WorldWideScience

Sample records for cell performance characteristics

  1. Effects of dimethyl ether on the performance characteristics of a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Seo, Sang Hern; Lee, Chang Sik

    2013-01-01

    Highlights: • Activation loss is significantly reduced in fuel cell with DME-methanol. • DME crossover through the membrane reduces. • The open circuit voltage of DME-methanol the fuel cell increases. • The overall efficiency of the mixed fuel cell is higher than that of DMFC. - Abstract: The objective of this study was to determine the effects of dimethyl ether (DME) on the performance characteristics of a direct methanol fuel cell. Impedance and crossover experiments were performed in order to investigate the performance losses such as ohmic loss, activation loss and crossover loss accurately. The DME was pressurized to 5 bar to supply with liquid phase was and blended with an aqueous methanol solution. In this experiment, the membrane electrode assembly (MEA) was composed of Nafion 115, anode catalyst loaded Pt–Ru and cathode catalyst loaded Pt-Black. Experimental results showed that fuel cells with DME-methanol enhanced performance when compared to fuel cells with methanol only. Such performance enhancement was due to a decrease in activation losses by DME oxidation reactions. As the DME crossover through the membrane was reduced, the open circuit voltage (OCV) of the fuel cell increased. Other output characteristics are also discussed

  2. Performance characteristics and parametric choices of a solar thermophotovoltaic cell at the maximum efficiency

    International Nuclear Information System (INIS)

    Dong, Qingchun; Liao, Tianjun; Yang, Zhimin; Chen, Xiaohang; Chen, Jincan

    2017-01-01

    Graphical abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. - Highlights: • A new model of the irreversible solar thermophotovoltaic system is proposed. • The material and structure parameters of the system are considered. • The performance characteristics at the maximum efficiency are revealed. • The optimal values of key parameters are determined. • The system can obtain a large efficiency under a relative low concentration ratio. - Abstract: The overall model of the solar thermophotovoltaic cell (STPVC) composed of an optical lens, an absorber, an emitter, and a photovoltaic (PV) cell with an integrated back-side reflector is updated to include various irreversible losses. The power output and efficiency of the cell are analytically derived. The performance characteristics of the STPVC at the maximum efficiency are revealed. The optimum values of several important parameters, such as the voltage output of the PV cell, the area ratio of the absorber to the emitter, and the band-gap of the semiconductor material, are determined. It is found that under the condition of a relative low concentration ratio, the optimally designed STPVC can obtain a relative large efficiency.

  3. Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Su Ay; Ferng, Yuh Ming; Shih, Jah Ching

    2009-01-01

    This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal-hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.

  4. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  5. Effects of pentacene-doped PEDOT:PSS as a hole-conducting layer on the performance characteristics of polymer photovoltaic cells

    OpenAIRE

    Kim, Hyunsoo; Lee, Jungrae; Ok, Sunseong; Choe, Youngson

    2012-01-01

    We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDO...

  6. CFD method research on characteristics cells in rod bundle fuel assembly

    International Nuclear Information System (INIS)

    Chen Jie; Chen Bingyan; Zhang Hong

    2011-01-01

    Two characteristic cells are in AFA-3G fuel assembly, that is typical cell and control rod guide cell. And there are some rules on the arrangement of mixing vanes. For the two characteristic cells, mixing capability is evaluated axially from the point of the first and second kind of sub-channel with CFD method. Mass mixing and heat mixing are interaction but different with each other. Although the mass mixing in the first kind of sub-channel is stronger, the thermal capability of the two is to some tune from the point of heat transfer. In the experiment research on thermal-hydraulic performance of AFA-3G fuel assembly, the arrangements of mixing vanes should refer to the two spacer grids of characteristic cells. (authors)

  7. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  8. EXPERIMENTAL ANALYSIS OF THE CHARACTERISTIC PERFORMANCE OF STANDALONE PHOTOVOLTAIC SYSTEM

    OpenAIRE

    Birendra Kishore; Anirban Nandy*; O.P. Pandey

    2016-01-01

    This paper demonstrates an insight solar PV Stand Alone system which is a practical model with a halogen light source. At different situations the performance of solar PV cells are analyzed. The system produces power with depending on the change in halogen light intensity & temperature. A theoretical & experimental analysis of the PV cell can be achieved. In this paper the I-V & P-V characteristic of the solar photovoltaic cells with changes in temperature and isolation have been showed. With...

  9. Suns-VOC characteristics of high performance kesterite solar cells

    Science.gov (United States)

    Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.

    2014-08-01

    Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.

  10. Rheological characteristics of cell suspension and cell culture of Perilla frutescens.

    Science.gov (United States)

    Zhong, J J; Seki, T; Kinoshita, S; Yoshida, T

    1992-12-05

    Physical properties such as viscosity, fluid dynamic behavior of cell suspension, and size distribution of cell aggregates of a plant, Perilla frustescens, cultured in a liquid medium were studied. As a result of investigations using cells harvester after 12 days of cultivation in a flask, it was found that the apparent viscosity of the cell suspension did not change with any variation of cell concentration below 5 g dry cell/L but markedly increased when the cell concentration increased over 12.8 g dry cell/L. The cell suspension exhibited the characteristics of a Bingham plastic fluid with a small yield stress. The size of cell aggregates in the range 74 to 500 mum did not influence the rheological characteristics of the cell suspension. The rheological characteristics of cultivation mixtures of P. frutescens cultivated in a flask and in a bioreactor were also investigated. The results showed that the flow characteristics of the cell culture could be described by a Bingham plastic model. At the later stage of cultivation, the apparent viscosity increased steadily, even though the biomass concentration (by dry weight) decreased, due to the increase of individual cell size. (c) 1992 John Wiley & Sons, Inc.

  11. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  12. Influence of Electrodes Characteristics on The Performance of a Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Muhammad Hadi Radi

    2017-07-01

    Full Text Available A single chamber microbial fuel cell is designed incorporating microorganism as catalyst with Escherichia coli, Staphylococcus, Kelbssila bacteria as an electrolyte at pH =7 and an operating temperature of 30 C0 in batch mode. The electrodes are made of three different types of materials, namely; aluminum, copper and zinc. Each material is configurated at three different shape (circle, rectangle and square in three different cross sectional areas of (3.14,7.065and 12.56cm2. The distance between anode and cathode is fixed at different values of 0.5,1,2,4 and 6cm. Results indicate that electrodes of circular shape show the best performance among other shapes investigated in this study, however the area of the anode is found to affect the cell performance more than its shape. Using zinc as an anode material and copper as a cathode in circular shape with cross sectional area of 12.56 cm2 and a 2 cm distance between them output the best performance in comparison to other combinations investigated in this study.

  13. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Li, Ming; Ji, Xu; Li, Guoliang; Wei, Shengxian; Li, YingFeng; Shi, Feng

    2011-01-01

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances R s changed from 0 Ω to 1 Ω, the maximum power P m of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower

  14. Exponential characteristic spatial quadrature for discrete ordinates radiation transport with rectangular cells

    International Nuclear Information System (INIS)

    Minor, B.; Mathews, K.

    1995-01-01

    The exponential characteristic (EC) spatial quadrature for discrete ordinates neutral particle transport previously introduced in slab geometry is extended here to x-y geometry with rectangular cells. The method is derived and compared with current methods. It is similar to the linear characteristic (LC) quadrature (a linear-linear moments method) but differs by assuming an exponential distribution of the scattering source within each cell, S(x) = a exp(bx + cy), whose parameters are rootsolved to match the known (from the previous iteration) spatial average and first moments of the source over the cell. Similarly, EC assumes exponential distributions of flux along cell edges through which particles enter the cell, with parameters chosen to match the average and first moments of flux, as passed from the adjacent, upstream cells (or as determined by boundary conditions). Like the linear adaptive (LA) method, EC is positive and nonlinear. It is more accurate than LA and does not require subdivision of cells. The nonlinearity has not interfered with convergence. The exponential moment functions, which were introduced with the slab geometry method, are extended to arbitrary dimensions (numbers of arguments) and used to avoid numerical ill conditioning. As in slab geometry, the method approaches O(Δx 4 ) global truncation error on fine-enough meshes, while the error is insensitive to mesh size for coarse meshes. Performance of the method is compared with that of the step characteristic, LC, linear nodal, step adaptive, and LA schemes. The EC method is a strong performer with scattering ratios ranging from 0 to 0.9 (the range tested), particularly so for lower scattering ratios. As in slab geometry, EC is computationally more costly per cell than current methods but can be accurate with very thick cells, leading to increased computational efficiency on appropriate problems

  15. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    International Nuclear Information System (INIS)

    Dang, Hien; Ding, Wei; Emerson, Dow; Rountree, C Bart

    2011-01-01

    Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT. Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. In vivo tumor assay was performed to investigate the role of Snail1 in tumor initiation. TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of Snail1 in mesenchymal cells results in decreased Nanog promoter luciferase activity and loss of self-renewal characteristics in vitro. These changes confirm the direct role of Snail1 in some TISC traits. In vivo, the down-regulation of Snail1 reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates Nanog expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation

  16. Developing countries SMEs innovation characteristics and performance

    DEFF Research Database (Denmark)

    Vang, Jan; Rezaei, Shahamak; Baklanov, Nikita

    An econometric study analysing developing countries’ SMEs innovation characteristics and their correlation with performance.......An econometric study analysing developing countries’ SMEs innovation characteristics and their correlation with performance....

  17. MODEL OF EMERGENCY DEPARTMENT NURSE PERFORMANCE IMPROVEMENT BASED ON ASSOCIATION OF INDIVIDUAL CHARACTERISTIC, ORGANIZATION CHARACTERISTIC AND JOB CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    Maria Margaretha Bogar

    2017-04-01

    Full Text Available Introduction: Nursing care is integral part of health care and having important role in management of patient with emergency condition. The purpose of this research was to develop nurse performance improvement model based on individual, organization and job characteristics association in Emergency Department of RSUD dr TC Hillers Maumere. Method: This was an explanative survey by cross sectional approach held on July -August 2012. Respondents in this study were 22 nurses and 44 patients were obtained by purposive sampling technique. Data were analyzed by partial least square test and signi fi cant t value > 1.64 (alpha 10%. Result: Results showed that individual characteristic had effect on nurse performance (t = 7.59, organization characteristic had effect on nurse performance (t = 2.03 and job characteristic didn’t have effect on nurse performance (t = 0.88. Nurse performance had effect on patient satisfaction (t = 6.54 but nurse satisfaction didn’t have effect on nurse performance (t = 1.31, and nurse satisfaction didn’t have effect either on patient satisfaction (t = 0.94. Discussion: This research concluded that individual characteristics which in fl uence nurse performance in nursing care were ability and skill, experience, age, sex, attitude and motivation. Organization characteristic that influence nurse performance was reward while job characteristic that include job design and feedback didn’t influence nurse performance in nursing care. Nurse performance influenced patient satisfaction but nurse satisfaction didn’t influence patient satisfaction and nurse performance.

  18. Board characteristics, governance objectives, and hospital performance

    DEFF Research Database (Denmark)

    Thiel, Andrea; Winter, Vera; Büchner, Vera Antonia

    2018-01-01

    membership relates to board characteristics and financial performance. METHODOLOGY: Using factor analysis, we identify latent classes of governance objectives and use hierarchical cluster analysis to detect distinct clusters with varying emphasis on the classes. We then use multinomial regression to explore...... the associations between cluster membership and board characteristics (size, gender diversity, and occupational diversity) and examine the associations between clusters and financial performance using OLS regression. RESULTS: Classes of objectives reflecting three governance theories-agency theory, stewardship...... and hospital financial performance, with two of three groups performing significantly better than the reference group. CONCLUSION: High performance in hospitals can be the result of governance logics, which, compared to simple board characteristics, are associated with better financial outcomes. PRACTICE...

  19. The effect of partial shading on dye-sensitized solar cell module characteristics

    International Nuclear Information System (INIS)

    Pan, Bin; Weng, Jian; Chen, Shuanghong; Huang, Yang; Dai, Songyuan

    2014-01-01

    The dye-sensitized solar cell (DSC) is a kind of novel solar cell with prospects for building integrated photovoltaic applications. In some situations, a DSC module may work under partial shading conditions, and subsequently the module temperature and I–V characteristics change. In this work, the effect of partial shading on DSC module characteristics is experimentally studied and the temperature and electric output of the partially shaded DSC module are measured. The variations of module temperature and output performance are analyzed under short circuit conditions and a normal operating mode of charging battery. Furthermore, the stability of the partially shaded DSC module is also evaluated. It is found that the temperature rise of the DSC module caused by partial shading is slower and much smaller than the silicon solar cell, and the characteristics of the single DSC that suffered from short-term shading remain stable. For a DSC module operating in charging mode, the maximum power point and working point change when a shadow appears. (paper)

  20. Effects of cadmium electrode properties on nickel-cadmium cell performance

    International Nuclear Information System (INIS)

    Zimmerman, A.H.

    1986-01-01

    Tests have been conducted on a number of nickel-cadmium cells that have exhibited a variety of performance problems, ranging from high voltages and pressures during overcharge to low capacity. The performance problems that have been specifically linked to the cadmium electrode are primarily related to two areas, poor sinter and the buildup of excessive pressure during overcharge. A number of specific nickel-cadmium cell and cadmium electrode characterists have been studied in this work to determine what the effects of poor sinter are, and to determine what factors are important in causing excessive pressures during overcharge in cells that otherwise appear normal. Several of the tests appear suitable for screening cells and electrodes for such problems

  1. Diffusion layer characteristics for increasing the performance of activated carbon air cathodes in microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan; He, Weihua; Yang, Wulin; Liu, Jia; Wang, Qiuying; Liang, Peng; Huang, Xia; Logan, Bruce E.

    2016-01-01

    The characteristics of several different types of diffusion layers were systematically examined to improve the performance of activated carbon air cathodes used in microbial fuel cells (MFCs). A diffusion layer of carbon black and polytetrafluoroethylene (CB + PTFE) that was pressed onto a stainless steel mesh current collector achieved the highest cathode performance. This cathode also had a high oxygen mass transfer coefficient and high water pressure tolerance (>2 m), and it had the highest current densities in abiotic chronoamperometry tests compared to cathodes with other diffusion layers. In MFC tests, this cathode also produced maximum power densities (1610 ± 90 mW m−2) that were greater than those of cathodes with other diffusion layers, by 19% compared to Gore-Tex (1350 ± 20 mW m−2), 22% for a cloth wipe with PDMS (1320 ± 70 mW m−2), 45% with plain PTFE (1110 ± 20 mW m−2), and 19% higher than those of cathodes made with a Pt catalyst and a PTFE diffusion layer (1350 ± 50 mW m−2). The highly porous diffusion layer structure of the CB + PTFE had a relatively high oxygen mass transfer coefficient (1.07 × 10−3 cm s−1) which enhanced oxygen transport to the catalyst. The addition of CB enhanced cathode performance by increasing the conductivity of the diffusion layer. Oxygen mass transfer coefficient, water pressure tolerance, and the addition of conductive particles were therefore critical features for achieving higher performance AC air cathodes.

  2. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Yulong Zhang

    2018-05-01

    Full Text Available High performance silicon combined structure (micropillar with Cu nanoparticles solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  3. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Science.gov (United States)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  4. Integrated Solid Oxide Fuel Cell Power System Characteristics Prediction

    Directory of Open Access Journals (Sweden)

    Marian GAICEANU

    2009-07-01

    Full Text Available The main objective of this paper is to deduce the specific characteristics of the CHP 100kWe Solid Oxide Fuel Cell (SOFC Power System from the steady state experimental data. From the experimental data, the authors have been developed and validated the steady state mathematical model. From the control room the steady state experimental data of the SOFC power conditioning are available and using the developed steady state mathematical model, the authors have been obtained the characteristic curves of the system performed by Siemens-Westinghouse Power Corporation. As a methodology the backward and forward power flow analysis has been employed. The backward power flow makes possible to obtain the SOFC power system operating point at different load levels, resulting as the load characteristic. By knowing the fuel cell output characteristic, the forward power flow analysis is used to predict the power system efficiency in different operating points, to choose the adequate control decision in order to obtain the high efficiency operation of the SOFC power system at different load levels. The CHP 100kWe power system is located at Gas Turbine Technologies Company (a Siemens Subsidiary, TurboCare brand in Turin, Italy. The work was carried out through the Energia da Ossidi Solidi (EOS Project. The SOFC stack delivers constant power permanently in order to supply the electric and thermal power both to the TurboCare Company and to the national grid.

  5. Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes

    International Nuclear Information System (INIS)

    Brennan, Charles R.; Miller, Rodney L.; Mathews, Kirk A.

    2001-01-01

    The nonlinear, exponential characteristic (EC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. The split-cell approach developed for the linear characteristic (LC) method on such meshes is used. Exponential distributions of the source within a cell and of the inflow flux on upstream faces of the cell are assumed. The coefficients of these distributions are determined by nonlinear root solving so as to match the zeroth and first moments of the source or entering flux. Good conditioning is achieved by casting the formulas for the moments of the source, inflow flux, and solution flux as sums of positive functions and by using accurate and robust algorithms for evaluation of those functions. Various test problems are used to compare the performance of the EC and LC methods. The EC method is somewhat less accurate than the LC method in regions of net out leakage but is strictly positive and retains good accuracy with optically thick cells, as in shielding problems, unlike the LC method. The computational cost per cell is greater for the EC method, but the use of substantially coarser meshes can make the EC method less expensive in total cost. The EC method, unlike the LC method, may fail if negative cross sections or angular quadrature weights are used. It is concluded that the EC and LC methods should be practical, reliable, and complimentary schemes for these meshes

  6. Muscle Fiber Characteristics, Satellite Cells and Soccer Performance in Young Athletes

    Directory of Open Access Journals (Sweden)

    Thomas I. Metaxas, Athanasios Mandroukas, Efstratios Vamvakoudis, Kostas Kotoglou, Björn Ekblom, Konstantinos Mandroukas

    2014-09-01

    Full Text Available This study is aimed to examine the muscle fiber type, composition and satellite cells in young male soccer players and to correlate them to cardiorespiratory indices and muscle strength. The participants formed three Groups: Group A (n = 13, 11.2 ± 0.4yrs, Group B (n=10, 13.1 ± 0.5yrs and Group C (n = 9, 15.2 ± 0.6yrs. Muscle biopsies were obtained from the vastus lateralis. Peak torque values of the quadriceps and hamstrings were recorded and VO2max was measured on the treadmill. Group C had lower type I percentage distribution compared to A by 21.3% (p < 0.01, while the type IIA relative percentage was higher by 18.1% and 18.4% than in Groups A and B (p < 0.05. Groups B and C had higher cross-sectional area (CSA values in all fiber types than in Group A (0.05 < p < 0.001. The number of satellite cells did not differ between the groups. Groups B and C had higher peak torque at all angular velocities and absolute VO2max in terms of ml·min-1 than Group A (0.05 < p < 0.001. It is concluded that the increased percentage of type IIA muscle fibers noticed in Group C in comparison to the Groups A and B should be mainly attributed to the different workload exercise and training programs. The alteration of myosin heavy chain (MHC isoforms composition even in children is an important mechanism for skeletal muscle characteristics. Finally, CSA, isokinetic muscle strength and VO2max values seems to be expressed according to age.

  7. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC

    International Nuclear Information System (INIS)

    Su, A.; Ferng, Y.M.; Shih, J.C.

    2010-01-01

    The effects of different operating conditions on the performance and the characteristics of a high-temperature proton exchange membrane fuel cell (PEMFC) are investigated using a three-dimensional (3-D) computational fluid dynamics (CFD) fuel-cell model. This model consists of the thermal-hydraulic equations and the electrochemical equations. Different operating conditions studied in this paper include the inlet gas temperature, system pressure, and inlet gas flow rate, respectively. Corresponding experiments are also carried out to assess the accuracy of this CFD model. Under the different operating conditions, the PEMFC performance curves predicted by the model correspond well with the experimentally measured ones. The performance of PEMFC is improved as the increase in the inlet temperature, system pressure or flow rate, which is precisely captured by the CFD fuel cell model. In addition, the concentration polarization caused by the insufficient supply of fuel gas can be also simulated as the high-temperature PEMFC is operated at the higher current density. Based on the calculation results, the localized thermal-hydraulic characteristics within a PEMFC can be reasonably captured. These characteristics include the fuel gas distribution, temperature variation, liquid water saturation distribution, and membrane conductivity, etc.

  8. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, C.-J., E-mail: cjtseng@ncu.edu.t [Department of Mechanical Engineering, National Central University, Chungli, Taoyuan 320, Taiwan (China); Lo, S.-K. [Department of Mechanical Engineering, National Central University, Chungli, Taoyuan 320, Taiwan (China)

    2010-04-15

    Water management is an important issue in proton exchange membrane (PEM) fuel cell design and operation. The purpose of this work is to investigate the effects of the microstructure characteristics of the gas diffusion layer (GDL) and microporous layer (MPL), including pore size distribution, hydrophobic treatment, gas permeability, and other factors, on the water management and performance of a PEM fuel cell. A commercial catalyst-coated membrane with an active area of 25 cm{sup 2} is used along with a GDL and an MPL for assembling a single cell. The effects of the MPL, the thickness of the MPL, the PTFE loading of carbon paper and MPL, and the baking time of the MPL have been investigated. Results show that the addition of MPL increases cell performance in the high current density region due to the elimination of mass transfer limitation. There exists an optimum thickness of MPL. Furthermore, increasing the MPL baking time enhances cell performance due to enlarged pore size and permeability.

  9. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Chung-Jen Tseng; Shih-Kun Lo [Department of Mechanical Engineering, National Central University, Chungli, Taoyuan 320 (China)

    2010-04-15

    Water management is an important issue in proton exchange membrane (PEM) fuel cell design and operation. The purpose of this work is to investigate the effects of the microstructure characteristics of the gas diffusion layer (GDL) and microporous layer (MPL), including pore size distribution, hydrophobic treatment, gas permeability, and other factors, on the water management and performance of a PEM fuel cell. A commercial catalyst-coated membrane with an active area of 25 cm{sup 2} is used along with a GDL and an MPL for assembling a single cell. The effects of the MPL, the thickness of the MPL, the PTFE loading of carbon paper and MPL, and the baking time of the MPL have been investigated. Results show that the addition of MPL increases cell performance in the high current density region due to the elimination of mass transfer limitation. There exists an optimum thickness of MPL. Furthermore, increasing the MPL baking time enhances cell performance due to enlarged pore size and permeability. (author)

  10. Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC

    International Nuclear Information System (INIS)

    Tseng, C.-J.; Lo, S.-K.

    2010-01-01

    Water management is an important issue in proton exchange membrane (PEM) fuel cell design and operation. The purpose of this work is to investigate the effects of the microstructure characteristics of the gas diffusion layer (GDL) and microporous layer (MPL), including pore size distribution, hydrophobic treatment, gas permeability, and other factors, on the water management and performance of a PEM fuel cell. A commercial catalyst-coated membrane with an active area of 25 cm 2 is used along with a GDL and an MPL for assembling a single cell. The effects of the MPL, the thickness of the MPL, the PTFE loading of carbon paper and MPL, and the baking time of the MPL have been investigated. Results show that the addition of MPL increases cell performance in the high current density region due to the elimination of mass transfer limitation. There exists an optimum thickness of MPL. Furthermore, increasing the MPL baking time enhances cell performance due to enlarged pore size and permeability.

  11. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements.

    Science.gov (United States)

    Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T

    2018-05-09

    III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.

  12. Study of double porous silicon surfaces for enhancement of silicon solar cell performance

    Science.gov (United States)

    Razali, N. S. M.; Rahim, A. F. A.; Radzali, R.; Mahmood, A.

    2017-09-01

    In this work, design and simulation of double porous silicon surfaces for enhancement of silicon solar cell is carried out. Both single and double porous structures are constructed by using TCAD ATHENA and TCAD DEVEDIT tools of the SILVACO software respectively. After the structures were created, I-V characteristics and spectral response of the solar cell were extracted using ATLAS device simulator. Finally, the performance of the simulated double porous solar cell is compared with the performance of both single porous and bulk-Si solar cell. The results showed that double porous silicon solar cell exhibited 1.8% efficiency compared to 1.3% and 1.2% for single porous silicon and bulk-Si solar cell.

  13. Evolution of Quality Assurance for Clinical Immunohistochemistry in the Era of Precision Medicine - Part 2: Immunohistochemistry Test Performance Characteristics

    NARCIS (Netherlands)

    Torlakovic, E.E.; Cheung, C.C.; D'Arrigo, C.; Dietel, M.; Francis, G.D.; Gilks, C.B.; Hall, J.A.; Hornick, J.L.; IBRAHIM, M.; Marchetti, A.; Miller, K.; Krieken, J.H.J.M. van; Nielsen, S.; Swanson, P.E.; Vyberg, M.; Zhou, X.; Taylor, C.R.

    2017-01-01

    All laboratory tests have test performance characteristics (TPCs), whether or not they are explicitly known to the laboratorian or the pathologist. TPCs are thus also an integral characteristic of immunohistochemistry (IHC) tests and other in situ, cell-based molecular assays such as DNA or RNA in

  14. Research about reactor operator's personality characteristics and performance

    International Nuclear Information System (INIS)

    Wei Li; He Xuhong; Zhao Bingquan

    2003-01-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  15. Breakdown Characteristics Study on an 18 Cell X-band Structure

    International Nuclear Information System (INIS)

    Wang, F

    2008-01-01

    A CLIC designed 18 cells, low group velocity (2.4% to 1.0% c), X-band (11.4 GHz) accelerator structure (denoted T18) was designed at CERN, its cells were built at KEK, and it was assembled and tested at SLAC. An interesting feature of this structure is that the gradient in the last cell is about 50% higher than that in the first cell. This structure has been RF conditioned at SLAC NLCTA for about 1400 hours where it incurred about 2200 breakdowns. This paper presents the characteristics of these breakdowns, including (1) the breakdown rate dependence on gradient, pulse width and conditioning time, (2) the breakdown distribution along the structure, (3) relation between breakdown and pulsed heating dependence study and (4) electric field decay time for breakdown changing over the whole conditioning time. Overall, this structure performed very well, having a final breakdown rate of less than 1e-6/pulse/m at 106 MV/m with 230 ns pulse width

  16. Breakdown Characteristics Study on an 18 Cell X-band Structure

    International Nuclear Information System (INIS)

    Wang Faya

    2009-01-01

    A CLIC designed 18 cells, low group velocity (2.4% to 1.0% c), X-band (11.4 GHz) accelerator structure (denoted T18) was designed at CERN, its cells were built at KEK, and it was assembled and tested at SLAC. An interesting feature of this structure is that the gradient in the last cell is about 50% higher than that in the first cell. This structure has been RF conditioned at SLAC NLCTA for about 1400 hours where it incurred about 2200 breakdowns. This paper presents the characteristics of these breakdowns, including 1) the breakdown rate dependence on gradient, pulse width and conditioning time, 2) the breakdown distribution along the structure, 3) relation between breakdown and pulsed heating dependence study and 4) electric field decay time for breakdown changing over the whole conditioning time. Overall, this structure performed very well, having a final breakdown rate of less than 1e-6/pulse/m at 106 MV/m with 230 ns pulse width.

  17. Performance evaluation and parametric optimum design of a molten carbonate fuel cell-thermophotovoltaic cell hybrid system

    International Nuclear Information System (INIS)

    Yang, Zhimin; Liao, Tianjun; Zhou, Yinghui; Lin, Guoxing; Chen, Jincan

    2016-01-01

    Highlights: • A molten carbonate fuel cell-thermophotovoltaic cell hybrid system is established. • The performance characteristics of the hybrid system are systematically evaluated. • The optimal regions of the power output density and efficiency are determined. • The values of key parameters at the maximum power output density are calculated. • The proposed system is proved to have advantages over other hybrid systems. - Abstract: A new model of the hybrid system composed of a molten carbonate fuel cell (MCFC) and a thermophotovoltaic cell (TPVC) is proposed to recovery the waste heat produced by the MCFC. Expressions for the power output and the efficiency of the hybrid system are analytically derived. The performance characteristics of the hybrid system are evaluated. It is found that when the current density of the MCFC, voltage output of the TPVC, electrode area ratio of the MCFC to the TPVC, and energy gap of the material in the photovoltaic cell are optimally chosen, the maximum power output density of the hybrid system is obviously larger than that of the single MCFC. Moreover, the improved percentages of the maximum power output density of the proposed model relative to that of the single MCFC are calculated for differently operating temperatures of the MCFC and are compared with those of some MCFC-based hybrid systems reported in the literature, and consequently, the advantages of the MCFC-TPVC hybrid system are revealed.

  18. Binding Characteristics Of Ivermectin To Blood Cells | Nweke ...

    African Journals Online (AJOL)

    The binding characteristics of Ivermectin were determined using scatchard plots. The percentage binding to platelet rich plasma, white blood cells and red blood cells were 90.00 + 1.00, 96-90 + 1.05 and 46.20 + 1.10 S.D respectively. It was found to bind the highest to white blood cells and the least to red blood cells.

  19. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    Directory of Open Access Journals (Sweden)

    Sang Soon Hwang

    2009-11-01

    Full Text Available In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  20. Effects of pentacene-doped PEDOT:PSS as a hole-conducting layer on the performance characteristics of polymer photovoltaic cells.

    Science.gov (United States)

    Kim, Hyunsoo; Lee, Jungrae; Ok, Sunseong; Choe, Youngson

    2012-01-05

    We have investigated the effect of pentacene-doped poly(3,4-ethylenedioxythiophene:poly(4-styrenesulfonate) [PEDOT:PSS] films as a hole-conducting layer on the performance of polymer photovoltaic cells. By increasing the amount of pentacene and the annealing temperature of pentacene-doped PEDOT:PSS layer, the changes of performance characteristics were evaluated. Pentacene-doped PEDOT:PSS thin films were prepared by dissolving pentacene in 1-methyl-2-pyrrolidinone solvent and mixing with PEDOT:PSS. As the amount of pentacene in the PEDOT:PSS solution was increased, UV-visible transmittance also increased dramatically. By increasing the amount of pentacene in PEDOT:PSS films, dramatic decreases in both the work function and surface resistance were observed. However, the work function and surface resistance began to sharply increase above the doping amount of pentacene at 7.7 and 9.9 mg, respectively. As the annealing temperature was increased, the surface roughness of pentacene-doped PEDOT:PSS films also increased, leading to the formation of PEDOT:PSS aggregates. The films of pentacene-doped PEDOT:PSS were characterized by AFM, SEM, UV-visible transmittance, surface analyzer, surface resistance, and photovoltaic response analysis.

  1. Animal-cell culture media: History, characteristics, and current issues.

    Science.gov (United States)

    Yao, Tatsuma; Asayama, Yuta

    2017-04-01

    Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

  2. Nonlinear Performance Characteristics of Flux-Switching PM Motors

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2013-01-01

    Full Text Available Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little emphasis given on its performance and limits. Performance characteristics include phase flux linkage, phase torque, and phase inductance. In the paper, this analysis is done by a cross-correlation of rotor position and armature current. Due to the high amount of processed data, which cannot be handled analytically within an acceptable time period, a multistatic 2D finite element model (FEM is used. For generalization, the most commonly discussed FSPM topology, 12/10 FSPM, is chosen. Limitations on the motor performance due to the saturation are discussed on each characteristic. Additionally, a focused overview is given on energy conversion loops and dq-axes identification for the FSPM.

  3. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H [Los Alamos National Lab., NM (United States); Lalk, T R [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering; Appleby, A J [Center for Electrochemical Studies and Hydrogen Research, Texas Engineering Experimentation Station, Texas A and M Univ., College Station, TX (United States)

    1998-02-01

    The processes, losses, and electrical characteristics of a Membrane-Electrode Assembly (MEA) of a Proton Exchange Membrane Fuel Cell (PEMFC) are described. In addition, a technique for numerically modeling the electrochemical performance of a MEA, developed specifically to be implemented as part of a numerical model of a complete fuel cell stack, is presented. The technique of calculating electrochemical performance was demonstrated by modeling the MEA of a 350 cm{sup 2}, 125 cell PEMFC and combining it with a dynamic fuel cell stack model developed by the authors. Results from the demonstration that pertain to the MEA sub-model are given and described. These include plots of the temperature, pressure, humidity, and oxygen partial pressure distributions for the middle MEA of the modeled stack as well as the corresponding current produced by that MEA. The demonstration showed that models developed using this technique produce results that are reasonable when compared to established performance expectations and experimental results. (orig.)

  4. Growth performance, carcass and hematological characteristics of ...

    African Journals Online (AJOL)

    Growth performance, carcass and hematological characteristics of rabbits fed graded levels of tiger nuts ( Cyperus esculentus ) ... (p>0.05) difference between treatments. Results demonstrated that (Cyperus esculentus) could be used up to 5% in rabbit's diets without adverse effect on the animals' performance and health.

  5. Two-Dimensional Computational Flow Analysis and Frictional Characteristics Model for Red Blood Cell under Inclined Centrifuge Microscopy

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki; Shirai, Atsushi

    Simplified two-dimensional flow analysis is performed in order to simulate frictional characteristics measurement of red blood cells moving on a glass plate in a medium with an inclined centrifuge microscope. Computation under various conditions reveals the influences of parameters on lift, drag, and moment acting on a red blood cell. Among these forces, lift appears only when the cell is longitudinally asymmetric. By considering the balance of forces, the frictional characteristics of the red blood cell are modeled as the sum of Coulomb friction and viscous drag. The model describes the possibility that the red blood cell deforms to expand in the front side in response to the inclined centrifugal force. When velocity exceeds some critical value, the lift overcomes the normal centrifugal force component, and the thickness of the plasma layer between the cell and the glass plate increases from the initial value of the plasma protein thickness.

  6. Performance characteristics of the Mayo/IBM PACS

    Science.gov (United States)

    Persons, Kenneth R.; Gehring, Dale G.; Pavicic, Mark J.; Ding, Yingjai

    1991-07-01

    The Mayo Clinic and IBM (at Rochester, Minnesota) have jointly developed a picture archiving system for use with Mayo's MRI and Neuro CT imaging modalities. The communications backbone of the PACS is a portion of the Mayo institutional network: a series of 4-Mbps token rings interconnected by bridges and fiber optic extensions. The performance characteristics of this system are important to understand because they affect the response time a PACS user can expect, and the response time for non-PACS users competing for resources on the institutional network. The performance characteristics of each component and the average load levels of the network were measured for various load distributions. These data were used to quantify the response characteristics of the existing system and to tune a model developed by North Dakota State University Department of Computer Science for predicting response times of more complex topologies.

  7. Separator Characteristics for Increasing Performance of Microbial Fuel Cells

    KAUST Repository

    Zhang, Xiaoyuan

    2009-11-01

    Two challenges for improving the performance of air cathode, single-chamber microbial fuel cells (MFCs) include increasing Coulombic efficiency (CE) and decreasing internal resistance. Nonbiodegradable glass fiber separators between the two electrodes were shown to increase power and CE, compared to cloth separators (J-cloth) that were degraded over time. MFCtestswereconductedusing glass fibermatswith thicknesses of 1.0mm (GF1) or 0.4 mm (GF0.4), a cation exchange membrane (CEM), and a J-cloth (JC), using reactors with different configurations. Higher power densities were obtained with either GF1 (46 ± 4 W/m3) or JC (46 ± 1 W/m3) in MFCs with a 2 cm electrode spacing, when the separator was placed against the cathode (S-configuration), rather than MFCs with GF0.4 (36 ± 1 W/m3) or CEM (14 ± 1 W/m3). Power was increased to 70 ± 2 W/m3 by placing the electrodes on either side of the GF1 separator (single separator electrode assembly, SSEA) and further to 150 ± 6 W/m3 using two sets of electrodes spaced 2 cm a part (double separator electrode assembly, DSEA). Reducing the DSEA electrode spacing to 0.3 cm increased power to 696 ± 26 W/m3 as a result of a decrease in the ohmic resistance from 5.9 to 2.2 Ω. The main advantages of a GF1 separator compared to JC were an improvement in the CE from 40% to 81% (S-configuration), compared to only 20-40% for JC under similar conditions, and the fact that GF1 was not biodegradable. The high CE for the GF1 separator was attributed to a low oxygen mass transfer coefficient (ko ) 5.0 x 10-5 cm/s). The GF1 andJCmaterials differed in the amount of biomass that accumulated on the separator and its biodegradability, which affected long-term power production and oxygen transport. These results show that materials and mass transfer properties of separators are important factors for improving power densities, CE, and long-term performance of MFCs. © 2009 American Chemical Society.

  8. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  9. Characteristic thickened cell walls of the bracts of the 'eternal flower' Helichrysum bracteatum.

    Science.gov (United States)

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-07-01

    Helichrysum bracteatum is called an 'eternal flower' and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type.

  10. Characteristic of innate lymphoid cells (ILC

    Directory of Open Access Journals (Sweden)

    Mateusz Adamiak

    2014-12-01

    Full Text Available Innate lymphoid cells (ILC is a newly described family of immune cells that are part of the natural immunity which is important not only during infections caused by microorganisms, but also in the formation of lymphoid tissue, tissue remodeling after damage due to injury and homeostasis tissue stromal cells. Family ILC cells form NK cells (natural killer and lymphoid tissue inducer T cells (LTi, which, although they have different functions, are evolutionarily related. NK cells are producing mainly IFN-γ, whereas LTi cells as NKR+LTi like, IL-17 and/or IL-22, which suggests that the last two cells, can also represent the innate versions of helper T cell - TH17 and TH22. Third population of ILC is formed by cells with characteristics such as NK cells and LTi (ILC22 - which are named NK22 cells, natural cytotoxicity receptor 22 (NCR22 cells or NK receptor-positive (LTi NKR+ LTi cells. Fourth population of ILC cells are ILC17 - producing IL-17, while the fifth is formed by natural helper type 2 T cells (nTH2, nuocyte, innate type 2 helper cells (IH2 and multi-potent progenitor type 2 cells (MPPtype2. Cells of the last population synthesize IL-5 and IL-13. It is assumed that an extraordinary functional diversity of ILC family, resembles T cells, probably because they are under the control of the corresponding transcription factors - as direct regulation factors, such as the family of lymphocytes T.

  11. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia.

    Science.gov (United States)

    Klein, Britta; Haggeney, Thomas; Fietz, Daniela; Indumathy, Sivanjah; Loveland, Kate L; Hedger, Mark; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Schuppe, Hans-Christian

    2016-10-01

    Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b

  12. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; Kuriakose, A.K. [Materials Technology Labs., CANMET, Natural Resources Canada, Ottawa, ON (Canada)

    1998-09-01

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700 C with respect to the J-V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen. (orig.)

  13. Performance of planar single cell lanthanum gallate based solid oxide fuel cells

    Science.gov (United States)

    Maffei, N.; Kuriakose, A. K.

    A novel synthesis of high purity, single phase strontium-magnesium doped lanthanum gallate through a nitrate route is described. The prepared powder is formed into planar monolithic elements by uniaxial pressing followed by isostatic pressing and sintering. XRD analysis of the sintered elements reveal no detectable secondary phases. The performance of the electrolyte in solid oxide fuel cells (SOFC) with three different anode/cathode combinations tested at 700°C with respect to the J- V and power density is reported. The data show that the characteristics of this SOFC are strongly dependent on the particular anode/cathode system chosen.

  14. Performance of molten carbonate fuel cells with the electrolyte molded at low pressure (IV). Analysis of performance decay factors in MCFC stack

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, Atuo; Ozu, Hideyuki; Murata, Kenji; Shirogami, Tamotsu; Watanabe, Takao; Izaki, Yoshiyuki; Horiuchi, Nagayuki

    1987-09-01

    A 1500-h performance test on a 30 x 30 cm cell stack of 10 molten carbonate fuel cells was performed to evaluate the durability of the stack. Beyond 1000 h, decay of its performance was observed. The result of the study for the cause of the decay is reported. The structures of the single cell and stack are introduced. The effective area of the electrode is 530 m/sup 2/. After 1020 h use, the output voltage decreased. Analysis of the cell characteristics and post-test analysis were performed to study the cause of the decrease. It was found that the main cause for the voltage loss would be the occurrence of slight short circuiting between the edge-seal areas via a corrosion product. However, little transfer of lithium and potassium ions was observed through the manifold seal which had been regarded as the main cause for the decay of stacked cells. It was assumed that this was due to the employment of a sealing material which contained glass of low manifold ion conductivity. (10 figs, 4 refs)

  15. Covariance of engineering management characteristics with engineering employee performance

    Science.gov (United States)

    Hesketh, Andrew Arthur

    1998-12-01

    As business in the 1990's grapples with the impact of continuous improvement and quality to meet market demands, there is an increased need to improve the leadership capabilities of our managers. Engineers have indicated desire for certain managerial characteristics in their leadership but there have been no studies completed that approached the problem of determining what managerial characteristics were best at improving employee performance. This study addressed the idea of identifying certain managerial characteristics that enhance employee performance. In the early 1990's, McDonnell Douglas Aerospace in St. Louis used a forced distribution system and allocated 35% of its employees into a "exceeds expectations" category and 60% into a "meets expectations" category. A twenty-question 5 point Likert scale survey on managerial capabilities was administered to a sample engineering population that also obtained their "expectations" category. A single factor ANOVA on the survey results determined a statistical difference between the "exceeds" and "meets" employees with four of the managerial capability questions. The "exceeds expectations" employee indicated that supervision did a better job of supporting subordinate development, clearly communicating performance expectations, and providing timely performance feedback when compared to the "meets expectations" employee. The "meets expectations" employee felt that their opinions, when different from their supervisor's, were more often ignored when compared to the "exceeds expectations" employee. These four questions relate to two specific managerial characteristics, "gaining (informal) authority and support" or "control" characteristic and "providing assistance and guidance" or "command" characteristic, that can be emphasized in managerial training programs.

  16. Effect of time-varying humidity on the performance of a polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Noorani, Shamsuddin [Department of Mechanical Engineering, University of Michigan-Dearborn (United States); Shamim, Tariq [Mechanical Engineering, Masdar Institute of Science and Technology (United Arab Emirates)], E-mail: tshamim@masdar.ac.ae

    2011-07-01

    In the energy sector, fuel cells constitute a promising solution for the future due to their energy-efficient and environment-friendly characteristics. However, the performance of fuel cells is very much affected by the humidification level of the reactants, particularly in hot regions. The aim of this paper is to develop a better understanding of the effect of driving conditions on the performance of fuel cells. A macroscopic single-fuel-cell-based, one dimensional, isothermal model was used on a polymer electrolyte membrane fuel cell to carry out a computational study of the impact of humidity conditions which vary over time. It was found that the variation of humidity has a significant effect on water distribution but a much lower impact on power and current densities. This paper provided useful information on fuel cells' performance under varying conditions which could be used to improve their design for mobile applications.

  17. A review of hospital characteristics associated with improved performance.

    Science.gov (United States)

    Brand, Caroline A; Barker, Anna L; Morello, Renata T; Vitale, Michael R; Evans, Sue M; Scott, Ian A; Stoelwinder, Johannes U; Cameron, Peter A

    2012-10-01

    The objective of this review was to critically appraise the literature relating to associations between high-level structural and operational hospital characteristics and improved performance. The Cochrane Library, MEDLINE (Ovid), CINAHL, proQuest and PsychINFO were searched for articles published between January 1996 and May 2010. Reference lists of included articles were reviewed and key journals were hand searched for relevant articles. and data extraction Studies were included if they were systematic reviews or meta-analyses, randomized controlled trials, controlled before and after studies or observational studies (cohort and cross-sectional) that were multicentre, comparative performance studies. Two reviewers independently extracted data, assigned grades of evidence according to the Australian National Health and Medical Research Council guidelines and critically appraised the included articles. Data synthesis Fifty-seven studies were reported within 12 systematic reviews and 47 observational articles. There was heterogeneity in use and definition of performance outcomes. Hospital characteristics investigated were environment (incentives, market characteristics), structure (network membership, ownership, teaching status, geographical setting, service size) and operational design (innovativeness, leadership, organizational culture, public reporting and patient safety practices, information technology systems and decision support, service activity and planning, workforce design, staff training and education). The strongest evidence for an association with overall performance was identified for computerized physician order entry systems. Some evidence supported the associations with workforce design, use of financial incentives, nursing leadership and hospital volume. There is limited, mainly low-quality evidence, supporting the associations between hospital characteristics and healthcare performance. Further characteristic-specific systematic reviews are

  18. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Influence of course characteristics, student characteristics, and behavior in learning management systems on student performance

    OpenAIRE

    Conijn, Rianne; Kleingeld, Ad; Matzat, Uwe; Snijders, Chris; van Zaanen, Menno

    2016-01-01

    The use of learning management systems (LMS) in education make it possible to track students’ online behavior. This data can be used for educational data mining and learning analytics, for example, by predicting student performance. Although LMS data might contain useful predictors, course characteristics and student characteristics have shown to influence student performance as well. However, these different sets of features are rarely combined or compared. Therefore, in the current study we...

  20. The effect of radiation intensity on diode characteristics of silicon solar cells

    International Nuclear Information System (INIS)

    Asgerov, Sh.Q; Agayev, M.N; Hasanov, M.H; Pashayev, I.G

    2008-01-01

    In order to explore electro-physical properties of silicon solar cells, diode characteristics and ohmic properties of Al - Ni / (n+) - Si contact has been studied. Diode characteristics have been studied on a wide temperature range and on various radiation intensity, so this gives us the ability to observe the effect of the radiation and the temperature on electro-physical properties of under study solar cells. Volt-Ampere characteristics of the ohmic contacts of the silicon solar cells have been presented. As well as contact resistance and mechanism of current transmission has been identified.

  1. Hepatoma SK Hep-1 cells exhibit characteristics of oncogenic mesenchymal stem cells with highly metastatic capacity.

    Directory of Open Access Journals (Sweden)

    Jong Ryeol Eun

    Full Text Available SK Hep-1 cells (SK cells derived from a patient with liver adenocarcinoma have been considered a human hepatoma cell line with mesenchymal origin characteristics, however, SK cells do not express liver genes and exhibit liver function, thus, we hypothesized whether mesenchymal cells might contribute to human liver primary cancers. Here, we characterized SK cells and its tumourigenicity.We found that classical mesenchymal stem cell (MSC markers were presented on SK cells, but endothelial marker CD31, hematopoietic markers CD34 and CD45 were negative. SK cells are capable of differentiate into adipocytes and osteoblasts as adipose-derived MSC (Ad-MSC and bone marrow-derived MSC (BM-MSC do. Importantly, a single SK cell exhibited a substantial tumourigenicity and metastatic capacity in immunodefficient mice. Metastasis not only occurred in circulating organs such as lung, liver, and kidneys, but also in muscle, outer abdomen, and skin. SK cells presented greater in vitro invasive capacity than those of Ad-MSC and BM-MSC. The xenograft cells from subcutaneous and metastatic tumors exhibited a similar tumourigenicity and metastatic capacity, and showed the same relatively homogenous population with MSC characteristics when compared to parental SK cells. SK cells could unlimitedly expand in vitro without losing MSC characteristics, its tumuorigenicity and metastatic capacity, indicating that SK cells are oncogenic MSC with enhanced self-renewal capacity. We believe that this is the first report that human MSC appear to be transformed into cancer stem cells (CSC, and that their derivatives also function as CSCs.Our findings demonstrate that SK cells represent a transformation mechanism of normal MSC into an enhanced self-renewal CSC with metastasis capacity, SK cells and their xenografts represent a same relative homogeneity of CSC with substantial metastatic capacity. Thus, it represents a novel mechanism of tumor initiation, development and

  2. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  3. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy.

