WorldWideScience

Sample records for cell pattern dedifferentiation

  1. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  2. Dedifferentiated giant-cell tumor of bone with an undifferentiated round cell mesenchymal component

    Directory of Open Access Journals (Sweden)

    Eréndira G. Estrada-Villaseñor

    2014-08-01

    Full Text Available The dedifferentiated giant-cell tumor of the bone is a very rare variant of the giant-cell tumor (GCT. We report the clinical, radiographic and histological findings of a dedifferentiated GCT in which the dedifferentiated component consisted of small round cells. We also comment on previously reported cases of dedifferentiated GCT, discuss the clinical implications of this dual histology, and analyze the information published about the coexistence of similar genetic abnormalities in GCT and small round cell tumors of the bone.

  3. Effect of dedifferentiation on time to mutation acquisition in stem cell-driven cancers.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2014-03-01

    Full Text Available Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric, we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions, we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis.

  4. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    Science.gov (United States)

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  5. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Directory of Open Access Journals (Sweden)

    Carlos Díaz-Castillo

    2017-11-01

    Full Text Available Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications.

  6. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    Science.gov (United States)

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  7. Extracellular ATP inhibits Schwann cell dedifferentiation and proliferation in an ex vivo model of Wallerian degeneration

    International Nuclear Information System (INIS)

    Shin, Youn Ho; Lee, Seo Jin; Jung, Junyang

    2013-01-01

    Highlights: ► ATP-treated sciatic explants shows the decreased expression of p75NGFR. ► Extracellular ATP inhibits the expression of phospho-ERK1/2. ► Lysosomal exocytosis is involved in Schwann cell dedifferentiation. ► Extracellular ATP blocks Schwann cell proliferation in sciatic explants. -- Abstract: After nerve injury, Schwann cells proliferate and revert to a phenotype that supports nerve regeneration. This phenotype-changing process can be viewed as Schwann cell dedifferentiation. Here, we investigated the role of extracellular ATP in Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Using several markers of Schwann cell dedifferentiation and proliferation in sciatic explants, we found that extracellular ATP inhibits Schwann cell dedifferentiation and proliferation during Wallerian degeneration. Furthermore, the blockage of lysosomal exocytosis in ATP-treated sciatic explants is sufficient to induce Schwann cell dedifferentiation. Together, these findings suggest that ATP-induced lysosomal exocytosis may be involved in Schwann cell dedifferentiation.

  8. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    International Nuclear Information System (INIS)

    Vlashi, Erina; Chen, Allen M.; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A.; Hess, Clayton B.; Pajonk, Frank

    2016-01-01

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.

  9. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    Energy Technology Data Exchange (ETDEWEB)

    Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States); Chen, Allen M.; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A. [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Hess, Clayton B. [Department of Radiation Oncology, University of California Davis, Sacramento, California (United States); Pajonk, Frank [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California (United States)

    2016-04-01

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.

  10. Mononuclear Cells from Dedifferentiation of Mouse Myotubes display Remarkable Regenerative Capability

    Science.gov (United States)

    Yang, Zhong; Liu, Qiang; Mannix, Robert J.; Xu, Xiaoyin; Li, Hongli; Ma, Zhiyuan; Ingber, Donald E.; Allen, Paul D.; Wang, Yaming

    2015-01-01

    Certain lower organisms achieve organ regeneration by reverting differentiated cells into tissue-specific progenitors that re-enter embryonic programs. During muscle regeneration in the urodele amphibian, post-mitotic multinucleated skeletal myofibers transform into mononucleated proliferating cells upon injury, and a transcription factor-msx1 plays a role in their reprograming. Whether this powerful regeneration strategy can be leveraged in mammals remains unknown, as it has not been demonstrated that the dedifferentiated progenitor cells arising from muscle cells overexpressing Msx1 are lineage-specific and possess the same potent regenerative capability as their amphibian counterparts. Here we show that ectopic expression of Msx1 reprograms post-mitotic, multinucleated, primary mouse myotubes to become proliferating mononuclear cells. These dedifferentiated cells reactivate genes expressed by embryonic muscle progenitor cells and generate only muscle tissue in vivo both in an ectopic location and inside existing muscle. More importantly, distinct from adult muscle satellite cells, these cells appear both to fuse with existing fibers and to regenerate myofibers in a robust and time-dependent manner. Upon transplantation into a degenerating muscle, these dedifferentiated cells generated a large number of myofibers that increased over time and replenished almost half of the cross-sectional area of the muscle in only 12 weeks. Our study demonstrates that mammals can harness a muscle regeneration strategy used by lower organisms when the same molecular pathway is activated. PMID:24916688

  11. ActivinB Is Induced in Insulinoma To Promote Tumor Plasticity through a β-Cell-Induced Dedifferentiation.

    Science.gov (United States)

    Ripoche, Doriane; Charbord, Jérémie; Hennino, Ana; Teinturier, Romain; Bonnavion, Rémy; Jaafar, Rami; Goehrig, Delphine; Cordier-Bussat, Martine; Ritvos, Olli; Zhang, Chang X; Andersson, Olov; Bertolino, Philippe

    2015-12-28

    Loss of pancreatic β-cell maturity occurs in diabetes and insulinomas. Although both physiological and pathological stresses are known to promote β-cell dedifferentiation, little is known about the molecules involved in this process. Here we demonstrate that activinB, a transforming growth factor β (TGF-β)-related ligand, is upregulated during tumorigenesis and drives the loss of insulin expression and β-cell maturity in a mouse insulinoma model. Our data further identify Pax4 as a previously unknown activinB target and potent contributor to the observed β-cell dedifferentiation. More importantly, using compound mutant mice, we found that deleting activinB expression abolishes tumor β-cell dedifferentiation and, surprisingly, increases survival without significantly affecting tumor growth. Hence, this work reveals an unexpected role for activinB in the loss of β-cell maturity, islet plasticity, and progression of insulinoma through its participation in β-cell dedifferentiation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. Dedifferentiated chondrosarcoma: an aggressive variant of chondrosarcoma.

    Science.gov (United States)

    Bharath, Gangadhara; Burrah, Rajaram; Shivakumar, Kuppuswamy; Manjunath, Suraj; Bhanumathi, Rao

    2015-02-01

    Dedifferentiated chondrosarcomas are a rare and aggressive subtype of chondrosarcoma with a bimorphic pattern on histopathology. Rib is a rare site of dedifferentiated chondrosarcoma. Diagnosis of this subtype preoperatively can be challenging. Treatment options for dedifferentiated chondrosarcoma are limited because they are chemoresistant, and therefore adequate surgery forms the main stay of treatment. We present our experience with a dedifferentiated chondrosarcoma of the rib, and discuss the management of this rare entity. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Dedifferentiation of Human Primary Thyrocytes into Multilineage Progenitor Cells without Gene Introduction

    Science.gov (United States)

    Saenko, Vladimir; Suzuki, Masatoshi; Matsuse, Michiko; Ohtsuru, Akira; Kumagai, Atsushi; Uga, Tatsuya; Yano, Hiroshi; Nagayama, Yuji; Yamashita, Shunichi

    2011-01-01

    While identification and isolation of adult stem cells have potentially important implications, recent reports regarding dedifferentiation/reprogramming from differentiated cells have provided another clue to gain insight into source of tissue stem/progenitor cells. In this study, we developed a novel culture system to obtain dedifferentiated progenitor cells from normal human thyroid tissues. After enzymatic digestion, primary thyrocytes, expressing thyroglobulin, vimentin and cytokeratin-18, were cultured in a serum-free medium called SAGM. Although the vast majority of cells died, a small proportion (∼0.5%) survived and proliferated. During initial cell expansion, thyroglobulin/cytokeratin-18 expression was gradually declined in the proliferating cells. Moreover, sorted cells expressing thyroid peroxidase gave rise to proliferating clones in SAGM. These data suggest that those cells are derived from thyroid follicular cells or at least thyroid-committed cells. The SAGM-grown cells did not express any thyroid-specific genes. However, after four-week incubation with FBS and TSH, cytokeratin-18, thyroglobulin, TSH receptor, PAX8 and TTF1 expressions re-emerged. Moreover, surprisingly, the cells were capable of differentiating into neuronal or adipogenic lineage depending on differentiating conditions. In summary, we have developed a novel system to generate multilineage progenitor cells from normal human thyroid tissues. This seems to be achieved by dedifferentiation of thyroid follicular cells. The presently described culture system may be useful for regenerative medicine, but the primary importance will be as a tool to elucidate the mechanisms of thyroid diseases. PMID:21556376

  14. Study of muscle cell dedifferentiation after skeletal muscle injury of mice with a Cre-Lox system.

    Science.gov (United States)

    Mu, Xiaodong; Peng, Hairong; Pan, Haiying; Huard, Johnny; Li, Yong

    2011-02-03

    Dedifferentiation of muscle cells in the tissue of mammals has yet to be observed. One of the challenges facing the study of skeletal muscle cell dedifferentiation is the availability of a reliable model that can confidentially distinguish differentiated cell populations of myotubes and non-fused mononuclear cells, including stem cells that can coexist within the population of cells being studied. In the current study, we created a Cre/Lox-β-galactosidase system, which can specifically tag differentiated multinuclear myotubes and myotube-generated mononuclear cells based on the activation of the marker gene, β-galactosidase. By using this system in an adult mouse model, we found that β-galactosidase positive mononuclear cells were generated from β-galactosidase positive multinuclear myofibers upon muscle injury. We also demonstrated that these mononuclear cells can develop into a variety of different muscle cell lineages, i.e., myoblasts, satellite cells, and muscle derived stem cells. These novel findings demonstrated, for the first time, that cellular dedifferentiation of skeletal muscle cells actually occurs in mammalian skeletal muscle following traumatic injury in vivo.

  15. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  16. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation*

    Science.gov (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. PMID:25998127

  17. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration.

    Science.gov (United States)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M; Straube, Werner L; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, András; Drechsel, David N; Tanaka, Elly M

    2017-03-27

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Hyperglycemia Promotes Schwann Cell De-differentiation and De-myelination via Sorbitol Accumulation and Igf1 Protein Down-regulation.

    Science.gov (United States)

    Hao, Wu; Tashiro, Syoichi; Hasegawa, Tomoka; Sato, Yuiko; Kobayashi, Tami; Tando, Toshimi; Katsuyama, Eri; Fujie, Atsuhiro; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Morioka, Hideo; Nakamura, Masaya; Matsumoto, Morio; Amizuka, Norio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-07-10

    Diabetes mellitus (DM) is frequently accompanied by complications, such as peripheral nerve neuropathy. Schwann cells play a pivotal role in regulating peripheral nerve function and conduction velocity; however, changes in Schwann cell differentiation status in DM are not fully understood. Here, we report that Schwann cells de-differentiate into immature cells under hyperglycemic conditions as a result of sorbitol accumulation and decreased Igf1 expression in those cells. We found that de-differentiated Schwann cells could be re-differentiated in vitro into mature cells by treatment with an aldose reductase inhibitor, to reduce sorbitol levels, or with vitamin D3, to elevate Igf1 expression. In vivo DM models exhibited significantly reduced nerve function and conduction, Schwann cell de-differentiation, peripheral nerve de-myelination, and all conditions were significantly rescued by aldose reductase inhibitor or vitamin D3 administration. These findings reveal mechanisms underlying pathological changes in Schwann cells seen in DM and suggest ways to treat neurological conditions associated with this condition. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration

    NARCIS (Netherlands)

    Wagner, Ines; Wang, Heng; Weissert, Philipp M.; Straube, Werner L.; Shevchenko, Anna; Gentzel, Marc; Brito, Goncalo; Tazaki, Akira; Oliveira, Catarina; Sugiura, Takuji; Shevchenko, Andrej; Simon, Andras; Drechsel, David N.; Tanaka, Elly M.

    2017-01-01

    Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell

  20. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro.

    Directory of Open Access Journals (Sweden)

    Holger A Russ

    Full Text Available Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT. Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells.Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2 using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation.These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug

  1. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Dedifferentiated fat cells: Potential and perspectives for their use in clinical and animal science purpose.

    Science.gov (United States)

    Duarte, M S; Bueno, R; Silva, W; Campos, C F; Gionbelli, M P; Guimarães, S E F; Silva, F F; Lopes, P S; Hausman, G J; Dodson, M V

    2017-05-01

    An increasing body of evidences has demonstrated the ability of the mature adipocyte to dedifferentiate into a population of proliferative-competent cells known as dedifferentiated fat (DFAT) cells. As early as the 1970s, in vitro studies showed that DFAT cells may be obtained by ceiling culture, which takes advantage of the buoyancy property of lipid-filled cells. It was documented that DFAT cells may acquire a phenotype similar to mesenchymal stem cells and yet may differentiate into multiple cell lineages, such as skeletal and smooth muscle cells, cardiomyocytes, osteoblasts, and adipocytes. Additionally, recent studies showed the ability of isolated mature adipocytes to dedifferentiate in vivo and the capacity of the progeny cells to redifferentiate into mature adipocytes, contributing to the increase of body fatness. These findings shed light on the potential for use of DFAT cells, not only for clinical purposes but also within the animal science field, because increasing intramuscular fat without excessive increase in other fat depots is a challenge in livestock production. Knowledge of the mechanisms underlying the dedifferentiation and redifferentiation of DFAT cells will allow the development of strategies for their use for clinical and animal science purposes. In this review, we highlight several aspects of DFAT cells, their potential for clinical purposes, and their contribution to adipose tissue mass in livestock.

  2. Evidence for heterogeneity of astrocyte de-differentiation in vitro: astrocytes transform into intermediate precursor cells following induction of ACM from scratch-insulted astrocytes.

    Science.gov (United States)

    Yang, Hao; Qian, Xin-Hong; Cong, Rui; Li, Jing-wen; Yao, Qin; Jiao, Xi-Ying; Ju, Gong; You, Si-Wei

    2010-04-01

    Our previous study definitely demonstrated that the mature astrocytes could undergo a de-differentiation process and further transform into pluripotential neural stem cells (NSCs), which might well arise from the effect of diffusible factors released from scratch-insulted astrocytes. However, these neurospheres passaged from one neurosphere-derived from de-differentiated astrocytes possessed a completely distinct characteristic in the differentiation behavior, namely heterogeneity of differentiation. The heterogeneity in cell differentiation has become a crucial but elusive issue. In this study, we show that purified astrocytes could de-differentiate into intermediate precursor cells (IPCs) with addition of scratch-insulted astrocyte-conditioned medium (ACM) to the culture, which can express NG2 and A2B5, the IPCs markers. Apart from the number of NG2(+) and A2B5(+) cells, the percentage of proliferative cells as labeled with BrdU progressively increased with prolonged culture period ranging from 1 to 10 days. Meanwhile, the protein level of A2B5 in cells also increased significantly. These results revealed that not all astrocytes could de-differentiate fully into NSCs directly when induced by ACM, rather they generated intermediate or more restricted precursor cells that might undergo progressive de-differentiation to generate NSCs.

  3. Dedifferentiated Chondrosarcoma of the Larynx.

    Science.gov (United States)

    Fidai, Shiraz S; Ginat, Daniel T; Langerman, Alexander J; Cipriani, Nicole A

    2016-09-01

    Primary dedifferentiated chondrosarcoma occurring in the larynx is a rare head and neck malignancy. The cases reported in the literature suggest male gender predilection and variable clinical outcomes ranging from disease-free survival to disease-related death. Although a calcified matrix is suggestive of chondrosarcoma, the dedifferentiated component is not readily appreciated on conventional imaging modalities and thorough tissue sampling is necessary for confirming the diagnosis. Histologically, there is an abrupt transition from a well-differentiated chondrosarcoma to a high-grade spindle cell component, which can show focal heterologous differentiation. These features are exemplified in this sine qua non radiology-pathology correlation article.

  4. Lin28B promotes Müller glial cell de-differentiation and proliferation in the regenerative rat retinas

    Science.gov (United States)

    Tao, Zui; Zhao, Chen; Jian, Qian; Gillies, Mark; Xu, Haiwei; Yin, Zheng Qin

    2016-01-01

    Retinal regeneration and repair are severely impeded in higher mammalian animals. Although Müller cells can be activated and show some characteristics of progenitor cells when injured or under pathological conditions, they quickly form gliosis scars. Unfortunately, the basic mechanisms that impede retinal regeneration remain unknown. We studied retinas from Royal College of Surgeon (RCS) rats and found that let-7 family molecules, let-7e and let-7i, were significantly overexpressed in Müller cells of degenerative retinas. It demonstrated that down-regulation of the RNA binding protein Lin28B was one of the key factors leading to the overexpression of let-7e and let-7i. Lin28B ectopic expression in the Müller cells suppressed overexpression of let-7e and let-7i, stimulated and mobilized Müller glia de-differentiation, proliferation, promoted neuronal commitment, and inhibited glial fate acquisition of de-differentiated Müller cells. ERG recordings revealed that the amplitudes of a-wave and b-wave were improved significantly after Lin28B was delivered into the subretinal space of RCS rats. In summary, down-regulation of Lin28B as well as up-regulation of let-7e and let-7i may be the main factors that impede Müller cell de-differentiation and proliferation in the retina of RCS rats. PMID:27384999

  5. Dedifferentiated chondrosarcoma of the appendicular skeleton: MRI-pathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    MacSweeney, Fergus; Darby, Alan [Department of Histopathology, The Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, HA7 4LP, Stanmore, Middlesex (United Kingdom); The London Bone and Soft Tissue Tumour Unit, London (United Kingdom); Saifuddin, Asif [The London Bone and Soft Tissue Tumour Unit, London (United Kingdom); Department of Radiology, The Royal National Orthopaedic Hospital NHS Trust, Brockley Hill, HA7 4LP, Stanmore, Middlesex (United Kingdom); Department of Diagnostic Imaging, The Royal National Orthopaedic Hospital NHS Trust, HA7 4LP, Stanmore, Middlesex (United Kingdom)

    2003-12-01

    To correlate the T2-weighted and STIR MRI appearances of dedifferentiated appendicular chondrosarcoma with gross and microscopic pathology. Nine patients with a histologically confirmed diagnosis of dedifferentiated appendicular chondrosarcoma were identified from the Bone Tumour Registry. All patients underwent MRI, including T2-weighted and/or STIR sequences in at least one plane, prior to limb salvage surgery. Areas of reduced signal intensity (SI) compared with hyperintense chondral tumour on the T2-weighted or STIR images were correlated with the resection specimen, to determine the relationship of such out areas of reduced SI with regions of dedifferentiation. Patients presented over a period of 7 years. There were five men and four women with mean age 68.2 years and age range 51-78 years. Tumours arose in the femur (6 cases), humerus (2 cases) and tibia (1 case). Three MRI patterns were identified: (1) type 1, a lesion with two distinct signal characteristics - hyperintense chondral and reduced SI dedifferentiated tumour (n=6); type 2, mainly reduced SI lesion - dedifferentiated tumour, with areas of signal void corresponding to matrix calcification (n=2); type 3, a heterogeneous lesion with no radiological evidence of underlying chondral tumour (n=1). T2-weighted or STIR MR sequences can identify areas of dedifferentiation, which should be the preferential site of pre-operative biopsy. (orig.)

  6. [Dedifferentiated chondrosarcoma: radiologic-pathologic correlation].

    Science.gov (United States)

    Bierry, G; Feydy, A; Larousserie, F; Pluot, E; Guerini, H; Campagna, R; Dufau-Andreu, C; Anract, P; Babinet, A; Dietemann, J L; Chevrot, A; Drapé, J L

    2010-03-01

    Dedifferentiated chondrosarcomas are highly malignant tumors characterized by conventional low-grade chondrosarcoma with abrupt transition to foci that have dedifferentiated into a higher-grade noncartilaginous more aggressive sarcoma. The dedifferentiated component, an osteosarcoma or fibrosarcoma, determines the prognosis. Its identification is key for management. A diagnosis of dedifferentiated chondrosarcoma should be suggested by the presence of "tumoral dimorphism" with cartilaginous component and aggressive lytic component invading adjacent soft tissues.

  7. Senescence Meets Dedifferentiation

    Science.gov (United States)

    Givaty Rapp, Yemima; Ransbotyn, Vanessa; Grafi, Gideon

    2015-01-01

    Senescence represents the final stage of leaf development but is often induced prematurely following exposure to biotic and abiotic stresses. Leaf senescence is manifested by color change from green to yellow (due to chlorophyll degradation) or to red (due to de novo synthesis of anthocyanins coupled with chlorophyll degradation) and frequently culminates in programmed death of leaves. However, the breakdown of chlorophyll and macromolecules such as proteins and RNAs that occurs during leaf senescence does not necessarily represent a one-way road to death but rather a reversible process whereby senescing leaves can, under certain conditions, re-green and regain their photosynthetic capacity. This phenomenon essentially distinguishes senescence from programmed cell death, leading researchers to hypothesize that changes occurring during senescence might represent a process of trans-differentiation, that is the conversion of one cell type to another. In this review, we highlight attributes common to senescence and dedifferentiation including chromatin structure and activation of transposable elements and provide further support to the notion that senescence is not merely a deterioration process leading to death but rather a unique developmental state resembling dedifferentiation. PMID:27135333

  8. Imaging analysis of dedifferentiated chondrosarcoma of bone

    International Nuclear Information System (INIS)

    Xie Yuanzhong; Kong Qingkui; Wang Xia; Li Changqing

    2004-01-01

    Objective: To analyze the radiological findings of dedifferentiated chondrosarcoma, and to explore the imaging features of dedifferentiated tissue. Methods: The X-ray and CT findings of 13 cases with dedifferentiated chondrosarcoma of bone were analyzed retrospectively, and studied with clinic and corresponding histological changes. Results: The dedifferentiated chondrosarcoma not only had the radiological findings of typical chondrosarcoma but also had the imaging features of dedifferentiated tissues. In 13 patients, periosteal reactions were found in 11 cases, ossifications in 8 cases, soft tissue masses in 12 cases, calcifications in 10 cases, and the site of calcifications in 8 cases was in the center of the focus. Conclusion: The dedifferentiated chondrosarcoma showed special imaging features, which includes ossification, calcification, periosteal reaction, and soft tissue mass. These features were not found in typical chondrosarcoma. Recognizing these specific features is helpful to the diagnosis of dedifferentiated chondrosarcoma. (author)

  9. Tumor dedifferentiation: diagnostic and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Abhimanyu Jha

    2017-09-01

    Full Text Available Some of the neoplasm especially malignant tumors are notorious in masquerading their cell of origin because of additional mutations which drives them to differentiate into unusual phenotype. This is implicated to a phenomenon of tumor dedifferentiation which can mislead into inappropriate categorization and therapy. Dedifferentiation is well recognized in sarcomas such as liposarcoma, chondrosarcoma and MPNST. However, it can also develop in carcinomas, melanomas and lymphomas at initial diagnosis, following therapy or at recurrence.  The phenomenon has been reported in both primary tumors as well as at metastatic foci. A correct and early pathological identification of this phenomenon might profoundly help in guiding appropriate therapy. Clinical and radiological findings, immunohistochemistry and genetic analysis are often required for correct lineage identification of these tumors.

  10. Epithelial-to-mesenchymal transition and estrogen receptor α mediated epithelial dedifferentiation mark the development of benign prostatic hyperplasia.

    Science.gov (United States)

    Shao, Rui; Shi, Jiandang; Liu, Haitao; Shi, Xiaoyu; Du, Xiaoling; Klocker, Helmut; Lee, Chung; Zhu, Yan; Zhang, Ju

    2014-06-01

    Epithelial-to-mesenchymal transition (EMT) has been reported involved in the pathogenesis of fibrotic disorders and associated with stemness characteristics. Recent studies demonstrated that human benign prostatic hyperplasia (BPH) development involves accumulation of mesenchymal-like cells derived from the prostatic epithelium. However, the inductive factors of EMT in the adult prostate and the cause-and-effect relationship between EMT and stemness characteristics are not yet resolved. EMT expression patterns were immunohistochemically identified in the human epithelia of normal/BPH prostate tissue and in a rat BPH model induced by estrogen/androgen (E2/T, ratio 1:100) alone or in the presence of the ER antagonist raloxifene. Gene expression profiles were analyzed in micro-dissected prostatic epithelia of rat stimulated by E2/T for 3 days. Two main morphological features both accompanied with EMT were observed in the epithelia of human BPH. Luminal cells undergoing EMT dedifferentiated from a cytokeratin (CK) CK18(+) /CK8(+) /CK19(+) to a CK18(-) /CK8(+) /CK19(-) phenotype and CK14 expression increased in basal epithelial cells. ERα expression was closely related to these dedifferentiated cells and the expression of EMT markers. A similar pattern of EMT events was observed in the E2/T induced rat model of BPH in comparison to the prostates of untreated rats, which could be prevented by raloxifene. Epithelial and mesenchymal phenotype switching is an important mechanism in the etiology of BPH. ERα mediated enhanced estrogenic effect is a crucial inductive factor of epithelial dedifferentiation giving rise to activation of an EMT program in prostate epithelium. © 2014 Wiley Periodicals, Inc.

  11. Dedifferentiated chondrosarcoma: use of MRI to guide needle biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Saifuddin, A. E-mail: asaifuddin@aol.com; Mann, B.S.; Mahroof, S.; Pringle, J.A.S.; Briggs, T.W.R.; Cannon, S.R

    2004-03-01

    AIM: To describe the use of MRI to identify and biopsy areas of dedifferentiation in patients with a suspected diagnosis of dedifferentiated chondrosarcoma. MATERIALS AND METHODS: Low-grade chondrosarcoma is characterized at magnetic resonance imaging (MRI) as having a lobulate, hyperintense appearance on T2-weighted spin-echo sequences. T2-weighted MR images were assessed in 15 patients with a final pathological diagnosis of dedifferentiated chondrosarcoma for regions of atypical reduced signal intensity. Information regarding the site of ultrasound or computed tomography (CT)-guided biopsy was available in 10 cases. RESULTS: Nine patients were male and six female with a mean age of 60 years (range 25-77 years). The sites involved were the distal femur (n=4), pelvis (n=3), proximal femur (n=4), femoral diaphysis (n=1), proximal humerus (n=2) and proximal tibia (n=1). The dedifferentiated component consisted of osteosarcoma (n=5), malignant fibrous histiocytoma (n=6), spindle cell sarcoma (n=1), leiomyosarcoma (n=1) and pleomorphic sarcoma (n=1). In 14 of the 15 cases, areas of lower signal intensity lacking in lobulation were identified. In nine of the 10 cases, biopsy site included such areas and yielded high-grade sarcoma. CONCLUSIONS: Dedifferentiation within chondrosarcoma may be identified on T2-weighted MRI as areas of reduced signal intensity. These areas should be the preferred site of biopsy.

  12. Wilms’ Tumor Blastemal Stem Cells Dedifferentiate to Propagate the Tumor Bulk

    Science.gov (United States)

    Shukrun, Rachel; Pode-Shakked, Naomi; Pleniceanu, Oren; Omer, Dorit; Vax, Einav; Peer, Eyal; Pri-Chen, Sara; Jacob, Jasmine; Hu, Qianghua; Harari-Steinberg, Orit; Huff, Vicki; Dekel, Benjamin

    2014-01-01

    Summary An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms’ tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1+) aldehyde dehydrogenase 1-positive (ALDH1+) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1+ WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema. PMID:25068119

  13. A case of dedifferentiated chondrosarcoma arising in the cricoid cartilage that mimicked an aneurysmal bone cyst.

    Science.gov (United States)

    Chen, Lixiao; Yu, Ziwei; Jiang, Rui; Dong, Pin; Shen, Bin; Li, Yu

    2018-03-01

    Dedifferentiated chondrosarcoma of the larynx is a rare and highly malignant tumor. We present the report of a 59-year-old man with dedifferentiated laryngeal chondrosarcoma, which was difficult to diagnose even under microscopic examination. The original diagnosis was an aneurysmal bone cyst, and the final diagnosis was established only after careful consideration of the imaging, surgical, and microscopic findings. In clinical practice, there are many similarities between dedifferentiated chondrosarcoma and aneurysmal bone cysts. Furthermore, it is difficult to identify dedifferentiated laryngeal chondrosarcoma with a giant-cell malignant mesenchymal component. This report describes our experience and discusses this phenomenon.

  14. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation

    Directory of Open Access Journals (Sweden)

    Atilgan Yilmaz

    2015-11-01

    Full Text Available In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA, bone morphogenetic protein 4 (BMP4 and fibroblast growth factor 1 (FGF1. Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells.

  15. Glandular differentiation in dedifferentiated chondrosarcoma: molecular evidence of a rare phenomenon.

    Science.gov (United States)

    Jour, George; Liu, Yajuan; Ricciotti, Robert; Pritchard, Colin; Hoch, Benjamin L

    2015-09-01

    Epithelial glandular differentiation in dedifferentiated chondrosarcoma has not been described. Our patient was a 64-year-old man with a history of prostate cancer status post-radiation and hormonal therapy. On screening bone scan, he was found to have increased uptake in his right femoral shaft. Biopsy revealed intermediate-grade conventional chondrosarcoma. Subsequent femoral resection was remarkable for an intermediate-grade chondrosarcomatous component juxtaposed to an area composed of anastomosing nests and cords of malignant epithelial cells showing nuclear atypia and increased mitotic activity. A fibroblastic-appearing spindle cell population was intimately associated with the epithelial cells. The epithelial cells labeled with 34bE12, AE1/AE3, EMA, and Vimentin (both spindled and epithelial components) while being negative for prostate-specific antigen, prostate specific acid phosphatase, cytokeratin 20, thyroid transcription factor-1, and CDX2. The patient developed local recurrence 9 months after the initial resection but has had no metastatic disease and consistently undetectable prostate-specific antigen levels. Deep parallel sequencing of the dedifferentiated component showed a nonsynonymous mutation at exon 4 of IDH1 gene at codon R132 leading to a substitution of arginine, with serine confirming glandular differentiation in dedifferentiated chondrosarcoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    International Nuclear Information System (INIS)

    Oosterwijk, Jolieke G van; Bovée, Judith VMG; Jong, Danielle de; Ruler, Maayke AJH van; Hogendoorn, Pancras CW; Dijkstra, PD Sander; Rijswijk, Carla SP van; Machado, Isidro; Llombart-Bosch, Antonio; Szuhai, Karoly

    2012-01-01

    Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies

  17. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    International Nuclear Information System (INIS)

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-01-01

    Highlights: ► ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. ► ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. ► ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. ► ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. ► ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte-based regeneration therapy.

  18. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation

    NARCIS (Netherlands)

    Malta, Tathiane M.; Sokolov, Artem; Gentles, Andrew J.; Burzykowski, Tomasz; Poisson, Laila; Weinstein, John N.; Kamińska, Bożena; Huelsken, Joerg; Omberg, Larsson; Gevaert, Olivier; Colaprico, Antonio; Czerwińska, Patrycja; Mazurek, Sylwia; Mishra, Lopa; Heyn, Holger; Krasnitz, Alex; Godwin, Andrew K.; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Gonzalez, Ana Maria Angulo; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Pinero, Edna M.Mora; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Stuart, Joshua M.; Hoadley, Katherine A.; Laird, Peter W.; Noushmehr, Houtan; Wiznerowicz, Maciej

    2018-01-01

    Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR)

  19. Differential expression of myogenic regulatory genes and Msx-1 during dedifferentiation and redifferentiation of regenerating amphibian limbs.

    Science.gov (United States)

    Simon, H G; Nelson, C; Goff, D; Laufer, E; Morgan, B A; Tabin, C

    1995-01-01

    An amputated limb of an adult urodele amphibian is capable of undergoing regeneration. The new structures form from an undifferentiated mass of cells called the regenerative blastema. The cells of the blastema are believed to derive from differentiated tissues of the adult limb. However, the exact source of these cells and the process by which they undergo dedifferentiation are poorly understood. In order to elucidate the molecular and cellular basis for dedifferentiation we isolated a number of genes which are potential regulators of the process. These include Msx-1, which is believed to support the undifferentiated and proliferative state of cells in the embryonic limb bud; and two members of the myogenic regulatory gene family, MRF-4 and Myf-5, which are expressed in differentiated muscle and regulate muscle-specific gene activity. As anticipated, we find that Msx-1 is strongly up-regulated during the initiation of regeneration. It remains expressed throughout regeneration but is not found in the fully regenerated limb. The myogenic gene MRF-4 has the reverse expression pattern. It is expressed in adult limb muscle, is rapidly shut off in early regenerative blastemas, and is only reexpressed at the completion of regeneration. These kinetics are paralleled by those of a muscle-specific Myosin gene. In contrast Myf-5, a second member of the myogenic gene family, continues to be expressed throughout the regenerative process. Thus, MRF-4 and Myf-5 are likely to play distinct roles during regeneration. MRF-4 may directly regulate muscle phenotype and as such its repression may be a key event in dedifferentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Emi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Furumatsu, Takayuki, E-mail: matino@md.okayama-u.ac.jp [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan); Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi [Department of Orthopaedic Surgery, Science of Functional Recovery and Reconstruction, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama 700-8558 (Japan)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  1. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    Science.gov (United States)

    2012-01-01

    Background Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. Methods We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. Results We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Conclusions Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies. PMID:22928481

  2. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.

    Science.gov (United States)

    Hermann, Patrick C; Sancho, Patricia; Cañamero, Marta; Martinelli, Paola; Madriles, Francesc; Michl, Patrick; Gress, Thomas; de Pascual, Ricardo; Gandia, Luis; Guerra, Carmen; Barbacid, Mariano; Wagner, Martin; Vieira, Catarina R; Aicher, Alexandra; Real, Francisco X; Sainz, Bruno; Heeschen, Christopher

    2014-11-01

    Although smoking is a leading risk factor for pancreatic ductal adenocarcinoma (PDAC), little is known about the mechanisms by which smoking promotes initiation or progression of PDAC. We studied the effects of nicotine administration on pancreatic cancer development in Kras(+/LSLG12Vgeo);Elas-tTA/tetO-Cre (Ela-KRAS) mice, Kras(+/LSLG12D);Trp53+/LSLR172H;Pdx-1-Cre (KPC) mice (which express constitutively active forms of KRAS), and C57/B6 mice. Mice were given nicotine for up to 86 weeks to produce blood levels comparable with those of intermediate smokers. Pancreatic tissues were collected and analyzed by immunohistochemistry and reverse transcriptase polymerase chain reaction; cells were isolated and assayed for colony and sphere formation and gene expression. The effects of nicotine were also evaluated in primary pancreatic acinar cells isolated from wild-type, nAChR7a(-/-), Trp53(-/-), and Gata6(-/-);Trp53(-/-) mice. We also analyzed primary PDAC cells that overexpressed GATA6 from lentiviral expression vectors. Administration of nicotine accelerated transformation of pancreatic cells and tumor formation in Ela-KRAS and KPC mice. Nicotine induced dedifferentiation of acinar cells by activating AKT-ERK-MYC signaling; this led to inhibition of Gata6 promoter activity, loss of GATA6 protein, and subsequent loss of acinar differentiation and hyperactivation of oncogenic KRAS. Nicotine also promoted aggressiveness of established tumors as well as the epithelial-mesenchymal transition, increasing numbers of circulating cancer cells and their dissemination to the liver, compared with mice not exposed to nicotine. Nicotine induced pancreatic cells to acquire gene expression patterns and functional characteristics of cancer stem cells. These effects were markedly attenuated in K-Ras(+/LSL-G12D);Trp53(+/LSLR172H);Pdx-1-Cre mice given metformin. Metformin prevented nicotine-induced pancreatic carcinogenesis and tumor growth by up-regulating GATA6 and promoting

  3. β-Cell dedifferentiation, reduced duct cell plasticity, and impaired β-cell mass regeneration in middle-aged rats.

