biber, Patrick D; Peterson, Mark S; Gong Chongfeng

    2012-01-01

    To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010–2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale. (letter)

  11. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN

    Science.gov (United States)

    Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica

    2016-01-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234

  12. Metabolic flux ratio analysis and cell staining suggest the existence of C4 photosynthesis in Phaeodactylum tricornutum.

    Science.gov (United States)

    Huang, A; Liu, L; Zhao, P; Yang, C; Wang, G C

    2016-03-01

    Mechanisms for carbon fixation via photosynthesis in the diatom Phaeodactylum tricornutum Bohlin were studied recently but there remains a long-standing debate concerning the occurrence of C4 photosynthesis in this species. A thorough investigation of carbon metabolism and the evidence for C4 photosynthesis based on organelle partitioning was needed. In this study, we identified the flux ratios between C3 and C4 compounds in P. tricornutum using (13)C-labelling metabolic flux ratio analysis, and stained cells with various cell-permeant fluorescent probes to investigate the likely organelle partitioning required for single-cell C4 photosynthesis. Metabolic flux ratio analysis indicated the C3/C4 exchange ratios were high. Cell staining indicated organelle partitioning required for single-cell C4 photosynthesis might exist in P. tricornutum. The results of (13)C-labelling metabolic flux ratio analysis and cell staining suggest single-cell C4 photosynthesis exists in P. tricornutum. This study provides insights into photosynthesis patterns of P. tricornutum and the evidence for C4 photosynthesis based on (13)C-labelling metabolic flux ratio analysis and organelle partitioning. © 2015 The Society for Applied Microbiology.

  13. On diel variability of marine sediment backscattering properties caused by microphytobenthos photosynthesis: Impact of environmental factors

    Science.gov (United States)

    Gorska, Natalia; Kowalska-Duda, Ewa; Pniewski, Filip; Latała, Adam

    2018-06-01

    The study has been motivated by the development of the hydroacoustic techniques for mapping and classifying the benthic habitats and for the research of the microbenthos photosynthesis in the semi-enclosed Baltic Sea, particularly sensitive to human activity. The investigation of the effect of the benthic microalgal photosynthesis on the echo signal from the Baltic sandy sediments is continuing. The study clarifies the impact of the abiotic and biotic factors on the diel variation of the backscattering caused by the benthic microalgal photosynthetic activity. Five multiday laboratory experiments, different in hydrophysical or biological conditions, were conducted. During each measurement series, the "day" (illumination) and "night" (darkness) conditions (L:D cycle) were simulated and the diel variations of the echo energy of the backscattered signal were analyzed. The hydroacoustic data were acquired along with measuring biological and biooptical parameters and oxygen concentration. The study demonstrated the impact of microphytobenthos photosynthesis on the backscattering properties of the marine sediment which is sensitive to the illumination level, benthic microalgal biomass and macrozoobenthos bioturbation.

  14. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    Science.gov (United States)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  15. The impact of the herbicide atrazine on growth and photosynthesis of seagrass, Zostera marina (L.), seedlings

    International Nuclear Information System (INIS)

    Gao Yaping; Fang Jianguang; Zhang Jihong; Ren Lihua; Mao Yuze; Li Bin; Zhang Mingliang; Liu Dinghai; Du Meirong

    2011-01-01

    Highlights: → Impact of the widely used herbicide atrazine on eelgrass seedlings was studied. → Atrazine presents a threat to eelgrass seedlings growth and photosynthesis. → The impact of atrazine on eelgrass seedlings is much higher than for adult plants. - Abstract: The impact of the widely used herbicide atrazine on seedling growth and photosynthesis of eelgrass was determined. The long-term impact of the herbicide atrazine (1, 10 and 100 μg/L) on growth of eelgrass Zostera marina (L.) seedlings, maintained in outdoor aquaria, was monitored over 4 weeks. Exposure to 10 μg/L atrazine resulted in significantly lower plant fresh weight and total chlorophyll concentration and up to 86.67% mortality at the 100 μg/L concentration. Short-term photosynthetic stress on eelgrass seedlings was determined and compared with adult eelgrass using chlorophyll fluorescence. The effective quantum yield in eelgrass seedlings was significantly depressed at all atrazine concentrations (2, 4, 8, 16, 32 and 64 μg/L) even within 2 h and remained at a lower level than for adult plants for each concentration. These results indicate that atrazine presents a potential threat to seagrass seedling functioning and that the impact is much higher than for adult plants.

  16. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility.

    Directory of Open Access Journals (Sweden)

    Martin Aubé

    Full Text Available Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.

  17. [Ecological Effects of Algae Blooms Cluster: The Impact on Chlorophyll and Photosynthesis of the Water Hyacinth].

    Science.gov (United States)

    Liu, Guo-feng; He, Jun; Yang, Yi-zhong; Han, Shi-qun

    2015-08-01

    The response of chlorophyll and photosynthesis of water hyacinth leaves in different concentrations of clustered algae cells was studied in the simulation experiment, and the aim was to reveal the mechanism of the death of aquatic plants during algae blooms occurred through studying the physiological changes of the macrophytes, so as to play the full function of the ecological restoration of the plants. And results showed the dissolved oxygen quickly consumed in root zone of aquatic plants after algae blooms gathered and showed the lack of oxygen (DO algae cell died and concentration of DTN in treatment 1 and 2 were 44.49 mg x L(-1) and 111.32 mg x L(-1), and the content of DTP were 2.57 mg x L(-1) and 9.10 mg x L(-1), respectively. The NH4+ -N concentrations were as high as 32.99 mg x L(-1) and 51.22 mg x L(-1), and the root zone with the anoxia, strong reducing, higher nutrients environment had a serious stress effects to the aquatic plants. The macrophytes photosynthesis reduced quickly and the plant body damaged with the intimidation of higher NH4+ -N concentration (average content was 45.6 mg x L(-1)) and hypoxia after algae cell decomposed. The average net photosynthesis rate, leaf transpiration rate of the treatment 2 reduced to 3.95 micromol (M2 x S)(-1), 0.088 micromol x (m2 x s)(-1), and only were 0.18 times, 0.11 times of the control group, respectively, at the end of the experiment, the control group were 22 micromol x (m2 x s)(-1), 0.78 micromol x (M2 x s)(-1). Results indicated the algae bloom together had the irreversible damage to the aquatic plants. Also it was found large amounts of new roots and the old roots were dead in the treatment 1, but roots were all died in the treatment 2, and leaves were yellow and withered. Experiment results manifested that the serious environment caused by the algae blooms together was the main reason of the death of aquatic plants during the summer. So in the practice of ecological restoration, it should avoid the

  18. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni

    International Nuclear Information System (INIS)

    Macinnis-Ng, Catriona M.O.; Ralph, Peter J.

    2003-01-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil + dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil + 0.05% dispersant and 0.1% oil + 0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and ΔF/Fm ' respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil + dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil + dispersant mixture. Despite an initial decline in ΔF/Fm ' , in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis

  19. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni.

    Science.gov (United States)

    Macinnis-Ng, Catriona M O; Ralph, Peter J

    2003-11-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil+dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil+0.05% dispersant and 0.1% oil+0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and DeltaF/Fm' respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil+dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil+dispersant mixture. Despite an initial decline in DeltaF/Fm', in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis.

  20. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

    International Nuclear Information System (INIS)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V.; Grace, John

    2014-01-01

    It has been suggested that atmospheric CO 2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO 2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO 2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO 2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO 2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. -- Highlights: • Sky conditions affect the relative impact of elevated CO 2 on photosynthesis. • Cloudy skies reduce light use efficiency and carbon gain when CO 2 is elevated. • Stimulation of photosynthesis by high CO 2 may decline with increasing cloud cover. • High CO 2 leads to marked afternoon photosynthesis depression in sun-adapted leaves. -- The stimulatory effect of elevated CO 2 concentration on photosynthetic carbon assimilation can be expected to diminish as cloud cover increases

  1. The impact of the herbicide atrazine on growth and photosynthesis of seagrass, Zostera marina (L.), seedlings.

    Science.gov (United States)

    Gao, Yaping; Fang, Jianguang; Zhang, Jihong; Ren, Lihua; Mao, Yuze; Li, Bin; Zhang, Mingliang; Liu, Dinghai; Du, Meirong

    2011-08-01

    The impact of the widely used herbicide atrazine on seedling growth and photosynthesis of eelgrass was determined. The long-term impact of the herbicide atrazine (1, 10 and 100 μg/L) on growth of eelgrass Zostera marina (L.) seedlings, maintained in outdoor aquaria, was monitored over 4 weeks. Exposure to 10 μg/L atrazine resulted in significantly lower plant fresh weight and total chlorophyll concentration and up to 86.67% mortality at the 100 μg/L concentration. Short-term photosynthetic stress on eelgrass seedlings was determined and compared with adult eelgrass using chlorophyll fluorescence. The effective quantum yield in eelgrass seedlings was significantly depressed at all atrazine concentrations (2, 4, 8, 16, 32 and 64 μg/L) even within 2 h and remained at a lower level than for adult plants for each concentration. These results indicate that atrazine presents a potential threat to seagrass seedling functioning and that the impact is much higher than for adult plants. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  2. Form of inorganic carbon utilized for photosynthesis in Chlorella vulgaris 11h cells

    International Nuclear Information System (INIS)

    Miyachi, Shigetoh; Shiraiwa, Yoshihiro

    1979-01-01

    The rate of photosynthetic 14 CO 2 fixation in Chlorella vulgaris 11h cells in the presence of 0.55 mM NaH 14 CO 3 at pH 8.0 (20 0 C) was greatly enhanced by the addition of carbonic anhydrase (CA). However, when air containing 400 ppm 14 CO 2 was bubbled through the algal suspension, the rate of 14 CO 2 fixation immediately after the start of the bubbling was suppressed by CA. These effects of CA were observed in cells which had been grown in air containing 2% CO 2 (high-CO 2 cells) as well as those grown in ordinary air (containing 0.04% CO 2 , low-CO 2 cells). We therefore concluded that, irrespective of the CO 2 concentration given to the algal cells during growth, the active species of inorganic carbon absorbed by Chlorella cells is free CO 2 and they cannot utilize bicarbonate. The effects observed in the high-CO 2 cells were much more pronounced than those in the low-CO 2 cells. This difference was accounted for by the difference in the affinity for CO 2 in photosynthesis between the high- and low-CO 2 cells. (author)

  3. In situ impact of petrochemicals on the photosynthesis of the seagrass Zostera capricorni

    Energy Technology Data Exchange (ETDEWEB)

    Macinnis-Ng, Catriona M.O.; Ralph, Peter J

    2003-11-01

    We used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of pulsed exposures of aged crude oil (Champion Crude), dispersant (VDC) and an oil + dispersant mixture on the seagrass Zostera capricorni Aschers in laboratory and field experiments, using custom-made chambers. Samples were exposed for 10 h to 0.25% and 0.1% concentrations of aged crude oil and dispersant as well as mixtures of 0.25% oil + 0.05% dispersant and 0.1% oil + 0.02% dispersant. During this time and for the subsequent four day recovery period, the maximum and effective quantum yields of photosystem II (Fv/Fm and {delta}F/Fm{sup '} respectively) were measured. In the laboratory experiments, both values declined in response to oil exposure and remained low during the recovery period. Dispersant exposure caused a decline in both values during the recovery period, while the mixture of aged crude oil + dispersant had little impact on both quantum yields. In situ samples were less sensitive than laboratory samples, showing no photosynthetic impact due to dispersant and oil + dispersant mixture. Despite an initial decline in {delta}F/Fm{sup '}, in situ oil-exposed samples recovered by the end of the experiment. Chlorophyll pigment analysis showed only limited ongoing impact in both laboratory and field situations. This study suggests that laboratory experiments may overestimate the ongoing impact of petrochemicals on seagrass whilst the dispersant VDC can reduce the impact of oil on seagrass photosynthesis.

  4. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    Science.gov (United States)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  5. Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dahal, R.; Pantha, B. N.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-04-07

    InGaN alloys are very promising for solar water splitting because they have direct bandgaps that cover almost the whole solar spectrum. The demonstration of direct solar-to-fuel conversion without external bias with the sunlight being the only energy input would pave the way for realizing photoelectrochemical (PEC) production of hydrogen by using InGaN. A monolithic solar-PEC cell based on InGaN/GaN multiple quantum wells capable to directly generate hydrogen gas under zero bias via solar water splitting is reported. Under the irradiation by a simulated sunlight (1-sun with 100 mW/cm{sup 2}), a 1.5% solar-to-fuel conversion efficiency has been achieved under zero bias, setting a fresh benchmark of employing III-nitrides for artificial photosynthesis. Time dependent hydrogen gas production photocurrent measured over a prolonged period (measured for 7 days) revealed an excellent chemical stability of InGaN in aqueous solution of hydrobromic acid. The results provide insights into the architecture design of using InGaN for artificial photosynthesis to provide usable clean fuel (hydrogen gas) with the sunlight being the only energy input.

  6. Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. I. Growth can occur without photosynthesis

    Science.gov (United States)

    Van Volkenburgh, E.; Cleland, R. E.

    1990-01-01

    Cell expansion in dicotyledonous leaves is strongly stimulated by bright white light (WL), at least in part as a result of light-induced acidification of the cell walls. It has been proposed that photosynthetic reactions are required for light-stimulated transport processes across plasma membranes of leaf cells, including proton excretion. The involvement of photosynthesis in growth and wall acidification of primary leaves of bean has been tested by inhibiting photosynthesis in two ways: by reducing chlorophyll content of intact plants with tentoxin (TX) and by treating leaf discs with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Exposure to bright WL stimulated growth of intact leaves of TX-treated plants. Discs excised from green as well as from TX-or DCMU-treated leaves also responded by growing faster in WL, as long as exogenous sucrose was supplied to the photosynthetically inhibited tissues. The WL caused acidification of the epidermal surface of intact TX-leaves, but acidification of the incubation medium by mesophyll cells only occurred when photosynthesis was not inhibited. It is concluded that light-stimulated cell enlargement of bean leaves, and the necessary acidification of epidermal cell walls, are mediated by a pigment other than chlorophyll. Light-induced proton excretion by mesophyll cells, on the other hand, may require both a photosynthetic product (or exogenous sugars) and a non-photosynthetic light effect.

  7. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Uncertainty in measurements of the photorespiratory CO2 compensation point and its impact on models of leaf photosynthesis.

    Science.gov (United States)

    Walker, Berkley J; Orr, Douglas J; Carmo-Silva, Elizabete; Parry, Martin A J; Bernacchi, Carl J; Ort, Donald R

    2017-06-01

    Rates of carbon dioxide assimilation through photosynthesis are readily modeled using the Farquhar, von Caemmerer, and Berry (FvCB) model based on the biochemistry of the initial Rubisco-catalyzed reaction of net C 3 photosynthesis. As models of CO 2 assimilation rate are used more broadly for simulating photosynthesis among species and across scales, it is increasingly important that their temperature dependencies are accurately parameterized. A vital component of the FvCB model, the photorespiratory CO 2 compensation point (Γ * ), combines the biochemistry of Rubisco with the stoichiometry of photorespiratory release of CO 2 . This report details a comparison of the temperature response of Γ * measured using different techniques in three important model and crop species (Nicotiana tabacum, Triticum aestivum, and Glycine max). We determined that the different Γ * determination methods produce different temperature responses in the same species that are large enough to impact higher-scale leaf models of CO 2 assimilation rate. These differences are largest in N. tabacum and could be the result of temperature-dependent increases in the amount of CO 2 lost from photorespiration per Rubisco oxygenation reaction.

  9. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean.

    Science.gov (United States)

    Sun, Jindong; Feng, Zhaozhong; Ort, Donald R

    2014-09-01

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 ppb was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amino acids (TAA) decreased linearly with increasing O3 levels in both cultivars with average decrease of 7% for an increase in O3 levels by 10 ppb. Ozone interacted with developmental stages and leaf ages, and caused higher damage at later reproductive stages and in older leaves. Ozone affected yield mainly via reduction of maximum rate of Rubisco carboxylation (Vcmax) and maximum rates of electron transport (Jmax) as well as a shorter growing season due to earlier onset of canopy senescence. For all parameters investigated the critical O3 levels (∼50 ppb) for detectable damage fell within O3 levels that occur routinely in soybean fields across the US and elsewhere in the world. Strong correlations were observed in O3-induced changes among yield, photosynthesis, TNC, TAA and many metabolites. The broad range of metabolites that showed O3 dose dependent effect is consistent with multiple interaction loci and thus multiple targets for improving the tolerance of soybean to O3. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    International Nuclear Information System (INIS)

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  11. Revisiting drought impact on tropical forest photosynthesis: a novel multi-scale integrated approach reveals new insights

    Science.gov (United States)

    Detto, M.; Wu, J.; Xu, X.; Serbin, S.; Rogers, A.

    2017-12-01

    A fundamental unanswered question for global change ecology is to determine the vulnerability of tropical forests to climate change, particularly with increasing intensity and frequency of drought events. This question, despite its apparent simplicity, remains difficult for earth system models to answer, and is controversial in remote sensing literature. Here, we leverage unique multi-scale remote sensing measurements (from leaf to crown) in conjunction with four-continuous-year (2013-2017) eddy covariance measurements of ecosystem carbon fluxes in a tropical forest in Panama to revisit this question. We hypothesize that drought impacts tropical forest photosynthesis through variation in abiotic drivers (solar radiation, diffuse light fraction, and vapor pressure deficit) that interact with physiological traits that govern photosynthesis, and biotic variation in ecosystem photosynthetic capacity associated with changes in the traits themselves. Our study site, located in a seasonal tropical forest on Barro Colorado Island (BCI), Panama, experienced a significant drought in 2015. Local eddy covariance derived photosynthesis shows an abrupt increase during the drought year. Our specific goal here is to assess the relative impact of abiotic and biotic drivers of such photosynthesis response to interannual drought. To this goal, we derived abiotic drivers from eddy tower-based meteorological measurements. We will derive the biotic drivers using a recently developed leaf demography-ontogeny model, where ecosystem photosynthetic capacity can be described as the product of field measured, age-dependent leaf photosynthetic capacity and local tower-camera derived ecosystem-scale inter-annual variability in leaf age demography of the same time period (2013-2017). Lastly, we will use a process-based model to assess the separate and joint effects of abiotic and biotic drivers on eddy covariance derive photosynthetic interannual variability. Collectively, this novel multi

  12. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.

    Science.gov (United States)

    Ehira, Shigeki; Takeuchi, Takuto; Higo, Akiyoshi

    2018-02-01

    Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO 2 and H 2 O using light energy. Although cyanobacteria capable of producing diverse chemicals have been generated by metabolic engineering, anaerobic non-photosynthetic culture conditions are often necessary for their production. In this study, we conducted cell type-specific metabolic engineering of the filamentous cyanobacterium Anabaena sp. PCC 7120, which forms a terminally differentiated cell called a heterocyst with a semi-regular spacing of 10-15 cells. Because heterocysts are specialized cells for nitrogen fixation, the intracellular oxygen level of heterocysts is maintained very low even when adjacent cells perform oxygenic photosynthesis. Pyruvate decarboxylase of Zymomonas mobilis and alcohol dehydrogenase of Synechocystis sp. PCC 6803 were exclusively expressed in heterocysts. Ethanol production was concomitant with nitrogen fixation in genetically engineered Anabaena sp. PCC 7120. Engineering of carbon metabolism in heterocysts improved ethanol production, and strain ET14, with an extra copy of the invB gene expressed from a heterocyst-specific promoter, produced 130.9 mg L -1 of ethanol after 9 days. ET14 produced 1681.9 mg L -1 of ethanol by increasing the CO 2 supply. Ethanol production per heterocyst cell was approximately threefold higher than that per cell of unicellular cyanobacterium. This study demonstrates the potential of heterocysts for anaerobic production of biofuels and commodity chemicals under oxygenic photosynthetic conditions.

  13. Elevated atmospheric CO2 negatively impacts photosynthesis through radiative forcing and physiology-mediated climate feedback

    Science.gov (United States)

    Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan

    2017-02-01

    Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.

  14. Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng.

    Science.gov (United States)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-09-01

    One-year-old Metasequoia glyptostroboides seedlings were exposed to non-filtered ambient air (NF) and elevated ozone (E-O3, NF+60 ppb) in open-top chambers for two years. E-O3 accelerated leaf senescence, as indicated by significant decreases in photosynthetic pigment contents with the elongation of O3 exposure. E-O3 significantly affected gas exchange and carboxylation, inducing reductions in light-saturated photosynthesis (Asat), the maximum activity of Rubisco (Vc,max) and the maximum electron transport rate (Jmax). Chl a/b, Vc,max/Jmax and stomatal limitation (l) were not affected. Stomatal conductance (gs) was significantly decreased by E-O3 in the first year, but remained unchanged in the second year. It can be inferred that the decrease in Asat by E-O3 was mainly attributed to the changes in non-stomatal factors. After two years' exposure, E-O3 caused significant decreases in canopy photosynthesis and leaf mass per area, and a significant increase in the number of branches, but induced slight, not significant decreases in growth and biomass. Therefore, it can be concluded that the carbon accumulation of the species M. glyptostroboides could be negatively affected after long-term exposure to high O3 concentration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Solar fuels via artificial photosynthesis: From homogeneous photocatalysis in solution to a photoelectrochemical cell

    NARCIS (Netherlands)

    Chen, H.-C.

    2016-01-01

    The conversion and storage of solar energy into fuels provides a valuable solution for the future energy demand of our society. Making fuels via artificial photosynthesis, the so-called solar-to-fuel approach, is viewed as one of the most promising ways to produce clean and renewable energy.

  16. Improving Photosynthesis

    Science.gov (United States)

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  17. Reintroducing Photosynthesis

    Science.gov (United States)

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  18. An insect countermeasure impacts plant physiology: midrib vein cutting, defoliation and leaf photosynthesis.

    Science.gov (United States)

    Delaney, Kevin J; Higley, Leon G

    2006-07-01

    One type of specialised herbivory receiving little study even though its importance has frequently been mentioned is vein cutting. We examined how injury to a leaf's midrib vein impairs gas exchange, whether impairment occurs downstream or upstream from injury, duration of impairment, compared the severity of midrib injury with non-midrib defoliation, and modelled how these two leaf injuries affect whole-leaf photosynthesis. Leaf gas exchange response to midrib injury was measured in five Asclepiadaceae (milkweed), one Apocynaceae (dogbane), one Polygonaceae and one Fabaceae species, which have been observed or reported to have midrib vein cutting injury in their habitats. Midrib vein injury impaired several leaf gas exchange parameters, but only downstream (distal) from the injury location. The degree of gas exchange impairment from midrib injury was usually more severe than from manually imposed and actual insect defoliation (non-midrib), where partial recovery occurred after 28 d in one milkweed species. Non-midrib tissue defoliation reduced whole-leaf photosynthetic activity mostly by removing photosynthetically active tissue, while midrib injury was most severe as the injury location came closer to the petiole. Midrib vein cutting has been suggested to have evolved as a countermeasure to deactivate induced leaf latex or cardenolide defences of milkweeds and dogbanes, yet vein cutting effects on leaf physiology seem more severe than the non-midrib defoliation the defences evolved to deter.

  19. Photosynthesis solutions to enhance productivity.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Nixon, Peter J

    2017-09-26

    The concept that photosynthesis is a highly inefficient process in terms of conversion of light energy into biomass is embedded in the literature. It is only in the past decade that the processes limiting photosynthetic efficiency have been understood to an extent that allows a step change in our ability to manipulate light energy assimilation into carbon gain. We can therefore envisage that future increases in the grain yield potential of our major crops may depend largely on increasing the efficiency of photosynthesis. The papers in this issue provide new insights into the nature of current limitations on photosynthesis and identify new targets that can be used for crop improvement, together with information on the impacts of a changing environment on the productivity of photosynthesis on land and in our oceans.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  20. Photosynthesis and Bioconversion

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    This text summarises a talk held by Engelbert Broda at a conference on non-convential energy sources. The talk about photosynthesis and bioconversion is devided in 6 sections: the great physicist and photosynthesis; the influence of photosynthesis on the biosphere (in the past, present and future); the light reactions in photosynthesis; the dark reactions in photosynthesis; bioconversion; respiration and photorespiration. (nowak)

  1. Photosynthesis research in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.O.

    1979-09-27

    Current research programs in photosynthesis in the USSR are described. Some of the programs include: (1) research on hydrogenases; (2) computer facilities (3) photochemical reduction of low potential compounds; (4) hydrogen-producing systems using model pigment systems; (5) stabilization of chloroplast membranes; (6) construction of fuel cells using immobilized enzymes; (7) carbon, hydrogen, and nitrogen metabolism of photosynthetic bacteria; (8) methane producing bacteria; (9) growth of photosynthetic bacteria under dark and light conditions; (10) efficiency of photosynthesis and plant productivity; (11) biomass as a future source of energy; (12) mycology; (13) isolation of photosystems; and (14) factors limiting photosynthesis in the leaf. (DC)

  2. The impact of modifying photosystem antenna size on canopy photosynthetic efficiency-Development of a new canopy photosynthesis model scaling from metabolism to canopy level processes.

    Science.gov (United States)

    Song, Qingfeng; Wang, Yu; Qu, Mingnan; Ort, Donald R; Zhu, Xin-Guang

    2017-12-01

    Canopy photosynthesis (A c ) describes photosynthesis of an entire crop field and the daily and seasonal integrals of A c positively correlate with daily and seasonal biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis model including canopy architecture, a ray tracing algorithm, and C 3 photosynthetic metabolism to explore the option of manipulating leaf chlorophyll concentration ([Chl]) for greater A c and nitrogen use efficiency (NUE). Model simulation results show that (a) efficiency of photosystem II increased when [Chl] was decreased by decreasing antenna size and (b) the light received by leaves at the bottom layers increased when [Chl] throughout the canopy was decreased. Furthermore, the modelling revealed a modest ~3% increase in A c and an ~14% in NUE was accompanied when [Chl] reduced by 60%. However, if the leaf nitrogen conserved by this decrease in leaf [Chl] were to be optimally allocated to other components of photosynthesis, both A c and NUE can be increased by over 30%. Optimizing [Chl] coupled with strategic reinvestment of conserved nitrogen is shown to have the potential to support substantial increases in A c , biomass production, and crop yields. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  3. Examining the Impact of Question Surface Features on Students’ Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of two question prompts. We asked four versions of the question with different combinations of the two plant species and order of prompts in an introductory cell biology course. We found that there was not a significant difference in the content of student responses to versions of the question stem with different species or order of prompts, using both computerized lexical analysis and expert scoring. We conducted 20 face-to-face interviews with students to further probe the effects of question wording on student responses. During the interviews, we found that students thought that the plant species was neither relevant nor confusing when answering the question. Students identified the prompts as both relevant and confusing. However, this confusion was not specific to a single version. PMID:25999312

  4. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair

    Science.gov (United States)

    Wong, Chiew-Yen; Teoh, Ming-Li; Phang, Siew-Moi; Lim, Phaik-Eem; Beardall, John

    2015-01-01

    Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR), have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237), temperate (Chlorella vulgaris UMACC 248) and tropical (Chlorella vulgaris UMACC 001) environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400–700 nm), PAR plus ultraviolet-A (320–400 nm) radiation (PAR + UV-A) and PAR plus UV-A and ultraviolet-B (280–320 nm) radiation (PAR + UV-A + UV-B) for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM) fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek) and light harvesting efficiency (α) were determined from rapid light curves. The damage (k) and repair (r) rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B) and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r) mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  5. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.

    Directory of Open Access Journals (Sweden)

    Chiew-Yen Wong

    Full Text Available Global warming and ozone depletion, and the resulting increase of ultraviolet radiation (UVR, have far-reaching impacts on biota, especially affecting the algae that form the basis of the food webs in aquatic ecosystems. The aim of the present study was to investigate the interactive effects of temperature and UVR by comparing the photosynthetic responses of similar taxa of Chlorella from Antarctic (Chlorella UMACC 237, temperate (Chlorella vulgaris UMACC 248 and tropical (Chlorella vulgaris UMACC 001 environments. The cultures were exposed to three different treatments: photosynthetically active radiation (PAR; 400-700 nm, PAR plus ultraviolet-A (320-400 nm radiation (PAR + UV-A and PAR plus UV-A and ultraviolet-B (280-320 nm radiation (PAR + UV-A + UV-B for one hour in incubators set at different temperatures. The Antarctic Chlorella was exposed to 4, 14 and 20°C. The temperate Chlorella was exposed to 11, 18 and 25°C while the tropical Chlorella was exposed to 24, 28 and 30°C. A pulse-amplitude modulated (PAM fluorometer was used to assess the photosynthetic response of microalgae. Parameters such as the photoadaptive index (Ek and light harvesting efficiency (α were determined from rapid light curves. The damage (k and repair (r rates were calculated from the decrease in ΦPSIIeff over time during exposure response curves where cells were exposed to the various combinations of PAR and UVR, and fitting the data to the Kok model. The results showed that UV-A caused much lower inhibition than UV-B in photosynthesis in all Chlorella isolates. The three isolates of Chlorella from different regions showed different trends in their photosynthesis responses under the combined effects of UVR (PAR + UV-A + UV-B and temperature. In accordance with the noted strain-specific characteristics, we can conclude that the repair (r mechanisms at higher temperatures were not sufficient to overcome damage caused by UVR in the Antarctic Chlorella strain

  6. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    Science.gov (United States)

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    Science.gov (United States)

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant

  8. Monitoring Photosynthesis in Individual Cells of Synechocystis sp. PCC 6803 on a Picosecond Timescale

    Science.gov (United States)

    Krumova, S.B.; Laptenok, S.P.; Borst, J.W.; Ughy, B.; Gombos, Z.; Ajlani, G.; van Amerongen, H.

    2010-01-01

    Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future. PMID:20858447

  9. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  10. Photosynthesis in a test tube- dye sensitized solar cells as a teaching tool

    Energy Technology Data Exchange (ETDEWEB)

    Raturi, Atul; Fepuleai, Yoheni [Division of Physics, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)

    2010-05-15

    Dye sensitized solar cells employing natural plant dyes as phosensitizers can be effectively used to train students in the science and technology of solar cells. This is especially relevant to developing countries where facilities for silicon cell fabrication are non-existent. The cross-disciplinary nature of this device makes it very attractive for student projects. The present work describes such a project where anthocyanin dye from hibiscus flowers has been used as the electron harvester. (author)

  11. Examining the Impact of Question Surface Features on Students' Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of…

  12. A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and droughted pea plants in the field

    International Nuclear Information System (INIS)

    Allen, D.J.; Nogues, S.; Morison, J.I.L.; Greenslade, P.D.; McLeod, A.R.; Baker, N.R.

    1999-01-01

    It has been suggested that field experiments which increase UV-B irradiation by a fixed amount irrespective of ambient light conditions (‘square-wave’), may overestimate the response of photosynthesis to UV-B irradiation. In this study, pea (Pisum sativum L.) plants were grown in the field and subjected to a modulated 30% increase in ambient UK summer UV-B radiation (weighted with an erythemal action spectrum) and a mild drought treatment. UV-A and ambient UV control treatments were also studied. There were no significant effects of the UV-B treatment on the in situ CO 2 assimilation rate throughout the day or on the light-saturated steady-state photosynthesis. This was confirmed by an absence of UV-B effects on the major components contributing to CO 2 assimilation; photosystem II electron transport, ribulose 1,5-bisphosphate regeneration, ribulose 1,5-bisphosphate carboxylase/oxygenase carboxylation, and stomatal conductance. In addition to the absence of an effect on photosynthetic activities, UV-B had no significant impact on plant biomass, leaf area or partitioning. UV-B exposure increased leaf flavonoid content. The UV-A treatment had no observable effect on photosynthesis or productivity. Mild drought resulted in reduced biomass, a change in partitioning away from shoots to roots whilst maintaining leaf area, but had no observable effect on photosynthetic competence. No UV-B and drought treatment interactions were observed on photosynthesis or plant biomass. In conclusion, a 30% increase in UV-B had no effects on photosynthetic performance or productivity in well-watered or droughted pea plants in the field. (author)

  13. Energy Transfer Kinetics in Photosynthesis as an Inspiration for Improving Organic Solar Cells.

    Science.gov (United States)

    Nganou, Collins; Lackner, Gerhard; Teschome, Bezu; Deen, M Jamal; Adir, Noam; Pouhe, David; Lupascu, Doru C; Mkandawire, Martin

    2017-06-07

    Clues to designing highly efficient organic solar cells may lie in understanding the architecture of light-harvesting systems and exciton energy transfer (EET) processes in very efficient photosynthetic organisms. Here, we compare the kinetics of excitation energy tunnelling from the intact phycobilisome (PBS) light-harvesting antenna system to the reaction center in photosystem II in intact cells of the cyanobacterium Acaryochloris marina with the charge transfer after conversion of photons into photocurrent in vertically aligned carbon nanotube (va-CNT) organic solar cells with poly(3-hexyl)thiophene (P3HT) as the pigment. We find that the kinetics in electron hole creation following excitation at 600 nm in both PBS and va-CNT solar cells to be 450 and 500 fs, respectively. The EET process has a 3 and 14 ps pathway in the PBS, while in va-CNT solar cell devices, the charge trapping in the CNT takes 11 and 258 ps. We show that the main hindrance to efficiency of va-CNT organic solar cells is the slow migration of the charges after exciton formation.

  14. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    Science.gov (United States)

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling

    Science.gov (United States)

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-01-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis–Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species’ climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species’ growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species’ thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to

  16. Dye-Sensitized Solar Cells Based on the Principles and Materials of Photosynthesis: Mechanisms of Suppression and Enhancement of Photocurrent and Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Nagae

    2009-10-01

    Full Text Available Attempts have been made to develop dye-sensitized solar cells based on the principles and materials of photosynthesis: We first tested photosynthetic pigments, carotenoids (Cars, chlorophylls (Chls and their derivatives, to find sensitizers showing reasonable performance (photocurrent and conversion efficiency. We then tried to introduce the principles of photosynthesis, including electron transfer and energy transfer from Car to Phe a. Also, we tried co-sensitization using the pheophorbide (Phe a and Chl c2 pair which further enhanced the performance of the component sensitizers as follows: Jsc = 9.0 + 13.8 → 14.0 mA cm–2 and η = 3.4 + 4.6 → 5.4%.

  17. Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency.

    Science.gov (United States)

    Koyama, Yasushi; Miki, Takeshi; Wang, Xiao-Feng; Nagae, Hiroyoshi

    2009-10-27

    Attempts have been made to develop dye-sensitized solar cells based on the principles and materials of photosynthesis: We first tested photosynthetic pigments, carotenoids (Cars), chlorophylls (Chls) and their derivatives, to find sensitizers showing reasonable performance (photocurrent and conversion efficiency). We then tried to introduce the principles of photosynthesis, including electron transfer and energy transfer from Car to Phe a. Also, we tried co-sensitization using the pheophorbide (Phe) a and Chl c(2) pair which further enhanced the performance of the component sensitizers as follows: J(sc) = 9.0 + 13.8 --> 14.0 mA cm(-2) and eta = 3.4 + 4.6 --> 5.4%.

  18. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    Science.gov (United States)

    Lindsey, Jonathan S [Raleigh, NC; Chinnasamy, Muthiah [Raleigh, NC; Fan, Dazhong [Raleigh, NC

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  19. Zinc chlorophyll aggregates as hole transporters for biocompatible, natural-photosynthesis-inspired solar cells

    Science.gov (United States)

    Li, Yue; Sasaki, Shin-ichi; Tamiaki, Hitoshi; Liu, Cheng-Liang; Song, Jiaxing; Tian, Wenjing; Zheng, Enqiang; Wei, Yingjin; Chen, Gang; Fu, Xueqi; Wang, Xiao-Feng

    2015-11-01

    The intriguing properties of extremely efficient delocalization and migration of excitons in chlorophyll (Chl) J-type aggregates have inspired intense research activities toward their structural understanding, functional interpretation and mimicry synthesis. Herein, we demonstrated the J-aggregates of zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide a (ZnChl-1) generated by spin-coating method for the application as a hole transporter in titania-based solar cells using methyl trans-32-carboxypyropheophorbide a (H2Chl-2) or its zinc complex (ZnChl-2) as the sensitizer. The effective carrier mobility of the J-aggregates films was determined by the organic field-effect transistor to be 6.2 × 10-4 cm2 V-1 s-1. Solar cells sharing the architecture of FTO/H2Chl-2 or ZnChl-2 on TiO2/(ZnChl-1)n/Ag were fabricated and the factors that presumably determine their photovoltaic performances were discussed. The photovoltaic devices studied herein employing inexpensive and pollution-free biomaterials provide a unique solution of utilizing solar energy with a care of the important environmental issue.

  20. Increasing Leaf Vein Density via Mutagenesis in Rice Results in an Enhanced Rate of Photosynthesis, Smaller Cell Sizes and Can Reduce Interveinal Mesophyll Cell Number

    Directory of Open Access Journals (Sweden)

    Aryo B. Feldman

    2017-11-01

    Full Text Available Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa. A previous high throughput screen identified five mutant rice lines (cv. IR64 with increased vein densities and associated narrower leaf widths (Feldman et al., 2014. Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number is a trait that may confer increased photosynthetic efficiency without increased transpiration.

  1. Regulation in photosynthesis

    International Nuclear Information System (INIS)

    Heber, U.

    1989-01-01

    This short paper focus on an overall perspective of photosynthesis. The author points out that although much progress has been made into the molecular mechanisms of photosynthesis, the picture is still far from complete. The study of interactions in photosynthesis is important because such a complex process must have regulatory mechanisms. The author also discusses the importance of photosynthesis study in the practical world of survival of man and production of food

  2. Five Lectures on Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    These five lectures were held by E. Broda during the International Symposium on Alternative Energies, in September 1979. Lecture 1 – The Great Physicists and Photosynthesis; Lecture 2 – The Influence of Photosynthesis on the Biosphere. Past, Present and Future; Lecture 3 – The Origin of Photosynthesis; Lecture 4 – The Evolution from Photosynthetic Bacteria to Plants; Lecture 5 – Respiration and Photorespiration. (nowak)

  3. The impact of modifying antenna size of photosystem II on canopy photosynthetic efficiency – development of a new canopy photosynthesis model scaling from metabolism to canopy level processes

    Science.gov (United States)

    Canopy photosynthesis describes photosynthesis of an entire crop field and positively correlates with biomass production. Much effort in crop breeding has focused on improving canopy architecture and hence light distribution inside the canopy. Here, we develop a new integrated canopy photosynthesis ...