    Science.gov (United States)

    Guadix, Juan A; Zugaza, José L; Gálvez-Martín, Patricia

    2017-05-10

    Recent advances in the field of cell therapy and regenerative medicine describe mesenchymal stem cells (MSCs) as potential biological products due to their ability to self-renew and differentiate. MSCs are multipotent adult cells with immunomodulatory and regenerative properties, and, given their therapeutic potential, they are being widely studied in order to evaluate their viability, safety and efficacy. In this review, we describe the main characteristics and cellular sources of MSCs, in addition to providing an overview of their properties and current clinical applications, as well offering updated information on the regulatory aspects that define them as somatic cell therapy products. Cell therapy based on MSCs is offered nowadays as a pharmacological alternative, although there are still challenges to be addressed in this regard. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  4. Handbook of fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

    1980-05-01

    The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

  5. Characteristic Thickened Cell Walls of the Bracts of the ‘Eternal Flower’ Helichrysum bracteatum

    Science.gov (United States)

    Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu

    2008-01-01

    Background and Aims Helichrysum bracteatum is called an ‘eternal flower’ and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. Methods DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Key Results Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Conclusions Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type. PMID:18436550

  6. The Influence of Top Management Team Characteristics on BPD Performance

    Directory of Open Access Journals (Sweden)

    Joy Elly Tulung

    2015-12-01

    Full Text Available Based on ”upper echelons theory”, this paper investigates the relation between top management team composition and BPD performance. For top management team characteristics, we employ age, level of education, background of education, gender, and functional background, while for measured the BPD performance we employ return on asset (ROA, return on equity (ROE, capital adequacy ratio (CAR, net interest margin (NIM, loan to deposit ratio (LDR, non-performing loan (NPL and operation expenses to operation income (BOPO. The results show that all characteristics have positive significant influences on BPD performance.

  7. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  8. Relationship Between Job Characteristics And Job Performance Of ...

    African Journals Online (AJOL)

    The agricultural extension agent is a key stakeholder in extension systems. The nature of their work is so important that it has overriding effect on their job performance. This study investigates the relationship between job characteristics and job performance of agricultural extension agents in Imo and Rivers States, Nigeria.

  9. Preliminary study on proteomic technique in radiobiological characteristics in nasopharyngeal carcinoma cell line

    International Nuclear Information System (INIS)

    Wang Hui; Yi Xuping; Hu Bingqiang; Zeng Liang; Liu Yisong; Liang Songping

    2007-01-01

    Objective: To examine the variation of protein expression in nasopharyngeal carcinoma cell lines with different biological characteristics and to identify the radiobiological associated proteins. Methods: Biological characteristics of 5-8F and 6-10B were compared by flow cytometry assay after irradiation. The total proteins of 5-8F and 6-10B were separated by immobilized pH gradient(IPG) IEF-SDS two-dimensional gel eleetrophoresis technique. The differentially expressed proteins were cut from the gel and digested into peptides for MALDI-TOF MS and the Q-TOF mass spectrometric analysis. Identification of protein was made through searching in protein sequence database. Protein expressions were examined by western blot and immunohistochemistry method. Results: Nine most differentially expressed proteins between 5-8F cell and 6-10B cell were identified, p73 and CK19 expression examined by western blot were conformal with that by proteomic method, p73 expression in 5-8F cell was higher than in 6-10B cell. CK19 expression in 6- 10B cell was higher than in 5-8F cell. Conclusion: Differentially expression of proteins exist in nasopharyngeal carcinoma cell lines with different biological characteristics. These proteins may be associated with cell radiobiological characteristic with the p73 as a potential biomarker. (authors)

  10. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  11. Relationships between Isometric Force-Time Characteristics and Dynamic Performance

    Directory of Open Access Journals (Sweden)

    Thomas Dos’Santos

    2017-09-01

    Full Text Available The purpose of this study was to explore the relationships between isometric mid-thigh pull (IMTP force-time characteristics (peak force and time-specific force vales (100–250 ms and dynamic performance and compare dynamic performance between stronger and weaker athletes. Forty-three athletes from different sports (rowing, soccer, bicycle motocross, and hockey performed three trials of the squat jump (SJ, countermovement jump (CMJ, and IMTP, and performed a one repetition maximum power clean (PC. Reactive strength index modified (RSImod was also calculated from the CMJ. Statistically significant large correlations between IMTP force-time characteristics and PC (ρ = 0.569–0.674, p < 0.001, and moderate correlations between IMTP force-time characteristics (excluding force at 100 ms and RSImod (ρ = 0.389–0.449, p = 0.013–0.050 were observed. Only force at 250 ms demonstrated a statistically significant moderate correlation with CMJ height (ρ = 0.346, p = 0.016 and no statistically significant associations were observed between IMTP force-time characteristics and SJ height. Stronger athletes (top 10 demonstrated statistically significantly greater CMJ heights, RSImods, and PCs (p ≤ 0.004, g = 1.32–1.89 compared to weaker (bottom 10 athletes, but no differences in SJ height were observed (p = 0.871, g = 0.06. These findings highlight that the ability to apply rapidly high levels of force in short time intervals is integral for PC, CMJ height, and reactive strength.

  12. Mesenchymal Stem Cells Retain Their Defining Stem Cell Characteristics After Exposure to Ionizing Radiation

    International Nuclear Information System (INIS)

    Nicolay, Nils H.; Sommer, Eva; Lopez, Ramon; Wirkner, Ute; Trinh, Thuy; Sisombath, Sonevisay; Debus, Jürgen; Ho, Anthony D.; Saffrich, Rainer; Huber, Peter E.

    2013-01-01

    Purpose: Mesenchymal stem cells (MSCs) have the ability to migrate to lesion sites and undergo differentiation into functional tissues. Although this function may be important for tissue regeneration after radiation therapy, the influence of ionizing radiation (IR) on cellular survival and the functional aspects of differentiation and stem cell characteristics of MSCs have remained largely unknown. Methods and Materials: Radiation sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells was examined, and cellular morphology, cell cycle effects, apoptosis, and differentiation potential after exposure to IR were assessed. Stem cell gene expression patterns after exposure to IR were studied using gene arrays. Results: MSCs were not more radiosensitive than human primary fibroblasts, whereas there were considerable differences regarding radiation sensitivity within individual MSCs. Cellular morphology, cytoskeletal architecture, and cell motility were not markedly altered by IR. Even after high radiation doses up to 10 Gy, MSCs maintained their differentiation potential. Compared to primary fibroblast cells, MSCs did not show an increase in irradiation-induced apoptosis. Gene expression analyses revealed an upregulation of various genes involved in DNA damage response and DNA repair, but expression of established MSC surface markers appeared only marginally influenced by IR. Conclusions: These data suggest that human MSCs are not more radiosensitive than differentiated primary fibroblasts. In addition, upon photon irradiation, MSCs were able to retain their defining stem cell characteristics both on a functional level and regarding stem cell marker expression

  13. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells

    KAUST Repository

    Sheikh, Arif D.

    2015-06-01

    Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2-CH3NH3PbI3-xClx-spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

  14. South African exporter performance: new research into firm-specific and market characteristics

    Directory of Open Access Journals (Sweden)

    Christopher May

    2012-05-01

    Full Text Available The export marketing performance of any firm is influenced by a multitude of different factors. Given the multi-faceted nature of the export market, this research study investigated specific factors such as how firm-specific characteristics, product characteristics, market characteristics and export marketing strategies impact on the export marketing performance of South African manufacturing firms. Some of the findings of this research study indicated that firm size, investment commitment and careful planning, as firm-specific characteristics, had a significant influence on export marketing performance. The relationship between export experience and export marketing performance was insignificant. The degree of pricing adaptation and product adaptation had a significant effect on export marketing performance, while this was not the case with respect to the degree of promotion adaptation and distributor support.

  15. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung, E-mail: keejung@skku.edu

    2015-02-27

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics.

  16. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner

    International Nuclear Information System (INIS)

    Han, Dasol; Byun, Sung-Hyun; Park, Soojeong; Kim, Juwan; Kim, Inhee; Ha, Soobong; Kwon, Mookwang; Yoon, Keejung

    2015-01-01

    Mammalian brain development is regulated by multiple signaling pathways controlling cell proliferation, migration and differentiation. Here we show that YAP/TAZ enhance embryonic neural stem cell characteristics in a cell autonomous fashion using diverse experimental approaches. Introduction of retroviral vectors expressing YAP or TAZ into the mouse embryonic brain induced cell localization in the ventricular zone (VZ), which is the embryonic neural stem cell niche. This change in cell distribution in the cortical layer is due to the increased stemness of infected cells; YAP-expressing cells were colabeled with Sox2, a neural stem cell marker, and YAP/TAZ increased the frequency and size of neurospheres, indicating enhanced self-renewal- and proliferative ability of neural stem cells. These effects appear to be TEA domain family transcription factor (Tead)–dependent; a Tead binding-defective YAP mutant lost the ability to promote neural stem cell characteristics. Consistently, in utero gene transfer of a constitutively active form of Tead2 (Tead2-VP16) recapitulated all the features of YAP/TAZ overexpression, and dominant negative Tead2-EnR resulted in marked cell exit from the VZ toward outer cortical layers. Taken together, these results indicate that the Tead-dependent YAP/TAZ signaling pathway plays important roles in neural stem cell maintenance by enhancing stemness of neural stem cells during mammalian brain development. - Highlights: • Roles of YAP and Tead in vivo during mammalian brain development are clarified. • Expression of YAP promotes embryonic neural stem cell characteristics in vivo in a cell autonomous fashion. • Enhancement of neural stem cell characteristics by YAP depends on Tead. • Transcriptionally active form of Tead alone can recapitulate the effects of YAP. • Transcriptionally repressive form of Tead severely reduces stem cell characteristics

  17. Thermic diode performance characteristics and design manual

    Science.gov (United States)

    Bernard, D. E.; Buckley, S.

    1979-01-01

    Thermic diode solar panels are a passive method of space and hot water heating using the thermosyphon principle. Simplified methods of sizing and performing economic analyses of solar heating systems had until now been limited to passive systems. A mathematical model of the thermic diode including its high level of stratification has been constructed allowing its performance characteristics to be studied. Further analysis resulted in a thermic diode design manual based on the f-chart method.

  18. Evaluation of the productive performance characteristics of red ...

    African Journals Online (AJOL)

    Evaluation of the productive performance characteristics of red tilapia ( Oreochromis sp.) injected with shark DNA into skeletal muscles and maintained diets containing different levels of probiotic and amino yeast.

  19. Performance and carcass characteristics of Yankasa ram fed with ...

    African Journals Online (AJOL)

    Remember me ... and 50% maize and wheat offal mixture, were better when compared to the control (B0) and other test diet in terms of performance and carcass characteristics. ... Key words: Performance, carcass, biscuit waste, Yankasa ram.

  20. Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, H.; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Bouaicha, M. [Laboratoire de Photovoltaique, des Semi-conducteurs et des Nanostructures, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia)

    2009-10-15

    In this work we analyse the effect of porous silicon on the performances of multicrystalline silicon (mc-Si) solar cells during the porous silicon-based gettering procedure. This procedure consists of forming PS layers on both front and back sides of the mc-Si wafers followed by an annealing in an infrared furnace under a controlled atmosphere at different temperatures. Three sets of samples (A, B and C) have been prepared; for samples A and B, the PS films were removed before and after annealing, respectively. In order to optimize the annealing temperature, we measure the defect density at a selected grain boundary (GB) using the dark current-voltage (I-V) characteristics across the GB itself. The annealing temperature was optimized to 1000 C. The effect of these treatments on the performances of mc-Si solar cells was studied by means of the current-voltage characteristic (at AM 1.5) and the internal quantum efficiency (IQE). The results obtained for cell A and cell B were compared to those obtained on a reference cell (C). (author)

  1. Influence of oxygen partial pressure on the characteristics of human hepatocarcinoma cells.

    Science.gov (United States)

    Trepiana, Jenifer; Meijide, Susana; Navarro, Rosaura; Hernández, M Luisa; Ruiz-Sanz, José Ignacio; Ruiz-Larrea, M Begoña

    2017-08-01

    Most of the in vitro studies using liver cell lines have been performed under atmospheric oxygen partial pressure (21% O 2 ). However, the oxygen concentrations in the liver and cancer cells are far from this value. In the present study, we have evaluated the influence of oxygen on 1) the tumor cell lines features (growth, steady-state ROS levels, GSH content, activities of antioxidant enzymes, p66 Shc and SOD expressions, metalloproteinases secretion, migration, invasion, and adhesion) of human hepatocellular carcinoma cell lines, and b) the response of the cells to an oxidant stimulus (aqueous leaf extract of the V. baccifera plant species). For this purpose, three hepatocarcinoma cell lines with different p53 status, HepG2 (wild-type), Huh7 (mutated), and Hep3B (deleted), were cultured (6-30 days) under atmospheric (21%) and more physiological (8%) pO 2 . Results showed that after long-term culturing at 8% versus 21% O 2 , the cellular proliferation rate and the steady-state levels of mitochondrial O 2 - were unaffected. However, the intracellular basal ROS levels were higher independently of the characteristics of the cell line. Moreover, the lower pO 2 was associated with lower glutathione content, the induction of p66 Shc and Mn-SOD proteins, and increased SOD activity only in HepG2. This cell line also showed a higher migration rate, secretion of active metalloproteinases, and a faster invasion. HepG2 cells were more resistant to the oxidative stress induced by V. baccifera. Results suggest that the long-term culturing of human hepatoma cells at a low, more physiological pO 2 induces antioxidant adaptations that could be mediated by p53, and may alter the cellular response to a subsequent oxidant challenge. Data support the necessity of validating outcomes from studies performed with hepatoma cell cultures under ambient O 2 . Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  3. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  4. Influence of different TiO{sub 2} blocking films on the photovoltaic performance of perovskite solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong, E-mail: xhchen@phy.ecnu.edu.cn; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei, E-mail: smhuang@phy.ecnu.edu.cn

    2016-12-01

    Highlights: • TiO{sub 2} blocking layer (BL) was synthesized using various methods. • Effect of BL characteristics on performance of perovskite solar cell was studied. • Charge transfer kinetics of perovskite solar cells with different BLs was explored. • We demonstrated efficient solar cells employing chemical bath deposition based BLs. - Abstract: Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO{sub 2} or Al{sub 2}O{sub 3}) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO{sub 2} compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO{sub 2} compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol’s bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl{sub 4}, respectively. The morphological and micro-structural properties of the formed compact TiO{sub 2} layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO{sub 2} compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO{sub 2} film deposited via the CBD route acts as the most efficient

  5. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  6. Growth performance, blood parameters and carcass characteristics ...

    African Journals Online (AJOL)

    This study was carried out with one hundred and twenty (120) day-old marshal chicks to investigate the effect of Maxigrain® enzyme supplementation of corn bran based diets on growth performance, carcass characteristics, haematology and serum biochemistry of broilers in an eight weeks experiment. Four experimental ...

  7. Stability of electric characteristics of solar cells for continuous power supply

    Directory of Open Access Journals (Sweden)

    Stojanović Nebojša M.

    2015-01-01

    Full Text Available This paper investigates the output characteristics of photovoltaic solar cells working in hostile working conditions. Examined cells, produced by different innovative procedures, are available in the market. The goal was to investigate stability of electric characteristics of solar cells, which are used today in photovoltaic solar modules for charging rechargeable batteries which, coupled with batteries, supply various electronic systems such as radio repeaters on mountains tops, airplanes, mobile communication stations and other remote facilities. Charging of rechargeable batteries requires up to 25 % higher voltage compared to nominal output voltage of the battery. This paper presents results of research of solar cells, which also apply to cases in which continuous power supply is required. [Projekat Ministarstva nauke Republike Srbije, br. III 171007

  8. Analysis of proton exchange membrane fuel cell performance with alternate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wakizoe, Masanobu; Velev, O A; Srinivasan, S [Texas A and M Univ., College Station, TX (United States). Texas Engineering Experiment Station

    1995-02-01

    Renewed interest in proton exchange membrane fuel cell technology for space and terrestrial (particularly electric vehicles) was stimulated by the demonstration, in the mid 1980s, of high energy efficiencies and high power densities. One of the most vital components of the PEMFC is the proton conducting membrane. In this paper, an analysis is made of the performances of PEMFCs with Dupont`s Nafion, Dow`s experimental, and Asahi Chemical`s Aciplex-S membranes. Attempts were also made to draw correlations between the PEMFC performances with the three types of membranes and their physico-chemical characteristics. Practically identical levels of performances (energy efficiency, power density, and lifetime) were achieved in PEMFCs with the Dow and the Aciplex-S membranes and these performances were better than in the PEMFCs with the Nafion-115 membrane. The electrode kinetic parameters for oxygen reduction are better for the PEMFCs with the Aciplex-S and Nafion membranes than with the Dow membranes. The PEMFCs with the Aciplex-S and Dow membranes have nearly the same internal resistances which are considerably lower than for the PEMFC with the Nafion membrane. The desired membrane characteristics to obtain high levels of performance are low equivalent weight and high water content. (Author)

  9. Psychosocial Characteristics of Optimum Performance in Isolated and Confined Environments (ICE)

    Science.gov (United States)

    Palinkas, Lawrence A.; Keeton, Kathryn E.; Shea, Camille; Leveton, Lauren B.

    2010-01-01

    The Behavioral Health and Performance (BHP) Element addresses human health risks in the NASA Human Research Program (HRP), including the Risk of Adverse Behavioral Conditions and the Risk of Psychiatric Disorders. BHP supports and conducts research to help characteristics and mitigate the Behavioral Medicine risk for exploration missions, and in some instances, current Flight Medical Operations. The Behavioral Health and Performance (BHP) Element identified research gaps within the Behavioral Medicine Risk, including Gap BMed6: What psychosocial characteristics predict success in an isolated, confined environment (ICE)? To address this gap, we conducted an extensive and exhaustive literature review to identify the following: 1) psychosocial characteristics that predict success in ICE environments; 2) characteristics that are most malleable; and 3) specific countermeasures that could enhance malleable characteristics.

  10. Research of psychological characteristics and performance relativity of operators

    International Nuclear Information System (INIS)

    Fang Xiang; He Xuhong; Zhao Bingquan

    2008-01-01

    Based on the working tasks of an operator being taken into full consideration in this paper, on the one hand the table of measuring psychological characteristics is designed through the selection of special dimensions; on the other hand the table of performance appraisal is drafted through the choice of suitable standards of an operator. The paper analyzes the results of two aspects, sets relevant nuclear power plant operators as the research objective, and obtains the psychological characteristics and performance relativity of operators. The research can be as important and applied reference for the selection, evaluation and use of operators

  11. Characterization of three types of silicon solar cells for SEPS deep space missions. Volume 1: Current-voltage characteristics of OCLI BSF/BSR 10 ohm-cm, and BSR 2 ohm-cm cells as a function of temperature and intensity

    Science.gov (United States)

    Whitaker, A. F.; Little, S. A.; Smith, C. F., Jr.; Wooden, V. A.

    1979-01-01

    Three types of high performance silicon solar cells, BSF/BSR 10 ohm-cm, BSR 10 ohm-cm, and BSR 2 ohm-cm, were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to ten temperatures and nine intensities. The BSF/BSR 10 ohm-cm cells provided the best performance at 1 solar constant and +25 C with an efficiency of 14.1% while the BSR 2 ohm-cm cells had the highest low temperature and low intensity performance with an efficiency of 22.2% at 0.04 solar constant and -170 C and the most consistent cell-to-cell characteristics.

  12. Performance characteristics of long-track speed skaters: a literature review.

    Science.gov (United States)

    Konings, Marco J; Elferink-Gemser, Marije T; Stoter, Inge K; van der Meer, Dirk; Otten, Egbert; Hettinga, Florentina J

    2015-04-01

    Speed skating is an intriguing sport to study from different perspectives due to the peculiar way of motion and the multiple determinants for performance. This review aimed to identify what is known on (long-track) speed skating, and which individual characteristics determine speed skating performance. A total of 49 studies were included. Based on a multidimensional performance model, person-related performance characteristics were categorized in anthropometrical, technical, physiological, tactical, and psychological characteristics. Literature was found on anthropometry, technique, physiology, and tactics. However, psychological studies were clearly under-represented. In particular, the role of self-regulation might deserve more attention to further understand mechanisms relevant for optimal performance and for instance pacing. Another remarkable finding was that the technically/biomechanically favourable crouched skating technique (i.e. small knee and trunk angle) leads to a physiological disadvantage: a smaller knee angle may increase the deoxygenation of the working muscles. This is an important underlying aspect for the pacing tactics in speed skating. Elite speed skaters need to find the optimal balance between obtaining a fast start and preventing negative technical adaptations later on in the race by distributing their available energy over the race in an optimal way. More research is required to gain more insight into how this impacts on the processes of fatigue and coordination during speed skating races. This can lead to a better understanding on how elite speed skaters can maintain the optimal technical characteristics throughout the entire race, and how they can adapt their pacing to optimize all identified aspects that determine performance.

  13. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells

    KAUST Repository

    Ren, Zhiyong; Ramasamy, Ramaraja P.; Cloud-Owen, Susan Red; Yan, Hengjing; Mench, Matthew M.; Regan, John M.

    2011-01-01

    The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4. days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6. weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance. © 2010 Elsevier Ltd.

  14. Hospital ownership, decisions on supervisory board characteristics, and financial performance.

    Science.gov (United States)

    Kuntz, Ludwig; Pulm, Jannis; Wittland, Michael

    2016-01-01

    Dynamic and complex transformations in the hospital market increase the relevance of good corporate governance. However, hospital performance and the characteristics of supervisory boards differ depending on ownership. The question therefore arises whether hospital owners can influence performance by addressing supervisory board characteristics. The objective of this study is to explain differences in the financial performance of hospitals with regard to ownership by studying the size and composition of supervisory boards. The AMADEUS database was used to collect information on hospital financial performance in 2009 and 2010. Business and quality reports, hospital websites, and data from health insurer were used to obtain information on hospital and board characteristics. The resulting sample consisted of 175 German hospital corporations. We utilized ANOVA and regression analysis to test a mediation hypothesis that investigated whether decisions regarding board size and composition were associated with financial performance and could explain performance differences. Financial performance and board size and composition depend on ownership. An increase in board size and greater politician participation were negatively associated with all five tested measures of financial performance. Furthermore, an increase in physician participation was positively associated with one dimension of financial performance, whereas one negative relationship was identified for nurse and economist participation. For clerics, no associations were found. Decisions concerning board size and composition are important as they relate to hospital financial performance. We contribute to existing research by showing that, in addition to board size and physician participation, the participation of other professionals can also influence financial performance.

  15. Photovoltaic characteristics of porous silicon /(n+ - p) silicon solar cells

    International Nuclear Information System (INIS)

    Dzhafarov, T.D.; Aslanov, S.S.; Ragimov, S.H.; Sadigov, M.S.; Nabiyeva, A.F.; Yuksel, Aydin S.

    2012-01-01

    Full text : The purpose of this work is to improve the photovoltaic parameters of the screen-printed silicon solar cells by formation the nano-porous silicon film on the frontal surface of the cell. The photovoltaic characteristics of two type silicon solar cells with and without porous silicon layer were measured and compared. A remarkable increment of short-circuit current density and the efficiency by 48 percent and 20 percent, respectively, have been achieved for PS/(n + - pSi) solar cell comparing to (n + - p)Si solar cell without PS layer

  16. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions

    Directory of Open Access Journals (Sweden)

    Jozica eGricar

    2015-09-01

    Full Text Available There is limited information on intra-annual plasticity of secondary tissues of tree species growing under different environmental conditions. To increase the knowledge about the plasticity of secondary growth, which allows trees to adapt to specific local climatic regimes, we examined climate–radial growth relationships of Norway spruce (Picea abies (L. H. Karst. from three contrasting locations in the temperate climatic zone by analyzing tree-ring widths for the period 1932–2010, and cell characteristics in xylem and phloem increments formed in the years 2009–2011. Variation in the structure of xylem and phloem increments clearly shows that plasticity in seasonal dynamics of cambial cell production and cell differentiation exists on xylem and phloem sides. Anatomical characteristics of xylem and phloem cells are predominantly site-specific characteristics, because they varied among sites but were fairly uniform among years in trees from the same site. Xylem and phloem tissues formed in the first part of the growing season seemed to be more stable in structure, indicating their priority over latewood and late phloem for tree performance. Long-term climate and radial growth analyses revealed that growth was in general less dependent on precipitation than on temperature; however, growth sensitivity to local conditions differed among the sites. Only partial dependence of radial growth of spruce on climatic factors on the selected sites confirms its strategy to adapt the structure of wood and phloem increments to function optimally in local conditions.

  17. MORPHOMETRIC CHARACTERISTICS OF RED BLOOD CELLS OF Telestes metohiensis (Steindachner, 1901

    Directory of Open Access Journals (Sweden)

    Radoslav Dekić

    2013-02-01

    Full Text Available The paper presents the morphometric characteristics of red blood cells of endemic fish species of Bosnia and Herzegovina, Telestes metohiensis (Steindachner, 1901 inhabiting the Vrijeka river in the Dabar field. A total of 30 fish were sampled during August, 2010. Morphological measurements included the following parameters: axes of the red blood cells and nuclei, the surface of the red blood cells and nuclei and the thickness of the red blood cells. Morphometric characteristics of the erythrocyte maturation stages (acidophilic and polychromatic erythroblasts were also studied as well as their proportion in the peripheral blood. 100 mature forms were measured for each individual. The propotion of the immature forms was expressed per 1000 erythrocytes. Results showed that dimensions of the erythrocytes differed in systematic categories as well as fish types. Dimensions of mature erythrocytes and their maturation stages of the same species differed in shape and size of the nuclei. Proportion of the erythrocyte maturation stages was very low in comparison with the mature erythrocytes, indicating the optimal environmental conditions for the studied species.Key words: morphometric characteristics, erythrocytes, Telestes metohiensis, proportion of immature stages

  18. Haematological characteristics and performance of West African ...

    African Journals Online (AJOL)

    The effects of feeding crude petroleum contaminated forage on haematological characteristics and performance of 36 young West African Dwarf (WAD) goats was investigated in order to simulate the impact of real crude oil spillage on livestock and game. Graded levels (0.0, 1.5 and 3.0 g per kg forage) of stabilized “Bonny ...

  19. Anthropometric, physiological and performance characteristics of elite team-handball players.

    Science.gov (United States)

    Chaouachi, Anis; Brughelli, Matt; Levin, Gregory; Boudhina, Nahla Ben Brahim; Cronin, John; Chamari, Karim

    2009-01-15

    The objective of this study was to provide anthropometric, physiological, and performance characteristics of an elite international handball team. Twenty-one elite handball players were tested and categorized according to their playing positions (goalkeepers, backs, pivots, and wings). Testing consisted of anthropometric and physiological measures of height, body mass, percentage body fat and endurance (VO(2max)), performance measures of speed (5, 10, and 30 m), strength (bench press and squat), unilateral and bilateral horizontal jumping ability, and a 5-jump horizontal test. Significant differences were found between player positions for some anthropometric characteristics (height and percentage body fat) but not for the physiological or performance characteristics. Strong correlations were noted between single leg horizontal jumping distances with 5-, 10-, and 30-m sprint times (r = 0.51-0.80; P team-handball players appear to be very similar. Single leg horizontal jumping distance could be a specific standardized test for predicting sprinting ability in elite handball players.

  20. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology.

    Science.gov (United States)

    Guan, Jun-Jie; Niu, Xin; Gong, Fei-Xiang; Hu, Bin; Guo, Shang-Chun; Lou, Yuan-Lei; Zhang, Chang-Qing; Deng, Zhi-Feng; Wang, Yang

    2014-07-01

    Stem cells in human urine have gained attention in recent years; however, urine-derived stem cells (USCs) are far from being well elucidated. In this study, we compared the biological characteristics of USCs with adipose-derived stem cells (ASCs) and investigated whether USCs could serve as a potential cell source for neural tissue engineering. USCs were isolated from voided urine with a modified culture medium. Through a series of experiments, we examined the growth rate, surface antigens, and differentiation potential of USCs, and compared them with ASCs. USCs showed robust proliferation ability. After serial propagation, USCs retained normal karyotypes. Cell surface antigen expression of USCs was similar to ASCs. With lineage-specific induction factors, USCs could differentiate toward the osteogenic, chondrogenic, adipogenic, and neurogenic lineages. To assess the ability of USCs to survive, differentiate, and migrate, they were seeded onto hydrogel scaffold and transplanted into rat brain. The results showed that USCs were able to survive in the lesion site, migrate to other areas, and express proteins that were associated with neural phenotypes. The results of our study demonstrate that USCs possess similar biological characteristics with ASCs and have multilineage differentiation potential. Moreover USCs can differentiate to neuron-like cells in rat brain. The present study shows that USCs are a promising cell source for tissue engineering and regenerative medicine.

  1. Haematological characteristics and performance of West African ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-18

    Feb 18, 2009 ... ISSN 1684–5315 © 2009 Academic Journals. Full Length ... performance of 36 young West African Dwarf (WAD) goats was investigated in order to simulate the .... cause antibody depression, alter white blood cell counts,.

  2. Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer

    Directory of Open Access Journals (Sweden)

    Md. Billal Hosen

    2017-10-01

    Full Text Available This article represents the baseline data of the several semiconductor materials used in the model of a CIGS thin film solar cell with an inclusion of ZnS buffer layer. As well, input parameters, contact layer data and operating conditions for CIGS solar cell simulation with ZnS buffer layer have been described. The schematic diagram of photovoltaic solar cell has been depicted. Moreover, the most important performance measurement graph, J-V characteristic curve, resulting from CIGS solar cell simulation has been analyzed to estimate the optimum values of fill factor and cell efficiency. These optimum results have been obtained from the open circuit voltage, short circuit current density, and the maximum points of voltage and current density generated from the cell.

  3. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    Science.gov (United States)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  4. Multidimensional performance characteristics and standard of performance in talented youth field hockey players : A longitudinal study

    NARCIS (Netherlands)

    Elferink-Gemser, Marije T.; Visscher, Chris; Lemmink, Koen A. P. M.; Mulder, Theo

    2007-01-01

    To identify performance characteristics that could help predict future elite field hockey players, we measured the anthropometric, physiological, technical, tactical, and psychological characteristics of 30 elite and 35 sub-elite youth players at the end of three consecutive seasons. The mean age of

  5. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuning [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Zuo, Xiaobing [X-ray Science Division; Argonne National Laboratory; Argonne; USA; Xie, Shenkun [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China; Yuan, Jianyu [Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices; Institute of Functional Nano & Soft Materials (FUNSOM); Soochow University; Suzhou; P. R. China; Zhou, Huiqiong [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190; China; Zhang, Yuan [HEEGER Beijing Research & Development Center; School of Chemistry; Beihang University; Beijing 100191; China

    2017-01-01

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  6. NKp46 defines ovine cells that have characteristics corresponding to NK cells

    Directory of Open Access Journals (Sweden)

    Connelley Timothy

    2011-02-01

    Full Text Available Abstract Natural killer (NK cells are well recognized as playing a key role in innate immune defence through cytokine production and cytotoxic activity; additionally recent studies have identified several novel NK cell functions. The ability to study NK cells in the sheep has been restricted due to a lack of specific reagents. We report the generation of a monoclonal antibody specific for ovine NKp46, a receptor which in a number of mammals is expressed exclusively in NK cells. Ovine NKp46+ cells represent a population that is distinct from CD4+ and γδ+ T-cells, B-cells and cells of the monocytic lineage. The NKp46+ cells are heterogenous with respect to expression of CD2 and CD8 and most, but not all, express CD16 - characteristics consistent with NK cell populations in other species. We demonstrate that in addition to populations in peripheral blood and secondary lymphoid organs, ovine NKp46+ populations are also situated at the mucosal surfaces of the lung, gastro-intestinal tract and non-gravid uterus. Furthermore, we show that purified ovine NKp46+ populations cultured in IL-2 and IL-15 have cytotoxic activity that could be enhanced by ligation of NKp46 in re-directed lysis assays. Therefore we conclude that ovine NKp46+ cells represent a population that by phenotype, tissue distribution and function correspond to NK cells and that NKp46 is an activating receptor in sheep as in other species.

  7. Job Characteristics, Work Involvement, and Job Performance of Public Servants

    Science.gov (United States)

    Johari, Johanim; Yahya, Khulida Kirana

    2016-01-01

    Purpose: The primary purpose of this study is to assess the predicting role of job characteristics on job performance. Dimensions in the job characteristics construct are skill variety, task identity, task significance, autonomy and feedback. Further, work involvement is tested as a mediator in the hypothesized link. Design/methodology/approach: A…

  8. General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle

    International Nuclear Information System (INIS)

    Lin, G.; Tegus, O.; Zhang, L.; Brueck, E.

    2004-01-01

    A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performance characteristics of the ferromagnetic Stirling refrigeration cycle are investigated and the effects of some key irreversibilities on the performance of the cycle are revealed. By using the optimal-control theory, the optimal relation between the coefficient of performance and the cooling rate is derived and some important performance bounds, e.g., the maximum cooling rate, the maximum coefficient of performance, are determined. Moreover, the optimal operating regions for cooling rate, coefficient of performance and the optimal operating temperatures of a cyclic working substance in the two heat-transfer processes are obtained. Furthermore, the influences of magnetization and magnetic field on the performance characteristics of the cycle are discussed. The results obtained here have general significance and can be deduced to the related ones of the Stirling refrigeration cycle using paramagnetic salt as a cyclic working substance

  9. Realization of Quasi-Omnidirectional Solar Cells with Superior Electrical Performance by All-Solution-Processed Si Nanopyramids.

    Science.gov (United States)

    Zhong, Sihua; Wang, Wenjie; Tan, Miao; Zhuang, Yufeng; Shen, Wenzhong

    2017-11-01

    Large-scale (156 mm × 156 mm) quasi-omnidirectional solar cells are successfully realized and featured by keeping high cell performance over broad incident angles (θ), via employing Si nanopyramids (SiNPs) as surface texture. SiNPs are produced by the proposed metal-assisted alkaline etching method, which is an all-solution-processed method and highly simple together with cost-effective. Interestingly, compared to the conventional Si micropyramids (SiMPs)-textured solar cells, the SiNPs-textured solar cells possess lower carrier recombination and thus superior electrical performances, showing notable distinctions from other Si nanostructures-textured solar cells. Furthermore, SiNPs-textured solar cells have very little drop of quantum efficiency with increasing θ, demonstrating the quasi-omnidirectional characteristic. As an overall result, both the SiNPs-textured homojunction and heterojunction solar cells possess higher daily electric energy production with a maximum relative enhancement approaching 2.5%, when compared to their SiMPs-textured counterparts. The quasi-omnidirectional solar cell opens a new opportunity for photovoltaics to produce more electric energy with a low cost.

  10. Investigating the Effect of Thermal Annealing Process on the Photovoltaic Performance of the Graphene-Silicon Solar Cell

    Directory of Open Access Journals (Sweden)

    Lifei Yang

    2015-01-01

    Full Text Available Graphene-silicon (Gr-Si Schottky solar cell has attracted much attention recently as promising candidate for low-cost photovoltaic application. For the fabrication of Gr-Si solar cell, the Gr film is usually transferred onto the Si substrate by wet transfer process. However, the impurities induced by this process at the graphene/silicon (Gr/Si interface, such as H2O and O2, degrade the photovoltaic performance of the Gr-Si solar cell. We found that the thermal annealing process can effectively improve the photovoltaic performance of the Gr-Si solar cell by removing these impurities at the Gr/Si interface. More interestingly, the photovoltaic performance of the Gr-Si solar cell can be improved, furthermore, when exposed to air environment after the thermal annealing process. Through investigating the characteristics of the Gr-Si solar cell and the properties of the Gr film (carrier density and sheet resistance, we point out that this phenomenon is caused by the natural doping effect of the Gr film.

  11. Nonlinear performance characteristics of flux-switching PM motors

    NARCIS (Netherlands)

    Ilhan, E.; Kremers, M.F.J.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2013-01-01

    Nonlinear performance characteristics of 3-phase flux-switching permanent magnet motors (FSPM) are overviewed. These machines show advantages of a robust rotor structure and a high energy density. Research on the FSPM is predominated by topics such as modeling and machine comparison, with little

  12. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  13. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  14. Study on transient hydrodynamic performance and cavitation characteristic of high-speed mixed-flow pump

    International Nuclear Information System (INIS)

    Chen, T; Liu, Y L; Sun, Y B; Wang, L Q; Wu, D Z

    2013-01-01

    In order to analyse the hydrodynamic performance and cavitation characteristic of a high-speed mixed-flow pump during transient operations, experimental studies were carried out. The transient hydrodynamic performance and cavitation characteristics of the mixed-flow pump with guide vane during start-up operation processes were tested on the pump performance test-bed. Performance tests of the pump were carried out under various inlet pressures and speed-changing operations. The real-time instantaneous external characteristics such as rotational speed, hydraulic head, flow rate, suction pressure and discharge pressure of the pump were measured. Based on the experimental results, the effect of fluid acceleration on the hydrodynamic performances and cavitation characteristics of the mixed-flow pump were analysed and evaluated

  15. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  16. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  17. Job characteristics, flow, and performance: the moderating role of conscientiousness.

    Science.gov (United States)

    Demerouti, Evangelia

    2006-07-01

    The present article aims to show the importance of positive work-related experiences within occupational health psychology by examining the relationship between flow at work (i.e., absorption, work enjoyment, and intrinsic work motivation) and job performance. On the basis of the literature, it was hypothesized that (a) motivating job characteristics are positively related to flow at work and (b) conscientiousness moderates the relationship between flow and other ratings of (in-role and out-of-role) performance. The hypotheses were tested on a sample of 113 employees from several occupations. Results of moderated structural equation modeling analyses generally supported the hypotheses. Motivating job characteristics were predictive of flow, and flow predicted in-role and extra-role performance, for only conscientious employees.

  18. RELATIONSHIPS BETWEEN MUSCLE FATIGUE CHARACTERISTICS AND MARKERS OF ENDURANCE PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Martyn G. Morris

    2008-12-01

    Full Text Available The aim of this study was to examine the relationship of a range of in-vivo whole muscle characteristics to determinants of endurance performance. Eleven healthy males completed a cycle ergometer step test to exhaustion for the determination of the lactate threshold, gross mechanical efficiency, peak power and VO2max. On two separate occasions, contractile and fatigue characteristics of the quadriceps femoris were collected using a specially designed isometric strength-testing chair. Muscle fatigue was then assessed by stimulating the muscle for 3 minutes. Force, rate of force development and rates of relaxation were calculated at the beginning and end of the 3 minute protocol and examined for reliability and in relation to lactate threshold, VO2max, gross mechanical efficiency and peak power. Muscle characteristics, rate of force development and relaxation rate were demonstrated to be reliable measures. Force drop off over the 3 minutes (fatigue index was related to lactate threshold (r = -0.72 p < 0.01 but not to VO2max. The rate of force development related to the peak power at the end of the cycle ergometer test (r = -0.75 p < 0.01. Rates of relaxation did not relate to any of the performance markers. We found in-vivo whole muscle characteristics, such as the fatigue index and rate of force development, relate to specific markers of peripheral, but not to central, fitness components. Our investigation suggests that muscle characteristics assessed in this way is reliable and could be feasibly utilised to further our understanding of the peripheral factors underpinning performance

  19. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Parthiban, Thirumalai; Ravi, R.; Kalaiselvi, N. [Central Electrochemical Research Institute (CECRI), Karaikudi 630006 (India)

    2007-12-31

    CoO anode, as an alternate to the carbonaceous anodes of lithium-ion cells has been prepared and investigated for electrochemical charge-discharge characteristics for about 50 cycles. Artificial neural networks (ANNs), which are useful in estimating battery performance, has been deployed for the first time to forecast and to verify the charge-discharge behavior of lithium-ion cells containing CoO anode for a total of 50 cycles. In this novel approach, ANN that has one input layer with one neuron corresponding to one input variable, viz., cycles [charge-discharge cycles] and a hidden layer consisting of three neurons to produce their outputs to the output layer through a sigmoid function has been selected for the present investigation. The output layer consists of two neurons, representing the charge and discharge capacity, whose activation function is also the sigmoid transfer function. In this ever first attempt to exploit ANN as an effective theoretical tool to understand the charge-discharge characteristics of lithium-ion cells, an excellent agreement between the calculated and observed capacity values was found with CoO anodes with the best fit values corresponding to an error factor of <1%, which is the highlight of the present study. (author)

  20. Characteristics and Performance of Existing Load Disaggregation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Mayhorn, Ebony T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butner, Ryan S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hao, He [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baechler, Michael C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-10

    Non-intrusive load monitoring (NILM) or non-intrusive appliance load monitoring (NIALM) is an analytic approach to disaggregate building loads based on a single metering point. This advanced load monitoring and disaggregation technique has the potential to provide an alternative solution to high-priced traditional sub-metering and enable innovative approaches for energy conservation, energy efficiency, and demand response. However, since the inception of the concept in the 1980’s, evaluations of these technologies have focused on reporting performance accuracy without investigating sources of inaccuracies or fully understanding and articulating the meaning of the metrics used to quantify performance. As a result, the market for, as well as, advances in these technologies have been slowly maturing.To improve the market for these NILM technologies, there has to be confidence that the deployment will lead to benefits. In reality, every end-user and application that this technology may enable does not require the highest levels of performance accuracy to produce benefits. Also, there are other important characteristics that need to be considered, which may affect the appeal of NILM products to certain market targets (i.e. residential and commercial building consumers) and the suitability for particular applications. These characteristics include the following: 1) ease of use, the level of expertise/bandwidth required to properly use the product; 2) ease of installation, the level of expertise required to install along with hardware needs that impact product cost; and 3) ability to inform decisions and actions, whether the energy outputs received by end-users (e.g. third party applications, residential users, building operators, etc.) empower decisions and actions to be taken at time frames required for certain applications. Therefore, stakeholders, researchers, and other interested parties should be kept abreast of the evolving capabilities, uses, and characteristics

  1. CSR organisational taxonomy and job characteristics on performance: SME case studies

    Directory of Open Access Journals (Sweden)

    Thanalechumy Seeramulu

    2017-05-01

    Full Text Available This study examines the relationship between the CSR of organizational structure and job characteristics that influence employee job performance in the Malaysian context. Hence, it is important to study and analyze these two factors within the CSR taxonomy describing how these factors significantly influence employee job performance and to make recommendations how performance can be promoted among employees. This paper is based on a quantitative research approach where responses were gathered from the working population within Malaysia SMEs. The results from this study will help to point out the influence of these factors on the employee job performance and provide guidance to an organization for which these aspects should be emphasized in order to increase employees’ job performance to align performance with organizational goals. The analysis includes two dimensions of CSR taxonomy of organizational structure namely, centralization and formalization, as well as a set of five dimensions of job characteristics, such as task identity, task significance, skill variety, autonomy and feedback. The results of these findings show that job characteristics such as task significance, autonomy, feedback, and skill variety, positively influence job performance with autonomy having highest predictive power on job performance. The results of these findings reveal that the organizational structure does not contribute to the prediction of job performance even though a significant positive correlation exists between the structure and job performance in the Pearson correlation coefficient test. Therefore, this study will enrich the existing knowledge in the area of human resource management by focusing on job performance management.

  2. Growth performance, carcass and organ characteristics of growing ...

    African Journals Online (AJOL)

    An experiment was conducted at the Department of Animal Science teaching and research farm, Bayero University Kano, to evaluate the effect of feeding graded levels of Moringa oleifera leaf meal (MOLM) in diets on growth performance, carcass and organ characteristics of weaned rabbits. Twenty eight grower rabbits of ...

  3. Performance and stability of P3HT/PCBM bulk heterojunction organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yumnam, Nivedita; Bom, Sidhant; Wagner, Veit [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

    2011-07-01

    Organic photovoltaic cells are promising candidates for large-area, low-cost production of solar cells. However, the low stability in conjunction with their medium performance is one of the major drawbacks in comparison to their inorganic counterparts. In this investigation environmental conditions for degradation of bulk heterojunction P3HT/PCBM solar cells are systematically analyzed over a period of one week. Devices were prepared by spin coating from different compositions of P3HT and PCBM in Chlorobenzene (C{sub 6}H{sub 5}Cl). Performance parameters, efficiency and I-V characteristics were determined in a N{sub 2} glove box showing optimized efficiency for a 1:1 ratio. Degradation behavior in N{sub 2} atmosphere, vacuum and solvent-enriched atmosphere (Chlorobenzene) showed best results for vacuum stored solar cells while for solvent-enriched atmosphere rapid degradation was observed. Remarkable degradation (open-circuit voltage and short-circuit current reduced to 90% and 60% after one week) was also found for N{sub 2} atmosphere of the glove box used for the solar cell production. Residual solvent vapor left dispersed in the atmosphere of the glovebox after the spin coating process is identified as an important parameter of this degradation.

  4. Performance Evaluation of Moving Small-Cell Network with Proactive Cache

    Directory of Open Access Journals (Sweden)

    Young Min Kwon

    2016-01-01

    Full Text Available Due to rapid growth in mobile traffic, mobile network operators (MNOs are considering the deployment of moving small-cells (mSCs. mSC is a user-centric network which provides voice and data services during mobility. mSC can receive and forward data traffic via wireless backhaul and sidehaul links. In addition, due to the predictive nature of users demand, mSCs can proactively cache the predicted contents in off-peak-traffic periods. Due to these characteristics, MNOs consider mSCs as a cost-efficient solution to not only enhance the system capacity but also provide guaranteed quality of service (QoS requirements to moving user equipment (UE in peak-traffic periods. In this paper, we conduct extensive system level simulations to analyze the performance of mSCs with varying cache size and content popularity and their effect on wireless backhaul load. The performance evaluation confirms that the QoS of moving small-cell UE (mSUE notably improves by using mSCs together with proactive caching. We also show that the effective use of proactive cache significantly reduces the wireless backhaul load and increases the overall network capacity.

  5. Performance of fuel cell for energy supply of passive house

    Energy Technology Data Exchange (ETDEWEB)

    Badea, G.; Felseghi, R. A., E-mail: Raluca.FELSEGHI@insta.utcluj.ro; Mureşan, D.; Naghiu, G. [Technical University of Cluj-Napoca, Building Services Engineering Department, Bd. December 21, no. 128-130, 400600, Cluj-Napoca (Romania); Răboacă, S. M. [National R& D Institute for Cryogenic and Isotopic Technologies, str. Uzinei, no. 4, Rm. Vălcea, 240050 (Romania); Aşchilean, I. [SC ACI Cluj SA, Avenue Dorobanţilor, no. 70, 400609, Cluj-Napoca (Romania)

    2015-12-23

    Hydrogen technology and passive house represent two concepts with a remarkable role for the efficiency and decarbonisation of energy systems in the residential buildings area. Through design and functionality, the passive house can make maximum use of all available energy resources. One of the solutions to supply energy of these types of buildings is the fuel cell, using this technology integrated into a system for generating electricity from renewable primary sources, which take the function of backup power (energy reserve) to cover peak load and meteorological intermittents. In this paper is presented the results of the case study that provide an analysis of the energy, environmental and financial performances regarding energy supply of passive house by power generation systems with fuel cell fed with electrolytic hydrogen produced by harnessing renewable energy sources available. Hybrid systems have been configured and operate in various conditions of use for five differentiated locations according to the main areas of solar irradiation from the Romanian map. Global performance of hybrid systems is directly influenced by the availability of renewable primary energy sources - particular geo-climatic characteristics of the building emplacement.

  6. Aggregate packing characteristics of good and poor performing asphalt mixes

    CSIR Research Space (South Africa)

    Denneman, E

    2007-07-01

    Full Text Available The aggregate structure of the compacted mix is a determining factor for the performance of Hot-Mix Asphalt (HMA). In this paper, the grading characteristics of good and poor performing HMA mixes are explored using the concepts of the Bailey method...