    Science.gov (United States)

    Téllez, Noèlia; Vilaseca, Marina; Martí, Yasmina; Pla, Arturo; Montanya, Eduard

    2016-09-01

    Limitations in β-cell regeneration potential in middle-aged animals could contribute to the increased risk to develop diabetes associated with aging. We investigated β-cell regeneration of middle-aged Wistar rats in response to two different regenerative stimuli: partial pancreatectomy (Px + V) and gastrin administration (Px + G). Pancreatic remnants were analyzed 3 and 14 days after surgery. β-Cell mass increased in young animals after Px and was further increased after gastrin treatment. In contrast, β-cell mass did not change after Px or after gastrin treatment in middle-aged rats. β-Cell replication and individual β-cell size were similarly increased after Px in young and middle-aged animals, and β-cell apoptosis was not modified. Nuclear immunolocalization of neurog3 or nkx6.1 in regenerative duct cells, markers of duct cell plasticity, was increased in young but not in middle-aged Px rats. The pancreatic progenitor-associated transcription factors neurog3 and sox9 were upregulated in islet β-cells of middle-aged rats and further increased after Px. The percentage of chromogranin A+/hormone islet cells was significantly increased in the pancreases of middle-aged Px rats. In summary, the potential for compensatory β-cell hyperplasia and hypertrophy was retained in middle-aged rats, but β-cell dedifferentiation and impaired duct cell plasticity limited β-cell regeneration. Copyright © 2016 the American Physiological Society.

  4. Autophagic dedifferentiation induced by cooperation between TOR inhibitor and retinoic acid signals in budding tunicates.

    Science.gov (United States)

    Kawamura, Kaz; Yoshida, Takuto; Sekida, Satoko

    2018-01-15

    Asexual bud development in the budding tunicate Polyandrocarpa misakiensis involves transdifferentiation of multipotent epithelial cells, which is triggered by retinoic acid (RA), and thrives under starvation after bud isolation from the parent. This study aimed to determine cell and molecular mechanisms of dedifferentiation that occur during the early stage of transdifferentiation. During dedifferentiation, the numbers of autophagosomes, lysosomes, and secondary lysosomes increased remarkably. Mitochondrial degradation and exosome discharge also occurred in the atrial epithelium. Autophagy-related gene 7 (Atg7) and lysosomal proton pump A gene (PumpA) were activated during the dedifferentiation stage. When target of rapamycin (TOR) inhibitor was administered to growing buds without isolating them from the parent, phagosomes and secondary lysosomes became prominent. TOR inhibitor induced Atg7 only in the presence of RA. In contrast, when growing buds were treated with RA, lysosomes, secondary lysosomes, and mitochondrial degradation were prematurely induced. RA significantly activated PumpA in a retinoid X receptor-dependent manner. Our results indicate that in P. misakiensis, TOR inhibition and RA signals act in synergy to accomplish cytoplasmic clearance for dedifferentiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Distribution of linker histone variants during plant cell differentiation in the developmental zones of the maize root, dedifferentiation in callus culture after auxin treatment

    Directory of Open Access Journals (Sweden)

    ANASTASIOS ALATZAS

    2008-01-01

    Full Text Available Although several linker histone variants have been studied in both animal and plant organisms, little is known about their distribution during processes that involve alterations in chromatin function, such as differentiation, dedifferentiation and hormone treatment. In this study, we identified linker histone variants by using specific anti-histone Hl antibodies. Each variant's ratio to total Hl in the three developmental zones of maize (Zea mays L. root and in callus cultures derived from them was estimated in order to define possible alterations either during plant cell differentiation or during their dedifferentiation. We also evaluated linker histone variants' ratios in the developmental zones of maize roots treated with auxin in order to examine the effects of exogenous applied auxin to linker histone variant distribution. Finally, immunohistochemical detection was used to identify the root tissues containing each variant and correlate them with the physiological status of the plant cells. According to the results presented in this study, linker histone variants' ratios are altered in the developmental zones of maize root, while they are similar to the meristematic zone in samples from callus cultures and to the differentiation zone in samples from roots treated with auxin. We propose that the alterations in linker histone variants' ratios are correlated with plant cell differentiation and dedifferentiation.

  6. Fine needle aspiration biopsy diagnosis of dedifferentiated liposarcoma: Cytomorphology and MDM2 amplification by FISH

    Directory of Open Access Journals (Sweden)

    Al-Maghraby Hatem

    2010-01-01

    Full Text Available Lipomatous mesenchymal tumors constitute the most common type of soft tissue tumors. Well-differentiated liposarcoma (WDLS can undergo dedifferentiation to a nonlipogenic sarcoma of variable histologic grade. In the recent literature, amplification of the murine double minute 2 (MDM2 oncogene, which has a role in cell cycle control, has been successful in distinguishing WDLS from benign lesions. We present a case of dedifferentiated liposarcoma diagnosed by fine-needle aspiration (FNA, using cytomorphology and ancillary studies (immunocytochemistry and fluorescent in-situ hybridization. An 85-year old female presented to our institution with a firm soft tissue mass of the right buttock. The FNA showed atypical spindle cells, osteoclast-like giant cells and extracellular dense matrix material. The cell block showed cellular groups of highly atypical spindle cells with osteoid and adipose tissue. Fluorescence in situ hybridization (FISH studies performed on the cell block demonstrated amplification of the MDM2 gene. In addition, the findings were morphologically compatible with the previously resected retroperitoneal dedifferentiated liposarcoma with areas of osteosarcoma. This rare case illustrates the usefulness of FNA and ancillary studies in the diagnosis and subclassification of soft tissue tumors. To the best of our knowledge, this is the first report of MDM2 FISH positivity in a liposarcoma diagnosed by FNA.

  7. Dedifferentiated liposarcoma of the anterior mediastinum. A rare case

    International Nuclear Information System (INIS)

    Harth, S.; Litzlbauer, H.D.; Behrens, C.B.; Roller, F.C.; Gamerdinger, U.; Burchert, D.; Krombach, G.A.

    2016-01-01

    Liposarcoma accounts for approximately 14 % of all malignant soft-tissue tumors, regardless of anatomical location (Kransdorf MJ et al. Imaging of soft tissue tumors. Philadelphia: Lippincott Williams and Wilkins, 2014). Primary mediastinal liposarcomas are rare. Liposarcoma is classified into four histologic subtypes: Myxoid/round cell, pleomorphic, atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma. Dedifferentiated liposarcoma occurs most commonly in the retroperitoneum and in the soft tissues of the extremities. Like atypical lipomatous tumor/well-differentiated liposarcoma, it is characterized by amplification of MDM2 and CDK4 genes on chromosome 12 (Crago AM et al. Curr Opin Oncol 2011; 23: 373 - 378). Possible symptoms of mediastinal liposarcoma are dyspnea, wheezing, chest pain, cough, superior vena cava syndrome, and weight loss (Macchiarini P et al. Lancet Oncol 2004; 5: 107 - 118).

  8. Dedifferentiated liposarcoma of the anterior mediastinum. A rare case

    Energy Technology Data Exchange (ETDEWEB)

    Harth, S.; Litzlbauer, H.D.; Behrens, C.B.; Roller, F.C.; Gamerdinger, U.; Burchert, D.; Krombach, G.A.

    2016-01-15

    Liposarcoma accounts for approximately 14 % of all malignant soft-tissue tumors, regardless of anatomical location (Kransdorf MJ et al. Imaging of soft tissue tumors. Philadelphia: Lippincott Williams and Wilkins, 2014). Primary mediastinal liposarcomas are rare. Liposarcoma is classified into four histologic subtypes: Myxoid/round cell, pleomorphic, atypical lipomatous tumor/well-differentiated liposarcoma and dedifferentiated liposarcoma. Dedifferentiated liposarcoma occurs most commonly in the retroperitoneum and in the soft tissues of the extremities. Like atypical lipomatous tumor/well-differentiated liposarcoma, it is characterized by amplification of MDM2 and CDK4 genes on chromosome 12 (Crago AM et al. Curr Opin Oncol 2011; 23: 373 - 378). Possible symptoms of mediastinal liposarcoma are dyspnea, wheezing, chest pain, cough, superior vena cava syndrome, and weight loss (Macchiarini P et al. Lancet Oncol 2004; 5: 107 - 118).

  9. Case report 461: Dedifferentiated parosteal osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, D.D.; Chase, D.R.

    1988-01-01

    A case of parosteal osteosarcoma has been presented. The lesion initially appeared aggressive on the radiographs but very indolent pathologically. The progressive increase in anaplasia, cellularity and aggressive behavior of the tumor reflects dedifferentiation from a pathologically indolent lesion to a high grade sarcoma with metastatic potential. The rapid progression and demise of the patient, once dedifferentiation occurred, stress the need for correct diagnosis and appropriate therapy at the time the patient presents initially. (orig.)

  10. Adult renal cell carcinoma with rhabdoid morphology represents a neoplastic dedifferentiation analogous to sarcomatoid carcinoma.

    Science.gov (United States)

    Chapman-Fredricks, Jennifer R; Herrera, Loren; Bracho, Jorge; Gomez-Fernandez, Carmen; Leveillee, Raymond; Rey, Luis; Jorda, Merce

    2011-10-01

    Renal cell carcinoma (RCC) with rhabdoid morphology (RCC-RM) is a recently described variant of RCC, which has an aggressive biologic behavior and poor prognosis, akin to sarcomatoid RCC. The current World Health Organization classification of RCC does not include the rhabdoid phenotype as a distinct histologic entity. The aim of this study is to investigate whether RCC-RM represents a dedifferentiation of a classifiable-type World Health Organization RCC or a carcinosarcoma with muscle differentiation. We reviewed 168 cases of RCC obtained between 2003 and 2008. From these cases, 10 (6%) were found to have areas of classic rhabdoid morphology. Immunohistochemistry for cytokeratin, epithelial membrane antigen, desmin, CD10, and CD117 was performed in each case using the labeled streptavidin-biotin method. Rhabdoid differentiation was identified in association with conventional-type RCC (9) and with unclassifiable-type RCC with spindle cell morphology (1). In all cases, both the rhabdoid and nonrhabdoid tumoral areas were positive for cytokeratin and epithelial membrane antigen and negative for desmin. Cytokeratin positivity in the rhabdoid areas was focal. In cases associated with conventional-type RCC, CD10 was positive in both the rhabdoid and nonrhabdoid foci. CD117 was negative in these tumors. The unclassifiable-type RCC with spindle cell morphology was negative for both CD10 and CD117. The similar immunophenotype between the rhabdoid and nonrhabdoid tumoral foci supports the origin of the rhabdoid cells from the classifiable-type RCC. Areas of rhabdoid morphology do not represent muscle metaplastic differentiation. Renal cell carcinoma with rhabdoid morphology may represent a dedifferentiation of a classifiable-type RCC, similar to that of sarcomatoid differentiation. The recognition of RCC-RM is important as it allows for the inclusion of these high-grade malignancies into a category associated with poor prognosis despite lacking the spindle cell component

  11. Screening for potential targets for therapy in mesenchymal, clear cell, and dedifferentiated chondrosarcoma reveals Bcl-2 family members and TGFβ as potential targets

    DEFF Research Database (Denmark)

    van Oosterwijk, Jolieke G; Meijer, Danielle; van Ruler, Maayke A J H

    2013-01-01

    . As in conventional chondrosarcoma, antiapoptotic proteins (Bcl-2, and/or Bcl-xl) were highly expressed in all subtypes. Inhibition with the BH-3 mimetic ABT-737 rendered dedifferentiated chondrosarcoma cell lines sensitive to doxorubicin or cisplatin. Our data indicate that antiapoptotic proteins may play...

  12. Dedifferentiated Leiomyosarcoma of the Uterus with Heterologous Elements: A Potential Diagnostic Pitfall

    Directory of Open Access Journals (Sweden)

    Kojo R. Rawish

    2012-01-01

    Full Text Available Dedifferentiation is a phenomenon that is well characterized in a variety of tumors and is defined by the occurrence of a high-grade or undifferentiated tumor, typically unrecognizable regarding its line of differentiation, from a low-grade/borderline neoplasm. This phenomenon has previously been described in 2 uterine leiomyosarcomas, but both were devoid of heterologous elements. The authors describe herein a case of a dedifferentiated leiomyosarcoma of the uterus with osteoid heterologous elements, believed to be the first such reported case. The original tumor was a high-grade leiomyosarcoma with large low-grade and leiomyoma-like areas and whose constituent cells displayed intense nuclear immunoreactivity for both estrogen receptor (ER and progesterone receptor (PR in approximately 30% of cells. The tumor recurred six months after its resection as an undifferentiated sarcoma that was negative for smooth muscle markers, but which remained positive for ER and PR. Osteoid production was only identified in the recurrent tumor and was significant in extent therein. This case highlights the immunophenotypic changes that may occur in dedifferentiated leiomyosarcomas, and this possibility should be a consideration when an apparently undifferentiated sarcoma is identified in a patient with a history of uterine leiomyosarcoma. In our case, the expression of ER and PR provided significant supportive evidence of the uterine origin of the recurrent tumor.

  13. Dedifferentiated chondrosarcoma

    International Nuclear Information System (INIS)

    Mercuri, M.; Picci, P.; Campanacci, L.; Rulli, E.

    1995-01-01

    We reviewed 74 cases of dedifferentiated central and peripheral chondrosarcoma. The diagnosis is often suspected on the basis of the clinical course and careful evaluation of the radiographic characteristics. Central dedifferentiated chondrosarcoma can be classified radiographically into three types. In type 1 (36 cases in our review) the radiographic features are the same as those of a central chondrosarcoma, with the addition of a region with very aggressive radiographic features. Type 2 lesions (20 cases) resemble the underlying benign enchondroma but also have destructive changes and/or a large soft tissue mass. Type 3 lesions (8 cases) are not distinctive radiographically and present as a very high grade destructive lesion of bone. These cases are diagnosed following biopsy or tumour resection. The prognosis of these tumours is extremely poor, with 13% overall 5-year survival in this series. Improved survival was found in those cases where diagnosis was prompt and surgical treatment with a wide or radical margin was attained. No benefit was found from the use of adjuvant chemotherapy or radiotherapy. Thus, early recognition of the characteristic radiographic features, adequate histological sampling, and wide or radical surgical margins are necessary for satisfactory management of this highly malignant variant of chondrosarcoma. (orig.)

  14. Statins as a new therapeutic approach in dedifferentiated thyroid cancer?

    International Nuclear Information System (INIS)

    Hofmann, A.; John, P.; Sinzinger, H.; Staudenherz, A.; Schaffarich, M.P.

    2006-01-01

    Generally, primary differentiated tumours are removed surgically followed by adjuvant radioiodine treatment. The effect and outcome of radioiodine ablation depends on the uptake in the thyroid carcinoma cells. But, about one third of patients with local recurrent thyroid carcinomas or distant metastases do not respond to iodine treatment due to loss of differentiation. Prognosis was impaired if tumour cells are losing the capability for radioiodine uptake due to dedifferentiation. However, several trials have been attempted to induce re-differentiation of tumour cells in order to regain their potential for radioiodine uptake. (orig.)

  15. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  16. Dedifferentiated chondrosarcoma with leukocytosis and elevation of serum G-CSF. A case report

    Directory of Open Access Journals (Sweden)

    Oda Yoshinao

    2006-07-01

    Full Text Available Abstract Background G-CSF is known to function as a hematopoietic growth factor and it is known to be responsible for leukocytosis. G-CSF-producing tumors associated with leukocytosis include various types of malignancies. Case presentation We report the case of a 72-year-old man with dedifferentiated chondrosarcoma characterized by dedifferentiated components of malignant fibrous histiocytoma- or osteosarcoma-like features in addition to conventional chondrosarcoma, arising from his pelvic bone. After hemipelvectomy, when local recurrence and metastasis were identified, leukocytosis appeared and an elevated level of serum granulocyte-colony-stimulating factor (G-CSF was also recognized. The patient died of multiple organ failure 2 months after surgery. Autopsy specimens showed that the histological specimens of the recurrence and metastasis were dedifferentiated components, without any conventional chondrosarcoma components. G-CSF was expressed only in the dedifferentiated components, not in the chondrosarcoma components, immunohistochemically. Conclusion This is the first report of chondrosarcoma, or any other primary bone tumor, with leukocytosis, probably stimulated by tumor-produced G-CSF from the dedifferentiated components.

  17. Dickkopf-3 maintains the PANC-1 human pancreatic tumor cells in a dedifferentiated state.

    Science.gov (United States)

    Zenzmaier, Christoph; Hermann, Martin; Hengster, Paul; Berger, Peter

    2012-01-01

    Pancreatic cancer (PaCa) is the fourth leading cause of cancer deaths in Western societies, with pancreatic ductal adenocarcinomas (PDACs) accounting for >90% of such cases. PDAC is a heterogeneous disease that includes a subset showing overexpression of the secreted glycoprotein Dickkopf-related protein 3 (Dkk-3), a protein shown to be downregulated in various cancers of different tissues. The biological function of Dkk-3 in this subset was studied using the Dkk-3 expressing PANC-1 cell line as a model for PDACs. The influence of Dkk-3 overexpression and knockdown on cellular differentiation and proliferation of PANC-1 was investigated. Confocal microscopy showed that Dkk-3 was expressed in a fraction of PANC-1 cells. While lentiviral-mediated overexpression of DKK3 did not alter cellular proliferation, knockdown of DKK3 resulted in significant reduction of cellular proliferation and concomitant induction of cell cycle inhibitors CDKN2B (p15INK4b), CDKN1A (p21CIP1) and CDKN1B (p27KIP1). In parallel, pancreatic epithelial cell differentiation markers AMY2A, CELA1, CTRB1, GCG, GLB1 and INS were significantly upregulated. PANC-1 cells differentiated using exendin-4 showed analogous induction of cell cycle inhibitors and differentiation markers. Thus, we conclude that Dkk-3 is required to maintain a highly dedifferentiated and consequently proliferative state in PANC-1, indicating a similar function in the Dkk-3 overexpressing subset of PDACs. Therefore, Dkk-3 represents a potential target for the treatment of Dkk-3-positive subtypes of PaCa to drive cells into cell cycle arrest and differentiation.

  18. MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin

    International Nuclear Information System (INIS)

    Zhang, Zi-wei; Guo, Rui-wei; Lv, Jin-lin; Wang, Xian-mei; Ye, Jin-shan; Lu, Ni-hong; Liang, Xing; Yang, Li-xia

    2017-01-01

    Patients with type 2 diabetes mellitus (T2DM) are characterized by insulin resistance and are subsequently at high risk for atherosclerosis. Hyperinsulinemia has been associated with proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) during the pathogenesis of atherosclerosis. Moreover, insulin-like growth factor-1 receptor (IGF-1R) and mammalian target of rapamycin (mTOR) have been demonstrated to be the underlying signaling pathways. Recently, microRNA-99a (miR-99a) has been suggested to regulate the phenotypic changes of VSMCs in cancer cells. However, whether it is involved in insulin-induced changes of VSCMs has not been determined. In this study, we found that insulin induced proliferation, migration, and dedifferentiation of mouse VSMCs in a dose-dependent manner. Furthermore, the stimulating effects of high-dose insulin on proliferation, migration, and dedifferentiation of mouse VSMCs were found to be associated with the attenuation of the inhibitory effects of miR-99a on IGF-1R and mTOR signaling activities. Finally, we found that the inducing effect of high-dose insulin on proliferation, migration, and dedifferentiation of VSMCs was partially inhibited by an active mimic of miR-99a. Taken together, these results suggest that miR-99a plays a key regulatory role in the pathogenesis of insulin-induced proliferation, migration, and phenotype conversion of VSMCs at least partly via inhibition of IGF-1R and mTOR signaling. Our results provide evidence that miR-99a may be a novel target for the treatment of hyperinsulinemia-induced atherosclerosis. - Highlights: • Suggesting a new mechanism of insulin-triggered VSMC functions. • Providing a new therapeutic strategies that target atherosclerosis in T2DM patients. • Providing a new strategies that target in-stent restenosis in T2DM patients.

  19. The ageing phenome: caloric restriction and hormones promote neural cell survival, growth, and de-differentiation.

    Science.gov (United States)

    Timiras, Paola S; Yaghmaie, Farzin; Saeed, Omar; Thung, Elaine; Chinn, Garrett

    2005-01-01

    The phenome represents the observable properties of an organism that have developed under the continued influences of both genome and environmental factors. Phenotypic properties are expressed through the functions of cells, organs and body systems that operate optimally, close to equilibrium. In complex organisms, maintenance of the equilibrium is achieved by the interplay of several regulatory mechanisms. In the elderly, dynamic instability may lead to progressive loss of normal function, failure of adaptation and increased pathology. Extensive research (reported elsewhere in this journal) has demonstrated that genetic manipulations of endocrine signaling in flies, worms and mice increase longevity. Another effective strategy for prolonging the lifespan is caloric restriction: in data presented here, the persistence of estrogen-sensitive cells in the hypothalamus of caloric restricted 22-month-old female mice, may explain the persistence of reproductive function at an age, when reproductive function has long ceased in ad libitum fed controls. Still another strategy utilizes the effects of epidermal growth factor (EGF) to promote in vitro proliferation of neuroglia, astrocytes and oligodendrocytes. Their subsequent de-differentiation generates immature precursor cells potentially capable of differentiating into neuroblasts and neurons. These and other examples suggest that, in terms of functional outcomes, "the genome proposes but the phenome disposes".

  20. Case report 347: Dedifferentiated chondrosarcoma: Grade 4 fibrosarcoma arising in grade 1 chandrosarcoma (femur)

    International Nuclear Information System (INIS)

    Frassica, F.J.; Unni, K.K.; Sim, F.H.

    1986-01-01

    In summary, a 74-year-old woman presented with a 2-week history of pain in the left thigh. Dedifferentiated lesions have a very poor prognosis - less than 10% 5-year survivals. This figure contrasts with the 5-year survival rate of 59% for individuals with conventional chondrosarcoma. Fibrosarcoma is less common than osteosarcoma as the highly malignant, anaplastic portion of a dedifferentiated chondrosarcoma. In an unpublished series of 79 cases of dedifferentiated chondrosarcoma from the Mayo Clinic 43 showed osteosarcoma and 33 fibrosarcoma (Table 3). (orig.)

  1. Diagnostic utility of IDH1/2 mutations to distinguish dedifferentiated chondrosarcoma from undifferentiated pleomorphic sarcoma of bone.

    Science.gov (United States)

    Chen, Shaoxiong; Fritchie, Karen; Wei, Shi; Ali, Naser; Curless, Kendra; Shen, Tiansheng; Brini, Anna T; Latif, Farida; Sumathi, Vaiyapuri; Siegal, Gene P; Cheng, Liang

    2017-07-01

    Histologically, it is nearly impossible to distinguish the dedifferentiated component of dedifferentiated chondrosarcoma from undifferentiated pleomorphic sarcoma (UPS) of bone when the low-grade cartilaginous component is absent. Previous studies have revealed that isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are present in a significant number of cartilaginous tumors including most conventional chondrosarcomas and dedifferentiated chondrosarcomas. These mutations have not been studied in UPSs of bone. We sought to investigate whether an IDH1 or IDH2 mutation signature could be used as a clinically diagnostic marker for the distinction of dedifferentiated component of chondrosarcoma from UPS of bone. Sixty-eight bone tumor cases, including 31 conventional chondrosarcomas, 23 dedifferentiated chondrosarcomas, and 14 UPSs of bone, were collected for IDH1/2 mutation analysis either using the Qiagen IDH1/2 RGQ PCR Kit or using whole-exome sequencing. IDH1/2 mutations were detected in 87% (20/23) of dedifferentiated chondrosarcomas and 30% (6/20) of conventional chondrosarcomas. No mutations were detected in the IDH1/2 codon 132 or codon 172 among 14 UPSs of bone. Identification of IDH1 or IDH2 mutations supports the diagnosis of dedifferentiated chondrosarcoma rather than UPS of bone while also providing some insight into the pathogenesis of these 2 lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Dedifferentiated chondrosarcoma: Radiological features, prognostic factors and survival statistics in 23 patients

    Science.gov (United States)

    Liu, Chenglei; Xi, Yan; Li, Mei; Jiao, Qiong; Zhang, Huizhen; Yang, Qingcheng; Yao, Weiwu

    2017-01-01

    Background Dedifferentiated chondrosarcoma is a rare, highly malignant tumor with a poor survival. There are many confusing issues concerning the imaging feature that can facilitate early diagnosis and the factors that might be related to outcomes. Methods Twenty-three patients with dedifferentiated chondrosarcoma confirmed by pathology were retrospectively reviewed from 2008 to 2015. The patients’ clinical information, images from radiographs (n = 17), CT (n = 19), and MRI (n = 17), histological features, treatment and prognosis were analyzed. Results There were 12 males and 11 females, and the mean age was 50.39 years old. Fourteen cases affected the axial bone (pelvis, spine), and 9 cases involved the appendicular bone. Seven (41.17%), 9 (47.36), and 12 (66.66%) lesions showed a biphasic nature on radiograph, CT and MRI, respectively. Of the lesions, 17.39% (4/23) were accompanied by pathological fractures. Histologically, the cartilage component was considered histological Grade1 in 12 patients and Grade 2 in 11 patients. The dedifferentiated component showed features of osteosarcoma in 8 cases, malignant fibrous histiocytoma in3 cases, myofibroblastic sarcoma in 1 case and spindle cell sarcoma in 11cases. Twenty-two cases were treated with surgical resection, and 17 cases achieved adequate (wide or radical) surgical margin. In 8 cases, surgery was combined with adjuvant chemotherapy. The overall median survival time was nine months; 17.4% of patients survived to five years. Conclusion Axial bone location, lung metastasis at diagnosis, inadequate surgical margin, incorrect diagnosis before surgery and pathological fractures was related to poorer outcome. Pre- or postoperative chemotherapy had no definitively effect on improved survival. PMID:28301537

  3. Cyclin D1 negatively regulates the expression of differentiation genes in HT-29 M6 mucus-secreting colon cancer cells.

    Science.gov (United States)

    Mayo, Clara; Mayol, Xavier

    2009-08-28

    HT-29 M6 colon cancer cells differentiate to a mucus-secreting phenotype in culture. We found that the pattern of cyclin D1 expression in HT-29 M6 cells did not correlate with instances of cell proliferation but was specifically induced during a dedifferentiation process following disaggregation of epithelial cell layers, even under conditions that did not allow cell cycle reentrance. Interestingly, ectopic expression of cyclin D1 in differentiated cells led to the inhibition of the transcriptional activity of differentiation gene promoters, such as the mucin MUC1. We thus propose that the overexpression of cyclin D1 found in colon cancer favours tumour dedifferentiation as one mechanism of tumour progression.

  4. Crossing the invisible line: De-differentiation of wake, sleep and dreaming may engender both creative insight and psychopathology.

    Science.gov (United States)

    Llewellyn, Sue

    2016-11-01

    Writing about dreaming, the poet Raymond Carver said "I feel as if I've crossed some kind of invisible line". In creative people, the "line" between wake, dreaming and psychopathology may be porous, engendering a de-differentiated, super-critical, hybrid state. Evidence exists for a relationship between creativity and psychopathology but its nature has been elusive. De-differentiation between wake, sleep and dreaming may be the common substrate, as dream-like cognition pervades wake and wake-like neurophysiology suffuses sleep. Chaos theory posits brain states as inherently labile, transient and dynamically unstable. Over and above transient dissociations, an enduring and, sometimes, progressive, de-differentiation may be possible. Evidence indicates that sleep and dreaming facilitate creative insight. In consequence, a mild to moderate form of de-differentiation may enhance creativity but if wake-like neurobiology permeates sleep this may disrupt sleep-dependent memory processing and emotional regulation. If de-differentiation is progressive and enduring, various forms of psychopathology may result. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Dedifferentiated chondrosarcoma in childhood: report of a case

    International Nuclear Information System (INIS)

    Herman, T.E.; McAlister, W.H.; Dehner, L.P.; Kaufman, B.A.

    1995-01-01

    Dedifferentiated chondrosarcoma is an unconventional chondrosarcoma of distinctive pathology. The tumor, not previously reported in childhood, is characterized by a very poor prognosis with an average survival of only 6 months. Imaging features include a lytic lesion, focal calcifications, and a soft tissue mass. (orig.)

  6. Immunophenotypic features of dedifferentiated skull base chordoma: An insight into the intratumoural heterogeneity

    Directory of Open Access Journals (Sweden)

    Kelvin Manuel Pińa Batista

    2017-12-01

    Full Text Available Chordomas are rare and low-grade malignant solid tumours, despite their histologically benign appearance, that arise in the bone from embryonic notochordal vestiges of the axial skeleton, a mesoderm-derived structure that is involved in the process of neurulation and embryonic development. Chordomas occurring in the skull base tend to arise in the basiocciput along the clivus. Three major morphological variants have been described (classical, chondroid, and atypical/dedifferentiated. The pathogenesis and molecular mechanisms involved in chordoma development remain uncertain. From a pathological standpoint, the microenvironment of a chordoma is heterogeneous, showing a dual epithelial-mesenchymal differentiation. These tumours are characterised by slow modality of biologic growth, local recurrence, low incidence of metastasis rates, and cancer stem cell (CSC phenotype. The main molecular findings are connected with brachyury immunoexpression and activation of the downstream Akt and mTOR signalling pathways. The differentiation between typical and atypical chordomas is relevant because the tumoural microenvironment and prognosis are partially different. This review provides an insight into the recent and relevant concepts and histochemical markers expressed in chordomas, with special emphasis on dedifferentiated chordomas and their prognostic implications.

  7. The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration.

    Science.gov (United States)

    Clements, Melanie P; Byrne, Elizabeth; Camarillo Guerrero, Luis F; Cattin, Anne-Laure; Zakka, Leila; Ashraf, Azhaar; Burden, Jemima J; Khadayate, Sanjay; Lloyd, Alison C; Marguerat, Samuel; Parrinello, Simona

    2017-09-27

    Schwann cell dedifferentiation from a myelinating to a progenitor-like cell underlies the remarkable ability of peripheral nerves to regenerate following injury. However, the molecular identity of the differentiated and dedifferentiated states in vivo has been elusive. Here, we profiled Schwann cells acutely purified from intact nerves and from the wound and distal regions of severed nerves. Our analysis reveals novel facets of the dedifferentiation response, including acquisition of mesenchymal traits and a Myc module. Furthermore, wound and distal dedifferentiated Schwann cells constitute different populations, with wound cells displaying increased mesenchymal character induced by localized TGFβ signaling. TGFβ promotes invasion and crosstalks with Eph signaling via N-cadherin to drive collective migration of the Schwann cells across the wound. Consistently, Tgfbr2 deletion in Schwann cells resulted in misdirected and delayed reinnervation. Thus, the wound microenvironment is a key determinant of Schwann cell identity, and it promotes nerve repair through integration of multiple concerted signals. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A comparative study of cell cycle mediator protein expression patterns in anaplastic and papillary thyroid carcinoma.

    Science.gov (United States)

    Evans, Juanita J; Crist, Henry S; Durvesh, Saima; Bruggeman, Richard D; Goldenberg, David

    2012-07-01

    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive and rapidly fatal neoplasm. The aim of this study was to identify a limited cell cycle associated protein expression pattern unique to ATC and to correlate that pattern with clinical outcome. This represents one of the largest tissue micro-array projects comparing the cell cycle protein expression data of ATC to other well-differentiated tumors in the literature. Tissue microarrays were created from 21 patients with ATC and an age and gender matched cohort of patients with papillary thyroid carcinoma (PTC). Expression of epidermal growth factor receptor, cyclin D1, cyclin E, p53, p21, p16, aurora kinase A, opioid growth factor (OGF), OGF-receptor, thyroglobulin and Ki-67 was evaluated in a semi-quantitative fashion. Differences in protein expression between the cohorts were evaluated using chi-square tests with Bonferroni adjustments. Survival time and presence of metastasis at presentation were collected. The ATC cohort showed a statistically significant decrease (p cycle with aberrant expression of multiple protein markers suggesting increased proliferative activity and loss of control of cell cycle progression to G₁ phase. These findings support the assertion that ATC may represent the furthest end of a continuum of thyroid carcinoma dedifferentiation.

  9. Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury.

    Science.gov (United States)

    Wang, Wei Eric; Li, Liangpeng; Xia, Xuewei; Fu, Wenbin; Liao, Qiao; Lan, Cong; Yang, Dezhong; Chen, Hongmei; Yue, Rongchuan; Zeng, Cindy; Zhou, Lin; Zhou, Bin; Duan, Dayue Darrel; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu

    2017-08-29

    Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. β-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca 2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca 2+ -dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca 2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca 2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia

  10. TCF-1 participates in the occurrence of dedifferentiated chondrosarcoma.

    Science.gov (United States)

    Xu, Xiaolong; Tang, Xiaodong; Guo, Wei; Yang, Kang; Ren, Tingting

    2016-10-01

    The present study demonstrated that T cell factor 1 (TCF-1) protein, a component of the canonical Wnt/β-catenin signaling pathway, can regulate the expression of runt-related transcription factor 2 (runx2) gene and Sry-related HMG box 9 (sox9) gene, which may participate in the differentiation of chondrosarcoma. Dedifferentiated chondrosarcoma (DDCS) is a special variant of conventional chondrosarcoma (CCS), associated with poor survival and high metastasis rate. However, little is known about the mechanism of its occurrence; thus, no effective treatment is available except surgery. Earlier, high expression of runx2 and low expression of sox9 were found in DDCS compared with CCS. Using Western blot to detect clinical tissue samples (including 8 CCS samples and 8 DDCS samples) and immunohistochemistry to detect 85 different-grade chondrosarcoma specimens, a high expression of TCF-1 in DDCS tissues was found compared with CCS tissues. This difference in expression was related to patients' prognosis. Results of luciferase, chromatin immunoprecipitation, and gel electrophoresis mobility shift assays demonstrated that TCF-1 protein could bind to the promoter of runx2 gene directly and sox9 gene indirectly. Hence, it could regulate expression of runx2 gene positively and sox9 gene negatively. Furthermore, in vitro and in vivo experiments showed that TCF-1 protein was closely related to the phenotype and aggressiveness of chondrosarcoma. In conclusion, this study proved that TCF-1 participates in the dedifferentiation of DDCS, which may be mediated by runx2 gene and sox9 gene. Also, TCF-1 can be of important prognostic value and a promising therapeutic target for DDCS patients.

  11. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  12. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  13. Dedifferentiated chondrosarcoma with "adamantinoma-like" features: A case report and review of literature.