  4. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Bach, Lennart T; Mackinder, Luke C M; Schulz, Kai G; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf

    2013-07-01

    Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2 . However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2 , bicarbonate, carbonate and protons) on the physiological responses to elevated CO2 . Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2 . Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria.

    Science.gov (United States)

    Kocal, Nurcan; Sonnewald, Uwe; Sonnewald, Sophia

    2008-11-01

    Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.

  6. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing.

    Science.gov (United States)

    Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J

    2015-05-01

    Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.

  7. Photosynthesis in high definition

    Science.gov (United States)

    Hilton, Timothy W.

    2018-01-01

    Photosynthesis is the foundation for almost all known life, but quantifying it at scales above a single plant is difficult. A new satellite illuminates plants' molecular machinery at much-improved spatial resolution, taking us one step closer to combined `inside-outside' insights into large-scale photosynthesis.

  8. Testing the Impact of a Pre-Instructional Digital Game on Middle-Grade Students' Understanding of Photosynthesis

    Science.gov (United States)

    Culp, Katherine McMillan; Martin, Wendy; Clements, Margaret; Lewis Presser, Ashley

    2015-01-01

    Rigorous studies of the impact of digital games on student learning remain relatively rare, as do studies of games as supports for learning difficult, core curricular concepts in the context of normal classroom practices. This study uses a blocked, cluster randomized controlled trial design to test the impact of a digital game, played as homework…

  9. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions

    Czech Academy of Sciences Publication Activity Database

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Miroslava; Teslová-Navrátilová, P.; Zitová, Martina; Špunda, Vladimír; Marek, Michal V.; Grace, J.

    2014-01-01

    Roč. 185, FEB 2014 (2014), s. 271-280 ISSN 0269-7491 R&D Projects: GA MŠk(CZ) LM2010007; GA ČR(CZ) GAP501/10/0340 Institutional support: RVO:67179843 Keywords : diurnal dynamics * DEPS * european beech * fluorescence * photorespiration * stomatal conductance * xanthophylls Subject RIV: GK - Forestry Impact factor: 4.143, year: 2014

  10. The Evolution of Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This Review was written by Engelbert Broda, an Austrian Chemist and Physicist, on February the 10th 1976. The merits of the inductive and the deductive approach in tracing the pathways of evolution are discussed. Using the latter approach, it is concluded that photosynthesis followed fermentation as a method of obtaining energy-rich compounds, especially ATP. Photosynthesis probably arose by utilization of membranes for bioenergetic processes. Originally photosynthesis served photophosphorylation (ATP production), later reducing power was also made, either by open-ended, light-powered, electron flow or driven by ATP; ultimate electron donors were at first hydrogen or sulfur compounds, and later water, the last-named capability Was acquired by prokaryotic algae the earliest plants, similar to the recent blue-greens. When free oxygen entered the atmosphere for the first time, various forms of respiration (oxidative phosphorylation) became possible. Mechanistically, respiration evolved from photosynthesis (‘conversion hypotheses’). Prokaryotic algae are probably the ancestors of the chloroplasts in the eukaryotes, In the evolution of the eukaryotes, not much change in the basic processes of photosynthesis occurred.(author)

  11. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)?

    Science.gov (United States)

    Donnelly, Alison; Craigon, Jim; Black, Colin R.; Colls, Jeremy J.; Landon, Geoff

    2001-04-01

    This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.

  12. Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni.

    Science.gov (United States)

    Macinnis-Ng, Catriona M O; Ralph, Peter J

    2002-01-01

    This in situ study used photosynthetic activity (measured as chlorophyll a fluorescence) and photosynthetic pigment concentrations to assess the effect of copper, cadmium, lead and zinc on the seagrass Zostera capricorni. Custom-made portable in situ exposure (PIE) chambers were developed so seagrasses could be dosed within the meadow. Z capricorni was exposed to 0.1 and I mg l(-1) of metal solutions for 10 h. During this time and for the subsequent four-day recovery period, the effective quantum yield of photosystem II (PS II) (deltaF/Fm') was measured. While the results were variable, copper and zinc exposed samples had a depressed deltaF/Fm' during the exposure period. Samples exposed to zinc recovered to pre-exposure levels but those exposed to copper did not. Cadmium and lead did not impact on the chlorophyll a fluorescence and the chlorophyll pigment data supported these findings. This study presents an innovative new application of chlorophyll a fluorescence stress assessment.

  13. Teaching Photosynthesis with ELL Students

    Science.gov (United States)

    Piper, Susan; Shaw, Edward Lewis, Jr.

    2010-01-01

    Although the teaching of photosynthesis occurs yearly in elementary classrooms, one thing that makes it challenging is the inclusion of English language learners (ELLs). This article presents several activities for teaching and assessing of photosynthesis in a third grade classroom. The activities incorporate the photosynthesis content, teaching…

  14. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  15. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  16. New Concept of Photosynthesis

    Directory of Open Access Journals (Sweden)

    Komissarov Gennadiy Germanovich

    2014-12-01

    Full Text Available The history of the formation of a new concept of photosynthesis proposed by the author is considered for the period since 1966 to 2013. Its essence consists in the following facts: the photosynthetic oxygen (hydrogen source is not water, but exo- and endogenous hydrogen peroxide; thermal energy is a necessary part of the photosynthetic process; along with the carbon dioxide the air (oxygen, inert gases is included in the photosynthetic equation. The mechanism of the photovoltaic (Becquerel effect in films of chlorophyll and its synthetic analogue - phthalocyanine are briefly touched upon in the article. The article presents the works on artificial photosynthesis performed in the laboratory of Photobionics of N.N. Semenov Institute of Chemical Physics, RAS.

  17. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  18. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging

    DEFF Research Database (Denmark)

    Trampe, Erik Christian Løvbjerg; Kolbowski, J.; Schreiber, U.

    2011-01-01

    , red or white light. Automated sequential exposure of microscopic samples to the three excitation colours enables subsequent deconvolution of the resulting fluorescence signals and colour marking of cells with different photopigmentation, i.e., cyanobacteria, green algae, red algae and diatoms....... The photosynthetic activity in complex mixtures of phototrophs and natural samples can thus be assigned to different types of phototrophs, which can be quantified simultaneously. Here, we describe the composition and performance of the new imaging system and present applications with both natural phytoplankton...

  19. Influence of pH on the /sup 14/C-labelling pattern after photosynthesis of suspended leaf slices and isolated mesophyll cells from chenopodium album in NaH/sup 14/CO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, G; Guenther, G [Paedagogische Hochschule Karl Liebknecht, Potsdam (German Democratic Republic). Sektion Chemie/Biologie

    1983-01-01

    Photosynthetic fixation of /sup 14/C from solutions of NaH/sup 14/CO/sub 3/ (at constant concentrations of free CO/sub 2/) by suspended leaf slices or isolated mesophyll cells from Chenopodium album is increased with increasing pH. Above all, the incorporation of radioactivity into amino acids and malate is stimulated. A direct uptake of HCO/sub 3/ ions and its fixation by PEP carboxylase is suggested. Isolated mesophyll cells showed at pH 7.3 a higher rate of photosynthesis than at pH 5.0.

  20. Artificial Photosynthesis: Beyond Mimicking Nature

    International Nuclear Information System (INIS)

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-01-01

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on “Artificial Photosynthesis for Sustainable Fuels”. Here, they discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO 2 reduction, and photoelectrochemical systems.

  1. Effect of Zinc Deficiency and Excess on the Growth and Photosynthesis of Winter Wheat

    Directory of Open Access Journals (Sweden)

    N.M. Kaznina

    2017-12-01

    Full Text Available Zinc is one of the necessary micronutrients for plants, which performs a number of various functions in their cells. Therefore, the deficiency of this element negatively affects on plants and leads to a significant decrease of their productivity. On the other hand, zinc in high concentrations is toxic to plants, and its accumulation in aerial organs, especially in cereals, represent a real danger to human and animal health. In this investigation the effect of the deficiency (Zn 0 μM and the excess of zinc (Zn 1000 μM on the growth and photosynthesis of the winter wheat (cv. Mironovskaya 39 was studied. As a result, similarities and differences in the response of plants to these two types of stress were revealed. In particular, both with a lack and with an excess of metal in the nutrient solution, shoot growth and photosynthesis rate are inhibited which leads to a decrease in the accumulation of dry biomass. Excess of metal, in contrast to its deficiency, leads to inhibition of root growth, and also a negative impact on pigment content, including light-harvesting complexes, and on maximum quantum yield of PS II. It is assumed that these changes in the photosynthetic apparatus are the main causes of a decrease of photosynthesis rate in plants under these conditions, whereas in the case of zinc deficiency, an inhibition of the process intensity is most likely due to a change in the activity of zinc-containing enzymes involved in the dark reactions of photosynthesis.

  2. Photosynthesis in the Archean era.

    Science.gov (United States)

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  3. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  4. Fruit photosynthesis in Satsuma mandarin.

    Science.gov (United States)

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  6. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  7. The primary steps of photosynthesis

    International Nuclear Information System (INIS)

    Fleming, G.R.; Van Grondelle, R.

    1996-01-01

    The two important initial steps of photosynthesis-electron transfer and energy transfer occur with great speed and efficiency. New techniques in laser optics and genetic engineering age helping us to understand why. (author). 24 refs. 8 figs

  8. Ecophysiology at SPRUCE: Impacts of whole ecosystem warming and elevated CO2 on leaf-level photosynthesis and respiration of two ericaceous shrubs in a boreal peatland

    Science.gov (United States)

    Ward, E. J.; Dusenge, M. E.; Warren, J.; Murphy, B. K.; Way, D.; King, A. W.; McLennan, D.; Montgomery, R.; Stefanski, A.; Reich, P. B.; Cruz Aguilar, M.; Wullschleger, S.; Bermudez Villanueva, R.; Hanson, P. J.

    2017-12-01

    The Spruce and Peatland Responses Under Changing Environments (SPRUCE) project is a large-scale, long-term experiment investigating the effects of warming and elevated CO2 on an ombrotrophic bog in Minnesota, USA. SPRUCE uses 10 large (12.8-m diameter) enclosures to increase air and soil temperatures to a range of targets (+0 °C, +2.25 °C, +4.5 °C, +6.75 °C, +9 °C) under both ambient and elevated (+500 ppm) CO2 concentrations. Whole-ecosystem-warming treatments began in August 2015 and elevated CO2 treatments began in June 2016. This talk will address the photosynthetic and respiratory responses of vascular plants to the treatments as measured with a variety of in-situ and ex-situ measurements conducted throughout the 2016 and 2017 growing seasons. We will focus on the responses of two dominant ericaceous shrubs (Rhododendron groenlandicum and Chamaedaphne calyculata), which account for more 80% of the understory biomass of this open-canopy forest. Such physiological changes are not only leading indicators of changes in plant growth and community structure, but are crucial to understanding carbon cycling of raised bogs and representing boreal peatlands in global dynamic vegetation models. Pre-treatment data collected at this site indicate that the physiologically active season typically begins in late May and extends into the fall until freezing nighttime temperatures are consistently reached, typically in October. Post-treatment measurements made during seasonal transitions indicate a longer active physiological season in warmer treatments. Results from 2016 measurements show some degree of thermal acclimation of photosynthesis in R. groenlandicum and of respiration in both species in the early growing season, but not late season. Late season measurements show a down-regulation of photosynthesis in both shrub species grown under elevated CO2. Taken as a whole, these results indicate complex interactions between phenological changes and treatment effects on

  9. Photosynthesis: From De Saussure To Liebig.

    Science.gov (United States)

    Pennazio, Sergio

    2017-01-01

    The dawn of photosynthesis, characterized by the research of Priestley, Ingen- Housz and Senebier, culminated in 1804 with a historical essay of Théodore De Saussure. According to the historians, during the first half of the nineteenth century in which the genesis of the cell theory started off, the research on photosynthesis met a phase of stagnation. Indeed, the literature review of the period does not report particular innovation; however, several scientists (botanists, physiologists, and chemists) supported the thesis of De Saussure with a series of analyses that, in our opinion, deserve to be known. Mirbel, De Candolle, Raspail, Berzelius, Payen, Dutrochet, von Mohl, and other scholars attempted to expand knowledge on photosynthesis but were not able to arrive at a theory that was consistent with a functional mechanism, nor with a suitable chemical model to explain the transformation of the water and carbon dioxide into sugars. A classic case of such inadequacy concerns the discovery of chlorophyll. This compound, isolated in 1818 by Pelletier and Caventou, remained an enigma for many years and was never put in relation with the synthesis of starch. The accurate research of von Mohl led this scientist to believe that the granules of chlorophyll were entirely independent of starch granules, although in many cases these latter were observable inside the granules of chlorophyll. Only in the early forties, Justus von Liebig realized that the assimilation of carbon and hydrogen required a series of chemical reactions that, starting from some organic acids, ended in the formation of sugar. In conclusion, our analysis does not lead to define this period as stagnation but rather as transition, in which the concept of photosynthesis was clear, even though difficult to treat under physiological and chemical views. From the sixties, the researches of Julius von Sachs will open a new road, thanks also to the research carried out in the transition period. Copyright:

  10. Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration

    DEFF Research Database (Denmark)

    Pedersen, Ole; Colmer, Timothy D.; Borum, Jens

    2016-01-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes....... Temperature effects on net photosynthesis (PN) and dark respiration (RD) of leaves were evaluated. Daytime low tide was characterized by high pO2 (54 kPa), pH (8.8) and temperature (38°C) in shallow pools. As PN was maximum at 33°C (9.1 and 7.2 μmol O2 m-2 s-1 in T. hemprichii and E. acoroides, respectively......), the high temperatures and reduced CO2 would have diminished PN, whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2 m-2 s-1, respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2...

  11. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  12. Heat stress of two tropical seagrass species during low tides - impact on underwater net photosynthesis, dark respiration and diel in situ internal aeration.

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D; Borum, Jens; Zavala-Perez, Andrea; Kendrick, Gary A

    2016-06-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes. Temperature effects on net photosynthesis (PN ) and dark respiration (RD ) of leaves were evaluated. Daytime low tide was characterized by high pO2 (54 kPa), pH (8.8) and temperature (38°C) in shallow pools. As PN was maximum at 33°C (9.1 and 7.2 μmol O2  m(-2) s(-1) in T. hemprichii and E. acoroides, respectively), the high temperatures and reduced CO2 would have diminished PN , whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2  m(-2)  s(-1) , respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2 relieved the anoxia. Shoots exposed to 40°C for 4 h showed recovery of PN and RD , whereas 45°C resulted in leaf damage. These seagrasses are 'living near the edge', tolerant of current diel O2 and temperature extremes, but if temperatures rise both species may be threatened in this habitat. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis?

    Directory of Open Access Journals (Sweden)

    Silke Christine Weckopp

    2015-01-01

    Full Text Available C4 photosynthesis characteristically features a cell-specific localization of enzymes involved in CO2 assimilation in bundle sheath cells or mesophyll cells. Interestingly, enzymes of sulfur assimilation are also specifically present in bundle sheath cells of maize and many other C4 species. This localization, however, could not be confirmed in C4 species of the genus Flaveria. It was, therefore, concluded that the bundle sheath localization of sulfate assimilation occurs only in C4 monocots. However, recently the sulfate assimilation pathway was found coordinately enriched in bundle sheath cells of Arabidopsis, opening new questions about the significance of such cell-specific localization of the pathway. In addition, next generation sequencing revealed expression gradients of many genes from C3 to C4 species and mathematical modelling proposed a sequence of adaptations during the evolutionary path from C3 to C4. Indeed, such gradient, with higher expression of genes for sulfate reduction in C4 species, has been observed within the genus Flaveria. These new tools provide the basis for reexamining the intriguing question of compartmentalization of sulfur assimilation. Therefore, this review summarizes the findings on spatial separation of sulfur assimilation in C4 plants and Arabidopsis, assesses the information on sulfur assimilation provided by the recent transcriptomics data and discusses their possible impact on understanding this interesting feature of plant sulfur metabolism to find out whether changes in sulfate assimilation are part of a general evolutionary trajectory towards C4 photosynthesis.

  14. Plants and Photosynthesis: Level III, Unit 3, Lesson 1; The Human Digestive System: Lesson 2; Functions of the Blood: Lesson 3; Human Circulation and Respiration: Lesson 4; Reproduction of a Single Cell: Lesson 5; Reproduction by Male and Female Cells: Lesson 6; The Human Reproductive System: Lesson 7; Genetics and Heredity: Lesson 8; The Nervous System: Lesson 9; The Glandular System: Lesson 10. Advanced General Education Program. A High School Self-Study Program.

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for the high-school level contains lessons in the following subjects: Plants and Photosynthesis; The Human Digestive System; Functions of the Blood; Human Circulation and Respiration; Reproduction of a Single Cell; Reproduction by Male and Female Cells; The Human Reproductive System; Genetics and Heredity; The Nervous…

  15. Techniques in studies of photosynthesis

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.

    1990-01-01

    The use of both stable and radioactive isotopes has led to major advances in the understanding of the basic mechanisms of photosynthesis. An early use of isotopic material in photosynthetic investigations was the demonstration using 18 O, that O 2 evolved in photosynthesis was derived from water rather than from CO 2 . When the long-lived isotope of carbon, 14 C, became available in 1945, its use, coupled with two-dimensional chromatography developed a few years earlier, enabled Calvin and Benson (1948) to devise experiments to elucidate the pathway of photosynthetic 14 CO 2 fixation, 12 refs, 6 figs, 10 tabs

  16. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...

  17. The paleobiological record of photosynthesis.

    Science.gov (United States)

    William Schopf, J

    2011-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth's ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established.

  18. The use of NH4+ rather than NO3- affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting.

    Science.gov (United States)

    Ruan, Zuoxi; Giordano, Mario

    2017-02-01

    The assimilation of N-NO 3 - requires more energy than that of N-NH 4 + . This becomes relevant when energy is limiting and may impinge differently on cell energy budget depending on depth, time of the day and season. We hypothesize that N-limited and energy-limited cells of the oceanic cyanobacterium Synechococcus sp. differ in their response to the N source with respect to growth, elemental stoichiometry and carbon allocation. Under N limitation, cells retained almost absolute homeostasis of elemental and organic composition, and the use of NH 4 + did not stimulate growth. When energy was limiting, however, Synechococcus grew faster in NH 4 + than in NO 3 - and had higher C (20%), N (38%) and S (30%) cell quotas. Furthermore, more C was allocated to protein, whereas the carbohydrate and lipid pool size did not change appreciably. Energy limitation also led to a higher photosynthetic rate relative to N limitation. We interpret these results as an indication that, under energy limitation, the use of the least expensive N source allowed a spillover of the energy saved from N assimilation to the assimilation of other nutrients. The change in elemental stoichiometry influenced C allocation, inducing an increase in cell protein, which resulted in a stimulation of photosynthesis and growth. © 2016 John Wiley & Sons Ltd.

  19. Impact of jamming on collective cell migration

    Science.gov (United States)

    Nnetu, Kenechukwu David; Knorr, Melanie; Pawlizak, Steve; Fuhs, Thomas; Zink, Mareike; KäS, Josef A.

    2012-02-01

    Multi-cellular migration plays an important role in physiological processes such as embryogenesis, cancer metastasis and tissue repair. During migration, single cells undergo cycles of extension, adhesion and retraction resulting in morphological changes. In a confluent monolayer, there are inter-cellular interactions and crowding, however, the impact of these interactions on the dynamics and elasticity of the monolayer at the multi-cellular and single cell level is not well understood. Here we study the dynamics of a confluent epithelial monolayer by simultaneously measuring cell motion at the multi-cellular and single cell level for various cell densities and tensile elasticity. At the multi-cellular level, the system exhibited spatial kinetic transitions from isotropic to anisotropic migration on long times and the velocity of the monolayer decreased with increasing cell density. Moreover, the dynamics was spatially and temporally heterogeneous. Interestingly, the dynamics was also heterogeneous in wound-healing assays and the correlation length was fitted by compressed exponential. On the single cell scale, we observed transient caging effects with increasing cage rearrangement times as the system age due to an increase in density. Also, the density dependent elastic modulus of the monolayer scaled as a weak power law. Together, these findings suggest that caging effects at the single cell level initiates a slow and heterogeneous dynamics at the multi-cellular level which is similar to the glassy dynamics of deformable colloidal systems.

  20. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  1. Bibliography of reviews and methods of photosynthesis - 88

    Czech Academy of Sciences Publication Activity Database

    Šesták, Zdeněk; Čatský, Jiří

    2004-01-01

    Roč. 42, č. 4 (2004), s. 619-640 ISSN 0300-3604 R&D Projects: GA ČR GA206/97/0120 Institutional research plan: CEZ:AV0Z5038910 Keywords : Bibliographic survey * processes of photosynthesis * accumulation of energy Subject RIV: EF - Botanics Impact factor: 0.734, year: 2004

  2. Selective effects of H2O2 on cyanobacterial photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Drábková, Michaela; Matthijs, H. C. P.; Admiraal, W.; Maršálek, Blahoslav

    2007-01-01

    Roč. 45, č. 3 (2007), s. 363-369 ISSN 0300-3604 Grant - others:-(XE) EVK2-CT-2002-57004 Institutional research plan: CEZ:AV0Z60050516 Keywords : hydrogen peroxide * cyanobacteria * photosynthesis Subject RIV: EF - Botanics Impact factor: 0.976, year: 2007

  3. Bibliography of reviews and methods of photosynthesis-85

    Czech Academy of Sciences Publication Activity Database

    Šesták, Zdeněk; Čatský, Jiří

    2002-01-01

    Roč. 39, č. 4 (2002), s. 615-640 ISSN 0300-3604 R&D Projects: GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5038910 Keywords : methods of photosynthesis Subject RIV: EF - Botanics Impact factor: 0.773, year: 2002

  4. Growth and photosynthesis of lettuce

    NARCIS (Netherlands)

    Holsteijn, van H.M.C.

    1981-01-01

    Butterhead lettuce is an important glass-house crop in the poor light period in The Netherlands. Fundamental data about the influence of temperature, light and CO 2 on growth and photosynthesis are important e.g. to facilitate selection criteria for new cultivars. In

  5. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  6. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  7. Songs about Cancer, Gene Expression, and the Biochemistry of Photosynthesis

    Science.gov (United States)

    Heineman, Richard H.

    2018-01-01

    These three biology songs can be used for educational purposes to teach about biochemical concepts. They touch on three different topics: (1) cancer progression and germ cells, (2) gene expression, promoters, and repressors, and (3) electronegativity and the biochemical basis of photosynthesis.

  8. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  9. Environmental impact of PV cell waste scenario.

    Science.gov (United States)

    Bogacka, M; Pikoń, K; Landrat, M

    2017-12-01

    Rapid growth of the volume of waste from PV cells is expected in the following years. The problem of its utilization seems to be the most important issue for future waste management systems. The environmental impacts of the PV recycling scenario are presented in the manuscript. The analysis is based on the LCA approach and the average data available in specialized databases for silicon standard PV cell is used. The functional unit includes parameters like: efficiency, composition, surface area. The discussion on the environmental impact change due to the location of the PV production and waste processing plants is presented in the manuscript. Additionally, the discussion on the environmental effect of substituting different energy resources with PV cells is presented in the manuscript. The analysis of the PV cell life cycle scenario presented in the article was performed using the SIMA PRO software and data from Ecoinvent 3.0 database together with additional data obtained from other sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Impact of UV-B (290-320 nm) radiation on photosynthesis-mediated uptake of 15N-ammonia and 15N-nitrate of several marine diatoms

    International Nuclear Information System (INIS)

    Doehler, G.; Stolter, H.

    1986-01-01

    The marine diatoms Ditylum brigthwellii, Lithodesmium variabile, Odontella sinensis, Synedra planctonica and Thalassiosira rotula grown at 18 0 C under normal air conditions (0.035 vol.% CO 2 ) were exposed to different levels (439 and 717 J m -2 d -1 , weighted) of UV-B radiation for 2 d (5 h/d). Pigmentation, protein and total nitrogen content were reduced linearly to the dose of UV-B radiation. Photosynthesis-mediated uptake of 15 N-ammonia was more affected by UV-B irradiance in all tested diatoms than that of 15 N-nitrate. A species-dependent behavior in the assimilation of inorganic nitrogenous compounds has been observed: Synedra was a very sensitive species to UV-B radiation whereas the same UV-B doses had no effect on the assimilation rate of ammonia and nitrate of the Lithodesmium cells. The results were discussed with reference to the inhibition of the enzymes of the nitrogen metabolism. (author)

  11. Physical stage of photosynthesis charge separation

    Science.gov (United States)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  12. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    Science.gov (United States)

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. The paleobiological record of photosynthesis

    OpenAIRE

    William Schopf, J.

    2010-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on...

  14. Prokaryotic photosynthesis and phototrophy illuminated

    DEFF Research Database (Denmark)

    Bryant, Donald A; Frigaard, Niels-Ulrik

    2006-01-01

    Genome sequencing projects are revealing new information about the distribution and evolution of photosynthesis and phototrophy. Although coverage of the five phyla containing photosynthetic prokaryotes (Chlorobi, Chloroflexi, Cyanobacteria, Proteobacteria and Firmicutes) is limited and uneven...... components that have not yet been described. Metagenomics has already shown how the relatively simple phototrophy based upon rhodopsins has spread laterally throughout Archaea, Bacteria and eukaryotes. In this review, we present examples that reflect recent advances in phototroph biology as a result...

  15. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  16. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico.

    Science.gov (United States)

    Hellweger, Ferdi L

    2009-06-01

    Several viruses infecting marine cyanobacteria carry photosynthesis genes (e.g. psbA, hli) that are expressed, yield proteins (D1, HLIP) and help maintain the cell's photosynthesis apparatus during the latent period. This increases energy and speeds up virus production, allowing for a reduced latent period (a fitness benefit), but it also increases the DNA size, which slows down new virus production and reduces burst size (a fitness cost). How do these genes affect the net ecological fitness of the virus? Here, this question is explored using a combined systems biology and systems ecology ('systems bioecology') approach. A novel agent-based model simulates individual cyanobacteria cells and virus particles, each with their own genes, transcripts, proteins and other properties. The effect of D1 and HLIP proteins is explicitly considered using a mechanistic photosynthesis component. The model is calibrated to the available database for Prochlorococcus ecotype MED4 and podovirus P-SSP7. Laboratory- and field-scale in silico survival, competition and evolution (gene packaging error) experiments with wild type and genetically engineered viruses are performed to develop vertical survival and fitness profiles, and to determine the optimal gene content. The results suggest that photosynthesis genes are nonessential, increase fitness in a manner correlated with irradiance, and that the wild type has an optimal gene content.

  17. Inhibition of photosynthesis by carbon monoxide and suspension of the carbon monoxide inhibition by light

    Energy Technology Data Exchange (ETDEWEB)

    Gewitz, H S; Voelker, W

    1963-08-01

    The experimental subject was the autotroph Chlorella pyrenoidosa. It was found that growth conditions determine whether the alga is inhibited by carbon monoxide or not. Respiration and photosynthesis are inhibited by carbon monoxide if the cells have grown rapidly under high light intensities. The inhibition of respiration and photosynthesis found in such cells is completely reversible. The inhibition depends not only on carbon monoxide pressure, but also on the oxygen pressure prevailing at the same time. 5 references, 1 figure, 3 tables.

  18. Misconception of biology education student of teacher training and education of Sriwijaya University to the concept of photosynthesis and respiration

    Science.gov (United States)

    Susanti, Rahmi

    2018-05-01

    This study aimed to gain an overview of misconceptions on the concept of photosynthesis and respiration. The study involved 58 students from Biology Education of Sriwijaya University. Collecting data used written test of 16 questions, which are 10 questions of multiple choice and 6 of choice with reason. The results showed that:photosynthesis occurs continuously (37.9%), energy used for photosynthesis are light and heat energy (34.5%), plants take CO2to respiration (47%), plants carry on respiration in the absence of light for photosynthesis (22.4%), respiration in plants occurs only in leaf cells (76.4%), and only animals that take O2 of photosynthesis to respiration (68.9%). The conclusion: 1) on the concept of photosynthesis is still prevailing misconceptions about the concept of the place and time of the occurrence of photosynthesis in plants, the role of the sun in photosynthesis, energy is required in the form of photosynthesis, and the role of photosynthesis for the plant. 2) on the concept of respiration is still prevailing misconceptions about the place of the respiration in plants, gas necessary for respiration of plants, and the plants perform respiration time, as well as the cycle of CO2 and O2 that occurs in nature.

  19. Physiological and Environmental Aspects of Photosynthesis

    OpenAIRE

    Ricardo Alfredo Kluge; Universidade de São Paulo; Jaqueline V. Tezotto-Uliana; Universidade de São Paulo; Paula P. M. da Silva; Universidade de São Paulo

    2015-01-01

    Undoubtedly, photosynthesis is one of the most important process for the life planet maintenance. The sun releases radiant energy that is able to boost the photosynthetic apparatus of the plants, which produce carbohydrates that will be used in the respiration. Among the most important reactions of photosynthesis is the release of oxygen, essential for respiration, which happens in photosystem II. The products generated in the first phase of photosynthesis or photochemical phase (ATP and NADP...

  20. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    type parameter values are assigned and assumed invariant with environmental condition but also ii) these models use leaf N as a factor that limit photosynthesis. Instead, since leaf P may also limit photosynthesis of the tropical forest (Reich et al. 2009), we use a more specific description of photosynthetic capacity across the basin based on the model evaluation done in Mercado et al. (2009) in which canopy photosynthetic capacity is related to foliar P but also using the relationships derived between canopy photosynthesis and leaf nutrients (N and P) from measurements in tropical trees (Domingues et al.In review). A study of this kind can inform the global vegetation/climate community as to the need for variability in key model parameters in order to accurately simulate carbon fluxes across the Amazon basin. Baker, T. R., et al. 2004. Increasing biomass in Amazonian forest plots. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 (1443):353-365. Phillips, O. L. et al. 2004. Pattern and process in Amazon tree turnover, 1976-2001. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 359 (1443):381-407. Malhi, Y. et al. 2004. The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology 10 (5):563-591. Mercado, L.M. et al. 2009. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458 (7241), 1014. Cox, P. M. et al. 1998. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology 213 (1-4):79-9 Sitch, S. et al. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9 (2):161-185. Reich B. R. et al. 2009. Leaf phosphorus influences the photosynhtesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia, doi 10.1007/s00442-009-1291-3. Domingues, T. et al. In review. Co-limitation of

  2. Regressive Evolution of Photosynthesis in the Roseobacter Clade

    Czech Academy of Sciences Publication Activity Database

    Koblížek, Michal; Zeng, Yonghui; Horák, A.; Oborník, Miroslav

    2013-01-01

    Roč. 66, č. 2013 (2013), s. 385-405 ISSN 0065-2296 R&D Projects: GA ČR GAP501/10/0221; GA ČR GBP501/12/G055; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : roseobacter clade * photosynthesis * marine microbial communities Subject RIV: EE - Microbiology, Virology Impact factor: 1.740, year: 2013

  3. Photochemistry and enzymology of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R.

    1979-07-30

    In the first task, a specially designed mass spectrometer system monitors the gas exchange occurring in response to single short flashes of light. This apparatus will be primarily used to study photosystem II donor reactions, such as the photooxidation of hydroxylamine, hydrazine, and hydrogen peroxide. This technique will also be used to study the light-induced exchange of O/sub 2/ and CO/sub 2/ in algae. The second task, biochemical studies, will focus on the role of chloroplast copper in photosynthesis. We propose to isolate, purify, and characterize the chloroplast copper enzyme polyphenol oxidase, and attempt to elucidate its role in photosynthesis. These studies will be integrated with a new program devoted to the biochemical response of the photosynthetic membrane to stress. The third task is a series of studies on the light-harvesting and electron-transport mechanisms of C/sub 4/ plants. This program will address three basic problems: (1) the effect of different preparative procedures on various photosynthetic reactions, with particular emphasis on photosystem II reactions in corn bundle sheath chloroplasts; (2) the development and testing of photosystem II assays; and (3) studies of the stoichiometry of electron carriers in bundle sheath chloroplasts, and whether cyclic phosphorylation could be a major pathway in this tissue.

  4. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    Science.gov (United States)

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  6. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN

    Science.gov (United States)

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.

    2018-01-01

    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  7. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  8. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  9. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  10. Photosynthesis of ammonium uranous fluoride

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Zaki, M.R.; Farah, M.Y.

    1975-01-01

    This study pertains to utilisation of solar energy for ethanol photosynthesis of ammonium uranous fluoride, that satisfies nuclear specifications needed for calcio- or magnesiothermy. Insolation in autumn using 4-10% ethanol in 5-20 g uranium/litre at initial pH 3.25 gave practically 99.8% yield in two hours, independant of 1.0 to 2.0 stoichiometric NH 4 F. With ultraviolet light, the yield varied between 30 and 60%, even after four hours irradiation. Stirring and heating to 60 0 C raised the tap density of the dried double fluorides from 1.48 at 30 0 C, to 1.85 g/cm 3 at 60 0 C. The texture increased also in fineness to 100% 50μ aggregates. The powders satisfy nuclear purity specifications. Thermograms indicated preferential decomposition of double fluoride at 375 0 C in controlled atmosphere to obtain nuclear pure anhydrous uranium tetrafluoride

  11. Model systems in photosynthesis research

    International Nuclear Information System (INIS)

    Katz, J.J.; Hindman, J.C.

    1981-01-01

    After a general discussion of model studies in photosynthesis research, three recently developed model systems are described. The current status of covalently linked chlorophyll pairs as models for P700 and P865 is first briefly reviewed. Mg-tris(pyrochlorophyllide)1,1,1-tris(hydroxymethyl) ethane triester in its folded configuration is then discussed as a rudimentary antenna-photoreaction center model. Finally, self-assembled chlorophyll systems that contain a mixture of monomeric, oligomeric and special pair chlorophyll are shown to have fluorescence emission characteristics that resemble thoe of intact Tribonema aequale at room temperature in that both show fluorescence emission at 675 and 695 nm. In the self-assembled systems the wavelength of the emitted fluorescence depends on the wavelength of excitation, arguing that energy transfer between different chlorophyll species in these systems may be more complex than previously suspected

  12. INTERACTIVE ILUSTRATION FOR PHOTOSYNTHESIS TEACHING

    Directory of Open Access Journals (Sweden)

    M.R. Pereira

    2004-05-01

    Full Text Available Computational resources became the major tool in the challenge of making high education moreeasy and motivating. Complex Biochemical pathways can now be presented in interactive and three-dimensional animations. One of the most complex (detailed and interesting metabolic pathway thatstudents must understand in biochemical courses is photosynthesis. The light-dependent reactionsare of special interest since they involve many dierent kinds of mechanisms, as light absorptionby membrane complexes, proteins movement inside membranes, reactions of water hydrolysis, andelectrons ow; making it dicult to understand by static bi-dimensional representations.The resources of animation and ActionScript programming were used to make an interactive ani-mation of photosynthesis, which at some times even simulates three-dimensionality. The animationbegins with a leaf and progressively zooms in, until we have a scheme of a tylakoyd membrane, whereeach of the dierent steps of the pathway can be clicked to reveal a more detailed scheme of it. Whereappropriate, the energy graphs are shown side by side with the reactions. The electron is representedwith a face, so it can be shown to be stressing while going up in the energy graphs. Finally, there isa simplied version of the whole pathway, to illustrate how it all goes together.The objective is to help professors on teaching the subject in regular classes, since currently allthe explanations are omitted. In a future version, texts will be added to each step so it can beself-explicative to the students, helping them even on home or on-line learning.

  13. Adsorption of Nanoplastics on Algal Photosynthesis

    Science.gov (United States)

    Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun

    2010-03-01

    The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.

  14. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  15. The Impact of Driver Cell Phone Use on Accidents

    OpenAIRE

    James E. Prieger; Robert W. Hahn

    2005-01-01

    Cell phone use is increasing worldwide, leading to a concern that cell phone use while driving increases accidents. We develop a new approach for estimating the relationship between cell phone use while driving and accidents, based on new survey data. We test for selection effects, such as whether drivers who use cell phones are inherently less safe drivers, even when not on the phone. The paper has two key findings. First, the impact of cell phone use on accidents varies across the populatio...

  16. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  17. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  18. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    Science.gov (United States)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  19. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa.

    Science.gov (United States)

    Middepogu, Ayyaraju; Hou, Jie; Gao, Xuan; Lin, Daohui

    2018-06-14

    Titanium dioxide nanoparticles (n-TiO 2 ) have been used in numerous applications, which results in their release into aquatic ecosystems and impact algal populations. A possible toxic mechanism of n-TiO 2 on algae is via the disruption of the photosynthetic biochemical pathways, which yet remains to be demonstrated. In this study, Chlorella pyrenoidosa was exposed to different concentrations (0, 0.1, 1, 5, 10, and 20 mg/L) of a type of anatase n-TiO 2 , and the physiological, biochemical, and molecular responses involved in photosynthesis were investigated. The 96 h half growth inhibition concentration (IC 50 ) of the n-TiO 2 to algae was determined to be 9.1 mg/L. A variety of cellular and sub-cellular damages were observed, especially the blurry lamellar structure of thylakoids, indicating the n-TiO 2 impaired the photosynthetic function of chloroplasts. Malondialdehyde (MDA) and glutathione disulfide (GSSG) significantly increased while the glutathione (GSH) content decreased. This implies the increased consumption of GSH by the increased intracellular oxidative stress upon n-TiO 2 was insufficient to eliminate the lipid peroxidation. The contents of photosynthetic pigments, including chlorophyll a (Chl a) and phycobiliproteins (PBPs) in the exposed algal cells increased along with the up-regulation of genes encoding Chl a and photosystem II (PS II), which could be explained by a compensatory effect to overcome the toxicity induced by the n-TiO 2 . On the other hand, the photosynthetic activity was significantly inhibited, indicating the impairment on the photosynthesis via damaging the reaction center of PS II. In addition, lower productions of adenosine triphosphate (ATP) and glucose, together with the change of gene expressions suggested that the n-TiO 2 disrupted the material and energy metabolisms in the photosynthesis. These findings support a paradigm shift of the toxic mechanism of n-TiO 2 from physical and oxidative damages to metabolic

  20. Final report, Feedback limitations of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D.

    1999-07-22

    Final report of research on carbon metabolism of photosynthesis. The feedback from carbon metabolism to primary photosynthetic processes is summarized, and a comprehensive list of published scientific papers is provided.

  1. Advantages and disadvantages on photosynthesis measurement ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to ... Measurements of this process are useful in order to understand how it might be controlled ...

  2. A quantum protective mechanism in photosynthesis

    NARCIS (Netherlands)

    Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R.