  7. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use

    Energy Technology Data Exchange (ETDEWEB)

    Uctug, Fehmi Goerkem, E-mail: gorkem.uctug@bahcesehir.edu.t [University of Manchester, School of Chemical Engineering and Analytical Science, M60 1QD (United Kingdom); Holmes, Stuart M. [University of Manchester, School of Chemical Engineering and Analytical Science, M60 1QD (United Kingdom)

    2011-10-01

    Highlights: > We investigated the availability of PVA-mordenite membranes for DMFC use. > We measured the methanol permeability of PVA-mordenite membranes via pervaporation. > We did the fuel cell testing of these membranes, which had not been done before. > We showed that PVA-mordenite membranes have poorer DMFC performance than Nafion. > Membrane performance can be improved by increasing the proton conductivity of PVA. - Abstract: Polyvinylalcohol-mordenite (PVA-MOR) mixed matrix membranes were synthesized for direct methanol fuel cell (DMFC) use. For the structural and the morphological characterization, Scanning Electron Microscopy and Thermal Gravimetric Analysis methods were used. Zeolite distribution within the polymer matrix was found to be homogeneous. An impedance spectroscope was used to measure the proton conductivity. In order to obtain information about methanol permeation characteristics, swelling tests and a series of pervaporation experiments were carried out. 60-40 wt% PVA-MOR membranes were found to give the optimum transport properties. Proton conductivity of these membranes was found to be slightly lower than that of Nafion117{sup TM} whereas their methanol permeability was at least two orders of magnitude lower than Nafion117{sup TM}. DMFC performance of the PVA-MOR membranes was also measured. The inferior DMFC performance of PVA-MOR membranes was linked to drying in the fuel cell medium and the consequent proton conductivity loss. Their performance was improved by adding a dilute solution of sulfuric acid into the feed methanol solution. Future studies on the improvement of the proton conductivity of PVA-MOR membranes, especially via sulfonation of the polymer matrix, can overcome the low-performance problem associated with insufficient proton conductivity.

  8. Characterization and fuel cell performance analysis of polyvinylalcohol-mordenite mixed-matrix membranes for direct methanol fuel cell use

    International Nuclear Information System (INIS)

    Uctug, Fehmi Goerkem; Holmes, Stuart M.

    2011-01-01

    Highlights: → We investigated the availability of PVA-mordenite membranes for DMFC use. → We measured the methanol permeability of PVA-mordenite membranes via pervaporation. → We did the fuel cell testing of these membranes, which had not been done before. → We showed that PVA-mordenite membranes have poorer DMFC performance than Nafion. → Membrane performance can be improved by increasing the proton conductivity of PVA. - Abstract: Polyvinylalcohol-mordenite (PVA-MOR) mixed matrix membranes were synthesized for direct methanol fuel cell (DMFC) use. For the structural and the morphological characterization, Scanning Electron Microscopy and Thermal Gravimetric Analysis methods were used. Zeolite distribution within the polymer matrix was found to be homogeneous. An impedance spectroscope was used to measure the proton conductivity. In order to obtain information about methanol permeation characteristics, swelling tests and a series of pervaporation experiments were carried out. 60-40 wt% PVA-MOR membranes were found to give the optimum transport properties. Proton conductivity of these membranes was found to be slightly lower than that of Nafion117 TM whereas their methanol permeability was at least two orders of magnitude lower than Nafion117 TM . DMFC performance of the PVA-MOR membranes was also measured. The inferior DMFC performance of PVA-MOR membranes was linked to drying in the fuel cell medium and the consequent proton conductivity loss. Their performance was improved by adding a dilute solution of sulfuric acid into the feed methanol solution. Future studies on the improvement of the proton conductivity of PVA-MOR membranes, especially via sulfonation of the polymer matrix, can overcome the low-performance problem associated with insufficient proton conductivity.

  9. Photovoltaic characteristics of diffused P/+N bulk GaAs solar cells

    Science.gov (United States)

    Borrego, J. M.; Keeney, R. P.; Bhat, I. B.; Bhat, K. N.; Sundaram, L. G.; Ghandhi, S. K.

    1982-01-01

    The photovoltaic characteristics of P(+)N junction solar cells fabricated on bulk GaAs by an open tube diffusion technique are described in this paper.Spectral response measurements were analyzed in detail and compared to a computer simulation in order to determine important material parameters. It is projected that proper optimization of the cell parameters can increase the efficiency of the cells from 12.2 percent to close to 20 percent.

  10. Classification of biosensor time series using dynamic time warping: applications in screening cancer cells with characteristic biomarkers.

    Science.gov (United States)

    Rai, Shesh N; Trainor, Patrick J; Khosravi, Farhad; Kloecker, Goetz; Panchapakesan, Balaji

    2016-01-01

    The development of biosensors that produce time series data will facilitate improvements in biomedical diagnostics and in personalized medicine. The time series produced by these devices often contains characteristic features arising from biochemical interactions between the sample and the sensor. To use such characteristic features for determining sample class, similarity-based classifiers can be utilized. However, the construction of such classifiers is complicated by the variability in the time domains of such series that renders the traditional distance metrics such as Euclidean distance ineffective in distinguishing between biological variance and time domain variance. The dynamic time warping (DTW) algorithm is a sequence alignment algorithm that can be used to align two or more series to facilitate quantifying similarity. In this article, we evaluated the performance of DTW distance-based similarity classifiers for classifying time series that mimics electrical signals produced by nanotube biosensors. Simulation studies demonstrated the positive performance of such classifiers in discriminating between time series containing characteristic features that are obscured by noise in the intensity and time domains. We then applied a DTW distance-based k -nearest neighbors classifier to distinguish the presence/absence of mesenchymal biomarker in cancer cells in buffy coats in a blinded test. Using a train-test approach, we find that the classifier had high sensitivity (90.9%) and specificity (81.8%) in differentiating between EpCAM-positive MCF7 cells spiked in buffy coats and those in plain buffy coats.

  11. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  12. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  13. COMPETENCY, ENTREPRENEUR CHARACTERISTIC AND BUSINESS PERFORMANCE: STUDY OF THE PEMPEK BUSINESS IN PALEMBANG

    Directory of Open Access Journals (Sweden)

    Fransiska Soejono

    2015-01-01

    Full Text Available The purpose of this study was to examine empirically the effects of entrepreneurial compe-tencies and characteristics on business performance. Previous studies found that competencies and entrepreneurial characteristics significantly influenced business performance. A quantita-tive method was used and 122 respondents were involved as the sample in this study, who were pempek business owners in Palembang, South Sumatra. The results indicated an effect from entrepreneurial competencies on business performance. It was also found that the entrepre-neurs’ characteristics (owners’ ages significantly affected the businesses’ performance. This implication requires some sort of course or program for the entrepreneurs to improve their competence to direct the owners to gain better business performance. The growing age of the business owners requires equal insights to ensure age does not stop the owners from improving their business’ performance.

  14. Performance of Photovoltaic Modules of Different Solar Cells

    Directory of Open Access Journals (Sweden)

    Ankita Gaur

    2013-01-01

    Full Text Available In this paper, an attempt of performance evaluation of semitransparent and opaque photovoltaic (PV modules of different generation solar cells, having the maximum efficiencies reported in the literature at standard test conditions (STC, has been carried out particularly for the months of January and June. The outdoor performance is also evaluated for the commercially available semitransparent and opaque PV modules. Annual electrical energy, capitalized cost, annualized uniform cost (unacost, and cost per unit electrical energy for both types of solar modules, namely, semitransparent and opaque have also been computed along with their characteristics curves. Semitransparent PV modules have shown higher efficiencies compared to the opaque ones. Calculations show that for the PV modules made in laboratory, CdTe exhibits the maximum annual electrical energy generation resulting into minimum cost per unit electrical energy, whereas a-Si/nc-Si possesses the maximum annual electrical energy generation giving minimum cost per unit electrical energy when commercially available solar modules are concerned. CIGS has shown the lowest capitalized cost over all other PV technologies.

  15. Performance and Carcass Characteristics of Broiler Finisher Birds ...

    African Journals Online (AJOL)

    Sixty (60) 4 weeks old Anak broiler strain were subjected to 28 days feeding trial at the Poultry Unit of the Teaching and Research Farm, Evan Enwerem, Owerri, Nigeria, to determine the dietary effect of pineapple wine sediment (PWSM) on their performance and carcass characteristics. The birds were divided into four ...

  16. Performance characteristics of proximity focused ultraviolet image converters

    Science.gov (United States)

    Williams, J. T.; Feibelman, W. A.

    1973-01-01

    Performance characteristics of Bendix type BX 8025-4522 proximity focused image tubes for UV to visible light conversion are presented. Quantum efficiency, resolution, background, geometric distortion, and environmental test results are discussed. The converters use magnesium fluoride input windows with Cs-Te photocathodes and P-11 phosphors on fiber optic output windows.

  17. Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2012-01-01

    Energy storage systems based on Lithium-ion batteries have the potential to mitigate the negative impact of wind power grid integration on the power system stability, which is caused by the characteristics of the wind. This paper presents a performance model for a Li4Ti5O12/LiMO2 battery cell....... For developing the performance model an EIS-based electrical modelling approach was followed. The obtained model is able to predict with high accuracy charge and discharge voltage profiles for different ages of the battery cell and for different charging/discharging current rates. Moreover, the ageing behaviour...... of the battery cell was analysed for the case of accelerated cycling ageing with a certain mission profile....

  18. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  19. The affect of bone marrow cell biomechanical characteristics to 6 Gy γ irradiation-injured mice

    International Nuclear Information System (INIS)

    Pu Xiaoyun; Chen Xiaoli; Pan Jing; Li Zhaoquan; Deng Jun; Huang Hui; Ye Yong

    2004-01-01

    Objective: To explore the change of bone marrow cell biomechanical characteristics in radiation-injured mice and the influencing factors. Methods: Male Kunming mice were exposed to total body irradiation of 6 Gy γ-rays from a 60 Co source. Electrophoresis, DPH probe-micropore filter, and adhesion rate methods were used to detect cell surface charge, membrane microviscosity, cell deformability, and cell adhesion, respectively. Results: The deformability, adhesiveness and cell surface charges of bone marrow cells (including hematopoietic cells and stromal cells) were dramatically decreased, but membrane microviscosity was obviously increased after irradiation on 1 d, 3 d and 7 d. Conclusion: The biomechanical characteristics of bone marrow cells are obviously changed after radiation injury. It might be one of the reasons of hematopoietic failure after irradiation. (authors)

  20. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  1. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    Science.gov (United States)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  2. Bidirectional threshold switching characteristics in Ag/ZrO2/Pt electrochemical metallization cells

    Directory of Open Access Journals (Sweden)

    Gang Du

    2016-08-01

    Full Text Available A bidirectional threshold switching (TS characteristic was demonstrated in Ag/ZrO2/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag+ ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO2/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  3. Laser ektacytometry and evaluation of statistical characteristics of inhomogeneous ensembles of red blood cells

    Science.gov (United States)

    Nikitin, S. Yu.; Priezzhev, A. V.; Lugovtsov, A. E.; Ustinov, V. D.; Razgulin, A. V.

    2014-10-01

    The paper is devoted to development of the laser ektacytometry technique for evaluation of the statistical characteristics of inhomogeneous ensembles of red blood cells (RBCs). We have analyzed theoretically laser beam scattering by the inhomogeneous ensembles of elliptical discs, modeling red blood cells in the ektacytometer. The analysis shows that the laser ektacytometry technique allows for quantitative evaluation of such population characteristics of RBCs as the cells mean shape, the cells deformability variance and asymmetry of the cells distribution in the deformability. Moreover, we show that the deformability distribution itself can be retrieved by solving a specific Fredholm integral equation of the first kind. At this stage we do not take into account the scatter in the RBC sizes.

  4. Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE

    Science.gov (United States)

    Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.

    1990-01-01

    The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.

  5. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    Science.gov (United States)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  6. Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

    Directory of Open Access Journals (Sweden)

    Zahra Ostadmahmoodi Do

    2016-06-01

    Full Text Available Nanowires (NWs are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW, is synthesized and characterized for application in photovoltaic device. Si NWs are prepared using wet chemical etching method which is commonly used as a simple and low cost method for producing nanowires of the same substrate material. The process conditions are adjusted to find the best quality of Si NWs. Morphology of Si NWs is studied using a field emission scanning electron microscopic technique. An energy dispersive X-Ray analyzer is also used to provide elemental identification and quantitative compositional information. Subsequently, Schottky type solar cell samples are fabricated on Si and Si NWs using ITO and Ag contacts. The junction properties are calculated using I-V curves in dark condition and the solar cell I-V characteristics are obtained under incident of the standardized light of AM1.5. The results for the two mentioned Schottky solar cell samples are compared and discussed. An improvement in short circuit current and efficiency of Schottky solar cell is found when Si nanowires are employed.

  7. Influence of prey body characteristics and performance on predator selection.

    Science.gov (United States)

    Holmes, Thomas H; McCormick, Mark I

    2009-03-01

    At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and

  8. Performance analysis of a potassium-base AMTEC cell

    International Nuclear Information System (INIS)

    Huang, C.; Hendricks, T.J.; Hunt, T.K.

    1998-01-01

    Sodium-BASE Alkali-Metal-Thermal-to-Electric-Conversion (AMTEC) cells have been receiving increased attention and funding from the Department of Energy, NASA and the United States Air Force. Recently, sodium-BASE (Na-BASE) AMTEC cells were selected for the Advanced Radioisotope Power System (ARPS) program for the next generation of deep-space missions and spacecraft. Potassium-BASE (K-BASE) AMTEC cells have not received as much attention to date, even though the vapor pressure of potassium is higher than that of sodium at the same temperature. So that, K-BASE AMTEC cells with potentially higher open circuit voltage and higher power output than Na-BASE AMTEC cells are possible. Because the surface tension of potassium is about half of the surface tension of sodium at the same temperature, the artery and evaporator design in a potassium AMTEC cell has much more challenging pore size requirements than designs using sodium. This paper uses a flexible thermal/fluid/electrical model to predict the performance of a K-BASE AMTEC cell. Pore sizes in the artery of K-BASE AMTEC cells must be smaller by an order of magnitude than in Na-BASE AMTEC cells. The performance of a K-BASE AMTEC cell was higher than a Na-BASE AMTEC cell at low voltages/high currents. K-BASE AMTEC cells also have the potential of much better electrode performance, thereby creating another avenue for potentially better performance in K-BASE AMTEC cells

  9. Numerical dataset for analyzing the performance of a highly efficient ultrathin film CdTe solar cell

    Directory of Open Access Journals (Sweden)

    Rucksana Safa Sultana

    2017-06-01

    Full Text Available The article comprises numerical data of distinct semiconductor materials applied in the sketch of a CdTe absorber based ultrathin film solar cell. Additionally, the contact layer parametric values of the cell have been described also. Therefore, the simulation has been conducted with data related to the hetero-structured (n-ZnO/n-CdS/p-CdTe/p-ZnTe semiconductor device and a J–V characteristics curve was obtained. The operating conditions have also been recorded. Afterward, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density (Jsc, fill factor (FF, and efficiency (η have been investigated and compared with reference cell.

  10. Investigation of gas flow characteristics in proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kwac, Lee Ku; Kim, Hong Gun

    2008-01-01

    An investigation of electrochemical behavior of PEMFC (proton exchange membrane fuel cell) is performed by using a single-phase two-dimensional finite element analysis. Equations of current balance, mass balance, and momentum balance are implemented to simulate the behavior of PEMFC. The analysis results for the co-flow and counterflow mode of gas flow direction are examined in detail in order to compare how the gas flow direction affects quantitatively. The characteristics of internal properties, such as gas velocity distribution, mass fraction of the reactants, fraction of water and current density distribution in PEMFC are illustrated in the electrode and GDL (gas diffusion layer). It is found that the dry reactant gases can be well internally humidified and maintain high performance in the case of the counter-flow mode without external humidification while it is not advantageous for highly humidified or saturated reactant gases. It is also found that the co-flow mode improves the current density distribution with humidified normal condition compared to the counter-flow mode

  11. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    International Nuclear Information System (INIS)

    Charpentier, Monica; Martin, Stuart

    2013-01-01

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis

  12. Interplay of Stem Cell Characteristics, EMT, and Microtentacles in Circulating Breast Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Charpentier, Monica [Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Martin, Stuart, E-mail: ssmartin@som.umaryland.edu [Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States); Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201 (United States)

    2013-11-14

    Metastasis, not the primary tumor, is responsible for the majority of breast cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and EMT characteristics have recently been identified in the bloodstream of patients with metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic outgrowth, while EMT may promote CSC character and endows breast cancer cells with enhanced invasive and migratory potential. Both CSCs and EMT are associated with a more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC and EMT-associated upregulation of intermediate filament vimentin and increased detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, but understanding the biology of these CTCs also presents new therapeutic targets to reduce metastasis.

  13. Parametric study of geohydrologic performance characteristics for geologic waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1980-11-01

    One of the major objectives of the National Waste Terminal Storage Program is to identify potential geologic sites for storage and isolation of radioactive waste (and possibly irradiated fuel). Potential sites for the storage and isolation of radioactive waste or spent fuel in a geologic rock unit are being carefully evaluated to ensure that radionuclides from the stored waste or fuel will never appear in the biosphere in amounts that would constitute a hazard to the health and safety of the public. The objective of this report is to quantify and present in graphical form the effects of significant geohydrologic and other performance characteristics that would influence the movement of radionuclides from a storage site in a rock unit to the biosphere. The effort in this study was focused on transport by groundwater because that is the most likely method of radionuclide escape. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater are presented. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere. These major performance characteristics are combind with each other and with the results of certain other combinations and presented in graphical form to provide the interrelationships of values measured during field studies. The graphical form of presentation should be useful in the screening process of site selection. An appendix illustrates the use of these graphs to assess the suitability of a site

  14. A firefly algorithm approach for determining the parameters characteristics of solar cell

    Directory of Open Access Journals (Sweden)

    Mohamed LOUZAZNI

    2017-12-01

    Full Text Available A metaheuristic algorithm is proposed to describe the characteristics of solar cell. The I-V characteristics of solar cell present double nonlinearity in the presence of exponential and in the five parameters. Since, these parameters are unknown, it is important to predict these parameters for accurate modelling of I-V and P-V curves of solar cell. Moreover, firefly algorithm has attracted the intention to optimize the non-linear and complex systems, based on the flashing patterns and behaviour of firefly’s swarm. Besides, the proposed constrained objective function is derived from the current-voltage curve. Using the experimental current and voltage of commercial RTC France Company mono-crystalline silicon solar cell single diode at 33°C and 1000W/m² to predict the unknown parameters. The statistical errors are calculated to verify the accuracy of the results. The obtained results are compared with experimental data and other reported meta-heuristic optimization algorithms. In the end, the theoretical results confirm the validity and reliability of firefly algorithm in estimation the optimal parameters of the solar cell.

  15. How Partner Characteristics Can Affect Performance of Alliances with Different Time Frames?

    Directory of Open Access Journals (Sweden)

    Seyed Hossein JALALI

    2017-11-01

    Full Text Available Firms increasingly adopt cooperative strategies and form strategic alliances with foreign partners to be prosperous in entering to international market. Most of scholars have typically focused on generic, conceptual models for alliances partner selection, addressing only limited dimensions of the partner characteristics. This paper presents a new empirical framework that considering the effect of partner characteristics on export performance of alliances, in the case of short/mediumterm alliances and long-term ones. The study explores the effective partner characteristics for each type of alliances based on a sample of 540 alliances which rooted in East European region and also, have at least one Iranian partner. The findings stress the differences between varied partner characteristics in short/medium-term and long-term alliances. More specifically, results introduce a framework that addresses certain and specific partner characteristics to improve the export performance of alliances, due to the time frame of strategic alliances.

  16. Effect of compressive force on PEM fuel cell performance

    Science.gov (United States)

    MacDonald, Colin Stephen

    Polymer electrolyte membrane (PEM) fuel cells possess the potential, as a zero-emission power source, to replace the internal combustion engine as the primary option for transportation applications. Though there are a number of obstacles to vast PEM fuel cell commercialization, such as high cost and limited durability, there has been significant progress in the field to achieve this goal. Experimental testing and analysis of fuel cell performance has been an important tool in this advancement. Experimental studies of the PEM fuel cell not only identify unfiltered performance response to manipulation of variables, but also aid in the advancement of fuel cell modelling, by allowing for validation of computational schemes. Compressive force used to contain a fuel cell assembly can play a significant role in how effectively the cell functions, the most obvious example being to ensure proper sealing within the cell. Compression can have a considerable impact on cell performance beyond the sealing aspects. The force can manipulate the ability to deliver reactants and the electrochemical functions of the cell, by altering the layers in the cell susceptible to this force. For these reasons an experimental study was undertaken, presented in this thesis, with specific focus placed on cell compression; in order to study its effect on reactant flow fields and performance response. The goal of the thesis was to develop a consistent and accurate general test procedure for the experimental analysis of a PEM fuel cell in order to analyse the effects of compression on performance. The factors potentially affecting cell performance, which were a function of compression, were identified as: (1) Sealing and surface contact; (2) Pressure drop across the flow channel; (3) Porosity of the GDL. Each factor was analysed independently in order to determine the individual contribution to changes in performance. An optimal degree of compression was identified for the cell configuration in

  17. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Procházka, Václav, E-mail: prochazkav@fzu.cz [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Cifra, Michal [Institute of Photonics and Electronics, The Czech Academy of Sciences, Chaberská 57, 182 51 Prague (Czech Republic); Kulha, Pavel [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Ižák, Tibor [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Rezek, Bohuslav [Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 16627 Prague (Czech Republic); Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Kromka, Alexander [Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Prague (Czech Republic); Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 16629 Prague (Czech Republic)

    2017-02-15

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  18. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    International Nuclear Information System (INIS)

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-01-01

    Highlights: • Interaction of non-adherent yeast cells with H-terminated diamond described. • Effect of cell culture solutions on H-diamond SGFET (positive potential shifts). • H-diamond sensitive to metabolic activity of yeast cells (negative potential shift). - Abstract: Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose–YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by −26 mV and −42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  19. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  20. Synthesis and characterization of Ag nanowires: Improved performance in dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Safia A. Kazmi

    2016-09-01

    Full Text Available Development of highly efficient dye-sensitized solar cells (DSSCs with good photovoltaic parameters is an active research area of current global interest. Recently, one dimensional nanomaterial, such as nanorods and nanotubes has replaced the nanoparticles used in DSSCs anode because of their ability to improve the electron transport leading to enhanced electron collection efficiency. In the present work, rapid synthesis of silver nanowires (AgNWs was done. The XRD characterization was performed to confirm the formation and size of synthesized AgNWs. It was observed that FWHM of the diffraction peaks was increased with AgNWs concentration in TiO2. The synthesized TiO2AgNWs nanocomposite was used as the photo anode of Dye sensitized solar cell. The I–V characteristics of the solar cell were drawn using standard conditions. It was observed that TiO2AgNWs based solar cells have significantly increased photocurrent density resulting in improved conversion efficiency as compared to pure TiO2 based DSSC.

  1. Electro-optical characteristics of a liquid crystal cell with graphene electrodes

    Directory of Open Access Journals (Sweden)

    Nune H. Hakobyan

    2017-12-01

    Full Text Available In liquid crystal devices (LCDs the indium tin oxide (ITO films are traditionally used as transparent and conductive electrodes. However, today, due to the development of multichannel optical communication, the need for flexible LCDs and multilayer structures has grown. For this application ITO films cannot be used in principle. For this problem, graphene (an ultrathin material with unique properties, e.g., high optical transparency, chemical inertness, excellent conductivity is an excellent candidate. In this work, the electro-optical and dynamic characteristics of a liquid crystal (LC cell with graphene and ITO transparent conducting layers are investigated. To insure uniform thickness of the LC layer, as well as the same orientation boundary conditions, a hybrid LC cell containing graphene and ITO conductive layers has been prepared. The characteristics of LC cells with both types of conducting layers were found to be similar, indicating that graphene can be successfully used as a transparent conductive layer in LC devices.

  2. The Influence of Top Management Team Characteristics on BPD Performance (P.155-166

    Directory of Open Access Journals (Sweden)

    Joy Elly Tulung

    2017-01-01

    Full Text Available Based on ”upper echelons theory”, this paper investigates the relation between top management team composition and BPD performance. For top management team characteristics, we employ age, level of education, background of education, gender, and functional background, while for measured the BPD performance we employ return on asset (ROA, return on equity (ROE, capital adequacy ratio (CAR, net interest margin (NIM, loan to deposit ratio (LDR, non-performing loan (NPL and operation expenses to operation income (BOPO. The results show that all characteristics have positive significant influences on BPD performance.Keywords: Top Management Team,BPD Performance, Upper Echelons Theory 

  3. Exploring dark current voltage characteristics of micromorph silicon tandem cells with computer simulations

    NARCIS (Netherlands)

    Sturiale, A.; Li, H. B. T.; Rath, J.K.; Schropp, R.E.I.; Rubinelli, F.A.

    2009-01-01

    The transport mechanisms controlling the forward dark current-voltage characteristic of the silicon micromorph tandem solar cell were investigated with numerical modeling techniques. The dark current-voltage characteristics of the micromorph tandem structure at forward voltages show three regions:

  4. Performance and ileal characteristics of finishing broilers fed diets ...

    African Journals Online (AJOL)

    An experiment was conducted to evaluate the effect of prebiotics supplemented diets on performance characteristics and gut morphology of broiler chickens. The study involved 320 day-old Anak broiler chicks, used to assess the utilization of prebiotics [Mannose oligosaccharides (MOS) and Lactose oligosaccharides ...

  5. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Parametric study of geohydrologic performance characteristics for nuclear-waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1981-01-01

    Purpose of this study was to present geohydrologic information in graphical form covering a wide range of parameters to aid in determining site specifications based on functional criteria. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater were developed. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere

  7. Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes

    International Nuclear Information System (INIS)

    Pan Zhengqiang; Balakrishnan, Narayanaswamy

    2011-01-01

    Many highly reliable products usually have complex structure, with their reliability being evaluated by two or more performance characteristics. In certain physical situations, the degradation of these performance characteristics would be always positive and strictly increasing. In such a case, the gamma process is usually considered as a degradation process due to its independent and non-negative increments properties. In this paper, we suppose that a product has two dependent performance characteristics and that their degradation can be modeled by gamma processes. For such a bivariate degradation involving two performance characteristics, we propose to use a bivariate Birnbaum-Saunders distribution and its marginal distributions to approximate the reliability function. Inferential method for the corresponding model parameters is then developed. Finally, for an illustration of the proposed model and method, a numerical example about fatigue cracks is discussed and some computational results are presented.

  8. Performance and emissions characteristics of biodiesel from soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Faculty of Technical Education

    2005-07-15

    Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO{sub 2} emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO{sub x}. (author)

  9. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-11-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O 2 ) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 weeks: proliferation rate, morphology, cell size, senescence, immunophenotypic characteristics, and the expression levels of stemness-associated factors and cytokine and chemokine genes. MSCs cultured under hypoxia for approximately 2 weeks showed increased proliferation and viability. During long-term culture, hypoxia delayed phenotypic changes in MSCs, such as increased cell volume, altered morphology, and the expression of senescence-associated-β-gal, without altering their characteristic immunophenotypic characteristics. Furthermore, hypoxia increased the expression of stemness and chemokine-related genes, including OCT4 and CXCR7, and did not decrease the expression of KLF4, C-MYC, CCL2, CXCL9, CXCL10, and CXCR4 compared with levels in cells cultured under normoxia. In conclusion, low oxygen tension improved the biological characteristics of MSCs during ex vivo expansion. These data suggest that hypoxic culture could be a useful method for increasing the efficacy of MSC cell therapies.

  10. Fermentation of the endosperm cell walls of monocotyledon and dicotyledon plant species: The relationship between cell wall characteristics and fermentability

    NARCIS (Netherlands)

    Laar, van H.; Tamminga, S.; Williams, B.A.; Verstegen, M.W.A.

    2000-01-01

    Cell walls from the endosperm of four monocotyledons (maize, wheat, rye, and rice) and four dicotyledons (soya bean, lupin, faba bean, and pea) seeds were studied to relate cell wall composition and structure with fermentation characteristics. Cell wall material was isolated from the endosperm of

  11. Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells

    International Nuclear Information System (INIS)

    San Martin, J.I.; Zamora, I.; San Martin, J.J.; Aperribay, V.; Torres, E.; Eguia, P.

    2010-01-01

    Fuel cells are clean generators that provide both electrical and thermal energy with a high global efficiency level. The characteristics of these devices depend on numerous parameters such as: temperature, fuel and oxidizer pressures, fuel and oxidizer flows, etc. Therefore, their influence should be evaluated to appropriately characterize behaviour of the fuel cell, in order to enable its integration in the electric system. This paper presents a theoretical and experimental analysis of the performance of two commercial Proton Exchange Membrane (PEM) fuel cells of 40 and 1200 W, and introduces the application of the principle of geometrical similarity. Using the principle of geometrical similarity it is possible to extrapolate the results obtained from the evaluation of one fuel cell to other fuel cells with different ratings. An illustrating example is included.

  12. Relations between mental health team characteristics and work role performance.

    Science.gov (United States)

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie; Farand, Lambert

    2017-01-01

    Effective mental health care requires a high performing, interprofessional team. Among 79 mental health teams in Quebec (Canada), this exploratory study aims to 1) determine the association between work role performance and a wide range of variables related to team effectiveness according to the literature, and to 2) using structural equation modelling, assess the covariance between each of these variables as well as the correlation with other exogenous variables. Work role performance was measured with an adapted version of a work role questionnaire. Various independent variables including team manager characteristics, user characteristics, team profiles, clinical activities, organizational culture, network integration strategies and frequency/satisfaction of interactions with other teams or services were analyzed under the structural equation model. The later provided a good fit with the data. Frequent use of standardized procedures and evaluation tools (e.g. screening and assessment tools for mental health disorders) and team manager seniority exerted the most direct effect on work role performance. While network integration strategies had little effect on work role performance, there was a high covariance between this variable and those directly affecting work role performance among mental health teams. The results suggest that the mental healthcare system should apply standardized procedures and evaluation tools and, to a lesser extent, clinical approaches to improve work role performance in mental health teams. Overall, a more systematic implementation of network integration strategies may contribute to improved work role performance in mental health care.

  13. Performance characteristics of broiler chicks fed kidney bean as ...

    African Journals Online (AJOL)

    An experiment was conducted to investigate the effect of replacing soybean meal and groundnut cake meal with cooked and decorticated kidney bean seed meals on the performance characteristics of broilers. One hundred and eighty day old broiler chicks of Anak strain were raised on six experimental diets.

  14. Electric terminal performance and characterization of solid oxide fuel cells and systems

    Science.gov (United States)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated

  15. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N. B.

    2014-01-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I–V) characteristic results, we observed a certain transition voltage (V th ) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, V th is 3.9 V whereas for COOH-SWCNT mixed with this dye, V th drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm 2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers. (semiconductor devices)

  16. Fabrication and characteristics of unit cell for SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwi-Yeol; Eom, Seung-Wook; Moon, Seong-In [Korea Electrotechnology Research Institute, Kyongnam (Korea, Republic of)] [and others

    1996-12-31

    Research and development on solid oxide fuel cells in Korea have been mainly focused on unit cell and small stack. Fuel cell system is called clean generation system which not cause NOx or SOx. It is generation efficiency come to 50-60% in contrast to 40% of combustion generation system. Among the fuel cell system, solid oxide fuel cell is constructed of ceramics, so stack construction is simple, power density is very high, and there are no corrosion problems. The object of this study is to develop various composing material for SOFC generation system, and to test unit cell performance manufactured. So we try to present a guidance for developing mass power generation system. We concentrated on development of manufacturing process for cathode, anode and electrolyte.

  17. Performance optimization of a PEM hydrogen-oxygen fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate the influence of process variables for design optimization of fuel cells, stacks, and complete fuel cell power system. The possible mechanisms of the parameter effects and their interrelationships are discussed. In order to assess the validity of the developed model a real PEM fuel cell system has been used to generate experimental data. The comparison shows good agreements between the modelling results and the experimental data. The model is shown a very useful for estimating the performance of PEM fuel cell stacks and optimization of fuel cell system integration and operation.

  18. Analysis of characteristic performance curves in radiodiagnosis by an observer

    International Nuclear Information System (INIS)

    Kossovoj, A.L.

    1988-01-01

    Methods and ways of construction of performance characteristic curves (PX-curves) in roentgenology, their qualitative and quantitative estimation are described. Estimation of PX curves application for analysis of scintigraphic and sonographic images is presented

  19. Diversity in host clone performance within a Chinese hamster ovary cell line.

    Science.gov (United States)

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  20. Bidirectional threshold switching characteristics in Ag/ZrO{sub 2}/Pt electrochemical metallization cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang, E-mail: dugang@hdu.edu.cn; Li, Hongxia; Mao, Qinan; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Chao [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2016-08-15

    A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO{sub 2}/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼10{sup 7} by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag{sup +} ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO{sub 2}/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  1. Performance characteristics of plane-wall venturi-like reverse flow diverters

    International Nuclear Information System (INIS)

    Smith, G.V.; Counce, R.M.

    1982-01-01

    The results of an analytical and experimental study of plane-wall venturi-like reverse flow diverters (RFD) are presented. In general, the flow characteristics of the RFD are reasonably well predicted by the mathematical model of the RFD, although a divergence between theory and data is observed for the output characteristics in the reverse flow mode as the output impedance is reduced. Overall, the performance of these devices indicates their usefulness in fluid control and fluid power systems, such as displacement pumping systems

  2. Managerial Characteristics and its Impact on Organizational Performance: Evidence from Syria

    Directory of Open Access Journals (Sweden)

    Elias Milana

    2015-06-01

    Full Text Available This study aims to explore impact of managerial human capital in performance of a Syrian public organization, Directorate of Finance of province of Damascus, through use some of managerial characteristics are age, level of education, tenure and functional track. This study applied on a sample of 12 managers and 138 employees. The study reveals that there are no significant effect of age, level of education and functional track in performance of Directorate of Finance of province of Damascus, while there is a positive, strong and significant effect of tenure manager in organizational performance, which indicates that managerial characteristics almost irrelevant with performance of Directorate of Finance of the province of Damascus, and the public sector in general. Such results appear a need for efforts are invested in the formulation and implementation of human resource procedures and policies which can bring about effective change in behaviours and roles of the public managers and employees.

  3. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    Science.gov (United States)

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  4. Performance optimization of a PEM hydrogen-oxygen fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    The objective was to develop a semi-empirical model that would simulate the performance of proton exchange membrane (PEM) fuel cells without extensive calculations. A fuel cell mathematical module has been designed and constructed to determine the performance of a PEM fuel cell. The influence of some operating parameters on the performance of PEM fuel cell has been investigated using pure hydrogen on the anode side and oxygen on the cathode side. The present model can be used to investigate t...

  5. Board Characteristics and Firm Performance: Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Athalia Ariati Hidayat

    2015-12-01

    Full Text Available This research examines the effect of board characteristics (comprising in different sized proportions: family commissioners, family directors, independent commissioners, ex-government officer commissioners, and board of commissioners size to firm performance. Using fixed-effects data panel regression, this research investigates 293 firms listed on the Indonesian Stock Exchange during 2008-2012. Firm performance is proxied by market measure (Tobin’s Q and accounting measure (ROA. The findings of this research suggest that the proportion of family commissioners and family directors have positive impact only to Tobin’s Q value, while the proportion of independent directors can increase both Tobin’s Q and ROA. On the other hand, this research finds that the proportion of ex-government officers in the board gives no impact to firm performance. This research also finds that the board size has U-shaped non-linear relationship with firm performance as proxied by Tobin’s Q and ROA.

  6. Effects of clamping force on the water transport and performance of a PEM (proton electrolyte membrane) fuel cell with relative humidity and current density

    International Nuclear Information System (INIS)

    Cha, Dowon; Ahn, Jae Hwan; Kim, Hyung Soon; Kim, Yongchan

    2015-01-01

    The clamping force should be applied to a proton electrolyte membrane (PEM) fuel cell due to its structural characteristics. The clamping force affects the ohmic and mass transport resistances in the PEM fuel cell. In this study, the effects of the clamping force on the water transport and performance characteristics of a PEM fuel cell are experimentally investigated with variations in the relative humidity and current density. The water transport characteristics were analyzed by calculating the net drag coefficient. The ohmic resistance decreased with the increase in the clamping force due to the reduced contact resistance and more even membrane hydration. However, the mass transport resistance increased with the increase in the clamping force due to the gas diffusion layer compression. The net drag coefficient decreased with the increase in the clamping force due to high water back-diffusion. Additionally, the relationship between the total resistance and the net drag coefficient was investigated. - Highlights: • Effects of clamping force on the performance of a PEM fuel cell are investigated. • Water transport characteristics are analyzed using net drag coefficient. • Ohmic resistance decreased with clamping force, but mass transport resistance increased. • Net drag coefficient decreased with the increase in clamping force. • Total resistance was significantly degraded for a net drag coefficient below 0.2.

  7. Influence of RF power on performance of sputtered a-IGZO based liquid crystal cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.M., E-mail: wu@mail.cgu.edu.tw; Sahoo, A.K.; Liu, C.Y.

    2015-12-01

    The influence of radio-frequency (RF) power on sputter-deposited amorphous indium gallium zinc oxide (a-IGZO) films and the corresponding liquid crystal cell performances have been investigated. The inorganic films were used as alternative alignment layers for liquid crystal display cells. The columnar growth of film was achieved by non-contact, fixed oblique deposition using RF sputtering at the power of 50 W, 60 W and 70 W. The experiments have been carried out to compare the physical characteristics with those of the traditional polyimide (PI) alignment layers used for liquid crystal cells. The cell performances in voltage-transmittance, contrast ratio, and response time were all evaluated. The liquid crystal pretilt angle has been determined to be about 13° using 70 W power deposited a-IGZO film. It was 6° for the 60 W deposited film and only 1.5° for the PI alignment film. The experimental cell rise time and fall time was 1.25 ms and 2.96 ms, respectively. Thus, a very quick response time of 4.21 ms has been achieved. It was about 6.62 ms for the PI alignment control cell. - Highlights: • Radio-frequency power of indium gallium zinc oxide film deposition was studied. • The oblique deposition technique was used to prepare the alignment layers. • The liquid crystal pretilt angle was about 13° using 70 W. • The corresponding liquid crystal cells exhibited fast response time at 4.21 ms. • The cells showed low threshold voltage of 1.78 V and excellent contrast ratio.

  8. Performance Characteristics of an Armature Voltage Controlled D.C. ...

    African Journals Online (AJOL)

    In this paper, the performance study of a separately excited d. c. motor whose speed is controlled by armature voltage variation is presented. Both the open loop and the closed loop steady state and transient characteristics are reported. The speed controllers considered in the closed loop mode are the proportional and the ...

  9. Do the Managerial Characteristics of Schools Influence Their Performance?

    Science.gov (United States)

    Agasisti, Tommaso; Bonomi, Francesca; Sibiano, Piergiacomo

    2012-01-01

    Purpose: The purpose of this paper is to investigate the role of governance and managerial characteristics of schools. More specifically, the aim is to individuate the factors that are associated to higher schools' performances, as measured through student achievement. Design/methodology/approach: The research is conducted by means of a survey in…

  10. Performance characteristics of an excimer laser (XeCl) with single ...

    Indian Academy of Sciences (India)

    2017-01-10

    Jan 10, 2017 ... Performance characteristics of an excimer laser (XeCl) with single-stage magnetic ... the stress can increase the lifetime of the switches and ..... work. References. [1] Ying-Tung Chen, Kris Naessens, Roel Bates, Yunn-Shiuan.

  11. Characteristics explaining performance in downhill mountain biking.

    Science.gov (United States)

    Chidley, Joel B; MacGregor, Alexandra L; Martin, Caoimhe; Arthur, Calum A; Macdonald, Jamie H

    2015-03-01

    To identify physiological, psychological, and skill characteristics that explain performance in downhill (DH) mountain-bike racing. Four studies were used to (1) identify factors potentially contributing to DH performance (using an expert focus group), (2) develop and validate a measure of rider skill (using video analysis and expert judge evaluation), (3) evaluate whether physiological, psychological, and skill variables contribute to performance at a DH competition, and (4) test the specific contribution of aerobic capacity to DH performance. STUDY 1 identified aerobic capacity, handgrip endurance, anaerobic power, rider skill, and self-confidence as potentially important for DH. In study 2 the rider-skill measure displayed good interrater reliability. Study 3 found that rider skill and handgrip endurance were significantly related to DH ride time (β=-0.76 and -0.14, respectively; R2=.73), with exploratory analyses suggesting that DH ride time may also be influenced by self-confidence and aerobic capacity. Study 4 confirmed aerobic capacity as an important variable influencing DH performance (for a DH ride, mean oxygen uptake was 49±5 mL·kg(-1)·min(-1), and 90% of the ride was completed above the 1st ventilatory threshold). In order of importance, rider skill, handgrip endurance, self-confidence, and aerobic capacity were identified as variables influencing DH performance. Practically, this study provides a novel assessment of rider skill that could be used by coaches to monitor training and identify talent. Novel intervention targets to enhance DH performance were also identified, including self-confidence and aerobic capacity.

  12. Operational characteristics, strategies and performance of foreign and demestic banks in India

    OpenAIRE

    Keshari, Pradeep Kumar

    2013-01-01

    This paper has tried to examine the relative characteristics and performance of foreign and domestic banks operating in India. A comparison of their characteristics undoubtedly suggest that foreign banks as a group differ significantly from domestic banks. It was also found that foreign banks enjoyed higher profitability than the domestic banks. The higher profitability of the former was a reflection of their particular operational characteristics, strategies and the favourable attitude of t...

  13. Model Of Emergency Department Nurse Performance Improvement Based on Association of Individual Characteristic, Organization Characteristic and Job Characteristic

    OpenAIRE

    Bogar, Maria Margaretha; Nursalam, Nursalam; Dewi, Yulis Setiya

    2017-01-01

    Introduction: Nursing care is integral part of health care and having important role in management of patient with emergency condition. The purpose of this research was to develop nurse performance improvement model based on individual, organization and job characteristics association in Emergency Department of RSUD dr TC Hillers Maumere. Method: This was an explanative survey by cross sectional approach held on July -August 2012. Respondents in this study were 22 nurses and 44 patients were ...

  14. The performance characteristics of the Philips Gemini PET/CT scanner

    International Nuclear Information System (INIS)

    O'Keefe, G.J.; Papenfuss, A.T.; Scott, A.M.; Rowe, C.C.

    2002-01-01

    Full text: The Department of Nuclear Medicine, Centre for PET at the ARMC is commissioning a next generation PET/CT scanner based on gadolinium silicic dioxide (GSO) crystal technology to replace the BGO crystal PET scanner that has been in operation since 1992. The Gemini PET/CT scanner is a fully 3D PET system which offers significantly increased resolution and sensitivity allowing wholebody scans in under 30 minutes. Until the late 90's, PET scanners were largely used with septa for neurological imaging and the performance characteristics of PET scanners were presented according to the NEMA-NU2-94 standard which specifically addresses the performance of PET scanners for neurological applications. PET is now largely used without septa for oncological imaging and as such, the NEMA-NU2-94 standard does not adequately reflect performance. The NEMA-NU2-2001 standard was designed to incorporate the effects of out-of-FOV activity and its contribution to performance by virtue of the increased scatter and randoms that result when performing wholebody scans without the use of septa. As part of the acceptance program of the Allegro/Gemini systems, the NEMA-NU2-2001 standard will be used to characterise the spatial resolution, sensitivity, randoms and scatter contributions and the Noise Equivalent Count rate (NECr). These results will be presented and compared with the ECAT 951/31R performance characteristics. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Elucidating the Performance Limitations of Lithium-ion Batteries due to Species and Charge Transport through Five Characteristic Parameters

    Science.gov (United States)

    Jiang, Fangming; Peng, Peng

    2016-01-01

    Underutilization due to performance limitations imposed by species and charge transports is one of the key issues that persist with various lithium-ion batteries. To elucidate the relevant mechanisms, two groups of characteristic parameters were proposed. The first group contains three characteristic time parameters, namely: (1) te, which characterizes the Li-ion transport rate in the electrolyte phase, (2) ts, characterizing the lithium diffusion rate in the solid active materials, and (3) tc, describing the local Li-ion depletion rate in electrolyte phase at the electrolyte/electrode interface due to electrochemical reactions. The second group contains two electric resistance parameters: Re and Rs, which represent respectively, the equivalent ionic transport resistance and the effective electronic transport resistance in the electrode. Electrochemical modeling and simulations to the discharge process of LiCoO2 cells reveal that: (1) if te, ts and tc are on the same order of magnitude, the species transports may not cause any performance limitations to the battery; (2) the underlying mechanisms of performance limitations due to thick electrode, high-rate operation, and large-sized active material particles as well as effects of charge transports are revealed. The findings may be used as quantitative guidelines in the development and design of more advanced Li-ion batteries. PMID:27599870

  16. Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L.

    2013-01-01

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

  17. Study on Characteristics of CdS/Cu2S Photovoltaic Cell

    International Nuclear Information System (INIS)

    Nwe Nwe Htun

    2011-12-01

    In this paper the CdS-Cu2S photovoltaic cell has been prepared and characteristiced by using evaporation method on glass substrate. CdS film was deposited on the Pyrex glass substrate by evaporation and Cu2S layer was obtained by electroplating in a dilute acqueous solution of CusO4 at room temperature. Silver electrode was applied to the electroplated surface. The results of electrical and optical characteristics of the CdS-Cu2S hetrojunction were investigated. The photovoltaic response has been observed under various illuminated intensity for different wavelengths in visible region. It was found to be the photovoltage and photocurrent varying with different light intensities. It can be concluded that formation of a low resistivity CdS film and Cu2S layer play a big role in obtaining a high efficiency cell.

  18. Performance characterization of solid oxide cells under high pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2014-01-01

    in both fuel cell mode and electrolysis mode. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be born in mind that the pressurised gas contains higher molar free energy. Operating at high current density...... hydrocarbon fuels, which is normally performed at high pressure to achieve a high yield. Operation of SOECs at elevated pressure will therefore facilitate integration with the downstream fuel synthesis and is furthermore advantageous as it increases the cell performance. In this work, recent pressurised test...... results of a planar Ni-YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. The test was performed at 800 °C at pressures up to 15 bar. A comparison of the electrochemical performance of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure...

  19. Characteristics and performances of electronic personal dosemeters

    International Nuclear Information System (INIS)

    Aubert, B.

    2002-01-01

    The regulations have made obligation for 2 years to measure and analyse the amounts of radiations actually received during an operation. The whole of these measurements taken uninterrupted for an immediate reading is indicated like the operational dosimetry, which is carried out with the means of personal electronic dosemeters. This study analyses the legislation relating to this type of dosimetry as well as the requirements in medical environment, and presents an assessment of the characteristics and performances of the devices available on the French market at the beginning of 2002 starting from the information provided by the various manufacturers. (author)

  20. Lymphocyte depletion in thymic nurse cells: a tool to identify in situ lympho-epithelial complexes having thymic nurse cell characteristics

    NARCIS (Netherlands)

    Leene, W.; de Waal Malefijt, R.; Roholl, P. J.; Hoeben, K. A.