    Science.gov (United States)

    Gambarotti, M; Righi, A; Frisoni, T; Donati, D; Vanel, D; Sbaraglia, M; Dei Tos, A P

    2017-06-01

    Dedifferentiated chondrosarcoma is defined by the presence of a low grade malignant cartilaginous component juxtaposed to a high grade malignant non-cartilaginous sarcomatous components. Only 4 cases in which the high grade component showed epithelial differentiation have been reported in the literature; three featured a squamous and the one a glandular epithelial component. Here we describe a case of dedifferentiated chondrosarcoma exhibiting epithelial "adamantinoma-like" basaloid features. The patient underwent wide resection of the proximal tibia and post-operative chemotherapy and died 8 months after the diagnosis due to lung and bone metastases. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Regulation of nonmuscle myosin II during 3-methylcholanthrene induced dedifferentiation of C2C12 myotubes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Sumit K.; Saha, Shekhar; Das, Provas; Das, Mahua R.; Jana, Siddhartha S., E-mail: bcssj@iacs.res.in

    2014-08-01

    3-Methylcholanthrene (3MC) induces tumor formation at the site of injection in the hind leg of mice within 110 days. Recent reports reveal that the transformation of normal muscle cells to atypical cells is one of the causes for tumor formation, however the molecular mechanism behind this process is not well understood. Here, we show in an in vitro study that 3MC induces fragmentation of multinucleate myotubes into viable mononucleates. These mononucleates form colonies when they are seeded into soft agar, indicative of cellular transformation. Immunoblot analysis reveals that phosphorylation of myosin regulatory light chain (RLC{sub 20}) is 5.6±0.5 fold reduced in 3MC treated myotubes in comparison to vehicle treated myotubes during the fragmentation of myotubes. In contrast, levels of myogenic factors such as MyoD, Myogenin and cell cycle regulators such as Cyclin D, Cyclin E1 remain unchanged as assessed by real-time PCR array and reverse transcriptase PCR analysis, respectively. Interestingly, addition of the myosin light chain kinase inhibitor, ML-7, enhances the fragmentation, whereas phosphatase inhibitor perturbs the 3MC induced fragmentation of myotubes. These results suggest that decrease in RLC{sub 20} phosphorylation may be associated with the fragmentation step of dedifferentiation. - Highlights: • 3-Methylcholanthrene induces fragmentation of C2C12-myotubes. • Dedifferentiation can be divided into two steps – fragmentation and proliferation. • Fragmentation is associated with rearrangement of nonmuscle myosin II. • Genes associated with differentiation and proliferation are not altered during fragmentation. • Phosphorylation of myosin regulatory light chain is reduced during fragmentation.

  15. Oct4 Methylation-Mediated Silencing As an Epigenetic Barrier Preventing Müller Glia Dedifferentiation in a Murine Model of Retinal Injury.

    Science.gov (United States)

    Reyes-Aguirre, Luis I; Lamas, Monica

    2016-01-01

    Müller glia (MG) is the most abundant glial type in the vertebrate retina. Among its many functions, it is capable of responding to injury by dedifferentiating, proliferating, and differentiating into every cell types lost to damage. This regenerative ability is notoriously absent in mammals. We have previously reported that cultured mammalian MG undergoes a partial dedifferentiation, but fails to fully acquire a progenitor phenotype and differentiate into neurons. This might be explained by a mnemonic mechanism comprised by epigenetic traits, such as DNA methylation. To achieve a better understanding of this epigenetic memory, we studied the expression of pluripotency-associated genes, such as Oct4, Nanog , and Lin28 , which have been reported as necessary for regeneration in fish, at early times after NMDA-induced retinal injury in a mouse experimental model. We found that although Oct4 is expressed rapidly after damage (4 hpi), it is silenced at 24 hpi. This correlates with a significant decrease in the DNA methyltransferase Dnmt3b expression, which returns to basal levels at 24 hpi. By MS-PCR, we observed a decrease in Oct4 methylation levels at 4 and 12 hpi, before returning to a fully methylated state at 24 hpi. To demonstrate that these changes are restricted to MG, we separated these cells using a GLAST antibody coupled with magnetic beads. Finally, intravitreous administration of the DNA-methyltransferase inhibitor SGI-1027 induced Oct4 expression at 24 hpi in MG. Our results suggest that mammalian MG injury-induced dedifferentiation could be restricted by DNA methylation, which rapidly silences Oct4 expression, preventing multipotency acquisition.

  16. The Urodele Limb Regeneration Blastema: The Cell Potential

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2010-01-01

    Full Text Available The developmental potential of the limb regeneration blastema, a mass of mesenchymal cells of mixed origins, was once considered as being pluripotent, capable of forming all cell types. Now evidence asserts that the blastema is a heterogeneous mixture of progenitor cells derived from tissues of the amputation site, with limited developmental potential, plus various stem cells with multipotent abilities. Many specialized cells, bone, cartilage, muscle, and Schwann cells, at the injury site undergo dedifferentiation to a progenitor state and maintain their cell lineage as they redifferentiate in the regenerate. Muscle satellite reserve stem cells that are active in repair of injured muscle may also dedifferentiate and contribute new muscle cells to the limb blastema. Other cells from the dermis act as multipotent stem cells that replenish dermal fibroblasts and differentiate into cartilage. The blastema primordium is a self-organized, equipotential system, but at the cellular level can compensate for specific cell loss. It is able to induce dedifferentiation of introduced exogenous cells and such cells may be transformed into new cell types. Indigenous cells of the blastema associated with amputated tissues may also transform or possibly transdifferentiate into new cell types. The blastema is a microenvironment that enables dedifferentiation, redifferentiation, transdifferentiation, and stem cell activation, leading to progenitor cells of the limb regenerate.

  17. Neural stem cell-encoded temporal patterning delineates an early window of malignant susceptibility in Drosophila.

    Science.gov (United States)

    Narbonne-Reveau, Karine; Lanet, Elodie; Dillard, Caroline; Foppolo, Sophie; Chen, Ching-Huan; Parrinello, Hugues; Rialle, Stéphanie; Sokol, Nicholas S; Maurange, Cédric

    2016-06-14

    Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.

  18. Effects of combination therapy using basic fibroblast growth factor and mature adipocyte-derived dedifferentiated fat (DFAT) cells on skin graft revascularisation.

    Science.gov (United States)

    Asami, Takashi; Soejima, Kazutaka; Kashimura, Tsutomu; Kazama, Tomohiko; Matsumoto, Taro; Morioka, Kosuke; Nakazawa, Hiroaki

    2015-01-01

    Although the benefits of basic fibroblast growth factor (bFGF) for wound healing and angiogenesis are well known, its effects on the process of skin graft revascularisation have not been clarified. It was hypothesised that bFGF would be beneficial to promote taking of skin grafts, but that the effect might be limited in the case of bFGF monotherapy. Therefore, this study investigated the efficacy of combination therapy using bFGF and dedifferentiated fat (DFAT) cells. DFAT cells have multilineage differentiation potential, including into endothelial cells, similar to the case of mesenchymal stem cells (MSC). Commercially available human recombinant bFGF was used. DFAT cells were prepared from SD strain rats as an adipocyte progenitor cell line from mature adipocytes. Full-thickness skin was lifted from the back of SD strain rats and then grafted back to the original wound site. Four groups were established prior to skin grafting: control group (skin graft alone), bFGF group (treated with bFGF), DFAT group (treated with DFAT cells), and combination group (treated with both bFGF and DFAT cells). Tissue specimens for histological examination were harvested 48 hours after grafting. The histological findings for the bFGF group showed vascular augmentation in the grafted dermis compared with the control group. However, the difference in the number of revascularised vessels per unit area did not reach statistical significance against the control group. In contrast, in the combination group, skin graft revascularisation was significantly promoted, especially in the upper dermis. The results suggest that replacement of the existing graft vessels was markedly promoted by the combination therapy using bFGF and DFAT cells, which may facilitate skin graft taking.

  19. Identification of key genes and molecular mechanisms associated with dedifferentiated liposarcoma based on bioinformatic methods

    Directory of Open Access Journals (Sweden)

    Yu H

    2017-06-01

    Full Text Available Hongliang Yu,1 Dong Pei,2 Longyun Chen,2 Xiaoxiang Zhou,2 Haiwen Zhu2 1Department of Radiation Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 2Department of Radiation Oncology, Yancheng Third People’s Hospital, Yancheng, Jiangsu, People’s Republic of China Background: Dedifferentiated liposarcoma (DDLPS is one of the most deadly types of soft tissue sarcoma. To date, there have been few studies dedicated to elucidating the molecular mechanisms behind the disease; therefore, the molecular mechanisms behind this malignancy remain largely unknown.Materials and methods: Microarray profiles of 46 DDLPS samples and nine normal fat controls were extracted from Gene Expression Omnibus (GEO. Quality control for these microarray profiles was performed before analysis. Hierarchical clustering and principal component analysis were used to distinguish the general differences in gene expression between DDLPS samples and the normal fat controls. Differentially expressed genes (DEGs were identified using the Limma package in R. Next, the enriched Gene Ontology (GO terms and Kyoto Encyclopedia of Genes and Genomes (KEGG pathways were obtained using the online tool DAVID (http://david.abcc.ncifcrf.gov/. A protein–protein interaction (PPI network was constructed using the STRING database and Cytoscape software. Furthermore, the hub genes within the PPI network were identified.Results: All 55 microarray profiles were confirmed to be of high quality. The gene expression pattern of DDLPS samples was significantly different from that of normal fat controls. In total, 700 DEGs were identified, and 83 enriched GO terms and three KEGG pathways were obtained. Specifically, within the DEGs of DDLPS samples, several pathways were identified as being significantly enriched, including the PPAR signaling pathway, cell cycle pathway, and pyruvate metabolism pathway

  20. Reversibility of β-Cell-Specific Transcript Factors Expression by Long-Term Caloric Restriction in db/db Mouse

    Directory of Open Access Journals (Sweden)

    Chunjun Sheng

    2016-01-01

    Full Text Available Type 2 diabetes (T2D is characterized by β-cell dedifferentiation, but underlying mechanisms remain unclear. The purpose of the current study was to explore the mechanisms of β-cell dedifferentiation with and without long-term control of calorie intake. We used a diabetes mouse model (db/db to analyze the changes in the expression levels of β-cell-specific transcription factors (TFs and functional factors with long-term caloric restriction (CR. Our results showed that chronic euglycemia was maintained in the db/db mice with long-term CR intervention, and β-cell dedifferentiation was significantly reduced. The expression of Glut2, Pdx1, and Nkx6.1 was reversed, while MafA expression was significantly increased with long-term CR. GLP-1 pathway was reactivated with long-term CR. Our work showed that the course of β-cell dedifferentiation can intervene by long-term control of calorie intake. Key β-cell-specific TFs and functional factors play important roles in maintaining β-cell differentiation. Targeting these factors could optimize T2D therapies.

  1. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype.

    Science.gov (United States)

    Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-11-24

    DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.

  2. Memory reactivation in healthy aging: evidence of stimulus-specific dedifferentiation.

    Science.gov (United States)

    St-Laurent, Marie; Abdi, Hervé; Bondad, Ashley; Buchsbaum, Bradley R

    2014-03-19

    We investigated how aging affects the neural specificity of mental replay, the act of conjuring up past experiences in one's mind. We used functional magnetic resonance imaging (fMRI) and multivariate pattern analysis to quantify the similarity between brain activity elicited by the perception and memory of complex multimodal stimuli. Young and older human adults viewed and mentally replayed short videos from long-term memory while undergoing fMRI. We identified a wide array of cortical regions involved in visual, auditory, and spatial processing that supported stimulus-specific representation at perception as well as during mental replay. Evidence of age-related dedifferentiation was subtle at perception but more salient during mental replay, and age differences at perception could not account for older adults' reduced neural reactivation specificity. Performance on a post-scan recognition task for video details correlated with neural reactivation in young but not in older adults, indicating that in-scan reactivation benefited post-scan recognition in young adults, but that some older adults may have benefited from alternative rehearsal strategies. Although young adults recalled more details about the video stimuli than older adults on a post-scan recall task, patterns of neural reactivation correlated with post-scan recall in both age groups. These results demonstrate that the mechanisms supporting recall and recollection are linked to accurate neural reactivation in both young and older adults, but that age affects how efficiently these mechanisms can support memory's representational specificity in a way that cannot simply be accounted for by degraded sensory processes.

  3. Dedifferentiated chondrosarcoma in patients with multiple osteochondromatosis: report of a case and review of the literature

    International Nuclear Information System (INIS)

    Kilpatrick, S.E.; Pike, E.J.; Ward, W.G.; Pope, T.L.

    1997-01-01

    Multiple osteochondromatosis (MOS) is a familial disorder of autosomal dominant transmission characterized by the development of multiple exostoses and often derangements of epiphyseal cartilage, sometimes resulting in long bone growth retardation. Patients with the disorder appear to be at increased risk for developing secondary chondrosarcomas. Rarely, dedifferentiated chondrosarcomas may also occur. We report a single case of a 27-year-old man with multiple osteochondromatosis who developed a fatal dedifferentiated chondrosarcoma. Radiographically, the neoplasm arose from the pelvis completely destroying the left pubic ramus. Subsequently, the patient underwent preoperative chemotherapy followed by a left external hemipelvectomy. On pathologic examination, the tumor was characterized by high-grade pleomorphic sarcoma sharply juxtaposed to a low-grade chondrosarcoma. The patient ultimately died of widespread metastatic sarcoma. (orig.). With 7 figs

  4. Dedifferentiated chondrosarcoma in patients with multiple osteochondromatosis: report of a case and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, S.E. [Department of Pathology, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States); Pike, E.J. [Department of Radiology, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States); Ward, W.G. [Department of Orthopaedics, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States); Pope, T.L. [Department of Radiology, North Carolina Baptist Hospitals, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC (United States)

    1997-06-01

    Multiple osteochondromatosis (MOS) is a familial disorder of autosomal dominant transmission characterized by the development of multiple exostoses and often derangements of epiphyseal cartilage, sometimes resulting in long bone growth retardation. Patients with the disorder appear to be at increased risk for developing secondary chondrosarcomas. Rarely, dedifferentiated chondrosarcomas may also occur. We report a single case of a 27-year-old man with multiple osteochondromatosis who developed a fatal dedifferentiated chondrosarcoma. Radiographically, the neoplasm arose from the pelvis completely destroying the left pubic ramus. Subsequently, the patient underwent preoperative chemotherapy followed by a left external hemipelvectomy. On pathologic examination, the tumor was characterized by high-grade pleomorphic sarcoma sharply juxtaposed to a low-grade chondrosarcoma. The patient ultimately died of widespread metastatic sarcoma. (orig.). With 7 figs.

  5. The stem cell state in plant development and in response to stress

    Directory of Open Access Journals (Sweden)

    Gideon eGrafi

    2011-10-01

    Full Text Available Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants (with reference to animals and the plastic nature of plant somatic cells (often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from reentry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.

  6. Dedifferentiated retroperitoneal liposarcoma presenting as right inguinal hernia: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Myung; Lee, Su Lim; Ku, Young Mi [Dept. of Radiology, Uijeongbu St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu (Korea, Republic of); Choi, Moon Hyung [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-01-15

    Retroperitoneal liposarcomas usually present as painless, slow-growing abdominal masses. When masses grow large enough to compress surrounding structures, symptoms may occur. Retroperitoneal liposarcoma clinically manifesting as inguinal hernia is a very rare entity; only 11 cases have been reported. Herein, we present radiographic features of a 37-year-old male with a painless palpable mass in the right groin that was identified as dedifferentiated retroperitoneal liposarcoma herniated through the right inguinal canal.

  7. Neurotrophic regulation of fibroblast dedifferentiation during limb skeletal regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Cummings, Gillian M C; Bryant, Susan V; Gardiner, David M

    2010-01-15

    The ability of animals to repair tissue damage is widespread and impressive. Among tissues, the repair and remodeling of bone occurs during growth and in response to injury; however, loss of bone above a threshold amount is not regenerated, resulting in a "critical-size defect" (CSD). The development of therapies to replace or regenerate a CSD is a major focus of research in regenerative medicine and tissue engineering. Adult urodeles (salamanders) are unique in their ability to regenerate complex tissues perfectly, yet like mammals do not regenerate a CSD. We report on an experimental model for the regeneration of a CSD in the axolotl (the Excisional Regeneration Model) that allows for the identification of signals to induce fibroblast dedifferentiation and skeletal regeneration. This regenerative response is mediated in part by BMP signaling, as is the case in mammals; however, a complete regenerative response requires the induction of a population of undifferentiated, regeneration-competent cells. These cells can be induced by signaling from limb amputation to generate blastema cells that can be grafted to the wound, as well as by signaling from a nerve and a wound epithelium to induce blastema cells from fibroblasts within the wound environment. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    International Nuclear Information System (INIS)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E.; Mohanty, Dillip K.

    2014-01-01

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well

  9. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Brandon M.; Leix, Kyle Alexander [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ji, Yajing [Department of Biomedical Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Glaves, Richard Samuel Elliot [Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Ash, David E. [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States); Mohanty, Dillip K., E-mail: Mohan1dk@cmich.edu [Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2014-07-18

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.

  10. Rare aggressive behavior of MDM2-amplified retroperitoneal dedifferentiated liposarcoma, with brain, lung and subcutaneous metastases

    Directory of Open Access Journals (Sweden)

    Imen Ben Salha

    2016-10-01

    Full Text Available Dedifferentiated liposarcoma (DDL is a histologically pleomorphic sarcoma, traditionally defined as well-differentiated liposarcoma with abrupt transition to high grade, nonlipogenic sarcoma. It can occur as part of recurrent well-differentiated liposarcoma, or may arise de novo. DDL most frequently occurs within the retroperitoneum, and while it is prone to local recurrence, it usually has a lower rate of metastasis than other pleomorphic sarcomas. We describe a case of retroperitoneal dedifferentiated liposarcoma in a 63-year-old male, who showed MDM2 amplification with fluorescence in situ hybridization, which displayed unusually aggressive behavior, with brain, lung and subcutaneous soft tissue metastases. As previous reports of metastatic liposarcoma have largely grouped DDL in with other (genetically and clinically distinct liposarcoma subtypes, we highlight and discuss the rare occurrence of brain metastasis in MDM2-amplified retroperitoneal liposarcoma.

  11. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration

    Science.gov (United States)

    Wan, Jin; Ramachandran, Rajesh; Goldman, Daniel

    2011-01-01

    Summary Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that proHB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6b. We also uncover an HB-EGF/Ascl1a/Notch/hb-egfa signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals. PMID:22340497

  12. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  13. Dedifferentiated chondrosarcoma of the larynx: Radiological, gross, microscopic and clinical features.

    Science.gov (United States)

    Magliocca, Kelly R; Edgar, Mark A; Corey, Amanda; Villari, Craig R

    2017-10-01

    Laryngeal chondrosarcoma is an uncommon malignancy with a predilection for the cricoid cartilage of adult male patients. Although rare, identification of aggressive chondrosarcoma variants, such as dedifferentiated chondrosarcoma (DDCS) may influence preoperative patient counseling, definitive surgical management, potential implementation of post-operative adjuvant therapy and prognosis. Herein we describe clinical and imaging features of laryngeal DDCS, the unique perspective of fresh and formalin fixed macroscopic examination, a spectrum of histopathologic findings, and detail the full course of the patient's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dedifferentiated Liposarcoma of the Retroperitoneum with Heterologous Osteosarcomatous Differentiation and a Striking Aneurysmal Bone Cyst-Like Morphology

    NARCIS (Netherlands)

    Van Haverbeke, Carole; Van Dorpe, Jo; Lecoutere, Evelyne; Flucke, Uta; Ferdinande, Liesbeth; Creytens, David

    2017-01-01

    A 69-year-old woman with a 10-year medical history of recurrent retroperitoneal dedifferentiated liposarcoma presented with a 3-cm large hemorrhagic and multicystic left-sided retroperitoneal mass. Histopathological examination of the resected specimen showed a heterogeneous, high-grade mesenchymal

  15. Cell patterning on poly(sodium 4-styrenesulfonate)-patterned fluoropolymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan-Joong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Jung, Chang-Hee; Hwang, In-Tae [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Jung, Chan-Hee, E-mail: jch@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak, E-mail: jaehakchoi@cnu.ac.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hong, Sung-Kwon [Department of Polymer Science and Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2013-10-15

    Highlights: •PFA films were functionalized by ion-beam induced surface graft polymerization. •Poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films were prepared. •Well-organized cell patterns were obtained on PSS-patterned PFA films. •This method is useful to fabricate bio-platforms for cell-based biodevices. -- Abstract: The surface functionalization of bio-inert fluoropolymer films through ion beam-induced surface graft polymerization was investigated to control the cellular behavior. The surface of poly(tetrafluoroethylene-co-perfluoropropl vinyl ether) (PFA) films was selectively activated by 150 keV H{sup +} ion implantation in the presence of a pattern mask and sodium 4-styrenesulfonate (SS) was then graft polymerized onto the implanted PFA films to form hydrophilic poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films. The surface of the resulting PSS-patterned PFA films was investigated in terms of the degree of graft polymerization, chemical structure, chemical composition, wettability, and morphology. The analytical results revealed that PSS was selectively grafted onto the implanted regions of the PFA films. Furthermore, in vitro cell culture on the PSS-patterned PFA films exhibited a preferential adhesion and growth of cells onto the PSS-grafted regions, resulting in well-organized 100 μm cell patterns.

  16. Cell patterning on poly(sodium 4-styrenesulfonate)-patterned fluoropolymer substrate

    International Nuclear Information System (INIS)

    Kim, Wan-Joong; Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Hong, Sung-Kwon

    2013-01-01

    Highlights: •PFA films were functionalized by ion-beam induced surface graft polymerization. •Poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films were prepared. •Well-organized cell patterns were obtained on PSS-patterned PFA films. •This method is useful to fabricate bio-platforms for cell-based biodevices. -- Abstract: The surface functionalization of bio-inert fluoropolymer films through ion beam-induced surface graft polymerization was investigated to control the cellular behavior. The surface of poly(tetrafluoroethylene-co-perfluoropropl vinyl ether) (PFA) films was selectively activated by 150 keV H + ion implantation in the presence of a pattern mask and sodium 4-styrenesulfonate (SS) was then graft polymerized onto the implanted PFA films to form hydrophilic poly(sodium 4-styrenesulfonate) (PSS)-patterned PFA films. The surface of the resulting PSS-patterned PFA films was investigated in terms of the degree of graft polymerization, chemical structure, chemical composition, wettability, and morphology. The analytical results revealed that PSS was selectively grafted onto the implanted regions of the PFA films. Furthermore, in vitro cell culture on the PSS-patterned PFA films exhibited a preferential adhesion and growth of cells onto the PSS-grafted regions, resulting in well-organized 100 μm cell patterns

  17. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells

    OpenAIRE

    Gigoni, Arianna; Costa, Delfina; Gaetani, Massimiliano; Tasso, Roberta; Villa, Federico; Florio, Tullio; Pagano, Aldo

    2016-01-01

    21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possib...

  18. Chondrocyte behavior on nanostructured micropillar polypropylene and polystyrene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Prittinen, Juha [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Jiang, Yu [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Ylärinne, Janne H. [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Pakkanen, Tapani A. [Department of Chemistry, University of Eastern Finland, Joensuu (Finland); Lammi, Mikko J., E-mail: mikko.lammi@uef.fi [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland); Qu, Chengjuan [Department of Applied Physics, University of Eastern Finland, Kuopio (Finland)

    2014-10-01

    This study was aimed to investigate whether patterned polypropylene (PP) or polystyrene (PS) could enhance the chondrocytes' extracellular matrix (ECM) production and phenotype maintenance. Bovine primary chondrocytes were cultured on smooth PP and PS, as well as on nanostructured micropillar PP (patterned PP) and PS (patterned PS) for 2 weeks. Subsequently, the samples were collected for fluorescein diacetate-based cell viability tests, for immunocytochemical assays of types I and II collagen, actin and vinculin, for scanning electronic microscopic analysis of cell morphology and distribution, and for gene expression assays of Sox9, aggrecan, procollagen α{sub 1}(II), procollagen α{sub 1}(X), and procollagen α{sub 2}(I) using quantitative RT-PCR assays. After two weeks of culture, the bovine primary chondrocytes had attached on both patterned PP and PS, while practically no adhesion was observed on smooth PP. However, the best adhesion of the cells was on smooth PS. The cells, which attached on patterned PP and PS surfaces synthesized types I and II collagen. The chondrocytes' morphology was extended, and an abundant ECM network formed around the attached chondrocytes on both patterned PP and PS. Upon passaging, no significant differences on the chondrocyte-specific gene expression were observed, although the highest expression level of aggrecan was observed on the patterned PS in passage 1 chondrocytes, and the expression level of procollagen α{sub 1}(II) appeared to decrease in passaged chondrocytes. However, the expressions of procollagen α{sub 2}(I) were increased in all passaged cell cultures. In conclusion, the bovine primary chondrocytes could be grown on patterned PS and PP surfaces, and they produced extracellular matrix network around the adhered cells. However, neither the patterned PS nor PP could prevent the dedifferentiation of chondrocytes. - Highlights: • Methods to avoid chondrocyte dedifferentiation would be useful for cartilage

  19. Regulation of a TGF-β1-CD147 self-sustaining network in the differentiation plasticity of hepatocellular carcinoma cells.

    Science.gov (United States)

    Wu, J; Lu, M; Li, Y; Shang, Y-K; Wang, S-J; Meng, Y; Wang, Z; Li, Z-S; Chen, H; Chen, Z-N; Bian, H

    2016-10-20

    Cellular plasticity has an important role in the progression of hepatocellular carcinoma (HCC). In this study, the involvement of a TGF-β1-CD147 self-sustaining network in the regulation of the dedifferentiation progress was fully explored in HCC cell lines, hepatocyte-specific basigin/CD147-knockout mice and human HCC tissues. We demonstrated that TGF-β1 stimulation upregulated CD147 expression and mediated the dedifferentiation of HCC cells, whereas all-trans-retinoic acid induced the downregulation of CD147 and promoted differentiation in HCC cells. Overexpression of CD147 induced the dedifferentiation and enhanced the malignancy of HCC cells, and increased the transcriptional expression of TGF-β1 by activating β-catenin. CD147-induced matrix metalloproteinase (MMP) production activated pro-TGF-β1. The activated TGF-β1 signaling subsequently repressed the HNF4α expression via Smad-Snail1 signaling and enhanced the dedifferentiation progress. Hepatocyte-specific basigin/CD147-knockout mice decreased the susceptibility to N-nitrosodiethylamine-induced tumorigenesis by suppressing TGF-β1-CD147 signaling and inhibiting dedifferentiation in hepatocytes during tumor progression. CD147 was positively correlated with TGF-β1 and negatively correlated with HNF4α in human HCC tissues. Positive CD147 staining and lower HNF4α levels in tumor tissues were significantly associated with poor survival of patients with HCC. The overexpression of HNF4α and Smad7 and the deletion of CD147 by lentiviral vectors jointly reprogrammed the expression profile of hepatocyte markers and attenuated malignant properties including proliferation, cell survival and tumor growth of HCC cells. Our results highlight the important role of the TGF-β1-CD147 self-sustaining network in driving HCC development by regulating differentiation plasticity, which provides a strong basis for further investigations of the differentiation therapy of HCC targeting TGF-β1 and CD147.

  20. Culture temperature affects redifferentiation and cartilaginous extracellular matrix formation in dedifferentiated human chondrocytes.

    Science.gov (United States)

    Ito, Akira; Aoyama, Tomoki; Iijima, Hirotaka; Tajino, Junichi; Nagai, Momoko; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi

    2015-05-01

    To date, there have been few studies on how temperature affects the phenotype and metabolism of human chondrocytes. Thus, the purpose of this study was to elucidate the effects of culture temperature on chondrocyte redifferentiation and extracellular matrix (ECM) formation using dedifferentiated mature human chondrocytes in vitro. Dedifferentiated chondrocytes were cultured in a pellet culture system for up to 21 days. The pellets were randomly divided into three groups with different culture temperature (32, 37, and 41°C). Chondrocyte redifferentiation and ECM formation were evaluated by wet weight, messenger ribonucleic acid (mRNA), histological, and biochemical analyses. The results showed that the wet weight and the mRNA expressions of collagen type II A1 and cartilage oligomeric matrix protein at 37°C were higher than the corresponding values at 32°C. The histological and biochemical analyses revealed that the syntheses of type II collagen and proteoglycan were promoted at 37°C compared to those at 32°C, whereas they were considerably inhibited at 41°C. In conclusion, the results obtained herein indicated that temperature affects chondrocyte redifferentiation and ECM formation, and modulation of temperature might thus represent an advantageous means to regulate the phenotype and biosynthetic activity of chondrocytes. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. A Versatile Method of Patterning Proteins and Cells.

    Science.gov (United States)

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Firestein, Bonnie L; Cho, Cheul H; Townes-Anderson, Ellen

    2017-02-26

    Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.

  2. Optimizing Grid Patterns on Photovoltaic Cells

    Science.gov (United States)

    Burger, D. R.

    1984-01-01

    CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.

  3. Changes in tumor vascularity precede microbubble contrast accumulation deficit in the process of dedifferentiation of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Maruyama, Hitoshi; Takahashi, Masanori; Ishibashi, Hiroyuki; Okabe, Shinichiro; Yoshikawa, Masaharu; Yokosuka, Osamu

    2010-01-01

    Purpose: To elucidate the changes in tumor vascularity and microbubble accumulation on contrast-enhanced sonograms, in relation to the dedifferentiation of hepatocellular carcinoma (HCC). Materials and methods: This prospective study enrolled 10 patients with histologically proven HCC (14.4-39.0 mm, 26.1 ± 7.4) showing nodule-in-nodule appearance upon contrast-enhanced computed tomography. Contrast-enhanced ultrasound was performed by harmonic imaging under a low mechanical index (0.22-0.25) during the vascular phase (agent injection to 1 min) and late phase (15 min) following the injection of Sonazoid TM (0.0075 ml/kg). Contrast enhancement in the inner and outer nodules was assessed in comparison with that in adjacent liver parenchyma as hyper-, iso-, or hypo-enhanced. Results: Vascular-phase enhancement of all 10 inner nodules was hyper-enhanced, and that of outer nodules was hyper-enhanced in 3, iso-enhanced in 2, and hypo-enhanced in 5. Late-phase enhancement of inner nodules was hypo-enhanced in 8 and iso-enhanced in 2. Furthermore, late-phase enhancement of outer nodules was iso-enhanced in the 7 lesions that showed iso- or hypo-enhancement in the vascular phase, and hypo-enhanced in the 3 with hyper-enhancement in the vascular phase. Late-phase hypo-enhancement was significantly more frequent in the nodules showing early-phase hyper-enhancement (11/13) than in the nodules showing early-phase iso- or hypo-enhancement (0/7) in both the inner and outer nodules. Conclusion: Dedifferentiation of HCC may be accompanied by changes in tumor vascularity prior to a reduction in microbubble accumulation. Observation of the vascular phase may be more useful than late-phase imaging for the early recognition of HCC dedifferentiation when using contrast-enhanced ultrasound with Sonazoid.

  4. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    International Nuclear Information System (INIS)

    Wan Jin; Zheng Hua; Xiao Honglei; She Zhenjue; Zhou Guomin

    2007-01-01

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons

  5. Sonic hedgehog promotes stem-cell potential of Mueller glia in the mammalian retina

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wan; Hua, Zheng; Honglei, Xiao; Zhenjue, She [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China); Zhou Guomin [Department of Anatomy, Histology and Embryology, Shanghai Medical School, Fudan University, 200032 Shanghai (China)], E-mail: gmzhou185@yahoo.com.cn

    2007-11-16

    Mueller glia have been demonstrated to display stem-cell properties after retinal damage. Here, we report this potential can be regulated by Sonic hedgehog (Shh) signaling. Shh can stimulate proliferation of Mueller glia through its receptor and target gene expressed on them, furthermore, Shh-treated Mueller glia are induced to dedifferentiate by expressing progenitor-specific markers, and then adopt cell fate of rod photoreceptor. Inhibition of signaling by cyclopamine inhibits proliferation and dedifferentiation. Intraocular injection of Shh promotes Mueller glia activation in the photoreceptor-damaged retina, Shh also enhances neurogenic potential by producing more rhodopsin-positive photoreceptors from Mueller glia-derived cells. Together, these results provide evidences that Mueller glia act as potential stem cells in mammalian retina, Shh may have therapeutic effects on these cells for promoting the regeneration of retinal neurons.

  6. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Beckwith, Kai M; Sikorski, Pawel

    2013-01-01

    Live cell arrays are an emerging tool that expand traditional 2D in vitro cell culture, increasing experimental precision and throughput. A patterned cell system was developed by combining the cell-repellent properties of polyvinyl alcohol hydrogels with the cell adhesive properties of self-assembled films of dopamine (polydopamine). It was shown that polydopamine could be patterned onto spin-cast polyvinyl alcohol hydrogels by microcontact printing, which in turn effectively patterned the growth of several cell types (HeLa, human embryonic kidney, human umbilical vein endothelial cells (HUVEC) and prostate cancer). The cells could be patterned in geometries down to single-cell confinement, and it was demonstrated that cell patterns could be maintained for at least 3 weeks. Furthermore, polydopamine could be used to modify poly(vinyl alcohol) in situ using a cell-compatible deposition buffer (1 mg mL −1 dopamine in 25 mM tris with a physiological salt balance). The treatment switched the PVA hydrogel from cell repellent to cell adhesive. Finally, by combining microcontact printing and in situ deposition of polydopamine, patterned co-cultures of the same cell type (HeLa/HeLa) and dissimilar cell types (HeLa/HUVEC) were realized through simple chemistry and could be studied over time. The combination of polyvinyl alcohol and polydopamine was shown to be an attractive route to versatile, patterned cell culture experiments with minimal infrastructure requirements and low complexity. (paper)

  7. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea.

    Directory of Open Access Journals (Sweden)

    Ruth R Taylor

    Full Text Available BACKGROUND: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. METHODOLOGY/PRINCIPAL FINDINGS: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca's, suggesting genetic background influences the rate of re-organisation. CONCLUSIONS/SIGNIFICANCE: The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals

  8. Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs.

    Science.gov (United States)

    Ghosh, Sukla; Roy, Stéphane; Séguin, Carl; Bryant, Susan V; Gardiner, David M

    2008-05-01

    Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.

  9. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiu [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wei, Bin [Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Li, Fenghe, E-mail: lfh_cmu@126.com [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  10. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    International Nuclear Information System (INIS)

    Zeng, Qiu; Wei, Bin; Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong; Li, Fenghe

    2016-01-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  11. Ordered patterns of cell shape and orientational correlation during spontaneous cell migration.