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product

  3. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  4. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Semiconductor nanostructures for artificial photosynthesis

    Science.gov (United States)

    Yang, Peidong

    2012-02-01

    Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.

  6. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation

    Directory of Open Access Journals (Sweden)

    Magdalena Szechyńska-Hebda

    2017-09-01

    Full Text Available Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA and the systemic acquired resistance (SAR. The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.

  7. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  8. Could photosynthesis function on Proxima Centauri b?

    Science.gov (United States)

    Ritchie, Raymond J.; Larkum, Anthony W. D.; Ribas, Ignasi

    2018-04-01

    Could oxygenic and/or anoxygenic photosynthesis exist on planet Proxima Centauri b? Proxima Centauri (spectral type - M5.5 V, 3050 K) is a red dwarf, whereas the Sun is type G2 V (5780 K). The light regimes on Earth and Proxima Centauri b are compared with estimates of the planet's suitability for Chlorophyll a (Chl a) and Chl d-based oxygenic photosynthesis and for bacteriochlorophyll (BChl)-based anoxygenic photosynthesis. Proxima Centauri b has low irradiance in the oxygenic photosynthesis range (400-749 nm: 64-132 µmol quanta m-2 s-1). Much larger amounts of light would be available for BChl-based anoxygenic photosynthesis (350-1100 nm: 724-1538 µmol quanta m-2 s-1). We estimated primary production under these light regimes. We used the oxygenic algae Synechocystis PCC6803, Prochlorothrix hollandica, Acaryochloris marina, Chlorella vulgaris, Rhodomonas sp. and Phaeodactylum tricornutum and the anoxygenic photosynthetic bacteria Rhodopseudomonas palustris (BChl a), Afifella marina (BChl a), Thermochromatium tepidum (BChl a), Chlorobaculum tepidum (BChl a + c) and Blastochloris viridis (BChl b) as representative photosynthetic organisms. Proxima Centauri b has only ~3% of the PAR (400-700 nm) of Earth irradiance, but we found that potential gross photosynthesis (P g) on Proxima Centauri b could be surprisingly high (oxygenic photosynthesis: earth ~0.8 gC m-2 h-1 Proxima Centauri b ~0.14 gC m-2 h-1). The proportion of PAR irradiance useable by oxygenic photosynthetic organisms (the sum of Blue + Red irradiance) is similar for the Earth and Proxima Centauri b. The oxygenic photic zone would be only ~10 m deep in water compared with ~200 m on Earth. The P g of an anoxic Earth (gC m-2 h-1) is ~0.34-0.59 (land) and could be as high as ~0.29-0.44 on Proxima Centauri b. 1 m of water does not affect oxygenic or anoxygenic photosynthesis on Earth, but on Proxima Centauri b oxygenic P g is reduced by ~50%. Effective elimination of near IR limits P g by photosynthetic

  9. NO MECHANISTIC DEPENDENCE OF PHOTOSYNTHESIS ON CALCIFICATION IN THE COCCOLITHOPHORID EMILIANIA HUXLEYI (HAPTOPHYTA)(1).

    Science.gov (United States)

    Leonardos, Nikos; Read, Betsy; Thake, Brenda; Young, Jeremy R

    2009-10-01

    There is still considerable uncertainty about the relationship between calcification and photosynthesis. It has been suggested that since calcification in coccolithophorids is an intracellular process that releases CO2 , it enhances photosynthesis in a manner analogous to a carbon-concentrating mechanism (CCM). The ubiquitous, bloom-forming, and numerically abundant coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler was studied in nutrient-replete, pH and [CO2 ] controlled, continuous cultures (turbidostats) under a range of [Ca(2+) ] from 0 to 9 mM. We examined the long-term, fully acclimated photosynthesis-light responses and analyzed the crystalline structure of the coccoliths using SEM. The E. huxleyi cells completely lost their coccosphere when grown in 0 [Ca(2+) ], while thin, undercalcified and brittle coccoliths were evident at 1 mM [Ca(2+) ]. Coccoliths showed increasing levels of calcification with increasing [Ca(2+) ]. More robust coccoliths were noted, with no discernable differences in coccolith morphology when the cells were grown in either 5 or 9 mM (ambient seawater) [Ca(2+) ]. In contrast to calcification, photosynthesis was not affected by the [Ca(2+) ] in the media. Cells showed no correlation of their light-dependent O2 evolution with [Ca(2+) ], and in all [Ca(2+) ]-containing turbidostats, there were no significant differences in growth rate. The results show unequivocally that as a process, photosynthesis in E. huxleyi is mechanistically independent from calcification. © 2009 Phycological Society of America.

  10. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  11. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  12. Lethal impacts of cigarette smoke in cultured tobacco cells

    Directory of Open Access Journals (Sweden)

    Kawano Tomonori

    2011-07-01

    Full Text Available Abstract Background In order to understand and generalize the toxic mechanism of cigarette smoke in living cells, comparison of the data between animal systems and other biological system such as microbial and plant systems is highly beneficial. Objective By employing the tobacco cells as model materials for cigarette smoke toxicity assay, the impacts of the combustion by-products such as nitrogen oxides could be highlighted as the toxic impacts of the plant-derived endogenous chemicals could be excluded in the plant cells. Methods Cigarette smoke-induced cell death was assessed in tobacco cell suspension cultures in the presence and absence of pharmacological inhibitors. Results Cigarette smoke was effective in induction of cell death. The smoke-induced cell death could be partially prevented by addition of nitric oxide (NO scavenger, suggesting the role for NO as the cell death mediator. Addition of NO donor to tobacco cells also resulted in development of partial cell death further confirming the role of NO as cell death mediator. Members of reactive oxygen species and calcium ion were shown to be protecting the cells from the toxic action of smoke-derived NO.

  13. Study questions environmental impact of fuel-cell vehicles

    Science.gov (United States)

    Stafford, Ned

    2015-09-01

    Fuel-cell electric vehicles are seen by many as an environmentally friendly technology that can reduce greenhousegas emissions by producing no harmful emissions. But a new study has found that overall a fuel cell electric vehicle has about the same negative environmental impact as a luxury sports car.

  14. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional–structural plant model

    Science.gov (United States)

    Sarlikioti, V.; de Visser, P. H. B.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Methods Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Key Results Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Conclusions Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical

  15. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.

    Science.gov (United States)

    Sarlikioti, V; de Visser, P H B; Marcelis, L F M

    2011-04-01

    At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the

  16. Hypervelocity Impact Testing of Nickel Hydrogen Battery Cells

    Science.gov (United States)

    Frate, David T.; Nahra, Henry K.

    1996-01-01

    Nickel-Hydrogen (Ni/H2) battery cells have been used on several satellites and are planned for use on the International Space Station. In January 1992, the NASA Lewis Research Center (LeRC) conducted hypervelocity impact testing on Ni/H2 cells to characterize their failure modes. The cell's outer construction was a 24 mil-thick Inconel 718 pressure vessel. A sheet of 1.27 cm thick honeycomb was placed in front of the battery cells during testing to simulate the on-orbit box enclosure. Testing was conducted at the NASA White Sands Test Facility (WSTF). The hypervelocity gun used was a 7.6 mm (0.30 caliber) two-stage light gas gun. Test were performed at speeds of 3, 6, and 7 km/sec using aluminum 2017 spherical particles of either 4.8 or 6.4 mm diameter as the projectile. The battery cells were electrically charged to about 75 percent of capacity, then back-filled with hydrogen gas to 900 psi simulating the full charge condition. High speed film at 10,000 frames/sec was taken of the impacts. Impacts in the dome area (top) and the electrode area (middle) of the battery cells were investigated. Five tests on battery cells were performed. The results revealed that in all of the test conditions investigated, the battery cells simply vented their hydrogen gas and some electrolyte, but did not burst or generate any large debris fragments.

  17. Impact of cell culture process changes on endogenous retrovirus expression.

    Science.gov (United States)

    Brorson, Kurt; De Wit, Christina; Hamilton, Elizabeth; Mustafa, Mehnaz; Swann, Patrick G; Kiss, Robert; Taticek, Ron; Polastri, Gian; Stein, Kathryn E; Xu, Yuan

    2002-11-05

    Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other

  18. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  19. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  20. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  1. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  3. Elements Required for an Efficient NADP-Malic Enzyme Type C4 Photosynthesis1[C][W][OPEN

    Science.gov (United States)

    Wang, Yu; Long, Stephen P.; Zhu, Xin-Guang

    2014-01-01

    C4 photosynthesis has higher light, nitrogen, and water use efficiencies than C3 photosynthesis. Although the basic anatomical, cellular, and biochemical features of C4 photosynthesis are well understood, the quantitative significance of each element of C4 photosynthesis to the high photosynthetic efficiency are not well defined. Here, we addressed this question by developing and using a systems model of C4 photosynthesis, which includes not only the Calvin-Benson cycle, starch synthesis, sucrose synthesis, C4 shuttle, and CO2 leakage, but also photorespiration and metabolite transport between the bundle sheath cells and mesophyll cells. The model effectively simulated the CO2 uptake rates, and the changes of metabolite concentrations under varied CO2 and light levels. Analyses show that triose phosphate transport and CO2 leakage can help maintain a high photosynthetic rate by balancing ATP and NADPH amounts in bundle sheath cells and mesophyll cells. Finally, we used the model to define the optimal enzyme properties and a blueprint for C4 engineering. As such, this model provides a theoretical framework for guiding C4 engineering and studying C4 photosynthesis in general. PMID:24521879

  4. Inhibition of apparent photosynthesis by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A C; Bennett, J H

    1970-01-01

    The nitrogen oxides (NO/sub 2/ and NO) inhibited apparent photosynthesis of oats and alfalfa at concentrations below those required to cause visible injury. There appeared to be a threshold concentration of about 0.6 ppm for each pollutant. An additive effect in depressing apparent photosynthesis occurred when the plants were exposed to a mixture of NO and NO/sub 2/. Although NO produced a more rapid effect on the plants, lower concentrations of NO/sub 2/ were required to cause a given inhibition after 2 hour of exposure. Inhibition by nitric oxide was more closely related to its partial pressure than was inhibition by NO/sub 2/.

  5. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  6. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...... at each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  7. Cell culture media impact on drug product solution stability.

    Science.gov (United States)

    Purdie, Jennifer L; Kowle, Ronald L; Langland, Amie L; Patel, Chetan N; Ouyang, Anli; Olson, Donald J

    2016-07-08

    To enable subcutaneous administration of monoclonal antibodies, drug product solutions are often needed at high concentrations. A significant risk associated with high drug product concentrations is an increase in aggregate level over the shelf-life dating period. While much work has been done to understand the impact of drug product formulation on aggregation, there is limited understanding of the link between cell culture process conditions and soluble aggregate growth in drug product. During cell culture process development, soluble aggregates are often measured at harvest using cell-free material purified by Protein A chromatography. In the work reported here, cell culture media components were evaluated with respect to their impact on aggregate levels in high concentration solution drug product during accelerated stability studies. Two components, cysteine and ferric ammonium citrate, were found to impact aggregate growth rates in our current media (version 1) leading to the development of new chemically defined media and concentrated feed formulations. The new version of media and associated concentrated feeds (version 2) were evaluated across four cell lines producing recombinant IgG4 monoclonal antibodies and a bispecific antibody. In all four cell lines, the version 2 media reduced aggregate growth over the course of a 12 week accelerated stability study compared with the version 1 media, although the degree to which aggregate growth decreased was cell line dependent. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:998-1008, 2016. © 2016 American Institute of Chemical Engineers.

  8. Light distribution in leaf chambers and its consequences for photosynthesis measurements

    NARCIS (Netherlands)

    Hogewoning, S.W.; Trouwborst, G.; Harbinson, J.; Ieperen, van W.

    2010-01-01

    The impact of a heterogeneous distribution of actinic light within a leaf chamber for photosynthetic measurements by gas exchange on the photosynthesis-irradiance relationship was investigated. High-resolution light distributions were measured over the area of a commercially available clamp-on leaf

  9. E-photosynthesis: Web-based platform for modeling of complex photosynthetic processes

    Czech Academy of Sciences Publication Activity Database

    Šafránek, D.; Červený, Jan; Klement, M.; Pospíšilová, J.; Brim, L.; Lazár, D.; Nedbal, Ladislav

    2011-01-01

    Roč. 103, č. 2 (2011), s. 115-124 ISSN 0303-2647 R&D Projects: GA ČR GA206/09/1284 Institutional research plan: CEZ:AV0Z60870520 Keywords : biomodels repository * computational models * photosynthesis Subject RIV: BO - Biophysics Impact factor: 1.784, year: 2011

  10. Impact of Base Station Cooperation on Cell Planning

    Directory of Open Access Journals (Sweden)

    Ian Dexter Garcia

    2010-01-01

    Full Text Available Base station cooperation (BSC has been identified as a key radio access technology for next-generation cellular networks such as LTE-Advanced. BSC impacts cell planning, which is the methodical selection of base station (BS sites, and BS equipment configuration for cost-effective cellular networks. In this paper, the impact of BSC on cell plan parameters (coverage, traffic, handover, and cost, as well as additional cell planning steps required for BSC are discussed. Results show that BSC maximizes its gains over noncooperation (NC in a network wherein interference from cooperating BSs is the main limitation. Locations exist where NC may produce higher throughputs, therefore dynamic or semistatic switching between BSC and NC, called fractional BSC, is recommended. Because of interference from noncooperating BSs, the gains of BSC over NC are upper bounded, and diminishes at greater intersite distances because of noise. This encourages smaller cell sizes, higher transmit powers, and dynamic clustering of cooperative BSs.

  11. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit.

    Science.gov (United States)

    Silveira, Neidiquele M; Frungillo, Lucas; Marcos, Fernanda C C; Pelegrino, Milena T; Miranda, Marcela T; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Ribeiro, Rafael V

    2016-07-01

    Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

  12. Applying photosynthesis research to increase crop yields

    Science.gov (United States)

    Clayton C. Black; Shi-Jean S. Sung; Kristina Toderich; Pavel Yu Voronin

    2010-01-01

    This account is dedicated to Dr. Guivi Sanadze for his career long devotion to science and in recognition of his discovery of isoprene emission by trees during photosynthesis. Investigations on the emission of isoprene and other monoterpenes now have been extended globally to encompass other terrestrial vegetation, algae, waters, and marine life in the world's...

  13. Ecological Understanding 1: Ways of Experiencing Photosynthesis.

    Science.gov (United States)

    Carlsson, Britta

    2002-01-01

    Investigates 10 student teachers' understanding of the different ways in which the function of the ecosystem could be experienced. Explores the functional aspects of the ecosystem using a system approach. Concludes that the idea of transformation is crucial to more complex ways of understanding photosynthesis. (Contains 62 references.) (Author/YDS)

  14. Canopy Photosynthesis: From Basics to Applications

    NARCIS (Netherlands)

    Hikosaka, Kouki; Niinemets, Ülo; Anten, N.P.R.

    2016-01-01

    A plant canopy, a collection of leaves, is an ecosystem-level unit of photosynthesis that assimilates carbon dioxide and exchanges other gases and energy with the atmosphere in a manner highly sensitive to ambient conditions including atmospheric carbon dioxide and water vapor concentrations, light

  15. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  16. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas P M; Westhoff, Peter; Gowik, Udo

    2014-06-16

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.

  17. Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.

    Science.gov (United States)

    Chu, Shanshan; Li, Hongyan; Zhang, Xiangqian; Yu, Kaiye; Chao, Maoni; Han, Suoyi; Zhang, Dan

    2018-06-06

    Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf mesophyll and chloroplast were severely damaged after low-P stress. Approximately 55 protein spots showed changes under low-P condition by mass spectrometry, of which 17 were involved in various photosynthetic processes. Further analysis revealed the depression of photosynthesis caused by low-P stress mainly involves the regulation of leaf structure, adenosine triphosphate (ATP) synthesis, absorption and transportation of CO₂, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. In summary, our findings indicated that the existence of a stringent relationship between P supply and the genomic control of photosynthesis in soybean. As an important strategy to protect soybean photosynthesis, P could maintain the stability of cell structure, up-regulate the enzymes’ activities, recover the process of photosystem II (PSII), and induce the expression of low-P responsive genes and proteins.

  18. Recruitment of pre-existing networks during the evolution of C4 photosynthesis.

    Science.gov (United States)

    Reyna-Llorens, Ivan; Hibberd, Julian M

    2017-09-26

    During C 4 photosynthesis, CO 2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C 4 photosynthesis have evolved independently from their C 3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C 4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C 4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C 3 species show similarities to those of the C 4 bundle sheath in terms of C 4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C 4 photosynthesis function together in gluconeogenesis during early seedling growth of C 3 Arabidopsis thaliana Furthermore, multiple C 4 genes appear to be under control of both light and chloroplast signals in the ancestral C 3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C 4 traits into C 3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  19. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas PM; Westhoff, Peter; Gowik, Udo

    2014-01-01

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3–C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect. DOI: http://dx.doi.org/10.7554/eLife.02478.001 PMID:24935935

  20. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis.

    Science.gov (United States)

    Munekage, Yuri Nakajima; Taniguchi, Yukimi Y

    2016-05-01

    C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    Science.gov (United States)

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties. Keywords: Young's modulus, Poisson's ratio, Dynamic load cell

  3. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    Science.gov (United States)

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  4. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

    Science.gov (United States)

    Wang, Xin; Liu, Wei; Xin, Changpeng; Zheng, Yi; Cheng, Yanbing; Sun, Su; Li, Runze; Zhu, Xin-Guang; Dai, Susie Y; Rentzepis, Peter M; Yuan, Joshua S

    2016-12-13

    Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

  5. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  6. Moessbauer spectroscopy in studies of photosynthesis

    International Nuclear Information System (INIS)

    Burda, Kvetoslava

    2008-01-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the 'heart' of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Moessbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  7. A quantum protective mechanism in photosynthesis

    Science.gov (United States)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  8. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  9. Crown structure, radiation absorption, photosynthesis and transpiration

    OpenAIRE

    Wang, Yingping

    1988-01-01

    A complex simulation model, MAESTRO, has been developed and validated against field measurements in plantation in both Scotland and Australia. It has been shown that MAESTRO can reasonably predict the daily course of PAR (photosynetically active radiation) transmittance at points below the canopies of radiata pine and Sitka spruce plantations. 1. Four structural properties of the Sitka spruce tree crown have been identified and evaluation in relation to PAR absorption, photosynthesis and ...

  10. Automated photosynthesis of 11C-glucose

    International Nuclear Information System (INIS)

    Ishiwata, K.; Monma, M.; Iwata, R.; Ido, T.

    1982-01-01

    Glucose and fructose, labelled with 11 C, were produced by passing 11 CO 2 into an evacuated chamber containing spinach leaves. Photosynthesis was carried out by day light lamp illumination. 75-95% of the 11 CO 2 was absorbed by the leaves and the radioactivity in the leaves was extracted in ethanol as sugars. Radiochemical purity was determined by HPLC. The automated system was controlled by timers. (U.K.)

  11. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    NARCIS (Netherlands)

    Guo, Ming; Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its

  12. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves.

    Science.gov (United States)

    Retta, Moges; Ho, Quang Tri; Yin, Xinyou; Verboven, Pieter; Berghuijs, Herman N C; Struik, Paul C; Nicolaï, Bart M

    2016-05-01

    CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    Science.gov (United States)

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  14. Edible flowers - antioxidant activity and impact on cell viability

    OpenAIRE

    Kuceková, Zdenka; Mlček, Jiří; Humpolíček, Petr; Rop, Otakar

    2013-01-01

    The phenolic compound composition, antioxidant activity and impact on cell viability of edible flower extracts of Allium schoenoprasum; Bellis perennis; Cichorium intybus; Rumex acetosa; Salvia pratensis; Sambucus nigra; Taraxacum officinale; Tragopogon pratensis; Trifolium repens and Viola arvensis was examined for the first time. Total phenolic content of the flowers of these plants fell between 11.72 and 42.74 mg of tannin equivalents/kg of dry matter. Antioxidant activity ranged from 35.5...

  15. Fuel Cell Electric Vehicles: Drivers and Impacts of Adoption.

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Rebecca Sobel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); West, Todd H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manley, Dawn K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    We present scenario and parametric analyses of the US light duty vehicle (LDV) stock, sim- ulating the evolution of the stock in order to assess the potential role and impacts of fuel cell electric vehicles (FCEVs). The analysis probes the competition of FCEVs with other LDVs and the effects of FCEV adoption on LDV fuel use and emissions. We parameterize commodity and technology prices in order to explore the sensitivities of FCEV sales and emissions to oil, natural gas, battery technology, fuel cell technology, and hydrogen produc- tion prices. We additionally explore the effects of vehicle purchasing incentives for FCEVs, identifying potential impacts and tipping points. Our analyses lead to the following conclu- sions: (1) In the business as usual scenario, FCEVs comprise 7% of all new LDV sales by 2050. (2) FCEV adoption will not substantially impact green house gas emissions without either policy intervention, significant increases in natural gas prices, or technology improve- ments that motivate low carbon hydrogen production. (3) FCEV technology cost reductions have a much greater potential for impact on FCEV sales than hydrogen fuel cost reductions. (4) FCEV purchasing incentives must be both substantial and sustained in order to motivate lasting changes to FCEV adoption.

  16. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  17. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  18. Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat and maize to heat and water deficit: implications for modeling photosynthesis

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Perdomo

    2016-11-01

    Full Text Available The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa, and a high temperature (HT, 38°C, VPD 3.5 kPa, both under well-watered (WW and water deficit (WD conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species.

  19. Impact of mobility on call block, call drops and optimal cell size in small cell networks

    OpenAIRE

    Ramanath , Sreenath; Voleti , Veeraruna Kavitha; Altman , Eitan

    2011-01-01

    We consider small cell networks and study the impact of user mobility. Assuming Poisson call arrivals at random positions with random velocities, we discuss the characterization of handovers at the boundaries. We derive explicit expressions for call block and call drop probabilities using tools from spatial queuing theory. We also derive expressions for the average virtual server held up time. These expressions are used to derive optimal cell sizes for various profile of velocities in small c...

  20. Impact of carbon nanotubes and graphene on immune cells

    Science.gov (United States)

    2014-01-01

    It has been recently proposed that nanomaterials, alone or in concert with their specific biomolecular conjugates, can be used to directly modulate the immune system, therefore offering a new tool for the enhancement of immune-based therapies against infectious disease and cancer. Here, we revised the publications on the impact of functionalized carbon nanotubes (f-CNTs), graphene and carbon nanohorns on immune cells. Whereas f-CNTs are the nanomaterial most widely investigated, we noticed a progressive increase of studies focusing on graphene in the last couple of years. The majority of the works (56%) have been carried out on macrophages, following by lymphocytes (30% of the studies). In the case of lymphocytes, T cells were the most investigated (22%) followed by monocytes and dendritic cells (7%), mixed cell populations (peripheral blood mononuclear cells, 6%), and B and natural killer (NK) cells (1%). Most of the studies focused on toxicity and biocompatibility, while mechanistic insights on the effect of carbon nanotubes on immune cells are generally lacking. Only very recently high-throughput gene-expression analyses have shed new lights on unrecognized effects of carbon nanomaterials on the immune system. These investigations have demonstrated that some f-CNTs can directly elicitate specific inflammatory pathways. The interaction of graphene with the immune system is still at a very early stage of investigation. This comprehensive state of the art on biocompatible f-CNTs and graphene on immune cells provides a useful compass to guide future researches on immunological applications of carbon nanomaterials in medicine. PMID:24885781

  1. Impact of carbon nanotubes and graphene on immune cells.

    Science.gov (United States)

    Orecchioni, Marco; Bedognetti, Davide; Sgarrella, Francesco; Marincola, Francesco M; Bianco, Alberto; Delogu, Lucia Gemma

    2014-05-21

    It has been recently proposed that nanomaterials, alone or in concert with their specific biomolecular conjugates, can be used to directly modulate the immune system, therefore offering a new tool for the enhancement of immune-based therapies against infectious disease and cancer. Here, we revised the publications on the impact of functionalized carbon nanotubes (f-CNTs), graphene and carbon nanohorns on immune cells. Whereas f-CNTs are the nanomaterial most widely investigated, we noticed a progressive increase of studies focusing on graphene in the last couple of years. The majority of the works (56%) have been carried out on macrophages, following by lymphocytes (30% of the studies). In the case of lymphocytes, T cells were the most investigated (22%) followed by monocytes and dendritic cells (7%), mixed cell populations (peripheral blood mononuclear cells, 6%), and B and natural killer (NK) cells (1%). Most of the studies focused on toxicity and biocompatibility, while mechanistic insights on the effect of carbon nanotubes on immune cells are generally lacking. Only very recently high-throughput gene-expression analyses have shed new lights on unrecognized effects of carbon nanomaterials on the immune system. These investigations have demonstrated that some f-CNTs can directly elicitate specific inflammatory pathways. The interaction of graphene with the immune system is still at a very early stage of investigation. This comprehensive state of the art on biocompatible f-CNTs and graphene on immune cells provides a useful compass to guide future researches on immunological applications of carbon nanomaterials in medicine.

  2. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  3. Coordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).

    Science.gov (United States)

    Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E

    2013-07-01

    The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.

  4. Relative Sensitivity of Photosynthesis and Respiration to Freeze-Thaw Stress in Herbaceous Species 1

    Science.gov (United States)

    Steffen, Kenneth L.; Arora, Rajeev; Palta, Jiwan P.

    1989-01-01

    The relative effect of a freeze-thaw cycle on photosynthesis, respiration, and ion leakage of potato leaf tissue was examined in two potato species, Solanum acaule Bitt. and Solanum commersonii Dun. Photosynthesis was found to be much more sensitive to freezing stress than was respiration, and demonstrated more than a 60% inhibition before any impairment of respiratory function was observed. Photosynthesis showed a slight to moderate inhibition when only 5 to 10% of the total electrolytes had leaked from the tissue (reversible injury). This was in contrast to respiration which showed no impairment until temperatures at which about 50% ion leakage (irreversible injury) had occurred. The influence of freeze-thaw protocol was further examined in S. acaule and S. commersonii, in order to explore discrepancies in the literature as to the relative sensitivities of photosynthesis and respiration. As bath cooling rates increased from 1°C/hour to about 3 or 6°C/hour, there was a dramatic increase in the level of damage to all measured cellular functions. The initiation of ice formation in deeply supercooled tissue caused even greater damage. As the cooling rates used in stress treatments increased, the differential sensitivity between photosynthesis and respiration nearly disappeared. Examination of agriculturally relevant, climatological data from an 11 year period confirmed that air cooling rates in the freezing range do not exceed 2°C/hour. It was demonstrated, in the studies presented here, that simply increasing the actual cooling rate from 1.0 to 2.9°C/hour, in frozen tissue from paired leaflet halves, meant the difference between cell survival and cell death. Images Figure 4 Figure 5 PMID:16666712

  5. Iron, Sulfur, Arsenic and Water: Geochemical Implications of Facultative Anoxygenic Photosynthesis in Cyanobacteria and the Slow Rise of Oxygen

    Science.gov (United States)

    Wolfe-Simon, F.; Johnston, D. T.; Girguis, P. R.; Pearson, A.; Knoll, A. H.

    2008-12-01

    Over geologic time, the global rise in atmospheric oxygen (O2) is attributed to the evolution and wide spread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. Specifically, cyanobacteria can use a variety of alternative electron donors, rather than water, that are also readily oxidized. These may include sulfur, iron, and arsenic. Cyanobacteria are thus not uniquely constrained towards O2 production. Changes in the bioavailability of these key elements may have had dramatic consequences for and resulted in the slow accumulation of O2 in the atmosphere. In particular, by using facultative anoxygenic photosynthesis the cells maintain advantageous anaerobic conditions for N2-fixation. Although other types of bacteria are capable of N2-fixation, cyanobacteria singularly possess the dynamic capability of generating and surviving O2. These two processes "pull" the cells in opposite directions, metabolically speaking, around an aerobic-anaerobic continuum. Such a strategy also confers a distinct competitive advantage for cyanobacteria over photosynthetic eukaryotes, as they can endure widespread euxinia and maintain their cellular N quota. In an anoxic and/or sulfidic ocean, cyanobacteria would be expected to dominate over eukaryotic algae. Here we present Bayesian constructed phylogenetic distribution of specific genes and the metabolic role of key enzymes that form the basis of this hypothesis. We further suggest that the consequences of this proposed ecosystem structure altered the redox balance of the fluid Earth (atmosphere and oceans) and can help explain the observed long-term geochemical stasis and slow rates of eukaryotic diversification. We suggest that the underlying control for global oxygenation was a synergistic interplay between the evolution and elastic physiology of cyanobacteria as they impacted the redox state of early Earth.

  6. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.

    Science.gov (United States)

    Challabathula, Dinakar; Puthur, Jos T; Bartels, Dorothea

    2016-02-01

    Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration. © 2015 New York Academy of Sciences.

  7. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arnon, D I; Allen, M B; Whatley, F R

    1956-01-01

    Procedures are described for the preparation of chloroplasts capable of carrying out three photochemical reactions, each representing an increasingly complex phase of photosynthesis: photolysis of water (Hill reaction), esterification of inorganic phosphate into adenosine triphosphate (photosynthetic phosphorylation) and the reduction of carbon dioxide to the level of carbohydrates with a simultaneous evolution of oxygen. The three photochemical reactions were separable by variations in the technique for preparation of chloroplasts and by differential inhibition by several reagents. Inhibition of a more complex phase of photosynthesis does not affect the simpler one which precedes it and, conversely, the inhibition of a simpler phase of photosynthesis is paralleled by an inhibition of the more complex phase which follows. Reversible inhibition of CO/sub 2/ fixation and photosynthetic phosphorylation, but not of photolysis, by sulfhydryl group inhibitors suggests that sulfhydryl compounds (enzymes, cofactors, or both) are involved in phosphorylation and CO/sub 2/ fixation, but not in the primary conversion of light into chemical energy as measured by the Hill reaction. Evidence is presented in support of the conclusion that the synthesis of ATP by green cells occurs at two distinct sites: anaerobically in chloroplasts by photosynthetic phosphorylation, and acrobically in smaller cytoplasmic particles, presumably mitochondria, by oxidative phosphorylation independent of light. A general scheme of photosynthesis by chloroplasts, consistent with these findings, is presented. 44 references, 8 figures, 4 tables.

  8. Using the solar energy by technical photosynthesis

    International Nuclear Information System (INIS)

    Radebold, R.

    1975-01-01

    A system is decribed which makes it possible to copy some of the basic features of photosynthesis with technical means which are available to-day. Hydrazine and hydrogen peroxide are used as energy carrier, whereby hydrazine acts a propellant and hydrogen peroxide as oxidator. The synthesis of the two media is based on nitrogen and water which can, in principle, be taken from the air; nitrogen and water are also the products of the reactions. Liquid alcali metals are the donators of electrons for the synthesis which occurs, as in nature, by the intermediate action of electric energy. (orig.) [de

  9. The Path of Carbon in Photosynthesis XIV.

    Science.gov (United States)

    Calvin, Melvin; Bassham, J. A.; Benson, A. A.; Kawaguchi, S.; Lynch, V. H.; Stepka, W.; Tolbert, N. E.

    1951-06-30

    It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

  10. The Path of Carbon in Photosynthesis. XIV.

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin; Bassham, J.A.; Benson, A.A.; Kawaguchi, S.; Lynch, V.H.; Stepka, W.; Tolbert, N.E.

    1951-06-30

    It seems hardly necessary to repeat to an audience of this kind the importance of the process known as photosynthesis in the interaction and the interdependence of organisms and in the very existence of life as we know it. This process by which green plants are able to capture electromagnetic energy in the form of sunlight and transform it into stored chemical energy in the form of a wide variety of reduced (relative to carbon dioxide) carbon compounds provides the only major source of energy for the maintenance and propagation of all life.

  11. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  12. Photosynthesis-fermentation hybrid system to produce lipid feedstock for algal biofuel.

    Science.gov (United States)

    Lu, Yue; Dai, Junbiao; Wu, Qingyu

    2013-01-01

    To avoid bacterial contamination due to medium replacement in the expanded application of a photosynthesis-fermentation model, an integrated photosynthesis-fermentation hybrid system was set up and evaluated for algal lipid production using Chlorella protothecoides. In this system, the CO2-rich off-gas from the fermentation process was recycled to agitate medium in thephotobioreactor, which could provide initial cells for the heterotrophic fermentation. The cell concentration reached 1.03 +/- 0.07 g/L during photoautotrophic growth and then the concentrated green cells were switched to heterotrophic fermentation after removing over 99.5% ofnitrogen in the medium by a nitrogen removal device. At the end offermentation in the system, the cell concentration could reach as high as 100.51 +/- 2.03 g/L, and 60.05 +/- 1.38% lipid content was achieved simultaneously. The lipid yield (60.36 +/- 2.63 g/L) in the hybrid system was over 700 times higher than that in a photobioreactor and exceeded that by fermentation alone (47.56 +/- 7.31 g/L). The developed photosynthesis-fermentation hybrid system in this study was not only a feasible option to enhance microalgal lipid production, but also an environment-friendly approach to produce biofuel feedstock through concurrent utilization of ammonia nitrogen, CO2, and organic carbons.

  13. Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques

    Czech Academy of Sciences Publication Activity Database

    Malapascua, José R.F.; Jerez, Celia G.; Sergejevova, Magda; Figueroa, Felix L.; Masojídek, Jiří

    2014-01-01

    Roč. 22, č. 2014 (2014), s. 123-140 ISSN 1864-7790 R&D Projects: GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059 Grant - others:ACTION(AT) CTM2011-15659-E Institutional support: RVO:61388971 Keywords : chlorophyll * biomass * photosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 1.258, year: 2014

  14. Photosynthesis in Chromera velia Represents a Simple System with High Efficiency

    Czech Academy of Sciences Publication Activity Database

    Quigg, A.; Kotabová, Eva; Jarešová, Jana; Kaňa, Radek; Šetlík, Jiří; Šedivá, Barbora; Komárek, Ondřej; Prášil, Ondřej

    2012-01-01

    Roč. 7, č. 10 (2012), e47036 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA601410907; GA ČR GBP501/12/G055; GA ČR GAP501/12/0304 Institutional support: RVO:61388971 Keywords : Photosynthesis * Chromera velia * RuBISCO Subject RIV: EE - Microbiology, Virology Impact factor: 3.730, year: 2012

  15. Impact of Undertreated Sickle Cell Pain in the Caribbean

    Directory of Open Access Journals (Sweden)

    PD Shah

    2014-09-01

    Full Text Available Objective: Undertreated pain around the world includes the acute and chronic pain caused by sickle cell disease (SCD. In collaboration with a Caribbean association that aims to provide assistance to those diagnosed with SCD, we surveyed adults with SCD about pain management and impact of SCD pain. Methods: Participants were recruited from a group of 55 adults with SCD. A survey was administered to those who agreed to participate. Questions centred on their self-assessed level of pain due to SCD, the extent to which that pain interferes with daily activities, and how they seek and obtain pain relief. Results: Responses were received from 39 participants (female: n = 28, 72%, male: n = 11, 28%; mean age: 31.6 (SD ± 13.7 years. Sickle cell disease pain significantly disrupts participants’ daily activities (62%, mood (72%, work (64% and sleep (69%. Prescription medicine was ineffective for 41% and about half (n = 19 sought alternate means of relief. Conclusion: Sickle cell disease pain is undertreated in the Caribbean, disrupts daily activities and affects quality of life by impinging on education, employment and marital status. Sickle cell disease and other types of pain can be clinically managed safely, effectively and inexpensively. By failing to palliate and overcome the problem of undertreated pain, healthcare systems and providers contribute to socio-economic amongst other repercussions for sufferers, their families and caregivers, and their nations.

  16. The Path of Carbon in Photosynthesis

    Science.gov (United States)

    Bassham, J. A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  17. THE PATH OF CARBON IN PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J.A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  18. Carbon dioxide fixation by artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, Takashi; Koike, Kazuhide; Ishitani, Osamu [National Inst. for Resources and Environment, AIST, MITI, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Green plants can absorb atmospheric CO{sub 2} and transform it to sugars, carbohydrates through their photosynthetic systems, but they become the source of CO{sub 2} when they are dead. This is the reason why artificial leaves which can be alive forever should be developed to meet with global warming due to the increase of CO{sub 2} concentration. The goal of artificial photosynthesis is not to construct the same system as the photosynthetic one, but to mimic the ability of green plants to utilize solar energy to make high energy chemicals. Needless to say, the artificial photosynthetic system is desired to be as simple as possible and to be as efficient as possible. From the knowledge on photosynthesis and the results of previous investigations, the critical components of artificial photosynthetic system are understood as follows: (1) light harvesting chromophore, (2) a center for electron transfer and charge separation, (3) catalytic sites for converting small molecules like water and CO{sub 2} (mutilelectron reactions) which are schematically described.

  19. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest.

    Science.gov (United States)

    Yue, Xu; Keenan, Trevor F; Munger, William; Unger, Nadine

    2016-11-01

    Ozone (O 3 ) damage to leaves can reduce plant photosynthesis, which suggests that declines in ambient O 3 concentrations ([O 3 ]) in the United States may have helped increase gross primary production (GPP) in recent decades. Here, we assess the effect of long-term changes in ambient [O 3 ] using 20 years of observations at Harvard forest. Using artificial neural networks, we found that the effect of the inclusion of [O 3 ] as a predictor was slight, and independent of O 3 concentrations, which suggests limited high-frequency O 3 inhibition of GPP at this site. Simulations with a terrestrial biosphere model, however, suggest an average long-term O 3 inhibition of 10.4% for 1992-2011. A decline of [O 3 ] over the measurement period resulted in moderate predicted GPP trends of 0.02-0.04 μmol C m -2  s -1  yr -1 , which is negligible relative to the total observed GPP trend of 0.41 μmol C m -2  s -1  yr -1 . A similar conclusion is achieved with the widely used AOT40 metric. Combined, our results suggest that ozone reductions at Harvard forest are unlikely to have had a large impact on the photosynthesis trend over the past 20 years. Such limited effects are mainly related to the slow responses of photosynthesis to changes in [O 3 ]. Furthermore, we estimate that 40% of photosynthesis happens in the shade, where stomatal conductance and thus [O 3 ] deposition is lower than for sunlit leaves. This portion of GPP remains unaffected by [O 3 ], thus helping to buffer the changes of total photosynthesis due to varied [O 3 ]. Our analyses suggest that current ozone reductions, although significant, cannot substantially alleviate the damages to forest ecosystems. © 2016 John Wiley & Sons Ltd.