    1988-01-01

    In situ pre-existing complexes of epithelial cells and thymocytes having thymic nurse cell characteristics were visualized in the murine thymus cortex using dexamethasone as a potent killer of cortisone-sensitive thymocytes. The degradation and subsequent depletion of cortisone-sensitive thymocytes

  1. Uncertainty characteristics of EPA's ground-water transport model for low-level waste performance assessment

    International Nuclear Information System (INIS)

    Yim, Man-Sung

    1995-01-01

    Performance assessment is an essential step either in design or in licensing processes to ensure the safety of any proposed radioactive waste disposal facilities. Since performance assessment requires the use of computer codes, understanding the characteristics of computer models used and the uncertainties of the estimated results is important. The PRESTO-EPA code, which was the basis of the Environmental Protection Agency's analysis for low-level-waste rulemaking, is widely used for various performance assessment activities in the country with no adequate information available for the uncertainty characteristics of the results. In this study, the groundwater transport model PRESTO-EPA was examined based on the analysis of 14 C transport along with the investigation of uncertainty characteristics

  2. Facebook use, personality characteristics and academic performance: A correlational study

    OpenAIRE

    Sapsani, Georgia; Tselios, Nikolaos

    2017-01-01

    The present paper examines the relationship between the students personality, use of social media and their academic performance and engagement. In specific, the aim of this study is to examine the relationship of students facebook (fb) use and personality characteristics using the Big Five Personality Test with (a) student engagement, (b) time spent preparing for class, (c) time spent in co-curricular activities and (d) academic performance. Results illustrate that fb time was significantly ...

  3. Performance of multi-junction cells due to illumination distribution across the cell surface

    International Nuclear Information System (INIS)

    Schultz, R.D.; Vorster, F.J; Dyk, E.E van

    2012-01-01

    This paper addresses the influence of illumination distribution on the performance of a high concentration photovoltaic (HCPV) module. CPV systems comprise of optical elements as well as mechanical tracking to concentrate the solar flux onto the solar receiver as well as to keep the system on track with the sun. The performance of the subcells of the multi-junction concentrator cell depends on the optical alignment of the system. Raster scanning of the incident intensity in the optical plane of the receiver and corresponding I–V measurements were used to investigate the influence of illumination distribution on performance. The results show that the illumination distribution that differs between cells does affect the performance of the module. The performance of the subcells of the multi-junction concentrator cell also depends on the optical alignment of the system.

  4. Performance of multi-junction cells due to illumination distribution across the cell surface

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.D., E-mail: s206029578@live.nmmu.ac.za [Nelson Mandela University, Physics Department, P.O. Box 77000, 6031, Port Elizabeth (South Africa); Vorster, F.J; Dyk, E.E van [Nelson Mandela University, Physics Department, P.O. Box 77000, 6031, Port Elizabeth (South Africa)

    2012-05-15

    This paper addresses the influence of illumination distribution on the performance of a high concentration photovoltaic (HCPV) module. CPV systems comprise of optical elements as well as mechanical tracking to concentrate the solar flux onto the solar receiver as well as to keep the system on track with the sun. The performance of the subcells of the multi-junction concentrator cell depends on the optical alignment of the system. Raster scanning of the incident intensity in the optical plane of the receiver and corresponding I-V measurements were used to investigate the influence of illumination distribution on performance. The results show that the illumination distribution that differs between cells does affect the performance of the module. The performance of the subcells of the multi-junction concentrator cell also depends on the optical alignment of the system.

  5. Differences in the characteristics of cell cultures established from seven human osteosarcomas

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Mackevicius, F.

    1975-01-01

    Cell cultures derived from seven human osteosarcomas have been characterized with respect to their pattern of growth and cell morphology using light microscopy, transmission electron microscopy, and scanning electron microscopy. Other characteristics studied included growth rates, chromosomal abnormalities, and ability to grow in low serum concentrations and on a semisolid substrate. Normal human fibroblasts in culture have also been examined by the same methods. The results show many differences both between individual osteosarcoma cultures and normal fibroblasts. Two of the osteosarcoma cultures were epithelium-like, and five had a more fibroblastic appearance when viewed by the light microscope. Examination by electron microscopy showed a wide variety of cells in each culture. Many of the features exhibited in the fibroblast-like tumor cells were different from those seen with the normal fibroblast cultures. Growth rates differed widely with characteristic doubling times varying between 1 and 7 days from the osteosarcoma cultures, compared to 3 to 4 days for normal fibroblasts. Unlike normal mouse fibroblasts, which grow poorly or not at all in low serum concentrations, the normal human fibroblasts tested grew almost as well in media with 1 percent serum as with 15 percent serum

  6. Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics

    International Nuclear Information System (INIS)

    Gaharwar, Akhilesh K.; Rivera, Christian; Wu, Chia-Jung; Chan, Burke K.; Schmidt, Gudrun

    2013-01-01

    Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion. - Graphical abstract: Structural, mechanical and biological properties of photocrosslinked nanocomposite hydrogels from silica and poly(ethylene oxide) are investigated. Silica reinforce the hydrogel network and improved mechanical strength. Addition of induces cell adhesion characteristic properties for various

  7. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    Science.gov (United States)

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  8. Origin of the high performance of perovskite solar cells with large grains

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jian; Shi, Tongfei, E-mail: tongfeishi@gmail.com; Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-01

    Due to excellent carrier transport characteristics, CH{sub 3}NH{sub 3}PbI{sub 3} film made of large single crystal grains is considered as a key to improve upon already remarkable perovskite solar cell (PSC) efficiency. We have used a simple and efficient solvent vapor annealing method to obtain CH{sub 3}NH{sub 3}PbI{sub 3} films with grain size over 1 μm. PSCs with different grain size films have been fabricated and verified the potential of large grains for improving solar cells performance. Moreover, the larger grain films have shown stronger light absorption ability and more photon-generated carriers under the same illumination. A detailed temperature-dependent PL study has indicated that it originates from larger radius and lower binding energy of donor-acceptor-pair (DAP) in larger grains, which makes the DAP is easily to be separated and difficult to be recombine.

  9. Simulation of forward dark current voltage characteristics of tandem solar cells

    International Nuclear Information System (INIS)

    Rubinelli, F.A.

    2012-01-01

    The transport mechanisms tailoring the shape of dark current–voltage characteristics of amorphous and microcrystalline silicon based tandem solar cell structures are explored with numerical simulations. Our input parameters were calibrated by fitting experimental current voltage curves of single and double junction structures measured under dark and illuminated conditions. At low and intermediate forward voltages the dark current–voltage characteristics show one or two regions with a current–voltage exponential dependence. The diode factor is unique in tandem cells with the same material in both intrinsic layers and two dissimilar diode factors are observed in tandem cells with different materials on the top and bottom intrinsic layers. In the exponential regions the current is controlled by recombination through gap states and by free carrier diffusion. At high forward voltages the current grows more slowly with the applied voltage. The current is influenced by the onset of electron space charge limited current (SCLC) in tandem cells where both intrinsic layers are of amorphous silicon and by series resistance of the bottom cell in tandem cells where both intrinsic layers are of microcrystalline silicon. In the micromorph cell the onset of SCLC becomes visible on the amorphous top sub-cell. The dark current also depends on the thermal generation of electron–hole (e–h) pairs present at the tunneling recombination junction. The highest dependence is observed in the tandem structure where both intrinsic layers are of microcrystalline silicon. The prediction of meaningless dark currents at low forward and reverse voltages by our code is discussed and one solution is given. - Highlights: ► Transport mechanisms shaping the dark current-voltage curves of tandem devices. ► The devices are amorphous and microcrystalline based tandem solar cells. ► Two regions with a current-voltage exponential dependence are observed. ► The tandem J-V diode factor is the

  10. Evaluation of the performance characteristic for mammography by using edge device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Jwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, The Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [Dept. of Medical Science, The Soonchunhyang University, Asan (Korea, Republic of); Lee, Eul Kyu [Dept. of Radiology, Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Son, Soon Yong [Dept. of Radiological Technology, The Wonkwang Health Science University, Iksan (Korea, Republic of); Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, The Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    The purpose of this study was to evaluation of the performance characteristic for mammography by using edge device that mammography equipment improves essential in the correct diagnosis for the maintenance. We measured the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using the 61267 RQA-M2 based on commission standard international electro-technical commission (IEC). As a results, spatial resolution of dimensions tomo and lorad selenia mammography were maintained at 10 mm-1 and NPS and DQE including the low nyquist frequency indicated to 6.0 mm-1. Therefore, regularly QA of mammography system should be necessary. This study can be contribute to evaluate QA for performance characteristic of mammography of DDR system.

  11. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  12. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell

    Science.gov (United States)

    Savinell, Robert F.; Fritts, S. D.

    1987-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  13. Electrochemical behaviour and nanoscale characteristics of CNT-based fibers as new substrate for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Polizu, S.; Yahia, L.H. [Ecole Polytechnique de Montreal, PQ (Canada). Laboratoire d' innovation et d' analyse de la bioperformance; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Maugey, M.; Poulin, P. [Centre de Recherche Paul Pascal, CNRS, Bordeaux (France); Rouabhia, M. [Laval Univ., Quebec City, PQ (Canada). Faculty of Medicine

    2008-07-01

    This paper reported on a study in which carbon nanotube (CNT) macroscopic fibers were formulated by a newly developed non-covalent method for fabricating fibrous substrate. The covalent and noncovalent chemistry of CNTs has been widely used in the development of CNT-based biomaterials as active substrates for living cells. Time of Flight Mass Spectroscopy (TOF-SIMS) analysis was used to determine the surface characteristics of the CNT-based fibers produced by wet spinning method. The structure and texture of fibers were imaged using Low-Vacuum Scanning Electron Microscopy (LV-SEM) equipped with an Energy Dispersive Spectrometer (EDS) for microanalysis. Atomic Force Microscopy (AFM) imaging revealed the structure of fibers. Cyclic Voltametry (CV) measurements were performed to examine the electrochemical behaviour of fibers. Sulfuric acid and a cell culture medium was used as the 2 different electrolytes. The influences of environmental parameters on the electrochemical phenomena taking place were identified. The intrinsic electrochemical characteristics of fibers were revealed through measurements in acid environment. The cell culture medium simulated the physiological conditions. It was concluded that the newly developed wet spinning method is very efficient for making CNT-based fibers as electroactive biomaterials. The structural nanoscale details evidenced a good alignment of nanotubes in the thread and the critical role it plays in electrochemical interactions. The differences induced by the variation of electrolytes suggest that a relationship could be established between the fiber chemistry and the electrochemical response. This correlation has considerably potential for the design of new biomedical devices. 2 refs.

  14. Performance Characteristics of Long-Track Speed Skaters : A Literature Review

    NARCIS (Netherlands)

    Konings, Marco J.; Elferink-Gemser, Marije T.; Stoter, Inge K.; van der Meer, Dirk; Otten, Egbert; Hettinga, Florentina J.

    Speed skating is an intriguing sport to study from different perspectives due to the peculiar way of motion and the multiple determinants for performance. This review aimed to identify what is known on (long-track) speed skating, and which individual characteristics determine speed skating

  15. Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives

    Directory of Open Access Journals (Sweden)

    Shaowen Du

    2015-01-01

    Full Text Available Three types of chemical additives were used to modify asphalt emulsion recycled mixture. These chemical additives include composite Portland cement (CPC, hydrated lime (HL, and a combination of hydrated lime and ground-granulated blast-furnace slag (GGBF. The influence of different additives on the recycled mixture performance was investigated by volumetric and strength tests, moisture susceptibility test, rutting resistance test, and low temperature bending test. To better understand its performance characteristic, the microstructure images of the recycled mixture were observed by environmental scanning electron microscope (ESEM. Test results demonstrate that the performance improvement of the emulsion recycled mixture depends on the types and content of chemical additives. Several recommendations are presented for the selection of chemical materials. Based on ESEM image analysis, the interface bonding mechanism is proposed to explain the performance characteristic of the recycled mixture with asphalt emulsion and cementitious materials.

  16. Board Characteristics and Accounting Performance in Banking Industry: The Indonesian Experience

    Directory of Open Access Journals (Sweden)

    Muhammad Agung Prabowo

    2018-02-01

    Full Text Available This paper examines the effect of board characteristics on accounting return in Indonesian banking industry. The conceptual framework borrows from agency theory claiming that board is held liable for monitoring responsibilities and that monitoring effectiveness will lead to higher corporate achievement. Yet the theory predicts that board characteristics matter in constituting firm performance. It is hypothesized that leadership structure, representation of independent directors, board size, and the rank of college board chairperson attended are necessary attributes enable the board to deliver better performance. The investigation is based on a dataset consisting of 83 banks during 2009-2015. Panel data analysis reveal that the proportion of independent directors, board leadership structure, and board size shows insignificant influence. The rank of universities the board chairperson graduated is found to have an impact on accounting earnings. The impact is robust after the type of controlling owners is taken into account. Yet the association between university rank and performance is more pronounced in the listed-banks.

  17. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS. Final Technical Report (October 2000 - December 2003)

    International Nuclear Information System (INIS)

    Jie Guan; Nguyen Minh

    2003-01-01

    This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr 0.5 Sm 0.5 CoO 3 (SSC) has been developed. Polarization of ∼0.23 ohm-cm 2 has been achieved at 600 C with Sr 0.5 Sm 0.5 CoO 3 cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte

  18. Performance characteristics of a quantum Diesel refrigeration cycle

    International Nuclear Information System (INIS)

    He Jizhou; Wang Hao; Liu Sanqiu

    2009-01-01

    The Diesel refrigeration cycle using an ideal quantum gas as the working substance is called quantum Diesel refrigeration cycle, which is different from Carnot, Ericsson, Brayton, Otto and Stirling refrigeration cycles. For ideal quantum gases, a corrected equation of state, which considers the quantum behavior of gas particles, is used instead of the classical one. The purpose of this paper is to investigate the effect of quantum gas as the working substance on the performance of a quantum Diesel refrigeration cycle. It is found that coefficients of performance of the cycle are not affected by the quantum degeneracy of the working substance, which is the same as that of the classical Diesel refrigeration cycle. However, the refrigeration load is different from those of the classical Diesel refrigeration cycle. Lastly, the influence of the quantum degeneracy on the performance characteristics of the quantum Diesel refrigeration cycle operated in different temperature regions is discussed

  19. Break-in and Performance Issues on a single cell PBI-based PEM Fuel Cell

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Jespersen, Jesper Lebæk

    of the fuel cell, even though break-in of a fuel cell implemented in a commercial application would most likely not be feasible. In the present work a commercially available PBI-based high temperature MEA is subject to a break-in procedure, as specified by the manufacturer. The cell was operated at 160 °C...... during the break-in procedure at a current density of 0.2 A/cm2. The performance of the cell was measured over the 100 hour break-in period and a polarization curve was recorded after completion of break-in. The performance change was minimal during the break-in cycle. However, in the first hour of op......-eration a significant performance decrease of 30 mV was observed. Hereafter a performance in-crease started and the overall performance change during the break-in procedure was a voltage in-crease of 35 mV corresponding to a rate of 240 μV/hr. The performance increase was however fast-est in the first 50 hours...

  20. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Science.gov (United States)

    Hossain, Md. Khalid; Pervez, M. Firoz; Mia, M. N. H.; Mortuza, A. A.; Rahaman, M. S.; Karim, M. R.; Islam, Jahid M. M.; Ahmed, Farid; Khan, Mubarak A.

    In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric) sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV-Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell's (DSSC) photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric.

  1. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    Science.gov (United States)

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  2. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  3. Pancreatic Stellate Cells Have Distinct Characteristics From Hepatic Stellate Cells and Are Not the Unique Origin of Collagen-Producing Cells in the Pancreas.

    Science.gov (United States)

    Yamamoto, Gen; Taura, Kojiro; Iwaisako, Keiko; Asagiri, Masataka; Ito, Shinji; Koyama, Yukinori; Tanabe, Kazutaka; Iguchi, Kohta; Satoh, Motohiko; Nishio, Takahiro; Okuda, Yukihiro; Ikeno, Yoshinobu; Yoshino, Kenji; Seo, Satoru; Hatano, Etsuro; Uemoto, Shinji

    2017-10-01

    The origin of collagen-producing myofibroblasts in pancreatic fibrosis is still controversial. Pancreatic stellate cells (PSCs), which have been recognized as the pancreatic counterparts of hepatic stellate cells (HSCs), are thought to play an important role in the development of pancreatic fibrosis. However, sources of myofibroblasts other than PSCs may exist because extensive studies of liver fibrosis have uncovered myofibroblasts that did not originate from HSCs. This study aimed to characterize myofibroblasts in an experimental pancreatic fibrosis model in mice. We used transgenic mice expressing green fluorescent protein via the collagen type I α1 promoter and induced pancreatic fibrosis with repetitive injections of cerulein. Collagen-producing cells that are negative for glial fibrillary acidic protein (ie, not derived from PSCs) exist in the pancreas. Pancreatic stellate cells had different characteristics from those of HSCs in a very small possession of vitamin A using mass spectrometry and a low expression of lecithin retinol acyltransferase. The microstructure of PSCs was entirely different from that of HSCs using flow cytometry and electron microscopy. Our study showed that characteristics of PSCs are different from those of HSCs, and myofibroblasts in the pancreas might be derived not only from PSCs but also from other fibrogenic cells.

  4. Performance Improvements of Selective Emitters by Laser Openings on Large-Area Multicrystalline Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Shih Wang

    2014-01-01

    Full Text Available This study focuses on the laser opening technique used to form a selective emitter (SE structure on multicrystalline silicon (mc-Si. This technique can be used in the large-area (156 × 156 mm2 solar cells. SE process of this investigation was performed using 3 samples SE1–SE3. Laser fluences can vary in range of 2–5 J/cm2. The optimal conversion efficiency of 15.95% is obtained with the SE3 (2 J/cm2 fluence after laser opening with optimization of heavy and light dopant, which yields a gain of 0.48%abs compared with that of a reference cell (without fluence. In addition, this optimal SE3 cell displays improved characteristics compared with other cells with a higher average value of external quantum efficiency (EQEavg = 68.6% and a lower average value of power loss (Ploss = 2.33 mW/cm2. For the fabrication of solar cells, the laser opening process comprises fewer steps than traditional photolithography does. Furthermore, the laser opening process decreases consumption of chemical materials; therefore, the laser opening process decreases both time and cost. Therefore, SE process is simple, cheap, and suitable for commercialization. Moreover, the prominent features of the process render it effective means to promote overall performance in the photovoltaic industry.

  5. Crystalline silicon cell performance at low light intensities

    Energy Technology Data Exchange (ETDEWEB)

    Reich, N.H.; van Sark, W.G.J.H.M.; Alsema, E.A.; Turkenburg, W.C. [Utrecht University, Faculty of Science, Copernicus Institute for Sustainable Development and Innovation, Department of Science, Techonology and Society, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); Lof, R.W.; Schropp, R.E.I. [Utrecht University, Faculty of Science, Debye Institute for Nanomaterials Science, Nanophotonics - Physics of Device, Utrecht University, P.O. Box 80.000, 3508 TA Utrecht (Netherlands); Sinke, W.C. [Energy research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)

    2009-09-15

    Measured and modelled JV characteristics of crystalline silicon cells below one sun intensity have been investigated. First, the JV characteristics were measured between 3 and 1000 W/m{sup 2} at 6 light levels for 41 industrially produced mono- and multi-crystalline cells from 8 manufacturers, and at 29 intensity levels for a single multi-crystalline silicon between 0.01 and 1000 W/m{sup 2}. Based on this experimental data, the accuracy of the following four modelling approaches was evaluated: (1) empirical fill factor expressions, (2) a purely empirical function, (3) the one-diode model and (4) the two-diode model. Results show that the fill factor expressions and the empirical function fail at low light intensities, but a new empirical equation that gives accurate fits could be derived. The accuracy of both diode models are very high. However, the accuracy depends considerably on the used diode model parameter sets. While comparing different methods to determine diode model parameter sets, the two-diode model is found to be preferred in principle: particularly its capability in accurately modelling V{sub OC} and efficiency with one and the same parameter set makes the two-diode model superior. The simulated energy yields of the 41 commercial cells as a function of irradiance intensity suggest unbiased shunt resistances larger than about 10 k{omega} cm{sup 2} may help to avoid low energy yields of cells used under predominantly low light intensities. Such cells with diode currents not larger than about 10{sup -9} A/cm{sup 2} are excellent candidates for Product Integrated PV (PIPV) appliances. (author)

  6. Correlation between impurities, defects and cell performance in semicrystalline silicon

    International Nuclear Information System (INIS)

    Doolittle, W.A.; Rohatgi, A.

    1990-01-01

    This paper reports that an in-depth analysis of Solarex CDS semicrystalline silicon has been performed and correlations between the efficiency and impurities, and defects present in the material have been made. Comparisons were made between cell performance and variations in interstitial oxygen, substitutional carbon, grain size, etch pit density, and trap location as a function of position in the ingot. The oxygen concentration was found to decrease with increasing distance from the bottom of the ingot while the carbon concentration as well as average grain size was found to increase. The best cell performance was obtained on wafers with minimum oxygen and maximum carbon (top). No correlation was found between etch pit density and cell performance. DLTS and JVT measurements revealed that samples with higher oxygen content (bottom) gave lower cell performance due to a large number of distributed states, possibly due to extended defects like oxygen precipitates. Low oxygen samples (top) showed predominately discrete states, improved cell performance and a doping dependent average trap density

  7. Characteristics and quality of intra-operative cell salvage in paediatric scoliosis surgery.

    Science.gov (United States)

    Perez-Ferrer, A; Gredilla-Díaz, E; de Vicente-Sánchez, J; Navarro-Suay, R; Gilsanz-Rodríguez, F

    2016-02-01

    To determine the haematological and microbiological characteristics of blood recovered by using a cell saver with a rigid centrifuge bowl (100ml) in paediatric scoliosis surgery and to determine whether it conforms to the standard expected in adult patients. A cross-sectional, descriptive cohort study was performed on 24 consecutive red blood cell (RBC) units recovered from the surgical field and processed by a Haemolite® 2+ (Haemonetics Corp., Braintree, MA, EE. UU.) cell saver. Data were collected regarding age, weight, surgical approach (anterior or posterior), processed shed volume and volume of autologous RBC recovered, full blood count, and blood culture obtained from the RBC concentrate, and incidence of fever after reinfusion. The processed shed volume was very low (939±569ml) with high variability (coefficient of variation=0.6), unlike the recovered volume 129±50ml (coefficient of variation=0.38). A statistically significant correlation between the processed shed volume and recovered RBC concentrate haematocrit was found (Pearson, r=.659, P=.001). Haematological parameters in the recovered concentrate were: Hb 11±5.3g dl(-1); haematocrit: 32.1±15.4% (lower than expected); white cells 5.34±4.22×103 ul(-)1; platelets 37.88±23.5×103 ul(-1) (mean±SD). Blood culture was positive in the RBC concentrate recovered in 13 cases (54.2%) in which Staphylococcus coagulase (-) was isolated. Cell salvage machines with rigid centrifuge bowls (including paediatric small volume) do not obtain the expected haematocrit if low volumes are processed, and therefore they are not the best choice in paediatric surgery. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Microcalcifications in breast cancer: an active phenomenon mediated by epithelial cells with mesenchymal characteristics

    International Nuclear Information System (INIS)

    Scimeca, Manuel; Giannini, Elena; Antonacci, Chiara; Pistolese, Chiara Adriana; Spagnoli, Luigi Giusto; Bonanno, Elena

    2014-01-01

    Mammary microcalcifications have a crucial role in breast cancer detection, but the processes that induce their formation are unknown. Moreover, recent studies have described the occurrence of the epithelial–mesenchymal transition (EMT) in breast cancer, but its role is not defined. In this study, we hypothesized that epithelial cells acquire mesenchymal characteristics and become capable of producing breast microcalcifications. Breast sample biopsies with microcalcifications underwent energy dispersive X-ray microanalysis to better define the elemental composition of the microcalcifications. Breast sample biopsies without microcalcifications were used as controls. The ultrastructural phenotype of breast cells near to calcium deposits was also investigated to verify EMT in relation to breast microcalcifications. The mesenchymal phenotype and tissue mineralization were studied by immunostaining for vimentin, BMP-2, β2-microglobulin, β-catenin and osteopontin (OPN). The complex formation of calcium hydroxyapatite was strictly associated with malignant lesions whereas calcium-oxalate is mainly reported in benign lesions. Notably, for the first time, we observed the presence of magnesium-substituted hydroxyapatite, which was frequently noted in breast cancer but never found in benign lesions. Morphological studies demonstrated that epithelial cells with mesenchymal characteristics were significantly increased in infiltrating carcinomas with microcalcifications and in cells with ultrastructural features typical of osteoblasts close to microcalcifications. These data were strengthened by the rate of cells expressing molecules typically involved during physiological mineralization (i.e. BMP-2, OPN) that discriminated infiltrating carcinomas with microcalcifications from those without microcalcifications. We found significant differences in the elemental composition of calcifications between benign and malignant lesions. Observations of cell phenotype led us to

  9. Clinical characteristics of basal cell carcinoma in a tertiary hospital in Sarawak, Malaysia.

    Science.gov (United States)

    Yap, Felix Boon Bin

    2010-02-01

    Basal cell carcinoma (BCC) is the most common skin cancer among Orientals. Data on this malignancy is lacking in Malaysia, prompting a retrospective study to determine the clinical characteristics in the skin clinic, Sarawak General Hospital between 2000 and 2008. Demographic data and clinical features of 64 histopathologically proven BCC from 43 patients were retrieved. Statistical analysis was performed comparing the clinical characteristics based on the region of involvement and gender. The mean age of presentation was 60.9 years. Male to female ratio was 1.05. Majority of the patients were Chinese (44.2%) followed by Malays (32.6%), Bidayuhs (14.0%) and Ibans (6.9%). Nodular BCC accounted for 95.3% of cases while 4.7% were superficial BCC. All the nodular BCC were pigmented. Ulceration was noted in 18%. There were 82.8% of BCC on the head and neck region and 17.2% on the trunk and limb region. BCC on the latter region were larger (mean 35.0 cf. 14.4 mm, p Sarawak were similar to other Asian studies. Additionally, BCC on the trunk and limbs and in men were larger, ulcerative and long standing warranting better efforts for earlier detection.

  10. PERFORMANCE AND CHARACTERISTICS OF MUTUAL FUNDS: EVIDENCE FROM THE PORTUGUESE MARKET

    Directory of Open Access Journals (Sweden)

    Júlio Lobão

    2015-12-01

    Full Text Available In this paper we aim to study the relation between fund performance and fund attributes in the Portuguese market. The sample includes 124 equity funds, bond funds and money market funds that traded in the 2004-2011 period. A comprehensive set of fund-specific characteristics, never used before in conjunction in the literature, was considered. The methodology which was adopted had two distinct phases. Firstly, we compared the returns of each category of funds with the appropriate reference markets. Secondly, the fund performance, measured by the Jensen’s alpha, was used in a multi-factor model with panel data in which the independent variables were the fund attributes. The results show that Portuguese funds were, in general, not able to beat the benchmarks which is consistent with the existence of efficient financial markets. Only the fixed income mutual funds performed well. Moreover, it is possible to conclude that, for each category of mutual funds, their characteristics are useful to the investor in the moment of choosing the best funds. For example, in the case of funds that invest in Portuguese stocks, the best performance occurs among older and larger funds, funds with higher costs, funds with good past performance and funds whose trading activity is low.

  11. Experimental study on the effect of cathode flow humidity and temperature on the performance of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    El-Emam, R.S.; Awad, M.M.; Hamed, A.M.; Tolba, M. [Mansoura Univ., Mansoura (Egypt). Dept. of Mechanical Engineering

    2009-07-01

    The fuel cell is an electrochemical energy conversion device that produces electricity directly from chemical energy, and the by-products are only water and heat. The fuel cell could provide a solution to a whole range of environmental challenges, such as global warming and harmful levels of local pollutants. One of the most promising alternative power generation methods is the proton exchange membrane fuel cell (PEMFC) because of its low operating temperature, relative tolerance for impurities, and high power-density. This paper presented an experimental study on the performance characteristics of a single unit of a PEMFC with an active area of 25 square centimetres using two different cell configurations. The test system was designed to control the temperature and the relative humidity of the cathode feeding gas. Oxygen and air were used as oxidizers, while dry hydrogen was the cell fuel. Two different cell configurations were assembled and integrated into the test stand. The paper described the experimental work and presented the results of the study. It was concluded that low oxygen relative humidity with the dry hydrogen caused membrane drying and ultimately resulted in a degradation of fuel cell power output and cell performance. 17 refs., 17 figs.

  12. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  13. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S

    1997-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  14. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.

    2010-08-20

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an \\'experimental functional map\\' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models. © 2010 Wiley-VCH Verlag GmbH& Co. KGaA, Weinheim.

  15. Modelling fuel cell performance using artificial intelligence

    Science.gov (United States)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  16. Modelling fuel cell performance using artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ogaji, S.O.T.; Singh, R.; Pilidis, P.; Diacakis, M. [Power Propulsion and Aerospace Engineering Department, Centre for Diagnostics and Life Cycle Costs, Cranfield University (United Kingdom)

    2006-03-09

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed. (author)

  17. Performance Characterization of Solid Oxide Cells Under High Pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2015-01-01

    on partial pressures (oxygen, steam and hydrogen) were affected by increasing the pressure. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be borne in mind that the pressurized gas contains higher molar free......In this work, recent pressurized test results of a planar Ni- YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. Measurements were performed at 800 C in both fuel cell and electrolysis mode at different pressures. A comparison of the electrochemical performance...... of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure in both fuel cell mode and electrolysis mode. Electrochemical impedance spectroscopy revealed that the serial resistance was not affected by the operation pressure; all the other processes that are dependent...

  18. The performance of silicon solar cells operated in liquids

    International Nuclear Information System (INIS)

    Wang Yiping; Fang Zhenlei; Zhu Li; Huang Qunwu; Zhang Yan; Zhang Zhiying

    2009-01-01

    Better performance can be achieved when the bare silicon solar cells are immersed into liquids for the enhanced heat removing. In this study, the performance of solar cells immersed in liquids was examined under simulated sunlight. To distinguish the effects of the liquid optic and electric properties on the solar cells, a comparison between immersion of the solar module and the bare solar cells was carried out. It was found that the optic properties of the liquids can cause minor efficiency changes on the solar cells, while the electric properties of the liquids, the molecular polarizable and ions, are responsible for the most of the changes. The bare solar cells immersed in the non-polar silicon oil have the best performance. The accelerated life tests were carried out at 150 deg. C high temperature and under 200 W/m 2 ultraviolet light irradiation, respectively. It was found that the silicon oil has good stability. This study can give support on the cooling of the concentrated photovoltaic systems by immersing the solar cells in the liquids directly

  19. Performance characteristics and parametric optimization of an irreversible magnetic Ericsson heat-pump

    International Nuclear Information System (INIS)

    Wei Fang; Lin Guoxing; Chen Jincan; Brueck, Ekkes

    2011-01-01

    Taking into account the finite-rate heat transfer in the heat-transfer processes, heat leak between the two external heat reservoirs, regenerative loss, regeneration time, and internal irreversibility due to dissipation of the cycle working substance, an irreversible magnetic Ericsson heat-pump cycle is presented. On the basis of the thermodynamic properties of magnetic materials, the performance characteristics of the irreversible magnetic Ericsson heat-pump are investigated and the relationship between the optimal heating load and the coefficient of performance (COP) is derived. Moreover, the maximum heating load and the corresponding COP as well as the maximum COP and the corresponding heating load are obtained. Furthermore, the other optimal performance characteristics are discussed in detail. The results obtained here may provide some new information for the optimal parameter design and the development of real magnetic Ericsson heat-pumps. -- Research Highlights: →The effects of multi-irreversibilities on the performance of a magnetic heat-pump are revealed. →Mathematical expressions of the heating load and the COP are derived and the optimal performance and operating parameters are analyzed and discussed. →Several important performance bounds are determined.

  20. Potential of ITO nanoparticles formed by hydrogen treatment in PECVD for improved performance of back grid contact crystalline silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Sourav; Mitra, Suchismita; Dhar, Sukanta; Ghosh, Hemanta; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com; Datta, Swapan K.; Saha, Hiranmoy

    2015-09-15

    Highlights: • Indium tin oxide (ITO) nanoparticles as back scatterers in c-Si solar cells. • ITO NP have comparatively low dissipative losses and tunable optical properties. • ITO NP formed by hydrogen plasma treatment on sputtered ITO film. • Enhanced absorption and carrier collection at longer wavelengths due to enhanced light trapping. - Abstract: This paper discusses the prospect of using indium tin oxide (ITO) nanoparticles as back scatterers in crystalline silicon solar cells instead of commonly used metal nanoparticles as ITO nanoparticles have comparatively low dissipative losses and tunable optical properties. ITO nanoparticles of ∼5–10 nm size is developed on the rear side of the solar cell by deposition of ∼5–10 nm thick ITO layer by DC magnetron sputtering followed by hydrogen treatment in PECVD. The silicon solar cell is fabricated in the laboratory using conventional method with grid metal contact at the back surface. Various characterizations like FESEM, TEM, AFM, XRD, EQE and IV characteristics are performed to analyze the morphology, chemical composition, optical characteristics and electrical performance of the device. ITO nanoparticles at the back surface of the solar cell significantly enhances the short circuit current, open circuit voltage and efficiency of the solar cell. These enhancements may be attributed to the increased absorption and carrier collection at longer wavelengths of solar spectrum due to enhanced light trapping by the ITO nanoparticles and surface passivation by the hydrogen treatment of the back surface.

  1. Edge Detection Based On the Characteristic of Primary Visual Cortex Cells

    Science.gov (United States)

    Zhu, M. M.; Xu, Y. L.; Ma, H. Q.

    2018-01-01

    Aiming at the problem that it is difficult to balance the accuracy of edge detection and anti-noise performance, and referring to the dynamic and static perceptions of the primary visual cortex (V1) cells, a V1 cell model is established to perform edge detection. A spatiotemporal filter is adopted to simulate the receptive field of V1 simple cells, the model V1 cell is obtained after integrating the responses of simple cells by half-wave rectification and normalization, Then the natural image edge is detected by using static perception of V1 cells. The simulation results show that, the V1 model can basically fit the biological data and has the universality of biology. What’s more, compared with other edge detection operators, the proposed model is more effective and has better robustness

  2. Method to improve reliability of a fuel cell system using low performance cell detection at low power operation

    Science.gov (United States)

    Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.

    2013-04-16

    A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.

  3. Design, fabrication and performance evaluation of an integrated reformed methanol fuel cell for portable use

    Science.gov (United States)

    Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei

    2018-06-01

    In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.

  4. Standard guide for evaluating performance characteristics of phased-Array ultrasonic testing instruments and systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide describes procedures for evaluating some performance characteristics of phased-array ultrasonic examination instruments and systems. 1.2 Evaluation of these characteristics is intended to be used for comparing instruments and systems or, by periodic repetition, for detecting long-term changes in the characteristics of a given instrument or system that may be indicative of impending failure, and which, if beyond certain limits, will require corrective maintenance. Instrument characteristics measured in accordance with this guide are expressed in terms that relate to their potential usefulness for ultrasonic examinations. Other electronic instrument characteristics in phased-array units are similar to non-phased-array units and may be measured as described in E 1065 or E 1324. 1.3 Ultrasonic examination systems using pulsed-wave trains and A-scan presentation (rf or video) may be evaluated. 1.4 This guide establishes no performance limits for examination systems; if such acceptance criteria ar...

  5. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell

    Science.gov (United States)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  6. Breeder design for enhanced performance and safety characteristics

    International Nuclear Information System (INIS)

    Fischer, G.J.; Atefi, B.; Yang, J.W.; Galperin, A.; Segev, M.

    1980-01-01

    A fast breeder reactor design has been created which offers a considerably extended fuel cycle and excellent performance characteristics. An example of a core designed to operate on a ten-year fuel cycle is described in some detail. Use of metal fuel along with a moderator such as beryllium oxide dispersed throughout the core provides both design flexibility and safety advantages such as a strong Doppler feedback and limited sodium void reactivity gain. Local power variations are small for the entire cycle; control requirements are also modest, and fuel cycle costs are low

  7. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance.

    Science.gov (United States)

    Marinado, Tannia; Hagberg, Daniel P; Hedlund, Maria; Edvinsson, Tomas; Johansson, Erik M J; Boschloo, Gerrit; Rensmo, Håkan; Brinck, Tore; Sun, Licheng; Hagfeldt, Anders

    2009-01-07

    Three new sensitizers for photoelectrochemical solar cells were synthesized consisting of a triphenylamine donor, a rhodanine-3-acetic acid acceptor and a polyene connection. The conjugation length was systematically increased, which resulted in two effects: first, it led to a red-shift of the optical absorption of the dyes, resulting in an improved spectral overlap with the solar spectrum. Secondly, the oxidation potential decreased systematically. The excited state levels were, however, calculated to be nearly stationary. The experimental trends were in excellent agreement with density functional theory (DFT) computations. The photovoltaic performance of this set of dyes as sensitizers in mesoporous TiO2 solar cells was investigated using electrolytes containing the iodide/triiodide redox couple. The dye with the best absorption characteristics showed the poorest solar cell efficiency, due to losses by recombination of electrons in TiO2 with triiodide. Addition of 4-tert butylpyridine to the electrolyte led to a strongly reduced photocurrent for all dyes due to a reduced electron injection efficiency, caused by a 0.15 V negative shift of the TiO2 conduction band potential.

  8. Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement

    International Nuclear Information System (INIS)

    Wang, Yanzhou; Shao, Pengfei; Li, Yali; Li, Junshuai; He, Deyan; Chen, Qiang

    2017-01-01

    In this paper, an inverted silicon (Si) nanopyramid (iSiNP) surface structure with low aspect ratio and remarkable antireflection is developed through sequential treatments of NaOH and HF/CH 3 COOH/HNO 3 solutions to Si nanowire (SiNW)-textured Si wafers, which are prepared by traditional electroless chemical etching. The iSiNP/PEDOT:PSS hybrid solar cell is fabricated through conformally spin-coating poly(3.4-ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) onto the iSiNPs; it exhibits enhanced device performance owing to the improved junction and contact quality as compared to the SiNW/PEDOT:PSS counterpart. A power conversion efficiency (PCE) of 9.6% mainly contributed from an increased fill factor (FF) of 0.61 and improved open circuit voltage ( V oc ) of 0.53 V is delivered by the iSiNP/PEDOT:PSS solar cell. As a comparison, the SiNW/PEDOT:PSS structure delivers a 7.1% PCE with a FF of 0.45 and V oc of 0.46 V. Considering the submicro-scale characteristic dimensions, iSiNPs are expected to be applicable to highly efficient thin film Si/PEDOT:PSS hybrid solar cells. (paper)

  9. Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method

    Directory of Open Access Journals (Sweden)

    Goutam Pohit

    2013-01-01

    Full Text Available Engine performances and emission characteristics of Karanja oil methyl ester blended with diesel were carried out on a variable compression diesel engine. In order to search for the optimal process response through a limited number of experiment runs, application of Taguchi method in combination with grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a particular combination of input parameters was predicted so as to achieve optimum response characteristics. It was observed that a blend of fifty percent was most suitable for use in a diesel engine without significantly affecting the engine performance and emissions characteristics.

  10. Design characteristics of metallic fuel rod on its in-LMR performance

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang Hee Young; Nam, Cheol; Kim, Jong Oh

    1997-01-01

    Fuel design is a key feature to assure LMR safety goals. To date, a large effort had been devoted to develop metallic fuels at ANL's experimental breeder reactor (EBR-II). The major design and performance parameters investigated include; thermal conductivity and temperature profile; smear density; axial plenum; FCMI and cladding deformation including creep, and fission gas release. In order to evaluate the sensitivity of each parameter, in-LMR performances of metallic fuels are not only reviewed by the experiment results in literatures, but also key design characteristics according to the variation of metallic fuel rod design parameters are analyzed by using the MACSIS code which simulates in-reactor behaviors of metal fuel rod. In this study, key design characteristics and the criteria which must be considered to design fuel rod in LMR, are proposed and discussed. (author). 14 refs., 4 figs

  11. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.

    Science.gov (United States)

    Yang, Jinjuan; Liu, Hao; Wang, Kunfu; Li, Lu; Yuan, Hongyi; Liu, Xueting; Liu, Yingjie; Guan, Weijun

    2017-12-01

    Skeletal muscle has a huge regenerative potential for postnatal muscle growth and repair, which mainly depends on a kind of muscle progenitor cell population, called satellite cell. Nowadays, the majority of satellite cells were obtained from human, mouse, rat and other animals but rarely from pig. In this article, the porcine skeletal muscle satellite cells were isolated and cultured in vitro. The expression of surface markers of satellite cells was detected by immunofluorescence and RT-PCR assays. The differentiation capacity was assessed by inducing satellite cells into adipocytes, myoblasts and osteoblasts. The results showed that satellite cells isolated from porcine tibialis anterior were subcultured up to 12 passages and were positive for Pax7, Myod, c-Met, desmin, PCNA and NANOG but were negative for Myogenin. Satellite cells were also induced to differentiate into adipocytes, osteoblasts and myoblasts, respectively. These findings indicated that porcine satellite cells possess similar biological characteristics of stem cells, which may provide theoretical basis and experimental evidence for potential therapeutic application in the treatment of dystrophic muscle and other muscle injuries.

  12. Rambutan-like CNT-Al2O3 scaffolds for high-performance cathode catalyst layers of polymer electrolyte fuel cells

    Science.gov (United States)

    Chang, KwangHyun; Cho, Seonghun; Lim, Eun Ja; Park, Seok-Hee; Yim, Sung-Dae

    2018-03-01

    Rambutan-like CNT-Al2O3 scaffolds are introduced as a potential candidate for CNT-based catalyst supports to overcome the CNT issues, such as the easy bundling in catalyst ink and the poor pore structure of the CNT-based catalyst layers, and to achieve high MEA performance in PEFCs. Non-porous α-phase Al2O3 balls are introduced to enable the growth of multiwalled CNTs, and Pt nanoparticles are loaded onto the CNT surfaces. In a half-cell, the Pt/CNT-Al2O3 catalyst shows much higher durability than those of a commercial Pt/C catalyst even though it shows lower oxygen reduction reaction (ORR) activity than Pt/C. After using the decal process for MEA formation, the Pt/CNT-Al2O3 shows comparable initial performance characteristics to Pt/C, overcoming the lower ORR activity, mainly due to the facile oxygen transport in the cathode catalyst layers fabricated with the CNT-Al2O3 scaffolds. The Pt/CNT-Al2O3 also exhibits much higher durability against carbon corrosion than Pt/C owing to the durable characteristics of CNTs. Systematic analysis of single cell performance for both initial and after degradation is provided to understand the origin of the high initial performance and durable behavior of Pt/CNT-Al2O3-based catalyst layers. This will provide insights into the design of electrocatalysts for high-performance MEAs in PEFCs.

  13. The influences of purple sweet potato anthocyanin on the growth characteristics of human retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Min Sun

    2015-06-01

    Full Text Available Background: Anthocyanins have been proven to be beneficial to the eyes. However, information is scarce about the effects of purple sweet potato (Ipomoea batatas, L. anthocyanin (PSPA, a class of anthocyanins derived from purple sweet potato roots, on visual health. Objective: The aim of this study was to investigate whether PSPA could have influences on the growth characteristics (cellular morphology, survival, and proliferation of human retinal pigment epithelial (RPE cells, which perform essential functions for the visual process. Methods: The RPE cell line D407 was used in the present study. The cytotoxicity of PSPA was assessed by MTT assay. Then, cellular morphology, viability, cell cycle, Ki67expression, and PI3K/MAPK activation of RPE cells treated with PSPA were determined. Results: PSPA exhibited dose-dependent promotion of RPE cell proliferation at concentrations ranging from 10 to 1,000 µg/ml. RPE cells treated with PSPA demonstrated a predominantly polygonal morphology in a mosaic arrangement, and colony-like cells displayed numerous short apical microvilli and typical ultrastructure. PSPA treatment also resulted in a better platform growing status, statistically higher viability, an increase in the S-phase, and more Ki67+ cells. However, neither pAkt nor pERK were detected in either group. Conclusions: We found that PSPA maintained high cell viability, boosted DNA synthesis, and preserved a high percentage of continuously cycling cells to promote cell survival and division without changing cell morphology. This paper lays the foundation for further research about the damage-protective activities of PSPA on RPE cells or human vision.

  14. What Happens Inside a Fuel Cell? Developing an Experimental Functional Map of Fuel Cell Performance

    KAUST Repository

    Brett, Daniel J. L.; Kucernak, Anthony R.; Aguiar, Patricia; Atkins, Stephen C.; Brandon, Nigel P.; Clague, Ralph; Cohen, Lesley F.; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J.; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-01-01

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due

  15. Kinanthropometric and performance characteristics of elite and non-elite female softball players.

    Science.gov (United States)

    Singh, S; Singh, M; Rathi, B

    2013-12-01

    The purpose of the present study was to compare the kinanthropometric and performance characteristics of elite and non-elite female softball players. A total forty elite and non-elite level female softball players were selected from the different colleges affiliated to the Guru Nanak Dev University, Amritsar, for the present study. The height of subjects was measured by using the standard anthropometric rod. Weight was measured with portable weighing machine. Widths and diameters of body parts were measured by using digital caliper. Girths and lengths were taken with steel tape. Skinfold thickness measurements were taken using the Slimguide skinfold caliper. All subjects were also assessed for performance tests i.e. vertical jump, 50m sprint, medicine ball throw, 10×4m shuttle run and reaction time. Independent samples t-test reveals that elite female softball players were significantly taller (Psoftball players also had significantly greater biacromial (Psoftball players. The non-elite female softball players were found to have significantly greater thigh circumference (Psoftball players. The non-elite players were also found to have significantly higher percentage body fat (Psoftball players. The elite female softball players had significantly greater kinanthropometric characteristics, body composition and performance characteristics than the non-elite female softball players.

  16. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  17. Effect of Electrochemically Deposited MgO Coating on Printable Perovskite Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    T.A. Nirmal Peiris

    2017-02-01

    Full Text Available Herein, we studied the effect of MgO coating thickness on the performance of printable perovskite solar cells (PSCs by varying the electrodeposition time of Mg(OH2 on the fluorine-doped tin oxide (FTO/TiO2 electrode. Electrodeposited Mg(OH2 in the electrode was confirmed by energy dispersive X-ray (EDX analysis and scanning electron microscopic (SEM images. The performance of printable PSC structures on different deposition times of Mg(OH2 was evaluated on the basis of their photocurrent density-voltage characteristics. The overall results confirmed that the insulating MgO coating has an adverse effect on the photovoltaic performance of the solid state printable PSCs. However, a marginal improvement in the device efficiency was obtained for the device made with the 30 s electrodeposited TiO2 electrode. We believe that this undesirable effect on the photovoltaic performance of the printable PSCs is due to the higher coverage of TiO2 by the insulating MgO layer attained by the electrodeposition technique.

  18. Energy Yield Determination of Concentrator Solar Cells using Laboratory Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Geisz, John F.; Garcia, Ivan; McMahon, William E.; Steiner, Myles A.; Ochoa, Mario; France, Ryan M.; Habte, Aron; Friedman, Daniel J.

    2015-09-14

    The annual energy conversion efficiency is calculated for a four junction inverted metamorphic solar cell that has been completely characterized in the laboratory at room temperature using measurements fit to a comprehensive optoelectronic model of the multijunction solar cells. A simple model of the temperature dependence is used to predict the performance of the solar cell under varying temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted. temperature and spectra characteristic of Golden, CO for an entire year. The annual energy conversion efficiency is calculated by integrating the predicted cell performance over the entire year. The effects of geometric concentration, CPV system thermal characteristics, and luminescent coupling are highlighted.