    Directory of Open Access Journals (Sweden)

    Yusuke T Maeda

    Full Text Available BACKGROUND: In the absence of stimuli, most motile eukaryotic cells move by spontaneously coordinating cell deformation with cell movement in the absence of stimuli. Yet little is known about how cells change their own shape and how cells coordinate the deformation and movement. Here, we investigated the mechanism of spontaneous cell migration by using computational analyses. METHODOLOGY: We observed spontaneously migrating Dictyostelium cells in both a vegetative state (round cell shape and slow motion and starved one (elongated cell shape and fast motion. We then extracted regular patterns of morphological dynamics and the pattern-dependent systematic coordination with filamentous actin (F-actin and cell movement by statistical dynamic analyses. CONCLUSIONS/SIGNIFICANCE: We found that Dictyostelium cells in both vegetative and starved states commonly organize their own shape into three ordered patterns, elongation, rotation, and oscillation, in the absence of external stimuli. Further, cells inactivated for PI3-kinase (PI3K and/or PTEN did not show ordered patterns due to the lack of spatial control in pseudopodial formation in both the vegetative and starved states. We also found that spontaneous polarization was achieved in starved cells by asymmetric localization of PTEN and F-actin. This breaking of the symmetry of protein localization maintained the leading edge and considerably enhanced the persistence of directed migration, and overall random exploration was ensured by switching among the different ordered patterns. Our findings suggest that Dictyostelium cells spontaneously create the ordered patterns of cell shape mediated by PI3K/PTEN/F-actin and control the direction of cell movement by coordination with these patterns even in the absence of external stimuli.

  12. Oocyte-like cells induced from mouse spermatogonial stem cells.

    Science.gov (United States)

    Wang, Lu; Cao, Jinping; Ji, Ping; Zhang, Di; Ma, Lianghong; Dym, Martin; Yu, Zhuo; Feng, Lixin

    2012-08-06

    During normal development primordial germ cells (PGCs) derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG) cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs) can also revert back to pluripotency as embryonic stem (ES)-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs) were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and gave rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.

  13. Oocyte-like cells induced from mouse spermatogonial stem cells

    Directory of Open Access Journals (Sweden)

    Wang Lu

    2012-08-01

    Full Text Available Abstract Background During normal development primordial germ cells (PGCs derived from the epiblast are the precursors of spermatogonia and oogonia. In culture, PGCs can be induced to dedifferentiate to pluripotent embryonic germ (EG cells in the presence of various growth factors. Several recent studies have now demonstrated that spermatogonial stem cells (SSCs can also revert back to pluripotency as embryonic stem (ES-like cells under certain culture conditions. However, the potential dedifferentiation of SSCs into PGCs or the potential generation of oocytes from SSCs has not been demonstrated before. Results We report that mouse male SSCs can be converted into oocyte-like cells in culture. These SSCs-derived oocytes (SSC-Oocs were similar in size to normal mouse mature oocytes. They expressed oocyte-specific markers and gave rise to embryos through parthenogenesis. Interestingly, the Y- and X-linked testis-specific genes in these SSC-Oocs were significantly down-regulated or turned off, while oocyte-specific X-linked genes were activated. The gene expression profile appeared to switch to that of the oocyte across the X chromosome. Furthermore, these oocyte-like cells lost paternal imprinting but acquired maternal imprinting. Conclusions Our data demonstrate that SSCs might maintain the potential to be reprogrammed into oocytes with corresponding epigenetic reversals. This study provides not only further evidence for the remarkable plasticity of SSCs but also a potential system for dissecting molecular and epigenetic regulations in germ cell fate determination and imprinting establishment during gametogenesis.

  14. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.

    Science.gov (United States)

    Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko

    2018-02-27

    The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.

  15. The cell pattern correction through design-based metrology

    Science.gov (United States)

    Kim, Yonghyeon; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Lee, Kyusun; Hong, Aeran; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Yeom, Kyehee; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    Starting with the sub 2Xnm node, the process window becomes smaller and tighter than before. Pattern related error budget is required for accurate critical-dimension control of Cell layers. Therefore, lithography has been faced with its various difficulties, such as weird distribution, overlay error, patterning difficulty etc. The distribution of cell pattern and overlay management are the most important factors in DRAM field. We had been experiencing that the fatal risk is caused by the patterns located in the tail of the distribution. The overlay also induces the various defect sources and misalignment issues. Even though we knew that these elements are important, we could not classify the defect type of Cell patterns. Because there is no way to gather massive small pattern CD samples in cell unit block and to compare layout with cell patterns by the CD-SEM. The CD- SEM is used in order to gather these data through high resolution, but CD-SEM takes long time to inspect and extract data because it measures the small FOV. (Field Of View) However, the NGR(E-beam tool) provides high speed with large FOV and high resolution. Also, it's possible to measure an accurate overlay between the target layout and cell patterns because they provide DBM. (Design Based Metrology) By using massive measured data, we extract the result that it is persuasive by applying the various analysis techniques, as cell distribution and defects, the pattern overlay error correction etc. We introduce how to correct cell pattern, by using the DBM measurement, and new analysis methods.

  16. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    International Nuclear Information System (INIS)

    Premnath, Priyatha; Tavangar, Amirhossein; Tan, Bo; Venkatakrishnan, Krishnan

    2015-01-01

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  17. Tuning cell adhesion by direct nanostructuring silicon into cell repulsive/adhesive patterns

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Priyatha, E-mail: priyatha.premnath@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tavangar, Amirhossein, E-mail: atavanga@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Tan, Bo, E-mail: tanbo@ryerson.ca [Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada); Venkatakrishnan, Krishnan, E-mail: venkat@ryerson.ca [Micro/Nanofabrication Laboratory, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3 (Canada)

    2015-09-10

    Developing platforms that allow tuning cell functionality through incorporating physical, chemical, or mechanical cues onto the material surfaces is one of the key challenges in research in the field of biomaterials. In this respect, various approaches have been proposed and numerous structures have been developed on a variety of materials. Most of these approaches, however, demand a multistep process or post-chemical treatment. Therefore, a simple approach would be desirable to develop bio-functionalized platforms for effectively modulating cell adhesion and consequently programming cell functionality without requiring any chemical or biological surface treatment. This study introduces a versatile yet simple laser approach to structure silicon (Si) chips into cytophobic/cytophilic patterns in order to modulate cell adhesion and proliferation. These patterns are fabricated on platforms through direct laser processing of Si substrates, which renders a desired computer-generated configuration into patterns. We investigate the morphology, chemistry, and wettability of the platform surfaces. Subsequently, we study the functionality of the fabricated platforms on modulating cervical cancer cells (HeLa) behaviour. The results from in vitro studies suggest that the nanostructures efficiently repel HeLa cells and drive them to migrate onto untreated sites. The study of the morphology of the cells reveals that cells evade the cytophobic area by bending and changing direction. Additionally, cell patterning, cell directionality, cell channelling, and cell trapping are achieved by developing different platforms with specific patterns. The flexibility and controllability of this approach to effectively structure Si substrates to cell-repulsive and cell-adhesive patterns offer perceptible outlook for developing bio-functionalized platforms for a variety of biomedical devices. Moreover, this approach could pave the way for developing anti-cancer platforms that selectively repel

  18. Cell patterning by laser-assisted bioprinting.

    Science.gov (United States)

    Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien

    2014-01-01

    The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Potential in a single cancer cell to produce heterogeneous morphology, radiosensitivity and gene expression

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Ishikawa, Ken-ichi; Kawai, Seiko; Koyama-Saegusa, Kumiko; Ishikawa, Atsuko; Imai, Takashi; Shimada, Yutaka; Inazawa, Johji

    2005-01-01

    Morphologically heterogeneous colonies were formed from a cultured cell line (KYSE70) established from one human esophageal carcinoma tissue. Two subclones were separated from a single clone (clone 13) of KYSE70 cells. One subclone (clone 13-3G) formed mainly mounding colonies and the other (clone 13-6G) formed flat, diffusive colonies. X-irradiation stimulated the cells to dedifferentiate from the mounding state to the flat, diffusive state. Clone 13-6G cells were more radiosensitive than the other 3 cell lines. Clustering analysis for gene expression level by oligonucleotide microarray demonstrated that in the radiosensitive clone 13-6G cells, expression of genes involved in cell adhesion was upregulated, but genes involved in the response to DNA damage stimulus were downregulated. The data demonstrated that a single cancer cell had the potential to produce progeny heterogeneous in terms of morphology, radiation sensitivity and gene expression, and irradiation enhanced the dedifferentiation of cancer cells. (author)

  20. Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma

    NARCIS (Netherlands)

    Pardali, E.; Schaft, van der D.W.J.; Wiercinska, E.; Gorter, A.; Hogendoorn, P.C.W.; Griffioen, A.W.; Dijke, ten P.

    2011-01-01

    Tumor cell plasticity enables certain types of highly malignant tumor cells to dedifferentiate and engage a plastic multipotent embryonic-like phenotype, which enables them to ‘adapt’ during tumor progression and escape conventional therapeutic strategies. This plastic phenotype of aggressive cancer

  1. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters.

    Science.gov (United States)

    Tetteh, Paul W; Basak, Onur; Farin, Henner F; Wiebrands, Kay; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; de Sauvage, Frederic; van Es, Johan H; van Oudenaarden, Alexander; Clevers, Hans

    2016-02-04

    Intestinal crypts display robust regeneration upon injury. The relatively rare secretory precursors can replace lost stem cells, but it is unknown if the abundant enterocyte progenitors that express the Alkaline phosphate intestinal (Alpi) gene also have this capacity. We created an Alpi-IRES-CreERT2 (Alpi(CreER)) knockin allele for lineage tracing. Marked clones consist entirely of enterocytes and are all lost from villus tips within days. Genetic fate-mapping of Alpi(+) cells before or during targeted ablation of Lgr5-expressing stem cells generated numerous long-lived crypt-villus "ribbons," indicative of dedifferentiation of enterocyte precursors into Lgr5(+) stems. By single-cell analysis of dedifferentiating enterocytes, we observed the generation of Paneth-like cells and proliferative stem cells. We conclude that the highly proliferative, short-lived enterocyte precursors serve as a large reservoir of potential stem cells during crypt regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, A; Graham, G M C; Bryant, S V; Gardiner, D M

    2008-07-15

    Adult urodeles (salamanders) are unique in their ability to regenerate complex organs perfectly. The recently developed Accessory Limb Model (ALM) in the axolotl provides an opportunity to identify and characterize the essential signaling events that control the early steps in limb regeneration. The ALM demonstrates that limb regeneration progresses in a stepwise fashion that is dependent on signals from the wound epidermis, nerves and dermal fibroblasts from opposite sides of the limb. When all the signals are present, a limb is formed de novo. The ALM thus provides an opportunity to identify and characterize the signaling pathways that control blastema morphogenesis and limb regeneration. In the present study, we have utilized the ALM to identity the buttonhead-like zinc-finger transcription factor, Sp9, as being involved in the formation of the regeneration epithelium. Sp9 expression is induced in basal keratinocytes of the apical blastema epithelium in a pattern that is comparable to its expression in developing limb buds, and it thus is an important marker for dedifferentiation of the epidermis. Induction of Sp9 expression is nerve-dependent, and we have identified KGF as an endogenous nerve factor that induces expression of Sp9 in the regeneration epithelium.

  3. Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants.

    Science.gov (United States)

    Müller-Deile, Janina; Bräsen, Jan Hinrich; Pollheimer, Marion; Ratschek, Manfred; Haller, Hermann; Pape, Lars; Schiffer, Mario

    2017-10-01

    Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1) expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that most likely hyperfiltration is the key trigger inducing the

  4. Dedifferentiated chondrosarcoma: A survival analysis of 159 cases from the SEER database (2001-2011).

    Science.gov (United States)

    Strotman, Patrick K; Reif, Taylor J; Kliethermes, Stephanie A; Sandhu, Jasmin K; Nystrom, Lukas M

    2017-08-01

    Dedifferentiated chondrosarcoma is a rare malignancy with reported 5-year overall survival rates ranging from 7% to 24%. The purpose of this investigation is to determine the overall survival of dedifferentiated chondrosarcoma in a modern patient series and how it is impacted by patient demographics, tumor characteristics, and surgical treatment factors. This is a retrospective review of the Surveillance, Epidemiology, and End Results (SEER) database from 2001 to 2011. Kaplan Meier analyses were used for overall and disease-specific survival. Univariable and multivariable cox regression models were used to identify prognostic factors. Five year overall- and disease-specific survival was 18% (95% CI: 12-26%) and 28% (95% CI: 18-37%), respectively. Individuals with extremity tumors had a worse prognosis than individuals with a primary tumor in the chest wall or axial skeleton (HR 0.20, 95% CI: 0.07-0.56; P = 0.002 and HR 0.60, 95% CI: 0.36-0.99; P = 0.04, respectively). Patients with AJCC stage III or IV disease (HR 2.51, 95% CI: 1.50-4.20; P = 0.001), tumors larger than 8 cm (HR 2.17, 95% CI: 1.11-4.27; P = 0.046), metastatic disease at diagnosis (HR 3.25, 95% CI: 1.98-5.33; P chondrosarcoma is poor with a 5-year overall survival of 18%. Patients with a primary tumor located in the chest wall had a better prognosis. Tumors larger than 8 cm, presence of metastases at diagnosis, and treatment without surgical resection were significant predictors of mortality. © 2017 Wiley Periodicals, Inc.

  5. Cell micro-patterning by atom beam exposure

    International Nuclear Information System (INIS)

    Adachi, Taiji; Kajita, Fumiaki; Sato, Katsuya; Matsumoto, Koshi; Tagawa, Masahiro

    2003-01-01

    This study aimed to develop a new cell micro-patterning method by controlling material surface affinity of the cell using atomic oxygen beam exposure. Surfaces of low-density polyethylene (LDPE) and tetrafluoroethylene-hexafluoropropylene (FEP) were exposed to the atomic oxygen beam. On the LDPE surface, the roughness measured by atomic force microscopy (AFM) did not change much, however, the oxygen concentration on the surface measured by X-ray photoelectron spectroscopy (XPS) significantly increased that resulted in increase in wettability. Contrary to this, on the FEP surface, the oxygen concentration showed no significant change, but roughness of the surface remarkably increased and the wettability decreased. As a result of the surface modification, affinity of the osteoblastic cells on the FEP surface increased, which was also confirmed by increase in the cell area. Finally, cell micro-patterning on the FEP surface was carried out based on difference in the affinity between modified and unmodified surfaces patterned by masking method. (author)

  6. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    Science.gov (United States)

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern. © 2013 Wiley Periodicals, Inc.

  7. Fabrication of microstamps and patterned cell network

    International Nuclear Information System (INIS)

    Seong, Nak Seon; Pak, James Jung Ho; Choi, Ju Hee; Ahn, Dong June; Hwang, Seong Min; Lee, Kyung J.

    2002-01-01

    Elastomeric stamps with micrometer-sized grids are fabricated for building biological cell networks by design. Polymerized polydimethyl-siloxane (PDMS) stamps are cast in a variety of different molds prepared by micro-electro mechanical systems (MEMS) technology. Micro square-grid patterns of 3-aminopropyl triethoxy silane (APS) are successfully imprinted on glass plates, and patterned networks of cardiac cells are obtained as designed. The resulting cellular networks clearly demonstrate that cell attachment and growth are greatly favored on APS-treated thin tracks. Here, we report the technical details related to the fabrication of microstamps, to the stamping procedure, and to the culture method. The potential applications of patterned cellular networks are also discussed

  8. Customized color patterning of photovoltaic cells

    Science.gov (United States)

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat; Lentine, Anthony L.; Resnick, Paul J.; Gupta, Vipin P.

    2016-11-15

    Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.

  9. Autonomous patterning of cells on microstructured fine particles

    International Nuclear Information System (INIS)

    Takeda, Iwori; Kawanabe, Masato; Kaneko, Arata

    2015-01-01

    Regularly patterned cells can clarify cellular function and are required in some biochip applications. This study examines cell patterning along microstructures and the effect of microstructural geometry on selective cellular adhesion. Particles can be autonomously assembled on a soda-lime glass substrate that is chemically patterned by immersion in a suspension of fine particles. By adopting various sizes of fine particles, we can control the geometry of the microstructure. Cells adhere more readily to microstructured fine particles than to flat glass substrate. Silica particles hexagonally packed in 5–40 μm line and space microstructures provide an effective cell scaffold on the glass substrate. Cultured cells tend to attach and proliferate along the microstructured region while avoiding the flat region. The difference in cell adhesion is attributed to their geometries, as both of the silica particles and soda-lime glass are hydrophilic related with cell adhesiveness. After cell seeding, cells adhered to the flat region migrated toward the microstructured region. For most of the cells to assemble on the scaffold, the scaffolding microstructures must be spaced by at most 65 μm. - Highlights: • PS and SiO 2 particles provide effective scaffolds for cells. • Cells that adhere to microstructured particles successfully proliferate and differentiate. • Selective adhesion and growth along the scaffold can be achieved by patterning the fine particle microstructure. • Cells adhered to flat regions migrate toward microstructured regions. • Selective adhesion by cells depends on the microstructural geometry; specifically, on the inter-line spacing

  10. Osteogenic differentiation in dedifferentiated liposarcoma: a study of 36 cases in comparison to the cases without ossification.

    Science.gov (United States)

    Yamashita, Kyoko; Kohashi, Kenichi; Yamada, Yuichi; Ishii, Takeaki; Nishida, Yoshihiro; Urakawa, Hiroshi; Ito, Ichiro; Takahashi, Mitsuru; Inoue, Takeshi; Ito, Masafumi; Ohara, Yuuki; Oda, Yoshinao; Toyokuni, Shinya

    2018-04-01

    Ossification is found occasionally in dedifferentiated liposarcoma (DDLPS). The aims of this study were to elucidate whether the formed bone tissue is usually produced by tumour cells or by reactive non-neoplastic cells, and to reveal the clinicopathological characteristics of DDLPS with ossification. We examined 36 cases of ossified DDLPS by comparing them to 31 cases of non-ossified DDLPS. MDM2 amplification was confirmed in osteocytes and/or osteoblastic cells in all but one ossified DDLPS cases (27 of 28) using fluorescence in-situ hybridisation, although the morphological impression of ossification appeared to be mainly metaplastic (27 of 36) or high-grade osteosarcoma-like (six of 36). The bone tissue was often formed predominantly at the periphery of the DDLPS area near the well-differentiated liposarcoma component (18 of 36), and an organised structure such as bone marrow-like differentiation was not uncommon (12 of 36). According to a modified French Fédération Nationale des Centers de Lutte Contre le Cancer (FNCLCC) grading system, ossified DDLPS tended to be lower grade than non-ossified DDLPS (mean grade: 1.88 and 2.15, respectively). Ossification in DDLPS was associated significantly with shorter local recurrence-free survival by multivariate analysis (P = 0.02347), but metaplastic-appearing ossification tended to be associated with longer overall survival (P = 0.1400). The bone tissue formed in DDLPS was mainly neoplastic regardless of its morphology and maturity, which highlighted the osteogenic differentiation of the tumour cells. DDLPS patients with osteogenic differentiation tended to suffer from earlier local recurrences, which did not necessarily lead to poor life outcomes. © 2017 John Wiley & Sons Ltd.

  11. Rhabdoid and Undifferentiated Phenotype in Renal Cell Carcinoma: Analysis of 32 Cases Indicating a Distinctive Common Pathway of Dedifferentiation Frequently Associated With SWI/SNF Complex Deficiency.

    Science.gov (United States)

    Agaimy, Abbas; Cheng, Liang; Egevad, Lars; Feyerabend, Bernd; Hes, Ondřej; Keck, Bastian; Pizzolitto, Stefano; Sioletic, Stefano; Wullich, Bernd; Hartmann, Arndt

    2017-02-01

    Undifferentiated (anaplastic) and rhabdoid cell features are increasingly recognized as adverse prognostic findings in renal cell carcinoma (RCC), but their molecular pathogenesis has not been studied sufficiently. Recent studies identified alterations in the Switch Sucrose nonfermentable (SWI/SNF) chromatin remodeling complex as molecular mechanisms underlying dedifferentiation and rhabdoid features in carcinomas of different organs. We herein have analyzed 32 undifferentiated RCCs having in common an undifferentiated (anaplastic) phenotype, prominent rhabdoid features, or both, irrespective of the presence or absence of conventional RCC component. Cases were stained with 6 SWI/SNF pathway members (SMARCB1, SMARCA2, SMARCA4, ARID1A, SMARCC1, and SMARCC2) in addition to conventional RCC markers. Patients were 20 males and 12 females aged 32 to 85 years (mean, 59). A total of 22/27 patients with known stage presented with ≥pT3. A differentiated component varying from microscopic to major component was detected in 20/32 cases (16 clear cell and 2 cases each chromophobe and papillary RCC). The undifferentiated component varied from rhabdoid dyscohesive cells to large epithelioid to small monotonous anaplastic cells. Variable loss of at least 1 SWI/SNF complex subunit was noted in the undifferentiated/rhabdoid component of 21/32 cases (65%) compared with intact or reduced expression in the differentiated component. A total of 15/17 patients (88%) with follow-up died of metastatic disease (mostly within 1 y). Only 2 patients were disease free at last follow-up (1 and 6 y). No difference in survival, age distribution, or sex was observed between the SWI/SNF-deficient and the SWI/SNF-intact group. This is the first study exploring the role of SWI/SNF deficiency as a potential mechanism underlying undifferentiated and rhabdoid phenotype in RCC. Our results highlight the association between the aggressive rhabdoid phenotype and the SWI/SNF complex deficiency, consistent

  12. An unusual scintigraphic pattern in sickle cell patients

    International Nuclear Information System (INIS)

    Glaser, A.M.; Chen, D.C.P.; Siegel, M.E.; Norris, S.L.; Haywood, L.J.

    1989-01-01

    We reviewed the nuclear medicine files of all patients enrolled in the sickle cell disease clinic who had had scans performed within the previous 5 years. We specifically looked for patterns of tracer uptake in these scans that would correlate with the severe anemia and consequent bone marrow hyperactivity of sickle cell patients. Thirty-three patients were included (21 men and 12 women) with a mean age of 26.8 years (range 17-48 years). The appearance of each of these patients' most recent scans was examined in the areas of the distal femurs, the proximal tibias and the distal tibias; a distinct triangular shaped pattern of increased activity was identified in these areas in a majority of patients. Thirty-three patients without sickle cell disease served as age-matched controls. This pattern was seen in 65.1% (95 out of 146 images) of the sickle cell patients' delayed images and 80.4% (82 out of 102 images) of their blood pool images. In contrast, the control patients demonstrated the triangular pattern in none of their blood pool studies (0%) and only 10.9% of their delayed bone images (P<0.001). The mean age of sickle cell patients with this pattern is 25.6 years which was significantly lower than that of those without this pattern (mean=37.5 years, P<0.05). Given the high prevalence of this unique scintigraphic pattern in a group of patients with known accelerated bone marrow function, these findings may be scintigraphic evidence of bone marrow expansion. The patient's age appears to be an important factor in visualization of this pattern. (orig.)

  13. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions.

    Science.gov (United States)

    Kaji, Hirokazu; Camci-Unal, Gulden; Langer, Robert; Khademhosseini, Ali

    2011-03-01

    Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 2010 Elsevier B.V. All rights reserved.

  14. One-stage focal cartilage defect treatment with bone marrow mononuclear cells and chondrocytes leads to better macroscopic cartilage regeneration compared to microfracture in goats

    NARCIS (Netherlands)

    Bekkers, J.E.J.; Creemers, L.B.; Tsuchida, A.I.; van Rijen, M.H.P.; Custers, R.J.H.; Dhert, W.J.A.; Saris, Daniël B.F.

    2013-01-01

    Objective The combination of chondrocytes and mononuclear fraction (MNF) cells might solve the expansion induced dedifferentiation problem of reimplanted cells in autologous chondrocytes implantation as sufficient cells would be available for direct, one-stage, implantation. Earlier in vitro work

  15. [Lectin-binding patterns and cell kinetics of head and neck squamous cell carcinomas].

    Science.gov (United States)

    Gotoh, T

    1991-01-01

    In order to elucidate the cell characteristics of head and neck squamous cell carcinomas, the cell kinetics and lectin binding patterns were compared with the histological classification and staging of the tumors, using surgically resected materials (maxillary sinus 10, oral cavity 21, pharynx 8, larynx 11). Eight biotinylated lectins (WGA, 1-PHA, ConA, UEA1, RCA1, SBA, DBA, PNA) were applied to the paraffin-embedded sections, and were visualized histochemically by the streptavidin-alkaline phosphatase method. The DNA contents of the isolated carcinoma cells obtained from the adjacent thick sections were evaluated using an epi-illumination cytofluorometer after propidium iodide staining. On lectin histochemistry, the binding pattern of WGA lectin was similar between carcinoma tissues and normal tissues, but the binding was more intense in well differentiated than less differentiated carcinomas. Lymph node metastasis was found to be related to the presence of cells with poor WGA-binding. In the binding patterns of the other lectins, RCA1, SBA and ConA were related to the differentiation of carcinomas, but they were not related to the TNM-classification. DNA cytofluorometry exhibited marked polyploidization, which progressed with the advancement of the clinical and pathological staging of carcinomas. However, the DNA ploidy pattern was not associated with the cell characteristics such as the degree of histological differentiation and the lectin-binding pattern, except that the appearance of aneuploidy had some relationship with the binding-patterns of UEA1 and 1-PHA.

  16. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  17. Voronoi cell patterns: Theoretical model and applications

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2011-11-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We use our model to describe the Voronoi cell patterns of several systems. Specifically, we study the island nucleation with irreversible attachment, the 1D car-parking problem, the formation of second-level administrative divisions, and the pattern formed by the Paris Métro stations.

  18. Graft Growth and Podocyte Dedifferentiation in Donor-Recipient Size Mismatch Kidney Transplants

    Directory of Open Access Journals (Sweden)

    Janina Müller-Deile, MD

    2017-10-01

    Full Text Available Background. Kidney transplantation is the treatment choice for patients with end-stage renal diseases. Because of good long-term outcome, pediatric kidney grafts are also accepted for transplantation in adult recipients despite a significant mismatch in body size and age between donor and recipient. These grafts show a remarkable ability of adaptation to the recipient body and increase in size in a very short period, presumably as an adaptation to hyperfiltration. Methods. We investigated renal graft growth as well as glomerular proliferation and differentiation markers Kiel-67, paired box gene 2 and Wilms tumor protein (WT1 expression in control biopsies from different transplant constellations: infant donor for infant recipient, infant donor for child recipient, infant donor for adult recipient, child donor for child recipient, child donor for adult recipient, and adult donor for an adult recipient. Results. We detected a significant increase in kidney graft size after transplantation in all conditions with a body size mismatch, which was most prominent when an infant donated for a child. Podocyte WT1 expression was comparable in different transplant conditions, whereas a significant increase in WT1 expression could be detected in parietal epithelial cells, when a kidney graft from a child was transplanted into an adult. In kidney grafts that were relatively small for the recipients, we could detect reexpression of podocyte paired box gene 2. Moreover, the proliferation marker Kiel-67 was expressed in glomerular cells in grafts that increased in size after transplantation. Conclusions. Kidney grafts rapidly adapt to the recipient size after transplantation if they are transplanted in a body size mismatch constellation. The increase in transplant size is accompanied by an upregulation of proliferation and dedifferentiation markers in podocytes. The different examined conditions exclude hormonal factors as the key trigger for this growth so that

  19. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  20. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  1. Cell patterning through inkjet printing of one cell per droplet

    International Nuclear Information System (INIS)

    Yamaguchi, Shuichi; Akiyama, Yoshitake; Morishima, Keisuke; Ueno, Akira

    2012-01-01

    The inkjet ejection technology used in printers has been adopted and research has been conducted on manufacturing artificial tissue by patterning cells through micronozzle ejection of small droplets containing multiple cells. However, stable injection of cells has proven difficult, owing to the frequent occurrence of nozzle clogging. In this paper, a piezoelectric inkjet head constructed with a glass capillary that enabled viewing of the nozzle section was developed, the movement of cells ejected from the nozzle tip was analyzed, and a method for stably ejecting cells was verified. A pull–push ejection method was compared with a push–pull ejection method regarding the voltage waveform applied to the piezoelectric element of the head. The push–pull method was found to be more suitable for stable ejection. Further, ejection of one cell per droplet was realized by detecting the position of the cell in the nozzle section and utilizing these position data. Thus, a method for more precise patterning of viable cells at desired position and number was established. This method is very useful and promising not only for biofabrication, 3D tissue construction, cell printing, but also for a number of biomedical application, such as bioMEMS, lab on a chip research field. (paper)

  2. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis.

    Science.gov (United States)

    Dijkman, Henry; Smeets, Bart; van der Laak, Jeroen; Steenbergen, Eric; Wetzels, Jack

    2005-10-01

    Focal segmental glomerulosclerosis (FSGS) is one of the most common patterns of glomerular injury encountered in human renal biopsies. Epithelial hyperplasia, which can be prominent in FSGS, has been attributed to dedifferentiation and proliferation of podocytes. Based on observations in a mouse model of FSGS, we pointed to the role of parietal epithelial cells (PECs). In the present study we investigated the relative role of PECs and podocytes in human idiopathic FSGS. We performed a detailed study of lesions from a patient with recurrent idiopathic FSGS by serial sectioning, marker analysis and three-dimensional reconstruction of glomeruli. We have studied the expression of markers for podocytes, PECs, mesangial cells, endothelium, and myofibroblasts. We also looked at proliferation and composition of the deposited extracellular matrix (ECM). We found that proliferating epithelial cells in FSGS lesions are negative for podocyte and macrophage markers, but stain for PEC markers. The composition of the matrix deposited by these cells is identical to Bowman's capsule. Our study demonstrates that PECs are crucially involved in the pathogenesis of FSGS lesions.

  3. Cell sheet technology and cell patterning for biofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hannachi, Imen Elloumi; Yamato, Masayuki; Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women' s Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo (Japan)

    2009-06-01

    We have developed cell sheet technology as a modern method for the fabrication of functional tissue-like and organ-like structures. This technology allows for a sheet of interconnected cells and cells in full contact with their natural extracellular environment to be obtained. A cell sheet can be patterned and composed according to more than one cell type. The key technology of cell sheet engineering is that a fabricated cell sheet can be harvested and transplanted utilizing temperature-responsive surfaces. In this review, we summarize different aspects of cell sheet engineering and provide a survey of the application of cell sheets as a suitable material for biofabrication and clinics. Moreover, since cell micropatterning is a key tool for cell sheet engineering, in this review we focus on the introduction of our approaches to cell micropatterning and cell co-culture to the principles of automation and how they can be subjected to easy robotics programming. Finally, efforts towards making cell sheet technology suitable for biofabrication and robotic biofabrication are also summarized. (topical review)

  4. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  5. Cell behaviors on micro-patterned porous thin films

    International Nuclear Information System (INIS)

    Phong, Ho Quoc; Wang Shuling; Wang, Meng-Jiy

    2010-01-01

    Thin polymer films with patterned surfaces have drawn tremendous attention in manufacturing advanced electronic, mechanical devices and in biomaterials due to the advantageous properties such as mechanical strength, chemical resistance and optic transparency. The applications can be extended to the fields such as catalysts, antireflection coatings, template for inorganic growth masks, and substrates for cell culturing providing the patterned surface containing micron-sized features. Various methods have been used to fabricate polymers with micro-patterned surfaces such as photolithographic, ink-jet printing, nonsolvent, spin coating in a dry environment, self-organization, and the condensation of monodisperse water droplet on the polymer solution. The physiological functions of mature cells depend on the microenvironment/niche surrounding which can provide proper factors to regulate cell proliferation and differentiation. While designing appropriate scaffolds for tissue engineering, the microstructure is one of the most important factors to be considered. In this work, a facile single-step phase separation method was used to create micro-patterned polymer thin films with concaves or convexes with sizes ranged from 7 to 70 μm. The effects of water content, casting volume and the addition of surfactant on the distribution of pores and substrate morphology were examined. Moreover, detailed observations of fibroblast cells on the micro-patterned thin films were presented to compare and elucidate the roles of surface micro-features and chemical functionalities.

  6. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue.

    Science.gov (United States)

    Ho, Chen-Ta; Lin, Ruei-Zeng; Chen, Rong-Jhe; Chin, Chung-Kuang; Gong, Song-En; Chang, Hwan-You; Peng, Hwei-Ling; Hsu, Long; Yew, Tri-Rung; Chang, Shau-Feng; Liu, Cheng-Hsien

    2013-09-21

    A lobule-mimetic cell-patterning technique for on-chip reconstruction of centimetre-scale liver tissue of heterogeneous hepatic and endothelial cells via an enhanced field-induced dielectrophoresis (DEP) trap is demonstrated and reported. By mimicking the basic morphology of liver tissue, the classic hepatic lobule, the lobule-mimetic-stellate-electrodes array was designed for cell patterning. Through DEP manipulation, well-defined and enhanced spatial electric field gradients were created for in-parallel manipulation of massive individual cells. With this liver-cell patterning labchip design, the original randomly distributed hepatic and endothelial cells inside the microfluidic chamber can be manipulated separately and aligned into the desired pattern that mimicks the morphology of liver lobule tissue. Experimental results showed that both hepatic and endothelial cells were orderly guided, snared, and aligned along the field-induced orientation to form the lobule-mimetic pattern. About 95% cell viability of hepatic and endothelial cells was also observed after cell-patterning demonstration via a fluorescent assay technique. The liver function of CYP450-1A1 enzyme activity showed an 80% enhancement for our engineered liver tissue (HepG2+HUVECs) compared to the non-patterned pure HepG2 for two-day culturing.

  7. Using Haworthia Cultured Cells as an Aid in Teaching Botany

    Science.gov (United States)

    Majumdar, Shyamal K.; Castellano, John M.

    1977-01-01

    Callus induction from species of Haworthia can be done quickly in the laboratory with minimal equipment to study tissue dedifferentiation and cellular redifferentiation. It is shown that the cultured cell can also be used to study and evaluate the effects of various mutagens, carcinogens, and pesticides in controlled environments. (Author/MA)

  8. Generation and characterization of human smooth muscle cell lines derived from atherosclerotic plaque.

    Science.gov (United States)

    Bonin, L R; Madden, K; Shera, K; Ihle, J; Matthews, C; Aziz, S; Perez-Reyes, N; McDougall, J K; Conroy, S C

    1999-03-01

    The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2

  9. Platelet-Rich Plasma Increases the Levels of Catabolic Molecules and Cellular Dedifferentiation in the Meniscus of a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Hye-Rim Lee

    2016-01-01

    Full Text Available Despite the susceptibility to frequent intrinsic and extrinsic injuries, especially in the inner zone, the meniscus does not heal spontaneously owing to its poor vascularity. In this study, the effect of platelet-rich plasma (PRP, containing various growth factors, on meniscal mechanisms was examined under normal and post-traumatic inflammatory conditions. Isolated primary meniscal cells of New Zealand white (NZW rabbits were incubated for 3, 10, 14 and 21 days with PRP(−, 10% PRP (PRP(+, IL(+ or IL(+PRP(+. The meniscal cells were collected and examined using reverse-transcription polymerase chain reaction (RT-PCR. Culture media were examined by immunoblot analyses for matrix metalloproteinases (MMP catabolic molecules. PRP containing growth factors improved the cellular viability of meniscal cells in a concentration-dependent manner at Days 1, 4 and 7. However, based on RT-PCR, meniscal cells demonstrated dedifferentiation, along with an increase in type I collagen in the PRP(+ and in IL(+PRP(+. In PRP(+, the aggrecan expression levels were lower than in the PRP(− until Day 21. The protein levels of MMP-1 and MMP-3 were higher in each PRP group, i.e., PRP(+ and IL(+PRP(+, at each culture time. A reproducible 2-mm circular defect on the meniscus of NZW rabbit was used to implant fibrin glue (control or PRP in vivo. After eight weeks, the lesions in the control and PRP groups were occupied with fibrous tissue, but not with meniscal cells. This study shows that PRP treatment of the meniscus results in an increase of catabolic molecules, especially those related to IL-1α-induced inflammation, and that PRP treatment for an in vivo meniscus injury accelerates fibrosis, instead of meniscal cartilage.