  20. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  1. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    International Nuclear Information System (INIS)

    Hogan, Niamh M.; Joyce, Myles R.; Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy; Kerin, Michael J.; Dwyer, Roisin M.

    2013-01-01

    significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells

  2. Impact of Mesenchymal Stem Cell secreted PAI-1 on colon cancer cell migration and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Niamh M. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Joyce, Myles R. [Department of Colorectal Surgery, University College Hospital, Galway (Ireland); Murphy, J. Mary; Barry, Frank P.; O’Brien, Timothy [Regenerative Medicine Institute, National University of Ireland, Galway (Ireland); Kerin, Michael J. [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland); Dwyer, Roisin M., E-mail: roisin.dwyer@nuigalway.ie [Discipline of Surgery, School of Medicine, National University of Ireland, Galway (Ireland)

    2013-06-14

    significant functional impact of Mesenchymal Stem Cell-secreted PAI-1 on colon cancer cells.

  3. On the relation between phototaxis and photosynthesis in Rhodospirillum Rubrum

    NARCIS (Netherlands)

    Thomas, J.B.; Nijenhuis, L.E.

    1950-01-01

    The relation between phototaxis and photosynthesis in Rhodospirillum rubrum has been studied. The light intensity at which saturation is reached in photosynthesis proved to coincide with that at which the contrast sensitivity starts to decrease. Potassium cyanide, which preferably inhibits the

  4. Secondary Students' Interpretations of Photosynthesis and Plant Nutrition.

    Science.gov (United States)

    Ozay, Esra; Oztas, Haydar

    2003-01-01

    Studies misconceptions held by grade 9 students (14-15-years old) in Turkey about photosynthesis and plant nutrition. Uses a questionnaire to test students' conceptions and reports conflicting and often incorrect ideas about photosynthesis, respiration, and energy flow in plants. Suggests that there are difficulties in changing students' prior…

  5. Modelling C₃ photosynthesis from the chloroplast to the ecosystem.

    Science.gov (United States)

    Bernacchi, Carl J; Bagley, Justin E; Serbin, Shawn P; Ruiz-Vera, Ursula M; Rosenthal, David M; Vanloocke, Andy

    2013-09-01

    Globally, photosynthesis accounts for the largest flux of CO₂ from the atmosphere into ecosystems and is the driving process for terrestrial ecosystem function. The importance of accurate predictions of photosynthesis over a range of plant growth conditions led to the development of a C₃ photosynthesis model by Farquhar, von Caemmerer & Berry that has become increasingly important as society places greater pressures on vegetation. The photosynthesis model has played a major role in defining the path towards scientific understanding of photosynthetic carbon uptake and the role of photosynthesis on regulating the earth's climate and biogeochemical systems. In this review, we summarize the photosynthesis model, including its continued development and applications. We also review the implications these developments have on quantifying photosynthesis at a wide range of spatial and temporal scales, and discuss the model's role in determining photosynthetic responses to changes in environmental conditions. Finally, the review includes a discussion of the larger-scale modelling and remote-sensing applications that rely on the leaf photosynthesis model and are likely to open new scientific avenues to address the increasing challenges to plant productivity over the next century. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    Science.gov (United States)

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  7. The influence of temperature on photosynthesis of different tomato genotypes

    NARCIS (Netherlands)

    Gosiewski, W.; Nilwik, H.J.M.; Bierhuizen, J.F.

    1982-01-01

    Net photosynthesis and dark respiration from whole plants of various tomato genotypes were measured in a closed system. At low irradiance (27 W m−2) and low external CO2 concentration (550 mg m−3), net photosynthesis of 10 genotypes was found to vary between 0.122 and 0.209 mg CO2 m−2 s−1.

  8. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    Science.gov (United States)

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  9. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  10. Daily xanthophyll cycle photoprotection in developing leaves prior to photosynthesis

    Science.gov (United States)

    M.N. Angelov; Shi-Jean S. Sung; C.C. Black

    1995-01-01

    There is widespread agreement that the xanthophyll cycle provides a major photoprotection system for photosynthesis in green leaves.Indeed this type of photoprotection seem to be ubiquitous for photosynthetic organisms. Photoprotection is provided via a rapid, near 10-13 sec, ability of zeaxanthin (Z) to dissipate excess light energy from photosynthesis because the...

  11. Impact of methoxyacetic acid on mouse Leydig cell gene expression

    Directory of Open Access Journals (Sweden)

    Waxman David J

    2010-06-01

    Full Text Available Abstract Background Methoxyacetic acid (MAA is the active metabolite of the widely used industrial chemical ethylene glycol monomethyl ether, which is associated with various developmental and reproductive toxicities, including neural toxicity, blood and immune disorders, limb degeneration and testicular toxicity. Testicular toxicity is caused by degeneration of germ cells in association with changes in gene expression in both germ cells and Sertoli cells of the testis. This study investigates the impact of MAA on gene expression in testicular Leydig cells, which play a critical role in germ cell survival and male reproductive function. Methods Cultured mouse TM3 Leydig cells were treated with MAA for 3, 8, and 24 h and changes in gene expression were monitored by genome-wide transcriptional profiling. Results A total of 3,912 MAA-responsive genes were identified. Ingenuity Pathway analysis identified reproductive system disease, inflammatory disease and connective tissue disorder as the top biological functions affected by MAA. The MAA-responsive genes were classified into 1,366 early responders, 1,387 mid-responders, and 1,138 late responders, based on the time required for MAA to elicit a response. Analysis of enriched functional clusters for each subgroup identified 106 MAA early response genes involved in transcription regulation, including 32 genes associated with developmental processes. 60 DNA-binding proteins responded to MAA rapidly but transiently, and may contribute to the downstream effects of MAA seen for many mid and late response genes. Genes within the phosphatidylinositol/phospholipase C/calcium signaling pathway, whose activity is required for potentiation of nuclear receptor signaling by MAA, were also enriched in the set of early MAA response genes. In contrast, many of the genes responding to MAA at later time points encode membrane proteins that contribute to cell adhesion and membrane signaling. Conclusions These findings

  12. Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses. III. Canopy photosynthesis, individual leaf photosynthesis and the distribution of current assimilate

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, J E

    1977-01-01

    The rates of canopy and individual leaf photosynthesis and /sup 14/C distribution for three temperate forage grasses Lolium perenne cv. S24, L. perenne cv. Reveille and Festuca arundinacea cv. S170 were determined in the field during a summer growth period. Canopy photosynthesis declined as the growth period progressed, reflecting a decline in the photosynthetic capacity of successive youngest fully expanded leaves. The decline in the maximum photosynthetic capacity of the canopies was correlated with a decline in their quantum efficiencies at low irradiance. Changes in canopy structure resulted in changes in canopy net photosynthesis and dark respiration. No clear relationships between changes in the environment and changes in canopy net photosynthesis and dark respiration were established. The relative distributions of /sup 14/C in the shoots of the varieties gave a good indication of the amount of dry matter per ground area in the varieties. 21 references, 4 figures, 1 table.

  13. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlotophyceae)

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Martin; Procházková, L.; Shmidt, O.; Nedbalová, L.; Kaftan, David

    2014-01-01

    Roč. 89, č. 2 (2014), s. 303-315 ISSN 0168-6496 R&D Projects: GA MŠk ED2.1.00/03.0110 Grant - others:GAJU(CZ) 143/2013/P Institutional support: RVO:61388971 Keywords : electron transfer * snow * algae * photosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  14. Evolutionary Divergence of Marine Aerobic Anoxygenic Phototrophic Bacteria as Seen from Diverse Organisations of Their Photosynthesis Gene Clusters

    Czech Academy of Sciences Publication Activity Database

    Zheng, Q.; Koblížek, Michal; Beatty, J.T.; Jiao, N.

    2013-01-01

    Roč. 66, č. 2013 (2013), s. 359-383 ISSN 0065-2296 R&D Projects: GA ČR GAP501/10/0221; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Aerobic anoxygenic phototrophic bacteria * photosynthesis * genome sequence Subject RIV: EE - Microbiology, Virology Impact factor: 1.740, year: 2013

  15. Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant

    Czech Academy of Sciences Publication Activity Database

    Rascher, U.; Alonso, A.; Burkart, A.; Cilia, C.; Cogliati, S.; Colombo, R.; Damm, A.; Drusch, M.; Guanter, L.; Hanuš, Jan; Hyvarinen, T.; Jullita, T.; Jussila, J.; Kataja, K.; Kokkalis, P.; Kraft, S.; Kraska, T.; Matveeva, M.; Moreno, J.; Müller, O.; Panigada, C.; Pikl, Miroslav; Pinto, F.; Prey, L.; Pude, F.; Rossini, M.; Schickling, A.; Schurr, E.; Schüttemeyer, D.; Verrlest, J.; Zemek, František

    2015-01-01

    Roč. 21, č. 12 (2015), s. 4673-4684 ISSN 1354-1013 Institutional support: RVO:67179843 Keywords : airborne measurements * chlorophyll fluorescence * FLEX * HyPlant * imaging spectroscopy * photosynthesis * remote sensing * sun-induced fluorescence * vegetation monitoring Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015

  16. Impact of Interfacial Layers in Perovskite Solar Cells.

    Science.gov (United States)

    Cho, An-Na; Park, Nam-Gyu

    2017-10-09

    Perovskite solar cells (PCSs) are composed of organic-inorganic lead halide perovskite as the light harvester. Since the first report on a long-term-durable, 9.7 % efficient, solid-state perovskite solar cell, organic-inorganic halide perovskites have received considerable attention because of their excellent optoelectronic properties. As a result, a power conversion efficiency (PCE) exceeding 22 % was certified. Controlling the grain size, grain boundary, morphology, and defects of the perovskite layer is important for achieving high efficiency. In addition, interfacial engineering is equally or more important to further improve the PCE through better charge collection and a reduction in charge recombination. In this Review, the type of interfacial layers and their impact on photovoltaic performance are investigated for both the normal and the inverted cell architectures. Four different interfaces of fluorine-doped tin oxide (FTO)/electron-transport layer (ETL), ETL/perovskite, perovskite/hole-transport layer (HTL), and HTL/metal are classified, and their roles are investigated. The effects of interfacial engineering with organic or inorganic materials on photovoltaic performance are described in detail. Grain-boundary engineering is also included because it is related to interfacial engineering and the grain boundary in the perovskite layer plays an important role in charge conduction, recombination, and chargecarrier life time. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    Science.gov (United States)

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    Science.gov (United States)

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  19. Impact of aging on antigen presentation cell function of dendritic cells.

    Science.gov (United States)

    Wong, Christine; Goldstein, Daniel R

    2013-08-01

    Older people exhibit increased mortality to infections and cancer as compared to younger people, indicating that aging impairs immunity. Dendritic cells (DCs) are key for bridging the innate and adaptive arms of the immune system by priming antigen specific T cells. Discerning how aging impacts DC function to initiate adaptive immune responses is of great biomedical importance as this could lead to the development of novel therapeutics to enhance immunity with aging. This review details reports indicating that aging impairs the antigen presenting function of DCs but highlights other studies indicating preserved DC function with aging. How aging impacts antigen presentation by DCs is complex and without a clear unifying biological underpinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Did Respiration or Photosynthesis Come First

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    The similarity of the mechanisms in photosynthetic and in oxidative phosphorylation suggests a common origin ( convers ion hypothesis). It is proposed that an early form of electron flow with oxidative phosphorylation ("prerespiration"), to terminal electron acceptors available in a reducing biosphere, was supplemented by a photocatalyst capable of a redox reaction. In this way, cyclic photophosphorylation arose. Further stages in evolution were reverse electron flow powered by ATP, to make NADH as a reductant for CO2 , and subsequently noncyclic electron flow. These processes concomitantly provided the oxidants indispensable for full development of oxidative phosphorylation, i.e. for normal respiration: sulphate, O2 and with participation of the nitrificants, nitrite and nitrate. Thus, prerespiration preceded photosynthesis, and this preceded respiration. It is also suggested that nonredox photoprocesses of the Halobacterium type are not part of the mainstream of bioenergetic evolution. They do not lead to photoprocesses with electron flow. (author)

  1. A model for the origin of photosynthesis

    International Nuclear Information System (INIS)

    Mercer-Smith, J.A.; Raudino, A.; Mauzerall, D.C.

    1985-01-01

    The photochemical ramifications of the high ultraviolet flux on the primordial earth prior to the formation of the ozone layer have been considered in a study of the ultraviolet photochemistry of uroporphyrinogen (urohexahydroporphyrin), a colorless compound which absorbs strongly at wavelengths less than 220 nm. Urohexahydroporphyrin was investigated since it is the first macrocycle formed on the biosynthetic pathway of chlorophyll and can be used to test the hypothesis that the biosynthetic pathway to chlorophyll recapitulates the evolutionary history of photosynthesis. When urohexahydroporphyrin is illuminated in aqueous anaerobic solution, hydrogen gas is produced. More hydrogen gas is produced in the presence of a colloidal platinum catalyst. The products of the photooxidation of urohexahydroporphyrin are urotetrahydroporphyrin (uroporphomethene) and uroporphyrin. This research shows how the oxidation of uroporphyrinogen to uroporphyrin, the first biogenetic porphyrin, could have occurred anaerobically and abiotically on the primordial earth. (author)

  2. ENERGY RECEPTION AND TRANSFER IN PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1958-09-23

    The basic information about the path of carbon in photosynthesis is reviewed together with the methods that were used to discover it. This has led to the knowledge of what is required of the photochemical reaction in the form of chemical species. Attention is then directed to the structure of the photochemical apparatus itself insofar as it is viewable by electron microscopy, and some principoles of ordered structure are devised for the types of molecules to be found in the chloroplasts. From the combination of these, a structure for the grana lamella is suggested and a mode of function proposed. Experimental test for this mode of function is underway; one method is to examine photoproduced unpaired electrons. This is discussed.

  3. Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data

    NARCIS (Netherlands)

    Groenendijk, M.; Dolman, A.J.; Molen, van der M.K.; Leuning, R.; Arneth, A.; Delpierre, N.; Gash, J.H.C.; Lindroth, A.; Richardson, A.D.; Verbeeck, H.; Wohlfahrt, G.

    2011-01-01

    The vegetation component in climate models has advanced since the late 1960s from a uniform prescription of surface parameters to plant functional types (PFTs). PFTs are used in global land-surface models to provide parameter values for every model grid cell. With a simple photosynthesis model we

  4. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; hide

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  5. The impact of cell phone radiation on health

    International Nuclear Information System (INIS)

    Salakhov, A.Z.

    2013-01-01

    Constant exposure to radio frequency signals from mobile phones and their base stations could adversely affect on human health. As a consequence, as a result of this impact it is appeared frequent headaches, loss of memory and concentration, tension in the eardrum and sudden bouts of fatigue, childhood leukemia, brain tumors, eye cataracts, cardiovascular diseases, disorders of the nervous system. Some people suffer from hyperelectrosensitivity. It should be noted that the analog phones much more harmful to human health than digital ones. Radio frequency of electromagnetic fields which is used by a modern cellular communications is in the range from 450 MHz to 1.9 GHz. Such fields unlike to ionizing radiation can not cause secondary radioactivity in the body. The cell phone is a device having a potential danger to health, so it is advisable wherever possible to protect yourselves from its use, or at least to minimize its use

  6. Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Patrick A. Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  7. The Impact of Simulated and Real Microgravity on Bone Cells and Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Claudia Ulbrich

    2014-01-01

    machine (RPM, the 2D-clinostat, or the NASA-developed rotating wall vessel bioreactor (RWV to create tissue from bone, tumor, and mesenchymal stem cells. To understand the development of 3D structures, in vitro experiments using s-µg devices can provide valuable information about modulations in signal-transduction, cell adhesion, or extracellular matrix induced by altered gravity conditions. These systems also facilitate the analysis of the impact of growth factors, hormones, or drugs on these tissue-like constructs. Progress has been made in bone tissue engineering using the RWV, and multicellular tumor spheroids (MCTS, formed in both r- and s-µg, have been reported and were analyzed in depth. Currently, these MCTS are available for drug testing and proteomic investigations. This review provides an overview of the influence of µg on the aforementioned cells and an outlook for future perspectives in tissue engineering.

  8. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  9. Zinc affects differently growth, photosynthesis, antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms.

    Science.gov (United States)

    Nguyen-Deroche, Thi Le Nhung; Caruso, Aurore; Le, Thi Trung; Bui, Trang Viet; Schoefs, Benoît; Tremblin, Gérard; Morant-Manceau, Annick

    2012-01-01

    Zinc-supplementation (20 μM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  10. Zinc Affects Differently Growth, Photosynthesis, Antioxidant Enzyme Activities and Phytochelatin Synthase Expression of Four Marine Diatoms

    Directory of Open Access Journals (Sweden)

    Thi Le Nhung Nguyen-Deroche

    2012-01-01

    Full Text Available Zinc-supplementation (20 μM effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase, and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa. Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.

  11. Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of Zooxanthellae.

    Science.gov (United States)

    Banin, E; Khare, S K; Naider, F; Rosenberg, E

    2001-04-01

    The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29 degrees C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH(4)Cl, pure natural or synthetic toxin P (10 microM) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH(4)Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH(4)Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH(3) into the cell. It is known that uptake of NH(3) into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi.

  12. Photosynthetic plasticity in Flaveria brownii: Growth irradiance and the expression of C4 photosynthesis

    International Nuclear Information System (INIS)

    Cheng, Shuhua; Moore, B.D.; Wu, Jingrui; Edwards, G.E.; Ku, M.S.B.

    1989-01-01

    Photosynthesis was examined in leaves of Flaveria brownii A. M. Powell, grown under either 14% or 100% full sunlight. In leaves of high light grown plants, the CO 2 compensation point and the inhibition of photosynthesis by 21% O 2 were significantly lower, while activities of ribulose 1,5-bisphosphate carboxylase/oxygenase and various C 4 cycle enzymes were considerably higher than those in leaves grown in low light. Both the CO 2 compensation point and the degree of O 2 inhibition of apparent photosynthesis were relatively insensitive to the light intensity used during measurements with plants from either growth conditions. Partitioning of atmospheric CO 2 between Rubisco of the C 3 pathway and phosphoenolpyruvate carboxylase of the C 4 cycle was determined by exposing leaves to 14 CO 2 for 3 to 16 seconds, and extrapolating the labeling curves of initial products to zero time. Results indicated that ∼94% of the CO 2 was fixed by the C 4 cycle in high light grown plants, versus ∼78% in low light grown plants. Consistent with the carbon partitioning patterns, photosynthetic enzyme activities (on a chlorophyll basis) in protoplasts from leaves of high light grown plants showed a more C 4 -like pattern of compartmentation. Pyruvate,Pi dikinase and phosphoenolpyruvate carboxylase were more enriched in the mesophyll cells, while NADP-malic enzyme and ribulose 1,5-bisphosphate carboxylase/oxygenase were relatively more abundant in the bundle sheath cells of high light than of low light grown plants

  13. Merging metabolism and power: development of a novel photobioelectric device driven by photosynthesis and respiration.

    Directory of Open Access Journals (Sweden)

    Ryan J Powell

    Full Text Available Generation of renewable energy is one of the grand challenges facing our society. We present a new bio-electric technology driven by chemical gradients generated by photosynthesis and respiration. The system does not require pure cultures nor particular species as it works with the core metabolic principles that define phototrophs and heterotrophs. The biology is interfaced with electrochemistry with an alkaline aluminum oxide cell design. In field trials we show the system is robust and can work with an undefined natural microbial community. Power generated is light and photosynthesis dependent. It achieved a peak power output of 33 watts/m(2 electrode. The design is simple, low cost and works with the biological processes driving the system by removing waste products that can impede growth. This system is a new class of bio-electric device and may have practical implications for algal biofuel production and powering remote sensing devices.

  14. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Klug, Gabriele

    2013-03-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.

  15. The effects of instruction on college nonmajors' conceptions of respiration and photosynthesis

    Science.gov (United States)

    Anderson, Charles W.; Sheldon, Theresa H.; Dubay, Joann

    Students in a college nonscience majors' biology course took tests designed to reveal their conceptions of respiration and photosynthesis before and after course instruction. Even though most students had taken at least a full year of biology, serious misconceptions persisted. Most students gave definitions of respiration, photosynthesis, and food which were markedly different from those generally accepted by biologists. These incorrect definitions were associated with more fundamental misunderstandings about how plants and animals function. Most students could not explain how animal cells use either food or oxygen. They understood plants as vaguely analogous to animals, taking in food through their roots instead of mouths. Previous biology instruction seemed neither to improve student performance on the pretest nor to prepare them to master these conceptions during the course. Course instruction did improve student's understanding, but misconceptions persisted for many students. These results raise fundamental questions about the effectiveness of curriculum and instruction in current high school and college biology courses.

  16. The use of NH4+ rather than NO3- affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp UTEX LB 2380, only when energy is limiting

    Czech Academy of Sciences Publication Activity Database

    Ruan, Z.; Giordano, Mario

    2017-01-01

    Roč. 40, č. 2 (2017), s. 227-236 ISSN 0140-7791 Institutional support: RVO:61388971 Keywords : carbon allocation * cyanobacteria * elemental stoichiometry Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 6.173, year: 2016

  17. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  18. Algal photosynthesis as the primary driver for a sustainable development in energy, feed, and food production.

    Science.gov (United States)

    Anemaet, Ida G; Bekker, Martijn; Hellingwerf, Klaas J

    2010-11-01

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO₂ into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO₂ into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps--after acid hydrolysis--as a complex, animal-free serum for growth of mammalian cells in vitro.

  19. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Energy Technology Data Exchange (ETDEWEB)

    Anemaet, I.G.; Bekker, G.; Hellingwerf, K.J. [Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam (Netherlands)

    2010-11-15

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps-after acid hydrolysis-as a complex, animal-free serum for growth of mammalian cells in vitro.

  20. Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production

    Energy Technology Data Exchange (ETDEWEB)

    Anemaet, I G; Bekker, G; Hellingwerf, K J [Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam (Netherlands)

    2010-11-15

    High oil prices and global warming that accompany the use of fossil fuels are an incentive to find alternative forms of energy supply. Photosynthetic biofuel production represents one of these since for this, one uses renewable resources. Sunlight is used for the conversion of water and CO2 into biomass. Two strategies are used in parallel: plant-based production via sugar fermentation into ethanol and biodiesel production through transesterification. Both, however, exacerbate other problems, including regional nutrient balancing and the world's food supply, and suffer from the modest efficiency of photosynthesis. Maximizing the efficiency of natural and engineered photosynthesis is therefore of utmost importance. Algal photosynthesis is the system of choice for this particularly for energy applications. Complete conversion of CO2 into biomass is not necessary for this. Innovative methods of synthetic biology allow one to combine photosynthetic and fermentative metabolism via the so-called Photanol approach to form biofuel directly from Calvin cycle intermediates through use of the naturally transformable cyanobacterium Synechocystis sp. PCC 6803. Beyond providing transport energy and chemical feedstocks, photosynthesis will continue to be used for food and feed applications. Also for this application, arguments of efficiency will become more and more important as the size of the world population continues to increase. Photosynthetic cells can be used for food applications in various innovative forms, e.g., as a substitute for the fish proteins in the diet supplied to carnivorous fish or perhaps-after acid hydrolysis-as a complex, animal-free serum for growth of mammalian cells in vitro.

  1. Oxygenic photosynthesis: translation to solar fuel technologies

    Directory of Open Access Journals (Sweden)

    Julian David Janna Olmos

    2014-12-01

    Full Text Available Mitigation of man-made climate change, rapid depletion of readily available fossil fuel reserves and facing the growing energy demand that faces mankind in the near future drive the rapid development of economically viable, renewable energy production technologies. It is very likely that greenhouse gas emissions will lead to the significant climate change over the next fifty years. World energy consumption has doubled over the last twenty-five years, and is expected to double again in the next quarter of the 21st century. Our biosphere is at the verge of a severe energy crisis that can no longer be overlooked. Solar radiation represents the most abundant source of clean, renewable energy that is readily available for conversion to solar fuels. Developing clean technologies that utilize practically inexhaustible solar energy that reaches our planet and convert it into the high energy density solar fuels provides an attractive solution to resolving the global energy crisis that mankind faces in the not too distant future. Nature’s oxygenic photosynthesis is the most fundamental process that has sustained life on Earth for more than 3.5 billion years through conversion of solar energy into energy of chemical bonds captured in biomass, food and fossil fuels. It is this process that has led to evolution of various forms of life as we know them today. Recent advances in imitating the natural process of photosynthesis by developing biohybrid and synthetic “artificial leaves” capable of solar energy conversion into clean fuels and other high value products, as well as advances in the mechanistic and structural aspects of the natural solar energy converters, photosystem I and photosystem II, allow to address the main challenges: how to maximize solar-to-fuel conversion efficiency, and most importantly: how to store the energy efficiently and use it without significant losses. Last but not least, the question of how to make the process of solar

  2. Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state

    NARCIS (Netherlands)

    Kaiser, Elias; Zhou, Dianfan; Heuvelink, Ep; Harbinson, Jeremy; Morales Sierra, A.; Marcelis, Leo F.M.

    2017-01-01

    Leaves are often exposed to fluctuating irradiance, which limits assimilation. Elevated CO2 enhances dynamic photosynthesis (i.e. photosynthesis in fluctuating irradiance) beyond its effects on steady-state photosynthesis rates. Studying the role of CO2 in dynamic photosynthesis is important for

  3. significance of rice sheath photosynthesis: yield determination by c ...

    African Journals Online (AJOL)

    ACSS

    1State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China. 2School of ... for contribution rates of sheath photosynthesis to economical yield. ..... related processes during ripening in rice plants.

  4. Plants growth, water relations and photosynthesis of two bean ...

    African Journals Online (AJOL)

    ... almost all physiological activities were suppressed. The superiority of the genotype Tema against Djadida genotype was attributed to quantitative rather than qualitative physiological response differences. Keywords: Salinity, fluridone, bean, growth, photosynthesis, stomatal conductance. African Journal of Biotechnology ...

  5. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  6. Box photosynthesis modeling results for WRF/CMAQ LSM

    Data.gov (United States)

    U.S. Environmental Protection Agency — Box Photosynthesis model simulations for latent heat and ozone at 6 different FLUXNET sites. This dataset is associated with the following publication: Ran, L., J....

  7. Redesigning photosynthesis to sustainably meet global food and bioenergy demand

    Science.gov (United States)

    Ort, Donald R.; Merchant, Sabeeha S.; Alric, Jean; Barkan, Alice; Blankenship, Robert E.; Bock, Ralph; Croce, Roberta; Hanson, Maureen R.; Hibberd, Julian M.; Long, Stephen P.; Moore, Thomas A.; Moroney, James; Niyogi, Krishna K.; Parry, Martin A. J.; Peralta-Yahya, Pamela P.; Prince, Roger C.; Redding, Kevin E.; Spalding, Martin H.; van Wijk, Klaas J.; Vermaas, Wim F. J.; von Caemmerer, Susanne; Weber, Andreas P. M.; Yeates, Todd O.; Yuan, Joshua S.; Zhu, Xin Guang

    2015-01-01

    The world’s crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the efficiency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. PMID:26124102

  8. Gating in grapevine: Relationship between application of the fungicide fludioxonil and circadian rhythm on photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Anne-Noelle [Laboratoire de Stress, Defenses et Reproduction des Plantes, URVVC-SE EA 2069, Universite de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Batiment 18, Moulin de la Housse, BP 1039, F-51687 REIMS Cedex 2 (France)], E-mail: petit081@etudiant.univ-reims.fr; Fontaine, Florence [Laboratoire de Stress, Defenses et Reproduction des Plantes, URVVC-SE EA 2069, Universite de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Batiment 18, Moulin de la Housse, BP 1039, F-51687 REIMS Cedex 2 (France)], E-mail: florence.fontaine@univ-reims.fr; Clement, Christophe [Laboratoire de Stress, Defenses et Reproduction des Plantes, URVVC-SE EA 2069, Universite de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Batiment 18, Moulin de la Housse, BP 1039, F-51687 REIMS Cedex 2 (France)], E-mail: christophe.clement@univ-reims.fr; Vaillant-Gaveau, Nathalie [Laboratoire de Stress, Defenses et Reproduction des Plantes, URVVC-SE EA 2069, Universite de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Batiment 18, Moulin de la Housse, BP 1039, F-51687 REIMS Cedex 2 (France)], E-mail: nathalie.vaillant-gaveau@univ-reims.fr

    2009-01-15

    The aim of this study was to determine the impact of the fludioxonil (fdx) fungicide on the diurnal fluctuation in grapevine photosynthesis. Therefore, fdx treatment was performed at the end of flowering, at 8 am, 12 am or 7 pm. The study was performed in experimental field and several photosynthesis parameters were followed one day after treatment. Morning fdx treatment induced (i) a significant and simultaneous drop of both photosynthesis (Pn) and stomatal conductance between 8 am and 4 pm and (ii) an increase of intercellular CO{sub 2} concentration when compared to control plants. On the contrary, evening fdx treatment did not affect Pn whereas midday treatment caused Pn increase after 4 pm. These data suggest that (i) morning fdx treatment results in a non-stomatal limitation of Pn, (ii) midday treatment is more suitable to treat grapevine with fdx and (iii) a phenomenon of gating was noticed. - The period of fdx spraying was an important parameter in stress response: the midday fdx treatment is more suitable to treat grapevine with fdx.

  9. Gating in grapevine: Relationship between application of the fungicide fludioxonil and circadian rhythm on photosynthesis

    International Nuclear Information System (INIS)

    Petit, Anne-Noelle; Fontaine, Florence; Clement, Christophe; Vaillant-Gaveau, Nathalie

    2009-01-01

    The aim of this study was to determine the impact of the fludioxonil (fdx) fungicide on the diurnal fluctuation in grapevine photosynthesis. Therefore, fdx treatment was performed at the end of flowering, at 8 am, 12 am or 7 pm. The study was performed in experimental field and several photosynthesis parameters were followed one day after treatment. Morning fdx treatment induced (i) a significant and simultaneous drop of both photosynthesis (Pn) and stomatal conductance between 8 am and 4 pm and (ii) an increase of intercellular CO 2 concentration when compared to control plants. On the contrary, evening fdx treatment did not affect Pn whereas midday treatment caused Pn increase after 4 pm. These data suggest that (i) morning fdx treatment results in a non-stomatal limitation of Pn, (ii) midday treatment is more suitable to treat grapevine with fdx and (iii) a phenomenon of gating was noticed. - The period of fdx spraying was an important parameter in stress response: the midday fdx treatment is more suitable to treat grapevine with fdx

  10. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  11. From molecules to materials pathways to artificial photosynthesis

    CERN Document Server

    Rozhkova, Elena A

    2015-01-01

    This interdisciplinary book focuses on the various aspects transformation of the energy from sunlight into the chemical bonds of a fuel, known as the artificial photosynthesis, and addresses the emergent challenges connected with growing societal demands for clean and sustainable energy technologies. The editors assemble the research of world-recognized experts in the field of both molecular and materials artificial systems for energy production. Contributors cover the full scope of research on photosynthesis and related energy processes.

  12. Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva

    OpenAIRE

    Giraud, Eric; Hannibal, Laure; Fardoux, Joël; Verméglio, A.; Dreyfus, Bernard

    2000-01-01

    Some leguminous species of the genus #Aeschynomene$ are specifically stem-nodulated by photosynthetic bradyrhizobia. To study the effect of bacterial photosynthesis during symbiosis, we generated a photosynthesis-negative mutant of the #Bradyrhizobium$ sp. strain ORS278 symbiont of #Aeschynomene sensitiva$. The presence of a functional photosynthetic unit in bacterioids and the high expression of the photosynthetic genes observed in stem nodules demonstrate that the bacteria are photosyntheti...

  13. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.

    Science.gov (United States)

    Wilde, Annegret; Hihara, Yukako

    2016-03-01

    Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Manganese and the II system in photosynthesis

    International Nuclear Information System (INIS)

    Joyard, Jacques

    1971-01-01

    The evolution during greening of some components of system II of photosynthesis has been followed in plastids extracted from Zea mays grown in the dark. Manganese studies were done by means of neutron activation, electron spin resonance (ESR) was also used in some experiments. Oxygen evolution of isolated plastids was followed by polarography (with a membrane electrode). The evolution of manganese/carotenoids ratio can be divided in three parts. During the first hour of greening, the increase shows an input of Mn in the plastids; then, whereas carotenoids content of those plastids presents no changes, Mn is released in the medium; at last, carotenoids synthesis is parallel to Mn fixation in the plastids, the ratio being constant after 24 hours of greening. From various measurements on chloroplastic manganese, it is shown that the development of system II can be divided in two main phases: during the first one (that is during the first day of light) the components are not yet bound together but the relations become more and more strong. Then, during the last period of the development, the organisation of system II is complete and the transformations of the plastids are parallel to the raise of their activity. (author) [fr

  15. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  16. Interactions of photosynthesis with genome size and function

    Science.gov (United States)

    Raven, John A.; Beardall, John; Larkum, Anthony W. D.; Sánchez-Baracaldo, Patricia

    2013-01-01

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements PMID:23754816

  17. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  18. Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought

    Science.gov (United States)

    Li, Xing; Xiao, Jingfeng; He, Binbin

    2018-04-01

    Amazon forests play an important role in the global carbon cycle and Earth’s climate. The vulnerability of Amazon forests to drought remains highly controversial. Here we examine the impacts of the 2015 drought on the photosynthesis of Amazon forests to understand how solar radiation and precipitation jointly control forest photosynthesis during the severe drought. We use a variety of gridded vegetation and climate datasets, including solar-induced chlorophyll fluorescence (SIF), photosynthetic active radiation (PAR), the fraction of absorbed PAR (APAR), leaf area index (LAI), precipitation, soil moisture, cloud cover, and vapor pressure deficit (VPD) in our analysis. Satellite-derived SIF observations provide a direct diagnosis of plant photosynthesis from space. The decomposition of SIF to SIF yield (SIFyield) and APAR (the product of PAR and fPAR) reveals the relative effects of precipitation and solar radiation on photosynthesis. We found that the drought significantly reduced SIFyield, the emitted SIF per photon absorbed. The higher APAR resulting from lower cloud cover and higher LAI partly offset the negative effects of water stress on the photosynthesis of Amazon forests, leading to a smaller reduction in SIF than in SIFyield and precipitation. We further found that SIFyield anomalies were more sensitive to precipitation and VPD anomalies in the southern regions of the Amazon than in the central and northern regions. Our findings shed light on the relative and combined effects of precipitation and solar radiation on photosynthesis, and can improve our understanding of the responses of Amazon forests to drought.

  19. Developmental Vitamin D Availability Impacts Hematopoietic Stem Cell Production

    Directory of Open Access Journals (Sweden)

    Mauricio Cortes

    2016-10-01

    Full Text Available Vitamin D insufficiency is a worldwide epidemic affecting billions of individuals, including pregnant women and children. Despite its high incidence, the impact of active vitamin D3 (1,25(OHD3 on embryonic development beyond osteo-regulation remains largely undefined. Here, we demonstrate that 1,25(OHD3 availability modulates zebrafish hematopoietic stem and progenitor cell (HSPC production. Loss of Cyp27b1-mediated biosynthesis or vitamin D receptor (VDR function by gene knockdown resulted in significantly reduced runx1 expression and Flk1+cMyb+ HSPC numbers. Selective modulation in vivo and in vitro in zebrafish indicated that vitamin D3 acts directly on HSPCs, independent of calcium regulation, to increase proliferation. Notably, ex vivo treatment of human HSPCs with 1,25(OHD3 also enhanced hematopoietic colony numbers, illustrating conservation across species. Finally, gene expression and epistasis analysis indicated that CXCL8 (IL-8 was a functional target of vitamin D3-mediated HSPC regulation. Together, these findings highlight the relevance of developmental 1,25(OHD3 availability for definitive hematopoiesis and suggest potential therapeutic utility in HSPC expansion.

  20. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri1

    Science.gov (United States)

    Macler, Bruce A.

    1988-01-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O2 evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  1. Salinity Effects on Photosynthesis, Carbon Allocation, and Nitrogen Assimilation in the Red Alga, Gelidium coulteri.

    Science.gov (United States)

    Macler, B A

    1988-11-01

    The long-term effects of altered salinities on the physiology of the intertidal red alga Gelidium coulteri Harv. were assessed. Plants were transfered from 30 grams per liter salinity to media with salinities from 0 to 50 grams per liter. Growth rate, agar, photosynthesis, respiration, and various metabolites were quantified after 5 days and 5 weeks adaptation. After 5 days, growth rates were lower for plants at all altered salinities. Growth rates recovered from these values with 5 weeks adaptation, except for salinities of 10 grams per liter and below, where tissues bleached and died. Photosynthetic O(2) evolution was lower than control values at both higher and lower salinities after 5 days and did not change over time. Carbon fixation at the altered salinities was unchanged after 5 days, but decreased below 25 grams per liter and above 40 grams per liter after 5 weeks. Respiration increased at lower salinities. Phycobili-protein and chlorophyll were lower for all altered salinities after 5 days. These decreases continued at lower salinities, then were stable after 5 weeks. Chlorophyll recovered over time at higher salinities. Decreases in protein at lower salinities were quantitatively attributable to phycobili-protein loss. Total N levels and C:N ratios were nearly constant across all salinities tested. Carbon flow into glutamate and aspartate decreased with both decreasing and increasing salinities. Glycine, serine, and glycolate levels increased with both increasing and decreasing salinity, indicating a stimulation of photorespiration. The cell wall component agar increased with decreasing salinity, although biosynthesis was inhibited at both higher and lower salinities. The storage compound floridoside increased with increasing salinity. The evidence suggests stress responses to altered salinities that directly affected photosynthesis, respiration, and nitrogen assimilation and indirectly affected photosynthate flow. At low salinities, respiration and

  2. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    Science.gov (United States)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible

  3. Energy from biomass production - photosynthesis of microalgae?

    Energy Technology Data Exchange (ETDEWEB)

    Lamparter, Tilman [Universitaet Karlsruhe, Botanisches Institut, Geb. 10.40, Kaiserstr. 2, D-76131 Karlsruhe (Germany)

    2009-07-01

    The composition of our atmosphere in the past, present and future is largely determined by photosynthetic activity. Other biological processes such as respiration consume oxygen and produce, like the use of the limited fossil fuel resources, CO{sub 2} whose increasing atmospheric concentration is a major concern. There is thus a demand on the development of alternative energy sources that replace fossil fuel. The use of crop plants for the production of biofuel is one step towards this direction. Since most often the same areas are used as for the production of food, the increased production of biofuel imposes secondary problems, however. In this context, the use of microalgae for biomass production has been proposed. Not only algae in the botanical sense (lower plants, photosynthetic eukaryotes) but also cyanobacteria, which belong to the prokaryotes, are used as ''microalgae''. The conversion of light energy into biomass can reach much higher efficiencies than in crop plants, in which a great portion of photosynthesis products is used to build up non-photosynthetic tissues such as roots or stems. Microalgae can grow in open ponds or bioreactors and can live on water of varying salinity. It has been proposed to grow microalgae in sea water on desert areas. Ongoing research projects aim at optimizing growth conditions in bioreactors, the recycling of CO{sub 2} from flue gases (e.g. from coal-fired power plants), the production of hydrogen, ethanol or lipids, and the production of valuable other substances such as carotenoids.