  19. Physical Characteristics and Performance of Japanese Top-Level American Football Players.

    Science.gov (United States)

    Yamashita, Daichi; Asakura, Masaki; Ito, Yoshihiko; Yamada, Shinzo; Yamada, Yosuke

    2017-09-01

    Yamashita, D, Asakura, M, Ito, Y, Yamada, S, and Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31(9): 2455-2461, 2017-This study aimed to compare the physical characteristics and performance between top-level nonprofessional football players in Japan and National Football League (NFL) Combine invited players and between top-level and middle-level players in Japan to determine the factors that enhance performance in international and national competitions. A total of 168 American football players (>20 years) in Japan participated in an anthropometric (height and weight) and physical (vertical jump, long jump, 40-yard dash, pro-agility shuttle, 3-cone drill, and bench press repetition test) measurement program based on the NFL Combine program to compete in the selection of candidates for the Senior World Championship. All players were categorized into 1 of the 3 position groups based on playing position: skill players, big skill players, and linemen. Japanese players were additionally categorized into selected and nonselected players for the second tryout. The NFL Combine candidates had significantly better performance than selected Japanese players on all variables except on performance related to quickness among the 3 position groups. Compared with nonselected players, selected Japanese skill players had better performance in the 40-yard dash and bench press test and big skill players had better performance in the vertical jump, broad jump, and 40-yard dash. Selected and nonselected Japanese linemen were not different in any measurements. These results showed the challenges in American football in Japan, which include not only improving physical performance of top-level players, but also increasing the number of football players with good physical performance.

  20. Self-regulating characteristics of cold neutron source with annular cylindrical moderator cell

    International Nuclear Information System (INIS)

    Kawai, Takeshi; Lee Chien-Hsiung; Chan Yea-Kuang; Guung Tai-Cheng; Yoshino, Hirofumi; Kawabata, Yuji; Hino, Masahiro

    2001-01-01

    The conditions, in which the ORPHEE type cold neutron source with an annular cylindrical moderator cell could have self-regulating characteristics, were obtained through thermodynamic considerations. From a viewpoint of engineering, it is not easy to establish these conditions because three parameters are involved even in an idealized system without the effect of the mass transfer resistance in the moderator transfer tube between the condenser and the moderator cell. The inner shell of the ORPHEE moderator cell is open in the bottom, but it is expected that only hydrogen vapor is contained in the inner shell and liquid hydrogen in the outer shell. The thermodynamic considerations show that such a state is maintained only when a liquefaction capacity of the condenser is large compared to heat lead and three parameters are optimized with a good balance. We proposed another type of a moderator cell, which has an inner cylindrical cavity with no hole in the bottom but a vapor inlet opening at the uppermost part of the cavity. In this structure, a self-regulating characteristic is established easily and the liquid level in the outer shell is maintained almost constant against thermal disturbances. Therefore it is enough to control one parameter, that is, the reservoir tank pressure corresponding to the liquefaction capacity of the condenser given by the refrigeration power of the helium refrigerator. (author)

  1. Clinicopathological characteristics of head and neck Merkel cell carcinomas.

    Science.gov (United States)

    Knopf, Andreas; Bas, Murat; Hofauer, Benedikt; Mansour, Naglaa; Stark, Thomas

    2017-01-01

    There are still controversies about the therapeutic strategies and subsequent outcome in head and neck Merkel cell carcinoma. Clinicopathological data of 23 Merkel cell carcinomas, 93 cutaneous head and neck squamous cell carcinomas (HNSCCs), 126 malignant melanomas, and 91 primary parotid gland carcinomas were comprehensively analyzed. Merkel cell carcinomas were cytokeratin 20 (CK20)/neuron-specific enolase (NSE)/chromogranin A (CgA)/synaptophysin (Syn)/thyroid transcription factor-1 (TTF-1)/MIB1 immunostained. All Merkel cell carcinomas underwent wide local excision. Parotidectomy/neck dissection was performed in 40%/33% cutaneous Merkel cell carcinoma and 100%/100% in parotid gland Merkel cell carcinoma. Five-year recurrence-free interval (RFI)/overall survival (OS) was significantly higher in malignant melanoma (81/80%) than in cutaneous Merkel cell carcinoma/HNSCC. Interestingly, 5-year RFI/OS was significantly higher in Merkel cell carcinoma (61%/79%) than in HNSCC (33%/65%; p Merkel cell carcinoma and parotid gland carcinomas, nor in the immunohistochemical profile. Five-year RFI/OS was significantly better in cutaneous Merkel cell carcinoma when compared with TNM classification matched HNSCC. Five-year RFI/OS was comparable in parotid gland Merkel cell carcinoma and other primary parotid gland malignancies. © 2016 Wiley Periodicals, Inc. Head Neck 39: 92-97, 2017. © 2016 Wiley Periodicals, Inc.

  2. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1976-01-01

    A theoretical analysis is presented of certain peculiarities of the current-voltage characteristics of silicon solar cells, involving high values of the empirical constant A in the diode equation for a p-n junction. An attempt was made in a lab experiment to demonstrate that the saturation current which is associated with the exponential term qV/A2kT of the I-V characteristic, with A2 roughly equal to 2, originates in the space charge region and that it can be increased, as observed on ATS-1 cells, by the introduction of additional defects through low energy proton irradiation. It was shown that the proton irradiation introduces defects into the space charge region which give rise to a recombination current from this region, although the I-V characteristic is, in this case, dominated by an exponential term which has A = 1.

  3. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research.

    Science.gov (United States)

    Inoo, Kanako; Inagaki, Ryo; Fujiwara, Kento; Sasawatari, Shigemi; Kamigaki, Takashi; Nakagawa, Shinsaku; Okada, Naoki

    2016-01-01

    We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR) specific for vascular endothelial growth factor receptor 2 (VEGFR2), demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP) and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6-12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.

  4. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research

    Directory of Open Access Journals (Sweden)

    Kanako Inoo

    2016-01-01

    Full Text Available We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR specific for vascular endothelial growth factor receptor 2 (VEGFR2, demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6–12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.

  5. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    Science.gov (United States)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  6. Performance Analysis of Cell-Phone Worm Spreading in Cellular Networks through Opportunistic Communications

    Directory of Open Access Journals (Sweden)

    YAHUI, W.

    2012-05-01

    Full Text Available Worms spreading directly between cell-phones over short-range radio (Bluetooth, WiFi, etc. are increasing rapidly. Communication by these technologies is opportunistic and has very close relation with the social characteristics of the phone carriers. In this paper, we try to evaluate the impact of different characteristics on the spreading performance of worms. On the other hand, the behaviors of worms may have certain impact, too. For example, worms may make phones be completely dysfunctional and these phones can be seen as killed. We study the impact of the killing speed. Using the Markov model, we propose some theoretical models to evaluate the spreading performance in different cases. Simulation results show the accuracy of our models. Numerical results show that if users do not believe the data coming from others easily, the worms may bring less damage. Surprisingly, if the users are more willing to install the anti-virus software, the worms may bring bigger damage when the software becomes to be outdated with high probability. Though the worms can bring big damage on the network temporarily by killing phones rapidly, numerical results show that this behavior may decrease the total damage in the long time. Therefore, killing nodes more rapidly may be not optimal for worms.

  7. Effect of repeated irradiation on biological characteristics of lung adenocarcinoma cell line Anip973 in vitro

    International Nuclear Information System (INIS)

    Xu Qingyong; Xu Xiangying; Yang Zhiwei

    2008-01-01

    Objective: To study the effect of repeated irradiation on biological characteristics of human lung adenocarcinoma cell line Anip973 in vitro. Methods: Anip973 cells were treated with high energy X-ray to a total dose of 60 Gy at 4 Gy fractions. The radiosensitivity of Anip973R and its parental cell were measured by clonogenic assay. The biological parameters were fitted to the single hit multitarget formula. Furthermore, the population double time(PDT) and cell cycle distribution were measured by cell growth curve and flow cytometry, respectively. Results: Comparing with its parental cell, Anip973 R acquired radioresistance showing increased D 0 , D q and SF 2 and a broader shoulder. PDT of Anip973R extended 3 h more than that of Anip973. The Anip973R also showed higher and lower percentage of cells in G 1 and S phase (P 2 /M distribution (P>0.05). Conclusions: A radioresistant lung adenocarcinoma cell line Anip973R is established by repeatedly irradiation. Its radioresistance displays obviously in lower dose area. However, its characteristic of cell cycle is not completely coincident with the classical radiobiological theory. (authors)

  8. CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics.

    Science.gov (United States)

    Noto, Zenko; Yoshida, Toshiko; Okabe, Motonori; Koike, Chika; Fathy, Moustafa; Tsuno, Hiroaki; Tomihara, Kei; Arai, Naoya; Noguchi, Makoto; Nikaido, Toshio

    2013-08-01

    Cancer may be derived from cancer stem-like cells (CSCs), which are tumor-initiating cells that have properties similar to those of stem cells. Identification and isolation of CSCs needs to be improved further. CSCs markers were examined in human oral cancer cell lines by flow cytometry. The stem cell properties of subpopulations expressing different markers were assessed further by in vitro sphere formation assays, expression of stemness genes, drug resistance assays, and the ability to form tumors in nude mice. We demonstrated that CSCs could be isolated by the cell surface markers CD44 and stage-specific embryonic antigen-4 (SSEA-4). CD44+SSEA-4+ cells exhibited cancer stem-like properties, including extensive self-renewal into the bulk of cancer cells. In vivo xenograft experiments indicated that CD44+SSEA-4+ cells exhibit the highest tumorigenic capacity compared with the remaining subpopulations and parental cells. Double-positive cells for CD44 and SSEA-4 exhibited preferential expression of some stemness genes and were more resistant to the anticancer drugs, cisplatin and 5-fluorouracil (5-FU). In addition, cells expressing CD44 and SSEA-4 were detected in all tumor specimens analyzed, while coexpression of CD44 and SSEA-4 was not detectable in normal oral mucosa. Our findings suggest that CD44+SSEA-4+ cells exhibit the characteristics of CSCs in oral squamous cell carcinoma and provide a target for the development of more effective therapies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  10. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  11. Control loop design and control performance study on direct internal reforming solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Weng, S.; Su, M. [Key Laboratory of Power Machinery and Engineering of the Education Ministry, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2009-10-15

    A solid oxide fuel cell (SOFC) stack is a complicated nonlinear power system. Its system model includes a set of partial differential equations that describe species, mass, momentum and energy conservation, as well as the electrochemical reaction models. The validation and verification of the control system by experiment is very expensive and difficult. Based on the distributed and lumped model of a one-dimensional SOFC, the dynamic performance with different control loops for SOFC is investigated. The simulation result proves that the control system is appropriate and feasible, and can effectively satisfy the requirement of variable load power demand. This simulation model not only can prevent some latent dangers of the fuel cell system but also predict the distributed parameters' characteristics inside the SOFC system. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    Science.gov (United States)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  13. Performance characteristics of the DIII-D advanced divertor cryopump

    International Nuclear Information System (INIS)

    Menon, M.M.; Maingi, R.; Wade, M.R.; Baxi, C.B.; Campbell, G.L.; Holtrop, K.L.; Hyatt, A.W.; Laughon, G.J.; Makariou, C.C.; Mahdavi, M.A.; Reis, E.E.; Schaffer, M.J.; Schaubel, K.M.; Scoville, J.T.; Smith, J.P.; Stambaugh, R.D.

    1993-10-01

    A cryocondensation pump, cooled by forced flow of two-phase helium, has been installed for particle exhaust from the divertor region of the DIII-D tokamak. The Inconel pumping surface is of coaxial geometry, 25.4 mm in outer diameter and 11.65 m in length. Because of the tokamak environment, the pump is designed to perform under relatively high pulsed heat loads (300 Wm -2 ). Results of measurements made on the pumping characteristics for D 2 , H 2 , and Ar are discussed

  14. Preventive Care Quality of Medicare Accountable Care Organizations: Associations of Organizational Characteristics With Performance.

    Science.gov (United States)

    Albright, Benjamin B; Lewis, Valerie A; Ross, Joseph S; Colla, Carrie H

    2016-03-01

    Accountable Care Organizations (ACOs) are a delivery and payment model aiming to coordinate care, control costs, and improve quality. Medicare ACOs are responsible for 8 measures of preventive care quality. To create composite measures of preventive care quality and examine associations of ACO characteristics with performance. This is a cross-sectional study of Medicare Shared Savings Program and Pioneer participants. We linked quality performance to descriptive data from the National Survey of ACOs. We created composite measures using exploratory factor analysis, and used regression to assess associations with organizational characteristics. Of 252 eligible ACOs, 246 reported on preventive care quality, 177 of which completed the survey (response rate=72%). In their first year, ACOs lagged behind PPO performance on the majority of comparable measures. We identified 2 underlying factors among 8 measures and created composites for each: disease prevention, driven by vaccines and cancer screenings, and wellness screening, driven by annual health screenings. Participation in the Advanced Payment Model, having fewer specialists, and having more Medicare ACO beneficiaries per primary care provider were associated with significantly better performance on both composites. Better performance on disease prevention was also associated with inclusion of a hospital, greater electronic health record capabilities, a larger primary care workforce, and fewer minority beneficiaries. ACO preventive care quality performance is related to provider composition and benefitted by upfront investment. Vaccine and cancer screening quality performance is more dependent on organizational structure and characteristics than performance on annual wellness screenings, likely due to greater complexity in eligibility determination and service administration.

  15. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance

    Science.gov (United States)

    Allan, Jesse

    Fuel cell based breath alcohol sensors (BrASs) are one of the most important tools used by law enforcement today. The ability to screen potentially intoxicated subjects with the ease, speed, and flexibility the BrAS can provide is unmatched by any other device of its kind. While these devices are used globally, they all suffer from a common deficiency: reliance on water. The ability of the fuel cell sensor to manage water content is one of the greatest fundamental challenges facing this technology today. In order to evaluate the fuel cell sensor device, a methodology was required that would allow in-house sensor testing to be coupled with a diagnostic testing method to not only test materials sensing performance, but also determine why a sensor behaved how it did. To do this, a next-generation fuel cell was designed specifically for sensor testing along with a test station that allowed for rapid response and sensor characteristics of a given material. The fuel cell was designed to allow in-situ testing of a membrane electrode assembly (MEA) of interest using cyclic voltammetry and electrochemical impedance spectroscopy. The in-house design was validated against a commercial cell to provide feedback on how materials in the in-house cell would behave in a commercial designed unit. The results showed that our cell with a commercial MEA behaved identically to a commercial cell with the same MEA. Following validation of our cell, common membrane materials were investigated to identify their suitability in a senor role. The materials chosen were designed for power generating devices, so they provided a benchmark to identify which properties would be important for sensor operation. It was found that while the Nafion membrane and sulfonated poly (ether ether ketone) did show performance increases over the commercial MEA, the thin characteristics of these membranes limited performance in drier conditions. From these results, it was determined that thicker membrane materials

  16. Study on the micro direct ethanol fuel cell (Micro-DEFC) performance

    Science.gov (United States)

    Saisirirat, Penyarat; Joommanee, Bordindech

    2018-01-01

    The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.

  17. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  18. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wongyao, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, A., E-mail: apichai.the@kmutt.ac.t [Fuel Cell and Hydrogen Research and Engineering Center, Clean Energy System Group, PDTI, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, S. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand)

    2011-07-15

    Research highlights: {yields} We examined the performance of direct alcohol fuel cells fed with mixed alcohol. {yields} PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. {yields} Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. {yields} PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  19. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    International Nuclear Information System (INIS)

    Wongyao, N.; Therdthianwong, A.; Therdthianwong, S.

    2011-01-01

    Research highlights: → We examined the performance of direct alcohol fuel cells fed with mixed alcohol. → PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. → Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. → PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  20. Cell shunt resistance and photovoltaic module performance

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, T.J.; Basso, T.S.; Rummel, S.R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    Shunt resistance of cells in photovoltaic modules can affect module power output and could indicate flawed manufacturing processes and reliability problems. The authors describe a two-terminal diagnostic method to directly measure the shunt resistance of individual cells in a series-connected module non-intrusively, without deencapsulation. Peak power efficiency vs. light intensity was measured on a 12-cell, series-connected, single crystalline module having relatively high cell shunt resistances. The module was remeasured with 0.5-, 1-, and 2-ohm resistors attached across each cell to simulate shunt resistances of several emerging technologies. Peak power efficiencies decreased dramatically at lower light levels. Using the PSpice circuit simulator, the authors verified that cell shunt and series resistances can indeed be responsible for the observed peak power efficiency vs. intensity behavior. The authors discuss the effect of basic cell diode parameters, i.e., shunt resistance, series resistance, and recombination losses, on PV module performance as a function of light intensity.

  1. Random blebbing motion: A simple model linking cell structural properties to migration characteristics

    Science.gov (United States)

    Woolley, Thomas E.; Gaffney, Eamonn A.; Goriely, Alain

    2017-07-01

    If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.

  2. Random blebbing motion: A simple model linking cell structural properties to migration characteristics.

    Science.gov (United States)

    Woolley, Thomas E; Gaffney, Eamonn A; Goriely, Alain

    2017-07-01

    If the plasma membrane of a cell is able to delaminate locally from its actin cortex, a cellular bleb can be produced. Blebs are pressure-driven protrusions, which are noteworthy for their ability to produce cellular motion. Starting from a general continuum mechanics description, we restrict ourselves to considering cell and bleb shapes that maintain approximately spherical forms. From this assumption, we obtain a tractable algebraic system for bleb formation. By including cell-substrate adhesions, we can model blebbing cell motility. Further, by considering mechanically isolated blebbing events, which are randomly distributed over the cell, we can derive equations linking the macroscopic migration characteristics to the microscopic structural parameters of the cell. This multiscale modeling framework is then used to provide parameter estimates, which are in agreement with current experimental data. In summary, the construction of the mathematical model provides testable relationships between the bleb size and cell motility.

  3. Performance of PEM fuel cells stack as affected by number of cell and gas flow-rate

    Science.gov (United States)

    Syampurwadi, A.; Onggo, H.; Indriyati; Yudianti, R.

    2017-03-01

    The proton exchange membrane fuel cell (PEMFC) is a promising technology as an alternative green energy due to its high power density, low operating temperatures, low local emissions, quiet operation and fast start up-shutdown. In order to apply fuel cell as portable power supply, the performance investigation of small number of cells is needed. In this study, PEMFC stacks consisting of 1, 3, 5 and 7-cells with an active area of 25 cm2 per cell have been designed and developed. Their was evaluated in variation of gas flow rate. The membrane electrode assembly (MEA) was prepared by hot-pressing commercial gas diffusion electrodes (Pt loading 0.5 mg/cm2) on pre-treated Nafion 117 membrane. The stacks were constructed using bipolar plates in serpentine pattern and Z-type gas flow configuration. The experimental results were presented as polarization and power output curves which show the effects of varying number of cells and H2/O2 flow-rates on the PEMFC performance. The experimental results showed that not only number of cells and gas flow-rates affected the fuel cells performance, but also the operating temperature as a result of electrochemistry reaction inside the cell.

  4. Use of an adaptable cell culture kit for performing lymphocyte and monocyte cell cultures in microgravity

    Science.gov (United States)

    Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.

    1998-01-01

    The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground

  5. Talent in Female Gymnastics: a Survival Analysis Based upon Performance Characteristics.

    Science.gov (United States)

    Pion, J; Lenoir, M; Vandorpe, B; Segers, V

    2015-11-01

    This study investigated the link between the anthropometric, physical and motor characteristics assessed during talent identification and dropout in young female gymnasts. 3 cohorts of female gymnasts (n=243; 6-9 years) completed a test battery for talent identification. Performance-levels were monitored over 5 years of competition. Kaplan-Meier and Cox Proportional Hazards analyses were conducted to determine the survival rate and the characteristics that influence dropout respectively. Kaplan-Meier analysis indicated that only 18% of the female gymnasts that passed the baseline talent identification test survived at the highest competition level 5 years later. The Cox Proportional Hazards Model indicated that gymnasts with a score in the best quartile for a specific characteristic significantly increased chances of survival by 45-129%. These characteristics being: basic motor skills (129%), shoulder strength (96%), leg strength (53%) and 3 gross motor coordination items (45-73%). These results suggest that tests batteries commonly used for talent identification in young female gymnasts may also provide valuable insights into future dropout. Therefore, multidimensional test batteries deserve a prominent place in the selection process. The individual test results should encourage trainers to invest in an early development of basic physical and motor characteristics to prevent attrition. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Correlation between Podoplanin-positive Lymphatic Microvessel Density 
and CT Characteristics of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hui ZHOU

    2012-01-01

    Full Text Available Background and objective It has been proven that ymphatic microvessel density (LMVD was closely correlated with the lymphatic metastasis of non-small cell lung cancer (NSCLC. The aim of the present study is to explore the relationship between podoplanin-LMVD and multi-slice spiral computed tomography (MSCT characteristics of NSCLC. Methods MSCT scanning was performed on 34 cases of NSCLC (squamous carcinoma, 15 cases; adenocarcinoma, 15 cases; and adenosquamous carcinoma, 4 cases prior to operation. Clinical pathology results, including lymph node metastasis, were obtained. CT characteristics, such as shape of the edge, internal structure, and adjacent structures, were described. LMVD in the central and peripheral areas examined respectively using SP immunohistochemical technique were analyzed. Results Lymph node metastasis was found to be associated with LMVD in the peripheral areas. LMVD in the peripheral areas of the resected lesions, the MSCT findings of which included spinous process, pleural indentation, and carcinomatous lymphangitis, was higher than that of the lesions without these MSCT characteristics (P<0.05. Conclusion MSCT findings of spinous process, pleural indentation, or carcinomatous lymphangitis of NSCLC may suggest a higher level of tumor lymphangiogenesis with a higher risk of lymph node metastasis.

  7. Personality Characteristics and Level of Performance of Male County Extension Agents in Wisconsin.

    Science.gov (United States)

    Pandya, Dasharathrai Navnitrai

    The major purpose of this study was to determine the relationship between selected personality characteristics and attitudes of male extension agents in Wisconsin, and their level of job performance. The relationships between selected background factors and the level of agent's job performance were also studied. Subjects were 79 male county agents…

  8. Work-group characteristics and performance in collectivistic and individualistic cultures.

    Science.gov (United States)

    Sosik, John J; Jung, Dong I

    2002-02-01

    The authors conducted a cross-cultural longitudinal investigation of the effects of culture (individualism-collectivism dichotomy) on group characteristics (functional heterogeneity, preference for teamwork, group potency, outcome expectation) and on performance of 83 work groups performing 2 decision-making tasks over a 15-week period. The individualists (U.S. students) reported higher levels of functional heterogeneity and group potency and attained higher levels of group performance than did the collectivists (Korean students). In addition, culture and time interacted to influence ratings of group potency and outcome expectation. The difference in ratings of group potency between individualists and collectivists increased over time. Outcome expectation was greater among the collectivists in Time 1 and among the individualists in Time 2. The authors discuss implications for future cross-cultural group research and international management.

  9. Performance characteristics of digital vs film screen mammography in community practice.

    Science.gov (United States)

    Dabbous, Firas; Dolecek, Therese A; Friedewald, Sarah M; Tossas-Milligan, Katherine Y; Macarol, Tere; Summerfelt, Wm Thomas; Rauscher, Garth H

    2018-05-01

    We compared the performance characteristics of 297 629 full field digital (FFDM) and 416 791 screen film mammograms (SFM). Sensitivity increased with age, decreased with breast density, and was lower for more aggressive and lobular tumors. While sensitivity did not differ significantly by modality, specificity was generally 1%-2% points higher for FFDM than for SFM across age and breast density categories. The lower recall rate for FFDM vs SFM in our study may partially explain performance differences by modality. In this large health care organization, modest gains in performance were achieved with the introduction of FFDM as a replacement for SFM. © 2017 Wiley Periodicals, Inc.

  10. Microcystin Detection Characteristics of Fluorescence Immunochromatography and High Performance Liquid Chromatography

    International Nuclear Information System (INIS)

    Pyo, Dong Jin; Park, Geun Young; Choi, Jong Chon; Oh, Chang Suk

    2005-01-01

    Different detection characteristics of fluorescence immunochromatography method and high performance liquid chromatography (HPLC) method for the analysis of cyanobacterial toxins were studied. In particular, low and high limits of detection, detection time and reproducibility and detectable microcystin species were compared when fluorescence immunochromatography method and high performance liquid chromatography method were applied for the detection of microcystin (MC), a cyclic peptide toxin of the freshwater cyanobacterium Microcystis aeruginosa. A Fluorescence immunochromatography assay system has the unique advantages of short detection time and low detection limit, and high performance liquid chromatography detection method has the strong advantage of individual quantifications of several species of microcystins

  11. How do task characteristics affect learning and performance? The roles of variably mapped and dynamic tasks.

    Science.gov (United States)

    Macnamara, Brooke N; Frank, David J

    2018-05-01

    For well over a century, scientists have investigated individual differences in performance. The majority of studies have focused on either differences in practice, or differences in cognitive resources. However, the predictive ability of either practice or cognitive resources varies considerably across tasks. We are the first to examine task characteristics' impact on learning and performance in a complex task while controlling for other task characteristics. In 2 experiments we test key theoretical task characteristic thought to moderate the relationship between practice, cognitive resources, and performance. We devised a task where each of several key task characteristics can be manipulated independently. Participants played 5 rounds of a game similar to the popular tower defense videogame Plants vs. Zombies where both cognitive load and game characteristics were manipulated. In Experiment 1, participants either played a consistently mapped version-the stimuli and the associated meaning of their properties were constant across the 5 rounds-or played a variably mapped version-the stimuli and the associated meaning of their properties changed every few minutes. In Experiment 2, participants either played a static version-that is, turn taking with no time pressure-or played a dynamic version-that is, the stimuli moved regardless of participants' response rates. In Experiment 1, participants' accuracy and efficiency were substantially hindered in the variably mapped conditions. In Experiment 2, learning and performance accuracy were hindered in the dynamic conditions, especially when under cognitive load. Our results suggest that task characteristics impact the relative importance of cognitive resources and practice on predicting learning and performance. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Capacity Decline and Characteristics Changes of Lithium-ion Cells with Large Capacity during Trickle Charge at High Temperature

    Science.gov (United States)

    Matsushima, Toshio

    Large-scale 40-Ah Li-ion cells have been developed for use in industrial applications. To contribute to techniques for ascertaining the state of these cells and detecting deterioration during actual use, we produce a cell whose capacity is reduced by trickle charging at high temperature, and we determine the relationship between the cell's properties such as its capacity and charging/discharging characteristics when the capacity is reduced. When the capacity of a Li-ion cell is reduced, the discharge voltage also decreases. We show that the residual capacity is well correlated to the discharge voltage and to the duration of continuous discharge before reaching a fixed end-voltage. We also show that the constant-current constant-voltage charging characteristics are maintained even when the capacity is degraded, and that the constant-current charging time and discharge voltage are closely related to the residual capacity. We confirm that the reaction coefficient of the capacity degradation formula can be calculated from the capacity change characteristics at multiple temperatures, and that an 8°C change in temperature causes the lifetime to decrease by half.

  13. Effect of Mesostructured Layer upon Crystalline Properties and Device Performance on Perovskite Solar Cells.

    Science.gov (United States)

    Listorti, Andrea; Juarez-Perez, Emilio J; Frontera, Carlos; Roiati, Vittoria; Garcia-Andrade, Laura; Colella, Silvia; Rizzo, Aurora; Ortiz, Pablo; Mora-Sero, Ivan

    2015-05-07

    One of the most fascinating characteristics of perovskite solar cells (PSCs) is the retrieved obtainment of outstanding photovoltaic (PV) performances withstanding important device configuration variations. Here we have analyzed CH3NH3PbI3-xClx in planar or in mesostructured (MS) configurations, employing both titania and alumina scaffolds, fully infiltrated with perovskite material or presenting an overstanding layer. The use of the MS scaffold induces to the perovskite different structural properties, in terms of grain size, preferential orientation, and unit cell volume, in comparison to the ones of the material grown with no constraints, as we have found out by X-ray diffraction analyses. We have studied the effect of the PSC configuration on photoinduced absorption and time-resolved photoluminescence, complementary techniques that allow studying charge photogeneration and recombination. We have estimated electron diffusion length in the considered configurations observing a decrease when the material is confined in the MS scaffold with respect to a planar architecture. However, the presence of perovskite overlayer allows an overall recovering of long diffusion lengths explaining the record PV performances obtained with a device configuration bearing both the mesostructure and a perovskite overlayer. Our results suggest that performance in devices with perovskite overlayer is mainly ruled by the overlayer, whereas the mesoporous layer influences the contact properties.

  14. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  15. Enhanced Performance of Dye-Sensitized Solar Cells with Graphene/ZnO Nanoparticles Bilayer Structure

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2014-01-01

    Full Text Available This study reports characteristics of dye-sensitized solar cells (DSSCs with graphene/ZnO nanoparticle bilayer structure. The enhancement of the performance of DSSCs achieved using graphene/ZnO nanoparticle films is attributable to the introduction of an electron-extraction layer and absorption of light in the visible range and especially in the range 300–420 nm. DSSC that was fabricated with graphene/ZnO nanoparticle film composite photoanodes exhibited a Voc of 0.5 V, a Jsc of 17.5 mA/cm2, an FF of 0.456, and a calculated η of 3.98%.

  16. Statistical performance of image cytometry for DNA, lipids, cytokeratin, & CD45 in a model system for circulation tumor cell detection.

    Science.gov (United States)

    Futia, Gregory L; Schlaepfer, Isabel R; Qamar, Lubna; Behbakht, Kian; Gibson, Emily A

    2017-07-01

    Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D + ) populations (MCF7 cells) and pure disease negative populations (D - ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D + and D - and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D + and D - populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  17. STUDY OF PERFORMANCES OF ORGANIC SOLAR CELLS BY ...

    African Journals Online (AJOL)

    30 juin 2011 ... results of analysis of performances of organic solar cells by using what one call the datamining materials. ... Keywords: organic solar cells, gap energie, effiency, PCA. Author Correspondence .... oubli est malencontreux car le type de données disponibles influence toujours la direction de la recherche.

  18. Impacts of teachers’ competency on job performance in research universities with industry characteristics: Taking academic atmosphere as moderator

    Directory of Open Access Journals (Sweden)

    Anguo Xu

    2014-10-01

    Full Text Available Purpose: Research universities with industry characteristics play an irreplaceable role in national economic development and social development. With the rapid development of research universities with industry characteristics in China, these universities face new challenges in managing teachers and promoting their quality. This paper aims to examine the impact of teachers’ competency on job performance in research university with industry characteristics Design/methodology/approach: Based on the behavioral event interview and questionnaire methods, a four-dimension (i.e. basic quality, teaching ability, industry awareness and research capacity competency model was proposed, the influence mechanism of competency on job performance was examined using empirical research. Findings: We found that there is a significant positive correlation between the teachers’ competency level, four dimensions and job performance in research universities with industry characteristics, especially between research capacity, teaching ability, industry awareness and job performance. And academic atmosphere plays a regulatory role in the interaction between the competency and job performance. Practical implications: Our findings can help to improve the management level of teachers in research universities with industry characteristics.Originality/value: The paper introduces the competency theory to the teacher management in research universities with industry characteristics, and gives some interesting findings.

  19. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  20. Characteristics of dye-sensitized solar cells using natural dye

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Shoji, E-mail: furukawa@cse.kyutech.ac.j [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan); Iino, Hiroshi; Iwamoto, Tomohisa; Kukita, Koudai; Yamauchi, Shoji [Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka-shi, Fukuoka-ken 820-8502 (Japan)

    2009-11-30

    Dye-sensitized solar cells are expected to be used for future clean energy. Recently, most of the researchers in this field use Ruthenium complex as dye in the dye-sensitized solar cells. However, Ruthenium is a rare metal, so the cost of the Ruthenium complex is very high. In this paper, various dye-sensitized solar cells have been fabricated using natural dye, such as the dye of red-cabbage, curcumin, and red-perilla. As a result, it was found that the conversion efficiency of the solar cell fabricated using the mixture of red-cabbage and curcumin was about 0.6% (light source: halogen lamp), which was larger than that of the solar cells using one kind of dye. It was also found that the conversion efficiency was about 1.0% for the solar cell with the oxide semiconductor film fabricated using polyethylene glycol (PEG) whose molecular weight was 2,000,000 and red-cabbage dye. This indicates that the cost performance (defined by [conversion efficiency]/[cost of dye]) of the latter solar cell (dye: red-cabbage) is larger by more than 50 times than that of the solar cell using Ruthenium complex, even if the effect of the difference between the halogen lamp and the standard light source is taken into account.

  1. Performance characteristics of a Vertical Axis Wind Turbine (VAWT) under transient conditions

    OpenAIRE

    Colley, Gareth; Mishra, Rakesh

    2011-01-01

    The present work investigates the performance characteristics of a novel Vertical Axis Wind Turbine (VAWT) for use in the urban environment. Here the performance of the wind turbine has been analyzed experimentally using a full scale prototype measuring 2.0m diameter and 1.0m in height. The turbine was located at the exit of a 0.6m x 0.6m wind tunnel section and was subjected to a jet flow. The performance output from the turbine has been obtained using a torque transducer unit which provides...

  2. The open- and closed-loop gain-characteristics of the cone/horizontal cell synapse in goldfish retina

    NARCIS (Netherlands)

    Kraaij, D. A.; Spekreijse, H.; Kamermans, M.

    2000-01-01

    Under constant light-adapted conditions, vision seems to be rather linear. However, the processes underlying the synaptic transmission between cones and second-order neurons (bipolar cells and horizontal cells) are highly nonlinear. In this paper, the gain-characteristics of the transmission from

  3. Performance and characteristics of carcass and non-carcass components of lambs fed peach-palm by-product.

    Science.gov (United States)

    dos Santos Cabral, Ícaro; Azevêdo, José Augusto Gomes; de Almeida, Flávio Moreira; Pereira, Luiz Gustavo Ribeiro; de Araújo, Gherman Garcia Leal; dos Santos Cruz, Cristiane Leal; Nogueira, Abdon Santos; Souza, Lígia Lins; de Oliveira, Gisele Andrade

    2013-11-01

    The objective of this study was to evaluate the effects of supplying the by-product of peach-palm (Bactris gasipaes) on performance and characteristics of carcass and non-carcass components of feedlot lambs. Twenty Santa Ines lambs of 150 days average age and 22.4 ± 3.4 kg body weight were confined in individual pens. A completely randomized design was utilized with four experimental diets composed of: fresh peach-palm by-product enriched with urea, fresh peach-palm by-product + concentrate, silage of peach-palm by-product + concentrate, and silage of peach-palm by-product enriched with 15 % corn meal + concentrate. Intake was evaluated daily, and at the end of 42 days of experiments, lambs were slaughtered and the characteristics of carcass and non-carcass parts were evaluated. Performance and carcass characteristics showed differences between the animals' intake of total mixed rations (TMR) and only the diet with roughage. For the lambs that intaked TMR, the form of utilization of roughage (fresh or as silage) affected animal performance but did not change the carcass characteristics. Dry matter intake and feed conversion were influenced by the form of utilization of the silage (with and without additive). Providing fresh by-product plus concentrate improves lamb performance but does not interfere in the carcass characteristics, compared with the use of by-product in the form of silage.

  4. Effects of Selected Corporate Governance Characteristics on Firm Performance: Empirical Evidence from Kenya

    Directory of Open Access Journals (Sweden)

    Vincent Okoth Ongore

    2011-01-01

    Full Text Available This paper examines the interrelations among ownership, board and manager characteristics and firm performance in a sample of 54 firms listed at the Nairobi Stock Exchange (NSE. These governance characteristics, designed to minimize agency problems between principals and agents are operationalized in terms of ownership concentration, ownership identity, board effectiveness and managerial discretion. The typical ownership identities at the NSE are government, foreign, institutional, manager and diverse ownership forms. Firm performance is measured using Return on Assets (ROA, Return on Equity (ROE and Dividend Yield (DY. Using PPMC, Logistic Regression and Stepwise Regression, the paper presents evidence of significant positive relationship between foreign, insider, institutional and diverse ownership forms, and firm performance. However, the relationship between ownership concentration and government, and firm performance was significantly negative. The role of boards was found to be of very little value, mainly due to lack of adherence to board member selection criteria. The results also show significant positive relationship between managerial discretion and performance. Collectively, these results are consistent with pertinent literature with regard to the implications of government, foreign, manager (insider and institutional ownership forms, but significantly differ concerning the effects of ownership concentration and diverse ownership on firm performance.

  5. Standard Test Method for Electrical Performance of Photovoltaic Cells Using Reference Cells Under Simulated Sunlight

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of the electrical performance of a photovoltaic cell under simulated sunlight by means of a calibrated reference cell procedure. 1.2 Electrical performance measurements are reported with respect to a select set of standard reporting conditions (SRC) (see Table 1) or to user-specified conditions. 1.2.1 The SRC or user-specified conditions include the cell temperature, the total irradiance, and the reference spectral irradiance distribution. 1.3 This test method is applicable only to photovoltaic cells with a linear response over the range of interest. 1.4 The cell parameters determined by this test method apply only at the time of test, and imply no past or future performance level. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this s...

  6. Dynamic Performance Characteristic Tests of Real Scale Lead Rubber Bearing for the Evaluation of Performance Criteria

    International Nuclear Information System (INIS)

    Kim, Min Kyu; Kim, Jung-Han; Choi, In-Kil

    2014-01-01

    Dynamic characteristic tests of full scale lead rubber bearing were performed for the evaluation of performance criteria of isolation system for nuclear power plants. For the dynamic test for a full scale rubber bearing, two 1500mm diameter lead rubber bearings were manufactured. The viewpoints of this dynamic test are determination of an ultimate shear strain level of lead rubber bearing, behavior of rubber bearing according to static and dynamic input motion, sinusoidal and random (earthquake) motion, and 1-dimentional and 2-dimensional input motion. In this study, seismic isolation device tests were performed for the evaluation of performance criteria of isolation system. Through this test, it can be recognized that in the case of considering a mechanical property test, dynamic and multi degree of loading conditions should be determined. But these differences should be examined how much affect to the global structural behavior

  7. Investigating the effect of communication characteristics on crew performance under the simulated emergency condition of nuclear power plants

    International Nuclear Information System (INIS)

    Park, Jinkyun; Jung, Wondea; Yang, Joon-Eon

    2012-01-01

    It is well known that the safety of large process control systems could be significantly affected by the communication characteristics of crews that have a responsibility for their operations. Accordingly, many researchers have spent huge amount of effort to grasp the relationship between the characteristics of crew communications and the associated crew performance. Unfortunately, in the case of nuclear power plants (NPPs), it seems that most of existing studies have tried to identify the relationship between the characteristics of crew communications and the associated crew performance using empirical observations without a firm technical underpinning. For these reasons, Park suggested a novel framework that is able to represent the characteristics of crew communications based on social network analysis (SNA) metrics. In order to confirm the appropriateness of the suggested framework, in this study, the characteristics of crew communications that are gathered from the simulated emergency condition of NPPs are additionally compared with the associated crew performance data. As a consequence, it is observed that there are significant relationships between communication characteristics and the associated crew performance. Therefore, it is reasonable to expect that the characteristics of crew communications can be properly grasped using the suggested framework. - Highlights: ► Communication data of MCR operating crews are collected from a simulated emergency condition. ► Communication characteristics are represented by the associated SNA metrics. ► Identified communication characteristics are compared with the results of existing studies. ► SNA metrics are meaningful for explaining the characteristics of crew communications.

  8. Plasma characteristics of the end-cell of the GAMMA 10 tandem mirror for the divertor simulation experiment

    International Nuclear Information System (INIS)

    Nakashima, Y.; Sakamoto, M.; Yoshikawa, M.; Takeda, H.; Ichimura, K.; Hosoi, K.; Hirata, M.; Ichimura, M.; Ikezoe, R.; Imai, T.; Kariya, T.; Katanuma, I.; Kohagura, J.; Minami, R.; Numakura, T.; Oki, K.; Ueda, H.; Asakura, Nobuyuki; Furuta, T.; Hatayama, A.; Toma, M.; Hirooka, Y.; Masuzaki, S.; Sagara, A.; Shoji, M.; Kado, S.; Matsuura, H.; Nagata, S.; Nishino, N.; Ohno, N.; Tonegawa, A.; Ueda, Y.

    2012-11-01

    In this paper, detailed characteristics and controllability of plasmas emitted from the end-cell of the GAMMA 10 tandem mirror are described from the viewpoint of divertor simulation studies. The energy analysis of ion flux by using end-loss ion energy analyzer (ELIEA) proved that the obtained high ion temperature (100 - 400 eV) was comparable to SOL plasma parameters in toroidal devices and was controlled by changing the ICRF power. Parallel ion temperature T i∥ determined from the probe and calorimeter shows a linear relationship with the ICRF power in the central-cell and agrees with the results of ELIEA. Additional ICRF heating revealed a significant enhancement of particle flux, which indicated an effectiveness of additional plasma heating in adjacent cells toward the improvement of the performance. Superimposing the ECH pulse of 380 kW, 5 ms attained the maximum heat-flux more than 10 MW/m 2 on axis. This value comes up to the heat-load of the divertor plate of ITER, which gives a clear prospect of generating the required heat density for divertor studies by building up heating systems to the end-mirror cell. Initial results of plasma irradiation experiment and construction of new divertor module are also described. (author)

  9. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts

    DEFF Research Database (Denmark)

    Kraggerud, Sigrid Marie; Hoei-Hansen, Christina E; Alagaratnam, Sharmini

    2013-01-01

    This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome pr...

  10. Device Modeling of the Performance of Cu(In,GaSe2 Solar Cells with V-Shaped Bandgap Profiles

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available The effect of Cu(In,GaSe2 (CIGS with V-shaped bandgap on device performance is investigated in detail. A series of Ga/(In+Ga ratio are set to study the influence of V-shaped bandgap profile on the electricity of CIGS thin film solar cells. The modeling of device current density-voltage (J-V curve and bandgap grading profile corresponded well to measurement results. Detailed characteristic and modeling results show that an increased gradient of bandgap from valley to the buffer layer CdS will result in a barrier and lead to an enhanced recombination in the valley. This phenomenon can be modified by the back electric field resulting from a gradient bandgap from valley (bandgap minimum to the Mo back contact. These results indicate CIGS-based solar cells can achieve higher performance by optimizing the V-shaped bandgap profile.

  11. 78 FR 15112 - Rulemaking Advisory Committee; Transport Airplane Performance and Handling Characteristics-New Task

    Science.gov (United States)

    2013-03-08

    ... Committee; Transport Airplane Performance and Handling Characteristics--New Task AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of new task assignment for the Aviation Rulemaking Advisory Committee... findings. The Task The FAA tasked ARAC to consider several areas within the airplane performance and...

  12. Performance of a vanadium redox flow battery with tubular cell design

    Science.gov (United States)

    Ressel, Simon; Laube, Armin; Fischer, Simon; Chica, Antonio; Flower, Thomas; Struckmann, Thorsten

    2017-07-01

    We present a vanadium redox flow battery with a tubular cell design which shall lead to a reduction of cell manufacturing costs and the realization of cell stacks with reduced shunt current losses. Charge/discharge cycling and polarization curve measurements are performed to characterize the single test cell performance. A maximum current density of 70 mAcm-2 and power density of 142 Wl-1 (per cell volume) is achieved and Ohmic overpotential is identified as the dominant portion of the total cell overpotential. Cycling displays Coulomb efficiencies of ≈95% and energy efficiencies of ≈55%. During 113 h of operation a stable Ohmic cell resistance is observed.

  13. Performance characteristics of counter flow wet cooling towers

    International Nuclear Information System (INIS)

    Khan, Jameel-Ur-Rehman; Yaqub, M.; Zubair, Syed M.

    2003-01-01

    Cooling towers are one of the biggest heat and mass transfer devices that are in widespread use. In this paper, we use a detailed model of counter flow wet cooling towers in investigating the performance characteristics. The validity of the model is checked by experimental data reported in the literature. The thermal performance of the cooling towers is clearly explained in terms of varying air and water temperatures, as well as the driving potential for convection and evaporation heat transfer, along the height of the tower. The relative contribution of each mode of heat transfer rate to the total heat transfer rate in the cooling tower is established. It is demonstrated with an example problem that the predominant mode of heat transfer is evaporation. For example, evaporation contributes about 62.5% of the total rate of heat transfer at the bottom of the tower and almost 90% at the top of the tower. The variation of air and water temperatures along the height of the tower (process line) is explained on psychometric charts

  14. Transonic Performance Characteristics of Several Jet Noise Suppressors

    Science.gov (United States)

    Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.

  15. Performance and cavitation characteristics of bi-directional hydrofoils

    Science.gov (United States)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2013-11-01

    Tidal turbines extract energy from flows which reverse direction. One way to address this bi-directionality in horizontal axis turbines that avoid the use of complex and maintenance-intensive yaw or blade pitch mechanisms, is to design bi-directional blades which perform (equally) well in either flow direction. A large number of proposed hydrofoil designs were investigated using numerical simulations. Selected candidate foils were also tested (at various speeds and angles of attack) in the High-Speed Cavitation Tunnel (HICaT) at the University of New Hampshire. Lift and drag were measured using a force balance, and cavitation inception and desinence were recorded. Experimental and numerical results were compared, and the foils were compared to each other and to reference foils. Bi-directional hydrofoils may provide a feasible solution to the problem of reversing flow direction, when their performance and cavitation characteristics are comparable to those for unidirectional foils, and the penalty in decreased energy production is outweighed by the cost reduction due to lower complexity and respectively lower installation and maintenance costs.

  16. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. [Energy Research Corp., Danbury, CT (United States); Wilemski, G. [Physical Sciences, Inc., Andover, MA (United States)

    1993-05-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980`s when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH{sub 3}, H{sub 2}S [COS], HCl, AsH{sub 3}[As{sub 2}(v)], Zn(v), Pb(v), Cd(v), H{sub 2} Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  17. Performance effects of coal-derived contaminants on the carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pigeaud, A. (Energy Research Corp., Danbury, CT (United States)); Wilemski, G. (Physical Sciences, Inc., Andover, MA (United States))

    1993-01-01

    Coal-derived contaminant studies have been pursued at ERC since the early 1980's when the pace of carbonate fuel cell development began to markedly increase. Initial work was concerned with performance effects on laboratory and bench-scale carbonate fuel cells primarily due to sulfur compounds. Results have now also been obtained with respect to nine additional coal-gas contaminants, including volatile trace metal species. Thermochemical calculations, out-of-cell experiments, and cell performance as well as endurance testshave recently been conducted which have involved the following species: NH[sub 3], H[sub 2]S [COS], HCl, AsH[sub 3][As[sub 2](v)], Zn(v), Pb(v), Cd(v), H[sub 2] Se, Hg(v), Sn(v). Employing thermochemically calculated results, thermogravimetric (TGA) and pre-, and post-test analytical data as well as fuel cell performance observations, it has been shown that there are four main mechanisms of contaminant interaction with the carbonate fuel cell. These have been formulated into performance models for six significant contaminant species, thus providing long-term endurance estimations.

  18. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    Science.gov (United States)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  19. Experimental Study and Comparison of Various Designs of Gas Flow Fields to PEM Fuel Cells and Cell Stack Performance

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen; Juarez-Robles, Daniel; Wang, Kai; Hernandez-Guerrero, Abel

    2014-01-01

    In this study, a significant number of experimental tests to proton exchange membrane (PEM) fuel cells were conducted to investigate the effect of gas flow fields on fuel cell performance. Graphite plates with various flow field or flow channel designs, from literature survey and also novel designs by the authors, were used for the PEM fuel cell assembly. The fabricated fuel cells have an effective membrane area of 23.5 cm 2 . The results showed that the serpentine flow channel design is still favorable, giving the best single fuel cell performance amongst all the studied flow channel designs. A novel symmetric serpentine flow field was proposed for a relatively large sized fuel cell application. Four fuel cell stacks each including four cells were assembled using different designs of serpentine flow channels. The output power performances of fuel cell stacks were compared and the novel symmetric serpentine flow field design is recommended for its very good performance.