  10. Regulation of Regenerative Responses by Factors in the Extracellular Matrix during Axolotl (Ambystoma mexicanum) Limb Regeneration

    OpenAIRE

    Phan, Anne Quy

    2014-01-01

    Salamanders are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. Axolotl limb regeneration is a stepwise sequence of three requisite processes: (1) scarless wound healing to generate a regenerative wound epithelium, (2) blastema formation by migration, proliferation and dedifferentiation to create a mass of multipotent regeneration-competent progenitor cells, and (3) induction of pattern formation by interaction of cells with opposi...

  11. Slow-Adhering Stem Cells Derived from Injured Skeletal Muscle Have Improved Regenerative Capacity

    Science.gov (United States)

    2011-08-01

    stress urinary incontinence . Urology 2006, 68:449–454 15. Chermansky CJ, Tarin T, Kwon DD, Jankowski RJ, Cannon TW, de Groat WC, Huard J, Chancellor...from control noninjured muscle. These data suggest that traumatic injury may modify stem cell characteristics through trophic factors and improve the...alter the microenvironment of resident muscle cells (ie, stimu- lating cell dedifferentiation on various trophic factors )20,21 and result in profound

  12. Expression of crystallins in cell cultures of lens epithelium following inhibition of mitosis by X-rays. Expression von Kristallinen in kultivierten durch Roentgenstrahlen mitotisch arretierten Linsenepithelzellen

    Energy Technology Data Exchange (ETDEWEB)

    Henrich, C.

    1988-01-18

    Cells from bovine lens epithelium (B26 line) were cultivated in vitro and examined to characterize their growth behaviour patterns. The question as to whether those cells would still show the ability of synthetizing crystallins was investigated on the basis of indirect immunofluorescene using both polyspecific and monospecific antisera. The findings revealed confirmed the results of former studies according to which dedifferentiation processes and marked reductions of crystallin synthesis occurred in rapidly proliferating epithelial cells cultivated in vitro. Inhibitions of proliferation were followed by a time-dependent reappearance of crystallins. The study described here was primarily focused on the arrest of cell proliferation after X-irradiation. It was found that an inhibition of cells during the G{sub o} phase may be achieved through hydroxyurea, indomethacin and X-rays. Beta crystallins can better be expressed than alpha crystallins and the expression of gamma crystallins was seen to be rather poor. (orig./MG).

  13. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration.

    Science.gov (United States)

    Bourget, Jean-Michel; Kérourédan, Olivia; Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain; Devillard, Raphaël

    2016-01-01

    Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro . Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.

  14. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.

    Science.gov (United States)

    Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E

    2018-04-01

    Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint

  15. Collective motion of cells mediates segregation and pattern formation in co-cultures.

    Directory of Open Access Journals (Sweden)

    Elod Méhes

    Full Text Available Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion.

  16. Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration

    Directory of Open Access Journals (Sweden)

    Jean-Michel Bourget

    2016-01-01

    Full Text Available Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs. The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.

  17. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  18. Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics.

    Science.gov (United States)

    Duncan, H F; Smith, A J; Fleming, G J P; Cooper, P R

    2016-05-01

    Dental pulp stem cells (DPSCs) offer significant potential for use in regenerative endodontics, and therefore, identifying cellular regulators that control stem cell fate is critical to devising novel treatment strategies. Stem cell lineage commitment and differentiation are regulated by an intricate range of host and environmental factors of which epigenetic influence is considered vital. Epigenetic modification of DNA and DNA-associated histone proteins has been demonstrated to control cell phenotype and regulate the renewal and pluripotency of stem cell populations. The activities of the nuclear enzymes, histone deacetylases, are increasingly being recognized as potential targets for pharmacologically inducing stem cell differentiation and dedifferentiation. Depending on cell maturity and niche in vitro, low concentration histone deacetylase inhibitor (HDACi) application can promote dedifferentiation of several post-natal and mouse embryonic stem cell populations and conversely increase differentiation and accelerate mineralization in DPSC populations, whilst animal studies have shown an HDACi-induced increase in stem cell marker expression during organ regeneration. Notably, both HDAC and DNA methyltransferase inhibitors have also been demonstrated to dramatically increase the reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) for use in regenerative therapeutic procedures. As the regulation of cell fate will likely remain the subject of intense future research activity, this review aims to describe the current knowledge relating to stem cell epigenetic modification, focusing on the role of HDACi on alteration of DPSC phenotype, whilst presenting the potential for therapeutic application as part of regenerative endodontic regimens. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  20. Cell cycles and proliferation patterns in Haematococcus pluvialis

    Science.gov (United States)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2017-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, nonmotile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  1. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2017-07-01

    Full Text Available The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC-derived hepatocytes (dHeps remains elusive. In this study, we find that hepatogenic differentiation (HD of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs. DNMTs are regulated by transforming growth factor β1 (TGFβ1, which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

  2. Developmental heterogeneity in DNA packaging patterns influences T-cell activation and transmigration.

    Directory of Open Access Journals (Sweden)

    Soumya Gupta

    Full Text Available Cellular differentiation programs are accompanied by large-scale changes in nuclear organization and gene expression. In this context, accompanying transitions in chromatin assembly that facilitates changes in gene expression and cell behavior in a developmental system are poorly understood. Here, we address this gap and map structural changes in chromatin organization during murine T-cell development, to describe an unusual heterogeneity in chromatin organization and associated functional correlates in T-cell lineage. Confocal imaging of DNA assembly in cells isolated from bone marrow, thymus and spleen reveal the emergence of heterogeneous patterns in DNA organization in mature T-cells following their exit from the thymus. The central DNA pattern dominated in immature precursor cells in the thymus whereas both central and peripheral DNA patterns were observed in naïve and memory cells in circulation. Naïve T-cells with central DNA patterns exhibited higher mechanical pliability in response to compressive loads in vitro and transmigration assays in vivo, and demonstrated accelerated expression of activation-induced marker CD69. T-cell activation was characterized by marked redistribution of DNA assembly to a central DNA pattern and increased nuclear size. Notably, heterogeneity in DNA patterns recovered in cells induced into quiescence in culture, suggesting an internal regulatory mechanism for chromatin reorganization. Taken together, our results uncover an important component of plasticity in nuclear organization, reflected in chromatin assembly, during T-cell development, differentiation and transmigration.

  3. Cell adhesion pattern created by OSTE polymers.

    Science.gov (United States)

    Liu, Wenjia; Li, Yiyang; Ding, Xianting

    2017-04-24

    Engineering surfaces with functional polymers is a crucial issue in the field of micro/nanofabrication and cell-material interface studies. For many applications of surface patterning, it does not need cells to attach on the whole surface. Herein, we introduce a novel polymer fabrication protocol of off-stoichiometry thiol-ene (OSTE) polymers to create heterogeneity on the surface by utilizing 3D printing and soft-lithography. By choosing two OSTE polymers with different functional groups, we create a pattern where only parts of the surface can facilitate cell adhesion. We also study the hydrophilic property of OSTE polymers by mixing poly(ethylene glycol) (PEG) directly with pre-polymers and plasma treatments afterwards. Moreover, we investigate the effect of functional groups' excess ratio and hydrophilic property on the cell adhesion ability of OSTE polymers. The results show that the cell adhesion ability of OSTE materials can be tuned within a wide range by the coupling effect of functional groups' excess ratio and hydrophilic property. Meanwhile, by mixing PEG with pre-polymers and undergoing oxygen plasma treatment afterward can significantly improve the hydrophilic property of OSTE polymers.

  4. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    Science.gov (United States)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  5. Case report 141

    International Nuclear Information System (INIS)

    Bonfiglio, M.; Platz, C.E.

    1981-01-01

    The case reported represents another example of dedifferentiation occurring in a benign cartilaginous tumor of bone. Osteosarcoma and fibrosarcoma are generally considered to represent the more malignant counterparts of such dedifferentiation, but studies recently have indicated that malignant fibrous histiocytoma may indeed be a common feature in such dedifferentiated lesions. It is stressed that lesions previously designated histologically as malignant giant cell tumor, when dedifferentiation occurs, may represent a special variant of malignant fibrous histiocytoma. (orig./MG)

  6. Induction of neural stem cell-like cells (NSCLCs) from mouse astrocytes by Bmi1

    International Nuclear Information System (INIS)

    Moon, Jai-Hee; Yoon, Byung Sun; Kim, Bona; Park, Gyuman; Jung, Hye-Youn; Maeng, Isaac; Jun, Eun Kyoung; Yoo, Seung Jun; Kim, Aeree; Oh, Sejong; Whang, Kwang Youn; Kim, Hyunggee; Kim, Dong-Wook; Kim, Ki Dong; You, Seungkwon

    2008-01-01

    Recently, Bmi1 was shown to control the proliferation and self-renewal of neural stem cells (NSCs). In this study, we demonstrated the induction of NSC-like cells (NSCLCs) from mouse astrocytes by Bmi1 under NSC culture conditions. These NSCLCs exhibited the morphology and growth properties of NSCs, and expressed NSC marker genes, including nestin, CD133, and Sox2. In vitro differentiation of NSCLCs resulted in differentiated cell populations containing astrocytes, neurons, and oligodendrocytes. Following treatment with histone deacetylase inhibitors (trichostatin A and valproic acid), the potential of NSCLCs for proliferation, dedifferentiation, and self-renewal was significantly inhibited. Our data indicate that multipotent NSCLCs can be generated directly from astrocytes by the addition of Bmi1

  7. Development of Spatial Distribution Patterns by Biofilm Cells

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke

    2015-01-01

    -pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed, and instead arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single cell level demonstrated that the spatial pattern was the result of an intriguing self......-organization: Small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source, oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed...

  8. Dedifferentiated Liposarcoma in the Retroperitoneum in an Atomic Bomb Survivor: Report of a Case

    Directory of Open Access Journals (Sweden)

    Yukio Nakamura

    2008-09-01

    Full Text Available A 76-year-old Japanese man was admitted to Kosei-Nenkin Hospital (Osaka, Japan in November 2006; his chief complaint was a 10-kg loss in body weight over 3 months prior to admission. Abdominal computed tomography (CT and dynamic magnetic resonance imaging (MRI showed three masses in the retroperitoneum. The patient subsequently underwent surgery. The final histopathological diagnosis of tumors 1 and 2 was malignant fibrous histiocytoma of the retroperitoneum, and tumor 3 was a well-differentiated liposarcoma. By the presence of the liposarcoma, tumor 1 and 2 were thought to be the dedifferentiated areas of liposarcomas. At the age of 16, the patient had been exposed to radiation from the atomic bomb at Hiroshima towards the end of the Second World War. We postulate that in this case, radiation from the atomic bomb may have played an important role in the development of the sarcomas.

  9. Spatially patterned matrix elasticity directs stem cell fate

    Science.gov (United States)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  10. Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells

    Science.gov (United States)

    Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.

    2006-07-01

    We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.

  11. In-vitro chondrogenic potential of synovial stem cells and chondrocytes allocated for autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Kubosch, Eva Johanna; Heidt, Emanuel; Niemeyer, Philipp

    2017-01-01

    Purpose: The use of passaged chondrocytes is the current standard for autologous chondrocyte implantation (ACI). De-differentiation due to amplification and donor site morbidity are known drawbacks highlighting the need for alternative cell sources. Methods: Via clinically validated flow cytometry...... analysis, we compared the expression of human stem cell and cartilage markers (collagen type 2 (Col2), aggrecan (ACAN), CD44) of chondrocytes (CHDR), passaged chondrocytes for ACI (CellGenix™), bone marrow derived mesenchymal stem cells (BMSC), and synovial derived stem cells (SDSC). Results: Primary...

  12. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure.

    Science.gov (United States)

    Chu, H K; Huan, Z; Mills, J K; Yang, J; Sun, D

    2015-02-07

    Cell manipulation is imperative to the areas of cellular biology and tissue engineering, providing them a useful tool for patterning cells into cellular patterns for different analyses and applications. This paper presents a novel approach to perform three-dimensional (3D) cell manipulation and patterning with a multi-layer engineered scaffold. This scaffold structure employed dielectrophoresis as the non-contact mechanism to manipulate cells in the 3D domain. Through establishing electric fields via this multi-layer structure, the cells in the medium became polarized and were attracted towards the interior part of the structure, forming 3D cellular patterns. Experiments were conducted to evaluate the manipulation and the patterning processes with the proposed structure. Results show that with the presence of a voltage input, this multi-layer structure was capable of manipulating different types of biological cells examined through dielectrophoresis, enabling automatic cell patterning in the time-scale of minutes. The effects of the voltage input on the resultant cellular pattern were examined and discussed. Viability test was performed after the patterning operation and the results confirmed that majority of the cells remained viable. After 7 days of culture, 3D cellular patterns were observed through SEM. The results suggest that this scaffold and its automated dielectrophoresis-based patterning mechanism can be used to construct artificial tissues for various tissue engineering applications.

  13. FGF-2b and h-PL Transform Duct and Non-Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes

    Directory of Open Access Journals (Sweden)

    Giulia Donadel

    2017-10-01

    Full Text Available Background: Diabetes mellitus (DM is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1 and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05 increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1, Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2, compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9 were decreased (p < 0.05. These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes.

  14. Recent Advances in Intestinal Stem Cells.

    Science.gov (United States)

    McCabe, Laura R; Parameswaran, Narayanan

    2017-09-01

    The intestine is a dynamic organ with rapid stem cell division generating epithelial cells that mature and apoptose in 3-5 days. Rapid turnover maintains the epithelial barrier and homeostasis. Current insights on intestinal stem cells (ISCs) and their regulation are discussed here. The Lgr5+ ISCs maintain intestinal homeostasis by dividing asymmetrically, but also divide symmetrically to extinguish or replace ISCs. Following radiation or mucosal injury, reserve BMI1+ ISCs as well as other crypt cells can de-differentiate into Lgr5+ ISCs. ISC niche cells, including Paneth, immune and myofibroblast cells secrete factors that regulate ISC proliferation. Finally, several studies indicate that the microbiome metabolites regulate ISC growth. ISC cells can be plastic and integrate a complexity of environmental/niche cues to trigger or suppress proliferation as needed.

  15. Cell pattern in adult human corneal endothelium.

    Directory of Open Access Journals (Sweden)

    Carlos H Wörner

    Full Text Available A review of the current data on the cell density of normal adult human endothelial cells was carried out in order to establish some common parameters appearing in the different considered populations. From the analysis of cell growth patterns, it is inferred that the cell aging rate is similar for each of the different considered populations. Also, the morphology, the cell distribution and the tendency to hexagonallity are studied. The results are consistent with the hypothesis that this phenomenon is analogous with cell behavior in other structures such as dry foams and grains in polycrystalline materials. Therefore, its driving force may be controlled by the surface tension and the mobility of the boundaries.

  16. Identification of transcript regulatory patterns in cell differentiation.

    Science.gov (United States)

    Gusnanto, Arief; Gosling, John Paul; Pope, Christopher

    2017-10-15

    Studying transcript regulatory patterns in cell differentiation is critical in understanding its complex nature of the formation and function of different cell types. This is done usually by measuring gene expression at different stages of the cell differentiation. However, if the gene expression data available are only from the mature cells, we have some challenges in identifying transcript regulatory patterns that govern the cell differentiation. We propose to exploit the information of the lineage of cell differentiation in terms of correlation structure between cell types. We assume that two different cell types that are close in the lineage will exhibit many common genes that are co-expressed relative to those that are far in the lineage. Current analysis methods tend to ignore this correlation by testing for differential expression assuming some sort of independence between cell types. We employ a Bayesian approach to estimate the posterior distribution of the mean of expression in each cell type, by taking into account the cell formation path in the lineage. This enables us to infer genes that are specific in each cell type, indicating the genes are involved in directing the cell differentiation to that particular cell type. We illustrate the method using gene expression data from a study of haematopoiesis. R codes to perform the analysis are available in http://www1.maths.leeds.ac.uk/∼arief/R/CellDiff/. a.gusnanto@leeds.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Probing neural cell behaviors through micro-/nano-patterned chitosan substrates

    International Nuclear Information System (INIS)

    Sung, Chun-Yen; Yang, Chung-Yao; Yeh, J Andrew; Chen, Wen-Shiang; Wang, Yang-Kao; Cheng, Chao-Min

    2015-01-01

    In this study, we describe the development of surface-modified chitosan substrates to examine topographically related Neuro-2a cell behaviors. Different functional groups can be modified on chitosan surfaces to probe Neuro-2a cell morphology. To prepare chitosan substrates with micro/nano-scaled features, we demonstrated an easy-to-handle method that combined photolithography, inductively coupled plasma reactive ion etching, Ag nanoparticle-assisted etching, and solution casting. The results show that Neuro-2a cells preferred to adhere to a flat chitosan surface rather than a nanotextured chitosan surface as evidenced by greater immobilization and differentiation, suggesting that surface topography is crucial for neural patterning. In addition, we developed chitosan substrates with different geometric patterns and flat region depth; this allowed us to re-arrange or re-pattern Neuro-2a cell colonies at desired locations. We found that a polarity-induced micropattern provided the most suitable surface pattern for promoting neural network formation on a chitosan substrate. The cellular polarity of single Neuro-2a cell spreading correlated to a diamond-like geometry and neurite outgrowth was induced from the corners toward the grooves of the structures. This study provide greater insight into neurobiology, including neurotransmitter screening, electrophysiological stimulation platforms, and biomedical engineering. (paper)

  18. Cells immobilized on patterns printed in DNA by an inkjet printer.

    Science.gov (United States)

    Sakurai, Kengo; Teramura, Yuji; Iwata, Hiroo

    2011-05-01

    The ability to two-dimensionally align various kinds of cells freely onto substrate would be a useful tool for analysis of cell-cell interactions. In this study, we aimed to establish a method for attaching cells to the substrate, in which the pattern is drawn by an inkjet printer. Poly-deoxyribonucleic acid (DNA) was immobilized onto the cell surface by use of DNA-conjugated poly(ethylene) glycol-phospholipid (DNA-PEG-lipid), which is the amphiphilic conjugate of PEG-lipid and single-stranded DNA. The surface of the substrate was then modified with the complementary DNA using an inkjet printer. Finally, DNA-immobilized cells were attached onto the substrate through DNA hybridization. The use of the inkjet printer enabled us to draw the DNA pattern accurately on the substrate with a resolution of a few hundred micrometers. DNA-immobilized cells could be attached precisely along the DNA pattern on the substrate. In addition, various kinds of cells could be attached simultaneously by using various sequences of DNA. Our technique is promising for analysis of cell-cell interactions and differentiation induction in stem cell research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Cell patterning without chemical surface modification: Cell cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel

    Science.gov (United States)

    Chen, C. Y.; Barron, J. A.; Ringeisen, B. R.

    2006-10-01

    Cell printing offers the unique ability to directly deposit one or multiple cell types directly onto a surface without the need to chemically pre-treat the surface with lithographic methods. We utilize biological laser printing (BioLP ™) to form patterns of bovine aortic endothelial cells (BAECs) onto a homogeneous cell adherent hydrogel surface. These normal cells are shown to retain near-100% viability post-printing. In order to determine whether BAECs encountered shear and/or heat stress during printing, immunocytochemical staining experiments were performed to detect potential expression of heat shock proteins (HSP) by the deposited cells. Printed BAECs expressed HSP at levels similar to negative control cells, indicating that the BioLP process does not expose cells to damaging levels of stress. However, HSP expression was slightly higher at the highest laser energy studied, suggesting more stress was present under these extreme conditions. Printed BAECs also showed preferential asymmetric growth and migration towards each other and away from the originally printed pattern, demonstrating a retained ability for the cells to communicate post-printing.

  20. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.

    Science.gov (United States)

    Froldi, Francesca; Szuperak, Milan; Weng, Chen-Fang; Shi, Wei; Papenfuss, Anthony T; Cheng, Louise Y

    2015-01-15

    Cellular dedifferentiation is the regression of a cell from a specialized state to a more multipotent state and is implicated in cancer. However, the transcriptional network that prevents differentiated cells from reacquiring stem cell fate is so far unclear. Neuroblasts (NBs), the Drosophila neural stem cells, are a model for the regulation of stem cell self-renewal and differentiation. Here we show that the Drosophila zinc finger transcription factor Nervous fingers 1 (Nerfin-1) locks neurons into differentiation, preventing their reversion into NBs. Following Prospero-dependent neuronal specification in the ganglion mother cell (GMC), a Nerfin-1-specific transcriptional program maintains differentiation in the post-mitotic neurons. The loss of Nerfin-1 causes reversion to multipotency and results in tumors in several neural lineages. Both the onset and rate of neuronal dedifferentiation in nerfin-1 mutant lineages are dependent on Myc- and target of rapamycin (Tor)-mediated cellular growth. In addition, Nerfin-1 is required for NB differentiation at the end of neurogenesis. RNA sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) analysis show that Nerfin-1 administers its function by repression of self-renewing-specific and activation of differentiation-specific genes. Our findings support the model of bidirectional interconvertibility between neural stem cells and their post-mitotic progeny and highlight the importance of the Nerfin-1-regulated transcriptional program in neuronal maintenance. © 2015 Froldi et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Age-related dedifferentiation of cognitive and motor slowing: Insight from the comparison of Hick-Hyman and Fitts’ laws

    Directory of Open Access Journals (Sweden)

    Rita eSleimen-Malkoun

    2013-10-01

    Full Text Available The present study aimed to determine whether the general slowing hypothesis could be extended to the motor domain by comparing cognitive and motor age-related slowing. To achieve this objective, we compared the slopes of Hick-Hyman’s law and Fitts’ law, in young and older adults. The general hypothesis was that, due to the dedifferentiation of cognitive and motor neural resources during aging, the slopes of Hick-Hyman's law and Fitts’ law should become closer, if not similar, in older adults. Ten young adults (mean age = 26 ± 3 years and fourteen older adults (mean age = 78 ± 7 years participated in the experiment. They had to perform a discrete rapid-aiming task and a reaction time task. In the aiming task, five ID levels were used (from 3 to 7 bits by increments of 1.0 bit. Task difficulty was scaled via the manipulation of target distance from home position. In the reaction time task, 5 IDs were selected: 0, 1, 2, 3 and 4 bits, with incompatible S-R associations. Reaction time and movement times were recorded. Efficiency and Brinley regression functions were calculated. Age-related slowing ratios were estimated. Response times increased in both tasks in older adults. The slopes of Hick-Hyman’s law and Fitts’ law were steeper in older adults than in young participants. In young participants, the slope of Hick-Hyman’s law was smaller than that of Fitts’ law. In older adults, no difference was found. Slowing ratios observed in both tasks were equivalent. The present results extended the general slowing hypothesis to the motor domain. They suggested that, due to dedifferentiation of cognitive and motor neural resources, decrease in processing speed acts as a common cause to behavioral slowing in both cognitive and motor tasks.

  2. Design of flow-field patterns for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Rosli, M.I.; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    Fuel cells are electrochemical devices that produce electricity at high efficiency without combustion. Fuel cells are emerging as viable candidates as power sources in many applications, including road vehicles, small-scale power stations, and possibly even portable electronics. This paper addresses the design of flow-field patterns for proton exchange membrane fuel cell (PEMFC). The PEMFC is a low-temperature fuel cell, in which a proton conductive polymer membrane is used as the electrolyte. In PEMFC, flow-field pattern is one important thing that effects the performance of PEMFC. This paper present three types of flow-field pattern that will be consider to be testing using CFD analysis and by experimental. The design look detail on to their shape and dimension to get the best pattern in term of more active electrode area compare to electrode area that will be used. Another advantage and disadvantage for these three type of flow-field patterns from literature also compared in this paper

  3. Patterned carbon nanotubes as a new three-dimensional scaffold for mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Bitirim, Verda Ceylan [Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara (Turkey); Kucukayan-Dogu, Gokce [Institute of Engineering and Science, Material Science and Nanotechnology Graduate Program, Bilkent University, 06800, Ankara (Turkey); Bengu, Erman [Department of Chemistry, Bilkent University, 06800, Ankara (Turkey); Akcali, Kamil Can, E-mail: akcali@fen.bilkent.edu.tr [Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara (Turkey); Bilgen, Bilkent University Genetics and Biotechnology Research Center, 06800, Ankara (Turkey)

    2013-07-01

    We investigated the cellular adhesive features of mesenchymal stem cells (MSC) on non-coated and collagen coated patterned and vertically aligned carbon nanotube (CNT) structures mimicking the natural extra cellular matrix (ECM). Patterning was achieved using the elasto-capillary induced by water treatment on the CNT arrays. After confirmation with specific markers both at transcript and protein levels, MSCs from different passages were seeded on either collagen coated or non-coated patterned CNTs. Adhesion and growth of MSCs on the patterned CNT arrays were examined using scanning electron microscopy image analysis and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. The highest MSC count was observed on the non-coated patterned CNTs at passage zero, while decreasing numbers of MSCs were found at the later passages. Similarly, MTT assay results also revealed a decrease in the viability of the MSCs for the later passages. Overall, the cell count and viability experiments indicated that MSCs were able to better attach to non-coated patterned CNTs compared to those coated with collagen. Therefore, the patterned CNT surfaces can be potentially used as a scaffold mimicking the ECM environment for MSC growth which presents an alternative approach to MSC-based transplantation therapy applications. - Highlights: • Synthesized vertically aligned CNTs were patterned to be used as scaffold. • The growth of mesenchymal stem cells was achieved on the patterned CNTs. • The cell number was counted higher on the patterned CNTs than collagen coated CNTs. • The MTT assay results revealed the cell viability on the patterned CNTs.

  4. Patterned carbon nanotubes as a new three-dimensional scaffold for mesenchymal stem cells

    International Nuclear Information System (INIS)

    Bitirim, Verda Ceylan; Kucukayan-Dogu, Gokce; Bengu, Erman; Akcali, Kamil Can

    2013-01-01

    We investigated the cellular adhesive features of mesenchymal stem cells (MSC) on non-coated and collagen coated patterned and vertically aligned carbon nanotube (CNT) structures mimicking the natural extra cellular matrix (ECM). Patterning was achieved using the elasto-capillary induced by water treatment on the CNT arrays. After confirmation with specific markers both at transcript and protein levels, MSCs from different passages were seeded on either collagen coated or non-coated patterned CNTs. Adhesion and growth of MSCs on the patterned CNT arrays were examined using scanning electron microscopy image analysis and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assays. The highest MSC count was observed on the non-coated patterned CNTs at passage zero, while decreasing numbers of MSCs were found at the later passages. Similarly, MTT assay results also revealed a decrease in the viability of the MSCs for the later passages. Overall, the cell count and viability experiments indicated that MSCs were able to better attach to non-coated patterned CNTs compared to those coated with collagen. Therefore, the patterned CNT surfaces can be potentially used as a scaffold mimicking the ECM environment for MSC growth which presents an alternative approach to MSC-based transplantation therapy applications. - Highlights: • Synthesized vertically aligned CNTs were patterned to be used as scaffold. • The growth of mesenchymal stem cells was achieved on the patterned CNTs. • The cell number was counted higher on the patterned CNTs than collagen coated CNTs. • The MTT assay results revealed the cell viability on the patterned CNTs

  5. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  6. Microfabricated ratchet structures for concentrating and patterning motile bacterial cells

    International Nuclear Information System (INIS)

    Kim, Sang Yub; Lee, Eun Se; Lee, Ho Jae; Lee, Se Yeon; Lee, Sung Kuk; Kim, Taesung

    2010-01-01

    We present a novel microfabricated concentrator for Escherichia coli that can be a stand-alone and self-contained microfluidic device because it utilizes the motility of cells. First of all, we characterize the motility of E. coli cells and various ratcheting structures that can guide cells to move in a desired direction in straight and circular channels. Then, we combine these ratcheting microstructures with the intrinsic tendency of cells to swim on the right side in microchannels to enhance the concentration rates up to 180 fold until the concentrators are fully filled with cells. Furthermore, we demonstrate that cells can be positioned and concentrated with a constant spacing distance on a surface, allowing spatial patterning of motile cells. These results can be applied to biosorption or biosensor devices that are powered by motile cells because they can be highly concentrated without any external mechanical and electrical energy sources. Hence, we believe that the concentrator design holds considerable potential to be applied for concentrating and patterning other motile microbes and providing a versatile structure for motility study of bacterial cells.

  7. Migration and chemokine receptor pattern of colitis-preventing DX5+NKT cells.

    Science.gov (United States)

    Hornung, Matthias; Werner, Jens M; Farkas, Stefan; Schlitt, Hans J; Geissler, Edward K

    2011-11-01

    DX5(+)NKT cells are a subpopulation of NKT cells expressing both T cell receptor and NK cell markers that show an immune-regulating function. Transferred DX5(+)NKT cells from immune competent Balb/c mice can prevent or reduce induced colitis in severe combined immunodeficient (SCID) mice. Here, we investigated the in vivo migration of DX5(+)NKT cells and their corresponding chemokine receptor patterns. DX5(+)NKT cells were isolated from spleens of Balb/c mice and transferred into Balb/c SCID mice. After 2 and 8 days, in vivo migration was examined using in vivo microscopy. In addition, the chemokine receptor pattern was analyzed with fluorescence-activated cell sorting (FACS) and the migration assay was performed. Our results show that labeled DX5(+)NKT cells were primarily detectable in mesenteric lymph nodes and spleen after transfer. After 8 days, DX5(+)NKT cells were observed in the colonic tissues, especially the appendix. FACS analysis of chemokine receptors in DX5(+)NKT cells revealed expression of CCR3, CCR6, CCR9, CXCR3, CXCR4, and CXCR6, but no CCR5, CXCR5, or the lymphoid homing receptor CCR7. Stimulation upregulated especially CCR7 expression, and chemokine receptor patterns were different between splenic and liver DX5(+)NKT cells. These data indicate that colitis-preventing DX5(+)NKT cells need to traffic through lymphoid organs to execute their immunological function at the site of inflammation. Furthermore, DX5(+)NKT cells express a specific chemokine receptor pattern with an upregulation of the lymphoid homing receptor CCR7 after activation.

  8. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Comparative analysis in continuous expansion of bovine and human primary nucleus pulposus cells for tissue repair applications

    Directory of Open Access Journals (Sweden)

    DH Rosenzweig

    2017-03-01

    Full Text Available Autologous NP cell implantation is a potential therapeutic avenue for intervertebral disc (IVD degeneration. However, monolayer expansion of cells isolated from surgical samples may negatively impact matrix production by way of dedifferentiation. Previously, we have used a continuous expansion culture system to successfully preserve a chondrocyte phenotype. In this work, we hypothesised that continuous expansion culture could also preserve nucleus pulposus (NP phenotype. We confirmed that serial passaging drove NP dedifferentiation by significantly decreasing collagen type II, aggrecan and chondroadherin (CHAD gene expression, compared to freshly isolated cells. Proliferation, gene expression profile and matrix production in both culture conditions were compared using primary bovine NP cells. Both standard culture and continuous culture produced clinically relevant cell populations. However, continuous culture cells maintained significantly higher collagen type II, aggrecan and CHAD transcript expression levels. Also, continuous expansion cells generated greater amounts of proteoglycan, collagen type II and aggrecan protein deposition in pellet cultures. To our surprise, continuous expansion of human intervertebral disc cells – isolated from acute herniation tissue – produced less collagen type II, aggrecan and CHAD genes and proteins, compared to standard culture. Also, continuous culture of cells isolated from young non-degenerate tissue did not preserve gene and protein expression, compared to standard culture. These data indicated that primary bovine and human NP cells responded differently to continuous culture, where the positive effects observed for bovine cells did not translate to human cells. Therefore, caution must be exercised when choosing animal models and cell sources for pre-clinical studies.

  10. Pathologic bladder microenvironment attenuates smooth muscle differentiation of skin derived precursor cells: implications for tissue regeneration.

    Directory of Open Access Journals (Sweden)

    Cornelia Tolg

    Full Text Available Smooth muscle cell containing organs (bladder, heart, blood vessels are damaged by a variety of pathological conditions necessitating surgery or organ replacement. Currently, regeneration of contractile tissues is hampered by lack of functional smooth muscle cells. Multipotent skin derived progenitor cells (SKPs can easily be isolated from adult skin and can be differentiated in vitro into contractile smooth muscle cells by exposure to FBS. Here we demonstrate an inhibitory effect of a pathologic contractile organ microenvironment on smooth muscle cell differentiation of SKPs. In vivo, urinary bladder strain induces microenvironmental changes leading to de-differentiation of fully differentiated bladder smooth muscle cells. Co-culture of SKPs with organoids isolated from ex vivo stretched bladders or exposure of SKPs to diffusible factors released by stretched bladders (e.g. bFGF suppresses expression of smooth muscle markers (alpha SMactin, calponin, myocardin, myosin heavy chain as demonstrated by qPCR and immunofluorescent staining. Rapamycin, an inhibitor of mTOR signalling, previously observed to prevent bladder strain induced de-differentiation of fully differentiated smooth muscle cells in vitro, inhibits FBS-induced smooth muscle cell differentiation of undifferentiated SKPs. These results suggest that intended precursor cell differentiation may be paradoxically suppressed by the disease context for which regeneration may be required. Organ-specific microenvironment contexts, particularly prevailing disease, may play a significant role in modulating or attenuating an intended stem cell phenotypic fate, possibly explaining the variable and inefficient differentiation of stem cell constructs in in vivo settings. These observations must be considered in drafting any regeneration strategies.

  11. Topology optimization of front metallization patterns for solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2015-01-01

    This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front

  12. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    Science.gov (United States)

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    Science.gov (United States)

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Prevalence and pattern of sickle cell disease in premarital couples ...

    African Journals Online (AJOL)

    Context: Premarital haemoglobin screening is an important strategy for the control of Sickle Cell Disease. Aims: To determine the prevalence and pattern of sickle cell disease among premarital couples and to assess their attitude to the risk of sickle cell anaemia in their offspring. Settings and Design: A cross sectional ...

  15. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  16. Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.

    Science.gov (United States)

    Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu

    2017-12-01

    Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.

  17. Gelatin-based laser direct-write technique for the precise spatial patterning of cells.

    Science.gov (United States)

    Schiele, Nathan R; Chrisey, Douglas B; Corr, David T

    2011-03-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.