  4. Path of Carbon in Photosynthesis III.

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1948-06-01

    Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.

  5. Effects of an inhibitor of phosphoenolpyruvate carboxylase on photosynthesis of the terrestrial forms of amphibious Eleocharis species.

    Science.gov (United States)

    Ueno, Osamu; Ishimaru, Ken

    2002-01-01

    The leafless amphibious sedge Eleocharis vivipara develops culms with C(4) traits and Kranz anatomy under terrestrial conditions, but develops culms with C(3) traits and non-Kranz anatomy under submerged conditions. The culms of the terrestrial form have high C(4) enzyme activities, while those of the submerged form have decreased C(4) enzyme activities. The culms accumulate ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the mesophyll cells (MC) and the bundle sheath cells. The Rubisco in the MC may be responsible for the operation of the C(3) pathway in the submerged form. To verify the presence of the C(3) cycle in the MC, we examined the effects of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl) -propenoate (DCDP), an inhibitor of phosphoenolpyruvate carboxylase (PEPC), on photosynthesis in culms of the terrestrial forms of E. vivipara and related amphibious species, E. baldwinii and E. retroflexa ssp. chaetaria. When 1 mM DCDP was fed via the transpiration stream to excised leaves, photosynthesis was inhibited completely in Fimbristylis dichotoma (C(4) control), but by only 20% in potato (C(3) control). In the terrestrial Eleocharis plants, the degree of inhibition of photosynthesis by DCDP was intermediate between those of the C(4) and C(3) plants, at 58-81%. These results suggest that photosynthesis under DCDP treatment in the terrestrial Eleocharis plants is due mainly to fixation of atmospheric CO(2) by Rubisco and probably the C(3) cycle in the MC. These features are reminiscent of those in C(4)-like plants. Differential effects of DCDP on photosynthesis of the 3 Eleocharis species are discussed in relation to differences in the degree of Rubisco accumulation and C(3) activity in the MC.

  6. Effects of complex effluents on photosynthesis in Lake Erie and Lake Huron

    International Nuclear Information System (INIS)

    Bridgham, S.D.; McNaught, D.C.; Meadows, C.

    1988-01-01

    Phytoplankton are the base of the food chain in most large lake ecosystems; if affected by environmental pollutants, significant ecosystem changes can result with potential impact on higher trophic levels. The research determined the effects of a complex effluent discharge from the River Raisin in Monroe County, Michigan, on the Lake Erie ecosystem. The river flows through southern Michigan and has large nutrient and industrial inputs, especially in the Monroe Harbor area. The functional parameters measured were bacterial uptake rate of acetate, zooplankton feeding and reproduction rates, and primary production. The results of the effects of complex effluents on gross photosynthesis, measured as carbon-14 ((14)C) uptake, are presented in the paper

  7. Transcriptome comparisons shed light on the pre-condition and potential barrier for C4 photosynthesis evolution in eudicots.

    Science.gov (United States)

    Tao, Yimin; Lyu, Ming-Ju Amy; Zhu, Xin-Guang

    2016-05-01

    C4 photosynthesis evolved independently from C3 photosynthesis in more than 60 lineages. Most of the C4 lineages are clustered together in the order Poales and the order Caryophyllales while many other angiosperm orders do not have C4 species, suggesting the existence of biological pre-conditions in the ancestral C3 species that facilitate the evolution of C4 photosynthesis in these lineages. To explore pre-adaptations for C4 photosynthesis evolution, we classified C4 lineages into the C4-poor and the C4-rich groups based on the percentage of C4 species in different genera and conducted a comprehensive comparison on the transcriptomic changes between the non-C4 species from the C4-poor and the C4-rich groups. Results show that species in the C4-rich group showed higher expression of genes related to oxidoreductase activity, light reaction components, terpene synthesis, secondary cell synthesis, C4 cycle related genes and genes related to nucleotide metabolism and senescence. In contrast, C4-poor group showed up-regulation of a PEP/Pi translocator, genes related to signaling pathway, stress response, defense response and plant hormone metabolism (ethylene and brassinosteroid). The implications of these transcriptomic differences between the C4-rich and C4-poor groups to C4 evolution are discussed.

  8. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  9. Photosynthesis 2008 Gordon Research Conferences - June 22-27, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Willem Vermaas

    2009-08-28

    Photosynthesis is the most prevalent, natural way to convert solar energy to chemical energy in living systems, and is a major mechanism to ameliorate rising CO2 levels in the atmosphere and to contribute to sustainable biofuels production. Photosynthesis is a particularly interdisciplinary field of research, with contributions from plant and microbial physiology, biochemistry, spectroscopy, etc. The Photosynthesis GRC is a venue by which scientists with expertise in complementary approaches such as solar energy conversion, molecular mechanisms of electron transfer, and 'systems biology' (molecular physiology) of photosynthetic organisms come together to exchange data and ideas and to forge new collaborations. The 2008 Photosynthesis GRC will focus on important new findings related to, for example: (1) function, structure, assembly, degradation, motility and regulation of photosynthetic complexes; (2) energy and electron transfer in photosynthetic systems; regulation and rate limitations; (3) synthesis, degradation and regulation of cofactors (pigments, etc.); (4) functional, structural and regulatory interactions between photosynthesis and the physiology of the organism; (5) organisms with unusual photosynthetic properties, and insights from metagenomics and evolution; and (6) bioenergy strategies involving solar energy conversion, and practical applications for photosynthetic organisms.

  10. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    Science.gov (United States)

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  11. The Path of Carbon in Photosynthesis XVI. Kinetic Relationships of the Intermediates in Steady State Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Kawaguchi, S.; Hayes, P.; Calvin, M.

    1952-06-05

    A kinetic study of the accumulation of C{sup 14} in the intermediates of steady state photosynthesis in C{sup 14}O{sub 2} provides information regarding the sequence of reactions involved. The work described applied the radio-chromatographic technique for analysis of the labeled early products. The simultaneous carboxylation reaction resulting in malic acid as well as phosphoglycerate is demonstrated in experiments at high light intensity. A comparison of radioactivities in a number of phosphorylated sugars as a function of time reveals concurrent synthesis of fructose and sedoheptulose phosphates followed by that of ribulose phosphates and later by that of glucose phosphates. The possibility that the cleavage of C{sub 4} compounds to C{sub 2} carbon dioxide acceptors may involve C{sub 7} and C{sub 5} sugars and evidence for this mechanism is presented.

  12. Large centric diatoms allocate more cellular nitrogen to photosynthesis to counter slower RUBISCO turnover rates

    Directory of Open Access Journals (Sweden)

    Yaping eWu

    2014-12-01

    Full Text Available Diatoms contribute ~40% of primary production in the modern ocean and encompass the largest cell size range of any phytoplankton group. Diatom cell size influences their nutrient uptake, photosynthetic light capture, carbon export efficiency, and growth responses to increasing pCO2. We therefore examined nitrogen resource allocations to the key protein complexes mediating photosynthesis across six marine centric diatoms, spanning 5 orders of magnitude in cell volume, under past, current and predicted future pCO2 levels, in balanced growth under nitrogen repletion. Membrane bound photosynthetic protein concentrations declined with cell volume in parallel with cellular concentrations of total protein, total nitrogen and chlorophyll. Larger diatom species, however, allocated a greater fraction (by 3.5 fold of their total cellular nitrogen to the soluble RUBISCO carbon fixation complex than did smaller species. Carbon assimilation per unit of RUBISCO large subunit (C RbcL-1 s-1 decreased with cell volume, from ~8 to ~2 C RbcL-1 s-1 from the smallest to the largest cells. Whilst a higher allocation of cellular nitrogen to RUBISCO in larger cells increases the burden upon their nitrogen metabolism, the higher RUBISCO allocation buffers their lower achieved RUBISCO turnover rate to enable larger diatoms to maintain carbon assimilation rates per total protein comparable to small diatoms. Individual species responded to increased pCO2, but cell size effects outweigh pCO2 responses across the diatom species size range examined. In large diatoms a higher nitrogen cost for RUBISCO exacerbates the higher nitrogen requirements associated with light absorption, so the metabolic cost to maintain photosynthesis is a cell size-dependent trait.

  13. Observed and predicted measurements of photosynthesis in a phytoplankton culture exposed to natural irradiance

    International Nuclear Information System (INIS)

    Marra, J.; Heinemann, K.; Landriau, G. Jr.

    1985-01-01

    Photosynthesis-irradiance (P-I) curves were produced (using artificial illumination) from samples taken at one or more times per day from a continuous culture illuminated with sunlight. The continuous culture housed an oxygen electrode used to measure photosynthesis semi-continuously. Rates of photosynthesis predicted from P-I curves agreed with photosynthesis observed in the culture only for days of low irradiance. For sunny days or for days of variable irradiance, P-I curves predicted neither the morning photosynthesis maximum nor the afternoon depression. Daily integrals of predicted and observed photosynthesis, however, were probably within the possible errors of measurement. (orig.)

  14. Effects of biotic stress caused by Potato virus Y on photosynthesis in ipt transgenic and control Nicotiana tabacum L

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Semorádová, Šárka; Schnablová, Renáta; Muller, K.; Pospíšilová, Jana; Ryšlavá, H.; Malbeck, Jiří; Čeřovská, Noemi

    2006-01-01

    Roč. 171, - (2006), s. 607-616 ISSN 0168-9452 R&D Projects: GA ČR GA206/03/0310 Grant - others:Grantová agentura University Karlovy GAUK428/2004/B-Ch/PrF Institutional research plan: CEZ:AV0Z50380511 Keywords : cytokinins * ipt * transgenic tobacco * photosynthesis * Potato virus Y Subject RIV: EF - Botanics Impact factor: 1.631, year: 2006

  15. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis.

    Science.gov (United States)

    Trevors, J T

    2012-12-01

    The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.

  16. Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.

    Science.gov (United States)

    Pandey, Jitendra Kumar; Dash, Sidhartha Kumar; Biswal, Basanti

    2017-07-01

    The precise nature of the developmental modulation of the activity of cell wall hydrolases that breakdown the wall polysaccharides to maintain cellular sugar homeostasis under sugar starvation environment still remains unclear. In this work, the activity of β-galactosidase (EC 3.2.1.23), a cell-wall-bound enzyme known to degrade the wall polysaccharides, has been demonstrated to remarkably enhance during senescence-induced loss in photosynthesis in Arabidopsis thaliana. The enhancement in the enzyme activity reaches a peak at the terminal phase of senescence when the rate of photosynthesis is at its minimum. Although the precise nature of chemistry of the interface between the decline in photosynthesis and enhancement in the activity of the enzyme could not be fully resolved, the enhancement in its activity in dark and its suppression in light or with exogenous sugars may indicate the involvement of loss of photosynthetic production of sugars as a key factor that initiates and stimulates the activity of the enzyme. The hydrolase possibly participates in the catabolic network of cell wall polysaccharides to produce sugars for execution of energy-dependant senescence program in the background of loss of photosynthesis. Drought stress experienced by the senescing leaves accelerates the decline in photosynthesis with further stimulation in the activity of the enzyme. The stress recovery of photosynthesis and suppression of the enzyme activity on withdrawal of stress support the proposition of photosynthetic modulation of the cell-wall-bound enzyme activity.

  17. Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion

    International Nuclear Information System (INIS)

    Yuan, Hongyan; Hsiao, Yi-Hsuan; Zhang, Yiyu; Wang, Jinlian; Yin, Chao; Shen, Rong; Su, Yiping

    2013-01-01

    Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal

  18. Impact of 2-bromopropane on mouse embryonic stem cells and ...

    African Journals Online (AJOL)

    This study shows that 2-BP (5 to 10 μM) induces apoptotic processes in mouse embryonic stem cells (ESC-B5), but exerts no effects at treatment dosages below 5 μM. In ESC-B5 cells, 2-BP directly increased the content of reactive oxygen species (ROS), significantly increased the cytoplasmic free calcium and nitric oxide ...

  19. Impact of cell phone use on men's semen parameters.

    Science.gov (United States)

    Gutschi, T; Mohamad Al-Ali, B; Shamloul, R; Pummer, K; Trummer, H

    2011-10-01

    The objective of the present retrospective study was to report our experience concerning the effects of cell phone usage on semen parameters. We examined 2110 men attending our infertility clinic from 1993 to October 2007. Semen analysis was performed in all patients. Serum free testosterone (T), follicle stimulating hormone (FSH), luteinising hormone (LH) and prolactin (PRL) were collected from all patients. The information on cell phone use of the patients was recorded and the subjects were divided into two groups according to their cell phone use: group A: cell phone use (n = 991); group B: no use (n = 1119). Significant difference was observed in sperm morphology between the two groups. In the patients of group A, 68.0% of the spermatozoa featured a pathological morphology compared to only 58.1% in the subjects of group B. Patients with cell phone usage showed significantly higher T and lower LH levels than those who did not use cell phone. No significant difference between the two groups was observed regarding FSH and PRL values. Our results showed that cell phone use negatively affects sperm quality in men. Further studies with a careful design are needed to determine the effect of cell phone use on male fertility. © 2011 Blackwell Verlag GmbH.

  20. The impact of cell culture equipment on energy loss.

    Science.gov (United States)

    Davies, Lleucu B; Kiernan, Michael N; Bishop, Joanna C; Thornton, Catherine A; Morgan, Gareth

    2014-01-01

    Light energy of discrete wavelengths supplied via lasers and broadband intense pulsed light have been used therapeutically for many years. In vitro models complement clinical studies, especially for the elucidation of underlying mechanisms of action. Clarification that light energy reaches the cells is necessary when developing protocols for the treatment of cells using in vitro models. Few studies report on energy loss in cell culture equipment. The ability of energy from light with therapeutic potential to reach cells in culture needs to be determined; this includes determining the proportion of light energy lost within standard cell culture media and cell culture vessels. The energy absorption of cell culture media, with/without the pH indicator dye phenol red, and the loss of energy within different plastics and glassware used typically for in vitro cell culture were investigated using intense pulsed light and a yellow pulsed dye laser. Media containing phenol red have a distinctive absorption peak (560 nm) absent in phenol red-free media and restored by the addition of phenol red. For both light sources, energy loss was lowest in standard polystyrene tissue culture flasks or multi-well plates and highest in polypropylene vessels or glass tubes. The effects of phenol red-free media on the absorption of energy varied with the light source used. Phenol red-free media are the media of choice; polystyrene vessels with flat surfaces such as culture flasks or multi-well plates should be used in preference to polypropylene or glass vessels.

  1. Relationships Between Nitrogen Metabolism and Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics; Larsen, Peder O. [Royal Veterinary and Agricultural Univ., Copenhagen (Denmark). Chemistry Dept.; Lawyer, Arthur L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics; Cornwell, Karen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics

    1981-01-01

    Photosynthetic green cells generate reducing power from the oxidation of water to O2, and use the reducing power for the reduction of CO2, nitrate and sulfate. Finally, the principal products of green cells then are oxygen, sucrose and other carbon compounds, amino groups of amino acids, and sulfhydryl groups of amino acids.

  2. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO(sub 2) from fossil-fired power plants by growing organisms capable of converting CO(sub 2) to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO(sub 2) from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO(sub 2) concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO(sub 2) levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  3. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  4. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Neale, P.J.; Cullen, J.J.; Lesser, M.P.; Melis, A.

    1993-01-01

    Phytoplankton photosynthesis is the basis of almost all aquatic primary production in the world's oceans, estuaries and lakes. Oceanic primary production is a major portion of the global carbon budget (see other contributions this volume). Currently, we are unable to account for all the CO 2 that is leaving the atmosphere and debate continues whether the ''missing carbon'' is going into either terrestrial and oceanic sinks (7). In this context, it is important to improve our knowledge of how phytoplankton photosynthesis responds to the aquatic environment. The aquatic light environment is primary among several factors governing aquatic photosynthesis. To understand phytoplankton response to aquatic irradiance, we must consider how light propagates underwater, variations in light spectral quality as well as intensity. Also important is how these optical characteristics relate to processes of light absorption and utilization by phytoplankton cells. Considerable progress has been made on answering many of these questions (e.g. 27). One topic, phytoplankton responses to irradiance stress induced by photosynthetically available radiation (PAR2) and UJV, has become increasingly important. The primary consequence in both cases is a time-dependent loss of photosynthetic activity (photo inhibition). Concern over the effects of solar UV irradiance has recently intensified with the advent of stratospheric ozone depletion, which allows for an increase of the mid-ultraviolet (UVB 280-320 nm)irradiance, especially in the Antarctic. The sensitivity of phytoplankton photosynthesis to irradiance stress can be readily demonstrated (36), however,showing whether this stress actually occurs in the aquatic environment remains difficult. The essential problem is that phytoplankton are in suspension. Their irradiance exposure will be determined by mixing processes that transport cells over a vertical gradient in light availability. The response to irradiance

  5. Asthma and gender impact accumulation of T cell subtypes

    Directory of Open Access Journals (Sweden)

    Peters Stephen P

    2010-07-01

    Full Text Available Abstract Background The "Th2 hypothesis for asthma" asserts that an increased ratio of Th2:Th1 cytokine production plays an important pathogenic role in asthma. Although widely embraced, the hypothesis has been challenged by various empirical observations and has been described as overly simplistic. We sought to establish whether CD3+CD28-mediated and antigen-independent accumulation of type 1 and type 2 T cells differs significantly between nonasthmatic and asthmatic populations. Methods An ex vivo system was used to characterize the regulation of IFN-γ-producing (type 1 and IL-13-producing (type 2 T cell accumulation in response to CD3+CD28 and IL-2 stimulation by flow cytometry. Results IL-13-producing T cells increased in greater numbers in response to antigen-independent stimulation in peripheral blood lymphocytes from female atopic asthmatic subjects compared with male asthmatics and both male and female atopic non-asthmatic subjects. IFN-γ+ T cells increased in greater numbers in response to either antigen-independent or CD3+CD28-mediated stimulation in peripheral blood lymphocytes from atopic asthmatic subjects compared to non-asthmatic subjects, regardless of gender. Conclusions We demonstrate that T cells from asthmatics are programmed for increased accumulation of both type 2 and type 1 T cells. Gender had a profound effect on the regulation of type 2 T cells, thus providing a mechanism for the higher frequency of adult asthma in females.

  6. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    Science.gov (United States)

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  7. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  8. Foliar application of processed calcite particles improves leaf photosynthesis of potted Vitis vinifera L. (var. ‘Cot’ grown under water deficit

    Directory of Open Access Journals (Sweden)

    Faouzi Attia

    2014-12-01

    Significance and impact of the study: In the context of climate change, grapevine will most likely experience long periods of drought during its seasonal cycle. Foliar application of processed mineral particles is widely used to reduce heat stress in perennial fruit crops. Here, the micronized calcite Megagreen® does improve photosynthesis of water stressed grapevines.

  9. Investigation of grapevine photosynthesis using hyperspectral techniques and development of hyperspectral band ratio indices sensitive to photosynthesis.

    Science.gov (United States)

    Ozelkan, Emre; Karaman, Muhittin; Candar, Serkan; Coskun, Zafer; Ormeci, Cankut

    2015-01-01

    The photosynthetic rate of 9 different grapevines were analyzed with simultaneous photosynthesis and spectroradiometric measurements on 08.08.2012 (veraison) and 06.09.2012 (harvest). The wavelengths and spectral regions, which most properly express photosynthetic rate, were determined using correlation and regression analysis. In addition, hyperspectral band ratio (BR) indices sensitive to photosynthesis were developed using optimum band ratio (OBRA) method. The relation of BR results with photosynthesis values are presented with the correlation matrix maps created in this study. The examinations were performed for both specific dates (i.e., veraison and harvest) and also in aggregate (i.e., correlation between total spectra and photosynthesis data). For specific dates wavelength based analysis, the photosynthesis were best determined with -0.929 correlation coefficient (r) 609 nm of yellow region at veraison stage, and -0.870 at 641 nm of red region at harvest stage. For wavelength based aggregate analysis, 640 nm of red region was found to be correlated with 0.921 and -0.867 r values respectively and red edge (RE) (695 nm) was found to be correlated with -0.922 and -0.860 r values, respectively. When BR indices results were analyzed with photosynthetic values for specific dates, -0.987 r with R8../R, at veraison stage and -0.911 r with R696/R944 at harvest stage were found most correlated. For aggregate analysis of BR, common BR presenting great correlation with photosynthesis for both measurements was found to be R632/R971 with -0.974, -0.881 r values, respectively and other R610/R760 with -0.976, -0.879 r values. The final results of this study indicate that the proportion of RE region to a region with direct or indirect correlation with photosynthetic provides information about rate of photosynthesis. With the indices created in this study, the photosynthesis rate of vineyards can be determined using in-situ hyperspectral remote sensing. The findings of this

  10. Stem cells: Update and impact on craniofacial surgery

    OpenAIRE

    Levi, Benjamin; Glotzbach, Jason; Wong, Victor; Nelson, Emily; Hyun, Jeong; Wan, Derrick C.; Gurtner, Geoffrey C.; Longaker, Michael T.

    2012-01-01

    With the rapidly expanding field of tissue engineering, surgeons have been eager to apply these principles to craniofacial surgery. Tissue engineering strategies combine the use of a cell type placed on a scaffold and subsequently implanted in vivo to address a tissue defect or tissue dysfunction. In this review we will discuss the current clinical need for skeletal and soft tissue engineering faced by craniofacial surgeons and subsequently we will explore cell types and scaffold designs bein...

  11. Application of Photosynthesis to Artificial Sight

    National Research Council Canada - National Science Library

    Greenbaum, B

    2001-01-01

    .... The goal of this project is insertion of purified Photosystem I (PSI) reaction centers or other photoactive agents into retinal cells where they will restore photoreceptor function to people who suffer from age-related macular degeneration (AMD...

  12. Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3-CAM intermediate plant Mesembryanthemum crystallinum.

    Science.gov (United States)

    Kuźniak, Elżbieta; Kornas, Andrzej; Kaźmierczak, Andrzej; Rozpądek, Piotr; Nosek, Michał; Kocurek, Maciej; Zellnig, Günther; Müller, Maria; Miszalski, Zbigniew

    2016-06-01

    Leaf veins are usually encircled by specialized bundle sheath cells. In C4 plants, they play an important role in CO2 assimilation, and the photosynthetic activity is compartmentalized between the mesophyll and the bundle sheath. In C3 and CAM (Crassulacean acid metabolism) plants, the photosynthetic activity is generally attributed to the leaf mesophyll cells, and the vascular parenchymal cells are rarely considered for their role in photosynthesis. Recent studies demonstrate that enzymes required for C4 photosynthesis are also active in the veins of C3 plants, and their vascular system contains photosynthetically competent parenchyma cells. However, our understanding of photosynthesis in veins of C3 and CAM plants still remains insufficient. Here spatial analysis of photosynthesis-related properties were applied to the midrib and the interveinal lamina cells in leaves of Mesembryanthemum crystallinum, a C3-CAM intermediate plant. The midrib anatomy as well as chloroplast structure and chlorophyll fluorescence, diurnal gas exchange profiles, the immunoblot patterns of PEPC (phosphoenolpyruvate carboxylase) and RubisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase), H2O2 localization and antioxidant enzyme activities were compared in the midrib and in the interveinal mesophyll cells in leaves of C3 and CAM plants. Leaf midribs were structurally competent to perform photosynthesis in C3 and CAM plants. The midrib chloroplasts resembled those in the bundle sheath cells of C4 plants and were characterized by limited photosynthetic activity. The metabolic roles of midrib chloroplasts differ in C3 and CAM plants. It is suggested that in leaves of C3 plants the midrib chloroplasts could be involved in the supply of CO2 for carboxylation, and in CAM plants they could provide malate to different metabolic processes and mediate H2O2 signalling. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  13. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng

    2014-01-01

    To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O 3 ), Cyclobalanopsis glauca seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O 3 (AA + 60 ppb O 3 , E-O 3 ) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O 3 exposure. Results indicated that E-O 3 decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O 3 between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O 3 risk on evergreen woody species. -- Highlights: • Response of evergreen Cyclobalanopsis glauca to O 3 was investigated. • Elevated O 3 significantly reduced photosynthesis of current-year leaves. • Previous-year leaves showed little response to O 3 . • Stomatal conductance contributes to the response difference to O 3 among leaf ages. -- Impacts of elevated O 3 on photosynthesis of evergreen woody species depend on leaf ages

  14. Water deficit affects primary metabolism differently in two Lolium multiflorum/Festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration.

    Directory of Open Access Journals (Sweden)

    Dawid Perlikowski

    2016-07-01

    Full Text Available Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed.

  15. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis.

    Science.gov (United States)

    Li, Xiaojie; Han, Liping; Zhao, Yanying; You, Zhenzhen; Dong, Hansong; Zhang, Chunling

    2014-03-01

    Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1 delta NT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1 delta NT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1 delta NT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

  16. Impact of the p53 status of tumor cells on extrinsic and intrinsic apoptosis signaling.

    Science.gov (United States)

    Wachter, Franziska; Grunert, Michaela; Blaj, Cristina; Weinstock, David M; Jeremias, Irmela; Ehrhardt, Harald

    2013-04-17

    The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

  17. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent

    DEFF Research Database (Denmark)

    Li, Xiaohu; Zhang, Ruizhe; Qian, Yawei

    2017-01-01

    The impact of different anode acclimation methods for enhancing hydrogen production in microbial electrolysis cell (MEC) was investigated in this study. The anodes were first acclimated in microbial fuel cells using acetate, butyrate and corn stalk fermentation effluent (CSFE) as substrate before...

  18. Effects of proline on photosynthesis, root reactive oxygen species ...

    African Journals Online (AJOL)

    use

    2011-12-14

    Dec 14, 2011 ... Hoagland's nutrient solution (pH 6.3 to 6.5, EC 2.0 to 2.2 dS m-1). The nutrient .... photosynthesis system (LI-6400, LI-COR, Lincoln, NE, USA). The ..... Duan JJ, Li J, Guo SR, Kang YY (2008). ... Foster JG, Hess JL (1980).

  19. Changes in photosynthesis and activities of enzymes involved in ...

    African Journals Online (AJOL)

    AJL

    2012-04-26

    Apr 26, 2012 ... oxygen and carbohydrates. In photosynthesis, a series of redox reactions occur in the electron transport system present in the chloroplast thylakoid membranes. Oxi- dation of water is catalyzed by photosystem II (PSII), a multi-subunit pigment protein complex located in the thylakoid membrane (Hillier and ...

  20. Future Elementary School Teachers' Conceptual Change Concerning Photosynthesis

    Science.gov (United States)

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Anto, Erkki; Penttinen, Marjaana

    2011-01-01

    The purpose of this study was to examine conceptual change among future elementary school teachers while studying a scientific text concerning photosynthesis. Students' learning goals in relation to their learning outcomes were also examined. The participants were future elementary school teachers. The design consisted of pre- and post-tests. The…

  1. Photosynthesis versus irradiance relationships in the Atlantic sector ...

    African Journals Online (AJOL)

    The results show substantial variability in the photosynthesis–irradiance (P vs E) parameters, with phytoplankton communities at stations that were considered iron (Fe)-limited showing low maximum photosynthetic capacity (PBmax) and low quantum efficiency of photosynthesis (αB) for ρNO3, but high PBmax and αB for ...

  2. Effects of enhances ultra violet irradiation on photosynthesis in ...

    African Journals Online (AJOL)

    Effects of enhances ultra violet irradiation on photosynthesis in anabaena variabilis and phormidium uncinatum. VA Donkor. Abstract. No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp.16-23. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  3. Significance of rice sheath photosynthesis: Yield determination by ...

    African Journals Online (AJOL)

    Using high-yielding hybrid rice Liangyopeijiu (LYP9), its male parent 9311 and hybrid rice Shanyou 63 (SY63) as the experimental materials, the photosynthesis of rice sheath was studied by 14C radio-autography. The results showed that rice sheath could trap sunlight and produce photosynthates, and these ...

  4. Effect of traffic pollution on photosynthesis | Durrani | Journal of ...

    African Journals Online (AJOL)

    Vehicular exhaust is considered as one of the worst form of environmental pollution. To assess the effect of traffic pollution on photosynthesis, leaf samples of four different types of plants at different distances from the busy traffic road were collected from Wah. The samples consisted of sunny, shady and semi shady leaves of ...

  5. Model for expressing leaf photosynthesis in terms of weather variables

    African Journals Online (AJOL)

    A theoretical mathematical model for describing photosynthesis in individual leaves in terms of weather variables is proposed. The model utilizes a series of efficiency parameters, each of which reflect the fraction of potential photosynthetic rate permitted by the different environmental elements. These parameters are useful ...

  6. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    2009-11-14

    With LI-6400 portable photosynthesis system, the photosynthetic characteristics of artificially cultured Eichhornia crassipes in Jiangsu, China, were monitored from June 1 to November 14, 2009. Both the net photosynthetic rate (Pn) in different positions and light and temperature-response curves of the top fourth leaf were ...

  7. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  8. Global artificial photosynthesis project: a scientific and legal introduction.

    Science.gov (United States)

    Faunce, Thomas

    2011-12-01

    With the global human population set to exceed 10 billion by 2050, its collective energy consumption to rise from 400 to over 500 EJ/yr and with the natural environment under increasing pressure from these sources as well as from anthropogenic climate change, political solutions such as the creation of an efficient carbon price and trading scheme may arrive too late. In this context, the scientific community is exploring technological remedies. Central to these options is artificial photosynthesis--the creation, particularly through nanotechnology, of devices capable to doing what plants have done for millions of years - transforming sunlight, water and carbon dioxide into food and fuel. This article argues that a Global Artificial Photosynthesis (GAP) project can raise the public profile and encourage the pace, complexity and funding of scientific collaborations in artificial photosynthesis research. The legal structure of a GAP project will be critical to prevent issues such as state sovereignty over energy and food resources and corporate intellectual monopoly privileges unduly inhibiting the important contribution of artificial photosynthesis to global public health and environmental sustainability. The article presents an introduction to the scientific and legal concepts behind a GAP project.

  9. Artificial photosynthesis: from basic biology to industrial application

    National Research Council Canada - National Science Library

    Collings, Anthony F; Critchley, Christa

    2005-01-01

    ... some of the same outcomes at rates and scales that far exceed those found in nature. In this field the ubiquitous process is photosynthesis - an ancient process inherent to almost all plants and many prokaryotes on the planet that ultimately enabled the development of earth's animal kingdom. From a practical perspective, the natural process of photosynth...

  10. Microbial photosynthesis in the harnessing of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirt, S J

    1982-01-01

    The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO/sub 2/ through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed. (Refs. 14).

  11. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  12. Plant mineral nutrition, gas exchange and photosynthesis in space: A review

    Science.gov (United States)

    Wolff, S. A.; Coelho, L. H.; Zabrodina, M.; Brinckmann, E.; Kittang, A.-I.

    2013-02-01

    Successful growth and development of higher plants in space rely on adequate availability and uptake of water and nutrients, and efficient energy distribution through photosynthesis and gas exchange. In the present review, literature has been reviewed to assemble the relevant knowledge within space plant research for future planetary missions. Focus has been on fractional gravity, space radiation, magnetic fields and ultimately a combined effect of these factors on gas exchange, photosynthesis and transport of water and solutes. Reduced gravity prevents buoyancy driven thermal convection in the physical environment around the plant and alters transport and exchange of gases and liquids between the plant and its surroundings. In space experiments, indications of root zone hypoxia have frequently been reported, but studies on the influences of the space environment on plant nutrition and water transport are limited or inconclusive. Some studies indicate that uptake of potassium is elevated when plants are grown under microgravity conditions. Based on the current knowledge, gas exchange, metabolism and photosynthesis seem to work properly in space when plants are provided with a well stirred atmosphere and grown at moderate light levels. Effects of space radiation on plant metabolism, however, have not been studied so far in orbit. Ground experiments indicated that shielding from the Earth's magnetic field alters plant gas exchange and metabolism, though more studies are required to understand the effects of magnetic fields on plant growth. It has been shown that plants can grow and reproduce in the space environment and adapt to space conditions. However, the influences of the space environment may result in a long term effect over multiple generations or have an impact on the plants' role as food and part of a regenerative life support system. Suggestions for future plant biology research in space are discussed.

  13. Gaps in knowledge and data driving uncertainty in models of photosynthesis.

    Science.gov (United States)

    Dietze, Michael C

    2014-02-01

    Regional and global models of the terrestrial biosphere depend critically on models of photosynthesis when predicting impacts of global change. This paper focuses on identifying the primary data needs of these models, what scales drive uncertainty, and how to improve measurements. Overall, there is a need for an open, cross-discipline database on leaf-level photosynthesis in general, and response curves in particular. The parameters in photosynthetic models are not constant through time, space, or canopy position but there is a need for a better understanding of whether relationships with drivers, such as leaf nitrogen, are themselves scale dependent. Across time scales, as ecosystem models become more sophisticated in their representations of succession they needs to be able to approximate sunfleck responses to capture understory growth and survival. At both high and low latitudes, photosynthetic data are inadequate in general and there is a particular need to better understand thermal acclimation. Simple models of acclimation suggest that shifts in optimal temperature are important. However, there is little advantage to synoptic-scale responses and circadian rhythms may be more beneficial than acclimation over shorter timescales. At high latitudes, there is a need for a better understanding of low-temperature photosynthetic limits, while at low latitudes the need is for a better understanding of phosphorus limitations on photosynthesis. In terms of sampling, measuring multivariate photosynthetic response surfaces are potentially more efficient and more accurate than traditional univariate response curves. Finally, there is a need for greater community involvement in model validation and model-data synthesis.

  14. 2009 Photosynthesis to be held June 28 - July 3, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Doug Bruce

    2009-07-06

    The capture of solar energy by photosynthesis has had a most profound influence on the development and sustenance of life on earth. It is the engine that has driven the proliferation of life and, as the source of both energy and oxygen, has had a major hand in shaping the forms that life has taken. Both ancient and present day photosynthetic carbon fixation is intimately tied to issues of immediate human concern, global energy and global warming. Decreasing our reliance on fossil fuels by tapping photosynthesis in a more direct way is an attractive goal for sustainable energy. Meeting this challenge means understanding photosynthetic energy conversion at a molecular level, a task requiring perspectives ranging through all disciplines of science. Researchers in photosynthesis have a strong history of working across conventional boundaries and engaging in multidisciplinary collaborations. The Gordon conference in photosynthesis has been a key focal point for the dissemination of new results and the establishment of powerful research collaborations. In this spirit the 2009 Gordon conference on biophysical aspects of photosynthesis will bring together top international researchers from diverse and complementary disciplines, all working towards understanding how photosynthesis converts light into the stable chemical energy that powers so much of our world. Focal points for talks and discussions will include: (1) Watersplitting, structure and function of the oxygen evolving complex; (2) Antenna, the diversity, optimization and regulation of energy capture and transfer; (3) Reaction center structure and function, including functional roles for the protein; (4) Electron transport, proton transport and energy coupling; (5) Photoprotection mechanisms, including secondary electron transport pathways; (6) Biofuels, hydrogen production; and (7) Artificial photosynthesis and solar energy conversion strategies. The 2009 conference will have a close eye on practical applications

  15. Epigenetic Impact on EBV Associated B-Cell Lymphomagenesis

    Directory of Open Access Journals (Sweden)

    Shatadru Ghosh Roy

    2016-11-01

    Full Text Available Epigenetic modifications leading to either transcriptional repression or activation, play an indispensable role in the development of human cancers. Epidemiological study revealed that approximately 20% of all human cancers are associated with tumor viruses. Epstein-Barr virus (EBV, the first human tumor virus, demonstrates frequent epigenetic alterations on both viral and host genomes in associated cancers—both of epithelial and lymphoid origin. The cell type-dependent different EBV latent gene expression patterns appear to be determined by the cellular epigenetic machinery and similarly viral oncoproteins recruit epigenetic regulators in order to deregulate the cellular gene expression profile resulting in several human cancers. This review elucidates the epigenetic consequences of EBV–host interactions during development of multiple EBV-induced B-cell lymphomas, which may lead to the discovery of novel therapeutic interventions against EBV-associated B-cell lymphomas by alteration of reversible patho-epigenetic markings.

  16. Effects of exogenous nitric oxide on photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Procházková, Dagmar; Haisel, Daniel; Wilhelmová, Naděžda; Pavlíková, D.; Száková, J.

    2013-01-01

    Roč. 51, č. 4 (2013), s. 483-489 ISSN 0300-3604 R&D Projects: GA ČR(CZ) GAP501/11/1239 Institutional research plan: CEZ:AV0Z50380511 Keywords : chlorophyll fluorescence * chloroplast * nitration Subject RIV: EF - Botanics Impact factor: 1.007, year: 2013

  17. Effect of Postmining Waters on Cyanobacterial Photosynthesis

    Czech Academy of Sciences Publication Activity Database

    Medová, Hana; Přikryl, I.; Zapomělová, Eliška; Pechar, L.

    2015-01-01

    Roč. 87, č. 2 (2015), s. 180-190 ISSN 1061-4303 R&D Projects: GA MZe QH82078 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : acid ic waters * postmining area * Dolichospermum sp Subject RIV: EE - Microbiology, Virology Impact factor: 0.659, year: 2015

  18. Bacterial anoxygenic photosynthesis on plant leaf surfaces

    Czech Academy of Sciences Publication Activity Database

    Atamna-Ismaeel, N.; Finkel, O.; Glaser, F.; von Mering, Ch.; Vorholt, J. A.; Koblížek, Michal; Belkin, S.; Béja, O.