  20. Identification of cancer stem cell markers in human malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Farhana Ishrat; Yamazaki, Hiroto; Iwata, Satoshi; Okamoto, Toshihiro [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Aoe, Keisuke; Okabe, Kazunori; Mimura, Yusuke [Departments of Medical Oncology, Yamaguchi-Ube Medical Center, Yamaguchi (Japan); Fujimoto, Nobukazu; Kishimoto, Takumi [Department of Respiratory Medicine, Okayama Rosai Hospital, Okayama (Japan); Yamada, Taketo [Department of Pathology, Keio University School of Medicine, Tokyo (Japan); Xu, C. Wilson [Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Institute of Medical Science, University of Tokyo, Tokyo (Japan); Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States)

    2011-01-14

    Research highlights: {yields} We performed serial transplantation of surgical samples and established new cell lines of malignant mesothelioma. {yields} SP cell and expressions of CD9/CD24/CD26 were often observed in mesothelioma cell lines. {yields} SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony. {yields} The marker-positive cells have clear tendency to generate larger tumors in mice. -- Abstract: Malignant mesothelioma (MM) is an aggressive and therapy-resistant neoplasm arising from the pleural mesothelial cells and usually associated with long-term asbestos exposure. Recent studies suggest that tumors contain cancer stem cells (CSCs) and their stem cell characteristics are thought to confer therapy-resistance. However, whether MM cell has any stem cell characteristics is not known. To understand the molecular basis of MM, we first performed serial transplantation of surgical samples into NOD/SCID mice and established new cell lines. Next, we performed marker analysis of the MM cell lines and found that many of them contain SP cells and expressed several putative CSC markers such as CD9, CD24, and CD26. Interestingly, expression of CD26 closely correlated with that of CD24 in some cases. Sorting and culture assay revealed that SP and CD24{sup +} cells proliferated by asymmetric cell division-like manner. In addition, CD9{sup +} and CD24{sup +} cells have higher potential to generate spheroid colony than negative cells in the stem cell medium. Moreover, these marker-positive cells have clear tendency to generate larger tumors in mouse transplantation assay. Taken together, our data suggest that SP, CD9, CD24, and CD26 are CSC markers of MM and could be used as novel therapeutic targets.

  1. Some performance characteristics of a fluidized bed heat recovery unit

    International Nuclear Information System (INIS)

    Militzer, J.; Basu, P.; Adaikkappan, N.

    1985-01-01

    The advantages of using fluidized bed heat recovery units with diesel engines are well documented. Two of those are: significantly less tube fouling and heat transfer coefficient four to five time higher than that of conventional shell and tube heat exchangers. The high concentration of soot in the exhaust gases of diesel engines make fouling a major concern in design of any kind of heat recovery unit. In the experiment a conventional fluidized bed heat exchanger was connected to the exhaust of a diesel engine mounted on a dynamometer. With this arrangement it was possible to test the heat recovery unit under a wide range of operating conditions. The main objective of this experiment was the determination of the performance characteristics of the heat recovery unit, especially with reference to its heat transfer and fouling characteristics. (author)

  2. Developmental changes in electrophysiological characteristics of human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer

    2016-12-01

    Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  3. Construction Professionals Job Performance and Characteristics: A Comparison of Indigenous and Expatriate Construction Companies in Nigeria

    Directory of Open Access Journals (Sweden)

    Henry Ndubuisi Onukwube

    2011-06-01

    Job performance is considered one of the most important constructs in human resources management because it helps to explain the value and utility that each employee adds to the organisation. The professionals in the Nigerian construction companies are not exception to the perceived low job performance rate within the industry. Extant literature points to the fact that job characteristics of employees can account for variance in their job performance rate.This study compares the job performance rate and job characteristics of construction professionals in indigenous and expatriate construction companies with a view to establish a relationship between job performance and job characteristics of construction professionals. A total of 762 questionnaires were collected and used for the study.  Eighty one (81 construction companies, 50 (62% indigenous and 31 (38% expatriate were selected using stratified random sampling technique. Data collected were analysed using mean item score, spearman rank correlation, linear regression analysis where appropriate. Findings of the study revealed that the relationship between job characteristics and job performance of construction professionals in construction companies in Nigeria is positive but low and the correlation coefficient is higher in expatriate construction companies. Based on the above finding, the study recommends that construction companies in Nigeria should endeavour and improve on their current core job dimensions (task significance, skill variety, task identity, autonomy and feedback inherent in various jobs designed within their respective organizations as this will constitute as one of the variants that will improve the job performance rate of construction professionals.

  4. Final Report - Effects of Impurities on Fuel Cell Performance and Durability

    Energy Technology Data Exchange (ETDEWEB)

    Trent Molter

    2012-08-18

    This program is focused on the experimental determination of the effects of key hydrogen side impurities on the performance of PEM fuel cells. Experimental data has been leveraged to create mathematical models that predict the performance of PEM fuel cells that are exposed to specific impurity streams. These models are validated through laboratory experimentation and utilized to develop novel technologies for mitigating the effects of contamination on fuel cell performance. Results are publicly disseminated through papers, conference presentations, and other means.

  5. The effect of individual characteristics of decision making and judgment on stock-flow performance

    NARCIS (Netherlands)

    Raaijmakers, S.; Korzilius, H.P.L.M.; Rouwette, E.A.J.A.; Vennix, J.A.M.

    2012-01-01

    Extending the line of research on stock-flow performance we examined the impact of personality characteristics on task performance. It was assumed that the need for cognition, the need for closure and the preference for intuition and deliberation would relate to individual variations in

  6. Label retaining cells (LRCs with myoepithelial characteristic from the proximal acinar region define stem cells in the sweat gland.

    Directory of Open Access Journals (Sweden)

    Yvonne Leung

    Full Text Available Slow cycling is a common feature shared among several stem cells (SCs identified in adult tissues including hair follicle and cornea. Recently, existence of unipotent SCs in basal and lumenal layers of sweat gland (SG has been described and label retaining cells (LRCs have also been localized in SGs; however, whether these LRCs possess SCs characteristic has not been investigated further. Here, we used a H2BGFP LRCs system for in vivo detection of infrequently dividing cells. This system allowed us to specifically localize and isolate SCs with label-retention and myoepithelial characteristics restricted to the SG proximal acinar region. Using an alternative genetic approach, we demonstrated that SG LRCs expressed keratin 15 (K15 in the acinar region and lineage tracing determined that K15 labeled cells contributed long term to the SG structure but not to epidermal homeostasis. Surprisingly, wound healing experiments did not activate proximal acinar SG cells to participate in epidermal healing. Instead, predominantly non-LRCs in the SG duct actively divided, whereas the majority of SG LRCs remained quiescent. However, when we further challenged the system under more favorable isolated wound healing conditions, we were able to trigger normally quiescent acinar LRCs to trans-differentiate into the epidermis and adopt its long term fate. In addition, dissociated SG cells were able to regenerate SGs and, surprisingly, hair follicles demonstrating their in vivo plasticity. By determining the gene expression profile of isolated SG LRCs and non-LRCs in vivo, we identified several Bone Morphogenetic Protein (BMP pathway genes to be up-regulated and confirmed a functional requirement for BMP receptor 1A (BMPR1A-mediated signaling in SG formation. Our data highlight the existence of SG stem cells (SGSCs and their primary importance in SG homeostasis. It also emphasizes SGSCs as an alternative source of cells in wound healing and their plasticity for

  7. Outdoor performance analysis of a 1090× point-focus Fresnel high concentrator photovoltaic/thermal system with triple-junction solar cells

    International Nuclear Information System (INIS)

    Xu, Ning; Ji, Jie; Sun, Wei; Han, Lisheng; Chen, Haifei; Jin, Zhuling

    2015-01-01

    Graphical abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, respectively. Experimental results show that direct irradiation affects the electrical performance of the system dominantly. Fitting results of electrical performance offer simple and reliable methods to analyze the system performance. - Highlights: • A point-focus Fresnel lens photovoltaic/thermal system is proposed and studied. • The system presents an instantaneous electrical efficiency of 28%. • The system has a highest instantaneous thermal efficiency of 54%. • Direct irradiation has the dominant effect on the electrical performance. • Fitting results offer simple and reliable methods to analyze system performances. - Abstract: A high concentrator photovoltaic/thermal (HCPV/T) system based on point-focus Fresnel lens has been set up in this work. The concentrator has a geometric concentration ratio of 1090× and uniform irradiation distribution can be obtained on solar cells. The system produces both electricity and heat. Performance of the system has been investigated based on the outdoor measurement in a clear day. The HCPV/T system presents an instantaneous electrical efficiency of 28% and a highest instantaneous thermal efficiency of 54%, which means the overall efficiency of the system can be more than 80%. A mathematical model for calculating cell temperature is proposed to solve difficult measurement of cell temperature in a system. Moreover, characteristics of electrical performance under various direct

  8. Performance characteristics of NuVal and the Overall Nutritional Quality Index (ONQI).

    Science.gov (United States)

    Katz, David L; Njike, Valentine Y; Rhee, Lauren Q; Reingold, Arthur; Ayoob, Keith T

    2010-04-01

    Improving diets has considerable potential to improve health, but progress in this area has been limited, and advice to increase fruit and vegetable intake has largely gone unheeded. Our objective was to test the performance characteristics of the Overall Nutritional Quality Index (ONQI), a tool designed to help improve dietary patterns one well-informed choice at a time. The ONQI was developed by a multidisciplinary group of nutrition and public health scientists independent of food industry interests and is the basis for the NuVal Nutritional Guidance System. Dietary guidelines, existing nutritional scoring systems, and other pertinent scientific literature were reviewed. An algorithm incorporating >30 entries that represent both micro- and macronutrient properties of foods, as well as weighting coefficients representing epidemiologic associations between nutrients and health outcomes, was developed and subjected to consumer research and testing of performance characteristics. ONQI and expert panel rankings correlated highly (R = 0.92, P consumer testing, approximately 80% of >800 study participants indicated that the ONQI would influence their purchase intent. ONQI scoring distinguished the more-healthful DASH (Dietary Approaches to Stop Hypertension) diet (mean score: 46) from the typical American diet according to the National Health and Nutrition Examination Survey (NHANES) 2003-2006 (mean score: 26.5; P purchase patterns and significant correlation with health outcomes in large cohorts of men and women followed for decades. NuVal offers universally applicable nutrition guidance that is independent of food industry interests and is supported by consumer research and scientific evaluation of its performance characteristics.

  9. Performances of 250 Amp-hr lithium/thionyl chloride cells

    Science.gov (United States)

    Goualard, Jacques

    1991-01-01

    A 250 Ah lithium thionyl chloride battery is being developed for a booster rocket engine. Extensive cell testing is running to evaluate functional and safety performances. Some results are presented. The lithium/thionyl chloride batteries were selected for their high energy density (low weight) as compared to other sources. The temperature of a lower weight item will be more sensitive to variations of internal and external heat fluxes than a heavier one. The use of high energy density L/TC batteries is subjected to stringent thermal environments to have benefit of energy density and to stay safe in any conditions. The battery thermal environment and discharge rate have to be adjusted to obtain the right temperature range at cell level, to have the maximum performances. Voltage and capacity are very sensitive to temperature. This temperature is the cell internal actual temperature during discharge. This temperature is directed by external thermal environment and by cell internal heat dissipation, i.e., cell actual voltage.

  10. Performances of 250 Amp-hr lithium/thionyl chloride cells

    Science.gov (United States)

    Goualard, Jacques

    1991-05-01

    A 250 Ah lithium thionyl chloride battery is being developed for a booster rocket engine. Extensive cell testing is running to evaluate functional and safety performances. Some results are presented. The lithium/thionyl chloride batteries were selected for their high energy density (low weight) as compared to other sources. The temperature of a lower weight item will be more sensitive to variations of internal and external heat fluxes than a heavier one. The use of high energy density L/TC batteries is subjected to stringent thermal environments to have benefit of energy density and to stay safe in any conditions. The battery thermal environment and discharge rate have to be adjusted to obtain the right temperature range at cell level, to have the maximum performances. Voltage and capacity are very sensitive to temperature. This temperature is the cell internal actual temperature during discharge. This temperature is directed by external thermal environment and by cell internal heat dissipation, i.e., cell actual voltage.

  11. Class modality, student characteristics, and performance in a community college introductory STEM course

    Science.gov (United States)

    Fogle, Thomas Ty

    Research on introductory STEM course performance has indicated that student characteristics (age, ethnicity and gender) and Grade Point Average (G.P.A.) can be predictive of student performance, and by implication, a correlation among these factors can help determine course design interventions to help certain types of students perform well in introductory STEM courses. The basis of this study was a community college Visual Basic programming course taught in both online and hybrid format. Beginning students in this course represented a diverse population residing in a large, mid-western, city and surrounding communities. Many of these students were defined as "at-Risk" or "non-traditional, which generally means any combination of socio-economic, cultural, family and employment factors that indicate a student is non-traditional. Research has shown these students struggle academically in technologically dense STEM courses, and may require student services and support to achieve their individual performance goals. The overall number in the study range was 392 distance students and 287 blended course students. The main question of this research was to determine to what extent student characteristics in a community college context, and previous success, as measured in overall G.P.A., were related to course performance in an introductory Visual Basic programming (STEM) course; and, whether or not a combination of these factors and course modality was predictive of success. The study employed a quantitative, quasi-experimental design to assess whether students' course performance was linked to course modality, student characteristics and overall G.P.A. The results indicated that the only predictor of student performance was overall G.P.A. Despite the research analyzed in Chapter 2, there was no statistically significant relationship to modality, age, ethnicity, or gender to performance in the course. Cognitive load is significant in a computer programming course and it

  12. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.

    Science.gov (United States)

    Prasad, Rajendra M B; Pathan, Habib M

    2016-04-08

    In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.

  13. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  14. Performance of proton exchange membrane fuel cells at elevated temperature

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Hsueh, Kan-Lin; Tsau, Fanghei

    2011-01-01

    Highlights: → At 1 atm, cell has best performance (∼1300 mA/cm at 0.6 V) at 100 deg. C and RH = 100%. → The A value in Eq. increased with increases in the back pressure and RH. →R i dramatically decreased at back pressure of 1 atm. → At each RH, R i decreased and then increased as cell temperature increased at 1 atm. - Abstract: The polarization curves of a single PEMFC having a Nafion membrane fed with H 2 /O 2 with relative humidity (RH) of 35%, 70% and 100% were measured at cell temperatures ranging from 65 deg. C to 120 deg. C at back pressures of 0 atm and 1 atm, respectively. Measured results showed that the best cell performance at 0.6 V operated within 65-120 deg. C at zero back pressure was 1000 mA cm -2 at 65 deg. C and RH = 100%, while the best cell performance at 1 atm back pressure was 1300 mA cm -2 at 100 deg. C and RH = 100%. Based on the analysis of impedance data measured at anode and cathode humidification temperatures of 90 deg. C and cell temperature of 100 deg. C at back pressures of 0 and 1 atm (90-100p0 and 90-100p1), it could be found that the membrane resistance was reduced and the catalyst became more active as the back pressure increases. The present results showed that increasing back pressure was able to dramatically improve cell performance and the effect of the back pressure surpassed that of humidification in the internal resistance of cell.

  15. Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-Scale Multithreaded BlueGene/Q Supercomputer

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale multithreaded Blue Gene/Q supercomputer at Argonne National laboratory, and quantify the performance gap resulting from using different number of threads per node. We use performance tools and MPI profile and trace libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific applications with increasing the number OpenMP threads per node, and find that increasing the number of threads to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the FPU (Floating Point Unit) percentage decreases, and the MPI percentage (except PMLB) and IPC (Instructions per cycle) per core (except BT-MZ) increase. For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used. © 2013 IEEE.

  16. Performance Characteristics of Hybrid MPI/OpenMP Scientific Applications on a Large-Scale Multithreaded BlueGene/Q Supercomputer

    KAUST Repository

    Wu, Xingfu

    2013-07-01

    In this paper, we investigate the performance characteristics of five hybrid MPI/OpenMP scientific applications (two NAS Parallel benchmarks Multi-Zone SP-MZ and BT-MZ, an earthquake simulation PEQdyna, an aerospace application PMLB and a 3D particle-in-cell application GTC) on a large-scale multithreaded Blue Gene/Q supercomputer at Argonne National laboratory, and quantify the performance gap resulting from using different number of threads per node. We use performance tools and MPI profile and trace libraries available on the supercomputer to analyze and compare the performance of these hybrid scientific applications with increasing the number OpenMP threads per node, and find that increasing the number of threads to some extent saturates or worsens performance of these hybrid applications. For the strong-scaling hybrid scientific applications such as SP-MZ, BT-MZ, PEQdyna and PLMB, using 32 threads per node results in much better application efficiency than using 64 threads per node, and as increasing the number of threads per node, the FPU (Floating Point Unit) percentage decreases, and the MPI percentage (except PMLB) and IPC (Instructions per cycle) per core (except BT-MZ) increase. For the weak-scaling hybrid scientific application such as GTC, the performance trend (relative speedup) is very similar with increasing number of threads per node no matter how many nodes (32, 128, 512) are used. © 2013 IEEE.

  17. Radiation and thermal characteristics of mouse lymphoma cells and their radiation-sensitive mutant

    International Nuclear Information System (INIS)

    Baba, Yuji; Yasunaga, Tadamasa; Uozumi, Hideaki; Takahashi, Mutsumasa; Sawada, Shozo.

    1988-01-01

    Radiation and thermal characteristics of L5178Y cells and their radiation-sensitive mutant M10 cells were studied by the colony-forming method and the dye-exclusion method using eosin-Y. Although M10 cells were remarkably radiation-sensitive compared with L5178Y cells, it was diffcult to cause interphase death of M10 after a large dose of irradiation. After heat treatments, L5178Y cells revealed more cell destruction and were stained well by eosin-Y, but it was relatively difficult to produce cell destruction of M10 cells, which showed poor staining by eosin-Y. When assayed by the colony-forming method, M10 cells were also heat-resistant compared to L5178Y. The dye-exclusion rate was closely correlated with cell survival after hyperthermia of L5178Y cells, suggesting that this is a simple method of detecting the thermosensitivity and thermotolerance of cancer cells. The difference in survival of L5178Y cells and M10 cells after combined treatment with gamma irradiation and hyperthermia was smaller than with gamma irradiation alone. It was also found that there was a relationship between radiation-induced interphase death and hyperthermia-induced interphase death, and that interphase death accounted for a major part of cell death caused by hyperthermia in mouse leukemia cells. (author)

  18. Do firm characteristics influence mutual fund performance? An empirical study for European mutual funds

    NARCIS (Netherlands)

    de Jong, F.C.J.M.; Wingens, L.

    2013-01-01

    This study investigates the influence of fund management firm characteristics on mutual fund performance. Using a sample of European domiciled open-end equity funds for the period 1998-2008, this study finds that the funds of private companies have performed better than the funds of public

  19. Performance characteristics of broilers fed graded levels of Moringa oleifera leaf meal

    OpenAIRE

    Ayo-Ajasa, O.Y.; Abiona, J.A.; Fafiolu, A.O.; Egbeyale, L.T.; Njoku1, C.P.; Omotayo1, I.G.; Odeyemi1, A.Y.; Abel, F.A.S.

    2016-01-01

    Cost of conventional protein sources is on the increase recently; hence, there is the need for cheaper alternative sources that will not compromise the performance characteristics of broiler birds taking into consideration the cost of production. Moringa leaf meal has been reported to increase the performance of broiler birds due to its rich protein content. Two hundred day-old broiler chicks were used to assess the effects of partial replacement of soya bean meal with Moringa (Moringa oleife...

  20. The Influence of Materials of Electrodes of Sensitized Solar Cells on Their Capacitive and Electrical Characteristics

    Science.gov (United States)

    Lazarenko, P. I.; Kozyukhin, S. A.; Mokshina, A. I.; Sherchenkov, A. A.; Patrusheva, T. N.; Irgashev, R. A.; Lebedev, E. A.; Kozik, V. V.

    2018-05-01

    An estimation is made of the internal capacitance of sensitized solar cells (SSCs) manufactured by the method of extraction pyrolysis. The structures under study are characterized by a hysteresis in the current-voltage characteristic obtained in the direct and reverse modes of voltage variation. The investigations of SSCs demonstrate a high inertness of the parameters under connection and disconnection of the light source. The use of a transparent conductive ITO-electrode, manufactured by the extraction pyrolysis, increases the external capacitance of the cell and decelerates the processes of current decay after the light source connection compared to the commercial FTO-electrode. The values of charges, capacitances, and SSC charge conservation efficiencies are calculated and the internal resistance of the SSCs under study is estimated. According to the estimations performed, the specimen with an ITO-layer possesses a capacitance equal to C1 = 1.23·10-3 F, which is by two orders of magnitude higher than that of the specimen with a FTO-layer (C2 = 2.06·10-5 F).

  1. Relationship of nurses' intrapersonal characteristics with work performance and caring behaviors: A cross-sectional study.

    Science.gov (United States)

    Geyer, Nelouise-Marié; Coetzee, Siedine K; Ellis, Suria M; Uys, Leana R

    2018-02-28

    This study aimed to describe intrapersonal characteristics (professional values, personality, empathy, and job involvement), work performance as perceived by nurses, and caring behaviors as perceived by patients, and to examine the relationships among these variables. A cross-sectional design was employed. A sample was recruited of 218 nurses and 116 patients in four private hospitals and four public hospitals. Data were collected using self-report measures. Data analysis included descriptive statistics, exploratory and confirmatory factor analyses, hierarchical linear modelling, correlations, and structural equation modeling. Nurses perceived their work performance to be of high quality. Among the intrapersonal characteristics, nurses had high scores for professional values, and moderately high scores for personality, empathy and job involvement. Patients perceived nurses' caring behaviors as moderately high. Professional values of nurses were the only selected intrapersonal characteristic with a statistically significant positive relationship, of practical importance, with work performance as perceived by nurses and with caring behaviors as perceived by patients at ward level. Managers can enhance nurses' work performance and caring behaviors through provision of in-service training that focuses on development of professional values. © 2018 John Wiley & Sons Australia, Ltd.

  2. Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells.

    Science.gov (United States)

    Kapil, Gaurav; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances. Reflecting mirror with parabolic geometry as concentrator was also utilized to tap diffused light for indoor applications. Fluorescent light at relatively lower illumination intensities (0.2 mW/cm2 to 0.5 mW/cm2) were used for the investigation of TCO-less C-DSSC performance with and without reflector geometry. Furthermore, the DSSC performances were analyzed and compared with the commercially available amorphous silicon based solar cell for indoor applications.

  3. Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition

    International Nuclear Information System (INIS)

    Park, Heesung

    2014-01-01

    Highlights: • GDM played significant role in the PEFC performance under dry condition. • Hydrophobicity of GDM affect the water condensation at the surface. • Optimum water saturation in the porous layer was between 0.1 and 0.3. - Abstract: Water is a significant component of polymer electrolyte fuel cells, affecting the proton conductivity in the membrane electrolyte. Therefore, polymer electrolyte fuel cells are generally operated with a humidifier to maintain a high relative humidity of the supplied gases; however, the humidifier contributes additional weight and cost. Although many studies have attempted to develop polymer electrolyte fuel cells without a humidifier, the studies have been mainly focused on the self-humidified membrane electrolyte and catalyst layer. In this paper, the author investigates the effect of polytetrafluoroethylene coated gas diffusion medium on the water content in the membrane electrolyte. The water condensation on the surfaces of the gas diffusion medium is visualised when the polymer electrolyte fuel cell is operated under non-humidification conditions. Numerical simulation suggests that the optimum water saturation is between 0.1 and 0.3 at the gas diffusion medium to hydrate the membrane electrolyte sufficiently without significantly blocking the diffused species under non-humidification conditions

  4. Effects of exogenous IL-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T cells.

    Science.gov (United States)

    Chen, Yu-Hua; Zhou, Bi-Yun; Wu, Guo-Cai; Liao, De-Quan; Li, Jing; Liang, Si-Si; Wu, Xian-Jin; Xu, Jun-Fa; Chen, Yong-Hua; Di, Xiao-Qing; Lin, Qiong-Yan

    2018-02-14

    This study aims to investigate the effects of exogenous interleukin (IL)-37 on the biological characteristics of human lung adenocarcinoma A549 cells and the chemotaxis of regulatory T (Treg) cells. After isolating the CD4+ CD25+ Treg cells from the peripheral blood, flow cytometry was used to detect the purity of the Treg cells. A549 cells were divided into blank (no transfection), empty plasmid (transfection with pIRES2-EGFP empty plasmid) or IL-37 group (transfection with pIRES2-EGFP-IL-37 plasmid). RT-PCR was used to detect mRNA expression of IL-37 and ELISA to determine IL-37 and MMP-9 expressions. Western blotting was applied to detect the protein expressions of PCNA, Ki-67, Cyclin D1, CDK4, cleaved caspase-3 and cleaved caspase-9. MTT assay, flow cytometry, scratch test and transwell assay were performed to detect cell proliferation, cycle, apoptosis, migration and invasion. Effect of exogenous IL-37 on the chemotaxis of Treg cells was measured through transwell assay. Xenograft models in nude mice were eastablished to detect the impact of IL-37 on A549 cells. The IL-37 group had a higher IL-37 expression, cell apoptosis in the early stage and percentage of cells in the G0/G1 phase than the blank and empty plasmid groups. The IL-37 group had a lower MMP-9 expression, optical density (OD), percentage of cells in the S and G2/M phases, migration, invasion and chemotaxis of CD4+CD25+ Foxp3+ Treg cells. The xenograft volume and weight of nude mice in the IL-37 group were lower than those in the blank and empty plasmid groups. Compared with the blank and empty plasmid groups, the IL-37 group had significantly reduced expression of PCNA, Ki-67, Cyclin D1 and CDK4 but elevated expression of cleaved caspase-3 and cleaved caspase-9. Therefore, exogenous IL-37 inhibits the proliferation, migration and invasion of human lung adenocarcinoma A549 cells as well as the chemotaxis of Treg cells while promoting the apoptosis of A549 cells.

  5. Band gap grading and photovoltaic performance of solution-processed Cu(In,Ga)S2 thin-film solar cells.

    Science.gov (United States)

    Sohn, So Hyeong; Han, Noh Soo; Park, Yong Jin; Park, Seung Min; An, Hee Sang; Kim, Dong-Wook; Min, Byoung Koun; Song, Jae Kyu

    2014-12-28

    The photophysical properties of CuInxGa1-xS2 (CIGS) thin films, prepared by solution-based coating methods, are investigated to understand the correlation between the optical properties of these films and the electrical characteristics of solar cells fabricated using these films. Photophysical properties, such as the depth-dependent band gap and carrier lifetime, turn out to be at play in determining the energy conversion efficiency of solar cells. A double grading of the band gap in CIGS films enhances solar cell efficiency, even when defect states disturb carrier collection by non-radiative decay. The combinational stacking of different density films leads to improved solar cell performance as well as efficient fabrication because a graded band gap and reduced shunt current increase carrier collection efficiency. The photodynamics of minority-carriers suggests that the suppression of defect states is a primary area of improvement in CIGS thin films prepared by solution-based methods.

  6. Changes in the functional characteristics of tumor and normal cells after treatment with extracts of white dead-nettle.

    Science.gov (United States)

    Veleva, Ralitsa; Petkova, Bela; Moskova-Doumanova, Veselina; Doumanov, Jordan; Dimitrova, Milena; Koleva, Petya; Mladenova, Kirilka; Petrova, Svetla; Yordanova, Zhenya; Kapchina-Toteva, Veneta; Topouzova-Hristova, Tanya

    2015-01-02

    Lamium album L. is a perennial herb widely used in folk medicine. It possesses a wide spectrum of therapeutic activities (anti-inflammatory, astringent, antiseptic, antibiotic, antispasmodic, antioxidant and anti-proliferative). Preservation of medicinal plant could be done by in vitro propagation to avoid depletion from their natural habitat. It is important to know whether extracts from L. album plants grown in vitro possess similar properties as extracts from plants grown in vivo . For these reasons, it is important to examine changes in the composition of secondary metabolites during in vitro cultivation of the plant and how they affect the biological activity. We used A549 human cancer cell line and normal kidney epithelial cells MDCKII (Madin-Darby canine kidney cells II) as controls in assessing the anti-cancer effect of plant extracts. To elucidate changes in some key functional characteristics, adhesion test, MTT (3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyl tetrazolium bromide), transepithelial resistance (TER), immunofluorescence staining and trypan blue exclusion test were performed. Methanol and chloroform extracts of in vivo and in vitro propagated plants affected differently cancerous and non-cancerous cells. The most pronounced differences were observed in the morphological analysis and in the cell adhesive properties. We also detected suppressed epithelial transmembrane electrical resistance of MDCK II cells, by treatment with plant extracts, compared to non-treated MDCK II cells. A549 cells did not polarize under the same conditions. Altered organization of actin filaments in both cell types were noticed suggesting that extracts from L. album L. change TER and actin filaments, and somehow may block cell mechanisms, leading to the polarization of MDCK II cells.

  7. Importance of unit cells in accurate evaluation of the characteristics of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sabzyan, Hassan; Sadeghpour, Narges [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2016-08-01

    Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing n{sub c}=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above n{sub c}=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.

  8. Birth weight and characteristics of endothelial and smooth muscle cell cultures from human umbilical cord vessels

    Directory of Open Access Journals (Sweden)

    Lurbe Empar

    2009-04-01

    Full Text Available Abstract Background Low birth weight has been related to an increased risk for developing high blood pressure in adult life. The molecular and cellular analysis of umbilical cord artery and vein may provide information about the early vascular characteristics of an individual. We have assessed several phenotype characteristics of the four vascular cell types derived from human umbilical cords of newborns with different birth weight. Further follow-up studies could show the association of those vascular properties with infancy and adulthood blood pressure. Methods Endothelial and smooth muscle cell cultures were obtained from umbilical cords from two groups of newborns of birth weight less than 2.8 kg or higher than 3.5 kg. The expression of specific endothelial cell markers (von Willebrand factor, CD31, and the binding and internalization of acetylated low-density lipoprotein and the smooth muscle cell specific α-actin have been evaluated. Cell culture viability, proliferation kinetic, growth fraction (expression of Ki67 and percentage of senescent cells (detection of β-galactosidase activity at pH 6.0 have been determined. Endothelial cell projection area was determined by morphometric analysis of cell cultures after CD31 immunodetection. Results The highest variation was found in cell density at the confluence of endothelial cell cultures derived from umbilical cord arteries (66,789 ± 5,093 cells/cm2 vs. 45,630 ± 11,927 cells/cm2, p 2, p Conclusion The analysis of umbilical cord artery endothelial cells, which demonstrated differences in cell size related to birth weight, can provide hints about the cellular and molecular links between lower birth weight and increased adult high blood pressure risk.

  9. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.

    Science.gov (United States)

    Möller, Birgit; Poeschl, Yvonne; Plötner, Romina; Bürstenbinder, Katharina

    2017-11-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Device Engineering Towards Improved Tin Sulfide Solar Cell Performance and Performance Reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul; Siol, Sebastian; Martinot, Loic; Polizzotti, Alex; Yang, Chuanxi; Hartman, Katy; Gradecak, Silvija; Zakutayev, Andriy; Gordon, Roy G.; Buonassisi, Tonio

    2016-11-21

    As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to rapidly test promising candidates in high-performing PV devices. There is a need to engineer new compatible device architectures, including the development of novel transparent conductive oxides and buffer layers. Here, we consider the two approaches of a substrate-style and a superstrate-style device architecture for novel thin-film solar cells. We use tin sulfide as a test absorber material. Upon device engineering, we demonstrate new approaches to improve device performance and performance reproducibility.

  11. Distributed utility technology cost, performance, and environmental characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Y; Adelman, S

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  12. 2010 Survey on cell phone use while performing cardiopulmonary bypass.

    Science.gov (United States)

    Smith, T; Darling, E; Searles, B

    2011-09-01

    Cell phone use in the U.S. has increased dramatically over the past decade and text messaging among adults is now mainstream. In professions such as perfusion, where clinical vigilance is essential to patient care, the potential distraction of cell phones may be especially problematic. However, the extent of this as an issue is currently unknown. Therefore, the purpose of this study was to (1) determine the frequency of cell phone use in the perfusion community, and (2) to identify concerns and opinions among perfusionists regarding cell phone use. In October 2010, a link to a 19-question survey (surveymonkey.com) was posted on the AmSECT (PerfList) and Perfusion.com (PerfMail) forums. There were 439 respondents. Demographic distribution is as follows; Chief Perfusionist (30.5%), Staff Perfusionist (62.0%), and Other (7.5%), with age ranges of 20-30 years (14.2%), 30-40 years (26.5%), 40-50 years (26.7%), 50-60 years (26.7%), >60 years (5.9%). The use of a cell phone during the performance of cardiopulmonary bypass (CPB) was reported by 55.6% of perfusionists. Sending text messages while performing CPB was acknowledged by 49.2%, with clear generational differences detected when cross-referenced with age groups. For smart phone features, perfusionists report having accessed e-mail (21%), used the internet (15.1%), or have checked/posted on social networking sites (3.1%) while performing CPB. Safety concerns were expressed by 78.3% who believe that cell phones can introduce a potentially significant safety risk to patients. Speaking on a cell phone and text messaging during CPB are regarded as "always an unsafe practice" by 42.3% and 51.7% of respondents, respectively. Personal distraction by cell phone use that negatively affected performance was admitted by 7.3%, whereas witnessing another perfusionist distracted with phone/text while on CPB was acknowledged by 33.7% of respondents. This survey suggests that the majority of perfusionists believe cell phones raise

  13. Standard test methods for performance characteristics of metallic bonded resistance strain gages

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 The purpose of this standard is to provide uniform test methods for the determination of strain gauge performance characteristics. Suggested testing equipment designs are included. 1.2 Test Methods E 251 describes methods and procedures for determining five strain gauge parameters: Section Part I—General Requirements 7 Part II—Resistance at a Reference Temperature 8 Part III—Gauge Factor at a Reference Temperature 9 Part IV—Temperature Coefficient of Gauge Factor\t10 Part V—Transverse Sensitivity\t11 Part VI—Thermal Output\t12 1.3 Strain gauges are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications. 1.3.1 Strain gauge resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are...

  14. Relationship between musical characteristics and temporal breathing pattern in piano performance

    Directory of Open Access Journals (Sweden)

    Yutaka Sakaguchi

    2016-07-01

    Full Text Available Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon’s exercise, J. S. Bach’s Invention, Mozart’s Sonatas, and Debussy’s Clair de lune, was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. 1 Mean breath interval was shortened for excerpts in faster tempi. 2 Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. 3 Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise, but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. 4 Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. 5 Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  15. Relationship between Musical Characteristics and Temporal Breathing Pattern in Piano Performance.

    Science.gov (United States)

    Sakaguchi, Yutaka; Aiba, Eriko

    2016-01-01

    Although there is growing evidence that breathing is modulated by various motor and cognitive activities, the nature of breathing in musical performance has been little explored. The present study examined the temporal breath pattern in piano performance, aiming to elucidate how breath timing is related to musical organization/events and performance. In the experiments, the respiration of 15 professional and amateur pianists, playing 10 music excerpts in total (from four-octave C major scale, Hanon's exercise, J. S. Bach's Invention, Mozart's Sonatas, and Debussy's Clair de lune), was monitored by capnography. The relationship between breathing and musical characteristics was analyzed. Five major results were obtained. (1) Mean breath interval was shortened for excerpts in faster tempi. (2) Fluctuation of breath intervals was reduced for the pieces for finger exercise and those in faster tempi. Pianists showing large within-trial fluctuation also exhibited large inter-excerpt difference. (3) Inter-trial consistency of the breath patterns depended on the excerpts. Consistency was generally reduced for the excerpts that could be performed mechanically (i.e., pieces for finger exercise), but interestingly, one third of the participant showed consistent patterns for the simple scale, correlated with the ascending/descending sequences. (4) Pianists tended to exhale just after the music onsets, inhale at the rests, and inhibit inhale during the slur parts. There was correlation between breathing pattern and two-voice polyphonic structure for several participants. (5) Respiratory patterns were notably different among the pianists. Every pianist showed his or her own characteristic features commonly for various musical works. These findings suggest that breathing in piano performance depends not only on musical parameters and organization written in the score but also some pianist-dependent factors which might be ingrained to individual pianists.

  16. The effect of management team characteristics on performance and style extremity of mutual fund portfolios

    Directory of Open Access Journals (Sweden)

    Liu Qiong

    2014-01-01

    Full Text Available Purpose: Along with mutual funds’ scale and quantity expanding for our country, it is common for fund management companies hiring new managers or the original fund managers mobilizing from one to another. The high liquidity of fund managers makes different managers regroup to manage the funds that belong to the same fund management company in each fund year. The characteristics of these different management team will influence the fund performance, and also affect the earnings of the fund management company and portfolio investors. The purpose of this paper is as follows. First, evaluating the effect of management team characteristics on portfolio characteristics: risk, performance, and extremity. Second, testing the hypothesis that the ranking of mid-year performance have effect on investment style extremity and research what relationship exists between this phenomenon and management team characteristics in depth.Design/methodology/approach: On the analysis of the relationships between the management team characteristics and portfolio characteristics, a series of OLS regressions is run where the time series regression model (the factor model and cross-sectional regression are included based on using the STATA, EVIEWS and MATLAB. The validity and practicability of the model will be verified in the paper. All of the above are aimed at achieving portfolio optimization and realizing the maximization of the interests of fund management companies and investors.Findings: The main findings are as follows. Teams with more doctors or MBA (CPA and CFA hold more risky portfolios, while teams with long team tenure hold less. More members and large gender diversity have negative effect on performance, and the opposite is age diversity. Teams with more members and long tenure tend to hold less extreme style decisions, but age diversity is related to more. Besides, tournament hypothesis does exist in China investment funds industry especially when the

  17. Structural Model for the Effects of Environmental Elements on the Psychological Characteristics and Performance of the Employees of Manufacturing Systems.

    Science.gov (United States)

    Realyvásquez, Arturo; Maldonado-Macías, Aidé Aracely; García-Alcaraz, Jorge; Cortés-Robles, Guillermo; Blanco-Fernández, Julio

    2016-01-05

    This paper analyzes the effects of environmental elements on the psychological characteristics and performance of employees in manufacturing systems using structural equation modeling. Increasing the comprehension of these effects may help optimize manufacturing systems regarding their employees' psychological characteristics and performance from a macroergonomic perspective. As the method, a new macroergonomic compatibility questionnaire (MCQ) was developed and statistically validated, and 158 respondents at four manufacture companies were considered. Noise, lighting and temperature, humidity and air quality (THAQ) were used as independent variables and psychological characteristics and employees' performance as dependent variables. To propose and test the hypothetical causal model of significant relationships among the variables, a data analysis was deployed. Results found that the macroergonomic compatibility of environmental elements presents significant direct effects on employees' psychological characteristics and either direct or indirect effects on the employees' performance. THAQ had the highest direct and total effects on psychological characteristics. Regarding the direct and total effects on employees' performance, the psychological characteristics presented the highest effects, followed by THAQ conditions. These results may help measure and optimize manufacturing systems' performance by enhancing their macroergonomic compatibility and quality of life at work of the employees.

  18. The high intensity solar cell: Key to low cost photovoltaic power

    Science.gov (United States)

    Sater, B. L.; Goradia, C.

    1975-01-01

    The design considerations and performance characteristics of the 'high intensity' (HI) solar cell are presented. A high intensity solar system was analyzed to determine its cost effectiveness and to assess the benefits of further improving HI cell efficiency. It is shown that residential sized systems can be produced at less than $1000/kW peak electric power. Due to their superior high intensity performance characteristics compared to the conventional and VMJ cells, HI cells and light concentrators may be the key to low cost photovoltaic power.

  19. The influence of tyre characteristics on measures of rolling performance during cross-country mountain biking.

    Science.gov (United States)

    Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R

    2015-01-01

    This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.

  20. How the relative permittivity of solar cell materials influences solar cell performance

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Huss-Hansen, Mathias K.; Hansen, Ole

    2017-01-01

    of the materials permittivity on the physics and performance of the solar cell by means of numerical simulation supported by analytical relations. We demonstrate that, depending on the specific solar cell configuration and materials properties, there are scenarios where the relative permittivity has a major......The relative permittivity of the materials constituting heterojunction solar cells is usually not considered as a design parameter when searching for novel combinations of heterojunction materials. In this work, we investigate the validity of such an approach. Specifically, we show the effect...... the heterojunction partner has a high permittivity, solar cells are consistently more robust against several non-idealities that are especially likely to occur in early-stage development, when the device is not yet optimized....

  1. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics.

    Science.gov (United States)

    Lai, Jui-Yang; Ma, David Hui-Kang

    2013-01-01

    Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA) cross-linked amniotic membrane (AM) on limbal epithelial cell (LEC) cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous structures and corneal epithelial stem cell culture characteristics. The AM treated with GTA for 6 hours holds promise for use as a niche for the expansion and transplantation of limbal epithelial progenitor cells.

  2. Hospital Value-Based Purchasing Performance: Do Organizational and Market Characteristics Matter?

    Science.gov (United States)

    Spaulding, Aaron; Edwardson, Nick; Zhao, Mei

    The hospital value-based purchasing (HVBP) program of the Centers for Medicare & Medicaid Services challenges hospitals to deliver high-quality care or face a reduction in Medicare payments. How do different organizational structures and market characteristics enable or inhibit successful transition to this new model of value-based care? To address that question, this study employs an institutional theory lens to test whether certain organizational structures and market characteristics mediate hospitals' ability to perform across HVBP domains.Data from the 2014 American Hospital Association Annual Survey Database, Area Health Resource File, the Medicare Hospital Compare Database, and the association between external environment and hospital performance are assessed through multiple regression analysis. Results indicate that hospitals that belong to a system are more likely than independent hospitals to score highly on the domains associated with the HVBP incentive arrangement. However, varying and sometimes counterintuitive market influences bring different dimensions to the HVBP program. A hospital's ability to score well in this new value arrangement may be heavily based on the organization's ability to learn from others, implement change, and apply the appropriate amount of control in various markets.

  3. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  4. Electrically-controlled nonlinear switching and multi-level storage characteristics in WOx film-based memory cells

    Science.gov (United States)

    Duan, W. J.; Wang, J. B.; Zhong, X. L.

    2018-05-01

    Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.

  5. High performance direct methanol fuel cell with thin electrolyte membrane

    Science.gov (United States)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  6. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells

    Science.gov (United States)

    Hafez, H. S.; Shenouda, S. S.; Fadel, M.

    2018-03-01

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO2 nanoparticles with an average particle size (10-40 nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100 mW.cm- 2. The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R = 15.6-23.8 mA.W- 1 and η = 0.13-0.25) at AM = 1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology.

  7. Photovoltaic characteristics of natural light harvesting dye sensitized solar cells.

    Science.gov (United States)

    Hafez, H S; Shenouda, S S; Fadel, M

    2018-03-05

    In this work of research, anthocyanin as a natural dye obtained from raspberry fruits, was used and tested as a photon harvesting/electron donating dye in titanium dioxide nanoparticle-based DSSCs. A working photoelectrode made from TiO 2 nanoparticles with an average particle size (10-40nm) that is coated on Florine doped tin-oxide substrate, was prepared via a simple and low cost hydrothermal method. A detailed structural and morphological analysis of the TiO 2 photoactive electrode was investigated by X-ray diffraction (XRD), diffuse reflectance spectrometer, transmission electron microscope (TEM) and scanning electron microscope (SEM). Complete photovoltaic characteristics including (current, voltage, outpower, and responsivity) of the natural anthocyanin based dye sensitized solar cell have been investigated under different illumination intensity ranging from 10 to 100mW.cm -2 . The cell responsivity and efficiency of the fabricated solar cell under different illumination intensity were found to be in the range (R=15.6-23.8mA.W -1 and η=0.13-0.25) at AM=1.5 conditions. This study is important for enhancing the future applications of the promising DSSC technology. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    Science.gov (United States)

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  9. An Investigation of Equine Mesenchymal Stem Cell Characteristics from Different Harvest Sites: More Similar Than Not

    Directory of Open Access Journals (Sweden)

    Karla eLombana

    2015-12-01

    Full Text Available Diseases of the musculoskeletal system are a major cause of loss of use and retirement in sport horses. The use of bone marrow derived mesenchymal stem cells (BMDMSCs for healing of traumatized tissue has gained substantial favor in clinical settings and can assist healing and tissue regeneration in orthopaedic injuries. There are two common sites of harvest of BMDMSCs, the sternum and ilium. Our objective was to determine if any differences exist in BMDMSCs acquired from the sternum and the ilium. We compared the two harvest sites in their propensity to undergo multilineage differentiation, differences in cell surface markers or gene transduction efficiencies.BMDMSCs were isolated and culture-expanded from five mL aspirates of bone marrow from sternum and ilium. The cells were then plated and cultured with appropriate differentiation medium to result in multi-lineage differentiation and cell characteristics were compared between sternal and ilial samples. Cell surface antibody expression of CD11a/18, CD34, CD44 and CD90 were evaluated using flow cytometry and gene transduction efficiencies were evaluated using GFP scAAV. There were no statistically significant differences in cell characteristics between MSCs cultured from sternum and ilium under any circumstances.

  10. Nanofibrous Chitosan-Polyethylene Oxide Engineered Scaffolds: A Comparative Study between Simulated Structural Characteristics and Cells Viability

    Directory of Open Access Journals (Sweden)

    Mohammad Kazemi Pilehrood

    2014-01-01

    Full Text Available 3D nanofibrous chitosan-polyethylene oxide (PEO scaffolds were fabricated by electrospinning at different processing parameters. The structural characteristics, such as pore size, overall porosity, pore interconnectivity, and scaffold percolative efficiency (SPE, were simulated by a robust image analysis. Mouse fibroblast cells (L929 were cultured in RPMI for 2 days in the presence of various samples of nanofibrous chitosan/PEO scaffolds. Cell attachments and corresponding mean viability were enhanced from 50% to 110% compared to that belonging to a control even at packed morphologies of scaffolds constituted from pores with nanoscale diameter. To elucidate the correlation between structural characteristics within the depth of the scaffolds’ profile and cell viability, a comparative analysis was proposed. This analysis revealed that larger fiber diameters and pore sizes can enhance cell viability. On the contrary, increasing the other structural elements such as overall porosity and interconnectivity due to a simultaneous reduction in fiber diameter and pore size through the electrospinning process can reduce the viability of cells. In addition, it was found that manipulation of the processing parameters in electrospinning can compensate for the effects of packed morphologies of nanofibrous scaffolds and can thus potentially improve the infiltration and viability of cells.

  11. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  12. A consideration of lithium cell safety

    Science.gov (United States)

    Tobishima, Shin-ichi; Yamaki, Jun-ichi

    The safety characteristics of commercial lithium ion cells are examined in relation to their use as batteries for cellular phones. This report describes a theoretical approach to an understanding of cell safety, example results of safety tests that we performed on lithium ion cells, and also presents our views regarding cell safety.

  13. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  14. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Xu Yongfeng; Li Ming; Lin Wenxian; Wang Liuling; Xiang Ming; Zhang Xinghua; Wang Yunfeng; Wei Shengxian

    2009-01-01

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  15. Performance characteristics of a continuous-flow fluidic pump

    International Nuclear Information System (INIS)

    Robinson, S.M.; Counce, R.M.; Smith, G.V.

    1987-01-01

    The fluidic pump is a type of positive-displacement pump in which basic fluid mechanics phenomena are utilized to eliminate valves and other moving parts that are exposed to the fluid being transferred. The version described in this article is powered by gas pressure serving as gas pistons and is virtually maintenance-free. It utilizes two displacement vessels and is designed to produce a steady and continuous liquid flow. This type of pump may be very useful for the transfer of radioactive or hazardous liquids where mechanical maintenance may be difficult or exposure of personnel to the fluid is undesirable. This paper presents experimental and model-predicted characteristics of such systems. The effects of several geometric parameters and operating conditions on the performance of the pump are briefly discussed

  16. Relationship between red blood cell distribution width, bilirubin, and clinical characteristics of patients with gastric cancer.