  18. Shavenbaby couples patterning to epidermal cell shape control.

    Directory of Open Access Journals (Sweden)

    Hélène Chanut-Delalande

    2006-09-01

    Full Text Available It is well established that developmental programs act during embryogenesis to determine animal morphogenesis. How these developmental cues produce specific cell shape during morphogenesis, however, has remained elusive. We addressed this question by studying the morphological differentiation of the Drosophila epidermis, governed by a well-known circuit of regulators leading to a stereotyped pattern of smooth cells and cells forming actin-rich extensions (trichomes. It was shown that the transcription factor Shavenbaby plays a pivotal role in the formation of trichomes and underlies all examined cases of the evolutionary diversification of their pattern. To gain insight into the mechanisms of morphological differentiation, we sought to identify shavenbaby's downstream targets. We show here that Shavenbaby controls epidermal cell shape, through the transcriptional activation of different classes of cellular effectors, directly contributing to the organization of actin filaments, regulation of the extracellular matrix, and modification of the cuticle. Individual inactivation of shavenbaby's targets produces distinct trichome defects and only their simultaneous inactivation prevent trichome formation. Our data show that shavenbaby governs an evolutionarily conserved developmental module consisting of a set of genes collectively responsible for trichome formation, shedding new light on molecular mechanisms acting during morphogenesis and the way they can influence evolution of animal forms.

  19. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    Science.gov (United States)

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  20. Lutein Inhibits the Migration of Retinal Pigment Epithelial Cells via Cytosolic and Mitochondrial Akt Pathways (Lutein Inhibits RPE Cells Migration

    Directory of Open Access Journals (Sweden)

    Ching-Chieh Su

    2014-08-01

    Full Text Available During the course of proliferative vitreoretinopathy (PVR, the retinal pigment epithelium (RPE cells will de-differentiate, proliferate, and migrate onto the surfaces of the sensory retina. Several studies have shown that platelet-derived growth factor (PDGF can induce migration of RPE cells via an Akt-related pathway. In this study, the effect of lutein on PDGF-BB-induced RPE cells migration was examined using transwell migration assays and Western blot analyses. We found that both phosphorylation of Akt and mitochondrial translocation of Akt in RPE cells induced by PDGF-BB stimulation were suppressed by lutein. Furthermore, the increased migration observed in RPE cells with overexpressed mitochondrial Akt could also be suppressed by lutein. Our results demonstrate that lutein can inhibit PDGF-BB induced RPE cells migration through the inhibition of both cytoplasmic and mitochondrial Akt activation.

  1. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro

    OpenAIRE

    1988-01-01

    This report deals with the quantitation of both mRNA and transcription activity of type I collagen gene and of three cartilage-specific collagens (types II, IX, and X) during in vitro differentiation of chick chondrocytes. Differentiation was obtained by transferal to suspension culture of dedifferentiated cells passaged for 3 wk as adherent cells. The type I collagen mRNA, highly represented in the dedifferentiated cells, rapidly decreased during chondrocyte differentiation. On the contrary,...

  2. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning

    Directory of Open Access Journals (Sweden)

    Yoshihisa eOda

    2013-12-01

    Full Text Available Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.

  3. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.

    Science.gov (United States)

    Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi

    2017-12-21

    High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.

  4. Three dimensional analysis of histone methylation patterns in normal and tumor cell nuclei

    Directory of Open Access Journals (Sweden)

    M Cremer

    2009-06-01

    Full Text Available Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has been linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly causally involved in the formation of cell type specific heterochromatin compartments, composed of (pericentromeric regions and chromosomal subregions from neighboring chromosome territories, which contain silent genes.

  5. Prevalence and pattern of Lupus erythematosus cell positivity in ...

    African Journals Online (AJOL)

    The prevalence and pattern of lupus erythematosus (LE) cell positivity in diseases in Ile-Ife, Osun state was carried out between January 1999 and June 2004 (5½ years). A total of 96 patients with different diseases were screened for LE cell using standard techniques. Of this number, 63 (65.6%) were females and 33 ...

  6. Histological pattern of Merkel cell carcinoma sentinel lymph node metastasis improves stratification of Stage III patients.

    Science.gov (United States)

    Ko, Jennifer S; Prieto, Victor G; Elson, Paul J; Vilain, Ricardo E; Pulitzer, Melissa P; Scolyer, Richard A; Reynolds, Jordan P; Piliang, Melissa P; Ernstoff, Marc S; Gastman, Brian R; Billings, Steven D

    2016-02-01

    Sentinel lymph node biopsy is used to stage Merkel cell carcinoma, but its prognostic value has been questioned. Furthermore, predictors of outcome in sentinel lymph node positive Merkel cell carcinoma patients are poorly defined. In breast carcinoma, isolated immunohistochemically positive tumor cells have no impact, but in melanoma they are considered significant. The significance of sentinel lymph node metastasis tumor burden (including isolated tumor cells) and pattern of involvement in Merkel cell carcinoma are unknown. In this study, 64 Merkel cell carcinomas involving sentinel lymph nodes and corresponding immunohistochemical stains were reviewed and clinicopathological predictors of outcome were sought. Five metastatic patterns were identified: (1) sheet-like (n=38, 59%); (2) non-solid parafollicular (n=4, 6%); (3) sinusoidal, (n=11, 17%); (4) perivascular hilar (n=1, 2%); and (5) rare scattered parenchymal cells (n=10, 16%). At the time of follow-up, 30/63 (48%) patients had died with 21 (33%) attributable to Merkel cell carcinoma. Patients with pattern 1 metastases had poorer overall survival compared with patients with patterns 2-5 metastases (P=0.03), with 22/30 (73%) deaths occurring in pattern 1 patients. Three (10%) deaths occurred in patients showing pattern 5, all of whom were immunosuppressed. Four (13%) deaths occurred in pattern 3 patients and 1 (3%) death occurred in a pattern 2 patient. In multivariable analysis, the number of positive sentinel lymph nodes (1 or 2 versus >2, PMerkel cell carcinoma, the pattern of sentinel lymph node involvement provides important prognostic information and utilizing this data with other clinicopathological features facilitates risk stratification of Merkel cell carcinoma patients who may have management implications.

  7. Covalent microcontact printing of proteins fro cell patterning

    NARCIS (Netherlands)

    Rozkiewicz, D.I.; Kraan, Yvonne M.; Werten, Marc W.T.; de Wolf, Frits A.; Subramaniam, Vinod; Ravoo, B.J.; Reinhoudt, David

    2006-01-01

    We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An

  8. Hyaluronic acid production and hyaluronidase activity in the newt iris during lens regeneration

    International Nuclear Information System (INIS)

    Kulyk, W.M.; Zalik, S.E.; Dimitrov, E.

    1987-01-01

    The process of lens regeneration in newts involves the dedifferentiation of pigmented iris epithelial cells and their subsequent conversion into lens fibers. In vivo this cell-type conversion is restricted to the dorsal region of the iris. We have examined the patterns of hyaluronate accumulation and endogenous hyaluronidase activity in the newt iris during the course of lens regeneration in vivo. Accumulation of newly synthesized hyaluronate was estimated from the uptake of [ 3 H]glucosamine into cetylpyridinium chloride-precipitable material that was sensitive to Streptomyces hyaluronidase. Endogenous hyaluronidase activity was determined from the quantity of reducing N-acetylhexosamine released upon incubation of iris tissue extract with exogenous hyaluronate substrate. We found that incorporation of label into hyaluronate was consistently higher in the regeneration-activated irises of lentectomized eyes than in control irises from sham-operated eyes. Hyaluronate labeling was higher in the dorsal (lens-forming) region of the iris than in ventral (non-lens-forming) iris tissue during the regeneration process. Label accumulation into hyaluronate was maximum between 10 and 15 days after lentectomy, the period of most pronounced dedifferentiation in the dorsal iris epithelium. Both normal and regenerating irises demonstrated a high level of endogenous hyaluronidase activity with a pH optimum of 3.5-4.0. Hyaluronidase activity was 1.7 to 2 times higher in dorsal iris tissue than in ventral irises both prior to lentectomy and throughout the regeneration process. We suggest that enhanced hyaluronate accumulation may facilitate the dedifferentiation of iris epithelial cells in the dorsal iris and prevent precocious withdrawal from the cell cycle. The high level of hyaluronidase activity in the dorsal iris may promote the turnover and remodeling of extracellular matrix components required for cell-type conversion

  9. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig.

    Science.gov (United States)

    Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik

    2014-08-01

    In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.

  10. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    Science.gov (United States)

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  11. Micro-patterned Nafion membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; te Braake, J.; Aran, H.C.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    In this work, we report the direct methanol fuel cell (DMFC) performance of micro-patterned (μp) Nafion® 117 (N117) membranes prepared by hot embossing and compare them with that of normal N117 and heat and pressure treated (hp) N117 non-patterned (smooth) membranes. Our results suggest that the

  12. Bone Morphogenetic Protein-Induced Msx1 and Msx2 Inhibit Myocardin-Dependent Smooth Muscle Gene Transcription▿

    OpenAIRE

    Hayashi, Ken'ichiro; Nakamura, Seiji; Nishida, Wataru; Sobue, Kenji

    2006-01-01

    During the onset and progression of atherosclerosis, the vascular smooth muscle cell (VSMC) phenotype changes from differentiated to dedifferentiated, and in some cases, this change is accompanied by osteogenic transition, resulting in vascular calcification. One characteristic of dedifferentiated VSMCs is the down-regulation of smooth muscle cell (SMC) marker gene expression. Bone morphogenetic proteins (BMPs), which are involved in the induction of osteogenic gene ex...

  13. Patterned layers of adsorbed extracellular matrix proteins: influence on mammalian cell adhesion.

    Science.gov (United States)

    Dupont-Gillain, C C; Alaerts, J A; Dewez, J L; Rouxhet, P G

    2004-01-01

    Three patterned systems aiming at the control of mammalian cell behavior are presented. The determinant feature common to these systems is the spatial distribution of extracellular matrix (ECM) proteins (mainly collagen) on polymer substrates. This distribution differs from one system to another with respect to the scale at which it is affected, from the supracellular to the supramolecular scale, and with respect to the way it is produced. In the first system, the surface of polystyrene was oxidized selectively to form micrometer-scale patterns, using photolithography. Adsorption of ECM proteins in presence of a competitor was enhanced on the oxidized domains, allowing selective cell adhesion to be achieved. In the second system, electron beam lithography was used to engrave grooves (depth and width approximately 1 microm) on a poly(methyl methacrylate) (PMMA) substratum. No modification of the surface chemistry associated to the created topography could be detected. Cell orientation along the grooves was only observed when collagen was preadsorbed on the substratum. In the third system, collagen adsorbed on PMMA was dried in conditions ensuring the formation of a nanometer-scale pattern. Cell adhesion was enhanced on such patterned collagen layers compared to smooth collagen layers.

  14. Pattern selection near the onset of convection in binary mixtures in cylindrical cells

    International Nuclear Information System (INIS)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2014-01-01

    We report numerical investigations of three-dimensional pattern formation of binary mixtures in a vertical cylindrical container heated from below. Negative separation ratio mixtures, for which the onset of convection occurs via a subcritical Hopf bifurcation, are considered. We focus on the dynamics in the neighbourhood of the initial oscillatory instability and analyze the spatio-temporal properties of the patterns for different values of the aspect ratio of the cell, 0.25≲Γ≲11 (Γ≡R/d, where R is the radius of the cell and d its height). Despite the oscillatory nature of the primary instability, for highly constrained geometries, Γ≲2.5, only pure thermal stationary modes are selected after long transients. As the aspect ratio of the cell increases, for intermediate aspect ratio cells such as Γ=3, multistability and coexistence of stationary and time-dependent patterns is observed. In highly extended cylinders, Γ≈11, the dynamics near the onset is completely different from the pure fluid case, and a startling diversity of confined patterns is observed. Many of these patterns are consistent with experimental observations. Remarkably, though, we have obtained persistent large amplitude highly localized states not reported previously. (paper)

  15. Pattern selection near the onset of convection in binary mixtures in cylindrical cells

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol, E-mail: arantxa@fa.upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, Mòdul B4, 08034 Barcelona (Spain)

    2014-08-01

    We report numerical investigations of three-dimensional pattern formation of binary mixtures in a vertical cylindrical container heated from below. Negative separation ratio mixtures, for which the onset of convection occurs via a subcritical Hopf bifurcation, are considered. We focus on the dynamics in the neighbourhood of the initial oscillatory instability and analyze the spatio-temporal properties of the patterns for different values of the aspect ratio of the cell, 0.25≲Γ≲11 (Γ≡R/d, where R is the radius of the cell and d its height). Despite the oscillatory nature of the primary instability, for highly constrained geometries, Γ≲2.5, only pure thermal stationary modes are selected after long transients. As the aspect ratio of the cell increases, for intermediate aspect ratio cells such as Γ=3, multistability and coexistence of stationary and time-dependent patterns is observed. In highly extended cylinders, Γ≈11, the dynamics near the onset is completely different from the pure fluid case, and a startling diversity of confined patterns is observed. Many of these patterns are consistent with experimental observations. Remarkably, though, we have obtained persistent large amplitude highly localized states not reported previously. (paper)

  16. Logic programming to predict cell fate patterns and retrodict genotypes in organogenesis.

    Science.gov (United States)

    Hall, Benjamin A; Jackson, Ethan; Hajnal, Alex; Fisher, Jasmin

    2014-09-06

    Caenorhabditis elegans vulval development is a paradigm system for understanding cell differentiation in the process of organogenesis. Through temporal and spatial controls, the fate pattern of six cells is determined by the competition of the LET-23 and the Notch signalling pathways. Modelling cell fate determination in vulval development using state-based models, coupled with formal analysis techniques, has been established as a powerful approach in predicting the outcome of combinations of mutations. However, computing the outcomes of complex and highly concurrent models can become prohibitive. Here, we show how logic programs derived from state machines describing the differentiation of C. elegans vulval precursor cells can increase the speed of prediction by four orders of magnitude relative to previous approaches. Moreover, this increase in speed allows us to infer, or 'retrodict', compatible genomes from cell fate patterns. We exploit this technique to predict highly variable cell fate patterns resulting from dig-1 reduced-function mutations and let-23 mosaics. In addition to the new insights offered, we propose our technique as a platform for aiding the design and analysis of experimental data. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Voronoi Cell Patterns: theoretical model and application to submonolayer growth

    Science.gov (United States)

    González, Diego Luis; Einstein, T. L.

    2012-02-01

    We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.

  18. Cortisol patterns are associated with T cell activation in HIV.

    Directory of Open Access Journals (Sweden)

    Sarah Patterson

    Full Text Available The level of T cell activation in untreated HIV disease is strongly and independently associated with risk of immunologic and clinical progression. The factors that influence the level of activation, however, are not fully defined. Since endogenous glucocorticoids are important in regulating inflammation, we sought to determine whether less optimal diurnal cortisol patterns are associated with greater T cell activation.We studied 128 HIV-infected adults who were not on treatment and had a CD4(+ T cell count above 250 cells/µl. We assessed T cell activation by CD38 expression using flow cytometry, and diurnal cortisol was assessed with salivary measurements.Lower waking cortisol levels correlated with greater T cell immune activation, measured by CD38 mean fluorescent intensity, on CD4(+ T cells (r = -0.26, p = 0.006. Participants with lower waking cortisol also showed a trend toward greater activation on CD8(+ T cells (r = -0.17, p = 0.08. A greater diurnal decline in cortisol, usually considered a healthy pattern, correlated with less CD4(+ (r = 0.24, p = 0.018 and CD8(+ (r = 0.24, p = 0.017 activation.These data suggest that the hypothalamic-pituitary-adrenal (HPA axis contributes to the regulation of T cell activation in HIV. This may represent an important pathway through which psychological states and the HPA axis influence progression of HIV.

  19. Sustainable production of azadirachtin from differentiated in vitro cell lines of neem (Azadirachta indica)

    Science.gov (United States)

    Singh, Mithilesh; Chaturvedi, Rakhi

    2013-01-01

    Azadirachtin has high industrial demand due to its immediate application as an ecofriendly, biodegradable biopesticide and also due to its various other significant bioactivities. To date, the only commercially feasible way to produce azadirachtin is extraction from seeds, but their availability is very limited as the tree flowers only once a year and only one-third of the fruits are collected due to operational problems. Further, due to the strict out-breeding nature of the plant, the seeds are highly heterozygous, resulting in inconsistent metabolite production. Therefore, in the present study, to achieve sustainable production of azadirachtin, dedifferentiated and redifferentiated calli derived from various explants of neem—zygotic embryo, leaf and ovary—were investigated for their potential to biosynthesize azadirachtin. High-performance liquid chromatography analysis of the in vitro cell lines showed the presence of azadirachtin in all the samples tested, the content of which in cultured cells varied with explant source and cell differentiation response. The presence of azadirachtin in samples was further confirmed by positive electrospray ionization mass spectroscopy. The zygotic embryo cultures of neem accumulated much higher amounts of azadirachtin than leaf and ovary cultures. Furthermore, organized in vitro callus cultures (redifferentiated) supported higher azadirachtin biosynthesis, while unorganized callus cultures (dedifferentiated) supported the least. The maximum azadirachtin content of 2.33 mg g−1 dry weight was obtained from redifferentiated immature zygotic embryo cultures.

  20. Cancer stem cells and personalized cancer nanomedicine.

    Science.gov (United States)

    Gener, Petra; Rafael, Diana Fernandes de Sousa; Fernández, Yolanda; Ortega, Joan Sayós; Arango, Diego; Abasolo, Ibane; Videira, Mafalda; Schwartz, Simo

    2016-02-01

    Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.

  1. p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance

    International Nuclear Information System (INIS)

    Yang, Ji Yeon; Ha, Seon-Ah; Yang, Yun-Sik; Kim, Jin Woo

    2010-01-01

    Cancer cells recurrently develop into acquired resistance to the administered drugs. The iatrogenic mechanisms of induced chemotherapy-resistance remain elusive and the degree of drug resistance did not exclusively correlate with reductions of drug accumulation, suggesting that drug resistance may involve additional mechanisms. Our aim is to define the potential targets, that makes drug-sensitive MCF-7 breast cancer cells turn to drug-resistant, for the anti-cancer drug development against drug resistant breast cancer cells. Doxorubicin resistant human breast MCF-7 clones were generated. The doxorubicin-induced cell fusion events were examined. Heterokaryons were identified and sorted by FACS. In the development of doxorubicin resistance, cell-fusion associated genes, from the previous results of microarray, were verified using dot blot array and quantitative RT-PCR. The doxorubicin-induced expression patterns of pro-survival and pro-apoptotic genes were validated. YB-1 and ABCB5 were up regulated in the doxorubicin treated MCF-7 cells that resulted in certain degree of genomic instability that accompanied by the drug resistance phenotype. Cell fusion increased diversity within the cell population and doxorubicin resistant MCF-7 cells emerged probably through clonal selection. Most of the drug resistant hybrid cells were anchorage independent. But some of the anchorage dependent MCF-7 cells exhibited several unique morphological appearances suggesting minor population of the fused cells maybe de-differentiated and have progenitor cell like characteristics. Our work provides valuable insight into the drug induced cell fusion event and outcome, and suggests YB-1, GST, ABCB5 and ERK3 could be potential targets for the anti-cancer drug development against drug resistant breast cancer cells. Especially, the ERK-3 serine/threonine kinase is specifically up-regulated in the resistant cells and known to be susceptible to synthetic antagonists

  2. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    Science.gov (United States)

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  3. Nonreassuring fetal heart rate patterns and nucleated red blood cells in term neonates.

    Science.gov (United States)

    Kovalak, E Ebru; Dede, F Suat; Gelisen, Orhan; Dede, Hulya; Haberal, Ali

    2011-05-01

    The aim of this study was to evaluate the association between nonreassuring fetal heart rate patterns during labor and umbilical cord nucleated red blood cell counts. Nucleated red blood cell data was collected prospectively from 41 singleton term neonates presented with nonreassuring fetal heart rate patterns and/or meconium stained amniotic fluid during labor (study group) and from 45 term neonates without any evidence of nonreassuring fetal status (controls). Umbilical artery pH, blood gases and base excess were also determined to investigate the correlation between independent variables. The median nucleated red blood cells per 100 white blood cells were 13 (range 0-37) in the study group and 8 (range 0-21) in the control group. Stepwise regression analysis have identified meconium stained amniotic fluid (R(2) = 0.15, p patterns. Nucleated red blood cells in the cord blood of newborns were found to be elevated in patients with nonreassuring FHR patterns during labor. However, the wide range and the poor correlation of NRBC count with umbilical artery pH and blood gas values limit its clinical utility as a marker for fetal hypoxia.

  4. Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout.

    NARCIS (Netherlands)

    Candal, E.; Anadon, R.; Grip, W.J. de; Rodriguez-Moldes, I.

    2005-01-01

    We have analyzed the patterns of cell proliferation and cell death in the retina and optic tectum of the brown trout (Salmo trutta fario) throughout embryonic and postembryonic stages. Cell proliferation was detected by immunohistochemistry with an antibody against the proliferating cell nuclear

  5. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    Science.gov (United States)

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic instability of genomic methylation patterns in pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ooi Steen KT

    2010-09-01

    Full Text Available Abstract Background Genomic methylation patterns are established during gametogenesis, and perpetuated in somatic cells by faithful maintenance methylation. There have been previous indications that genomic methylation patterns may be less stable in embryonic stem (ES cells than in differentiated somatic cells, but it is not known whether different mechanisms of de novo and maintenance methylation operate in pluripotent stem cells compared with differentiating somatic cells. Results In this paper, we show that ablation of the DNA methyltransferase regulator DNMT3L (DNA methyltransferase 3-like in mouse ES cells renders them essentially incapable of de novo methylation of newly integrated retroviral DNA. We also show that ES cells lacking DNMT3L lose DNA methylation over time in culture, suggesting that DNA methylation in ES cells is the result of dynamic loss and gain of DNA methylation. We found that wild-type female ES cells lose DNA methylation at a much faster rate than do male ES cells; this defect could not be attributed to sex-specific differences in expression of DNMT3L or of any DNA methyltransferase. We also found that human ES and induced pluripotent stem cell lines showed marked but variable loss of methylation that could not be attributed to sex chromosome constitution or time in culture. Conclusions These data indicate that DNA methylation in pluripotent stem cells is much more dynamic and error-prone than is maintenance methylation in differentiated cells. DNA methylation requires DNMT3L in stem cells, but DNMT3L is not expressed in differentiating somatic cells. Error-prone maintenance methylation will introduce unpredictable phenotypic variation into clonal populations of pluripotent stem cells, and this variation is likely to be much more pronounced in cultured female cells. This epigenetic variability has obvious negative implications for the clinical applications of stem cells.

  7. Series Resistance Analysis of Passivated Emitter Rear Contact Cells Patterned Using Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Martha A. T. Lenio

    2012-01-01

    Full Text Available For higher-efficiency solar cell structures, such as the Passivated Emitter Rear Contact (PERC cells, to be fabricated in a manufacturing environment, potentially low-cost techniques such as inkjet printing and metal plating are desirable. A common problem that is experienced when fabricating PERC cells is low fill factors due to high series resistance. This paper identifies and attempts to quantify sources of series resistance in inkjet-patterned PERC cells that employ electroless or light-induced nickel-plating techniques followed by copper light-induced plating. Photoluminescence imaging is used to determine locations of series resistance losses in these inkjet-patterned and plated PERC cells.

  8. The influence of rAAV2-mediated SOX2 delivery into neonatal and adult human RPE cells; a comparative study.

    Science.gov (United States)

    Ezati, Razie; Etemadzadeh, Azadeh; Soheili, Zahra-Soheila; Samiei, Shahram; Ranaei Pirmardan, Ehsan; Davari, Malihe; Najafabadi, Hoda Shams

    2018-02-01

    Cell replacement is a promising therapy for degenerative diseases like age-related macular degeneration (AMD). Since the human retina lacks regeneration capacity, much attention has been directed toward persuading for cells that can differentiate into retinal neurons. In this report, we have investigated reprogramming of the human RPE cells and concerned the effect of donor age on the cellular fate as a critical determinant in reprogramming competence. We evaluated the effect of SOX2 over-expression in human neonatal and adult RPE cells in cultures. The coding region of human SOX2 gene was cloned into adeno-associated virus (AAV2) and primary culture of human neonatal/adult RPE cells were infected by recombinant virus. De-differentiation of RPE to neural/retinal progenitor cells was investigated by quantitative real-time PCR and ICC for neural/retinal progenitor cells' markers. Gene expression analysis showed 80-fold and 12-fold over-expression for SOX2 gene in infected neonatal and adult hRPE cells, respectively. The fold of increase for Nestin in neonatal and adult hRPE cells was 3.8-fold and 2.5-fold, respectively. PAX6 expression was increased threefold and 2.5-fold in neonatal/adult treated cultures. Howbeit, we could not detect rhodopsin, and CHX10 expression in neonatal hRPE cultures and expression of rhodopsin in adult hRPE cells. Results showed SOX2 induced human neonatal/adult RPE cells to de-differentiate toward retinal progenitor cells. However, the increased number of PAX6, CHX10, Thy1, and rhodopsin positive cells in adult hRPE treated cultures clearly indicated the considerable generation of neuro-retinal terminally differentiated cells. © 2017 Wiley Periodicals, Inc.

  9. Control of cell nucleus shapes via micropillar patterns.

    Science.gov (United States)

    Pan, Zhen; Yan, Ce; Peng, Rong; Zhao, Yingchun; He, Yao; Ding, Jiandong

    2012-02-01

    We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal

    Science.gov (United States)

    Meyer, Heather M; Teles, José; Formosa-Jordan, Pau; Refahi, Yassin; San-Bento, Rita; Ingram, Gwyneth; Jönsson, Henrik; Locke, James C W; Roeder, Adrienne H K

    2017-01-01

    Multicellular development produces patterns of specialized cell types. Yet, it is often unclear how individual cells within a field of identical cells initiate the patterning process. Using live imaging, quantitative image analyses and modeling, we show that during Arabidopsis thaliana sepal development, fluctuations in the concentration of the transcription factor ATML1 pattern a field of identical epidermal cells to differentiate into giant cells interspersed between smaller cells. We find that ATML1 is expressed in all epidermal cells. However, its level fluctuates in each of these cells. If ATML1 levels surpass a threshold during the G2 phase of the cell cycle, the cell will likely enter a state of endoreduplication and become giant. Otherwise, the cell divides. Our results demonstrate a fluctuation-driven patterning mechanism for how cell fate decisions can be initiated through a random yet tightly regulated process. DOI: http://dx.doi.org/10.7554/eLife.19131.001 PMID:28145865

  11. Stomatal cell wall composition: distinctive structural patterns associated with different phylogenetic groups.

    Science.gov (United States)

    Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar

    2017-04-01

    Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in

  12. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.

    Science.gov (United States)

    Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H

    2016-03-01

    Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of

  13. Infiltration patterns in monoclonal plasma cell disorders: correlation of magnetic resonance imaging with matched bone marrow histology

    Energy Technology Data Exchange (ETDEWEB)

    Andrulis, Mindaugas [Institute of Pathology, University of Heidelberg, Heidelberg (Germany); Bäuerle, Tobias [Department of Diagnostic and Interventional Radiology, University of Hamburg, Hamburg (Germany); Goldschmidt, Hartmut [Department of Hematology and Oncology, University of Heidelberg, Heidelberg (Germany); Delorme, Stefan [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Landgren, Ola [Multiple Myeloma Section, Metabolism Branch, National Cancer Institute, Bethesda (United States); Schirmacher, Peter [Institute of Pathology, University of Heidelberg, Heidelberg (Germany); Hillengass, Jens, E-mail: jens.hillengass@med.uni-heidelberg.de [Department of Hematology and Oncology, University of Heidelberg, Heidelberg (Germany); Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-06-15

    Objectives: To investigate how plasma cell infiltration patterns detected by MRI match the plasma cell distribution in bone marrow biopsy. Methods: We assessed 50 patients with monoclonal plasma cell disorders of all clinical stages. MRI infiltration pattern was compared with matched BM histology from the same anatomic region. Results: MRI revealed a minimal (n = 11, 22%), focal (n = 5, 10%), diffuse (n = 14, 28%) and mixed (n = 20, 40%) infiltration pattern. Diffuse MRI pattern was predominant in smoldering myeloma patients whereas the MRI patterns with “focal component” (i.e. focal and mixed) were most common in symptomatic myeloma (p < 0.01). In histology an interstitial (n = 13, 26%), nodular (n = 23, 46%) and packed marrow (n = 14, 28%) was found respectively. All three histological types of infiltration were observed in patients with diffuse and mixed MRI patterns. Minimal MRI pattern was found in all MGUS patients and was associated with an interstitial BM infiltration. In two patients with minimal MRI pattern an extensive micro-nodular BM infiltration was found in histology. Conclusions: Infiltration patterns in MRI represent different histological growth patterns of plasma cells, but the MRI resolution is not sufficient to visualize micro-nodular aggregates of plasma cells.

  14. Infiltration patterns in monoclonal plasma cell disorders: correlation of magnetic resonance imaging with matched bone marrow histology

    International Nuclear Information System (INIS)

    Andrulis, Mindaugas; Bäuerle, Tobias; Goldschmidt, Hartmut; Delorme, Stefan; Landgren, Ola; Schirmacher, Peter; Hillengass, Jens

    2014-01-01

    Objectives: To investigate how plasma cell infiltration patterns detected by MRI match the plasma cell distribution in bone marrow biopsy. Methods: We assessed 50 patients with monoclonal plasma cell disorders of all clinical stages. MRI infiltration pattern was compared with matched BM histology from the same anatomic region. Results: MRI revealed a minimal (n = 11, 22%), focal (n = 5, 10%), diffuse (n = 14, 28%) and mixed (n = 20, 40%) infiltration pattern. Diffuse MRI pattern was predominant in smoldering myeloma patients whereas the MRI patterns with “focal component” (i.e. focal and mixed) were most common in symptomatic myeloma (p < 0.01). In histology an interstitial (n = 13, 26%), nodular (n = 23, 46%) and packed marrow (n = 14, 28%) was found respectively. All three histological types of infiltration were observed in patients with diffuse and mixed MRI patterns. Minimal MRI pattern was found in all MGUS patients and was associated with an interstitial BM infiltration. In two patients with minimal MRI pattern an extensive micro-nodular BM infiltration was found in histology. Conclusions: Infiltration patterns in MRI represent different histological growth patterns of plasma cells, but the MRI resolution is not sufficient to visualize micro-nodular aggregates of plasma cells

  15. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    Science.gov (United States)

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  16. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  17. Cellulose synthesis inhibition, cell expansion, and patterns of cell wall deposition in Nitella internodes

    International Nuclear Information System (INIS)

    Richmond, P.A.; Metraux, J.P.

    1984-01-01

    The authors have investigated the pattern of wall deposition and maturation and correlated it with cell expansion and cellulose biosynthesis. The herbicide 2,6-dichlorobenzonitrile (DCB) was found to be a potent inhibitor of cellulose synthesis, but not of cell expansion in Nitella internodal cells. Although cellulose synthesis is inhibited during DCB treatment, matrix substances continue to be synthesized and deposited. The inhibition of cellulose microfibril deposition can be demonstrated by various techniques. These results demonstrate that matrix deposition is by apposition, not by intussusception, and that the previously deposited wall moves progressively outward while stretching and thinning as a result of cell expansion

  18. Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.

    Science.gov (United States)

    Carlier, Aurélie; Skvortsov, Gözde Akdeniz; Hafezi, Forough; Ferraris, Eleonora; Patterson, Jennifer; Koç, Bahattin; Van Oosterwyck, Hans

    2016-05-17

    Three-dimensional (3D) bioprinting is a rapidly advancing tissue engineering technology that holds great promise for the regeneration of several tissues, including bone. However, to generate a successful 3D bone tissue engineering construct, additional complexities should be taken into account such as nutrient and oxygen delivery, which is often insufficient after implantation in large bone defects. We propose that a well-designed tissue engineering construct, that is, an implant with a specific spatial pattern of cells in a matrix, will improve the healing outcome. By using a computational model of bone regeneration we show that particular cell patterns in tissue engineering constructs are able to enhance bone regeneration compared to uniform ones. We successfully bioprinted one of the most promising cell-gradient patterns by using cell-laden hydrogels with varying cell densities and observed a high cell viability for three days following the bioprinting process. In summary, we present a novel strategy for the biofabrication of bone tissue engineering constructs by designing cell-gradient patterns based on a computational model of bone regeneration, and successfully bioprinting the chosen design. This integrated approach may increase the success rate of implanted tissue engineering constructs for critical size bone defects and also can find a wider application in the biofabrication of other types of tissue engineering constructs.

  19. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  20. Internet and cell phone usage patterns among young adults with intellectual disabilities.

    Science.gov (United States)

    Jenaro, Cristina; Flores, Noelia; Cruz, Maribel; Pérez, Ma Carmen; Vega, Vanessa; Torres, Víctor A

    2018-03-01

    The risks and opportunities associated with the use of technologies are of growing research interest. Patterns of technology usage illuminate these opportunities and risks. However, no studies have assessed the usage patterns (frequency, duration, and intensity) and related factors in young people with intellectual disabilities. Questionnaires on Internet and cell phone usage patterns, the Internet Over-Use Scale and the Cell-Phone Over-Use Scale, as well as the Beck Depression Inventory were filled out in one-on-one interviews of 216 youth with intellectual disabilities. Young people with disabilities make more social and recreational rather than educational use of these tools, and show higher rates of excessive use of both technologies than a comparison group of 410 young people without disabilities. Also, their overuse is associated with other unhealthy behaviors. The framework of support needs of people with disabilities should be considered to promote healthy Internet and cell phone use. © 2017 John Wiley & Sons Ltd.

  1. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    Science.gov (United States)

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  2. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  3. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    Science.gov (United States)

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  4. Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

    Science.gov (United States)

    Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu

    2012-01-01

    Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953

  5. Detection of viability of micro-algae cells by optofluidic hologram pattern.

    Science.gov (United States)

    Wang, Junsheng; Yu, Xiaomei; Wang, Yanjuan; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    A rapid detection of micro-algae activity is critical for analysis of ship ballast water. A new method for detecting micro-algae activity based on lens-free optofluidic holographic imaging is presented in this paper. A compact lens-free optofluidic holographic imaging device was developed. This device is mainly composed of a light source, a small through-hole, a light propagation module, a microfluidic chip, and an image acquisition and processing module. The excited light from the light source passes through a small hole to reach the surface of the micro-algae cells in the microfluidic chip, and a holographic image is formed by the diffraction light of surface of micro-algae cells. The relation between the characteristics in the hologram pattern and the activity of micro-algae cells was investigated by using this device. The characteristics of the hologram pattern were extracted to represent the activity of micro-algae cells. To demonstrate the accuracy of the presented method and device, four species of micro-algae cells were employed as the test samples and the comparison experiments between the alive and dead cells of four species of micro-algae were conducted. The results show that the developed method and device can determine live/dead microalgae cells accurately.

  6. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    International Nuclear Information System (INIS)

    Salamon, Achim; Jonitz-Heincke, Anika; Adam, Stefanie; Rychly, Joachim; Müller-Hilke, Brigitte; Bader, Rainer; Lochner, Katrin; Peters, Kirsten

    2013-01-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  7. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Achim, E-mail: achim.salamon@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Jonitz-Heincke, Anika, E-mail: anika.jonitz@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Adam, Stefanie, E-mail: stefanie.adam@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Rychly, Joachim, E-mail: joachim.rychly@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany); Müller-Hilke, Brigitte, E-mail: brigitte.mueller-hilke@med.uni-rostock.de [Institute of Immunology, Rostock University Medical Center, Schillingallee 68, D-18057 Rostock (Germany); Bader, Rainer, E-mail: rainer.bader@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Lochner, Katrin, E-mail: katrin.lochner@med.uni-rostock.de [Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Straße 142, D-18057 Rostock (Germany); Peters, Kirsten, E-mail: kirsten.peters@med.uni-rostock.de [Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock (Germany)

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  8. Hydrogel microfluidics for the patterning of pluripotent stem cells

    Science.gov (United States)

    Cosson, S.; Lutolf, M. P.