    2012-01-01

    Roč. 4, č. 2 (2012), s. 209-216 ISSN 1758-2229 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0110; GA ČR GAP501/10/0221 Institutional support: RVO:61388971 Keywords : phyllosphere * plant * phyllosphere Subject RIV: EE - Microbiology, Virology Impact factor: 2.708, year: 2012

  19. Tumor-educated myeloid cells: impact the micro- and macroenvironment.

    Science.gov (United States)

    Becker, Jürgen C

    2014-03-01

    Immune escape mechanisms of cancers include some of the mechanisms normally used for immune homeostasis, particular those preventing autoimmunity; one of these is the polarisation of myeloid cells. Thereby, tumors, i.e. the cancerous and stromal cells, also condition distant sites like spleen and bone marrow via soluble factors and membrane vesicles such as exosomes in order to create a tumor-educated macroenvironment. Albeit these mechanisms are currently in the focus of (tumor-)immunologic research, the first evidence had been published almost 40 years ago. One of these early reports will be discussed here. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. The drug ornidazole inhibits photosynthesis in a different mechanism described for protozoa and anaerobic bacteria.

    Science.gov (United States)

    Marcus, Yehouda; Tal, Noam; Ronen, Mordechai; Carmieli, Raanan; Gurevitz, Michael

    2016-12-01

    Ornidazole of the 5-nitroimidazole drug family is used to treat protozoan and anaerobic bacterial infections via a mechanism that involves preactivation by reduction of the nitro group, and production of toxic derivatives and radicals. Metronidazole, another drug family member, has been suggested to affect photosynthesis by draining electrons from the electron carrier ferredoxin, thus inhibiting NADP + reduction and stimulating radical and peroxide production. Here we show, however, that ornidazole inhibits photosynthesis via a different mechanism. While having a minute effect on the photosynthetic electron transport and oxygen photoreduction, ornidazole hinders the activity of two Calvin cycle enzymes, triose-phosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Modeling of ornidazole's interaction with ferredoxin of the protozoan Trichomonas suggests efficient electron tunneling from the iron-sulfur cluster to the nitro group of the drug. A similar docking site of ornidazole at the plant-type ferredoxin does not exist, and the best simulated alternative does not support such efficient tunneling. Notably, TPI was inhibited by ornidazole in the dark or when electron transport was blocked by dichloromethyl diphenylurea, indicating that this inhibition was unrelated to the electron transport machinery. Although TPI and GAPDH isoenzymes are involved in glycolysis and gluconeogenesis, ornidazole's effect on respiration of photoautotrophs is moderate, thus raising its value as an efficient inhibitor of photosynthesis. The scarcity of Calvin cycle inhibitors capable of penetrating cell membranes emphasizes on the value of ornidazole for studying the regulation of this cycle. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Exogenous 5-Aminolevulenic Acid Promotes Antioxidative Defence System, Photosynthesis and Growth in Soybean against Cold Stress

    Directory of Open Access Journals (Sweden)

    Elahe MANAFI

    2015-12-01

    Full Text Available In the present study, the possibility of enhancing cold stress tolerance of young soybean plants (Glycine max [L.] Merr by exogenous application of 5-aminolevulinic acid (ALA was investigated. ALA was applied at various concentrations (0, 0.3, 0.6 and 0.9 mM by seed priming and foliar application method. After ALA treatment, the plants were subjected to cold stress at 10 ± 0.5 °C for 72 h. Cold stress significantly decreased plant growth, relative water content, chlorophyll, photosynthesis and stomatal conductivity, while it increased electrolyte leakage and proline accumulation. ALA at low concentrations (0.3 mM protected plants against cold stress, enhancing plant height, shoot fresh and dry weight, chlorophyll content, photosynthesis, stomatal conductivity as well as relative water content. Increase of electrolyte leakage was also prevented by 0.6 mM ALA. ALA also enhanced superoxide dismutase and catalase activities at 0.6 mM concentration especially under cold stress conditions. Proline increased with increasing in ALA concentration under both temperature conditions. In most cases, application of ALA by spraying method was better than seed priming method. Results showed that ALA, which is considered as an endogenous plant growth regulator, can be used effectively to protect soybean plants from the damaging effects of cold stress, by enhancing the activity of antioxidative enzymes, protecting cell membrane against reactive oxygen species and finally by promoting chlorophyll synthesis, leading to more intense photosynthesis and more carbon fixation, without any adverse effect on the plant growth.

  2. Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes.

    Science.gov (United States)

    Muller, Onno; Cohu, Christopher M; Stewart, Jared J; Protheroe, Johanna A; Demmig-Adams, Barbara; Adams, William W

    2014-09-01

    Foliar vascular anatomy and photosynthesis were evaluated for a number of summer annual species that either load sugars into the phloem via a symplastic route (Cucumis sativus L. cv. Straight Eight; Cucurbita pepo L. cv. Italian Zucchini Romanesco; Citrullus lanatus L. cv. Faerie Hybrid; Cucurbita pepo L. cv. Autumn Gold) or an apoplastic route (Nicotiana tabacum L.; Solanum lycopersicum L. cv. Brandywine; Gossypium hirsutum L.; Helianthus annuus L. cv. Soraya), as well as winter annual apoplastic loaders (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col-0, Swedish and Italian ecotypes). For all summer annuals, minor vein cross-sectional xylem area and tracheid number as well as the ratio of phloem loading cells to phloem sieve elements, each when normalized for foliar vein density (VD), was correlated with photosynthesis. These links presumably reflect (1) the xylem's role in providing water to meet foliar transpirational demand supporting photosynthesis and (2) the importance of the driving force of phloem loading as well as the cross-sectional area for phloem sap flux to match foliar photosynthate production. While photosynthesis correlated with the product of VD and cross-sectional phloem cell area among symplastic loaders, photosynthesis correlated with the product of VD and phloem cell number per vein among summer annual apoplastic loaders. Phloem cell size has thus apparently been a target of selection among symplastic loaders (where loading depends on enzyme concentration within loading cells) versus phloem cell number among apoplastic loaders (where loading depends on membrane transporter numbers). © 2014 Scandinavian Plant Physiology Society.

  3. Impurities in silicon and their impact on solar cell performance

    NARCIS (Netherlands)

    Coletti, Gianluca

    2011-01-01

    Photovoltaic conversion of solar energy is a rapidly growing technology. More than 80% of global solar cell production is currently based on silicon. The aim of this thesis is to understand the complex relation between impurity content of silicon starting material (“feedstock”) and the resulting

  4. Plasmonic silicon solar cells : Impact of material quality and geometry

    NARCIS (Netherlands)

    Pahud, C.; Isabella, O.; Naqavi, A.; Haug, F.J.; Zeman, M.; Herzig, H.P.; Ballif, C.

    2013-01-01

    We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We

  5. Impacts of the IBM Cell Processor to Support Climate Models

    Science.gov (United States)

    Zhou, Shujia; Duffy, Daniel; Clune, Tom; Suarez, Max; Williams, Samuel; Halem, Milt

    2008-01-01

    NASA is interested in the performance and cost benefits for adapting its applications to the IBM Cell processor. However, its 256KB local memory per SPE and the new communication mechanism, make it very challenging to port an application. We selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics (approximately 50% computational time), (2) has a high computational load relative to transferring data from and to main memory, (3) performs independent calculations across multiple columns. We converted the baseline code (single-precision, Fortran) to C and ported it with manually SIMDizing 4 independent columns and found that a Cell with 8 SPEs can process 2274 columns per second. Compared with the baseline results, the Cell is approximately 5.2X, approximately 8.2X, approximately 15.1X faster than a core on Intel Woodcrest, Dempsey, and Itanium2, respectively. We believe this dramatic performance improvement makes a hybrid cluster with Cell and traditional nodes competitive.

  6. Cancer stem cell hypotheses: Impact on modern molecular

    Indian Academy of Sciences (India)

    basis for the so-called cancer stem cell (CSC) hypotheses. The first exact proof of CSC ... or less equal ability for tumour regeneration and repopulation. (Nowell 1976 .... Also, there are reports that the 'stemness' (stem-like properties) of brain.

  7. Impact of cell shape on cell migration behavior on elastic substrate

    International Nuclear Information System (INIS)

    Zhong Yuan; Ji Baohua

    2013-01-01

    Cell shape is known to have profound effects on a number of cell behaviors. In this paper we have studied its role in cell migration through modeling the effect of cell shape on the cell traction force distribution, the traction force dependent stability of cell adhesion and the matrix rigidity dependent traction force formation. To quantify the driving force of cell migration, a new parameter called the motility factor, that takes account of the effect of cell shape, matrix rigidity and dynamic stability of cell adhesion, is proposed. We showed that the motility factor depends on the matrix rigidity in a biphasic manner, which is consistent with the experimental observations of the biphasic dependence of cell migration speed on the matrix rigidity. We showed that the cell shape plays a pivotal role in the cell migration behavior by regulating the traction force at the cell front and rear. The larger the cell polarity, the larger the motility factor is. The keratocyte-like shape has a larger motility factor than the fibroblast-like shape, which explains why keratocyte has a much higher migration speed. The motility factor might be an appropriate parameter for a quantitative description of the driving force of cell migration. (paper)

  8. Afterglow of chlorophyll in vivo and photosynthesis

    NARCIS (Netherlands)

    Goedheer, J.C.

    1962-01-01

    Two pigment systems are involved in the afterglow of chlorophyll a-containing cells. Absorption in only one of these systems (promoting or “p” system) is effective in producing luminescence. If light is absorbed simultaneously by the other (quenching or “q” system), a decrease in luminescence

  9. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction.

    Science.gov (United States)

    Andreeva, Elena; Andrianova, Irina; Rylova, Julia; Gornostaeva, Aleksandra; Bobyleva, Polina; Buravkova, Ludmila

    2015-08-01

    The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Invitation to the 17th international congress on photosynthesis research in 2016 : photosynthesis in a changing world

    NARCIS (Netherlands)

    van Amerongen, Herbert; Croce, Roberta

    2016-01-01

    The 17th International Congress on Photosynthesis will be held from August 7 to 12, 2016 in Maastricht, The Netherlands. The congress will include an opening reception, 15 plenary lectures, 28 scientific symposia, many poster sessions, displays by scientific companies, excursions, congress dinner,

  11. Exploring Relationships between Canopy Architecture, Light Distribution, and Photosynthesis in Contrasting Rice Genotypes Using 3D Canopy Reconstruction

    Directory of Open Access Journals (Sweden)

    Alexandra J. Burgess

    2017-05-01

    Full Text Available The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties—four parental founders of a multi-parent advanced generation intercross (MAGIC population plus a high yielding Philippine variety (IR64—was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax, especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.

  12. Intrinsic properties of tumour cells have a key impact on the bystander effect mediated by genetically engineered mesenchymal stromal cells

    Czech Academy of Sciences Publication Activity Database

    Matusková, M.; Baranovicová, L.; Kozovská, Z.; Duriniková, E.; Pastoráková, A.; Hunaková, L.; Waczulíková, I.; Nencka, Radim; Kučerová, L.

    2012-01-01

    Roč. 14, č. 12 (2012), s. 776-787 ISSN 1099-498X Institutional research plan: CEZ:AV0Z40550506 Keywords : bystander effect * cancer gene therapy * mesenchymal stromal cells Subject RIV: CC - Organic Chemistry Impact factor: 2.163, year: 2012

  13. Impact of cell therapy in carpal tunnel syndrome

    International Nuclear Information System (INIS)

    Mena Perez, Rafael; Fernandez Delgado, Norma; Garmendia Garcia, Fermin

    2012-01-01

    We present a small series of patients with carpal tunnel syndrome who underwent implantation of autologous mononuclear cells from peripheral blood to assess the feasibility and safety of these in the sixth month after that procedure. We included 6 patients treated at the Department of Orthopedic in The Enrique Cabrera General Teaching Hospital. The improvement in symptoms began one week after the procedure. Pain and cramping were the first to disappear, the improvement increased one month after and it was maintained until the sixth month of evaluation. The clinical-neurological manifestations improved in 80.3 % of patients, as well as in the study of motor and sensory conduction. There was no reaction to the implant. The improvement of the clinical manifestations and conduction studies support the mediation of stem cells in inflammatory action, revascularization and remyelination of the median nerve, which is expressed in the positive responses obtained

  14. Teaching Photosynthesis in a Compulsory School Context. Students’ Reasoning, Understanding and Interactions.

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2011-02-01

    Full Text Available According to previous research, students show difficulties in understanding photosynthesis and respiration, and basic ecological concepts like energy flow in ecosystems. There are successful teaching units accomplished in this area and many of them can be described as inquiry-based teaching. One definition of inquiry-based teaching is that it involves everything from finding problems, investigating them, debating with peers and trying to explain and give solutions. Accordingly students need to be confronted with challenging questions and empirical data to reason about and teachers need to implement student-generated inquiry discussion since students often stay silent and do not express their thoughts during science lessons. This thesis will focus on young peoples’ understanding of the functioning of plants, students’ participation during biology lessons, and how biology teaching is accomplished in primary and secondary school.Two school classroom projects focusing on teaching about plants and ecology are described. Four teachers and their 4th, 5th and 6th grade classes plus two science teachers and their three 8th grade classes collaborated. Photosynthesis and respiration were made concrete by using tasks where plants, plant cells, germs, seeds and the gas exchange were used. The aim was to listen to students’ reasoning in both teaching and interview situations. Learning outcome, as described by students’ reasoning in the classrooms and in individual interviews but also by their test results, is especially focused. Student-student and student-teacher interactions have been analysed with an ethnographic approach in the classroom context.The plant tasks encouraged the students’ in primary school to develop scientific reasoning and the interviews confirmed that the students had learned about photosynthesis. The ecology teaching in secondary school showed a substantial understanding confirmed both by students’ oral and written

  15. Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation

    Science.gov (United States)

    2013-01-01

    Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease. PMID:23899561

  16. Impacts of tomato extract on the mice fibrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Shirzad Hedayatollah

    2013-01-01

    Full Text Available Introduction: The anticancer effect of tomato lycopene has been approved in some cancers. This study was aimed to determine the prohibitive and therapeutic effects of tomato extract on the growth of fibrosarcoma in mice. Materials and Methods: In this experimental study 3 groups of 10 male Balb/c mice were injected subcutaneously with 5×105 WEHI-164 tumor cells in the chest area. Prevention group was fed tomato extract (5 mg for a 4 week period (from 2 weeks before tumor cell injection up to 2 weeks after injection and the treatment group was fed simultaneously with tumor cell injection up to two weeks after injection daily by an oral gastric tube. The tumors areas were measured and recorded on days 10, 12, 14, 16, 18, 20 and 22. The data were analyzed using Kruskal-Wallis and Mann-Whitney tests. Results: The results showed that the tumor areas in control group were significantly more after the intervention than two groups of treatment and prevention (p<0.05. The difference was not statistically significant between the two groups of prevention and treatment. Conclusion: With emphasize on antioxidant of tomato, it seems that tomato extract has an important role in prevention and control fibrosarcoma growth.

  17. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop?

    Science.gov (United States)

    Wangpraseurt, Daniel; Holm, Jacob B; Larkum, Anthony W D; Pernice, Mathieu; Ralph, Peter J; Suggett, David J; Kühl, Michael

    2017-01-01

    Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O 2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.

  18. Excess Diffuse Light Absorption in Upper Mesophyll Limits CO2 Drawdown and Depresses Photosynthesis.

    Science.gov (United States)

    Earles, J Mason; Théroux-Rancourt, Guillaume; Gilbert, Matthew E; McElrone, Andrew J; Brodersen, Craig R

    2017-06-01

    In agricultural and natural systems, diffuse light can enhance plant primary productivity due to deeper penetration into and greater irradiance of the entire canopy. However, for individual sun-grown leaves from three species, photosynthesis is actually less efficient under diffuse compared with direct light. Despite its potential impact on canopy-level productivity, the mechanism for this leaf-level diffuse light photosynthetic depression effect is unknown. Here, we investigate if the spatial distribution of light absorption relative to electron transport capacity in sun- and shade-grown sunflower ( Helianthus annuus ) leaves underlies its previously observed diffuse light photosynthetic depression. Using a new one-dimensional porous medium finite element gas-exchange model parameterized with light absorption profiles, we found that weaker penetration of diffuse versus direct light into the mesophyll of sun-grown sunflower leaves led to a more heterogenous saturation of electron transport capacity and lowered its CO 2 concentration drawdown capacity in the intercellular airspace and chloroplast stroma. This decoupling of light availability from photosynthetic capacity under diffuse light is sufficient to generate an 11% decline in photosynthesis in sun-grown but not shade-grown leaves, primarily because thin shade-grown leaves similarly distribute diffuse and direct light throughout the mesophyll. Finally, we illustrate how diffuse light photosynthetic depression could overcome enhancement in canopies with low light extinction coefficients and/or leaf area, pointing toward a novel direction for future research. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis.

    Science.gov (United States)

    Dong, Pan; Xiong, Fangjie; Que, Yumei; Wang, Kai; Yu, Lihua; Li, Zhengguo; Ren, Maozhi

    2015-01-01

    Target of rapamycin (TOR) acts as a master regulator to control cell growth by integrating nutrient, energy, and growth factors in all eukaryotic species. TOR plays an evolutionarily conserved role in regulating the transcription of genes associated with anabolic and catabolic processes in Arabidopsis, but little is known about the functions of TOR in photosynthesis and phytohormone signaling, which are unique features of plants. In this study, AZD8055 (AZD) was screened as the strongest active-site TOR inhibitor (asTORi) in Arabidopsis compared with TORIN1 and KU63794 (KU). Gene expression profiles were evaluated using RNA-seq after treating Arabidopsis seedlings with AZD. More than three-fold differentially expressed genes (DEGs) were identified in AZD-treated plants relative to rapamycin-treated plants in previous studies. Most of the DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in cell wall elongation, ribosome biogenesis, and cell autophagy were common to both AZD- and rapamycin-treated samples, but AZD displayed much broader and more efficient inhibition of TOR compared with rapamycin. Importantly, the suppression of TOR by AZD resulted in remodeling of the expression profile of the genes associated with photosynthesis and various phytohormones, indicating that TOR plays a crucial role in modulating photosynthesis and phytohormone signaling in Arabidopsis. These newly identified DEGs expand the understanding of TOR signaling in plants. This study elucidates the novel functions of TOR in photosynthesis and phytohormone signaling and provides a platform to study the downstream targets of TOR in Arabidopsis.

  20. Structure-based optics of centric diatom frustules: modulation of the in vivo light field for efficient diatom photosynthesis.

    Science.gov (United States)

    Goessling, Johannes W; Su, Yanyan; Cartaxana, Paulo; Maibohm, Christian; Rickelt, Lars F; Trampe, Erik C L; Walby, Sandra L; Wangpraseurt, Daniel; Wu, Xia; Ellegaard, Marianne; Kühl, Michael

    2018-07-01

    The optical properties of diatom silicate frustules inspire photonics and nanotechnology research. Whether light interaction with the nano-structure of the frustule also affects diatom photosynthesis has remained unclear due to lack of information on frustule optical properties under more natural conditions. Here we demonstrate that the optical properties of the frustule valves in water affect light harvesting and photosynthesis in live cells of centric diatoms (Coscinodiscus granii). Microscale cellular mapping of photosynthesis around localized spot illumination demonstrated optical coupling of chloroplasts to the valve wall. Photonic structures of the three-layered C. granii valve facilitated light redistribution and efficient photosynthesis in cell regions distant from the directly illuminated area. The different porous structure of the two sides of the valve exhibited photon trapping and forward scattering of blue light enhancing photosynthetic active radiation inside the cell. Photonic structures of diatom frustules thus alter the cellular light field with implications on diatom photobiology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Impact of stem cell source on allogeneic stem cell transplantation outcome in hematological malignancies

    Directory of Open Access Journals (Sweden)

    Stamatović Dragana

    2011-01-01

    no significant differences in the incidence of aGvHD and cGvHD between the two groups. The patients who underwent PBSCT had more frequently extensive cGvHD in comparison with the BMT group (29.1% vs 11.29%, p < 0.05. SC source (SCS had no significant influence on the TRM (21.62% vs 23.8%, p = 0.64 and the incidence of relapses (21.6% vs 29.7%, p = 0.32. Finally, the patients treated by BMT had a significantly better OS (logrank 2.33, p < 0.05. Conclusion. SCs harvesting from PB resulted in improved cell yield, faster engraftment, as well as in a decrease of immediate transplantation related complications with a reduced treatment cost. Allogeneic PBSCT were associated with more frequent extensive cGvHD, while the influence of SCS in TRM and relapses was not observed. Finally, the longterm OS was better in the patients treated by BMT. To verify impact of SC source on transplantation (PBSCT vs BMT overall efficacy, more larger randomized clinical studies are needed.

  2. Impact of government incentives in the profitability of green energy production using fuel cells in Colombia.

    Directory of Open Access Journals (Sweden)

    Bernardo A. Potosí-Guerrero

    2016-07-01

    Full Text Available Fuel cells are a technological alternative to produce green energy, however, high costs make fuel cell a non-profitable option. This paper analyses the impact of the Colombian government incentives in the profitability of fuel cells. The analysis is based on the total operation cost of the fuel cell in three representative applications: residential, office and building elevator. The economic viability of fuel cell generation in those cases is contrasted with classical solutions like diesel generators and standard grid to provide a reference framework. Such results enable to evaluate the effectiveness of the Colombian government incentives in promoting the use of fuel cells over other less environmental-friendly options such as diesel generators. Finally, new incentives are proposed by subsidies offered by other countries with higher fuel cell penetration into their electric market. All the analyses are supported in simulations performed with a mathematical model parameterized using the characteristics of commercial devices.

  3. Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes.

    Science.gov (United States)

    Celik, Ilke; Mason, Brooke E; Phillips, Adam B; Heben, Michael J; Apul, Defne

    2017-04-18

    An ex-ante life cycle inventory was developed for single walled carbon nanotube (SWCNT) PV cells, including a laboratory-made 1% efficient device and an aspirational 28% efficient four-cell tandem device. The environmental impact of unit energy generation from the mono-Si PV technology was used as a reference point. Compared to monocrystalline Si (mono-Si), the environmental impacts from 1% SWCNT was ∼18 times higher due mainly to the short lifetime of three years. However, even with the same short lifetime, the 28% cell had lower environmental impacts than mono-Si. The effects of lifetime and efficiency on the environmental impacts were further examined. This analysis showed that if the SWCNT device efficiency had the same value as the best efficiency of the material under comparison, to match the total normalized impacts of the mono- and poly-Si, CIGS, CdTe, and a-Si devices, the SWCNT devices would need a lifetime of 2.8, 3.5, 5.3, 5.1, and 10.8 years, respectively. It was also found that if the SWCNT PV has an efficiency of 4.5% or higher, its energy payback time would be lower than other existing and emerging PV technologies. The major impacts of SWCNT PV came from the cell's materials synthesis.

  4. Biomaterial-stem cell interactions and their impact on stem cell response

    NARCIS (Netherlands)

    Oziemlak-Schaap, Aneta M.; Kuhn, Philipp T.; van Kooten, Theo G.; van Rijn, Patrick

    2014-01-01

    In this review, current research in the field of biomaterial properties for directing stem cells are discussed and placed in a critical perspective. Regenerative medicine, in which stem cells play a crucial role, has become an interdisciplinary field between cell biology and materials science. New

  5. Culture of human cells in experimental units for spaceflight impacts on their behavior.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Maier, Jeanette Am; Castiglioni, Sara

    2017-05-01

    Because space missions produce pathophysiological alterations such as cardiovascular disorders and bone demineralization which are very common on Earth, biomedical research in space is a frontier that holds important promises not only to counterbalance space-associated disorders in astronauts but also to ameliorate the health of Earth-bound population. Experiments in space are complex to design. Cells must be cultured in closed cell culture systems (from now defined experimental units (EUs)), which are biocompatible, functional, safe to minimize any potential hazard to the crew, and with a high degree of automation. Therefore, to perform experiments in orbit, it is relevant to know how closely culture in the EUs reflects cellular behavior under normal growth conditions. We compared the performances in these units of three different human cell types, which were recently space flown, i.e. bone mesenchymal stem cells, micro- and macrovascular endothelial cells. Endothelial cells are only slightly and transiently affected by culture in the EUs, whereas these devices accelerate mesenchymal stem cell reprogramming toward osteogenic differentiation, in part by increasing the amounts of reactive oxygen species. We conclude that cell culture conditions in the EUs do not exactly mimic what happens in a culture dish and that more efforts are necessary to optimize these devices for biomedical experiments in space. Impact statement Cell cultures represent valuable preclinical models to decipher pathogenic circuitries. This is true also for biomedical research in space. A lot has been learnt about cell adaptation and reaction from the experiments performed on many different cell types flown to space. Obviously, cell culture in space has to meet specific requirements for the safety of the crew and to comply with the unique environmental challenges. For these reasons, specific devices for cell culture in space have been developed. It is important to clarify whether these

  6. Impact of 2-bromopropane on mouse embryonic stem cells and ...

    African Journals Online (AJOL)

    EWOMAZINO

    medium containing various concentrations of 2-BP at 37°C in a CO2 incubator for 24 h. Cells were then washed twice with ice-cold PBS and lysed on ice for 10 min in 400 μl lysis buffer (20 mM Tris-HCl,. pH 7.4, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1 mM benzamidine, 1 mM phenylmethylsulfonyl fluoride, 50 mM NaF, ...

  7. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    Science.gov (United States)

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  8. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  9. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides.

    Science.gov (United States)

    Ensminger, M P; Hess, F D

    1985-05-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1'-dimethyl-4,4'-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity.

  10. Photosynthesis Involvement in the Mechanism of Action of Diphenyl Ether Herbicides 1

    Science.gov (United States)

    Ensminger, Michael P.; Hess, F. Dan

    1985-01-01

    Photosynthesis is not required for the toxicity of diphenyl ether herbicides, nor are chloroplast thylakoids the primary site of diphenyl ether herbicide activity. Isolated spinach (Spinacia oleracea L.) chloroplast fragments produced malonyl dialdehyde, indicating lipid peroxidation, when paraquat (1,1′-dimethyl-4,4′-bipyridinium ion) or diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were added to the medium, but no malonyl dialdehyde was produced when chloroplast fragments were treated with the methyl ester of acifluorfen (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid), oxyfluorfen [2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene], or MC15608 (methyl 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-chlorobenzoate). In most cases the toxicity of acifluorfen-methyl, oxyfluorfen, or MC15608 to the unicellular green alga Chlamydomonas eugametos (Moewus) did not decrease after simultaneous treatment with diuron. However, diuron significantly reduced cell death after paraquat treatment at all but the highest paraquat concentration tested (0.1 millimolar). These data indicate electron transport of photosynthesis is not serving the same function for diphenyl ether herbicides as for paraquat. Additional evidence for differential action of paraquat was obtained from the superoxide scavenger copper penicillamine (copper complex of 2-amino-3-mercapto-3-methylbutanoic acid). Copper penicillamine eliminated paraquat toxicity in cucumber (Cucumis sativus L.) cotyledons but did not reduce diphenyl ether herbicide toxicity. PMID:16664206

  11. Plasmonic silicon solar cells: impact of material quality and geometry.

    Science.gov (United States)

    Pahud, Celine; Isabella, Olindo; Naqavi, Ali; Haug, Franz-Josef; Zeman, Miro; Herzig, Hans Peter; Ballif, Christophe

    2013-09-09

    We study n-i-p amorphous silicon solar cells with light-scattering nanoparticles in the back reflector. In one configuration, the particles are fully embedded in the zinc oxide buffer layer; In a second configuration, the particles are placed between the buffer layer and the flat back electrode. We use stencil lithography to produce the same periodic arrangement of the particles and we use the same solar cell structure on top, thus establishing a fair comparison between a novel plasmonic concept and its more traditional counterpart. Both approaches show strong resonances around 700 nm in the external quantum efficiency the position and intensity of which vary strongly with the nanoparticle shape. Moreover, disagreement between simulations and our experimental results suggests that the dielectric data of bulk silver do not correctly represent the reality. A better fit is obtained by introducing a porous interfacial layer between the silver and zinc oxide. Without the interfacial layer, e.g. by improved processing of the nanoparticles, our simulations show that the nanoparticles concept could outperform traditional back reflectors.

  12. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  13. Impact of New Camera Technologies on Discoveries in Cell Biology.

    Science.gov (United States)

    Stuurman, Nico; Vale, Ronald D

    2016-08-01

    New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy. © 2016 Marine Biological Laboratory.

  14. Investigation of Plant Cell Wall Properties: A Study of Contributions from the Nanoscale to the Macroscale Impacting Cell Wall Recalcitrance

    Science.gov (United States)

    Crowe, Jacob Dillon

    Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study

  15. Mössbauer spectroscopy in studies of photosynthesis

    Science.gov (United States)

    Burda, Květoslava

    2008-02-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the “heart” of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Mössbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  16. Role of seagrass photosynthesis in root aerobic processes.

    Science.gov (United States)

    Smith, R D; Dennison, W C; Alberte, R S

    1984-04-01

    The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.

  17. Impact of HPV infection on oral squamous cell carcinoma.

    Science.gov (United States)

    Götz, Carolin; Drecoll, Enken; Straub, Melanie; Bissinger, Oliver; Wolff, Klaus-Dietrich; Kolk, Andreas

    2016-11-22

    Head and neck squamous cell carcinomas (HNSCC) are often divided by their aetiology. Noxae associated collectives are compared with the human papilloma virus (HPV)-associated group, whereas different localisations of oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas are mostly discussed as one single group. Our aim was to show that classification by aetiology is not appropriate for OSCC. HPV DNA was detected by PCR in 7 (3.47%) patients, and we identified 12 (5.94%) positive (+) cases by p16INK4a immunostaining. Only 4 (1.98%) of the p16INK4a+ cases were + for HPV using PCR. Our homogenous collective of OSCC allowed us to compare HPV+ and HPV negative (-) patients without creating bias for tumour localisation, age, gender or tumour stage. After testing OSCC samples for HPV positivity, we compared the results of two commonly used HPV detection methods, p16INK4a immunostaining and HPV DNA-related PCR, on 202 OSCC patients. HPV subtypes were determined with an HPV LCD Array Kit. Clinicopathological features of the patients were analysed, and the disease specific survival rates (DSS) for HPV+ and HPV- patients were obtained. p16INK4a immunostaining is a not a reliable HPV detection method for OSCC. Positive p16INK4a immunostaining did not agree with + results from PCR of HPV DNA. Furthermore, the influence of HPV-related oncogenic transformation in OSCC is overestimated. The significance of HPV infection remains clinically unclear, and its influence on survival rates is not relevant to OSCC cases.

  18. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  19. [Research progress on photosynthesis regulating and controlling soil respiration].

    Science.gov (United States)

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  20. The Path of Carbon in Photosynthesis XV. Ribulose and Sedoheptulose

    Science.gov (United States)

    Benson, A. A.; Bassham, J. A.; Calvin, M.; Hall, A. G.; Hirsch, H.; Kawaguchi, S.; Lynch, V.; Tolbert, N. E.

    1952-01-01

    The intermediates of carbon dioxide reduction by plants include phosphorylated derivatives of hydroxy acids and sugars. Their identification became possible when the use of labeled carbon dioxide permitted discrimination between the earliest products and the many other components of photosynthetic tissues. A number of compounds were identified by virtue of the chemical and physical properties of the radioactive compounds in tracer amounts and by direct comparison of these properties with those of suspected known metabolic intermediates. It became apparent that several labeled compounds found in short exposures to radioactive carbon dioxide were not substances previously identified as metabolic intermediates. Two phosphate esters in particular were observed in the products of the first few seconds of steady-state photosynthesis by all the photosynthetic microorganisms and higher plants examined in this laboratory. These esters have been isolated by paper chromatography in tracer quantities and enzymatically hydrolyzed to give two sugars, ribulose and sedoheptulose. This paper contains a description of the chemical identification of these sugars and some observations and suggestions regarding the function of their esters. The general importance of these compounds in photosynthesis was summarized before their identification. The products of photosynthesis with C{sup 14}O{sub 2} by each plant included phosphate esters of the same two then unknown compounds in addition to those of the expected glucose, fructose, dihydroxyacetone and glyceric acid. As the time of steady-state photosynthesis in C{sup 14}O{sub 2} decreased, the fractions of total fixed radiocarbon in the esters of the two unidentified compounds increased.

  1. Understanding of photosynthesis among pupils of technical secondary schools

    OpenAIRE

    Pavić, Petra

    2014-01-01

    The goal of our research was to examine the knowledge on photosynthesis of the students of the Secondary Technical schools, and their attitude towards it, and whether they have misconceptions about it. The research was conducted on a sample of 466 students in Vegova Secondary Technical and Grammar School of Electrical Engineering and Computer Science in Ljubljana in the first, second and third year of electrical engineering and computer science programme. The test contained 27 closed-ended qu...

  2. Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier

    Science.gov (United States)

    Furman, Jeffrey L.; Murray, Fiona; Stern, Scott

    2012-01-01

    This paper articulates a citation-based approach to science policy evaluation and employs that approach to investigate the impact of the United States' 2001 policy regarding the federal funding of human embryonic stem cell (hESC) research. We evaluate the impact of the policy on the level of U.S. hESC research, the U.S. position at the knowledge…

  3. Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells

    Directory of Open Access Journals (Sweden)

    Subhash Chander

    2015-11-01

    Full Text Available This paper presents a study on impact of temperature on the performance of series and parallel connected mono-crystalline silicon (mono-Si solar cell employing solar simulator. The experiment was carried out at constant light intensity 550 W/m2with cell temperature in the range 25–60 oC for single, series and parallel connected mono-Si solar cells. The performance parameters like open circuit voltage, maximum power, fill factor and efficiency are found to decrease with cell temperature while the short circuit current is observed to increase. The experimental results reveal that silicon solar cells connected in series and parallel combinations follow the Kirchhoff’s laws and the temperature has a significant effect on the performance parameters of solar cell.

  4. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans.

    Science.gov (United States)

    Kasalický, Vojtěch; Zeng, Yonghui; Piwosz, Kasia; Šimek, Karel; Kratochvilová, Hana; Koblížek, Michal

    2018-01-01

    The genus Limnohabitans ( Comamonadaceae , Betaproteobacteria ) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5 T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization. IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans , indicating that they may have a novel role in freshwater habitats. Copyright © 2017 American Society for Microbiology.

  5. PHOTOSYNTHESIS AT THE FOREFRONT OF A SUSTAINABLE LIFE

    Directory of Open Access Journals (Sweden)

    Paul J.D. Janssen

    2014-06-01

    Full Text Available The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.

  6. Evolution of the Z-scheme of photosynthesis: a perspective.

    Science.gov (United States)

    Govindjee; Shevela, Dmitriy; Björn, Lars Olof

    2017-09-01

    The concept of the Z-scheme of oxygenic photosynthesis is in all the textbooks. However, its evolution is not. We focus here mainly on some of the history of its biophysical aspects. We have arbitrarily divided here the 1941-2016 period into three sub-periods: (a) Origin of the concept of two light reactions: first hinted at, in 1941, by James Franck and Karl Herzfeld; described and explained, in 1945, by Eugene Rabinowitch; and a clear hypothesis, given in 1956 by Rabinowitch, of the then available cytochrome experiments: one light oxidizing it and another reducing it; (b) Experimental discovery of the two light reactions and two pigment systems and the Z-scheme of photosynthesis: Robert Emerson's discovery, in 1957, of enhancement in photosynthesis when two light beams (one in the far-red region, and the other of shorter wavelengths) are given together than when given separately; and the 1960 scheme of Robin Hill & Fay Bendall; and (c) Evolution of the many versions of the Z-Scheme: Louis Duysens and Jan Amesz's 1961 experiments on oxidation and reduction of cytochrome f by two different wavelengths of light, followed by the work of many others for more than 50 years.

  7. The social acceptance of artificial photosynthesis: towards a conceptual framework

    Science.gov (United States)

    Sovacool, Benjamin K.; Gross, Allan

    2015-01-01

    Advancements in artificial photosynthesis have the potential to radically transform how societies convert and use energy. Their successful development, however, hinges not only on technical breakthroughs, but also acceptance and adoption by energy users. This article introduces a conceptual framework enabling analysts, planners and even investors to determine environments where artificial photosynthesis may thrive, and those where it may struggle. Drawn from work looking at the barriers and acceptance of solar photovoltaic and wind energy systems, the article proposes that social acceptance has multiple dimensions—socio-political, community and market—that must be met holistically in order for investors and users to embrace new technologies. The article argues that any future market acceptance for artificial photosynthesis will depend upon the prevalence of nine factors, which create conducive environments; the lack of the conditions engenders environments where they will likely be rejected. The conditions are (i) strong institutional capacity; (ii) political commitment; (iii) favourable legal and regulatory frameworks; (iv) competitive installation and/or production costs; (v) mechanisms for information and feedback; (vi) access to financing; (vii) prolific community and/or individual ownership and use; (viii) participatory project siting; and (ix) recognition of externalities or positive public image. PMID:26052424

  8. Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.

    Science.gov (United States)

    Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.

  9. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  10. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  11. An analysis of the impact of cell phone use on depressive symptoms among Japanese elders.

    Science.gov (United States)

    Minagawa, Yuka; Saito, Yasuhiko

    2014-01-01

    There has been increasing interest in the impact of information and communication technologies, such as the computer and Internet, on physical and mental health status, but relatively little is known about the health effects of using cell phones. This study investigates how cell phone usage is associated with levels of depressive symptoms among Japanese men and women aged 65 years and older. We focus on social relationships, particularly intergenerational relationships between older parents and adult children, as a possible mediator in the association of cell phone use with late-life depressive symptoms. We therefore hypothesize that using cell phones contributes to the psychological well-being of older adults primarily through encouraging social relationships. We used 4 waves of data from the Nihon University Japanese Longitudinal Study of Aging (2001-2009) to analyze the impact of cell phone use on depressive symptoms. RESULTS are based on ordinary least squares regression analyses. Although the use of cell phones was related to lower levels of depressive symptoms among elderly Japanese people, controlling for sociodemographic characteristics and physical health conditions wiped out the effects for men. In contrast, the protective effects of using cell phones persisted among women, even net of all controls. Moreover, the impact of using cell phones was not explained by filial relationship measures, suggesting that cell phone use influences the mental health of older women independently of social engagement. Among the many advantages brought about by recent technological developments, cell phones appear to be an important contributor to the psychological well-being of Japanese elders. Researchers and policy makers should prioritize access to new technologies for older adults. © 2014 S. Karger AG, Basel.

  12. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC and organic carbon (DOC concentrations due to ocean acidification (OA and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm and DOC (added as 833 μmol L-1 of glucose on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected

  13. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Science.gov (United States)

    Meyer, Friedrich W; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana

    2016-01-01

    Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future

  14. Clinical Impact of the Immunome in Lymphoid Malignancies: The Role of Myeloid-Derived Suppressor Cells

    Science.gov (United States)

    Vetro, Calogero; Romano, Alessandra; Ancora, Flavia; Coppolino, Francesco; Brundo, Maria V.; Raccuia, Salvatore A.; Puglisi, Fabrizio; Tibullo, Daniele; La Cava, Piera; Giallongo, Cesarina; Parrinello, Nunziatina L.