    Science.gov (United States)

    Wei, T-T; Wang, L-L; Yin, J-R; Liu, Y-T; Qin, B-D; Li, J-Y; Yin, X; Zhou, L; Zhong, R-Q

    2017-10-01

    Red blood cell distribution width (RDW) and bilirubin have been proved to be prognostic factors for various types of cancer. However, their prognostic value in patients with gastric cancer (GC) remains largely unknown. To verify whether RDW and bilirubin are prognostic factors for patients with GC, we performed a cross-sectional study to analyze the relationship between RDW, bilirubin, and the clinical characteristics of patients with GC. Medical records of all newly diagnosed and pathologically proved patients with GC admitted to Changzheng Hospital between January 2016 and July 2016 were retrospectively reviewed. The relationship between RDW, bilirubin, and the clinical characteristics of patients with GC was analyzed. A total of 144 patients with GC were enrolled. Patients with GC had significantly higher RDW than healthy controls, even after adjusting for hemoglobin, while total bilirubin (TBIL), direct bilirubin (DBIL) and indirect bilirubin (IBIL) were significantly decreased. Furthermore, RDW and bilirubin were significantly correlated with tumor stage, as well as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Our study indicated that RDW and bilirubin could be potential prognostic factors for patients of GC. © 2017 John Wiley & Sons Ltd.

  17. The effect of liner hydraulic conductivity on disposal cell performance

    International Nuclear Information System (INIS)

    Yu, C.; Yuan, Y.C.; Chia, Y.P.

    1988-01-01

    Multilayered disposal cells are frequently used for the disposal of radioactive and hazardous wastes. These disposal cells consist of materials with different permeabilities that are placed in various thicknesses at the bottom as well as in the cover of the cell. Typically, a layer of permeable material is placed above a layer with low permeability; the permeable layer functions as a drainage/leachate collection system and the low-permeability layer functions as a migration barrier/liner. This paper analyzes the effects of infiltration through unsaturated soil liners on the long-term performance of the disposal cell. Based on the results of this study, it is concluded that the long-term performance of a disposal cell is dependent on a well-designed cell cover. The design should emphasize a cap with less permeable material to prevent water from infiltrating the disposal cell. An impermeable bottom liner is effective only in the short term; however, it can eventually result in saturation of the wastes and cause the bathtub effect over the long term

  18. Effects of ambient conditions on fuel cell vehicle performance

    Science.gov (United States)

    Haraldsson, K.; Alvfors, P.

    Ambient conditions have considerable impact on the performance of fuel cell hybrid vehicles. Here, the vehicle fuel consumption, the air compressor power demand, the water management system and the heat loads of a fuel cell hybrid sport utility vehicle (SUV) were studied. The simulation results show that the vehicle fuel consumption increases with 10% when the altitude increases from 0 m up to 3000 m to 4.1 L gasoline equivalents/100 km over the New European Drive Cycle (NEDC). The increase is 19% on the more power demanding highway US06 cycle. The air compressor is the major contributor to this fuel consumption increase. Its load-following strategy makes its power demand increase with increasing altitude. Almost 40% of the net power output of the fuel cell system is consumed by the air compressor at the altitude of 3000 m with this load-following strategy and is thus more apparent in the high-power US06 cycle. Changes in ambient air temperature and relative humidity effect on the fuel cell system performance in terms of the water management rather in vehicle fuel consumption. Ambient air temperature and relative humidity have some impact on the vehicle performance mostly seen in the heat and water management of the fuel cell system. While the heat loads of the fuel cell system components vary significantly with increasing ambient temperature, the relative humidity did not have a great impact on the water balance. Overall, dimensioning the compressor and other system components to meet the fuel cell system requirements at the minimum and maximum expected ambient temperatures, in this case 5 and 40 °C, and high altitude, while simultaneously choosing a correct control strategy are important parameters for efficient vehicle power train management.

  19. Experimental study of commercial size proton exchange membrane fuel cell performance

    International Nuclear Information System (INIS)

    Yan, Wei-Mon; Wang, Xiao-Dong; Lee, Duu-Jong; Zhang, Xin-Xin; Guo, Yi-Fan; Su, Ay

    2011-01-01

    Commercial sized (16 x 16 cm 2 active surface area) proton exchange membrane (PEM) fuel cells with serpentine flow chambers are fabricated. The GORE-TEX (registered) PRIMEA 5621 was used with a 35-μm-thick PEM with an anode catalyst layer with 0.45 mg cm -2 Pt and cathode catalyst layer with 0.6 mg cm -2 Pt and Ru or GORE-TEX (registered) PRIMEA 57 was used with an 18-μm-thick PEM with an anode catalyst layer at 0.2 mg cm -2 Pt and cathode catalyst layer at 0.4 mg cm -2 of Pt and Ru. At the specified cell and humidification temperatures, the thin PRIMEA 57 membrane yields better cell performance than the thick PRIMEA 5621 membrane, since hydration of the former is more easily maintained with the limited amount of produced water. Sufficient humidification at both the cathode and anode sides is essential to achieve high cell performance with a thick membrane, like the PRIMEA 5621. The optimal cell temperature to produce the best cell performance with PRIMEA 5621 is close to the humidification temperature. For PRIMEA 57, however, optimal cell temperature exceeds the humidification temperature.

  20. Fundamental criteria for the design of high-performance Josephson nondestructive readout random access memory cells and experimental confirmation

    International Nuclear Information System (INIS)

    Henkels, W.H.

    1979-01-01

    Fundamental design criteria for Josephson nondestructive readout random access memory (NDRO RAM) cells are presented, within the context of an LSI array environment. Emphasis is placed upon principles which are relevant to high performance. The criteria are elucidated via a specific design which is simulated and then experimentally evaluated in a technology with a smallest critical dimension of 5 μm. The specific cell differs from previously tested Josephson NDRO cells in several respects; namely, the cell stores only approx.8Phi 0 , employs interferometer gates and an external damping resistor, allows switching into device resonances, and eliminates the need for a special initialization cycle. The cell-selection scheme, employing triple coincidence, results in larger operating margins and smaller operating currents than have previously been achieved. The large operating margins and all basic cell design criteria were experimentally verified. The experimental interferometer gate characteristics were analyzed in detail and found to be describable by simple models. In addition, it was discovered that single flux quantum transitions in the interferometer gates could be exploited beneficially in order to enhance the insensitivity of operating margins to fabrication tolerances

  1. Performance of planar heterojunction perovskite solar cells under light concentration

    Directory of Open Access Journals (Sweden)

    Aaesha Alnuaimi

    2016-11-01

    Full Text Available In this work, we present 2D simulation of planar heterojunction perovskite solar cells under high concentration using physics-based TCAD. The performance of planar perovskite heterojunction solar cells is examined up to 1000 suns. We analyze the effect of HTM mobility and band structure, surface recombination velocities at interfaces and the effect of series resistance under concentrated light. The simulation results revealed that the low mobility of HTM material limits the improvement in power conversation efficiency of perovskite solar cells under concentration. In addition, large band offset at perovskite/HTM interface contributes to the high series resistance. Moreover, losses due to high surface recombination at interfaces and the high series resistance deteriorate significantly the performance of perovskite solar cells under concentration.

  2. Performance of a Fuel-Cell-Powered, Small Electric Airplane Assessed

    Science.gov (United States)

    Berton, Jeffrey J.

    2004-01-01

    Rapidly emerging fuel-cell-power technologies may be used to launch a new revolution of electric propulsion systems for light aircraft. Future small electric airplanes using fuel cell technologies hold the promise of high reliability, low maintenance, low noise, and - with the exception of water vapor - zero emissions. An analytical feasibility and performance assessment was conducted by NASA Glenn Research Center's Airbreathing Systems Analysis Office of a fuel-cell-powered, propeller-driven, small electric airplane based on a model of the MCR-01 two-place kitplane (Dyn'Aero, Darois, France). This assessment was conducted in parallel with an ongoing effort by the Advanced Technology Products Corporation and the Foundation for Advancing Science and Technology Education. Their project - partially funded by a NASA grant - is to design, build, and fly the first manned, continuously propelled, nongliding electric airplane. In our study, an analytical performance model of a proton exchange membrane (PEM) fuel cell propulsion system was developed and applied to a notional, two-place light airplane modeled after the MCR-01 kitplane. The PEM fuel cell stack was fed pure hydrogen fuel and humidified ambient air via a small automotive centrifugal supercharger. The fuel cell performance models were based on chemical reaction analyses calibrated with published data from the fledgling U.S. automotive fuel cell industry. Electric propeller motors, rated at two shaft power levels in separate assessments, were used to directly drive a two-bladed, variable-pitch propeller. Fuel sources considered were compressed hydrogen gas and cryogenic liquid hydrogen. Both of these fuel sources provided pure, contaminant-free hydrogen for the PEM cells.

  3. Experimental study for flow characteristics and performance evaluation of butterfly valves

    International Nuclear Information System (INIS)

    Kim, C K; Shin, M S; Yoon, J Y

    2010-01-01

    The industrial butterfly valves have been applied to transport a large of fluid with various fields of industry. Also, these are mainly used a control of fluid flux to the water and waste-water pipeline. Present, butterfly valves are manufacturing for multiplicity shape of bodies and discs with many producers. However, appropriate performance evaluation was not yet accomplished to compare about these valves through experiments. This study is performed the experiment of flow characteristics and performance of manufactured 400A butterfly valves for the water and waste pipeline, and compared experimental results. We performed experiments that were controlled fixed a differential pressure condition (1 psi) and the range of the flow rate conditions (500 m 3 /hr ∼ 2500 m 3 /hr), and also opened the disc of valves to a range of angle from 9 degree to 90 degree. We investigated and compared the valve flow coefficient and the valve loss coefficient of results through experiments with each butterfly valve.

  4. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure

    NARCIS (Netherlands)

    Oedayrajsingh-Varma, M. J.; van Ham, S. M.; Knippenberg, M.; Helder, M. N.; Klein-Nulend, J.; Schouten, T. E.; Ritt, M. J. P. F.; van Milligen, F. J.

    2006-01-01

    Adipose tissue contains a stromal vascular fraction that can be easily isolated and provides a rich source of adipose tissue-derived mesenchymal stem cells (ASC). These ASC are a potential source of cells for tissue engineering. We studied whether the yield and growth characteristics of ASC were

  5. Characteristics of shift work and their impact on employee performance and wellbeing: A literature review.

    Science.gov (United States)

    Dall'Ora, Chiara; Ball, Jane; Recio-Saucedo, Alejandra; Griffiths, Peter

    2016-05-01

    To identify the characteristics of shift work that have an effect on employee's performance (including job performance, productivity, safety, quality of care delivered, errors, adverse events and client satisfaction) and wellbeing (including burnout, job satisfaction, absenteeism, intention to leave the job) in all sectors including healthcare. A scoping review of the literature was undertaken. We searched electronic databases (CINAHL, MEDLINE, PsychINFO, SCOPUS) to identify primary quantitative studies. The search was conducted between January and March 2015. Studies were drawn from all occupational sectors (i.e. health and non health), meeting the inclusion criteria: involved participants aged ≥18 who have been working shifts or serve as control group for others working shifts, exploring the association of characteristics of shift work with at least one of the selected outcomes. Reference lists from retrieved studies were checked to identify any further studies. 35 studies were included in the review; 25 studies were performed in the health sector. A variety of shift work characteristics are associated with compromised employee's performance and wellbeing. Findings from large multicentre studies highlight that shifts of 12h or longer are associated with jeopardised outcomes. Working more than 40h per week is associated with adverse events, while no conclusive evidence was found regarding working a 'Compressed Working Week'; working overtime was associated with decreased job performance. Working rotating shifts was associated with worse job performance outcomes, whilst fixed night shifts appeared to enable resynchronisation. However, job satisfaction of employees working fixed nights was reduced. Timely breaks had a positive impact on employee fatigue and alertness, whilst quick returns between shifts appeared to increase pathologic fatigue. The effect of shift work characteristics on outcomes in the studies reviewed is consistent across occupational sectors

  6. Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte

    Science.gov (United States)

    Savinell, R. F.; Fritts, S. D.

    1988-01-01

    A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.

  7. Analytical and numerical study on cooling flow field designs performance of PEM fuel cell with variable heat flux

    Science.gov (United States)

    Afshari, Ebrahim; Ziaei-Rad, Masoud; Jahantigh, Nabi

    2016-06-01

    In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.

  8. Reader characteristics linked to detection of pulmonary nodules on radiographs: ROC vs. JAFROC analyses of performance

    Science.gov (United States)

    Kohli, Akshay; Robinson, John W.; Ryan, John; McEntee, Mark F.; Brennan, Patrick C.

    2011-03-01

    The purpose of this study is to explore whether reader characteristics are linked to heightened levels of diagnostic performance in chest radiology using receiver operating characteristic (ROC) and jackknife free response ROC (JAFROC) methodologies. A set of 40 postero-anterior chest radiographs was developed, of which 20 were abnormal containing one or more simulated nodules, of varying subtlety. Images were independently reviewed by 12 boardcertified radiologists including six chest specialists. The observer performance was measured in terms of ROC and JAFROC scores. For the ROC analysis, readers were asked to rate their degree of suspicion for the presence of nodules by using a confidence rating scale (1-6). JAFROC analysis required the readers to locate and rate as many suspicious areas as they wished using the same scale and resultant data were used to generate Az and FOM scores for ROC and JAFROC analyses respectively. Using Pearson methods, scores of performance were correlated with 7 reader characteristics recorded using a questionnaire. JAFROC analysis showed that improved reader performance was significantly (pchest specialty (pchest radiographs (pchest readings per year (pchest radiographs (pchest specialty, hours reading per week and number of radiographs read per year. Also, JAFROC is a more powerful predictor of performance as compared to ROC.

  9. Organizational characteristics, financial performance measures, and funding sources of faith based organizations.

    Science.gov (United States)

    Lampkin, Lynne; Raghavan, Kamala

    2008-01-01

    This study examined the impact of organizational characteristics and financial performance measures of faith based organizations (FBOS) in Pennsylvania and Ohio on the decisions of the funding sources. Organizational characteristics of size, age, and type of service, and financial performance measures such as expense, liquidity, and solvency ratios were gathered from the data on IRS form 990 for 97 FBOS for the period of 1995 to 2004. The study found that the 1996 Charitable Choice provisions and the 2001 Office of Faith-Based and Community Initiatives have led to increased government funding for FBOS. The results showed that government funding of FBOS is affected positively by age of the FBO, and negatively by its size. For smaller FBOS, savings ratio had a negative relationship to government funding and a positive relationship to direct public support. For social service FBOS government funding was positively affected by age and negatively affected by size and debt ratio, while days-cash-on-hand had a negative impact on direct public support. All of the above relationships were statistically significant.

  10. Characteristic expression of HTLV-1 basic zipper factor (HBZ transcripts in HTLV-1 provirus-positive cells

    Directory of Open Access Journals (Sweden)

    Yamada Yasuaki

    2008-04-01

    Full Text Available Abstract Background HTLV-1 causes adult T-cell leukemia (ATL. Although there have been many studies on the oncogenesis of the viral protein Tax, the precise oncogenic mechanism remains to be elucidated. Recently, a new viral factor, HTLV-1 basic Zip factor (HBZ, encoded from the minus strand mRNA was discovered and the current models of Tax-centered ATL cell pathogenesis are in conflict with this discovery. HBZs consisting of non-spliced and spliced isoforms (HBZ-SI are thought to be implicated in viral replication and T-cell proliferation but there is little evidence on the HBZ expression profile on a large scale. Results To investigate the role of HBZ-SI in HTLV-1 provirus-positive cells, the HBZ-SI and Tax mRNA loads in samples with a mixture of infected and non-infected cells were measured and then adjusted by dividing by the HTLV-I proviral load. We show here that the HBZ-SI mRNA level is 4-fold higher than non-spliced HBZ and is expressed by almost all cells harboring HTLV-1 provirus with variable intensity. The proviral-adjusted HBZ-SI and Tax quantification revealed a characteristic imbalanced expression feature of high HBZ and low Tax expression levels in primary ATL cells or high HBZ and very high Tax levels in HTLV-1-related cell lines (cell lines compared with a standard expression profile of low HBZ and low Tax in infected cells. Interestingly, according to the mutual Tax and HBZ expression status, HTLV-1-related cell lines were subcategorized into two groups, an ATL cell type with high HBZ and low Tax levels and another type with high Tax and either high or low HBZ, which was closely related to its cell origin. Conclusion This is the first comprehensive study to evaluate the mutual expression profile of HBZ and Tax in provirus-positive cells, revealing that there are quantitative and relative characteristic features among infected cells, primary ATL cells, and cell lines.

  11. Effects of dissolved iron and chromium on the performance of direct methanol fuel cell

    International Nuclear Information System (INIS)

    Chen, Weimin; Xin, Qin; Sun, Gongquan; Yang, Shaohua; Zhou, Zhenhua; Mao, Qing; Sun, Pichang

    2007-01-01

    Effects of Fe 3+ and Cr 3+ ions on the performance of direct methanol fuel cell were investigated. The results show that the cell performance decreased remarkably when the concentration of Fe 3+ or Cr 3+ exceeded 1 x 10 -4 mol L -1 . Fe 3+ displayed a strong negative effect on the catalytic oxidation of methanol, while Cr 3+ affected the cell performance primarily by exchanging with protons of the membrane/ionomer and resulted in ionic conductivity losses. Complete recovery of the cell performance was not obtained after flushing the cell with deionized water

  12. The effects of “Beijing grass” in diets on growth performance, humoral antibody and carcass characteristics in quails

    Directory of Open Access Journals (Sweden)

    Chethanond, U.

    2005-08-01

    Full Text Available Pharmacological study on Beijing grass (Bj. grass: Murdannia loriformis showed immunomodulator and anticancer activities. Thus, the effect of Bj. grass in diets was investigated in Japanese quails (aged 0-6 weeks on growth performances, humoral immunity and carcass characteristics. 708 1-day-old quails (Corturnix type which had no vaccination program were used in this study. They were experimented using completely randomized design and were divided into 6 treatments consisted of 4 replications with 27-31 heads each. The treatments were assigned as follows: Treatment 1 (T1 no vaccination and no Bj.grass, Treatment 2 (T2 vaccination and no Bj.grass, Treatment 3 (T3 vaccination and 3% Bj.grass, Treatment 4 (T4 vaccination and 6% Bj.grass, Treatment 5 (T5 vaccination and 9% Bj.grass and Treatment 6 (T6 vaccination and 10% Bj.grass juice (w/v. Vaccination program by 1 Newcastle disease + Infectious Bronchitis and 2 Pox were given at 1 and 3 weeks. Approximately 25% of quails were bled for determination of packed cell volume, gamma globulin levels and ND-HI titers. All male quails were put to sleep at 6 weeks. The results showed weight gain in the 3rd week was different in treatments using Bj. grass and treatments using control diet which body weight gain reduced when the level of Bj. grass increased (p 0.05. It was noted that not more than 6% Bj. grass could be used in quail diet without abnormal clinical signs. However, the more grass showed the tendency of poor weight gain. There were no differences in packed cell volume or gamma IgG level and ND-HI titers did not reach protection level. For carcass characteristics, Bj. grass 3% in diet gave the best carcass characteristics. (p < 0.05 In addition there was a dose-related reduction of abdominal fat (P=0.001.

  13. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  14. Process modeling of the impedance characteristics of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Rezaei Niya, Seyed Mohammad; Phillips, Ryan K.; Hoorfar, Mina

    2016-01-01

    Highlights: • The impedance of the PEM fuel cell is analytically calculated. • The measured impedances are presented for different operating conditions. • The high frequency arc in the measured Nyquist plot is related to the anode. • The intermediate frequency arc is related to the cathode. • The low frequency arc and high frequency resistance are related to the membrane. - Abstract: A complete process modeling of the impedance characteristics of the proton exchange membrane fuel cells is presented. The impedance of the cell is determined analytically and the resultant equivalent circuit is calculated. The model predictions are then compared against the measured impedances in different current densities, operating temperatures and anode and cathode relative humidities. It is shown that the model predicts the Nyquist plots in all different operating conditions extremely well. Next, the trends observed in the Nyquist plots reported in the literature are compared against the model predictions. The result of this comparison confirms the accuracy of the model. Using the verified model, various arcs in the Nyquist plots are separated and related to the fuel cell physical parameters.

  15. On-Chip Method to Measure Mechanical Characteristics of a Single Cell by Using Moiré Fringe

    Directory of Open Access Journals (Sweden)

    Hirotaka Sugiura

    2015-06-01

    Full Text Available We propose a method to characterize the mechanical properties of cells using a robot-integrated microfluidic chip (robochip and microscopy. The microfluidic chip is designed to apply the specified deformations to a single detached cell using an on-chip actuator probe. The reaction force is simultaneously measured using an on-chip force sensor composed of a hollow folded beam and probe structure. In order to measure the cellular characteristics in further detail, a sub-pixel level of resolution of probe position is required. Therefore, we utilize the phase detection of moiré fringe. Using this method, the experimental resolution of the probe position reaches 42 nm. This is approximately ten times smaller than the optical wavelength, which is the limit of sharp imaging with a microscope. Calibration of the force sensor is also important in accurately measuring cellular reaction forces. We calibrated the spring constant from the frequency response, by the proposed sensing method of the probe position. As a representative of mechanical characteristics, we measured the elastic modulus of Madin-Darby Cannie Kidney (MDCK cells. In spite of the rigid spring constant, the resolution and sensitivity were twice that achieved in our previous study. Unique cellular characteristics can be elucidated by the improvements in sensing resolution and accuracy.

  16. The influence of silicon wafer thickness on characteristics of multijunction solar cells with vertical p—n-junctions

    Directory of Open Access Journals (Sweden)

    Gnilenko A. B.

    2012-02-01

    Full Text Available A multijunction silicon solar cell with vertical p–n junctions consisted of four serial n+–p–p+-structures was simulated using Silvaco TCAD software package. The dependence of solar cell characteristics on the silicon wafer thickness is investigated for a wide range of values.

  17. Effects of impurities on silicon solar-cell performance

    Science.gov (United States)

    Hopkins, R. H.

    1986-01-01

    Model analyses indicate that sophisticated solar cell designs (back surface fields, optical reflectors, surface passivation, and double layer antireflective coatings) can produce devices with conversion efficiencies above 20%. To realize this potential, the quality of the silicon from which the cells are made must be improved; and these excellent electrical properties must be maintained during device processing. As the cell efficiency rises, the sensitivity to trace contaminants also increases. For example, the threshold Ti impurity concentraion at which cell performance degrades is more than an order of magnitude lower for an 18% cell than for a 16% cell. Similar behavior occurs for numerous other metal species which introduce deep level traps that stimulate the recombination of photogenerated carriers in silicon. Purification via crystal growth in conjunction with gettering steps to preserve the large diffusion length of the as grown material can lead to the production of devices with efficiencies above 18%, as verified experimentally.

  18. Effects of coal-derived trace species on performance of molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Carbonate Fuel Cell is a very promising option for highly efficient generation of electricity from many fuels. If coal-gas is to be used, the interactions of coal-derived impurities on various fuel cell components need to be understood. Thus the effects on Carbonate Fuel Cell performance due to ten different coal-derived contaminants viz., NH{sub 3}, H{sub 2}S, HC{ell}, H{sub 2}Se, AsH{sub 3}, Zn, Pb, Cd, Sn, and Hg, have been studied at Energy Research Corporation. Both experimental and theoretical evaluations were performed, which have led to mechanistic insights and initial estimation of qualitative tolerance levels for each species individually and in combination with other species. The focus of this study was to investigate possible coal-gas contaminant effects on the anode side of the Carbonate Fuel Cell, using both out-of-cell thermogravimetric analysis by isothermal TGA, and fuel cell testing in bench-scale cells. Separate experiments detailing performance decay in these cells with high levels of ammonia contamination (1 vol %) and with trace levels of Cd, Hg, and Sn, have indicated that, on the whole, these elements do not affect carbonate fuel cell performance. However, some performance decay may result when a number of the other six species are present, singly or simultaneously, as contaminants in fuel gas. In all cases, tolerance levels have been estimated for each of the 10 species and preliminary models have been developed for six of them. At this stage the models are limited to isothermal, benchscale (300 cm{sup 2} size) single cells. The information obtained is expected to assist in the development of coal-gas cleanup systems, while the contaminant performance effects data will provide useful basic information for modeling fuel cell endurance in conjunction with integrated gasifier/fuel-cell systems (IGFC).

  19. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    Science.gov (United States)

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  20. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    Energy Technology Data Exchange (ETDEWEB)

    Seif, Johannes Peter, E-mail: johannes.seif@alumni.epfl.ch; Ballif, Christophe; De Wolf, Stefaan [Photovoltaics and Thin-Film Electronics Laboratory, Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2002 Neuchâtel (Switzerland); Menda, Deneb; Özdemir, Orhan [Department of Physics, Yıldız Technical University, Davutpasa Campus, TR-34210 Esenler, Istanbul (Turkey); Descoeudres, Antoine; Barraud, Loris [CSEM, PV-Center, Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland)

    2016-08-07

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

  1. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  2. Standard Specification for Physical Characteristics of Nonconcentrator Terrestrial Photovoltaic Reference Cells

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This specification describes the physical requirements for primary and secondary terrestrial nonconcentrator photovoltaic reference cells. A reference cell is defined as a device that meets the requirements of this specification and is calibrated in accordance with Test Method E1125 or Test Method E1362. 1.2 Reference cells are used in the determination of the electrical performance of photovoltaic devices, as stated in Test Methods E948 and E1036. 1.3 Two reference cell physical specifications are described: 1.3.1 Small-Cell Package Design—A small, durable package with a low thermal mass, wide optical field-of-view, and standardized dimensions intended for photovoltaic devices up to 20 by 20 mm, and 1.3.2 Module-Package Design—A package intended to simulate the optical and thermal properties of a photovoltaic module design, but electric connections are made to only one photovoltaic cell in order to eliminate problems with calibrating series and parallel connections of cells. Physical dimensions ...

  3. Change of nucleolus characteristic of fish embryo cells under the influence of low-level radiation

    International Nuclear Information System (INIS)

    Arkhipchuk, V.V.

    1995-01-01

    The nucleolus activity of fish embryo cells was stimulated by low-level radiation at a dose rate of 2-13 mGy/h. The size of nucleoli generally increased in embryos of Cyprinus carpio, whereas the number of nucleoli was greater in embryos of Carassius auratus gibelio. The higher the functional activity of nucleolus is, the more pronounced are changes in the characteristics. The size of single nucleolus at gastrulation is the most sensitive characteristic. 16 refs.; 1 tab

  4. Characteristics of primary Sjögren's syndrome patients with IgG4 positive plasma cells infiltration in the labial salivary glands.

    Science.gov (United States)

    Liu, Chang; Zhang, Huayong; Yao, Genhong; Hu, Yunxia; Qi, Jingjing; Wang, Yan; Chen, Weiwei; Tang, Xiaojun; Li, Wenchao; Lu, Liwei; Gu, Luo; Sun, Lingyun

    2017-01-01

    The purpose of this study was to investigate the characteristics of primary Sjögren's syndrome (pSS) patients with IgG4 positive (IgG4 + ) plasma cell infiltration in labial salivary glands (LSGs). Paraffin sections of LSGs from 336 pSS patients were stained with IgG4 and IgG monoclonal antibodies. According to the infiltration of IgG4 + plasma cells, patients were divided and clinical and serological characteristics were analyzed and compared. Based on the infiltration of IgG4 + plasma cells in the LSGs, patients were divided into three subgroups, low IgG4, moderate IgG4, and high IgG4 groups. A negative association between the number of infiltrated IgG4 + plasma cells and the disease characteristics was observed. We found that the higher the IgG4 + expression in plasma cells, the lower the positive rates of serum anti-SSA antibodies, anti-SSB antibodies, antinuclear antibodies (ANA), and rheumatoid factor (RF). Besides, patients from the high IgG4 group had the highest frequency of interstitial lung disease (ILD, 30.6%) and tubulointerstitial nephritis (TIN, 13.9%), but the lowest frequency of leucopenia (13.9%), thrombocytopenia (11.1%), and abnormal thyroidal function (0%). PSS patients with different IgG4 + plasma cells infiltration in the LSGs had distinctive clinical and laboratory characteristics. It may help us to further understand the role of IgG4 + plasma cells in pSS.

  5. Full-Duplex MIMO Small-Cell Networks: Performance Analysis

    OpenAIRE

    Atzeni, Italo; Kountouris, Marios

    2015-01-01

    Full-duplex small-cell relays with multiple antennas constitute a core element of the envisioned 5G network architecture. In this paper, we use stochastic geometry to analyze the performance of wireless networks with full-duplex multiple-antenna small cells, with particular emphasis on the probability of successful transmission. To achieve this goal, we additionally characterize the distribution of the self-interference power of the full-duplex nodes. The proposed framework reveals useful ins...

  6. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics

    Directory of Open Access Journals (Sweden)

    Lai JY

    2013-10-01

    Full Text Available Jui-Yang Lai,1–3 David Hui-Kang Ma4,5 1Institute of Biochemical and Biomedical Engineering, 2Biomedical Engineering Research Center, 3Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; 4Limbal Stem Cell Laboratory, Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; 5Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan Abstract: Given that the cells can sense nanometer dimensions, the chemical cross-linking-mediated alteration in fibrillar structure of collagenous tissue scaffolds is critical to determining their cell culture performances. This article explores, for the first time, the effect of nanofibrous structure of glutaraldehyde (GTA cross-linked amniotic membrane (AM on limbal epithelial cell (LEC cultivation. Results of ninhydrin assays demonstrated that the amount of new cross-links formed between the collagen chains is significantly increased with increasing the cross-linking time from 1 to 24 hours. By transmission electron microscopy, the AM treated with GTA for a longer duration exhibited a greater extent of molecular aggregation, thereby leading to a considerable increase in nanofiber diameter and resistance against collagenase degradation. In vitro biocompatibility studies showed that the samples cross-linked with GTA for 24 hours are not well-tolerated by the human corneal epithelial cell cultures. When the treatment duration is less than 6 hours, the biological tissues cross-linked with GTA for a longer time may cause slight reductions in 3-(4,5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium, inner salt, and anti-inflammatory activities. Nevertheless, significant collagen molecular aggregation also enhances the stemness gene expression, indicating a high ability of these AM matrices to preserve the progenitors of LECs in vitro. It is concluded that GTA cross-linking of collagenous tissue materials may affect their nanofibrous

  7. Teacher characteristics and student performance: An analysis using hierarchical linear modelling

    Directory of Open Access Journals (Sweden)

    Paula Armstrong

    2015-12-01

    Full Text Available This research makes use of hierarchical linear modelling to investigate which teacher characteristics are significantly associated with student performance. Using data from the SACMEQ III study of 2007, an interesting and potentially important finding is that younger teachers are better able to improve the mean mathematics performance of their students. Furthermore, younger teachers themselves perform better on subject tests than do their older counterparts. Identical models are run for Sub Saharan countries bordering on South Africa, as well for Kenya and the strong relationship between teacher age and student performance is not observed. Similarly, the model is run for South Africa using data from SACMEQ II (conducted in 2002 and the relationship between teacher age and student performance is also not observed. It must be noted that South African teachers were not tested in SACMEQ II so it was not possible to observe differences in subject knowledge amongst teachers in different cohorts and it was not possible to control for teachers’ level of subject knowledge when observing the relationship between teacher age and student performance. Changes in teacher education in the late 1990s and early 2000s may explain the differences in the performance of younger teachers relative to their older counterparts observed in the later dataset.

  8. Generic anthropometric and performance characteristics among elite adolescent boys in nine different sports.

    Science.gov (United States)

    Pion, Johan; Segers, Veerle; Fransen, Job; Debuyck, Gijs; Deprez, Dieter; Haerens, Leen; Vaeyens, Roel; Philippaerts, Renaat; Lenoir, Matthieu

    2015-01-01

    The aim of the present study was to evaluate the Flemish Sports Compass (FSC), a non-sport-specific generic testing battery. It was hypothesised that a set of 22 tests would have sufficient discriminant power to allocate athletes to their own sport based on a unique combination of test scores. First, discriminant analyses were applied to the 22 tests of anthropometry, physical fitness and motor coordination in 141 boys under age 18 (16.1 ± 0.8 years) and post age at peak height velocity (maturity offset = 2.674 ± 0.926) from Flemish Top Sport Academies for badminton, basketball, gymnastics, handball, judo, soccer, table tennis, triathlon and volleyball. Second, nine sequential discriminant analyses were used to assess the ability of a set of relevant performance characteristics classifying participants and non-participants for the respective sports. Discriminant analyses resulted in a 96.4% correct classification of all participants for the nine different sports. When focusing on relevant performance characteristics, 80.1% to 97.2% of the total test sample was classified correctly within their respective disciplines. The discriminating characteristics were briefly the following: flexibility in gymnastics, explosive lower-limb strength in badminton and volleyball, speed and agility in badminton, judo, soccer and volleyball, upper-body strength in badminton, basketball and gymnastics, cardiorespiratory endurance in triathletes, dribbling skills in handball, basketball and soccer and overhead-throwing skills in badminton and volleyball. The generic talent characteristics of the FSC enable the distinction of adolescent boys according to their particular sport. Implications for talent programmes are discussed.

  9. Performance characteristics of a Kodak computed radiography system.

    Science.gov (United States)

    Bradford, C D; Peppler, W W; Dobbins, J T

    1999-01-01

    The performance characteristics of a photostimulable phosphor based computed radiographic (CR) system were studied. The modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) of the Kodak Digital Science computed radiography (CR) system (Eastman Kodak Co.-model 400) were measured and compared to previously published results of a Fuji based CR system (Philips Medical Systems-PCR model 7000). To maximize comparability, the same measurement techniques and analysis methods were used. The DQE at four exposure levels (30, 3, 0.3, 0.03 mR) and two plate types (standard and high resolution) were calculated from the NPS and MTF measurements. The NPS was determined from two-dimensional Fourier analysis of uniformly exposed plates. The presampling MTF was determined from the Fourier transform (FT) of the system's finely sampled line spread function (LSF) as produced by a narrow slit. A comparison of the slit type ("beveled edge" versus "straight edge") and its effect on the resulting MTF measurements was also performed. The results show that both systems are comparable in resolution performance. The noise power studies indicated a higher level of noise for the Kodak images (approximately 20% at the low exposure levels and 40%-70% at higher exposure levels). Within the clinically relevant exposure range (0.3-3 mR), the resulting DQE for the Kodak plates ranged between 20%-50% lower than for the corresponding Fuji plates. Measurements of the presampling MTF with the two slit types have shown that a correction factor can be applied to compensate for transmission through the relief edges.

  10. Performance and flow characteristics of MHD seawater thruster

    Energy Technology Data Exchange (ETDEWEB)

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  11. SELECTION OF ENDOCRINOLOGY SUBSPECIALTY TRAINEES: WHICH APPLICANT CHARACTERISTICS ARE ASSOCIATED WITH PERFORMANCE DURING FELLOWSHIP TRAINING?

    Science.gov (United States)

    Natt, Neena; Chang, Alice Y; Berbari, Elie F; Kennel, Kurt A; Kearns, Ann E

    2016-01-01

    To determine which residency characteristics are associated with performance during endocrinology fellowship training as measured by competency-based faculty evaluation scores and faculty global ratings of trainee performance. We performed a retrospective review of interview applications from endocrinology fellows who graduated from a single academic institution between 2006 and 2013. Performance measures included competency-based faculty evaluation scores and faculty global ratings. The association between applicant characteristics and measures of performance during fellowship was examined by linear regression. The presence of a laudatory comparative statement in the residency program director's letter of recommendation (LoR) or experience as a chief resident was significantly associated with competency-based faculty evaluation scores (β = 0.22, P = .001; and β = 0.24, P = .009, respectively) and faculty global ratings (β = 0.85, P = .006; and β = 0.96, P = .015, respectively). The presence of a laudatory comparative statement in the residency program director's LoR or experience as a chief resident were significantly associated with overall performance during subspecialty fellowship training. Future studies are needed in other cohorts to determine the broader implications of these findings in the application and selection process.

  12. Effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of summer maize.

    Science.gov (United States)

    Ren, Baizhao; Cui, Haiyan; Camberato, James J; Dong, Shuting; Liu, Peng; Zhao, Bin; Zhang, Jiwang

    2016-08-01

    A field experiment was conducted to study the effects of shading on the photosynthetic characteristics and mesophyll cell ultrastructure of two summer maize hybrids Denghai605 (DH605) and Zhengdan958 (ZD958). The ambient sunlight treatment was used as control (CK) and shading treatments (40 % of ambient sunlight) were applied at different growth stages from silking (R1) to physiological maturity (R6) (S1), from the sixth leaf stage (V6) to R1 (S2), and from seeding to R6 (S3), respectively. The net photosynthetic rate (P n) was significantly decreased after shading. The greatest reduction of P n was found at S3 treatment, followed by S1 and S2 treatments. P n of S3 was decreased by 59 and 48 % for DH605, and 39 and 43 % for ZD958 at tasseling and milk-ripe stages, respectively, compared to that of CK. Additionally, leaf area index (LAI) and chlorophyll content decreased after shading. In terms of mesophyll cell ultrastructure, chloroplast configuration of mesophyll cells dispersed, and part of chloroplast swelled and became circular. Meanwhile, the major characteristics of chloroplasts showed poorly developed thylakoid structure at the early growth stage, blurry lamellar structure, loose grana, and a large gap between slices and warping granum. Then, plasmolysis occurred in mesophyll cells and the endomembrane system was destroyed, which resulted in the dissolution of cell membrane, karyotheca, mitochondria, and some membrane structures. The damaged mesophyll cell ultrastructure led to the decrease of photosynthetic capacity, and thus resulted in significant yield reduction by 45, 11, and 84 % in S1, S2, and S3 treatments, respectively, compared to that of CK.

  13. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  14. Performance of an electrochemical solar cell with molybdenite anode

    International Nuclear Information System (INIS)

    Lima, G.F.; Chagas, J.W.R.; Cesar, H.L.; Juliao, J.F.

    1984-01-01

    The performance of photoeletrochemical cells for solar energy conversion, using photoanodes of molybdenite and platinum cathode is reported. Conversion efficiency between 0.1 and 1% were determined. The surface condition of the photoanode and the light absorption by the electrolite were some factors responsible for the low efficiency of those cells. (C.L.B.) [pt

  15. Improved performance in GaInNAs solar cells by hydrogen passivation

    International Nuclear Information System (INIS)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R.; Hossain, K.; Golding, T. D.; Leroux, M.; Al Khalfioui, M.

    2015-01-01

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells

  16. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    OpenAIRE

    Hamideh Aghahosseini; Ali Ramazani; Pegah Azimzadeh Asiabi; Farideh Gouranlou; Fahimeh Hosseini; Aram Rezaei; Bong-Ki Min; Sang Woo Joo

    2016-01-01

    Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of el...

  17. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  18. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  19. Firm performance: The role of CEOs' emotional and cognitive characteristics

    Directory of Open Access Journals (Sweden)

    Kleanthis K. Katsaros

    2015-08-01

    Full Text Available The paper examines the relationships between CEOs’ personal traits, emotions, attitudes and tolerance of ambiguity; and subsequently, the influence of CEOs’ ambiguity tolerance in firms' performance. Design/methodology/approach – Survey data were collected from 256 ICT firms established in Greece. Their CEOs completed questionnaires examining TOA, personal traits, emotions and attitudes in the workplace. Principal components analysis and ordinary least-squares regressions were used to explore the hypotheses of the paper. Findings – Three factors characterize CEOs' emotions, namely pleasure, dominance and arousal; two factors their involvement, namely importance and interest; and, respectively, one their emotional intelligence namely, empathy/handling relationships. Further, locus of control; importance; arousal; empathy/handling relationships and interest affect decisively CEOs' tolerance of ambiguity, which in turn, seems to influence positively firms' performance. Research limitations/implications – Further research is required in Greek ICT industry regarding the influence of CEOs' emotional and cognitive attributes in organizations' financial performance. Likewise, this research should be expanded to other industries. Originality/value – The originality of this study lies in the finding that emotional and cognitive characteristics affect CEOs' TOA, which, in turn, influences significantly firms' performance. Another significant contributing factor is that the study is carried out in Greece, where few studies have been conducted in this area.

  20. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

    2014-01-01

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe 3+ , Al 3+ , Ca 2+ , Ba 2+ and Sr 2+ )-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. (paper)

  1. Inflammatory Human Umbilical Cord-Derived Mesenchymal Stem Cells Promote Stem Cell-Like Characteristics of Cancer Cells in an IL-1β-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Xiaohe Luo

    2018-01-01

    Full Text Available To ensure the safety of clinical applications of MSCs, thorough understanding of their impacts on tumor initiation and progression is essential. Here, to further explore the complex dialog between MSCs and tumor cells, umbilical cord-derived mesenchymal stem cells (UC-MSCs were employed to be cocultured with either breast or ovarian cancer cells. Though having no obvious influence on proliferation or apoptosis, UC-MSCs exerted intense stem cell-like properties promoting effects on both cancer models. Cocultured cancer cells showed enriched side population, enhanced sphere formation ability, and upregulated pluripotency-associated stem cell markers. Human cytokine array and real-time PCR revealed a panel of MSC-derived prostemness cytokines CCL2, CXCL1, IL-8, and IL-6 which were induced upon coculturing. We further revealed IL-1β, a well-characterized proinflammatory cytokine, to be the inducer of these prostemness cytokines, which was generated from inflammatory UC-MSCs in an autocrine manner. Additionally, with introduction of IL-1RA (an IL-1 receptor antagonist into the coculturing system, the stem cell-like characteristics promoting effects of inflammatory UC-MSCs were partially blocked. Taken together, these findings suggest that transduced inflammatory MSCs work as a major source of IL-1β in tumor microenvironment and initiate the formation of prostemness niche via regulating their secretome in an IL-1β-dependent manner.

  2. Optimization of performance and emission characteristics of PPCCI engine fuelled with ethanol and diesel blends using grey-Taguchi method

    Science.gov (United States)

    Natarajan, S.; Pitchandi, K.; Mahalakshmi, N. V.

    2018-02-01

    The performance and emission characteristics of a PPCCI engine fuelled with ethanol and diesel blends were carried out on a single cylinder air cooled CI engine. In order to achieve the optimal process response with a limited number of experimental cycles, multi objective grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a combination of input parameters was prefigured so as to achieve optimum response characteristics. It was observed that 20% premixed ratio of blend was most suitable for use in a PPCCI engine without significantly affecting the engine performance and emissions characteristics.

  3. Performance analysis of high-concentrated multi-junction solar cells in hot climate

    Science.gov (United States)

    Ghoneim, Adel A.; Kandil, Kandil M.; Alzanki, Talal H.; Alenezi, Mohammad R.

    2018-03-01

    Multi-junction concentrator solar cells are a promising technology as they can fulfill the increasing energy demand with renewable sources. Focusing sunlight upon the aperture of multi-junction photovoltaic (PV) cells can generate much greater power densities than conventional PV cells. So, concentrated PV multi-junction solar cells offer a promising way towards achieving minimum cost per kilowatt-hour. However, these cells have many aspects that must be fixed to be feasible for large-scale energy generation. In this work, a model is developed to analyze the impact of various atmospheric factors on concentrator PV performance. A single-diode equivalent circuit model is developed to examine multi-junction cells performance in hot weather conditions, considering the impacts of both temperature and concentration ratio. The impacts of spectral variations of irradiance on annual performance of various high-concentrated photovoltaic (HCPV) panels are examined, adapting spectra simulations using the SMARTS model. Also, the diode shunt resistance neglected in the existing models is considered in the present model. The present results are efficiently validated against measurements from published data to within 2% accuracy. Present predictions show that the single-diode model considering the shunt resistance gives accurate and reliable results. Also, aerosol optical depth (AOD) and air mass are most important atmospheric parameters having a significant impact on HCPV cell performance. In addition, the electrical efficiency (η) is noticed to increase with concentration to a certain concentration degree after which it decreases. Finally, based on the model predictions, let us conclude that the present model could be adapted properly to examine HCPV cells' performance over a broad range of operating conditions.

  4. Analysis of cell performance and thermal regeneration of a lithium-tin cell having an immobilized fused-salt electrolyte

    Science.gov (United States)

    Cairns, E. J.; Shimotake, H.

    1969-01-01

    Cell performance and thermal regeneration of a thermally regenerative cell uses lithium and tin and a fused-salt electrolyte. The emf of the Li-Sn cell, as a function of cathode-alloy composition, is shown to resemble that of the Na-Bi cell.

  5. Solid oxide fuel cell performance under severe operating conditions

    DEFF Research Database (Denmark)

    Koch, Søren; Hendriksen, P.V.; Mogensen, Mogens Bjerg

    2006-01-01

    The performance and degradation of Solid Oxide Fuel Cells (SOFC) were studied under severe operating conditions. The cells studied were manufactured in a small series by ECN, in the framework of the EU funded CORE-SOFC project. The cells were of the anode-supported type with a double layer LSM...... cathode. They were operated at 750 °C or 850 °C in hydrogen with 5% or 50% water at current densities ranging from 0.25 A cm–2 to 1 A cm–2 for periods of 300 hours or more. The area specific cell resistance, corrected for fuel utilisation, ranged between 0.20 Ω cm2 and 0.34 Ω cm2 at 850 °C and 520 m......V, and between 0.51 Ω cm2 and 0.92 Ω cm2 at 750 °C and 520 mV. The degradation of cell performance was found to be low (ranging from 0 to 8%/1,000 hours) at regular operating conditions. Voltage degradation rates of 20 to 40%/1,000 hours were observed under severe operating conditions, depending on the test...

  6. [Biological characteristics of mesenchymal stem cell and hematopoietic stem cell in the co-culture system].

    Science.gov (United States)

    Wei, Wei; Xu, Chao; Ye, Zhi-Yong; Huang, Xiao-Jun; Yuan, Jia-En; Ma, Tian-Bao; Lin, Han-Biao; Chen, Xiu-Qiong

    2016-10-25

    The aim of the present study was to obtain the qualified hematopoietic stem/progenitor cells (HSC/HPC) and human umbilical cord-mesenchymal stem cells (MSC) in vitro in the co-culture system. Cord blood mononuclear cells were separated from umbilical cord blood by Ficoll lymphocyte separation medium, and then CD34 + HSC was collected by MACS immunomagnetic beads. The selected CD34 + HSC/HPC and MSC were transferred into culture flask. IMDM culture medium with 15% AB-type cord plasma supplemented with interleukin-3 (IL-3), IL-6, thrombopoietin (TPO), stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand (Flt-3L) factors were used as the co-culture system for the amplification of HSC/HPC and MSC. The cellular growth status and proliferation on day 6 and 10 after co-culture were observed by using inverted microscope. The percentage of positive expression of CD34 in HSC/HPC, as well as the percentages of positive expressions of CD105, CD90, CD73, CD45, CD34 and HLA-DR in the 4 th generation MSC, was tested by flow cytometry. Semisolid colony culture was used to test the HSC/HPC colony forming ability. The osteogenic, chondrogenesis and adipogenic ability of the 4 th generation MSC were assessed. The karyotype analysis of MSC was conducted by colchicines. The results demonstrated that the HSC/HPC of co-culture group showed higher ability of amplification, CFU-GM and higher CD34 + percentage compared with the control group. The co-cultured MSC maintained the ability to differentiate into bone cells, fat cells and chondrocytes. And the karyotype stability of MSC remained normal. These results reveal that the appropriate co-culture system for MSC and HSC is developed, and via this co-culture system we could gain both two kinds of these cells. The MSCs under the co-culture system maintain the biological characteristics. The CFU-GM ability, cell counting and the flow cytometry results of HSC/HPC under the co-culture system are conform to the criterion, showing that

  7. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  8. Accelerated testing of fuel cell components in 2 x 2 inch fuel cells

    International Nuclear Information System (INIS)

    Coleman, A.J.; Adams, A.A.; Joebstl, J.A.; Walker, G.W.