    2014-03-01

    Biomolecular signaling is of utmost importance in governing many biological processes such as the patterning of the developing embryo where biomolecules regulate key cell-fate decisions. In vivo, these factors are presented in a spatiotemporally tightly controlled fashion. Although state-of-the-art microfluidic technologies allow precise biomolecule delivery in time and space, long-term (stem) cell culture at the micro-scale is often far from ideal due to medium evaporation, limited space for cell growth or shear stress. To overcome these challenges, we here introduce a concept based on hydrogel microfluidics for decoupling conventional, macro-scale cell culture from precise biomolecule delivery through a gel layer. We demonstrate the spatiotemporally controlled neuronal commitment of mouse embryonic stem cells via delivery of retinoic acid gradients. This technique should be useful for testing the effect of dose and timing of biomolecules, singly or in combination, on stem cell fate.

  9. Time-sequential observation of spindle and phragmoplast orientation in BY-2 cells with altered cortical actin microfilament patterning.

    Science.gov (United States)

    Kojo, Kei H; Yasuhara, Hiroki; Hasezawa, Seiichiro

    2014-01-01

    Precise division plane determination is essential for plant development. At metaphase, a dense actin microfilament meshwork appears on both sides of the cell center, forming a characteristic cortical actin microfilament twin peak pattern in BY-2 cells. We previously reported a strong correlation between altered cortical actin microfilament patterning and an oblique mitotic spindle orientation, implying that these actin microfilament twin peaks play a role in the regulation of mitotic spindle orientation. In the present study, time-sequential observation was used to reveal the progression from oblique phragmoplast to oblique cell plate orientation in cells with altered cortical actin microfilament patterning. In contrast to cells with normal actin microfilament twin peaks, oblique phragmoplast reorientation was rarely observed in cells with altered cortical actin microfilament patterning. These results support the important roles of cortical actin microfilament patterning in division plane orientation.

  10. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass

    Directory of Open Access Journals (Sweden)

    Daisuke Sakano

    2016-07-01

    Full Text Available Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD, a dopamine D2 receptor (DRD2 antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling.

  11. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  12. Architectural patterns of p16 immunohistochemical expression associated with cancer immunity and prognosis of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Ryu, Hyang Joo; Kim, Eun Kyung; Heo, Su Jin; Cho, Byoung Chul; Kim, Hye Ryun; Yoon, Sun Och

    2017-11-01

    We evaluated the expression patterns of p16, which is used as a surrogate marker of HPV infection in head and neck squamous cell carcinoma (HNSCC), in regard to their biological and prognostic implications. p16 expression patterns and infiltrated immune cells were analyzed through immunohistochemistry of p16, CD3, CD8, PD-1, FOXP3, and CD163 on surgically resected HNSCCs (n = 393). Patterns of p16 immunoexpression were defined as STRONG (strong, diffuse expression in cytoplasm, and nucleus in >70% of tumor cells), MARGINAL (expression restricted to tumor margins), MOSAIC (ragged, discontinued expression), NUCLEAR (expression in nuclei only), and ABSENT (no expression). The STRONG pattern was more frequent in the oropharynx, and the MARGINAL pattern was noted only in the oral cavity. MOSAIC and NUCLEAR patterns were noted at variable sites. No two patterns of p16 expression showed the same immune cell composition of CD3+ T cells, CD8+ cytotoxic T cells, PD-1+ T cells, FOXP3+ regulatory T cells, and CD163+ macrophages. In overall and disease-free survival analyses, the STRONG pattern showed the most favorable prognosis, while the NUCLEAR pattern had the worst prognosis. HNSCC anatomical sites, tumor-related immune cell components, and patient outcomes were associated with p16 expression patterns. Each architectural pattern of p16 expression may be related to different biological and prognostic phenotypes. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  13. Contribution of Nrf2 to Atherogenic Phenotype Switching of Coronary Arterial Smooth Muscle Cells Lacking CD38 Gene

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-08-01

    Full Text Available Background/Aims: Recent studies have indicated that CD38 gene deficiency results in dedifferentiation or transdifferentiation of arterial smooth muscle cells upon atherogenic stimulations. However, the molecular mechanisms mediating this vascular smooth muscle (SMC phenotypic switching remain unknown. Methods & Results: In the present study, we first characterized the phenotypic change in the primary cultures of coronary arterial myocytes (CAMs from CD38-/- mice. It was shown that CD38 deficiency decreased the expression of contractile marker calponin, SM22α and α-SMA but increased the expression of SMC dedifferentiation marker, vimentin, which was accompanied by enhanced cell proliferation. This phenotypic change in CD38-/- CAMs was enhanced by 7-ketocholesterol (7-Ket, an atherogenic stimulus. We further found that the CD38 deficiency decreased the expression and activity of nuclear factor E2-related factor 2 (Nrf2, a basic leucine zipper (bZIP transcription factor sensitive to redox regulation. Similar to CD38 deletion, Nrf2 gene silencing increased CAM dedifferentiation upon 7-Ket stimulation. In contrast, the overexpression of Nrf2 gene abolished 7-Ket-induced dedifferentiation in CD38-/- CAMs. Given the sensitivity of Nrf2 to oxidative stress, we determined the role of redox signaling in the regulation of Nrf2 expression and activity associated with CD38 effect in CAM phenotype changes. It was demonstrated that in CD38-/- CAMs, 7-Ket failed to stimulate the production of O2-., while in CD38+/+ CAMs 7-Ket induced marked O2-. production and enhancement of Nrf2 activity, which was substantially attenuated by NOX4 gene silencing. Finally, we demonstrated that 7-Ket-induced and NOX4-dependent O2-. production was inhibited by 8-Br-cADPR, an antagonist of cADPR or NED-19, an antagonist of NAADP as product of CD38 ADP-ribosylcyclase, which significantly inhibited the level of cytosolic Ca2+ and the activation of Nrf2 under 7-Ket. Conclusion

  14. Selective deposition contact patterning using atomic layer deposition for the fabrication of crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Cho, Young Joon; Shin, Woong-Chul; Chang, Hyo Sik

    2014-01-01

    Selective deposition contact (SDC) patterning was applied to fabricate the rear side passivation of crystalline silicon (Si) solar cells. By this method, using screen printing for contact patterning and atomic layer deposition for the passivation of Si solar cells with Al 2 O 3 , we produced local contacts without photolithography or any laser-based processes. Passivated emitter and rear-contact solar cells passivated with ozone-based Al 2 O 3 showed, for the SDC process, an up-to-0.7% absolute conversion-efficiency improvement. The results of this experiment indicate that the proposed method is feasible for conversion-efficiency improvement of industrial crystalline Si solar cells. - Highlights: • We propose a local contact formation process. • Local contact forms a screen print and an atomic layer deposited-Al 2 O 3 film. • Ozone-based Al 2 O 3 thin film was selectively deposited onto patterned silicon. • Selective deposition contact patterning method can increase cell-efficiency by 0.7%

  15. Tailor-made cell patterning using a near-infrared-responsive composite gel composed of agarose and carbon nanotubes

    International Nuclear Information System (INIS)

    Koga, Haruka; Nakazawa, Kohji; Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2013-01-01

    Micropatterning is useful for regulating culture environments. We developed a highly efficient near-infrared-(NIR)-responsive gel and established a new technique that enables cell patterning by NIR irradiation. As a new culture substratum, we designed a tissue culture plate that was coated with a composite gel composed of agarose and carbon nanotubes (CNTs). A culture plate coated with agarose only showed no response to NIR irradiation. In contrast, NIR laser irradiation induced heat generation by CNTs; this permitted local solation of the CNT/agarose gel, and consequently, selective cell-adhesive regions were exposed on the tissue culture plate. The solation area was controlled by the NIR intensity, magnification of the object lens and CNT concentration in the gel. Furthermore, we formed circular patterns of HeLa cells and linear patterns of 3T3 cells on the same culture plate through selective and stepwise NIR irradiation of the CNT/agarose gel, and we also demonstrated that individual 3T3 cells migrated along a linear path formed on the CNT/agarose gel by NIR irradiation. These results indicate that our technique is useful for tailor-made cell patterning of stepwise and/or complex cell patterns, which has various biological applications such as stepwise co-culture and the study of cell migration. (paper)

  16. Enteric neural crest cells regulate vertebrate stomach patterning and differentiation.

    Science.gov (United States)

    Faure, Sandrine; McKey, Jennifer; Sagnol, Sébastien; de Santa Barbara, Pascal

    2015-01-15

    In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric nervous system (ENS), the intrinsic innervation of the GI tract. The influence of vENCCs on early patterning and differentiation of the GI tract has never been evaluated. In this study, we report that a crucial number of vENCCs is required for proper chick stomach development, patterning and differentiation. We show that reducing the number of vENCCs by performing vENCC ablations induces sustained activation of the BMP and Notch pathways in the stomach mesenchyme and impairs smooth muscle development. A reduction in vENCCs also leads to the transdifferentiation of the stomach into a stomach-intestinal mixed phenotype. In addition, sustained Notch signaling activity in the stomach mesenchyme phenocopies the defects observed in vENCC-ablated stomachs, indicating that inhibition of the Notch signaling pathway is essential for stomach patterning and differentiation. Finally, we report that a crucial number of vENCCs is also required for maintenance of stomach identity and differentiation through inhibition of the Notch signaling pathway. Altogether, our data reveal that, through the regulation of mesenchyme identity, vENCCs act as a new mediator in the mesenchymal-epithelial interactions that control stomach development. © 2015. Published by The Company of Biologists Ltd.

  17. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  18. Dynamic interneuron-principal cell interplay leads to a specific pattern of in vitro ictogenesis.

    Science.gov (United States)

    Lévesque, Maxime; Chen, Li-Yuan; Hamidi, Shabnam; Avoli, Massimo

    2018-07-01

    Ictal discharges induced by 4-aminopyridine in the in vitro rodent entorhinal cortex present with either low-voltage fast or sudden onset patterns. The role of interneurons in initiating low-voltage fast onset ictal discharges is well established but the processes leading to sudden onset ictal discharges remain unclear. We analysed here the participation of interneurons (n = 75) and principal cells (n = 13) in the sudden onset pattern by employing in vitro tetrode wire recordings in the entorhinal cortex of brain slices from Sprague-Dawley rats. Ictal discharges emerged from a background of frequently occurring interictal spikes that were associated to a specific interneuron/principal cell interplay. High rates of interneuron firing occurred 12 ms before interictal spike onset while principal cells fired later during low interneuron firing. In contrast, the onset of sudden ictal discharges was characterized by increased firing from principal cells 627 ms before ictal onset whereas interneurons increased their firing rates 161 ms before ictal onset. Our data show that sudden onset ictogenesis is associated with frequently occurring interictal spikes resting on the interplay between interneurons and principal cells while ictal discharges stem from enhanced principal cell firing leading to increased interneuron activity. These findings indicate that specific patterns of interactions between interneurons and principal cells shape interictal and ictal discharges with sudden onset in the rodent entorhinal cortex. We propose that specific neuronal interactions lead to the generation of distinct onset patterns in focal epileptic disorders. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Cell patterning on a glass surface by a mask-assisted ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chan-Hee; Kim, Dong-Ki; Hwang, In-Tae; Lim, Youn-Mook; Kim, Hae-Kyoung; Nho, Young-Chang [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Choi, Jae-Hak [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)], E-mail: jaehakchoi@kaeri.re.kr

    2009-04-15

    A simple patterning method of cells on a glass has been developed by using ion implantation. The glass was implanted through a pattern mask with 150 keV Ar ions in the absence or presence of oxygen. Surface properties of the ion-implanted glass were investigated by means of X-ray photoelectron spectroscopy, contact angle measurement and cell culture test. The results showed that more hydrophilic groups were formed on the glass surface implanted in the presence of oxygen. Thus, the glass surface implanted in the presence of oxygen showed lower contact angle compared with the glass surface implanted in the absence of oxygen. The cells were strongly adhered to and proliferated on the ion-implanted regions of the glass. The cell population was found to be the highest on the glass implanted at a fluence of 1 x 10{sup 16} ions/cm{sup 2} in the presence of oxygen.

  20. Gene Modification of Mesenchymal Stem Cells and Articular Chondrocytes to Enhance Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Saliya Gurusinghe

    2014-01-01

    Full Text Available Current cell based treatment for articular cartilage and osteochondral defects are hampered by issues such as cellular dedifferentiation and hypertrophy of the resident or transplanted cells. The reduced expression of chondrogenic signalling molecules and transcription factors is a major contributing factor to changes in cell phenotype. Gene modification of chondrocytes may be one approach to redirect cells to their primary phenotype and recent advances in nonviral and viral gene delivery technologies have enabled the expression of these lost factors at high efficiency and specificity to regain chondrocyte function. This review focuses on the various candidate genes that encode signalling molecules and transcription factors that are specific for the enhancement of the chondrogenic phenotype and also how epigenetic regulators of chondrogenesis in the form of microRNA may also play an important role.

  1. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    Science.gov (United States)

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  2. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  3. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  4. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  5. Uncovering inherent cellular plasticity of multiciliated ependyma leading to ventricular wall transformation and hydrocephalus.

    Science.gov (United States)

    Abdi, Khadar; Lai, Chun-Hsiang; Paez-Gonzalez, Patricia; Lay, Mark; Pyun, Joon; Kuo, Chay T

    2018-04-25

    Specialized, differentiated cells often perform unique tasks that require them to maintain a stable phenotype. Multiciliated ependymal cells (ECs) are unique glial cells lining the brain ventricles, important for cerebral spinal fluid circulation. While functional ECs are needed to prevent hydrocephalus, they have also been reported to generate new neurons: whether ECs represent a stable cellular population remains unclear. Via a chemical screen we found that mature ECs are inherently plastic, with their multiciliated state needing constant maintenance by the Foxj1 transcription factor, which paradoxically is rapidly turned over by the ubiquitin-proteasome system leading to cellular de-differentiation. Mechanistic analyses revealed a novel NF-κB-independent IKK2 activity stabilizing Foxj1 in mature ECs, and we found that known IKK2 inhibitors including viruses and growth factors robustly induced Foxj1 degradation, EC de-differentiation, and hydrocephalus. Although mature ECs upon de-differentiation can divide and regenerate multiciliated ECs, we did not detect evidence supporting EC's neurogenic potential.

  6. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Emerman, J.T.; Bartley, J.C.; Bissel, M.J.

    1981-01-01

    In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lacation. By measuring the incorporation of glucose carbon from [U- 14 C]glucose into intermediary metabolitees and metabolic products in mammary epithelia cells from virgin, pregnant, and lacating mice, we domonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counter-parts. When isolated from lacating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state

  7. Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency

    International Nuclear Information System (INIS)

    Cocoyer, C.; Rocha, L.; Fiorini-Debuisschert, C.; Sicot, L.; Vaufrey, D.; Sentein, C.; Geffroy, B.; Raimond, P.

    2006-01-01

    The weak absorption of the photoactive layer appears as a one of the main factors limiting organic photovoltaic solar cells performances. In order to increase the interaction of the incident light with the photoactive materials, we investigate the effect of a periodic patterning of the solar cells surface with microstructures in the optical wavelength scale. In this aim, we present an original all optical patterning technique of polymer films. The method is based on a laser controlled mass transport in azopolymer films leading to efficient deformation of the film surface in conjunction with the incoming light interference pattern. The technique is used to pattern one-dimensional gratings on the surface of solar cells. In the work presented here, the cell photoactive material is based on the interpenetrated network of a conjugated donor polymer and a fullerene derivative. The cells investigated are illuminated in a reverse configuration through a semi-transparent top cathode. The effect of the periodic structures onto the incident light propagation has been investigated through optical characterizations. We demonstrate that a part of the incident light can be trapped inside the solar cell layers due to diffraction onto the periodic structures

  8. Local behavioral rules sustain the cell allocation pattern in the combs of honey bee colonies (Apis mellifera).

    Science.gov (United States)

    Montovan, Kathryn J; Karst, Nathaniel; Jones, Laura E; Seeley, Thomas D

    2013-11-07

    In the beeswax combs of honey bees, the cells of brood, pollen, and honey have a consistent spatial pattern that is sustained throughout the life of a colony. This spatial pattern is believed to emerge from simple behavioral rules that specify how the queen moves, where foragers deposit honey/pollen and how honey/pollen is consumed from cells. Prior work has shown that a set of such rules can explain the formation of the allocation pattern starting from an empty comb. We show that these rules cannot maintain the pattern once the brood start to vacate their cells, and we propose new, biologically realistic rules that better sustain the observed allocation pattern. We analyze the three resulting models by performing hundreds of simulation runs over many gestational periods and a wide range of parameter values. We develop new metrics for pattern assessment and employ them in analyzing pattern retention over each simulation run. Applied to our simulation results, these metrics show alteration of an accepted model for honey/pollen consumption based on local information can stabilize the cell allocation pattern over time. We also show that adding global information, by biasing the queen's movements towards the center of the comb, expands the parameter regime over which pattern retention occurs. © 2013 Published by Elsevier Ltd. All rights reserved.

  9. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans

    Directory of Open Access Journals (Sweden)

    Irma Virant-Klun

    2016-01-01

    Full Text Available MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells.

  10. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    Science.gov (United States)

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  11. Contribution of Schwann Cells to Remyelination in a Naturally Occurring Canine Model of CNS Neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Kristel Kegler

    Full Text Available Gliogenesis under pathophysiological conditions is of particular clinical relevance since it may provide evidence for regeneration promoting cells recruitable for therapeutic purposes. There is evidence that neurotrophin receptor p75 (p75NTR-expressing cells emerge in the lesioned CNS. However, the phenotype and identity of these cells, and signals triggering their in situ generation under normal conditions and certain pathological situations has remained enigmatic. In the present study, we used a spontaneous, idiopathic and inflammatory CNS condition in dogs with prominent lympho-histiocytic infiltration as a model to study the phenotype of Schwann cells and their relation to Schwann cell remyelination within the CNS. Furthermore, the phenotype of p75NTR-expressing cells within the injured CNS was compared to their counter-part in control sciatic nerve and after peripheral nerve injury. In addition, organotypic slice cultures were used to further elucidate the origin of p75NTR-positive cells. In cerebral and cerebellar white and grey matter lesions as well as in the brain stem, p75NTR-positive cells co-expressed the transcription factor Sox2, but not GAP-43, GFAP, Egr2/Krox20, periaxin and PDGFR-α. Interestingly, and contrary to the findings in control sciatic nerves, p75NTR-expressing cells only co-localized with Sox2 in degenerative neuropathy, thus suggesting that such cells might represent dedifferentiated Schwann cells both in the injured CNS and PNS. Moreover, effective Schwann cell remyelination represented by periaxin- and P0-positive mature myelinating Schwann cells, was strikingly associated with the presence of p75NTR/Sox2-expressing Schwann cells. Intriguingly, the emergence of dedifferentiated Schwann cells was not affected by astrocytes, and a macrophage-dominated inflammatory response provided an adequate environment for Schwann cells plasticity within the injured CNS. Furthermore, axonal damage was reduced in brain stem areas

  12. Dynein and EFF-1 control dendrite morphology by regulating the localization pattern of SAX-7 in epidermal cells.

    Science.gov (United States)

    Zhu, Ting; Liang, Xing; Wang, Xiang-Ming; Shen, Kang

    2017-12-01

    Our previous work showed that the cell adhesion molecule SAX-7 forms an elaborate pattern in Caenorhabditis elegans epidermal cells, which instructs PVD dendrite branching. However, the molecular mechanism forming the SAX-7 pattern in the epidermis is not fully understood. Here, we report that the dynein light intermediate chain DLI-1 and the fusogen EFF-1 are required in epidermal cells to pattern SAX-7. While previous reports suggest that these two molecules act cell-autonomously in the PVD, our results show that the disorganized PVD dendritic arbors in these mutants are due to the abnormal SAX-7 localization patterns in epidermal cells. Three lines of evidence support this notion. First, the epidermal SAX-7 pattern was severely affected in dli-1 and eff-1 mutants. Second, the abnormal SAX-7 pattern was predictive of the ectopic PVD dendrites. Third, expression of DLI-1 or EFF-1 in the epidermis rescued both the SAX-7 pattern and the disorganized PVD dendrite phenotypes, whereas expression of these molecules in the PVD did not. We also show that DLI-1 functions cell-autonomously in the PVD to promote distal branch formation. These results demonstrate the unexpected roles of DLI-1 and EFF-1 in the epidermis in the control of PVD dendrite morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  13. Retinal pigment epithelium culture;a potential source of retinal stem cells.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh

    2009-07-01

    To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.

  14. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon

    2017-03-13

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  15. Variability in the recognition of distinctive immunofluorescence patterns in different brands of HEp-2 cell slides

    Directory of Open Access Journals (Sweden)

    Alessandra Dellavance

    2013-06-01

    Full Text Available INTRODUCTION: Indirect immunofluorescence on HEp-2 cells is considered the gold standard for the detection of autoantibodies against cellular antigens. However, the culture conditions, cell fixation and permeabilization processes interfere directly in the preservation and spatial distribution of antigens. Therefore, one can assume that certain peculiarities in the processing of cellular substrate may affect the recognition of indirect immunofluorescence patterns associated with several autoantibodies. OBJECTIVE: To evaluate a panel of serum samples representing nuclear, nucleolar, cytoplasmic, mitotic apparatus, and chromosome plate patterns on HEp-2 cell substrates from different suppliers. MATERIALS AND METHODS: Seven blinded observers, independent from the three selected reference centers, evaluated 17 samples yielding different nuclear, nucleolar, cytoplasmic and mitotic apparatus patterns on HEp-2 cell slides from eight different brands. The slides were coded to maintain confidentiality of both brands and participating centers. RESULTS: The 17 HEp-2 cell patterns were identified on most substrates. Nonetheless, some slides showed deficit in the expression of several patterns: nuclear coarse speckled/U1-ribonucleoprotein associated with antibodies against RNP (U1RNP, centromeric protein F (CENP-F, proliferating cell nuclear antigen (PCNA, cytoplasmic fine speckled associated with anti-Jo-1 antibodies (histidyl synthetase, nuclear mitotic apparatus protein 1 (NuMA-1 and nuclear mitotic apparatus protein 2 (NuMA-2. CONCLUSION: Despite the overall good quality of the assessed HEp-2 substrates, there was considerable inconsistency in results among different commercial substrates. The variations may be due to the evaluated batches, hence generalizations cannot be made as to the respective brands. It is recommended that each new batch or new brand be tested with a panel of reference sera representing the various patterns.

  16. TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    International Nuclear Information System (INIS)

    Chung, Eun Jee; Chun, Ji Na; Jung, Sun-Ah; Cho, Jin Won; Lee, Joon H.

    2011-01-01

    Highlights: ► TGF-β induces aberrant expression of βIII in RPE cells via the ERK pathway. ► TGF-β increases O-GlcNAc modification of βIII in RPE cells. ► Mature RPE cells have the capacity to express a neuron-associated gene by TGF-β. -- Abstract: The class III β-tubulin isotype (β III ) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III β-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-β (TGF-β) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-β on the aberrant expression of class III β-tubulin and the intracellular signaling pathway mediating these changes. TGF-β-induced aberrant expression and O-linked-β-N-acetylglucosamine (O-GlcNac) modification of class III β-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-β also stimulated phosphorylation of ERK. TGF-β-induced aberrant expression of class III β-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-β stimulated aberrant expression of class III β-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-β stimulation and provide useful information towards understanding the pathogenesis of proliferative vitreoretinal diseases.

  17. TGF-{beta}-stimulated aberrant expression of class III {beta}-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eun Jee [Department of Ophthalmology, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do (Korea, Republic of); Chun, Ji Na; Jung, Sun-Ah [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of); Cho, Jin Won [Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Lee, Joon H., E-mail: joonhlee@konyang.ac.kr [Konyang University Myunggok Medical Research Institute, Kim' s Eye Hospital, Konyang University College of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer TGF-{beta} induces aberrant expression of {beta}III in RPE cells via the ERK pathway. Black-Right-Pointing-Pointer TGF-{beta} increases O-GlcNAc modification of {beta}III in RPE cells. Black-Right-Pointing-Pointer Mature RPE cells have the capacity to express a neuron-associated gene by TGF-{beta}. -- Abstract: The class III {beta}-tubulin isotype ({beta}{sub III}) is expressed exclusively by neurons within the normal human retina and is not present in normal retinal pigment epithelial (RPE) cells in situ or in the early phase of primary cultures. However, aberrant expression of class III {beta}-tubulin has been observed in passaged RPE cells and RPE cells with dedifferentiated morphology in pathologic epiretinal membranes from idiopathic macular pucker, proliferative vitreoretinopathy (PVR) and proliferative diabetic retinopathy (PDR). Transforming growth factor-{beta} (TGF-{beta}) has been implicated in dedifferentiation of RPE cells and has a critical role in the development of proliferative vitreoretinal diseases. Here, we investigated the potential effects of TGF-{beta} on the aberrant expression of class III {beta}-tubulin and the intracellular signaling pathway mediating these changes. TGF-{beta}-induced aberrant expression and O-linked-{beta}-N-acetylglucosamine (O-GlcNac) modification of class III {beta}-tubulin in cultured RPE cells as determined using Western blotting, RT-PCR and immunocytochemistry. TGF-{beta} also stimulated phosphorylation of ERK. TGF-{beta}-induced aberrant expression of class III {beta}-tubulin was significantly reduced by pretreatment with U0126, an inhibitor of ERK phosphorylation. Our findings indicate that TGF-{beta} stimulated aberrant expression of class III {beta}-tubulin via activation of the ERK signaling pathway. These data demonstrate that mature RPE cells have the capacity to express a neuron-associated gene in response to TGF-{beta} stimulation and provide useful information

  18. Activation of Pax7-positive cells in a non-contractile tissue contributes to regeneration of myogenic tissues in the electric fish S. macrurus.

    Directory of Open Access Journals (Sweden)

    Christopher M Weber

    Full Text Available The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these

  19. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    Science.gov (United States)

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division.

    Science.gov (United States)

    Riley, Bruce B; Sweet, Elly M; Heck, Rebecca; Evans, Adrienne; McFarland, Karen N; Warga, Rachel M; Kane, Donald A

    2010-03-01

    We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division. Copyright (c) 2010 Wiley-Liss, Inc.

  1. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue

    International Nuclear Information System (INIS)

    Lechner, Andreas; Nolan, Anna L.; Blacken, Robyn A.; Habener, Joel F.

    2005-01-01

    Cellular replacement therapy holds promise for the treatment of diabetes mellitus but donor tissue is severely limited. Therefore, we investigated whether insulin-secreting cells could be differentiated in vitro from a monolayer of cells expanded from human donor pancreatic islets. We describe a three-step culture protocol that allows for the efficient generation of insulin-producing cell clusters from in vitro expanded, hormone-negative cells. These clusters express insulin at levels of up to 34% that of average freshly isolated human islets and secrete C-peptide upon membrane depolarization. They also contain cells expressing the other major islet hormones (glucagon, somatostatin, and pancreatic polypeptide). The source of the newly differentiated endocrine cells could either be indigenous stem/progenitor cells or the proliferation-associated dedifferentiation and subsequent redifferentiation of mature endocrine cells. The in vitro generated cell clusters may be efficacious in providing islet-like tissue for transplantation into diabetic recipients

  2. Asymptomatic dedifferentiated liposarcoma mimicking renal cell ...

    African Journals Online (AJOL)

    M. El Howairis

    2016-11-23

    Nov 23, 2016 ... Production and hosting by Elsevier B.V. This is an open ... bilateral cataracts which had been previously treated successfully. ... multidisciplinary approach is paramount to treat the patient effec- tively ... Portsite recurrence after laparoscopy for stag- ... population-based analysis of epidemiology, surgery, and ...

  3. The Glycoprofile Patterns of Endothelial Cells in Usual Interstitial Pneumonia

    Directory of Open Access Journals (Sweden)

    A Barkhordari

    2014-09-01

    Full Text Available [THIS ARTICLE HAS BEEN RETRACTED FOR DUPLICATE PUBLICATION] Background: The pathological classification of cryptogenic fibrosing alveolitis has been a matter of debate and controversy for histopathologists. Objective: To identify and specify the glycotypes of capillary endothelial cells in usual interstitial pneumonia (UIP compared to those found in normal tissue. Methods: Sections of formalin-fixed, paraffin-embedded blocks from 16 cases of UIP were studied by lectin histochemistry with a panel of 27 biotinylated lectins and an avidin-peroxidase revealing system. Results: High expression of several classes of glycan was seen de novo in capillary endothelial cells from patients with UIP including small complex and bi/tri-antennary bisected complex N-linked sequences bolund by Concanavalin A and erythro-phytohemagglutinin, respectively, GalNAca1 residues bound by Helix pomatia and Maclura pomifera agglutinins, and L-fucosylated derivatives of type II glycan chains recognized by Ulex europaeus agglutinin-I. Glycans bound by agglutinins from Lycopersicon esculentum (β1,4GlcNAc and Wisteria floribunda (GalNAc as well as GlcNAc oligomers bound by Phytolacca americana and succinylated Wheat Germ agglutinin were also seen in the capillary endothelial cells of UIP. In contrast, L-fucosylated derivatives of type I glycan chains were absent in cells from cases of UIP when Anguilla anguilla agglutinin was applied, unlike the situation in normal tissue. Conclusion: These results may indicate existence of two distinct populations of endothelial cell in UIP with markedly different patterns of glycosylation, reflecting a pattern of differentiation and angiogenesis, which is not detectable morphologically.

  4. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    Science.gov (United States)

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Che Azurahanim Che; Asanithi, Piyapong; Brunner, Eric W; Jurewicz, Izabela; Bo, Chiara; Sear, Richard P; Dalton, Alan B [Department of Physics and Surrey Materials Institute, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Azad, Chihye Lewis; Ovalle-Robles, Raquel; Fang Shaoli; Lima, Marcio D; Lepro, Xavier; Collins, Steve; Baughman, Ray H, E-mail: r.sear@surrey.ac.uk [Alan G MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080-3021 (United States)

    2011-05-20

    Here we culture Chinese hamster ovary cells on isotropic, aligned and patterned substrates based on multiwall carbon nanotubes. The nanotubes provide the substrate with nanoscale topography. The cells adhere to and grow on all substrates, and on the aligned substrate, the cells align strongly with the axis of the bundles of the multiwall nanotubes. This control over cell alignment is required for tissue engineering; almost all tissues consist of oriented cells. The aligned substrates are made using straightforward physical chemistry techniques from forests of multiwall nanotubes; no lithography is required to make inexpensive large-scale substrates with highly aligned nanoscale grooves. Interestingly, although the cells strongly align with the nanoscale grooves, only a few also elongate along this axis: alignment of the cells does not require a pronounced change in morphology of the cell. We also pattern the nanotube bundles over length scales comparable to the cell size and show that the cells follow this pattern.

  6. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  7. Patterns of Expression of Vaginal T-Cell Activation Markers during Estrogen-Maintained Vaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Al-Sadeq Ameera

    2008-12-01

    Full Text Available The immunosuppressive activity of estrogen was further investigated by assessing the pattern of expression of CD25, CD28, CD69, and CD152 on vaginal T cells during estrogen-maintained vaginal candidiasis. A precipitous and significant decrease in vaginal fungal burden toward the end of week 3 postinfection was concurrent with a significant increase in vaginal lymphocyte numbers. During this period, the percentage of CD3+, CD3+CD4+, CD152+, and CD28+ vaginal T cells gradually and significantly increased. The percentage of CD3+ and CD3+CD4+ cells increased from 43% and 15% at day 0 to 77% and 40% at day 28 postinfection. Compared with 29% CD152+ vaginal T cells in naive mice, > 70% of vaginal T cells were CD152+ at day 28 postinfection. In conclusion, estrogen-maintained vaginal candidiasis results in postinfection time-dependent changes in the pattern of expression of CD152, CD28, and other T-cell markers, suggesting that T cells are subject to mixed suppression and activation signals.

  8. Transformation Resistance in a Premature Aging Disorder Identifies a Tumor-Protective Function of BRD4

    Directory of Open Access Journals (Sweden)

    Patricia Fernandez

    2014-10-01

    Full Text Available Summary: Advanced age and DNA damage accumulation are prominent risk factors for cancer. The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique opportunity for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Here, we have used HGPS patient cells to identify a protective mechanism to oncogenesis. We find that HGPS cells are resistant to neoplastic transformation. Resistance is mediated by the bromodomain protein BRD4, which exhibits altered genome-wide binding patterns in transformation-resistant cells, leading to inhibition of oncogenic dedifferentiation. BRD4 also inhibits, albeit to a lower extent, the tumorigenic potential of transformed cells from healthy individuals. BRD4-mediated tumor protection is clinically relevant given that a BRD4 gene signature predicts positive clinical outcome in breast and lung cancer. Our results demonstrate a protective function for BRD4 and suggest tissue-specific roles for BRD4 in tumorigenesis. : The premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS provides a unique tool for studying the interplay between DNA damage and aging-associated tumor mechanisms, given that HGPS patients do not develop tumors despite elevated levels of DNA damage. Using a genome-wide RNAi screen, Fernandez et al. now identify the bromodomain protein BRD4 as a mediator of the oncogenic resistance of HGPS cells. This tumor-protective function of BRD4 involves inhibition of oncogenic dedifferentiation and is also active in non-HGPS cells in a tissue-specific manner.

  9. Patterns of Adherence of Helicobacter pylori Clinical Isolates to Epithelial Cells, and its Association with Disease and with Virulence Factors.

    Science.gov (United States)

    Vázquez-Jiménez, Flor Elizabeth; Torres, Javier; Flores-Luna, Lourdes; Cerezo, Silvia Giono; Camorlinga-Ponce, Margarita

    2016-02-01

    Adherence to the gastric epithelium is one of the most important steps of Helicobacter pylori to remain and cause disease. The aim of this study was to analyze whether H. pylori isolates from patients with different gastroduodenal diseases present differences in the pattern of adherence to gastric epithelial cells (AGS), in the ability to induce IL-8, and in the presence of virulence genes. We tested 75 H. pylori strains isolated from nonatrophic gastritis, gastric cancer, and duodenal ulcer patients. The adhesion pattern and IL-8 induction were determined in AGS cells, and invasion of AGS cells was studied using a gentamicin protection assay. The IL-8 levels induced were determined by ELISA. Helicobacter pylori strains presented diffuse adherence (DA) and localized (LA) adherence patterns, similar to those described for enteropathogenic E. coli (EPEC), were observed in AGS cells. A DA pattern was observed in 57% and LA in 43% of the strains, and DA was more frequent in isolates from patients with gastric cancer (p = 0.044). Strains with a LA pattern induced higher levels of IL-8 (p = 0.042) in AGS cells. The adherence pattern was not associated with neither invasiveness nor with the presence of virulence genes. Our study shows that H. pylori strains present adherence patterns to AGS cells resembling those observed in EPEC and that these patterns may be associated with disease and with activity on AGS cells. © 2015 John Wiley & Sons Ltd.