    2015-01-01

    The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells (MDSCs) have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of MDSCs in the settings of lymphoid malignancies. PMID:26052505

  15. Cell source determines the immunological impact of biomimetic nanoparticles.

    Science.gov (United States)

    Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2016-03-01

    Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. Copyright © 2015. Published by Elsevier Ltd.

  16. Complement Receptor 3 Has Negative Impact on Tumor Surveillance through Suppression of Natural Killer Cell Function

    Directory of Open Access Journals (Sweden)

    Cheng-Fei Liu

    2017-11-01

    Full Text Available Complement receptor 3 (CR3 is expressed abundantly on natural killer (NK cells; however, whether it plays roles in NK cell-dependent tumor surveillance is largely unknown. Here, we show that CR3 is an important negative regulator of NK cell function, which has negative impact on tumor surveillance. Mice deficient in CR3 (CD11b−/− mice exhibited a more activated NK phenotype and had enhanced NK-dependent tumor killing. In a B16-luc melanoma-induced lung tumor growth and metastasis model, mice deficient in CR3 had reduced tumor growth and metastases, compared with WT mice. In addition, adaptive transfer of NK cells lacking CR3 (into NK-deficient mice mediated more efficient suppression of tumor growth and metastases, compared with the transfer of CR3 sufficient NK cells, suggesting that CR3 can impair tumor surveillance through suppression of NK cell function. In vitro analyses showed that engagement of CR3 with iC3b (classical CR3 ligand on NK cells negatively regulated NK cell activity and effector functions (i.e. direct tumor cell killing, antibody-dependent NK-mediated tumor killing. Cell signaling analyses showed that iC3b stimulation caused activation of Src homology 2 domain-containing inositol-5-phosphatase-1 (SHIP-1 and JNK, and suppression of ERK in NK cells, supporting that iC3b mediates negative regulation of NK cell function through its effects on SHIP-1, JNK, and ERK signal transduction pathways. Thus, our findings demonstrate a previously unknown role for CR3 in dysregulation of NK-dependent tumor surveillance and suggest that the iC3b/CR3 signaling is a critical negative regulator of NK cell function and may represent a new target for preserving NK cell function in cancer patients and improving NK cell-based therapy.

  17. Impacts of berberine on the growth, migration and radiosensitivity of breast cancer cells

    International Nuclear Information System (INIS)

    Zhao Chaoqian; Xu Jiaying; Jiao Yang; Hu Xudong; Che Jun; Fan Saijun

    2012-01-01

    Objective: To study the impacts of berberine on the growth, migration and radiosensitivity in human breast cancer cells. Methods: MTT assay was used to evaluate cell growth.In vitro scratch migration assay was used to determine cell migration. Annexin V assay was used to detect cell apoptosis. The distribution of cell cycle was evaluated by flow cytometry assay. Colony formation assay was used to detect the influence of berberine on cell radiosensitivity. Western blot assay was employed to measure protein expression. Results: Berberine inhibited cell growth and migration in two human breast cancer cell lines, MCF-7 and MDA-MB-231, in a dose-and time-dependent manner. Furthermore, berberine resulted in a cell cycle G 0 /G 1 arrest. Compared with control, the early apoptosis in MDA-MB-231 and MCF-7 cells treated with 40 pμmol/L of berberine was as high as 86.6% and 66.6% (t=8.79, 10.32, P<0.01), respectively. Berberine caused a dose-dependent increase in Bax and Caspase-3 protein expressions, but did not change Cyclin D1 protein expression, while suppressed the expressions of Cyclin B1 and Bcl-2 protein. As analyzed with multi-target click model fitting curves, the SER D0 of berberine-treated cells were 1.12 and 1.22 for MDA-MB-231 and MCF-7 cells respectively at the dose D 0 of X-rays. Conclusions: The berberine inhibited the growth and migration of breast cancer cells via apoptosis induction and cell cycle arrest. Moreover, berberine increases cell sensitivity to X-ray irradiation. (authors)

  18. Hypergravity of 10 g Changes Plant Growth, Anatomy, Chloroplast Size, and Photosynthesis in the Moss Physcomitrella patens

    Science.gov (United States)

    Takemura, Kaori; Watanabe, Rina; Kameishi, Ryuji; Sakaguchi, Naoya; Kamachi, Hiroyuki; Kume, Atsushi; Karahara, Ichirou; Hanba, Yuko T.; Fujita, Tomomichi

    2017-12-01

    The photosynthetic and anatomical responses of bryophytes to changes in gravity will provide crucial information for estimating how these plant traits evolved to adapt to changes in gravity in land plant history. We performed long-term hypergravity experiments at 10 g for 4 and 8 weeks using the moss Physcomitrella patens with two centrifuges equipped with lighting systems that enable long-term plant growth under hypergravity with irradiance. The aims of this study are (1) to quantify changes in the anatomy and morphology of P. patens, and (2) to analyze the post-effects of hypergravity on photosynthesis by P. patens in relation to these changes. We measured photosynthesis by P. patens for a population of gametophores (e.g., canopy) in Petri dishes and plant culture boxes. Gametophore numbers increased by 9% for a canopy of P. patens, with 24-27% increases in chloroplast sizes (diameter and thickness) in leaf cells. In a canopy of P. patens, the area-based photosynthesis rate ( A canopy) was increased by 57% at 10 g. The increase observed in A canopy was associated with greater plant numbers and chloroplast sizes, both of which involved enhanced CO2 diffusion from the atmosphere to chloroplasts in the canopies of P. patens. These results suggest that changes in gravity are important environmental stimuli to induce changes in plant growth and photosynthesis by P. patens, in which an alteration in chloroplast size is one of the key traits. We are now planning an ISS experiment to investigate the responses of P. patens to microgravity.

  19. The impact of metabolism on aging and cell size in single yeast cells

    NARCIS (Netherlands)

    Huberts, Daphne

    2015-01-01

    The aim of this thesis was to determine how metabolism affects yeast aging in single yeast cells using a novel microfluidic device. We first review how cells are able to sense nutrients in their environment and then describe the use of the microfluidic dissection platform that greatly improves our

  20. Costly Cell Phones: The Impact of Cell Phone Rings on Academic Performance

    Science.gov (United States)

    End, Christian M.; Worthman, Shaye; Mathews, Mary Bridget; Wetterau, Katharina

    2010-01-01

    College students participated in a study on the "psychology of note taking" during which they took notes on video content and later completed a multiple-choice test on the material. Researchers assigned 71 participants to either the ringing condition (the video was disrupted by a ringing cell phone) or the control condition (no cell phone rings…

  1. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  2. Impact of fluidic agitation on human pluripotent stem cells in stirred suspension culture.

    Science.gov (United States)

    Nampe, Daniel; Joshi, Ronak; Keller, Kevin; Zur Nieden, Nicole I; Tsutsui, Hideaki

    2017-09-01

    The success of human pluripotent stem cells (hPSCs) as a source of future cell therapies hinges, in part, on the availability of a robust and scalable culture system that can readily produce a clinically relevant number of cells and their derivatives. Stirred suspension culture has been identified as one such promising platform due to its ease of use, scalability, and widespread use in the pharmaceutical industry (e.g., CHO cell-based production of therapeutic proteins) among others. However, culture of undifferentiated hPSCs in stirred suspension is a relatively new development within the past several years, and little is known beyond empirically optimized culture parameters. In particular, detailed characterizations of different agitation rates and their influence on the propagation of hPSCs are often not reported in the literature. In the current study, we systematically investigated various agitation rates to characterize their impact on cell yield, viability, and the maintenance of pluripotency. Additionally, we closely examined the distribution of cell aggregates and how the observed culture outcomes are attributed to their size distribution. Overall, our results showed that moderate agitation maximized the propagation of hPSCs to approximately 38-fold over 7 days by keeping the cell aggregates below the critical size, beyond which the cells are impacted by the diffusion limit, while limiting cell death caused by excessive fluidic forces. Furthermore, we observed that fluidic agitation could regulate not only cell aggregation, but also expression of some key signaling proteins in hPSCs. This indicates a new possibility to guide stem cell fate determination by fluidic agitation in stirred suspension cultures. Biotechnol. Bioeng. 2017;114: 2109-2120. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Rising CO2 widens the transpiration-photosynthesis optimality space

    Science.gov (United States)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype

  4. Photosynthesis intensity of poic plants of left bank Ukraine’s Forest–steppe

    Directory of Open Access Journals (Sweden)

    L. D. Orlova

    2010-01-01

    Full Text Available The intensity of photosynthesis is studied in species of 20 families of Magnoliophyta (Angiospermae. It is revealed that in general, dicotyledons have a higher rate in comparison with the monocotyledonous plant by 10.0 %. The average values with limits from 3.6 to 39.3 mg СО2/dm2 per year are given. The studied species are classified by the ability to assimilate СО2. The rate dependence on a biomorph and hygromorph is determined. It is stressed that rhizome species have sufficient and high values of that rate. The dynamics of values during ontogenesis and impact of weather conditions on them are shown.

  5. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  6. Long-term Low Radiation Decreases Leaf Photosynthesis, Photochemical Efficiency and Grain Yield in Winter Wheat

    DEFF Research Database (Denmark)

    Mu, H; Jiang, D; Wollenweber, Bernd

    2010-01-01

    the impact of low radiation on crop growth, photosynthesis and yield. Grain yield losses and leaf area index (LAI) reduction were less than the reduction in solar radiation under both shading treatment in both cultivars. Compared with the control (S0), grain yield only reduced 6.4 % and 9.9 % under 22.......0-22.9 % (S1) and 29.5-49.6 % (S2), which was consistent with the reduction in radiation. The reduction in LAI was partially compensated by increases in the fraction of the top and bottom leaf area to the total leaf area, which facilitated to intercept more solar radiation by the canopy. The decrease......Low radiation reduces wheat grain yield in tree-crop intercropping systems in the major wheat planting area of China. Here, two winter wheat (Triticum aestivum L) cultivars, Yangmai 158 (shading tolerant) and Yangmai 11 (shading sensitive), were shaded from jointing to maturity to evaluate...

  7. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient.

    Science.gov (United States)

    Duan, Zhipeng; Tan, Xiao; Li, Niegui

    2017-10-01

    Ultrasound can inhibit cyanobacterial growth through rupturing cells, but this pathway frequently has the risk to release intercellular toxin (e.g., microcystin). Depressing photosynthesis without cell disruption may provide a new strategy to control cyanobacterial blooms using ultrasound, especially Microcystis blooms. In this work, Microcystis aeruginosa (toxic cyanobacteria) and Chlorella pyrenoidosa (typical green algae) were chosen as model microalgae to verify this hypothesis. Results showed that ultrasound has the ability to inhibit cyanobacterial photosynthesis significantly and selectively. Specifically, sonication damaged Q A , a tightly bound one-electron acceptor, and blocked electron flow at Q B , a two-electron acceptor, in the photosystem II (PSII) of M. aeruginosa when it was exposed for 60 s (35 kHz, 0.043 W/cm 3 ). Moreover, 44.8% of the reaction centers (RCs) in the PSII of M. aeruginosa were transferred into inactive ones (RC si s), and the cell concentration decreased by 32.5% after sonication for 300 s. By contrast, only 7.9% of RC si occurred in C. pyrenoidosa, and cell concentration and chlorophyll-a content reduced by 18.7% and 9.3%, respectively. Differences in both species (i.e., cell structures) might be responsible for the varying levels to sonication. This research suggests that cyanobacteria, especially Microcystis, could be controlled by ultrasound via damaging their PSIIs.

  8. Clinical impact of the immunome in lymphoid malignancies: the role of Myeloid-Derived Suppressor Cells

    Directory of Open Access Journals (Sweden)

    Calogero eVetro

    2015-05-01

    Full Text Available The better definition of the mutual sustainment between neoplastic cells and immune system has been translated from the bench to the bedside acquiring value as prognostic factor. Additionally, it represents a promising tool for improving therapeutic strategies. In this context, myeloid-derived suppressor cells have gained a central role in tumor developing with consequent therapeutic implications. In this review, we will focus on the biological and clinical impact of the study of myeloid-derived suppressor cells in the settings of lymphoid malignancies.

  9. Impact of NBTI Aging on the Single-Event Upset of SRAM Cells

    CERN Document Server

    Bagatin, M; Gerardin, Simone; Paccagnella, Alessandro; Bagatin, Marta

    2010-01-01

    We analyzed the impact of negative bias temperature instability (NBTI) on the single-event upset rate of SRAM cells through experiments and SPICE simulations. We performed critical charge simulations introducing different degradation patterns in the cells, in three technology nodes, from 180 to 90 nm. The simulations results were checked with alpha-particle and heavy-ion irradiations on a 130-nm technology. Both simulations and experimental results show that NBTI degradation does not significantly affect the single-event upset SRAM cell rate as long as the parametric drift induced by aging is within 10\\%.

  10. Epigenetic programming of T cells impacts immune reconstitution in hematopoietic stem cell transplant recipients.

    Science.gov (United States)

    Hardy, Kristine; Smith, Corey; Tu, Wen Juan; McCuaig, Robert; Panikkar, Archana; Dasari, Vijayendra; Wu, Fan; Tey, Siok-Keen; Hill, Geoffrey R; Khanna, Rajiv; Rao, Sudha

    2018-03-27

    Immune reconstitution following hematopoietic stem cell transplantation (HSCT) is critical in preventing harmful sequelae in recipients with cytomegalovirus (CMV) infection. To understand the molecular mechanisms underlying immune reconstitution kinetics, we profiled the transcriptome-chromatin accessibility landscape of CMV-specific CD8 + T cells from HCST recipients with different immune reconstitution efficiencies. CMV-specific T cells from HSCT recipients with stable antiviral immunity expressed higher levels of interferon/defense response and cell cycle genes in an interconnected network involving PI3KCG , STAT5B , NFAT , RBPJ , and lower HDAC6 , increasing chromatin accessibility at the enhancer regions of immune and T-cell receptor signaling pathway genes. By contrast, the transcriptional and epigenomic signatures of CMV-specific T cells from HSCT recipients with unstable immune reconstitution showed commonalities with T-cell responses in other nonresolving chronic infections. These signatures included higher levels of EGR and KLF factors that, along with lower JARID2 expression, maintained higher accessibility at promoter and CpG-rich regions of genes associated with apoptosis. Furthermore, epigenetic targeting via inhibition of HDAC6 or JARID2 enhanced the transcription of genes associated with differential responses, suggesting that drugs targeting epigenomic modifiers may have therapeutic potential for enhancing immune reconstitution in HSCT recipients. Taken together, these analyses demonstrate that transcription factors and chromatin modulators create different chromatin accessibility landscapes in T cells of HSCT recipients that not only affect immediate gene expression but also differentially prime cells for responses to additional signals. Epigenetic therapy may be a promising strategy to promote immune reconstitution in HSCT recipients. © 2018 by The American Society of Hematology.

  11. Modulation of Hematopoietic Lineage Specification Impacts TREM2 Expression in Microglia-Like Cells Derived From Human Stem Cells.

    Science.gov (United States)

    Amos, Peter J; Fung, Susan; Case, Amanda; Kifelew, Jerusalem; Osnis, Leah; Smith, Carole L; Green, Kevin; Naydenov, Alipi; Aloi, Macarena; Hubbard, Jesse J; Ramakrishnan, Aravind; Garden, Gwenn A; Jayadev, Suman

    2017-01-01

    Microglia are the primary innate immune cell type in the brain, and their dysfunction has been linked to a variety of central nervous system disorders. Human microglia are extraordinarily difficult to obtain for experimental investigation, limiting our ability to study the impact of human genetic variants on microglia functions. Previous studies have reported that microglia-like cells can be derived from human monocytes or pluripotent stem cells. Here, we describe a reproducible relatively simple method for generating microglia-like cells by first deriving embryoid body mesoderm followed by exposure to microglia relevant cytokines. Our approach is based on recent studies demonstrating that microglia originate from primitive yolk sac mesoderm distinct from peripheral macrophages that arise during definitive hematopoiesis. We hypothesized that functional microglia could be derived from human stem cells by employing BMP-4 mesodermal specification followed by exposure to microglia-relevant cytokines, M-CSF, GM-CSF, IL-34, and TGF-β. Using immunofluorescence microscopy, flow cytometry, and reverse transcription polymerase chain reaction, we observed cells with microglia morphology expressing a repertoire of markers associated with microglia: Iba1, CX3CR1, CD11b, TREM2, HexB, and P2RY12. These microglia-like cells maintain myeloid functional phenotypes including Aβ peptide phagocytosis and induction of pro-inflammatory gene expression in response to lipopolysaccharide stimulation. Addition of small molecules BIO and SB431542, previously demonstrated to drive definitive hematopoiesis, resulted in decreased surface expression of TREM2. Together, these data suggest that mesodermal lineage specification followed by cytokine exposure produces microglia-like cells in vitro from human pluripotent stem cells and that this phenotype can be modulated by factors influencing hematopoietic lineage in vitro.

  12. Effects of oil sands effluent on cattail and clover: photosynthesis and the level of stress proteins

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, A.U.; Han, B.; Kermode, A.R.; Bendell-Young, L.I.; Plant, A.L. [Simon Fraser University, Burnaby (Canada). Dept. of Biological Sciences

    2001-07-01

    The oil sands industry located in northeastern Alberta, Canada, generates large volumes of effluent characterized by a high level of dissolved ions and naphthenic acids. The dikes used to store the effluent seep, creating wetlands which are subsequently invaded by obligate wetland flora such as cattail (Typha latifolia L.). The appearance of these wetlands prompted the oil sands industry to consider wetlands as part of their reclamation strategy. However, to ensure long-term viability of such wetlands, the response of the flora to the industrial effluent needed to be determined. To this end, apparent photosynthesis (APS), the level of ribulose-1,5-bisphosphate carboxylase (RuBisCo) large subunit, dehydrin-related polypeptides, and protein disulphide isomerase (PDI) were evaluated in cattail and alsike clover plants (Trifolium hybridum L.) exposed to the oil sands effluent. APS measured in plants impacted by oil sands effluent was significantly higher than that of plants in the non-impacted off-site location. Among the on-site locations, plants growing in the natural wetlands site had higher APS compared to all other sites. The level of RuBisCo was not increased in cattail or clover growing in effluent-contaminated sites indicating that enhanced photosynthesis was not due to greater levels of this enzyme. Dehydrin-related polypeptides were detected only in the roots of cattail and were absent in clover. The polypeptide profile was altered in cattail exposed to oil sands effluent indicating that they were responding to an osmotic stress. The level of PDI was unaffected in the leaves of cattail regardless of the nature of the effluent to which they were exposed. Overall, the data indicate that cattail and clover are adapted to the oil sands effluent, although further studies are needed to assess their long-term ability to survive in the presence of this anthropogenic stress. (Author)

  13. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Directory of Open Access Journals (Sweden)

    Hye-Sun Yu

    2016-02-01

    Full Text Available Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.

  14. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors.

    Science.gov (United States)

    Disney, Claire E R; Pillai, Supriya; Green, Martin A

    2017-10-09

    Significant photocurrent enhancement has been demonstrated using plasmonic light-trapping structures comprising nanostructured metallic features at the rear of the cell. These structures have conversely been identified as suffering heightened parasitic absorption into the metal at certain resonant wavelengths severely mitigating benefits of light trapping. In this study, we undertook simulations exploring the relationship between enhanced absorption into the solar cell, and parasitic losses in the metal. These simulations reveal that resonant wavelengths associated with high parasitic losses in the metal could also be associated with high absorption enhancement in the solar cell. We identify mechanisms linking these parasitic losses and absorption enhancements, but found that by ensuring correct design, the light trapping structures will have a positive impact on the overall solar cell performance. Our results clearly show that the large angle scattering provided by the plasmonic nanostructures is the reason for the enhanced absorption observed in the solar cells.

  15. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues

    Science.gov (United States)

    Yu, Hye-Sun; Kim, Jung-Ju; Kim, Hae-Won; Lewis, Mark P; Wall, Ivan

    2016-01-01

    Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations. PMID:26977284

  16. Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions.

    Science.gov (United States)

    Hu, Guangrong; Fan, Yong; Zhang, Lei; Yuan, Cheng; Wang, Jufang; Li, Wenjian; Hu, Qiang; Li, Fuli

    2013-01-01

    The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy (12)C(6+) ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L(-1)⋅d(-1), 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

  17. Immune cell impact of three differently coated lipid nanocapsules: pluronic, chitosan and polyethylene glycol.

    Science.gov (United States)

    Farace, Cristiano; Sánchez-Moreno, Paola; Orecchioni, Marco; Manetti, Roberto; Sgarrella, Francesco; Asara, Yolande; Peula-García, José M; Marchal, Juan A; Madeddu, Roberto; Delogu, Lucia G

    2016-01-05

    Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.

  18. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  19. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

    Science.gov (United States)

    Kawalekar, Omkar U; O'Connor, Roddy S; Fraietta, Joseph A; Guo, Lili; McGettigan, Shannon E; Posey, Avery D; Patel, Prachi R; Guedan, Sonia; Scholler, John; Keith, Brian; Snyder, Nathaniel W; Snyder, Nathaniel; Blair, Ian A; Blair, Ian; Milone, Michael C; June, Carl H

    2016-02-16

    Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Treating cell culture media with UV irradiation against adventitious agents: minimal impact on CHO performance.

    Science.gov (United States)

    Yen, Sandi; Sokolenko, Stanislav; Manocha, Bhavik; Blondeel, Eric J M; Aucoin, Marc G; Patras, Ankit; Daynouri-Pancino, Farnaz; Sasges, Michael

    2014-01-01

    Sterility of cell culture media is an important concern in biotherapeutic processing. In large scale biotherapeutic production, a unit contamination of cell culture media can have costly effects. Ultraviolet (UV) irradiation is a sterilization method effective against bacteria and viruses while being non-thermal and non-adulterating in its mechanism of action. This makes UV irradiation attractive for use in sterilization of cell culture media. The objective of this study was to evaluate the effect of UV irradiation of cell culture media in terms of chemical composition and the ability to grow cell cultures in the treated media. The results showed that UV irradiation of commercial cell culture media at relevant disinfection doses impacted the chemical composition of the media with respect to several carboxylic acids, and to a minimal extent, amino acids. The cumulative effect of these changes, however, did not negatively influence the ability to culture Chinese Hamster Ovary cells, as evaluated by cell viability, growth rate, and protein titer measurements in simple batch growth compared with the same cells cultured in control media exposed to visible light. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  1. Bystander chronic infection negatively impacts development of CD8+ T cell memory

    Science.gov (United States)

    Stelekati, Erietta; Shin, Haina; Doering, Travis A.; Dolfi, Douglas V.; Ziegler, Carly G.; Beiting, Daniel P.; Dawson, Lucas; Liboon, Jennifer; Wolski, David; Ali, Mohammed-Alkhatim A.; Katsikis, Peter D.; Shen, Hao; Roos, David S.; Haining, W. Nicholas; Lauer, Georg M.; Wherry, E. John

    2014-01-01

    Summary Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8+ T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8+ T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8+ T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation. PMID:24837104

  2. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  3. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    Science.gov (United States)

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  4. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  5. Selective pressures on C4 photosynthesis evolution in grasses through the lens of optimality

    OpenAIRE

    Akcay, Erol; Zhou, Haoran; Helliker, Brent

    2016-01-01

    CO2, temperature, water availability and light intensity were potential selective pressures to propel the initial evolution and global expansion of C4 photosynthesis in grasses. To tease apart the primary selective pressures along the evolutionary trajectory, we coupled photosynthesis and hydraulics models and optimized photosynthesis over stomatal resistance and leaf/fine-root allocation. We also examined the importance of nitrogen reallocation from the dark to the light reactions. Our resul...

  6. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  7. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  8. Impact of a Low CD34+ Cell Dose on Allogeneic Peripheral Blood Stem Cell Transplantation.

    Science.gov (United States)

    Yamamoto, Chihiro; Ogawa, Hiroyasu; Fukuda, Takahiro; Igarashi, Aiko; Okumura, Hirokazu; Uchida, Naoyuki; Hidaka, Michihiro; Nakamae, Hirohisa; Matsuoka, Ken-Ichi; Eto, Tetsuya; Ichinohe, Tatsuo; Atsuta, Yoshiko; Kanda, Yoshinobu

    2018-04-01

    Although the CD34 + cell dose in allogeneic peripheral blood stem cell transplantation (PBSCT) is considered to be associated with transplantation outcomes, a lower acceptable threshold has not been defined. We retrospectively analyzed 2919 adult patients with hematologic malignancies who underwent related PBSCT in Japan between 2001 and 2014. According to the number of CD34 + cells in the graft, we categorized 2494 patients in the standard group (2 to 5 × 10 6 cells/kg), 377 patient in the low group (1 to 2 × 10 6 cells/kg), and 48 patients in the very low group (<1 × 10 6 cells/kg). Compared with the standard group, the low and very low groups showed delayed neutrophil recovery (93.8%, 89.5%, and 78.3%, respectively at day +28; P < .001) and platelet recovery (69.3%, 53.0%, and 45.5%, respectively at day +28; P < .001). The 2-year overall survival (OS) in the 3 groups was 45.5%, 45.3%, and 29.8%, respectively, with inferior survival in the very low group. However, a higher percentage of high-risk patients may account for the inferior survival in the very low group, and no significant difference in OS was found in a multivariate analysis. There were no differences in relapse, nonrelapse mortality, or the development of graft-versus-host disease among the 3 groups. In conclusion, allogeneic PBSCT with low CD34 + cell doses of 1 to 2 × 10 6 cells/kg gives acceptable results, whereas further investigations are needed to evaluate the effects of lower doses of <1 × 10 6 cells/kg owing to the smaller number and the higher percentage of patients with adverse prognostic factors in this cohort. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  9. Impact of Autologous and Allogeneic Stem Cell Transplantation in Peripheral T-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Peter Reimer

    2010-01-01

    Full Text Available Peripheral T/NK-cell lymphomas (PTCLs are rare malignancies characterized by poor prognosis. So far, no standard therapy has been established, due to the lack of randomised studies. High-dose therapy and autologous stem cell transplantation (HDT-autoSCT have shown good feasibility with low toxicity in retrospective studies. In relapsing and refractory PTCL several comparison analyses suggest similar efficacy for PTCL when compared with aggressive B-cell lymphoma. In the upfront setting, prospective data show promising results with a long-lasting overall survival in a relevant subset of patients. Achieving a complete remission at transplantation seems to be the most important prognostic factor. Allogeneic stem cell transplantation (alloSCT has been investigated only as salvage treatment. Especially when using reduced intensity conditioning regimen, eligible patients seem to benefit from this approach. To define the role for upfront stem cell transplantation a randomised trial by the German High-Grade Non-Hodgkin Lymphoma Study Group comparing HDT-autoSCT and alloSCT will be initiated this year.

  10. Involvement of H(+)-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis.

    Science.gov (United States)

    Furla, P; Allemand, D; Orsenigo, M N

    2000-04-01

    Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.

  11. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  12. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system

    Czech Academy of Sciences Publication Activity Database

    Jerez, Celia G.; Navarro, E.; Rico, Rosa M.; Malpartida, I.; Masojídek, Jiří; Abdala, R.; Figueroa, Félix L.

    2014-01-01

    Roč. 22, č. 2 (2014), s. 111-122 ISSN 1864-7790 R&D Projects: GA MŠk ED2.1.00/03.0110 Grant - others:Government of Spain (ES) Project Ecolife CGL08-05407-C03-01; Junta de Andalucía(ES) RNM-295; Ministry of Economy and Competitiveness(ES) CTM2011-15659-E Institutional support: RVO:61388971 Keywords : Chlorella fusca * TLC * cultivation * photosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 1.258, year: 2014

  13. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xia [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Fifth People' s Hospital of Shanghai, School of Medicine, Fudan University, Shanghai, 200240 (China); Zhao, Libo [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Department of Neurology, The Third People' s Hospital of Chongqing, 400014 (China); Yang, Yongtao [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Bode, Liv [Bornavirus Research Group affiliated to the Free University of Berlin, Berlin (Germany); Huang, Hua [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Liu, Chengyu [Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); Huang, Rongzhong [Department of Rehabilitative Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010 (China); Zhang, Liang [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, 400016 (China); Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016 (China); and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  14. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    International Nuclear Information System (INIS)

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang

    2014-01-01

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs

  15. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    Science.gov (United States)

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  16. Impact of NKT Cells and LFA-1 on Liver Regeneration under Subseptic Conditions.

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Jörger

    Full Text Available Activation of the immune system in terms of subseptic conditions during liver regeneration is of paramount clinical importance. However, little is known about molecular mechanisms and their mediators that control hepatocyte proliferation. We sought to determine the functional role of immune cells, especially NKT cells, in response to partial hepatectomy (PH, and to uncover the impact of the integrin lymphocyte function-associated antigen-1 (LFA-1 on liver regeneration in a subseptic setting.Wild-type (WT and LFA-1-/- mice underwent a 2/3 PH and low-dose lipopolysaccharid (LPS application. Hepatocyte proliferation, immune cell infiltration, and cytokine profile in the liver parenchyma were determined.Low-dose LPS application after PH results in a significant delay of liver regeneration between 48h and 72h, which is associated with a reduced number of CD3+ cells within the regenerating liver. In absence of LFA-1, an impaired regenerative capacity was observed under low-dose LPS application. Analysis of different leukocyte subpopulations showed less CD3+NK1.1+ NKT cells in the liver parenchyma of LFA-1-/- mice after PH and LPS application compared to WT controls, while CD3-NK1.1+ NK cells markedly increased. Concordantly with this observation, lower levels of NKT cell related cytokines IL-12 and IL-23 were expressed in the regenerating liver of LFA-1-/- mice, while the expression of NK cell-associated CCL5 and IL-10 was increased compared to WT mice.A subseptic situation negatively alters hepatocyte proliferation. Within this scenario, we suggest an important impact of NKT cells and postulate a critical function for LFA-1 during processes of liver regeneration.

  17. The potential feasibility of chlorinic photosynthesis on exoplanets.

    Science.gov (United States)

    Haas, Johnson R

    2010-11-01

    The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.

  18. The impact of inflammation and immune activation on B cell differentiation during HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Nicolas eRuffin

    2012-01-01

    Full Text Available HIV-1 infection is characterized by continuous antigenic stimulation, chronic immune activation and impaired survival of T and B cells. A decline of resting memory B cells has previously been reported to occur in both children and adults infected with HIV-1; these cells are responsible for mounting and maintaining an adequate serological response to antigens previously encountered in life through natural infection or vaccination. Further understanding of the mechanisms leading to impaired B cell differentiation and germinal center reaction might be essential to design new HIV vaccines and therapies that could improve humoral immune responses in HIV-1 infected individuals. In the present article we summarize the literature and present our view on critical mechanisms of B cell development which are impaired during HIV-1 infection. We also discuss the impact of microbial translocation, a driving force for persistent inflammation during HIV-1 infection, on survival of terminally differentiated B cells and how the altered expression of cytokines/chemokines pivotal for communication between T and B cells in lymphoid tissues may impair formation of memory B cells.

  19. Fuel choices for fuel-cell vehicles : well-to-wheel energy and emission impacts

    International Nuclear Information System (INIS)

    Wang, M.

    2002-01-01

    Because of their high energy efficiencies and low emissions, fuel-cell vehicles (FCVs) are undergoing extensive research and development. While hydrogen will likely be the ultimate fuel to power fuel-cell vehicles, because of current infrastructure constraints, hydrogen-carrying fuels are being investigated as transitional fuel-cell fuels. A complete well-to-wheels (WTW) evaluation of fuel-cell vehicle energy and emission effects that examines (1) energy feedstock recovery and transportation; (2) fuel production, transportation, and distribution; and (3) vehicle operation must be conducted to assist decision makers in selecting the fuel-cell fuels that achieve the greatest energy and emission benefits. A fuel-cycle model developed at Argonne National Laboratory--called the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model--was used to evaluate well-to-wheels energy and emission impacts of various fuel-cell fuels. The results show that different fuel-cell fuels can have significantly different energy and greenhouse gas emission effects. Therefore, if fuel-cell vehicles are to achieve the envisioned energy and emission reduction benefits, pathways for producing the fuels that power them must be carefully examined.

  20. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis

    DEFF Research Database (Denmark)

    Ci, Dunwei; Jiang, Dong; Wollenweber, Bernd

    2010-01-01

    parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected......Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat...

  1. Enhancement of photosynthesis in Sorghum bicolor by ultraviolet radiation

    International Nuclear Information System (INIS)

    Johnson, G.A.; Day, T.A.

    2002-01-01

    We assessed the influence of ultraviolet radiation (UV) on net photosynthetic CO 2 assimilation rate (Pn) in Sorghum bicolor, with particular attention to examining whether UV can enhance Pn via direct absorption of UV and absorption of UV-induced blue fluorescence by photosynthetic pigments. A polychromatic UV response spectrum of leaves was constructed by measuring Pn under different UV supplements using filters that had sharp transmission cut-offs from 280 to 382 nm, against a background of non-saturating visible light. When the abaxial surface was irradiated, P n averaged 4.6% higher with the UV supplement that cut-off UV at 311 nm, compared to lower and higher UV wavelength supplements. This former supplement differed from higher wavelength supplements by primarily providing more UV between 320 and 350 nm. To assess the possibility of direct absorption of UV by photosynthetic pigments, we measured the absorbance of extracted chlorophylls. Chlorophyll a had absorbance peaks at 340 and 389 nm that were 49 and 72% of that at the sorét peak. Chlorophyll b had absorbance peaks at 315 and 346 nm that were both 35% of that at the sorét peak. Since the epidermis transmits some UV, the strong UV absorbance of chlorophyll implies a potential role for irradiance beyond the bounds of the conventionally defined photosynthetically active radiation waveband (400–700 nm). To assess the role of absorption of UV-induced blue fluorescence, we measured the UV-induced fluorescence excitation and emission spectra of leaves. Abaxial excitation peaked at 328 nm, while emission peaked at 446 nm. In this analysis, we used our abaxial fluorescence excitation spectrum and the UV photosynthetic inhibition spectrum of Caldwell et al. (1986) to weight the UV irradiance with each cut-off filter, thereby estimating the potential contribution of UV-induced blue fluorescence to photosynthesis and the inhibitory effects of UV irradiance on photosynthesis, respectively. With a non

  2. Artificial Leaf Based on Artificial Photosynthesis for Solar Fuel Production

    Science.gov (United States)

    2017-06-30

    collect light energy and separate charge for developing new types of nanobiodevices to construct ”artificial leaf” from solar to fuel. or Concept of...AFRL-AFOSR-JP-TR-2017-0054 Artificial Leaf Based on Artificial Photosynthesis for Solar Fuel Production Mamoru Nango NAGOYA INSTITUTE OF TECHNOLOGY...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY)      30-06-2017 2

  3. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    International Nuclear Information System (INIS)

    Audouze, J.; Lindley, D.; Silk, J.; and Laboratoire Rene Bernas, Orsay, France)

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements ( 2 H, 3 He, 4 He, and 7 Li) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate 4 He (formed in the standard hot big bang) to produce 2 H and 3 He. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that 4 He is synthesized by a later generation of massive stars

  4. Big bang photosynthesis and pregalactic nucleosynthesis of light elements

    Science.gov (United States)

    Audouze, J.; Lindley, D.; Silk, J.

    1985-01-01

    Two nonstandard scenarios for pregalactic synthesis of the light elements (H-2, He-3, He-4, and Li-7) are developed. Big bang photosynthesis occurs if energetic photons, produced by the decay of massive neutrinos or gravitinos, partially photodisintegrate He-4 (formed in the standard hot big bang) to produce H-2 and He-3. In this case, primordial nucleosynthesis no longer constrains the baryon density of the universe, or the number of neutrino species. Alternatively, one may dispense partially or completely with the hot big bang and produce the light elements by bombardment of primordial gas, provided that He-4 is synthesized by a later generation of massive stars.

  5. Photosynthesis-related quantities for education and modeling.

    Science.gov (United States)

    Antal, Taras K; Kovalenko, Ilya B; Rubin, Andrew B; Tyystjärvi, Esa

    2013-11-01

    A quantitative understanding of the photosynthetic machinery depends largely on quantities, such as concentrations, sizes, absorption wavelengths, redox potentials, and rate constants. The present contribution is a collection of numbers and quantities related mainly to photosynthesis in higher plants. All numbers are taken directly from a literature or database source and the corresponding reference is provided. The numerical values, presented in this paper, provide ranges of values, obtained in specific experiments for specific organisms. However, the presented numbers can be useful for understanding the principles of structure and function of photosynthetic machinery and for guidance of future research.

  6. Photosynthesis and Retention of Zooxanthellae and Zoochlorellae Within the Aeolid Nudibranch Aeolidia papillosa.

    Science.gov (United States)

    McFarland, F K; Muller-Parker, G

    1993-04-01

    Both zooxanthellae and zoochlorellae are found in the cerata of Aeolidia papillosa after it has ingested symbiotic Anthopleura elegantissima containing these algae. High rates of photosynthesis were found in algae present in the cerata and in algae isolated from nudibranch feces. For algal cells present in the cerata of nudibranchs collected in June 1991, carbon fixation by zooxanthellae (1.18 +/- 0.36 pg C/cell/h) was significantly greater than carbon fixation by zoochlorellae (0.55 +/- 0.32 pg C/cell/h). Algal densities within the cerata of laboratory fed nudibranchs were significantly greater for zoochlorellae (175 +/- 82 cells/μg protein, light treatment; 131 +/- 106 cells/μg protein, dark treatment) than for zooxanthellae (38 +/- 18 cells/μg protein, light; 53 +/- 30 cells/ μg protein, dark). Ceratal densities of zooxanthellae (16 +/- 8 cells/μg protein) in the field during January 1992 were low in comparison to ceratal densities in the laboratory--several of the nudibranchs in the field lacked any symbiotic algae, and zoochlorellae were always absent. Nudibranch algal densities were not stable and dropped rapidly if the nudibranchs were starved. Both zoochlorella and zooxanthella densities dropped to 0 cells/μg protein within 11 days of starvation. While these results show that the relationship between A. papillosa and the two algae is not a stable symbiosis, the photosynthetic activity of the algae in the cerata suggests that the nudibranch and/or the algae may benefit from the association while it lasts.

  7. Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells: impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype.