    1981-01-01

    A description is presented of diagnostic procedures which can be used to predict failure modes and assess the effects of these failures on fuel cell performance. Some straightforward diagnostic techniques have been used to evaluate fuel cells assembled with a variety of matrix and electrode combinations. These techniques included accelerated on-off cycling, thermal cycling with H2/CO mixtures, and automatic polarization measurements. Information has been obtained concerning the effects of electrolyte management and catalyst poisoning on performance and lifetime characteristics of 2 x 2 in. single cells. The use of on-off cycling has shown that short-term fuel cell performance is generally unaffected by load changes and cycle sequence in 2 x 2 in. cells when electrolyte management is adequate. Dynamic polarization curves can be used instead of point by point steady-state plots without any loss in accuracy

  9. Students' Demographic, Academic Characteristics and Performance in Registered General Nursing Licensing Examination in Ghana

    Science.gov (United States)

    Doe, Patience Fakornam; Oppong, Elizabeth Agyeiwaa; Sarfo, Jacob Owusu

    2018-01-01

    The decreasing performance of student nurses in the professional licensure examinations (LE) in Ghana is a major concern to stakeholders, especially at a time when the nurse-patient ratio stands at 1: 1500. The study sought to determine the effect of students' demographic and academic characteristics on performance in the Registered General…

  10. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    International Nuclear Information System (INIS)

    Baglio, V.; Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S.; Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E.

    2010-01-01

    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm -2 was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm -2 . Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  11. Mesoporous Zn2SnO4 as effective electron transport materials for high-performance perovskite solar cells

    International Nuclear Information System (INIS)

    Bao, Sha; Wu, Jihuai; He, Xin; Tu, Yongguang; Wang, Shibo; Huang, Miaoliang; Lan, Zhang

    2017-01-01

    Highlights: •Large grain and mesoporous Zn 2 SnO 4 are synthesized by a facile hydrothermal method. •Perovskite device with Zn 2 SnO 4 electron transport layer get efficiency of 17.21%. •While the device with TiO 2 electron transport layer obtain an efficiency of 14.83%. •Superior photovoltaic performance stems from the intrinsic characteristics of Zn 2 SnO 4 . -- Abstract: Electron transport layer with higher carrier mobility and suitable band gap structure plays a significant role in determining the photovoltaic performance of perovskite solar cells (PSCs). Here, we report a synthesis of high crystalline zinc stannate (Zn 2 SnO 4 ) by a facile hydrothermal method. The as-synthesized Zn 2 SnO 4 possesses particle size of 20 nm, large surface area, mesoporous hierarchical structure, and can be used as a promising electron-transport materials to replace the conventional mesoporous TiO 2 material. A perovskite solar cell with structure of FTO/blocking layer/Zn 2 SnO 4 /CH 3 NH 3 PbI 3 /Spiro-OMeOTAD/Au is fabricated, and the preparation condition is optimized. The champion device based on Zn 2 SnO 4 electron transport material achieves a power conversion efficiency of 17.21%, while the device based on TiO 2 electron transport material gets an efficiency of 14.83% under the same experimental conditions. The results render Zn 2 SnO 4 an effective candidate as electron transport material for high performance perovskite solar cells and other devices.

  12. Characterization of Coronal Pulp Cells and Radicular Pulp Cells in Human Teeth.

    Science.gov (United States)

    Honda, Masaki; Sato, Momoko; Toriumi, Taku

    2017-09-01

    Dental pulp has garnered much attention as an easily accessible postnatal tissue source of high-quality mesenchymal stem cells (MSCs). Since the discovery of dental pulp stem cells (DPSCs) in permanent third molars, stem cells from human exfoliated deciduous teeth and from supernumerary teeth (mesiodentes) have been identified as a population distinct from DPSCs. Dental pulp is divided into 2 parts based on the developing stage: the coronal pulp and the radicular pulp. Root formation begins after the crown part is completed. We performed a sequential study to examine the differences between the characteristics of coronal pulp cells (CPCs) and radicular pulp cells (RPCs) from permanent teeth, mesiodentes, and deciduous teeth. Interestingly, although we have not obtained any data on the difference between CPCs and RPCs in permanent teeth, there are some differences between the characteristics of CPCs and RPCs from mesiodentes and deciduous teeth. The MSC characteristics differed between the RPCs and CPCs, and the reprogramming efficiency for the generation of induced pluripotent stem cells was greater in RPCs than in CPCs from deciduous teeth. The proportion of CD105 + cells in CPCs versus that in RPCs varied in mesiodentes but not in permanent teeth. The results indicate that the proportion of CD105 + cells is an effective means of characterizing dental pulp cells in mesiodentes. Taken together, the stem cells in deciduous and supernumerary teeth share many characteristics, such as a high proliferation rate and an immunophenotype similar to that of DPSCs. Thus, mesiodentes accidentally encountered on radiographs by the general dental practitioner might be useful for stem cell therapy. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  14. Three propositions on why characteristics of performance management systems converge across policy areas with different levels of task complexity

    DEFF Research Database (Denmark)

    Bjørnholt, Bente; Lindholst, Andrej Christian; Agger Nielsen, Jeppe

    2014-01-01

    of task complexity amidst a lack of formal and overarching, government-wide policies. We advance our propositions from a case study comparing the characteristics of performance management systems across social services (eldercare) and technical services (park services) in Denmark. Contrary to expectations......This article investigates the differences and similarities between performance management systems across public services. We offer three propositions as to why the characteristics of performance management systems may still converge across policy areas in the public sector with different levels...... for divergence due to differences in task complexity, the characteristics of performance management systems in the two policy areas are observed to converge. On the basis of a case study, we propose that convergence has occurred due to 1) similarities in policy-specific reforms, 2) institutional pressures, and 3...

  15. Developmental characteristics of parenchyma and fiber cells and their secondary wall deposition in fargesia yunnanensis

    International Nuclear Information System (INIS)

    Wang, S.G.; Zhan, H.; Wan, C.B.; Lin, S.Y.

    2017-01-01

    The aim of this study is to describe and analyse the morphological characteristics of nuclei and the secondary wall deposition in parenchyma and fiber cells during the whole bamboo growth cycle from shoots to old culms, with a further purpose to assess the developmental differences between fibers and parenchyma cells and analyze the secondary wall deposition mechanism. Initially the fiber wall thickness was less than the parenchyma cell thickness in young shoots, but increased significantly after 1 year. Fibers elongated earlier than both their nuclei and parenchyma cells. Fiber nuclei also elongated and presented the spindle shape in longitudinal section. The formation and elongation of long cells were involved in the fast elongation of internodes. In mature culms, the ways of secondary wall deposition for fibers depended on their diameter and positions. Large diameter fibers usually had more cell wall layers than narrow fibers. (author)

  16. Alternation of Sediment Characteristics during Sediment Microbial Fuel Cells Amended Biochar

    Science.gov (United States)

    Yang, Xunan; Chen, Shanshan

    2018-01-01

    Sediment microbial fuel cells (SMFCs) are considered as a new technology in sediment remediation, while biochars can promote interspecies electron transfer in bioelectrochemical systems. We conducted the SMFCs amended with biochars to investigate their effects on of sediment characteristics. Results showed that the anode of SMFCs could oxidize the chemical oxidizable matter in sediments (by 4%-16%) correlating with the maximum power density (r=0.982, palternations under SMFC operation, which gave information on the element pool related to pollutants and the risk of the application of SMFCs.

  17. Study on method of characteristics based on cell modular ray tracing

    International Nuclear Information System (INIS)

    Tang Chuntao; Zhang Shaohong

    2009-01-01

    To address the issue of accurately solving neutron transport problem in complex geometry, method of characteristics (MOC) is studied in this paper, and a quite effective and memory saving cell modular ray tracing (CMRT) method is developed and related angle discretization and boundary condition handling issues are discussed. A CMRT based MOC code-PEACH is developed and tested against C5G7 MOX benchmark problem. Numerical results demonstrate that PEACH can give excellent accuracy for both k eff and pin power distribution for neutron transport problem. (authors)

  18. The impact of ownership and other corporate characteristics on performance of V4 companies

    Directory of Open Access Journals (Sweden)

    David Procházka

    2017-06-01

    Full Text Available The objective of this paper is to assess financial performance of Czech, Hungarian, Polish, and Slovak unlisted companies. The sample retrieved from the Amadeus database contains 171,095 firm-year observations for the period of 2010-2014. A linear regression model (weighted least squares with robust correction for standard errors is run to regress Return on Assets (ROA as the dependent variable against selected entity-specific factors, including ownership characteristics. Empirical evidence uncovers several findings. Firstly, the performance of V4 companies is comparable except for Hungary, where companies report lower ROA on average. Secondly, firms established after the failure of communist regimes outperform the privatised companies. Thirdly, the ownership characteristics do matter. Having domestic owners is not a disadvantage, as only the companies with controlling shareholders from the Anglo-Saxon countries perform better. Other jurisdictions of parents lead either to comparable (e.g., old EU members, developed Asian countries or even worse (e.g., new EU members, post-Soviet bloc performance as compared to domestic ownership. Similarly, family firms perform significantly better than the companies controlled by institutional owners or by public sector, but worse than the firms controlled by financial institutions. The listing status of a parent is not an influential factor of performance. Fourthly, the size of a company also matters, as small enterprises report better performance in their financial statements than medium and large undertakings. Fifthly, higher leverage undermines performance. Finally, there is a wide dispersion in average performance across the industries. The study results might be relevant for policy makers while choosing between direct and indirect support for diverse types of businesses.

  19. The impact of green roof ageing on substrate characteristics and hydrological performance

    Science.gov (United States)

    De-Ville, Simon; Menon, Manoj; Jia, Xiaodong; Reed, George; Stovin, Virginia

    2017-04-01

    Green roofs contribute to stormwater management through the retention of rainfall and the detention of runoff. However, there is very limited knowledge concerning the evolution of green roof hydrological performance with system age. This study presents a non-invasive technique which allows for repeatable determination of key substrate characteristics over time, and evaluates the impact of observed substrate changes on hydrological performance. The physical properties of 12 green roof substrate cores have been evaluated using non-invasive X-ray microtomography (XMT) imaging. The cores comprised three replicates of two contrasting substrate types at two different ages: unused virgin samples; and 5-year-old samples from existing green roof test beds. Whilst significant structural differences (density, pore and particle sizes, tortuosity) between virgin and aged samples of a crushed brick substrate were observed, these differences did not significantly affect hydrological characteristics (maximum water holding capacity and saturated hydraulic conductivity). A contrasting substrate based upon a light expanded clay aggregate experienced increases in the number of fine particles and pores over time, which led to increases in maximum water holding capacity of 7%. In both substrates, the saturated hydraulic conductivity estimated from the XMT images was lower in aged compared with virgin samples. Comparisons between physically-derived and XMT-derived substrate hydrological properties showed that similar values and trends in the data were identified, confirming the suitability of the non-invasive XMT technique for monitoring changes in engineered substrates over time. The observed effects of ageing on hydrological performance were modelled as two distinct hydrological processes, retention and detention. Retention performance was determined via a moisture-flux model using physically-derived values of virgin and aged maximum water holding capacity. Increased water holding

  20. Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics

    International Nuclear Information System (INIS)

    Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Ashraful, A.M.; Rashed, M.M.; Imdadul, H.K.; Monirul, I.M.

    2015-01-01

    Highlights: • Global environmental protection of using alternative fuel. • Economic aspects of palm oil biodiesel in Malaysia. • Tribological characteristics of palm oil biodiesel in engine components. • Engine performance and emission of palm oil biodiesel. • Effect of temperature on density and kinematic viscosity for various biodiesel. - Abstract: The high cost of energy supplies and the growing concern over the dependency on fossil fuels have impelled many countries to search for renewable and alternative energy sources. The extensive use of fossil fuels for transportation and power generation all over the world have caused the supply of fossil fuels to continuously decrease and have aggravated environmental pollution. Searching for alternative fuels has become imperative to reduce pollution and address the problems on fossil fuels. Vegetable oil fuels, such as palm oil biodiesel, serve as alternative forms of energy and are currently being studied, particularly as a diesel fuel substitute. The purpose of this study is to review the potential of palm oil as an energy source and alternative diesel fuel in terms of its performance, environmental impact, wear characteristics, and economic considerations. Compared with other vegetable oils, palm oil is a relatively sustainable, environment-friendly, less expensive, and economically beneficial potential source of energy. Palm oil plantation and production is a major industry in Malaysia, contributing to the economic growth and development of the country. The properties of palm oil biodiesel, namely, high oxidation stability, good cold properties, cetane number, and higher viscosity, makes it a suitable diesel substitute. Compared with other vegetable oils and petroleum diesel fuels, palm oil is associated with better engine performance, higher specific fuel consumption, and shorter ignition delay. Use of palm oil also reduces exhaust emission of hydrocarbon, carbon monoxide, carbon dioxide, and smoke, but

  1. Comparison of in vitro cell binding characteristics of four monoclonal antibodies and their individual tumor localization properties in mice

    International Nuclear Information System (INIS)

    Andrew, S.M.; Johnstone, R.W.; Russell, S.M.; McKenzie, I.F.; Pietersz, G.A.

    1990-01-01

    Although many antibodies are being used for imaging studies, it is not clear which in vitro properties of antibodies will best reflect their in vivo characteristics. The ability to correlate in vitro binding characteristics of monoclonal antibodies to tumor antigens with their in vivo localization characteristics, particularly with respect to tumor localization properties, is desirable for rapid selection of monoclonal antibodies with potential for clinical use. The in vitro binding characteristics of three monoclonal antibodies to the murine Ly-2.1 antigen and one to the Ly-3.1 antigen have been studied on cultured tumor cells bearing these antigens. The association and dissociation rate constants, apparent affinity, and immunoreactivity of each antibody in vitro were compared with their ability to localize the s.c. tumors from the same cell line growing in Ly-2.1-/Ly-3.1-mice. The antibody with the highest affinity and fastest association rate localized to tumor at the earliest time (16-20 h after injection) and had the highest percentage of the injected dose/g in the tumor (greater than 25%). The antibody with the lowest affinity showed significantly less localization to tumor cells, compared with the other three antibodies. The ranking of the antibodies by affinity agreed with the ranking in terms of their ability to localize to tumors, but the in vitro immunoreactivity of the antibodies, as measured by a cell binding assay, did not correlate with their tumor localization properties. Immunoscintigraphic studies did not precisely correlate with biodistribution data or in vitro binding characteristics, because tumors could be satisfactorily imaged with each antibody, although it was noted that the antibody with the highest affinity gave the best image

  2. Analysis of Electrical Characteristics of Thin Film Photovoltaic Cells

    Science.gov (United States)

    Kasick, Michael P.

    2004-01-01

    them, to determine the cause of the poor yields. As a student of electrical engineering with some material science background, my role in this research is to develop techniques for analyzing the electrical characteristics of the CuInS2 cells. My first task was to design a shadow mask to be used to place molybdenum contacts under a layer of CuInS;! in order to analyze the contact resistance between the materials. In addition, I have also analyzed evaporated aluminum top contacts and have tested various methods of increasing their thicknesses in order to decrease series resistance. More recently I have worked with other members of the research group in reviving a vertical cold-wall reactor for experimentation with CuInS2 quantum dots. As part of that project, I have improved the design for a variable frequency and pulse width square wave generator to be used in driving the precursor injection process. My task throughout the remainder of my tenure is to continue to analyze and develop tools for the analysis of electrical properties of the CuInS2 cells with the ultimate goal of discovering ways to improve the efficiency of our photovoltaic cells. Traditionally, photovoltaic cells are based on a single crystal silicon absorber. While The research group lead by Dr. Hepp has spent several years researching copper indium

  3. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  4. Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Md. Khalid Hossain

    Full Text Available In this study, natural dye sensitizer based solar cells were successfully fabricated and photovoltaic performance was measured. Sensitizer (turmeric sources, dye extraction process, and photoanode sensitization time of the fabricated cells were analyzed and optimized. Dry turmeric, verdant turmeric, and powder turmeric were used as dye sources. Five distinct types of solvents were used for extraction of natural dye from turmeric. Dyes were characterized by UV–Vis spectrophotometric analysis. The extracted turmeric dye was used as a sensitizer in the dye sensitized solar cell’s (DSSC photoanode assembly. Nano-crystalline TiO2 was used as a film coating semiconductor material of the photoanode. TiO2 films on ITO glass substrate were prepared by simple doctor blade technique. The influence of the different parameters VOC, JSC, power density, FF, and η% on the photovoltaic characteristics of DSSCs was analyzed. The best energy conversion performance was obtained for 2 h adsorption time of dye on TiO2 nano-porous surface with ethanol extracted dye from dry turmeric. Keywords: DSSC, Natural dye, TiO2 photoanode, Dye extracting solvent, Dye-adsorption time

  5. Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte

    KAUST Repository

    Lai, Yi-Hsuan

    2009-10-01

    Two kinds of gel-type dye-sensitized solar cells (DSSCs), composed of two types of electrolytes, were constructed and the respective cell performance was evaluated in this study. One electrolyte, TEOS-Triton X-100 gel, was based on a hybrid organic/inorganic gel electrolyte made by the sol-gel method and the other was based on poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP) copolymer. TEOS-Triton X-100 gel was based on the reticulate structure of silica, formed by hydrolysis, and condensation of tetraethoxysilane (TEOS), while its organic subphase was a mixture of surfactant (Triton X-100) and ionic liquid electrolytes. Both DSSC gel-type electrolytes were composed of iodine, 1-propy-3-methyl-imidazolium iodide, and 3-methoxypropionitrile to create the redox couple of I3 -/I-. Based on the results obtained from the I-V characteristics, it was found that the optimal iodine concentrations for the TEOS-Triton X-100 gel electrolyte and PVDF-HFP gel electrolyte are 0.05 M and 0.1 M, respectively. Although the increase in the iodine concentration could enhance the short-circuit current density (JSC), a further increase in the iodine concentration would reduce the JSC due to increased dark current. Therefore, the concentration of I2 is a significant factor in determining the performance of DSSCs. In order to enhance cell performance, the addition of nanosilicate platelets (NSPs) in the above-mentioned gel electrolytes was investigated. By incorporating NSP-Triton X-100 into the electrolytes, the JSC of the cells increased due to the decrease of diffusion resistance, while the open circuit voltage (VOC) remained almost the same. As the loading of the NSP-Triton X-100 in the TEOS-Triton X-100 gel electrolyte increased to 0.5 wt%, the JSC and the conversion efficiency increased from 8.5 to 12 mA/cm2 and from 3.6% to 4.7%, respectively. However, the JSC decreased as the loading of NSP-Triton X-100 exceeded 0.5 wt%. At higher NSP-Triton X-100 loading, NSPs acted as

  6. Optimization of Additive-Powder Characteristics for Metallic Micro-Cell UO{sub 2} Fuel Pellet Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Oh, Jang Soo; Yang, Jae Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The improvement in the thermal conductivity of the UO{sub 2} fuel pellet can enhance the fuel performance in various aspects. The mobility of the fission gases is reduced by the lower temperature gradient in the UO{sub 2} fuel pellet. That is to say, the capability of the fission gas retention of the fuel pellet can increase. In addition, the lower centerline temperature of the fuel pellet affects the accident tolerance for nuclear fuel as well as the enhancement of fuel safety and fuel pellet integrity under normal operation conditions. The nuclear reactor power can be uprated owing to the higher safety margin. Thus, many researches on enhancing the thermal conductivity of a nuclear fuel pellet for LWRs have been performed. Typically, an enhancement of the thermal conductivity of the UO{sub 2} fuel pellet can be obtained by the addition of a higher thermal conductive material in the fuel pellet. To maximize the effect of the thermal conductivity enhancement, a continuous and uniform channel of the thermal conductive material in the UO{sub 2} matrix must be formed. To enhance the thermal conductivity of a UO{sub 2} fuel pellet, the development of fabrication process of a Cr metallic micro-cell UO{sub 2} pellet with a continuous and uniform channel of the Cr metallic phase was carried out. The formation of the Cr-oxide phases was prevented and the uniformity of the Cr-metal phase distribution was enhanced simultaneously, through the optimization of the additive-powder characteristics. In the results, the Cr metallic micro-cell pellet with continuous and uniform Cr metallic channel could be obtained.

  7. Usage of performance measurement and evaluation systems : the impact of evaluator characteristics

    OpenAIRE

    Gelderman, Maarten

    1998-01-01

    This paper discusses the relation between characteristics of the evaluating manager and the way performance measurement and evaluation information is used. First a discussion is provided about the dependent variable. It is recognized that categorization into archetypes (e.g., evaluative styles) is unsatisfactory. Instead the information content/emphasis dimensions financial-non- financial, quantitative-qualitative, process-outcome, past-future and external-internal, along with the dimension f...

  8. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  9. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    Directory of Open Access Journals (Sweden)

    Hamideh Aghahosseini

    2016-07-01

    Full Text Available Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of electricity. This review article presents how nanoscience, engineering and medicine are combined to assist in the development of renewable glucose-based biofuel cell systems. Here, we review recent advances and applications in both abiotic and enzymatic glucose biofuel cells with emphasis on their “implantable” and “implanted” types. Also the challenges facing the design and application of glucose-based biofuel cells to convert them to promising replacement candidates for non-rechargeable lithium-ion batteries are discussed. Nanotechnology could make glucose-based biofuel cells cheaper, lighter and more efficient and hence it can be a part of the solutions to these challenges.

  10. Cooling Performance Characteristics of the Stack Thermal Management System for Fuel Cell Electric Vehicles under Actual Driving Conditions

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2016-04-01

    Full Text Available The cooling performance of the stack radiator of a fuel cell electric vehicle was evaluated under various actual road driving conditions, such as highway and uphill travel. The thermal stability was then optimized, thereby ensuring stable operation of the stack thermal management system. The coolant inlet temperature of the radiator in the highway mode was lower than that associated with the uphill mode because the corresponding frontal air velocity was higher than obtained in the uphill mode. In both the highway and uphill modes, the coolant temperatures of the radiator, operated under actual road driving conditions, were lower than the allowable limit (80 °C; this is the maximum temperature at which stable operation of the stack thermal management system of the fuel cell electric vehicle could be maintained. Furthermore, under actual road driving conditions in uphill mode, the initial temperature difference (ITD between the coolant temperature and air temperature of the system was higher than that associated with the highway mode; this higher ITD occurred even though the thermal load of the system in uphill mode was greater than that corresponding to the highway mode. Since the coolant inlet temperature is expected to exceed the allowable limit (80 °C in uphill mode under higher ambient temperature with air conditioning system operation, the FEM design layout should be modified to improve the heat capacity. In addition, the overall volume of the stack cooling radiator is 52.2% higher than that of the present model and the coolant inlet temperature of the improved radiator is 22.7% lower than that of the present model.

  11. Effect of localized polycrystalline silicon properties on solar cell performance

    Science.gov (United States)

    Leung, D.; Iles, P. A.; Hyland, S.; Kachare, A.

    1984-01-01

    Several forms of polycrystalline silicon, mostly from cast ingots, (including UCP, SILSO and HEM) were studied. On typical slices, localized properties were studied in two ways. Small area (about 2.5 sq mm) mesa diodes were formed, and localized photovoltaic properties were measured. Also a small area (about .015 sq mm) light spot was scanned across the cells; the light spot response was calibrated to measure local diffusion length directly. Using these methods, the effects of grain boundaries, or of intragrain imperfections were correlated with cell performance. Except for the fine grain portion of SILSO, grain boundaries played only a secondary role in determining cell performance. The major factor was intra-grain material quality and it varied with position in ingots and probably related to solidification procedure.

  12. Characteristics of the Na/beta-alumina/Na cell as a sodium vapor pressure sensor

    International Nuclear Information System (INIS)

    Takikawa, O.; Imai, A.; Harata, M.

    1982-01-01

    The EMF and voltage-current characteristics for a galvanic cell with the configuration Na vapor (P 1 )/sodium beta-alumina/Na vapor (P 2 ) were studied. It was verified that the EMF followed the Nernst relation over a wide pressure range. For example, when P 1 = 2 x 10 -2 mm Hg and beta-alumina temperature = 340 0 C, the measured EMF agreed with the calculated value in P 2 range from 10 -5 to 10 -2 mm Hg. At lower pressure range, the measured EMF showed a negative deviation. Coexisting argon gas did not influence the cell EMF characteristic. In an atmosphere containing oxygen, the measured EMF was very high at first. Then it decreased and finally approached a value which agreed with the Nernst equation after several hours. At low beta-alumina temperatures, current saturation was observed in the voltage versus current relation with the anode on the P 2 side. Although the sodium pressure could be determined from saturating current measurement, the measurable pressure range was narrower than that for EMF measurement. At high beta-alumina temperature, current saturation was not clear. Values of 6 x 10 -6 (Ω cm) -1 for the electron conductivity and 6 x 10 -10 (Ω cm) -1 for the hole conductivity at 340 0 C were obtained for beta-alumina from the voltage-current characteristics at low sodium pressure. (Auth.)

  13. Performance of lithium alloy/lithium and calcium/lithium anodes in thionyl chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    Keister, P.; Greenwood, J.M.; Holmes, C.F.; Mead, R.T.

    1985-08-01

    A laminar composite anode construction comprising an inner metal completely surrounded by Li foil was studied as a means of obtaining an end-of-life indicator in a thionyl chloride cell. Inner metals of Ca, 14-2.9 at.% Ca in Li alloys, and 6.7-2.1 at.% Mg in Li alloys were evaluated. Discharge characteristics of cells using these sandwich anodes as well as cells containing the inner anode material alone were determined. It was concluded that cells made with inner anode materials of Ca and Ca/Li alloys containing more than 7 at.% Ca showed promise as a means of obtaining a reliable end-of-life indication. (orig.).

  14. The Effect of Chinese Propolis Supplementation on Ross Broiler Performance and Carcass Characteristics

    Directory of Open Access Journals (Sweden)

    Usama T. Mahmoud

    2013-10-01

    Full Text Available The experiment was conducted to investigate the effects of Ether Extract of Propolis (EEP on Ross (308 broiler performance and carcass characteristics. This experiment was carried out in a completely randomized design with 5 treatments (different levels of propolis including 0, 100, 250, 500 and 750 mg/kg diet for 6 weeks. The mean weight gain, feed consumption and feed conversion ratio were recorded weekly. In addition At 42 days old the total body weight, total body weight gain, carcass and some internal organs relative weights were recorded. The results clarified that, the weight gain was significantly reduced in the 4th and 6th week (P0.05 reduced for propolis fed birds in comparison to those fed control diet, Furthermore, inclusion of 100, 250, 500 and 750 mg/kg diet Propolis significantly reduced body weight at 42 days old and total body weight gain in comparison to control diet (P < 0.05. Under the condition of this experiment, prolonged use of propolis had adverse effect on performance of broilers. Also, all doses of propolis had non-significant negative effect on liver, heart, gizzard and carcass relative weight. In conclusion, EEP has no beneficial effect on performance and Carcass characteristics of Broilers.

  15. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  16. Effects of Pretreatment Methods on Electrodes and SOFC Performance

    Directory of Open Access Journals (Sweden)

    Guo-Bin Jung

    2014-06-01

    Full Text Available Commercially available tapes (anode, electrolyte and paste (cathode were choosen to prepare anode-supported cells for solid oxide fuel cell applications. For both anode-supported cells or electrolyte-supported cells, the anode needs pretreatment to reduce NiO/YSZ to Ni/YSZ to increase its conductivity as well as its catalytic characteristics. In this study, the effects of different pretreatments (open-circuit, closed-circuit on cathode and anodes as well as SOFC performance are investigated. To investigate the influence of closed-circuit pretreatment on the NiO/YSZ anode alone, a Pt cathode is utilized as reference for comparison with the LSM cathode. The characterization of the electrical resistance, AC impedance, and SOFC performance of the resulting electrodes and/or anode-supported cell were carried out. It’s found that the influence of open-circuit pretreatment on the LSM cathode is limited. However, the influence of closed-circuit pretreatment on both the LSM cathode and NiO/YSZ anode and the resulting SOFC performance is profound. The effect of closed-circuit pretreatment on the NiO/YSZ anode is attributed to its change of electronic/pore structure as well as catalytic characteristics. With closed-circuit pretreatment, the SOFC performance improved greatly from the change of LSM cathode (and Pt reference compared to the Ni/YSZ anode.

  17. Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

    Science.gov (United States)

    Skhouni, Othmane; El Manouni, Ahmed; Mari, Bernabe; Ullah, Hanif

    2016-05-01

    At present most of II-VI semiconductor based solar cells use the CdTe material as an absorber film. The simulation of its performance is realized by means of various numerical modelling programs. We have modelled a solar cell based on zinc telluride (ZnTe) thin film as absorber in substitution to the CdTe material, which contains the cadmium element known by its toxicity. The performance of such photovoltaic device has been numerically simulated and the thickness of the absorber layer has been optimized to give the optimal conversion efficiency. A photovoltaic device consisting of a ZnTe layer as absorber, CdS as the buffer layer and ZnO as a window layer was modelled through Solar Cell Capacitance Simulator Software. Dark and illuminated I-V characteristics and the results for different output parameters of ZnO/CdS/ZnTe solar cell were analyzed. The effect of ZnTe absorber thickness on different main working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η was intensely studied in order to optimize ZnTe film thickness. This study reveals that increasing the thickness of ZnTe absorber layer results in higher efficiency until a maximum value and then decreases slightly. This maximum was found to be 10% at ZnTe optimum thickness close to 2 µm. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  18. A Study of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry - Nanostructure - Performance

    Science.gov (United States)

    Workman, Michael J., Jr.

    Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed. There has been a significant amount of research effort directed toward the development of platinum-group metal free (PGM-free) catalysts, yet there is a lack of consensus on both the engineering parameters necessary to improve the technology and the fundamental science that would facilitate rational design. I have engaged in research on PGM-free catalysts based on inexpensive and abundant reagents, specifically: nicarbazin and iron. Catalysts made from these precursors have previously proven to be among the best PGM-free catalysts, but their continued advancement suffered from the same lack of understanding that besets all catalysts in this class. The work I have performed address both engineering concerns and fundamental underlying principles. I present results demonstrating correlations between physical structure, chemical speciation, and synthesis parameters, as well as addressing active site chemistry and likely locations. My research presented herein introduces new morphology analysis techniques and elucidates several key structure-to-property characteristics of catalysts derived from iron and nicarbazin. I discuss the development and application of a new length-scale specific surface analysis technique that allows for analysis of well-defined size ranges from a few nm to several microns. The existing technique of

  19. Influences of bipolar plate channel blockages on PEM fuel cell performances

    International Nuclear Information System (INIS)

    Heidary, Hadi; Kermani, Mohammad J.; Dabir, Bahram

    2016-01-01

    Highlights: • Effect of partial- or full-blockage of PEMFC flow channels is numerically studied. • The anode blockage does not show any positive effects on cell performance. • Full blockages, despite higher pressure drop, better enhance net electrical power. • Additions of blocks more than five do not improve the cell performance. • Full blockage of cathode channels with five blocks enhances the net power by 30%. - Abstract: In this paper, the effect of partial- or full-block placement along the flow channels of PEM fuel cells is numerically studied. Blockage in the channel of flow-field diverts the flow into the gas diffusion layer (GDL) and enhances the mass transport from the channel core part to the catalyst layer, which in turn improves the cell performance. By partial blockage, only a part of the channel flow is shut off. While in full blockage, in which the flow channel cross sections are fully blocked, the only avenue left for the continuation of the gas is to travel over the blocks via the porous zone (GDL). In this study, a 3D numerical model consisting of a 9-layer PEM fuel cell is performed. A wide spectrum of numerical studies is performed to study the influences of the number of blocks, blocks height, and anode/cathode-side flow channel blockage. The results show that the case of full blockage enhances the net electrical power more than that of the partial blockage, in spite of higher pressure drop. Performed studies show that full blockage of the cathode-side flow channels with five blocks along the 5 cm channel enhances the net power by 30%. The present work provides helpful guidelines to bipolar plate manufacturers.

  20. Developmental changes in electrophysiological characteristics of human induced Pluripotent Stem Cell-derived cardiomyocytes

    Science.gov (United States)

    Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R.; Weissman, Amir; Binah, Ofer

    2016-01-01

    Background Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) only 3 types of action potentials (AP) exist: nodal, atrial and ventricular-like. Objective To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) during culture development a cardiac precursor cell is present that - depending on age - can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of nodal phenotype, transient appearance of atrial phenotype, evolution to ventricular phenotype, and persistence of transitional phenotypes. Methods To test these hypotheses we: (1) performed FACS analysis of nodal, atrial and ventricular markers; (2) recorded AP from 280 7-to-95 day old iPSC-CMs; (3) analyzed AP characteristics. Results The major findings were: (1) FACS analysis of 30 and 60-day old cultures showed that an iPSC-CMs population shifts from nodal into atrial/ventricular phenotype, while including significant transitional populations.(2) The AP population did not consist of 3 distinct phenotypes; (3) Culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57–70 days) appearance of atrial phenotype; (4) Beat Rate Variability was more prominent in nodal than ventricular cardiomyocytes while If density increased in older cultures. Conclusions From the onset of development the iPSC-CMs population includes nodal, atrial and ventricular AP and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial which appears only transiently, yet dominates at 57–70 days of evolution. PMID:27639456

  1. The effect of morphological characteristics on the physical and physiological performance of Turkish soccer referees and assistant referees

    Directory of Open Access Journals (Sweden)

    Bozdoğan Tuba Kızılet

    2017-01-01

    Full Text Available Physical fitness and physiological status play an important role in the referees’ performance. Therefore, the aim of this study was to analyze the body structure and morphological characteristics of Turkish Ssccer refereesand assistant referees and to determine the effect of these variables on physical performance. A sample of 158 male referees and 55 asisstant referees (mean age 31.8 ± 4.2 and 37.4 ± 3.3 yearswas evaluated. Physical assesment were conducted using the Yo-Yo Intermittent Recovery Test Level 1 (YYIRTL1 and Repeated Sprint Ability (RSA for referees and Active Recovery Intermittent Endurance Test (ARIET and the RSA for assistant referees. We analyzed heart rate assesments. The measures used to assess morphological characteristics were age, weight, body mass index (BMI, body fat (BF, body mass, and fat free mass.The ANOVA test (Tukey testwas used to determine the result. Correlations between the referees’ fitness test performance and their morphological characteristics were examined using Pearson’s correlation (p<0.05. To result of this study, point to the existence of a strong correlation between morphological and physical and physiological characteristics. According to the literature, we found that greater BF and a higher BMI may negatively affect areferee’s running performance.

  2. Electrical performance of the InGaP solar cell irradiated with low energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, Yasuki; Okuda, Shuichi; Kojima, Takeo; Oka, Takashi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai City, Osaka (Japan); Kawakita, Shirou; Imaizumi, Mitsuru; Kusawake, Hiroaki [Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki (Japan)

    2015-06-15

    The investigation of the radiation degradation characteristics of InGaP space solar cells is important. In order to understand the mechanism of the degradation by radiation the samples of the InGaP solar cell were irradiated in vacuum and at ambient temperature with electron beams from a Cockcroft-Walton type accelerator at Osaka Prefecture University. The threshold energies for recoil were obtained by theoretical calculation. The energies and the fluences of the electron beams were from 60 to 400 keV and from 3 x 10{sup 14} to 3 x 10{sup 16} cm{sup -2}, respectively. The light-current-voltage measurements were performed. The degradation of Isc caused by the defects related to the phosphorus atoms was observed and the degradation was suppressed by irradiation at an energy higher than the threshold energy for recoiling Indium atoms. At an energy of 60 keV, where the recoil does not occur, the V{sub oc} was degraded. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Colorectal adenoma stem-like cell populations: associations with adenoma characteristics and metachronous colorectal neoplasia.

    Science.gov (United States)

    Bartley, Angela N; Parikh, Nila; Hsu, Chiu-Hsieh; Roe, Denise J; Buckmeier, Julie A; Corley, Lynda; Phipps, Ron A; Gallick, Gary; Lance, Peter; Thompson, Patricia A; Hamilton, Stanley R

    2013-11-01

    Cancer stem cells have tumor-initiation and tumor-maintenance capabilities. Stem-like cells are present in colorectal adenomas, but their relationship to adenoma pathology and patient characteristics, including metachronous development of an additional adenoma ("recurrence"), has not been studied extensively. We evaluated the expression of aldehyde dehydrogenase isoform 1A1 (ALDH1A1), a putative stem cell marker, in baseline adenomas from the placebo arm of chemoprevention trial participants with colonoscopic follow-up. An exploratory set of 20 baseline adenomas was analyzed by ALDH1A1 immunohistochemistry with morphometry, and a replication set of 89 adenomas from 76 high-risk participants was evaluated by computerized image analysis. ALDH1A1-labeling indices (ALI) were similar across patient characteristics and in advanced and nonadvanced adenomas. There was a trend toward higher ALIs in adenomas occurring in the right than left colon (P = 0.09). ALIs of synchronous adenomas were correlated (intraclass correlation coefficient 0.67). Participants in both sample sets who developed a metachronous adenoma had significantly higher ALIs in their baseline adenoma than participants who remained adenoma free. In the replication set, the adjusted odds for metachronous adenoma increased 1.46 for each 10% increase in ALIs (P = 0.03). A best-fit algorithm-based cutoff point of 22.4% had specificity of 75.0% and positive predictive value of 70.0% for metachronous adenoma development. A larger population of ALDH1A1-expressing cells in an adenoma is associated with a higher risk for metachronous adenoma, independent of adenoma size or histopathology. If confirmed, ALDH1A1 has potential as a novel biomarker in risk assessment and as a potential stem cell target for chemoprevention. ©2013 AACR

  4. Flow characteristics and performance evaluation of butterfly valves using numerical analysis

    International Nuclear Information System (INIS)

    Jeon, S Y; Shin, M S; Yoon, J Y

    2010-01-01

    The industrial butterfly valves have been applied to various fields that transport fluid in volume, especially water supply and drainage pipeline for flow control. The butterfly valves in various shapes are manufactured, but a fitting performance comparison is not made up. For this reason, we carried out numerical analysis of some kind of butterfly valves for water supply and drainage pipeline using commercial CFD code FLUENT, and made a comparative study of these results. Also, the flow coefficient, the loss coefficient, and pressure distribution of valves according to valve opening rate were compared each other and the influence of these design variables on valve performance were checked over. Through flow around the valve disk, such as pressure distribution, flow pattern, velocity vectors, and form of vortex, we grasped flow characteristics.

  5. Roasted sesame hulls improve broiler performance without affecting carcass characteristics

    Directory of Open Access Journals (Sweden)

    Kamel Z. Mahmoud

    2015-09-01

    Full Text Available An experiment was conducted to evaluate the effect of using graded levels of roasted sesame hulls (RSH on growth performance and meat quality characteristics in broiler chickens. A total of 360 day-old Lohmann chicks were randomly allocated into 24 floor pens and raised over 42 days. One of four dietary treatments was assigned to each group of six pens in a completely randomized fashion. The chicks in the control group were fed a corn-soybean based diet (RSH-0, while the chicks in treatments two, three, and four were fed graded levels of RSH at 4% (RSH-4, 8% (RSH-8, and 12% (RSH-12, respectively. Diets were formulated to meet broiler chicks’ requirements according to the National Research Council for both starter and finisher rations. The results showed that RSH inclusion increased (P<0.05 feed intake and final body weight without adversely affecting the feed conversion ratio. Broiler chicks fed RSH-12 had heavier (P<0.05 breast and leg cuts compared to the control-fed group with no change to their chemical composition. Water holding capacity (WHC, cooking loss (CL, and shear force (SF reported similar results in all dietary groups. The chemical composition of both thigh and breast cuts was not affected by the RSH. After one day of thawing, colour coordinates of breast cuts behaved similarly in all dietary groups. The results of this study suggest that the addition of RSH to broiler diets up to 12% improves their growth performance; nevertheless, carcass characteristics and meat quality showed no alterations compared to the control-fed group.

  6. Effects of ractopamine hydrochloride on growth performance and carcass characteristics in wool and hair lambs

    Directory of Open Access Journals (Sweden)

    Ángel M. Romero-Maya

    2013-06-01

    Full Text Available This study aimed at evaluating the effects of ractopamine hydrochloride (RAC on growth performance and carcass characteristics of wool and hair lambs. For this purpose, 48 lambs averaging 31.3 kg body weight, of which twenty were wool (Ramboullet x Suffolk and twenty eight were hair (Tabasco lambs, and four levels of RAC (0, 10, 20, and 30 mg/kg diet, dry matter basis were used. Wool lambs fed 20 and 30 mg RAC had higher (P<0.05 total gain weight and lower feed conversion than 0 and 10 mg RAC. Wool lambs fed 20 mg RAC had the highest carcass weight, dressing, legs weight and longissimus area as compared to 0, 10 and 30 mg RAC.  In hair lambs there were not effect of RAC on growth performance and carcass characteristics.It was concluded that addition of RAC to finishing diets offered the best growth performance and carcass traits in wool lambs as compared to hair lambs. 

  7. Structural characteristics of pineapple pulp polysaccharides and their antitumor cell proliferation activities.

    Science.gov (United States)

    Wang, Ling; Tang, De-Qiang; Kuang, Yu; Lin, Feng-Jiao; Su, Yu

    2015-09-01

    Pineapple has a delicious taste and good health benefits. Bioactive polysaccharides are important components of pineapple that might contribute to its health benefits. Since little structural information on these polysaccharides is currently available, the aim of this study was to investigate their structural characteristics and bioactivities. The polysaccharides of pineapple pulp were fractionated into three fractions (PAPs 1-3) by anion exchange chromatography. Their structural characteristics were first identified, including molecular weights and glycosidic linkages. The monosaccharide compositions were revealed as PAP 1 (Ara, Xyl, Man, Glc and Gal), PAP 2 (Rha, Ara, Xyl, Man, Glc and Gal) and PAP 3 (Rha, Ara, Xyl, Man and Gal). Nuclear magnetic resonance (NMR) spectra suggested that PAP 2 had a backbone of → 4)-α-d-Manp-(1 → 2,4)-α-d-Manp-(1 → with branches attached to O-4 of Manp. The NMR data of α-l-Araf-(1→, →3)-α-l-Araf-(1→, →4)-β-d-Galp-(1 → and → 4)-α-d-GalpAMe-(1 → were assigned. PAPs 1 and 2 showed significant antitumor cell proliferation activities against breast carcinoma cell line and strong antioxidant activities. The above findings indicated that PAPs 1-3 contributed much to the health benefits of pineapple. They could be used as health-beneficial food additives in functional foods. © 2015 Society of Chemical Industry.

  8. Effect of low oxygen tension on the biological characteristics of human bone marrow mesenchymal stem cells

    OpenAIRE

    Kim, Dae Seong; Ko, Young Jong; Lee, Myoung Woo; Park, Hyun Jin; Park, Yoo Jin; Kim, Dong-Ik; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    Culture of mesenchymal stem cells (MSCs) under ambient conditions does not replicate the low oxygen environment of normal physiological or pathological states and can result in cellular impairment during culture. To overcome these limitations, we explored the effect of hypoxia (1 % O2) on the biological characteristics of MSCs over the course of different culture periods. The following biological characteristics were examined in human bone marrow-derived MSCs cultured under hypoxia for 8 week...

  9. Performance of Ga(0.47)In(0.53)As cells over a range of proton energies

    Science.gov (United States)

    Weinberg, I.; Jain, R. K.; Vargasaburto, C.; Wilt, D. M.; Scheiman, D. A.

    1995-01-01

    Ga(0.47)In(0.53)As solar cells were processed by OMVPE and their characteristics determined at proton energies of 0.2, 0.5, and 3 MeV. Emphasis was on characteristics applicable to use of this cell as the low bandgap member of a monolithic, two terminal high efficiency InP/GaInAs cell. It was found that the radiation induced degradation in efficiency, I(sub SC), V(sub OC) and diffusion length increased with decreasing proton energy. When efficiency degradations were compared with InP it was observed that the present cells showed considerably more degradation over the entire energy range. Similar to InP, R(sub C), the carrier removal rate, decreased with increasing proton energy. However, numerical values for R(sub C) differed from those observed with InP. The difference is attributed to differing defect behavior between the two cell types. It was concluded that particular attention should be paid to the effects of low energy protons especially when the particle's track ends in one cell of the multibandgap device.

  10. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    International Nuclear Information System (INIS)

    Bostick, Kent; Daniel, Anamary; Pill, Ken; Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana

    2013-01-01

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10 -8 centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated

  11. Long-Term Performance of Uranium Tailings Disposal Cells - 13340

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

    2013-07-01

    Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated

  12. Epilepsy in the School Aged Child: Cognitive-Behavioral Characteristics and Effects on Academic Performance.

    Science.gov (United States)

    Black, Kathryn C.; Hynd, George W.

    1995-01-01

    Children with epilepsy frequently display cognitive sequelae that are overlooked or misunderstood by educational personnel, yet may adversely impact academic performance. Reviews common cognitive-behavioral characteristics of children with epilepsy, typical effects of anticonvulsant medications, and various periictal phenomena and their relative…

  13. High Performance Fuel Cell and Electrolyzer Membrane Electrode Assemblies (MEAs) for Space Energy Storage Systems

    Science.gov (United States)

    Valdez, Thomas I.; Billings, Keith J.; Kisor, Adam; Bennett, William R.; Jakupca, Ian J.; Burke, Kenneth; Hoberecht, Mark A.

    2012-01-01

    Regenerative fuel cells provide a pathway to energy storage system development that are game changers for NASA missions. The fuel cell/ electrolysis MEA performance requirements 0.92 V/ 1.44 V at 200 mA/cm2 can be met. Fuel Cell MEAs have been incorporated into advanced NFT stacks. Electrolyzer stack development in progress. Fuel Cell MEA performance is a strong function of membrane selection, membrane selection will be driven by durability requirements. Electrolyzer MEA performance is catalysts driven, catalyst selection will be driven by durability requirements. Round Trip Efficiency, based on a cell performance, is approximately 65%.

  14. Development of planar SOE/SOFC reversible cell

    International Nuclear Information System (INIS)

    Kusunoki, A.; Matsubara, H.; Kikuoka, Y.; Yanagi, C.; Kugimiya, K.; Yoshino, M.; Tokura, M.; Watanabe, K.; Ueda, S.; Sumi, M.; Miyamoto, H.; Tokunaga, S.

    1993-01-01

    A new energy storage system using SOE/SOFC (solid oxide electrolysis-solid oxide fuel cells) reversible cells is presented, where a unit cell works as a fuel cell during a period of high electric power demand and alternately works as an electrolysis cell during a period of low power demand. A planar cell configuration is used which allows for a compact and low cost energy storage and load leveling system for power stations. Tests were performed to verify the reversibility of the planar cell, at 1000 deg C, with YSZ (Yttria stabilized zirconia) as the solid electrolyte, to improve the cell performance by reducing the overvoltage in electrolysis, and to obtain fundamental characteristics of a reversible cell. 3 figs

  15. How Do Board Characteristics Influence Business Performance? Evidence from Non-life Insurance Firms in Zimbabwe

    Directory of Open Access Journals (Sweden)

    Maxwell Sandada

    2015-08-01

    Full Text Available The purpose of this study was to contribute to the corporate governance literature by establishing the relationship between board characteristics and corporate performance within the nonlife insurance firms in Zimbabwe. The study sought to provide s