    Science.gov (United States)

    Laundos, Tiago L; Silva, Joana; Assunção, Marisa; Quelhas, Pedro; Monteiro, Cátia; Oliveira, Carla; Oliveira, Maria J; Pêgo, Ana P; Amaral, Isabel F

    2017-08-01

    Embryonic stem (ES)-derived neural stem/progenitor cells (ES-NSPCs) constitute a promising cell source for application in cell therapies for the treatment of central nervous system disorders. In this study, a rotary orbital hydrodynamic culture system was applied to single-cell suspensions of ES-NSPCs, to obtain homogeneously-sized ES-NSPC cellular aggregates (neurospheres). Hydrodynamic culture allowed the formation of ES-NSPC neurospheres with a narrower size distribution than statically cultured neurospheres, increasing orbital speeds leading to smaller-sized neurospheres and higher neurosphere yield. Neurospheres formed under hydrodynamic conditions (72 h at 55 rpm) showed higher cell compaction and comparable percentages of viable, dead, apoptotic and proliferative cells. Further characterization of cellular aggregates provided new insights into the effect of hydrodynamic shear on ES-NSPC behaviour. Rotary neurospheres exhibited reduced protein levels of N-cadherin and β-catenin, and higher deposition of laminin (without impacting fibronectin deposition), matrix metalloproteinase-2 (MMP-2) activity and percentage of neuronal cells. In line with the increased MMP-2 activity levels found, hydrodynamically-cultured neurospheres showed higher outward migration on laminin. Moreover, when cultured in a 3D fibrin hydrogel, rotary neurospheres generated an increased percentage of neuronal cells. In conclusion, the application of a constant orbital speed to single-cell suspensions of ES-NSPCs, besides allowing the formation of homogeneously-sized neurospheres, promoted ES-NSPC differentiation and outward migration, possibly by influencing the expression of cell-cell adhesion molecules and the secretion of proteases/extracellular matrix proteins. These findings are important when establishing the culture conditions needed to obtain uniformly-sized ES-NSPC aggregates, either for use in regenerative therapies or in in vitro platforms for biomaterial development or

  8. Impact of CD133 positive stem cell proportion on survival in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Kase, Marju; Minajeva, Ave; Niinepuu, Kristi; Kase, Sandra; Vardja, Markus; Asser, Toomas; Jaal, Jana

    2013-01-01

    The aim of the study was to assess the impact of CD133-positive (CD133+) cancer stem cell proportions on treatment results of glioblastoma multiforme (GBM) patients. Patients with GBM (n = 42) received postoperative radiotherapy (± chemotherapy). Surgically excised GBM tissue sections were immunohistochemically examined for CD133 expression. The proportions of CD133+ GBM cells were determined (%). The proportion of CD133+ GBM stem cells was established by 2 independent researchers whose results were in good accordance (R = 0.8, p < 0.01). Additionally, CD133 expression levels were correlated with patients overall survival. The proportion of CD133+ cells varied between patients, being from 0.5% to 82%. Mean and median proportions of CD133+ cells of the entire study group were 33% ± 24% (mean ± SD) and 28%, respectively. Clinical data do not support the association between higher proportion of stem cells and the aggressiveness of GBM. Median survival time of the study group was 10.0 months (95% CI 9.0–11.0). The survival time clearly depended on the proportion of CD133+ cells (log rank test, p = 0.02). Median survival times for patients with low (< median) and high (≥ median) proportion of CD133+ cells were 9.0 months (95% CI 7.6–10.5) and 12.0 months (95% CI 9.3–14.7), respectively. In multivariate analysis, the proportion of CD133+ cells emerged as a significant independent predictor for longer overall survival (HR 2.0, 95% CI 1.0–3.8, p = 0.04). In patients with higher stem cell proportion, significantly longer survival times after postoperative radiotherapy were achieved. Underlying reasons and possible higher sensitivity of GBM stem cells to fractionated radio-therapy should be clarified in further studies

  9. What is the impact of giant cell arteritis on patients’ lives? A UK qualitative study

    Science.gov (United States)

    Liddle, Jennifer; Bartlam, Roisin; Mallen, Christian D; Mackie, Sarah L; Prior, James A; Helliwell, Toby; Richardson, Jane C

    2017-01-01

    Objectives Clinical management of giant cell arteritis (GCA) involves balancing the risks and burdens arising from the disease with those arising from treatment, but there is little research on the nature of those burdens. We aimed to explore the impact of giant cell arteritis (GCA) and its treatment on patients’ lives. Methods UK patients with GCA participated in semi-structured telephone interviews. Inductive thematic analysis was employed. Results 24 participants were recruited (age: 65–92 years, time since diagnosis: 2 months to >6 years). The overarching themes from analysis were: ongoing symptoms of the disease and its treatment; and ‘life-changing’ impacts. The overall impact of GCA on patients’ lives arose from a changing combination of symptoms, side effects, adaptations to everyday life and impacts on sense of normality. Important factors contributing to loss of normality were glucocorticoid-related treatment burdens and fear about possible future loss of vision. Conclusions The impact of GCA in patients’ everyday lives can be substantial, multifaceted and ongoing despite apparent control of disease activity. The findings of this study will help doctors better understand patient priorities, legitimise patients’ experiences of GCA and work with patients to set realistic treatment goals and plan adaptations to their everyday lives. PMID:28838902

  10. Endothelial cell impact on smooth muscle cell properties: role of hemodynamic forces

    OpenAIRE

    Killeen, Maria T.

    2009-01-01

    The vascular endothelium is a dynamic cell monolayer located at the interface of the vessel wall and bloodstream, where it regulates the physiological effects of humoral and hemodynamic stimuli on vessel tone and remodelling. Hemodynamic forces are of particular interest and include shear stress, the frictional force generated by blood as it drags against the endothelium, and cyclic strain, transmural pressure due to the pulsatile nature of blood flow. Both forces can profoundly modulate vasc...

  11. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

    Directory of Open Access Journals (Sweden)

    Cheng Jian-Shan

    2010-02-01

    Full Text Available Abstract Background Although the effect of salicylic acid (SA on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side. In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C, during heat stress (43°C for 5 h, and through the following recovery period (25°C. Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs in the chloroplast were also investigated. Results SA did not significantly (P Pn of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P Conclusion SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  12. Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: plant development, photosynthesis and antioxidative enzymes

    Czech Academy of Sciences Publication Activity Database

    Holá, D.; Kočová, M.; Rothová, O.; Wilhelmová, Naděžda; Benešová, M.

    2007-01-01

    Roč. 164, - (2007), s. 868-877 ISSN 0176-1617 Grant - others:Univerzita Karlova v Praze / Přírodovědecká fakulta(CZ) GP522/02/D174 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Antioxidant enzymes * chilling * intraspecific variability * photosynthesis * recovery * Zea mays Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.239, year: 2007

  13. From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance

    International Nuclear Information System (INIS)

    Nguyen, Anh Tuan; Sathe, Sharvari R; Yim, Evelyn K F

    2016-01-01

    Topography, among other physical factors such as substrate stiffness and extracellular forces, is known to have a great influence on cell behaviours. Optimization of topographical features, in particular topographical dimensions ranging from nanoscale to microscale, is the key strategy to obtain the best cellular performance for various applications in tissue engineering and regenerative medicine. In this review, we provide a comprehensive survey on the significance of sizes of topography and their impacts on cell adhesion, morphology and alignment, and neurite guidance. Also recent works mimicking the hierarchical structure of natural extracellular matrix by combining both nanoscale and microscale topographies are highlighted. (topical review)

  14. Comparative evaluation of the impact on endothelial cells induced by different nanoparticle structures and functionalization

    Directory of Open Access Journals (Sweden)

    Lisa Landgraf

    2015-01-01

    Full Text Available In the research field of nanoparticles, many studies demonstrated a high impact of the shape, size and surface charge, which is determined by the functionalization, of nanoparticles on cell viability and internalization into cells. This work focused on the comparison of three different nanoparticle types to give a better insight into general rules determining the biocompatibility of gold, Janus and semiconductor (quantum dot nanoparticles. Endothelial cells were subject of this study, since blood is the first barrier after intravenous nanoparticle application. In particular, stronger effects on the viability of endothelial cells were found for nanoparticles with an elongated shape in comparison to spherical ones. Furthermore, a positively charged nanoparticle surface (NH2, CyA leads to the strongest reduction in cell viability, whereas neutral and negatively charged nanoparticles are highly biocompatible to endothelial cells. These findings are attributed to a rapid internalization of the NH2-functionalized nanoparticles in combination with the damage of intracellular membranes. Interestingly, the endocytotic pathway seems to be a size-dependent process whereas nanoparticles with a size of 20 nm are internalized by caveolae-mediated endocytosis and nanoparticles with a size of 40 nm are taken up by clathrin-mediated internalization and macropinocytosis. Our results can be summarized to formulate five general rules, which are further specified in the text and which determine the biocompatibility of nanoparticles on endothelial cells. Our findings will help to design new nanoparticles with optimized properties concerning biocompatibility and uptake behavior with respect to the respective intended application.

  15. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  16. Manipulatives-Based Laboratory for Majors Biology – a Hands-On Approach to Understanding Respiration and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Sarah M. Boomer

    2011-09-01

    Full Text Available The first course in our year-long introductory series for Biology majors encompasses four learning units: biological molecules and cells, metabolism, genetics, and evolution. Of these, the metabolism unit, which includes respiration and photosynthesis, has shown the lowest student exam scores, least interest, and lowest laboratory ratings. Consequently, we hypothesized that modeling metabolic processes in the laboratory would improve student content learning during this course unit. Specifically, we developed manipulatives-based laboratory exercises that combined paper cutouts, movable blocks, and large diagrams of the cell. In particular, our novel use of connecting LEGO blocks allowed students to move model electrons and phosphates between molecules and within defined spaces of the cell. We assessed student learning using both formal (content indicators and attitude surveys and informal (the identification of misconceptions or discussions with students approaches. On the metabolism unit content exam, student performance improved by 46% over pretest scores and by the end of the course, the majority of students rated metabolism as their most-improved (43% and favorite (33% subject as compared with other unit topics. The majority of students rated manipulatives-based labs as very helpful, as compared to non-manipulatives-based labs. In this report, we will demonstrate that students made learning gains across all content areas, but most notably in the unit that covered respiration and photosynthesis.

  17. Estimation of Maize photosynthesis Efficiency Under Deficit Irrigation and Mulch

    International Nuclear Information System (INIS)

    Al-Hadithi, S.

    2004-01-01

    This research aims at estimating maize photosynthesis efficiency under deficit irrigation and soil mulching. A split-split plot design experiment was conducted with three replicates during the fall season 2000 and spring season 2001 at the experimental Station of Soil Dept./ Iraq Atomic Energy Commission. The main plots were assigned to full and deficit irrigation treatments: (C) control. The deficit irrigation treatment included the omission of one irrigation at establishment (S1, 15 days), vegetation (S2, 35 days), flowering (S3, 40 days) and yield formation (S4, 30 days) stages. The sub-plots were allocated for the two varieties, Synthetic 5012 (V1) and Haybrid 2052 (V2). The sub-sub-plots were assigned to mulch (M1) with wheat straw and no mulch (M0). Results showed that the deficit irrigation did not affect photosynthesis efficiency in both seasons, which ranged between 1.90 to 2.15% in fall season and between 1.18 and 1.45% in spring season. The hybrid variety was superior 9.39 and 9.15% over synthetic variety in fall and spring seasons, respectively. Deficit irrigation, varieties and mulch had no significant effects on harvest index in both seasons. This indicates that the two varieties were stable in their partitioning efficiency of nutrient matter between plant organ and grains under the condition of this experiment. (Author) 21 refs., 3 figs., 6 tabs

  18. Aquatic CAM photosynthesis: a brief history of its discovery

    Science.gov (United States)

    Keeley, Jon E.

    2014-01-01

    Aquatic CAM (Crassulacean Acid Metabolism) photosynthesis was discovered while investigating an unrelated biochemical pathway concerned with anaerobic metabolism. George Bowes was a significant contributor to this project early in its infancy. Not only did he provide me with some valuable perspectives on peer review rejections, but by working with his gas exchange system I was able to take our initial observations of diel fluctuations in malic acid to the next level, showing this aquatic plant exhibited dark CO2 uptake. CAM is universal in all aquatic species of the worldwide Lycophyta genus Isoetes and non-existent in terrestrial Isoetes. Outside of this genus aquatic CAM has a limited occurrence in three other families, including the Crassulaceae. This discovery led to fascinating adventures in the highlands of the Peruvian Andes in search of Stylites, a terrestrial relative of Isoetes. Stylites is a plant that is hermetically sealed from the atmosphere and obtains all of its carbon from terrestrial sources and recycles carbon through CAM. Considering the Mesozoic origin of Isoetes in shallow pools, coupled with the fact that aquatic Isoetes universally possess CAM, suggests the earliest evolution of CAM photosynthesis was most likely not in terrestrial plants.

  19. A photosynthesis-based two-leaf canopy stomatal ...

    Science.gov (United States)

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  20. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  1. Effects of ammonia from livestock farming on lichen photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Paoli, Luca [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pirintsos, Stergios Arg.; Kotzabasis, Kiriakos [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Pisani, Tommaso [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy); Navakoudis, Eleni [Department of Biology, University of Crete, 71409 Heraklion, Crete (Greece); Loppi, Stefano, E-mail: loppi@unisi.i [Department of Environmental Science ' G. Sarfatti' , University of Siena, via Mattioli 4, I-53100 Siena (Italy)

    2010-06-15

    This study investigated if atmospheric ammonia (NH{sub 3}) pollution around a sheep farm influences the photosynthetic performance of the lichens Evernia prunastri and Pseudevernia furfuracea. Thalli of both species were transplanted for up to 30 days in a semi-arid region (Crete, Greece), at sites with concentrations of atmospheric ammonia of ca. 60 mug/m{sup 3} (at a sheep farm), ca. 15 mug/m{sup 3} (60 m from the sheep farm) and ca. 2 mug/m{sup 3} (a remote area 5 km away). Lichen photosynthesis was analysed by the chlorophyll a fluorescence emission to identify targets of ammonia pollution. The results indicated that the photosystem II of the two lichens exposed to NH{sub 3} is susceptible to this pollutant in the gas-phase. The parameter PI{sub ABS}, a global index of photosynthetic performance that combines in a single expression the three functional steps of the photosynthetic activity (light absorption, excitation energy trapping, and conversion of excitation energy to electron transport) was much more sensitive to NH{sub 3} than the F{sub V}/F{sub M} ratio, one of the most commonly used stress indicators. - Ammonia from livestock farming affects lichen photosynthesis.

  2. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age

    Science.gov (United States)

    Johnston, D. T.; Wolfe-Simon, F.; Pearson, A.; Knoll, A. H.

    2009-01-01

    Molecular oxygen (O2) began to accumulate in the atmosphere and surface ocean ca. 2,400 million years ago (Ma), but the persistent oxygenation of water masses throughout the oceans developed much later, perhaps beginning as recently as 580–550 Ma. For much of the intervening interval, moderately oxic surface waters lay above an oxygen minimum zone (OMZ) that tended toward euxinia (anoxic and sulfidic). Here we illustrate how contributions to primary production by anoxygenic photoautotrophs (including physiologically versatile cyanobacteria) influenced biogeochemical cycling during Earth's middle age, helping to perpetuate our planet's intermediate redox state by tempering O2 production. Specifically, the ability to generate organic matter (OM) using sulfide as an electron donor enabled a positive biogeochemical feedback that sustained euxinia in the OMZ. On a geologic time scale, pyrite precipitation and burial governed a second feedback that moderated sulfide availability and water column oxygenation. Thus, we argue that the proportional contribution of anoxygenic photosynthesis to overall primary production would have influenced oceanic redox and the Proterozoic O2 budget. Later Neoproterozoic collapse of widespread euxinia and a concomitant return to ferruginous (anoxic and Fe2+ rich) subsurface waters set in motion Earth's transition from its prokaryote-dominated middle age, removing a physiological barrier to eukaryotic diversification (sulfide) and establishing, for the first time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved the way for the further oxygenation of the oceans and atmosphere and, ultimately, the evolution of complex multicellular organisms. PMID:19805080

  3. Effects of light and temperature on duckweed photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wedge, R M; Burris, J E

    1982-06-01

    Rates of photosynthesis of Lemna minor L. and Spirodela punctata, two aquatic angiosperms, were measured at different temperatures and light intensities. Photosynthesis was measured both as oxygen evolution and /sup 14/CO/sub 2/ fixation. At temperatures ranging from 15 to 35/sup 0/C, light saturation of photosynthetic O/sub 2/ evolution of Lemna occured from 300-600 ..mu..E m/sup -2/ s/sup -1/, while in Spirodela photosynthetic O/sub 2/ evolution was light saturated at 5600-1200 ..mu..E m/sup -2/ s/sup -1/. Photosynthetic O/sub 2/ evolution of both species was photoinhibited at light intensities greater than 1200 ..mu..E m/sup -2/ s/sup -1/. The optimal temperature for Lemna photosynthetic O/sub 2/ evolution was 30/sup 0/C, while the optimal temperatures for /sup 14/CO/sub 2/ fixation were from 20 to 30/sup 0/C. For Spirodela maximum photosynthetic O/sub 2/, evolution occurred at 35/sup 0/C, while maximum /sup 14/CO/sub 2/ fixation was at 30/sup 0/C.

  4. The pineapple genome and the evolution of CAM photosynthesis.

    Science.gov (United States)

    Ming, Ray; VanBuren, Robert; Wai, Ching Man; Tang, Haibao; Schatz, Michael C; Bowers, John E; Lyons, Eric; Wang, Ming-Li; Chen, Jung; Biggers, Eric; Zhang, Jisen; Huang, Lixian; Zhang, Lingmao; Miao, Wenjing; Zhang, Jian; Ye, Zhangyao; Miao, Chenyong; Lin, Zhicong; Wang, Hao; Zhou, Hongye; Yim, Won C; Priest, Henry D; Zheng, Chunfang; Woodhouse, Margaret; Edger, Patrick P; Guyot, Romain; Guo, Hao-Bo; Guo, Hong; Zheng, Guangyong; Singh, Ratnesh; Sharma, Anupma; Min, Xiangjia; Zheng, Yun; Lee, Hayan; Gurtowski, James; Sedlazeck, Fritz J; Harkess, Alex; McKain, Michael R; Liao, Zhenyang; Fang, Jingping; Liu, Juan; Zhang, Xiaodan; Zhang, Qing; Hu, Weichang; Qin, Yuan; Wang, Kai; Chen, Li-Yu; Shirley, Neil; Lin, Yann-Rong; Liu, Li-Yu; Hernandez, Alvaro G; Wright, Chris L; Bulone, Vincent; Tuskan, Gerald A; Heath, Katy; Zee, Francis; Moore, Paul H; Sunkar, Ramanjulu; Leebens-Mack, James H; Mockler, Todd; Bennetzen, Jeffrey L; Freeling, Michael; Sankoff, David; Paterson, Andrew H; Zhu, Xinguang; Yang, Xiaohan; Smith, J Andrew C; Cushman, John C; Paull, Robert E; Yu, Qingyi

    2015-12-01

    Pineapple (Ananas comosus (L.) Merr.) is the most economically valuable crop possessing crassulacean acid metabolism (CAM), a photosynthetic carbon assimilation pathway with high water-use efficiency, and the second most important tropical fruit. We sequenced the genomes of pineapple varieties F153 and MD2 and a wild pineapple relative, Ananas bracteatus accession CB5. The pineapple genome has one fewer ancient whole-genome duplication event than sequenced grass genomes and a conserved karyotype with seven chromosomes from before the ρ duplication event. The pineapple lineage has transitioned from C3 photosynthesis to CAM, with CAM-related genes exhibiting a diel expression pattern in photosynthetic tissues. CAM pathway genes were enriched with cis-regulatory elements associated with the regulation of circadian clock genes, providing the first cis-regulatory link between CAM and circadian clock regulation. Pineapple CAM photosynthesis evolved by the reconfiguration of pathways in C3 plants, through the regulatory neofunctionalization of preexisting genes and not through the acquisition of neofunctionalized genes via whole-genome or tandem gene duplication.

  5. Diurnal photosynthesis and stomatal resistance in field-grown soybeans

    International Nuclear Information System (INIS)

    Miller, J.E.; Muller, R.N.; Seegers, P.

    1976-01-01

    The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature

  6. Biocatalytic photosynthesis with water as an electron donor.

    Science.gov (United States)

    Ryu, Jungki; Nam, Dong Heon; Lee, Sahng Ha; Park, Chan Beum

    2014-09-15

    Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3](2+). Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  8. Do plastic particles affect microalgal photosynthesis and growth?

    Science.gov (United States)

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Age Is Relative—Impact of Donor Age on Induced Pluripotent Stem Cell-Derived Cell Functionality

    Directory of Open Access Journals (Sweden)

    Elisabeth Tamara Strässler

    2018-01-01

    PSC-derived cells from older donors suffer early senescence or show functional impairments when compared with those from younger donors. Thus, the data would suggest that donor age does not limit iPSC application for modelling genetic diseases nor regenerative therapies. However, open questions remain, e.g., regarding the potential tumourigenicity of iPSC-derived cells and the impact of epigenetic pattern retention.

  10. Long-term effects of elevated UV-B radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata

    International Nuclear Information System (INIS)

    Haapala, Jaana K.; Moersky, Sami K.; Saarnio, Sanna; Suokanerva, Hanne; Kyroe, Esko; Silvola, Jouko; Holopainen, Toini

    2010-01-01

    The depletion of stratospheric ozone above the Arctic regions may increase the amount of UV-B radiation to which the northern ecosystems are exposed. In this paper, we examine the hypothesis that supplemental UV-B radiation may affect the growth rate and photosynthesis of boreal peatland plants and could thereby affect the carbon uptake of these ecosystems. In this study, we report the effects of 3-year exposure to elevated UV-B radiation (46% above ambient) on the photosynthetic performance and ultrastructure of a boreal sedge Eriophorum russeolum and a moss Warnstorfia exannulata. The experiment was conducted on a natural fen ecosystem at Sodankylae in northern Finland. The effects of UV-B radiation on the light response of E. russeolum CO 2 assimilation and the maximal photochemical efficiency of photosystem II in a dark-adapted state (F v /F m ) were measured in the field. In addition, the effect of supplemental UV-B radiation on organelles of photosynthetic cells was studied by electron microscopy. The UV-B treatment had no effect on the CO 2 assimilation rate of either species, nor did it affect the structure of the cell organelles. On chlorophyll fluorescence, the UV-B exposure had only a temporary effect during the third exposure year. Our results suggested that in a natural ecosystem, even long-term exposure to reasonably elevated UV-B radiation levels does not affect the photosynthesis of peatland plants. - Research highlights: →Eriophorum russeolum and Warnstorfia exannulata are resistant to UV-B radiation →UV-B exposure does not affect the growth or photosynthesis of E. russeolum →Long-term UV-B exposure has no effect on the ultrastructure of E. russeolum

  11. Cell Mergers and Their Impact on Cloud-to-Ground Lightning Over the Houston Area

    Science.gov (United States)

    Gauthier, Michael L.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic forcing of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity, CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (O 46%) in ground-flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston.

  12. Impact of Microstructure on the Photostability of Organic Bulk Heterojunction Solar Cells

    OpenAIRE

    Heumueller, Thomas

    2016-01-01

    The aim of this thesis is to understand the mechanisms of burn-in degradation in organic solar cells and show pathways to reduce burn-in and increase device lifetime. The initial blend morphology is found to play a critical role during degradation and the main focus of this thesis is on the impact of microstructure on device stability. In order to reveal how morphology influences light induced losses of the characteristic photovoltaic parameters short circuit current and open circuit voltage ...

  13. Impact of sensor metal thickness on microwave spectroscopy sensitivity for individual particles and biological cells analysis

    OpenAIRE

    Chen , Wenli; Dubuc , David; Grenier , Katia

    2016-01-01

    International audience; This paper focuses on evaluating the impact of metal thickness of a microwave coplanar based sensor dedicated to the microwave dielectric spectroscopy of single particles and individual biological cells. A sensitivity study has therefore been achieved for metal thicknesses comprised between 0.3 and 20 µm. After the validation of electromagnetic simulations with measurements of 10 μm-diameter polystyrene bead, both capacitive and conductive contrasts have been defined f...

  14. Impact of chicken thrombopoietin and its receptor c-Mpl on hematopoietic cell development

    Czech Academy of Sciences Publication Activity Database

    Bartůněk, Petr; Karafiát, Vít; Bartůňková, Jana; Pajer, Petr; Dvořáková, Marta; Králová, Jarmila; Zenke, M.; Dvořák, Michal

    2008-01-01

    Roč. 36, č. 4 (2008), s. 495-505 ISSN 0301-472X R&D Projects: GA ČR GA204/06/1728; GA MŠk(CZ) LC06061; GA MŠk(CZ) LC06077 Institutional research plan: CEZ:AV0Z50520514 Keywords : Tpo * thrombocytes * cell fate determination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.203, year: 2008

  15. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    A. Rodriguez-Brotons

    2016-01-01

    Full Text Available In bioartificial pancreases (BP, the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2 in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ/cm2 and cultured in normal atmospheric pressure (160 mmHg as well as hypoxic conditions (15 mmHg for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance.

  16. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  17. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  18. Quantum design of photosynthesis for bio-inspired solar-energy conversion

    NARCIS (Netherlands)

    Romero, Elisabet; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-01-01

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is

  19. A Forgotten Application of the Starch Test: C[subscript 4] Photosynthesis

    Science.gov (United States)

    Harley, Suzanne M.

    2013-01-01

    In many labs on photosynthesis, the presence of starch in leaves is used as an indirect indicator of photosynthetic activity. Students do starch tests on leaves from plants that have been kept under a variety of conditions in order to check parameters for photosynthesis. The starch test can also be used to enable students to discover differences…

  20. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii

    Science.gov (United States)

    Hamilton, Trinity L; Klatt, Judith M; de Beer, Dirk; Macalady, Jennifer L

    2018-01-01

    We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring—a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions. PMID:29328062

  2. An apparatus for field measurement of photosynthesis activity in plants using radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Varshney, O.P.

    1994-01-01

    An apparatus was designed for rapid and accurate determination of photosynthesis rates in the field. It was standardised with respect to exposure time during which maize leaf was exposed to 14 CO 2 labelled air and the photosynthesis rates were measured

  3. Promoting the Understanding of Photosynthesis among Elementary School Student Teachers through Text Design

    Science.gov (United States)

    Södervik, Ilona; Mikkilä-Erdmann, Mirjamaija; Vilppu, Henna

    2014-01-01

    The purpose of this study was to investigate elementary school pre-service teachers' understanding of photosynthesis and to examine if a refutational text can support understanding of photosynthesis better than a non-refutational text. A total of 91 elementary school pre-service teachers read either a refutational or a non-refutational text…

  4. Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii.

    Science.gov (United States)

    Hamilton, Trinity L; Klatt, Judith M; de Beer, Dirk; Macalady, Jennifer L

    2018-02-01

    We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring-a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H 2 S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H 2 S and irradiance; (iii) O 2 production is inhibited by H 2 S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H 2 S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.

  5. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    NARCIS (Netherlands)

    Chen, T.W.; Henke, M.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Wiechers, D.; Kahlen, K.; Stützel, H.

    2014-01-01

    Background and Aims Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different

  6. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Science.gov (United States)

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  7. Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae)

    NARCIS (Netherlands)

    van Oijen, T; van Leeuwe, MA; Gieskes, WWC; de Baar, HJW

    Iron, one of the structural elements of organic components that play an essential role in photosynthesis and nitrogen assimilation of plants, is available at extremely low concentrations in large parts of the Southern Ocean's surface waters. We tested the hypothesis that photosynthesis is the

  8. Phenotypic engineering of photosynthesis related traits in Arabidopsis thaliana using genome interrogation

    NARCIS (Netherlands)

    Tol, Niels van

    2016-01-01

    Photosynthesis is the process that harvests energy from light, and fixes it as chemical energy. It is performed by cyanobacteria, algae, and plants. The overall solar energy to biomass conversion efficiency of plant photosynthesis is widely considered to be very low. Recent models have indicated

  9. The impact of IUGR on pancreatic islet development and β-cell function.

    Science.gov (United States)

    Boehmer, Brit H; Limesand, Sean W; Rozance, Paul J

    2017-11-01

    Placental insufficiency is a primary cause of intrauterine growth restriction (IUGR). IUGR increases the risk of developing type 2 diabetes mellitus (T2DM) throughout life, which indicates that insults from placental insufficiency impair β-cell development during the perinatal period because β-cells have a central role in the regulation of glucose tolerance. The severely IUGR fetal pancreas is characterized by smaller islets, less β-cells, and lower insulin secretion. Because of the important associations among impaired islet growth, β-cell dysfunction, impaired fetal growth, and the propensity for T2DM, significant progress has been made in understanding the pathophysiology of IUGR and programing events in the fetal endocrine pancreas. Animal models of IUGR replicate many of the observations in severe cases of human IUGR and allow us to refine our understanding of the pathophysiology of developmental and functional defects in islet from IUGR fetuses. Almost all models demonstrate a phenotype of progressive loss of β-cell mass and impaired β-cell function. This review will first provide evidence of impaired human islet development and β-cell function associated with IUGR and the impact on glucose homeostasis including the development of glucose intolerance and diabetes in adulthood. We then discuss evidence for the mechanisms regulating β-cell mass and insulin secretion in the IUGR fetus, including the role of hypoxia, catecholamines, nutrients, growth factors, and pancreatic vascularity. We focus on recent evidence from experimental interventions in established models of IUGR to understand better the pathophysiological mechanisms linking placental insufficiency with impaired islet development and β-cell function. © 2017 Society for Endocrinology.

  10. I Want More and Better Cells! - An Outreach Project about Stem Cells and Its Impact on the General Population.

    Science.gov (United States)

    Varela Amaral, Sara; Forte, Teresa; Ramalho-Santos, João; Girão da Cruz, M Teresa

    2015-01-01

    Although science and technology impact every aspect of modern societies, there is still an extensive gap between science and society, which impairs the full exercise of citizenship. In the particular case of biomedical research increased investment should be accompanied by parallel efforts in terms of public information and engagement. We have carried out a project involving the production and evaluation of educational contents focused on stem cells - illustrated newspaper chronicles, radio interviews, a comic book, and animated videos - and monitored their impact on the Portuguese population. The study of the outreach materials in a heterogeneous sample of the population suggests that they are valuable tools to disseminate scientific messages, and that this is especially true for the comic-book format. Furthermore, the data showed that clear and stimulating outreach materials, that are able to teach new concepts and to promote critical thinking, increase engagement in science at different levels, depending on the depth of the concepts involved. Additionally, these materials can influence political, social and personal attitudes toward science. These results, together with the importance attributed to scientific research in stem cells by the population sampled, validates the diffusion of such materials as a significant contribution towards an overall public understanding and engagement in contemporary science, and this strategy should thus be considered in future projects. Regardless, stringent quality control must be implemented in order to efficiently communicate accurate scientific developments, and the public stimulated in terms of finding additional sources of reliable information.

  11. I Want More and Better Cells! – An Outreach Project about Stem Cells and Its Impact on the General Population

    Science.gov (United States)

    Varela Amaral, Sara; Forte, Teresa; Ramalho-Santos, João; Girão da Cruz, M. Teresa

    2015-01-01

    Although science and technology impact every aspect of modern societies, there is still an extensive gap between science and society, which impairs the full exercise of citizenship. In the particular case of biomedical research increased investment should be accompanied by parallel efforts in terms of public information and engagement. We have carried out a project involving the production and evaluation of educational contents focused on stem cells - illustrated newspaper chronicles, radio interviews, a comic book, and animated videos - and monitored their impact on the Portuguese population. The study of the outreach materials in a heterogeneous sample of the population suggests that they are valuable tools to disseminate scientific messages, and that this is especially true for the comic-book format. Furthermore, the data showed that clear and stimulating outreach materials, that are able to teach new concepts and to promote critical thinking, increase engagement in science at different levels, depending on the depth of the concepts involved. Additionally, these materials can influence political, social and personal attitudes toward science. These results, together with the importance attributed to scientific research in stem cells by the population sampled, validates the diffusion of such materials as a significant contribution towards an overall public understanding and engagement in contemporary science, and this strategy should thus be considered in future projects. Regardless, stringent quality control must be implemented in order to efficiently communicate accurate scientific developments, and the public stimulated in terms of finding additional sources of reliable information. PMID:26222053

  12. Photosynthesis, plant growth and nitrogen nutrition in Alaskan tussock tundra: Response to experimental warming

    Science.gov (United States)

    Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.

    2009-12-01

    Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in

  13. The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions.

    NARCIS (Netherlands)

    Schutter, M.; Velthoven, van B.; Janse, M.; Osinga, R.; Janssen, M.G.J.; Wijffels, R.H.; Verreth, J.A.J.

    2008-01-01

    The relation between irradiance, skeletal growth and net photosynthesis was studied for the scleractinian coral Galaxea fascicularis to provide experimental evidence for mediation of light-enhanced calcification through photosynthesis. The hypothesis was tested that skeletal growth and

  14. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    Science.gov (United States)

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The impact of pregnancy on the HIV-1-specific T cell function in infected pregnant women.

    Science.gov (United States)

    Hygino, Joana; Vieira, Morgana M; Kasahara, Taissa M; Xavier, Luciana F; Blanco, Bernardo; Guillermo, Landi V C; Filho, Renato G S; Saramago, Carmen S M; Lima-Silva, Agostinho A; Oliveira, Ariane L; Guimarães, Vander; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-12-01

    Evidences indicate that pregnancy can alter the Ag-specific T-cell responses. This work aims to evaluate the impact of pregnancy on the in vitro HIV-1-specific immune response. As compared with non-pregnant patients, lower T-cell proliferation and higher IL-10 production were observed in T-cell cultures from pregnant patients following addition of either mitogens or HIV-1 antigens. In our system, the main T lymphocyte subset involved in producing IL-10 was CD4(+)FoxP3(-). Depletion of CD4(+) cells elevated TNF-α and IFN-γ production. Interestingly, the in vitro HIV-1 replication was lower in cell cultures from pregnant patients, and it was inversely related to IL-10 production. In these cultures, the neutralization of IL-10 by anti-IL-10 mAb elevated TNF-α release and HIV-1 replication. In conclusion, our results reveal that pregnancy-related events should favor the expansion of HIV-1-specific IL-10-secreting CD4(+) T-cells in HIV-1-infected women, which should, in the scenario of pregnancy, help to reduce the risk of vertical HIV-1 transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K.; MacCuspie, Robert I.; Jeerage, Kavita M.

    2015-01-01

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  17. Timescale of silver nanoparticle transformation in neural cell cultures impacts measured cell response

    Energy Technology Data Exchange (ETDEWEB)

    Hume, Stephanie L.; Chiaramonti, Ann N.; Rice, Katherine P.; Schwindt, Rani K. [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States); MacCuspie, Robert I. [National Institute of Standards and Technology (NIST), Materials Measurement Science Division (United States); Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division (United States)

    2015-07-15

    Both serum protein concentration and ionic strength are important factors in nanoparticle transformation within cell culture environments. However, silver nanoparticles are not routinely tracked at their working concentration in the specific medium used for in vitro toxicology studies. Here we evaluated the transformation of electrostatically stabilized citrate nanoparticles (C-AgNPs) and sterically stabilized polyvinylpyrrolidone nanoparticles (PVP-AgNPs) in a low-serum (∼ 0.2 mg/mL bovine serum albumin) culture medium, while measuring the response of rat cortex neural progenitor cells, which differentiate in this culture environment. After 24 h, silver nanoparticles at concentrations up to 10 µg/mL did not affect adenosine triphosphate levels, whereas silver ions decreased adenosine triphosphate levels at concentrations of 1.1 µg/mL or higher. After 240 h, both silver nanoparticles, as well as silver ion, unambiguously decreased adenosine triphosphate levels at concentrations of 1 and 1.1 µg/mL, respectively, suggesting particle dissolution. Particle transformation was investigated in 1:10 diluted, 1:2 diluted, or undiluted differentiation medium, all having an identical protein concentration, to separate the effect of serum protein stabilization from ionic strength destabilization. Transmission electron microscopy images indicated that particles in 1:10 medium were not surrounded by proteins, whereas particles became clustered within a non-crystalline protein matrix after 24 h in 1:2 medium and at 0 h in undiluted medium. Despite evidence for a protein corona, particles were rapidly destabilized by high ionic strength media. Polyvinylpyrrolidone increased the stability of singly dispersed particles compared to citrate ligands; however, differences were negligible after 4 h in 1:2 medium or after 1 h in undiluted medium. Thus low-serum culture environments do not provide sufficient colloidal stability for long-term toxicology studies with citrate

  18. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Local impact of humidification on degradation in polymer electrolyte fuel cells

    Science.gov (United States)

    Sanchez, Daniel G.; Ruiu, Tiziana; Biswas, Indro; Schulze, Mathias; Helmly, Stefan; Friedrich, K. Andreas

    2017-06-01

    The water level in a polymer electrolyte membrane fuel cell (PEMFC) affects the durability as is seen from the degradation processes during operation a PEMFC with fully- and nonhumidified gas streams as analyzed using an in-situ segmented cell for local current density measurements during a 300 h test operating under constant conditions and using ex situ SEM/EDX and XPS post-test analysis of specific regions. The impact of the RH on spatial distribution of the degradation process results from different water distribution giving different chemical environments. Under nonhumidified gas streams, the cathode inlet region exhibits increased degradation, whereas with fully humidified gases the bottom of the cell had the higher performance losses. The degradation and the degree of reversibility produced by Pt dissolution, PTFE defluorination, and contaminants such as silicon (Si) and nickel (Ni) were locally evaluated.

  20. Impact of fetal and neonatal environment on beta cell function and development of diabetes

    DEFF Research Database (Denmark)

    Nielsen, Jens H; Haase, Tobias N; Jaksch, Caroline

    2014-01-01

    on the beta cells in both the mother and the fetus and how various conditions like diabetes, obesity, overnutrition and undernutrition during and after pregnancy may influence the ability of the offspring to adapt to changes in insulin demand later in life. The influence of environmental factors including...... that the intrauterine environment during pregnancy has an impact on the gene expression that may persist until adulthood and cause metabolic diseases like obesity and type 2 diabetes. As the pancreatic beta cells are crucial in the regulation of metabolism this article will describe the influence of normal pregnancy...... nutrients and gut microbiota on appetite regulation, mitochondrial activity and the immune system that may affect beta cell growth and function directly and indirectly is discussed. The possible role of epigenetic changes in the transgenerational transmission of the adverse programming may be the most...