  10. Radiation induced formation of giant cells in Saccharomyces uvarum. Pt. 4. Macromolecular synthesis and protein patterns

    Energy Technology Data Exchange (ETDEWEB)

    Rink, H; Baumstark-Khan, C; Partke, H J

    1986-08-01

    X-irradiated (1.0 kGy) yeast cells (Saccharomyces uvarum, ATCC 9080), grown in liquid medium stop their mitotic activities and form giant cells by development of several buds which do not separate from mother cells. Depending on the time in culture, wet and dry weights per cell, protein- RNA- and DNA- contents per cell as well as incorporation rates of /sup 14/C-leucine per cell and per hour and patterns (isoelectric focusing) of water soluble proteins were studied. Weights per cell, RNA and protein contents per cell and /sup 14/C-leucine incorporation rates increase markedly in giant cells, whereas DNA content per cell is only duplicated. Protein patterns in isoelectric focusing show one interesting difference. In samples from giant cells one protein band (IP=6.63) decreases after 8 h in culture and later on disappears completely. This finding is not due to primary damage in X-irradiated DNA but seems to be related to the control of cell cycle events.

  11. High cell density suppresses BMP4-induced differentiation of human pluripotent stem cells to produce macroscopic spatial patterning in a unidirectional perfusion culture chamber.

    Science.gov (United States)

    Tashiro, Shota; Le, Minh Nguyen Tuyet; Kusama, Yuta; Nakatani, Eri; Suga, Mika; Furue, Miho K; Satoh, Taku; Sugiura, Shinji; Kanamori, Toshiyuki; Ohnuma, Kiyoshi

    2018-04-19

    Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Neuropilin-2 induced by transforming growth factor-β augments migration of hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Wittmann, Philipp; Grubinger, Markus; Gröger, Christian; Huber, Heidemarie; Sieghart, Wolfgang; Peck-Radosavljevic, Markus; Mikulits, Wolfgang

    2015-01-01

    Hepatocellular carcinoma (HCC) is the most common form of liver cancer and the third most lethal cancer worldwide. The epithelial to mesenchymal transition (EMT) describes the transformation of well-differentiated epithelial cells to a de-differentiated phenotype and plays a central role in the invasion and intrahepatic metastasis of HCC cells. Modulation of the transforming growth factor-β (TGF-β) signaling is known to induce various tumor-promoting and EMT-inducing pathways in HCC. The meta-analysis of a panel of EMT gene expression studies revealed that neuropilin 2 (NRP2) is significantly upregulated in cells that have undergone EMT induced by TGF-β. In this study we assessed the functional role of NRP2 in epithelial and mesenchymal-like HCC cells and focused on the molecular interplay between NRP2 and TGF-β/Smad signaling. NRP2 expression was analyzed in human HCC cell lines and tissue arrays comprising 133 HCC samples. Cell migration was examined by wound healing and Transwell assays in the presence and absence of siRNA against NRP2. NRP2 and TGF-β signaling were analyzed by Western blotting and confocal immunofluorescence microscopy. We show that NRP2 is particularly expressed in HCC cell lines with a dedifferentiated, mesenchymal-like phenotype. NRP2 expression is upregulated by the canonical TGF-β/Smad signaling while NRP2 expression has no impact on TGF-β signaling in HCC cells. Reduced expression of NRP2 by knock-down or inhibition of TGF-β signaling resulted in diminished cell migration independently of each other, suggesting that NRP2 fails to collaborate with TGF-β signaling in cell movement. In accordance with these data, elevated levels of NRP2 correlated with a higher tumor grade and less differentiation in a large collection of human HCC specimens. These data suggest that NRP2 associates with a less differentiated, mesenchymal-like HCC phenotype and that NRP2 plays an important role in tumor cell migration upon TGF-β-dependent HCC

  13. Patterns of cell loss and repopulation in irradiated cultures of plateau phase C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Zeman, E.M.; Bedford, J.S.

    1985-01-01

    Patterns of cell loss and repopulation were studied in plateau phase cultures of slowly-cycling, contact-inhibited C3H 10T1/2 mouse fibroblasts following large single, and multiple small doses 137 Cs-gamma rays. A progressive, dose-independent cell loss was apparent within after irradiation with large single doses, and similar patterns of loss were observed following the start of multifraction irradiations. This progressive cell loss culminated in the loss of integrity of the monolayer of cells, a loss of contact-inhibition, and therefore, an increased rate of cell division. Repopulation did not start immediately after the start of irradiation, but needed a triggering event, in this case, a decrease to a critical level in the cell density. Once initiated, repopulation was able to decrease or even eliminate the effectiveness of subsequent doses in reducing the number of viable cells per culture. To the extent that the responses of slowly-cycling, contact-inhibited cells in vitro can be applied to interpret the radiation responses of cell populations in vivo, these results further support the notion that it may be necessary, in some cases, to account for an increasing contribution from repopulation with increasing overall treatment time in dose fractionation isoeffect formulae used for predicting tissue tolerances or tumor control. (Auth.)

  14. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  15. Pyro-electrification of polymer membranes for cell patterning

    Energy Technology Data Exchange (ETDEWEB)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P. [National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) ‘E. Caianiello’, Via Campi Flegrei 34, 80078 Pozzuoli (Italy)

    2016-05-18

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  16. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    Science.gov (United States)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second

  17. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads

    International Nuclear Information System (INIS)

    Kingsley, D M; Dias, A D; Corr, D T; Chrisey, D B

    2013-01-01

    Alginate can be used to encapsulate mammalian cells and for the slow release of small molecules. Packaging alginate as microbead structures allows customizable delivery for tissue engineering, drug release, or contrast agents for imaging. However, state-of-the-art microbead fabrication has a limited range in achievable bead sizes, and poor control over bead placement, which may be desired to localize cellular signaling or delivery. Herein, we present a novel, laser-based method for single-step fabrication and precise planar placement of alginate microbeads. Our results show that bead size is controllable within 8%, and fabricated microbeads can remain immobilized within 2% of their target placement. Demonstration of this technique using human breast cancer cells shows that cells encapsulated within these microbeads survive at a rate of 89.6%, decreasing to 84.3% after five days in culture. Infusing rhodamine dye into microbeads prior to fluorescent microscopy shows their 3D spheroidal geometry and the ability to sequester small molecules. Microbead fabrication and patterning is compatible with conventional cellular transfer and patterning by laser direct-write, allowing location-based cellular studies. While this method can also be used to fabricate microbeads en masse for collection, the greatest value to tissue engineering and drug delivery studies and applications lies in the pattern registry of printed microbeads. (paper)

  18. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    Science.gov (United States)

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  19. Associations between pathogen-specific clinical mastitis and somatic cell count patterns

    NARCIS (Netherlands)

    Haas, de Y.; Veerkamp, R.F.; Barkema, H.W.; Gröhn, Y.T.; Schukken, Y.H.

    2004-01-01

    Associations were estimated between pathogen-specific cases of clinical mastitis (CM) and somatic cell count (SCC) patterns based on deviations from the typical curve for SCC during lactation and compared with associations between pathogen-specific CM and lactation average SCC. Data from 274 Dutch

  20. Using micro-patterned sensors and cell self-assembly for measuring the oxygen consumption rate of single cells

    International Nuclear Information System (INIS)

    Etzkorn, James R; Parviz, Babak A; Wu, Wen-Chung; Tian, Zhiyuan; Kim, Prince; Jang, Sei-Hum; Jen, Alex K-Y; Meldrum, Deirdre R

    2010-01-01

    We present a method for self-assembling arrays of live single cells on a glass chip using a photopatternable polymer to form micro-traps. We have studied the single-cell self-assembly method and optimized the process to obtain a 52% yield of single-trapped cells. We also report a method to measure the oxygen consumption rate of a single cell using micro-patterned sensors. These molecular oxygen sensors were fabricated around each micro-trap allowing optical interrogation of oxygen concentration in the immediate environment of the trapped cell. Micromachined micro-wells were then used to seal the trap, sensor and cell in order to determine the oxygen consumption rate of single cells. These techniques reported here add to the collection of tools for performing 'singe-cell' biology. An oxygen consumption rate of 1.05 ± 0.28 fmol min −1 was found for a data set consisting of 25 single A549 cells.

  1. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal

    Energy Technology Data Exchange (ETDEWEB)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín [Programa de Doctorado en Ciencias Biomédicas, Instituto de Fisiología Celular (IFC), Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, México (Mexico); Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México (Mexico); Ocadiz-Delgado, Rodolfo; García-Villa, Enrique [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, México (Mexico); Bonilla-Delgado, José [Unidad de Investigación, Hospital Juárez de México, Ciudad de México 07760, México (Mexico); Lagunas-Martínez, Alfredo [División de Biología Molecular de Patógenos, CISEI, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México (Mexico); and others

    2016-12-15

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E{sub 2}) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E{sub 2} on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E{sub 2} in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. -- Graphical abstract: The HPV16 E7 oncoprotein and 17β-estradiol are involved in the upregulation of Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal ability of cancer stem cells in cervical cancer. - Highlights: •The HPV16 E7 oncoprotein enhances cellular proliferation and dedifferentiation. •The E7 oncoprotein induces stemness-related genes expression in vivo and in vitro. •The 17β-estradiol induces stemness-related genes expression in vivo. •The HPV16 E7 oncoprotein is involved in the cell self-renewal of cancer cells.

  2. The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal

    International Nuclear Information System (INIS)

    Organista-Nava, Jorge; Gómez-Gómez, Yazmín; Ocadiz-Delgado, Rodolfo; García-Villa, Enrique; Bonilla-Delgado, José; Lagunas-Martínez, Alfredo

    2016-01-01

    Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E 2 ) are key factors in cervical carcinogenesis. In the present study, we aimed to investigate the effect of the HPV16 E7 oncoprotein and E 2 on the expression pattern of Oct3/4, Sox2, Nanog and Fgf4. We also determined whether the E7 oncoprotein is associated with cell self-renewal. The results showed that Oct3/4, Sox2, Nanog and Fgf4 were upregulated by the E7 oncoprotein in vivo and in vitro and implicate E 2 in the upregulation of these factors in vivo. We also demonstrated that E7 is involved in cell self-renewal, suggesting that the HPV16 E7 oncoprotein upregulates Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal capacity of cancer stem cells. -- Graphical abstract: The HPV16 E7 oncoprotein and 17β-estradiol are involved in the upregulation of Oct3/4, Sox2, Nanog and Fgf4 expression to maintain the self-renewal ability of cancer stem cells in cervical cancer. - Highlights: •The HPV16 E7 oncoprotein enhances cellular proliferation and dedifferentiation. •The E7 oncoprotein induces stemness-related genes expression in vivo and in vitro. •The 17β-estradiol induces stemness-related genes expression in vivo. •The HPV16 E7 oncoprotein is involved in the cell self-renewal of cancer cells.

  3. Study of homing patterns of x-irradiated murine lymphoid cells

    International Nuclear Information System (INIS)

    Crouse, D.A.

    1974-01-01

    Effects of in vitro x-ray exposure of murine lymphoid cells on their subsequent in vivo homing patterns were studied. The homing of lymphoid cells to various tissues and organs was followed by using radio-labeled cell preparations or by following the distribution of cells with a specific immunological memory. X irradiation of 51 Cr-labeled spleen, lymph node, bone marrow, or thymus cells was found to significantly alter their subsequent in vivo distribution. Irradiated cells demonstrated an increased distribution to the liver and a significantly lower retention in the lungs. Cells going to the lymph nodes of Peyer's patches showed a significant exposure dependent decrease in homing following irradiation. Irradiated lymph node cells homed in greater numbers to the spleen and bone marrow, while irradiated cells from other sources showed a decrease or no change indistribution to the same tissues. Lymph node cell suspensions from dinitrophenyl-bovine gamma globulin (DNP-BGG) immune LBN rats were prepared, irradiated (0 and 200 R) and injected into intermediate (LBN) hosts and controls. Irradiated memory cells provided a secondary antibody response, which was delayed but not suppressed when compared to unirradiated cells. Alteration in homing of lymphocytes caused by various physical and chemical agents was a result of effects on cell membrane characteristics which controlled some aspects of the phenomenon. Radiation (100 to 200 R) may have had a similar effect or it may have resulted in the selective elimination of a population of cells. (U.S.)

  4. A novel method to achieve selective emitter for silicon solar cell using low cost pattern-able a-Si thin films as the semi-transparent phosphorus diffusion barrier

    International Nuclear Information System (INIS)

    Chen, Da Ming; Liang, Zong Cun; Zhuang, Lin; Lin, Yang Huan; Shen, Hui

    2012-01-01

    Highlights: ► a-Si thin films as semitransparent phosphorus diffusion barriers for solar cell. ► a-Si thin films on silicon wafers were patterned by the alkaline solution. ► Selective emitter was formed with patterned a-Si as diffusion barrier for solar cell. -- Abstract: Selective emitter for silicon solar cell was realized by employing a-Si thin films as the semi-transparent diffusion barrier. The a-Si thin films with various thicknesses (∼10–40 nm) were deposited by the electron-beam evaporation technique. Emitters with sheet resistances from 37 to 145 Ω/□ were obtained via POCl 3 diffusion process. The thickness of the a-Si diffusion barrier was optimized to be 15 nm for selective emitter in our work. Homemade mask which can dissolve in ethanol was screen-printed on a-Si film to make pattern. The a-Si film was then patterned in KOH solution to form finger-like design. Selective emitter was obtainable with one-step diffusion with patterned a-Si film on. Combinations of sheet resistances for the high-/low-level doped regions of 39.8/112.1, 36.2/88.8, 35.4/73.9 were obtained. These combinations are suitable for screen-printed solar cells. This preparation method of selective emitter based on a-Si diffusion barrier is a promising approach for low cost industrial manufacturing.

  5. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    Directory of Open Access Journals (Sweden)

    Heinrich Juliana K

    2008-10-01

    Full Text Available Abstract Background In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. Methods This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results Results showed that NG97(ht had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells

  6. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    International Nuclear Information System (INIS)

    Machado, Camila ML; Boetcher-Luiz, Fátima; Verinaud, Liana; Ikemori, Rafael Y; Zorzeto, Tatiana Q; Nogueira, Ana CMA; Barbosa, Suse DS; Savino, Wilson; Schenka, André A; Vassallo, José; Heinrich, Juliana K

    2008-01-01

    In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS) and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60 th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results showed that NG97(ht) had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP) and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht) revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells with stromal murine cells in the xenotransplant. In

  7. Helicobacter pylori Infection Causes Characteristic DNA Damage Patterns in Human Cells

    Directory of Open Access Journals (Sweden)

    Max Koeppel

    2015-06-01

    Full Text Available Infection with the human pathogen Helicobacter pylori (H. pylori is a major risk factor for gastric cancer. Since the bacterium exerts multiple genotoxic effects, we examined the circumstances of DNA damage accumulation and identified regions within the host genome with high susceptibility to H. pylori-induced damage. Infection impaired several DNA repair factors, the extent of which depends on a functional cagPAI. This leads to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlates with focal amplifications in adenocarcinomas of the stomach and partly overlaps with known cancer genes. We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation.

  8. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis

    Directory of Open Access Journals (Sweden)

    RICARDO I TEJOS

    2010-01-01

    Full Text Available The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.

  9. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    Science.gov (United States)

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  10. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli.

    Science.gov (United States)

    Wu, Hong; Chen, Jinchun; Chen, Guo-Qiang

    2016-12-01

    E. coli JM109∆envC∆nlpD deleted with genes envC and nlpD responsible for degrading peptidoglycan (PG) led to long filamentous cell shapes. When cell fission ring location genes minC and minD of Escherichia coli were deleted, E. coli JM109∆minCD changed the cell growth pattern from binary division to multiple fissions. Bacterial morphology can be further engineered by overexpressing sulA gene resulting in inhibition on FtsZ, thus generating very long cellular filaments. By overexpressing sulA in E. coli JM109∆envC∆nlpD and E. coli JM109∆minCD harboring poly(3-hydroxybutyrate) (PHB) synthesis operon phbCAB encoded in plasmid pBHR68, respectively, both engineered cells became long filaments and accumulated more PHB compared with the wild-type. Under same shake flask growth conditions, E. coli JM109∆minCD (pBHR68) overexpressing sulA grown in multiple fission pattern accumulated approximately 70 % PHB in 9 g/L cell dry mass (CDM), which was significantly higher than E. coli JM109∆envC∆nlpD and the wild type, that produced 7.6 g/L and 8 g/L CDM containing 64 % and 51 % PHB, respectively. Results demonstrated that a combination of the new division pattern with elongated shape of E. coli improved PHB production. This provided a new vision on the enhanced production of inclusion bodies.

  11. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  12. Spontaneously immortalised bovine mammary epithelial cells exhibit a distinct gene expression pattern from the breast cancer cells

    Directory of Open Access Journals (Sweden)

    Li Qianqian

    2010-10-01

    Full Text Available Abstract Background Spontaneous immortalisation of cultured mammary epithelial cells (MECs is an extremely rare event, and the molecular mechanism behind spontaneous immortalisation of MECs is unclear. Here, we report the establishment of a spontaneously immortalised bovine mammary epithelial cell line (BME65Cs and the changes in gene expression associated with BME65Cs cells. Results BME65Cs cells maintain the general characteristics of normal mammary epithelial cells in morphology, karyotype and immunohistochemistry, and are accompanied by the activation of endogenous bTERT (bovine Telomerase Reverse Transcriptase and stabilisation of the telomere. Currently, BME65Cs cells have been passed for more than 220 generations, and these cells exhibit non-malignant transformation. The expression of multiple genes was investigated in BME65Cs cells, senescent BMECs (bovine MECs cells, early passage BMECs cells and MCF-7 cells (a human breast cancer cell line. In comparison with early passage BMECs cells, the expression of senescence-relevant apoptosis-related gene were significantly changed in BME65Cs cells. P16INK4a was downregulated, p53 was low expressed and Bax/Bcl-2 ratio was reversed. Moreover, a slight upregulation of the oncogene c-Myc, along with an undetectable level of breast tumor-related gene Bag-1 and TRPS-1, was observed in BME65Cs cells while these genes are all highly expressed in MCF-7. In addition, DNMT1 is upregulated in BME65Cs. These results suggest that the inhibition of both senescence and mitochondrial apoptosis signalling pathways contribute to the immortality of BME65Cs cells. The expression of p53 and p16INK4a in BME65Cs was altered in the pattern of down-regulation but not "loss", suggesting that this spontaneous immortalization is possibly initiated by other mechanism rather than gene mutation of p53 or p16INK4a. Conclusions Spontaneously immortalised BME65Cs cells maintain many characteristics of normal BMEC cells and

  13. Effect of Flow on Cultured Cell at Micro-Pattern of Ridge Lines

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2017-10-01

    Full Text Available A flow channel with a micro-pattern of ridge lines of a scaffold has been designed to study quantitatively the effect of flow on an oriented cell in vitro. The lines of parallel micro ridges (0.001 mm height, 0.003 mm width, and 0.003 mm interval are made by the lithography technique on the lower surface of the channel as the scaffold to make orientation of each cell. Variation is made about the angle between the longitudinal direction of the ridge line and the direction of the flow: zero, 0.79 and 1.6 rad. The suspension of C2C12 (mouse myoblast cell line was injected to the channel, and incubated for two hours on the micro ridges before the flow test for four hours. The flow rate of 3/hour is controlled by a syringe pump to make variation of the wall shear stress of < 3 Pa. The action of each cell adhered on the micro pattern was analyzed at the time lapse images. The experimental results show that both the migration and the deformation of each myoblast along the micro ridge are restricted by the wall shear stress higher than 3 Pa.

  14. Nanoimprint lithography of light trapping patterns in sol-gel coatings for thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Heijna, M.; Loffler, J.; Van Aken, B.B.; Soppe, W.J. [ECN Solar Energy, Petten (Netherlands); Borg, H.; Peeters, P. [OM and T, Eindhoven (Netherlands)

    2008-04-15

    For thin-film silicon solar cells, light trapping schemes are of uppermost importance to harvest all available sunlight. Typically, randomly textured TCO front layers are used to scatter the light diffusively in p-i-n cells on glass. Here, we investigate methods to texture the back contact with both random and periodic textures, for use in n-i-p cells on opaque foil. We applied an electrically insulating SiOx-polymer coating on a stainless steel substrate, and textured this barrier layer by nanoimprint. On this barrier layer the back contact is deposited for further use in the solar cell stack. Replication of masters with various random and periodic patterns was tested, and, using scanning electron microscopy, replicas were found to compare well with the originals. Masters with U-grooves of various sub micrometer widths have been used to investigate the optimal dimensions of regular patterns for light trapping in the silicon layers. Angular reflection distributions were measured to evaluate the light scattering properties of both periodic and random patterns. Diffraction gratings show promising results in scattering the light to specific angles, enhancing the total internal reflection in the solar cell.

  15. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Biological alterations of rat podocytes cultured under basolateral hydrostatic pressure

    NARCIS (Netherlands)

    Coers, W.; Vos, J. T.; Huitema, S.; Dijk, F.; Weening, J. J.

    1996-01-01

    In vivo, glomerular visceral epithelial cells (GVEC), or podocytes, are morphologically highly differentiated cells which are in close contact with adjacent cells by complex interdigitating foot processes. In vitro, the dedifferentiated appearance of podocytes hampers investigations on podocyte

  17. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Directory of Open Access Journals (Sweden)

    Akari Takaya

    Full Text Available Human cancer stem-like cells (CSCs/cancer-initiating cells (CICs can be isolated as side population (SP cells, aldehyde dehydrogenase high (ALDHhigh cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  18. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Science.gov (United States)

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  19. Ten years since the discovery of iPS cells: The current state of their clinical application.

    Science.gov (United States)

    Aznar, J; Tudela, J

    On the 10-year anniversary of the discovery of induced pluripotent stem cells, we review the main results from their various fields of application, the obstacles encountered during experimentation and the potential applications in clinical practice. The efficacy of induced pluripotent cells in clinical experimentation can be equated to that of human embryonic stem cells; however, unlike stem cells, induced pluripotent cells do not involve the severe ethical difficulties entailed by the need to destroy human embryos to obtain them. The finding of these cells, which was in its day a true scientific milestone worthy of a Nobel Prize in Medicine, is currently enveloped by light and shadow: high hopes for regenerative medicine versus the, as of yet, poorly controlled risks of unpredictable reactions, both in the processes of dedifferentiation and subsequent differentiation to the cell strains employed for therapeutic or experimentation goals. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  20. The patterning of retinal horizontal cells: normalizing the regularity index enhances the detection of genomic linkage

    Directory of Open Access Journals (Sweden)

    Patrick W. Keeley

    2014-10-01

    Full Text Available Retinal neurons are often arranged as non-random distributions called mosaics, as their somata minimize proximity to neighboring cells of the same type. The horizontal cells serve as an example of such a mosaic, but little is known about the developmental mechanisms that underlie their patterning. To identify genes involved in this process, we have used three different spatial statistics to assess the patterning of the horizontal cell mosaic across a panel of genetically distinct recombinant inbred strains. To avoid the confounding effect cell density, which varies two-fold across these different strains, we computed the real/random regularity ratio, expressing the regularity of a mosaic relative to a randomly distributed simulation of similarly sized cells. To test whether this latter statistic better reflects the variation in biological processes that contribute to horizontal cell spacing, we subsequently compared the genetic linkage for each of these two traits, the regularity index and the real/random regularity ratio, each computed from the distribution of nearest neighbor (NN distances and from the Voronoi domain (VD areas. Finally, we compared each of these analyses with another index of patterning, the packing factor. Variation in the regularity indexes, as well as their real/random regularity ratios, and the packing factor, mapped quantitative trait loci (QTL to the distal ends of Chromosomes 1 and 14. For the NN and VD analyses, we found that the degree of linkage was greater when using the real/random regularity ratio rather than the respective regularity index. Using informatic resources, we narrow the list of prospective genes positioned at these two intervals to a small collection of six genes that warrant further investigation to determine their potential role in shaping the patterning of the horizontal cell mosaic.

  1. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    Science.gov (United States)

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  2. Influence of patterned topographic features on the formation of cardiac cell clusters and their rhythmic activities

    International Nuclear Information System (INIS)

    Wang, L; Liu, L; Magome, N; Agladze, K; Chen, Y

    2013-01-01

    In conventional primary cultures, cardiac cells prepared from a newborn rat undergo spontaneous formation of cell clusters after several days. These cell clusters may be non-homogeneously distributed on a flat surface and show irregular beating which can be recorded by calcium ion imaging. In order to improve the cell cluster homogeneity and the beating regularity, patterned topographic features were used to guide the cellular growth and the cell layer formation. On the substrate with an array of broadly spaced cross features made of photoresist, cells grew on the places that were not occupied by the crosses and thus formed a cell layer with interconnected cell clusters. Accordingly, spatially coordinated regular beating could be recorded over the whole patterned area. In contrast, when cultured on the substrate with broadly spaced but inter-connected cross features, the cardiac cell layer showed beatings which were neither coordinated in space nor regular in time. Finally, when cultured on the substrate with narrowly spaced features, the cell beating became spatially coordinated but still remained irregular. Our results suggest a way to improve the rhythmic property of cultured cardiac cell layers which might be useful for further investigations. (paper)

  3. Langerhans cell sarcoma following marginal zone lymphoma: expanding the knowledge on mature B cell plasticity.

    Science.gov (United States)

    Ambrosio, Maria Raffaella; De Falco, Giulia; Rocca, Bruno Jim; Barone, Aurora; Amato, Teresa; Bellan, Cristiana; Lazzi, Stefano; Leoncini, Lorenzo

    2015-10-01

    The concept of unidirectional differentiation of the haematopoietic stem cell has been challenged after recent findings that human B cell progenitors and even mature B cells can be reprogrammed into histiocytic/dendritic cells by altering expression of lineage-associated transcription factors. The conversion of mature B cell lymphomas to Langerhans cell neoplasms is not well documented. Three previous reports have described clonally related follicular lymphoma and Langerhans cell tumours, whereas no case has been published of clonally related marginal zone lymphoma and Langerhans cell sarcoma. We describe the case of a 77-year-old patient who developed a Langerhans cell sarcoma and 6 years later a nodal marginal zone lymphoma. Mutation status examination showed 100 % gene identity to the germline sequence, suggesting direct trans-differentiation or dedifferentiation of the nodal marginal zone lymphoma to the Langerhans cell sarcoma rather than a common progenitor. We found inactivation of paired box 5 (PAX-5) in the lymphoma cells by methylation, along with duplication of part of the long arm of chromosomes 16 and 17 in the sarcoma cells. The absence of PAX-5 could have triggered B cells to differentiate into macrophages and dendritic cells. On the other hand, chromosomal imbalances might have activated genes involved in myeloid lineage maturation, transcription activation and oncogenesis. We hypothesize that this occurred because of previous therapies for nodal marginal zone lymphoma. Better understanding of this phenomenon may help in unravelling the molecular interplay between transcription factors during haematopoietic lineage commitment and may expand the spectrum of clonally related mature B cell neoplasms and Langerhans cell tumours.

  4. Cell migration during heart regeneration in zebrafish.

    Science.gov (United States)

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. In vitro differentiation of HT-29 M6 mucus-secreting colon cancer cells involves a trychostatin A and p27(KIP1)-inducible transcriptional program of gene expression.

    Science.gov (United States)

    Mayo, Clara; Lloreta, Josep; Real, Francisco X; Mayol, Xavier

    2007-07-01

    Tumor cell dedifferentiation-such as the loss of cell-to-cell adhesion in epithelial tumors-is associated with tumor progression. To better understand the mechanisms that maintain carcinoma cells in a differentiated state, we have dissected in vitro differentiation pathways in the mucus-secretor HT-29 M6 colon cancer cell line, which spontaneously differentiates in postconfluent cultures. By lowering the extracellular calcium concentration to levels that prevent intercellular adhesion and epithelial polarization, our results reveal that differentiation is calcium-dependent and involves: (i) a process of cell cycle exit to G(0) and (ii) the induction of a transcriptional program of differentiation gene expression (i.e., mucins MUC1 and MUC5AC, and the apical membrane peptidase DPPIV). In calcium-deprived, non-differentiated postconfluent cultures, differentiation gene promoters are repressed by a trichostatin A (TSA)-sensitive mechanism, indicating that loss of gene expression by dedifferentiation is driven by histone deacetylases (HDAC). Since TSA treatment or extracellular calcium restoration allow gene promoter activation to similar levels, we suggest that induction of differentiation is one mechanism of HDAC inhibitor antitumor action. Moreover, transcriptional de-repression can also be induced in non-differentiating culture conditions by overexpressing the cyclin-dependent kinase inhibitor p27(KIP1), which is normally induced during spontaneous differentiation. Since p27(KIP1) downregulation in colon cancer is associated with poor prognosis independently of tumor cell division rates, we propose that p27 (KIP1) may prevent tumor progression by, at least in part, enhancing the expression of some differentiation genes. Therefore, the HT-29 M6 model allows the identification of some basic mechanisms of cancer cell differentiation control, so far revealing HDAC and p27(KIP1) as key regulatory factors of differentiation gene expression.

  6. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  7. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  8. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    Science.gov (United States)

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  9. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    Directory of Open Access Journals (Sweden)

    Ingrid Garzón

    Full Text Available Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ. One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1 and anti-apoptotic genes (SON, HTT, FAIM2 may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  10. The Relationship between Respiration-Related Membrane Potential Slow Oscillations and Discharge Patterns in Mitral/Tufted Cells: What Are the Rules?

    Science.gov (United States)

    Briffaud, Virginie; Fourcaud-Trocmé, Nicolas; Messaoudi, Belkacem; Buonviso, Nathalie; Amat, Corine

    2012-01-01

    Background A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSOs) and respiration-related discharge activities under various afferent input conditions and cellular excitability states. Methodology and Principal Findings We recorded the intracellular membrane potential signals in the mitral/tufted cells of freely breathing anesthetized rats. We first demonstrated the existence of multiple types of MPSOs, which were influenced by odor stimulation and discharge activity patterns. Complementary studies using changes in the intracellular excitability state and a computational model of the mitral cell demonstrated that slow oscillations in the mitral/tufted cell membrane potential were also modulated by the intracellular excitability state, whereas the respiration-related spike activity primarily reflected the afferent input. Based on our data regarding MPSOs and spike patterns, we found that cells exhibiting an unsynchronized discharge pattern never exhibited an MPSO. In contrast, cells with a respiration-synchronized discharge pattern always exhibited an MPSO. In addition, we demonstrated that the association between spike patterns and MPSO types appeared complex. Conclusion We propose that both the intracellular excitability state and input strength underlie specific MPSOs, which, in turn, constrain the types of spike patterns exhibited. PMID:22952828

  11. Cell Phenotype Transitions in Cardiovascular Calcification

    Directory of Open Access Journals (Sweden)

    Luis Hortells

    2018-03-01

    Full Text Available Cardiovascular calcification was originally considered a passive, degenerative process, however with the advance of cellular and molecular biology techniques it is now appreciated that ectopic calcification is an active biological process. Vascular calcification is the most common form of ectopic calcification, and aging as well as specific disease states such as atherosclerosis, diabetes, and genetic mutations, exhibit this pathology. In the vessels and valves, endothelial cells, smooth muscle cells, and fibroblast-like cells contribute to the formation of extracellular calcified nodules. Research suggests that these vascular cells undergo a phenotypic switch whereby they acquire osteoblast-like characteristics, however the mechanisms driving the early aspects of these cell transitions are not fully understood. Osteoblasts are true bone-forming cells and differentiate from their pluripotent precursor, the mesenchymal stem cell (MSC; vascular cells that acquire the ability to calcify share aspects of the transcriptional programs exhibited by MSCs differentiating into osteoblasts. What is unknown is whether a fully-differentiated vascular cell directly acquires the ability to calcify by the upregulation of osteogenic genes or, whether these vascular cells first de-differentiate into an MSC-like state before obtaining a “second hit” that induces them to re-differentiate down an osteogenic lineage. Addressing these questions will enable progress in preventative and regenerative medicine strategies to combat vascular calcification pathologies. In this review, we will summarize what is known about the phenotypic switching of vascular endothelial, smooth muscle, and valvular cells.

  12. Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals

    Directory of Open Access Journals (Sweden)

    Safaa Hassan

    2017-12-01

    Full Text Available Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions.

  13. Genetic associations for pathogen-specific clinical mastitis and patterns of peaks in somatic cell count

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2003-01-01

    Genetic associations were estimated between pathogen-specific cases of clinical mastitis (CM), lactational average somatic cell score (LACSCS), and patterns of peaks in somatic cell count (SCC) which were based on deviations from the typical lactation curve for SCC. The dataset contained test-day

  14. Expression of Eag1 K+ channel and ErbBs in human pituitary adenomas: cytoskeleton arrangement patterns in cultured cells.

    Science.gov (United States)

    del Pliego, Margarita González; Aguirre-Benítez, Elsa; Paisano-Cerón, Karina; Valdovinos-Ramírez, Irene; Rangel-Morales, Carlos; Rodríguez-Mata, Verónica; Solano-Agama, Carmen; Martín-Tapia, Dolores; de la Vega, María Teresa; Saldoval-Balanzario, Miguel; Camacho, Javier; Mendoza-Garrido, María Eugenia

    2013-01-01

    Pituitary adenomas can invade surrounded tissue, but the mechanism remains elusive. Ether à go-go-1 (Eag1) potassium channel and epidermal growth factor receptors (ErbB1 and ErbB2) have been associated to invasive phenotypes or poor prognosis in cancer patients. However, cells arrange their cytoskeleton in order to acquire a successful migration pattern. We have studied ErbBs and Eag1 expression, and cytoskeleton arrangements in 11 human pituitary adenomas. Eag1, ErbB1 and ErbB2 expression were studied by immunochemistry in tissue and cultured cells. The cytoskeleton arrangement was analyzed in cultured cells by immunofluorescence. Normal pituitary tissue showed ErbB2 expression and Eag1 only in few cells. However, Eag1 and ErbB2 were expressed in all the tumors analyzed. ErbB1 expression was observed variable and did not show specificity for a tumor characteristic. Cultured cells from micro- and macro-adenomas clinically functional organize their cytoskeleton suggesting a mesenchymal pattern, and a round leucocyte/amoeboid pattern from invasive clinically silent adenoma. Pituitary tumors over-express EGF receptors and the ErbB2 repeated expression suggests is a characteristic of adenomas. Eag 1 was express, in different extent, and could be a therapeutic target. The cytoskeleton arrangements observed suggest that pituitary tumor cells acquire different patterns: mesenchymal, and leucocyte/amoeboid, the last observed in the invasive adenomas. Amoeboid migration pattern has been associated with high invasion capacity.

  15. DNA Methylation Dynamics Regulate the Formation of a Regenerative Wound Epithelium during Axolotl Limb Regeneration.

    Directory of Open Access Journals (Sweden)

    Cristian Aguilar

    Full Text Available The formation of a blastema during regeneration of an axolotl limb involves important changes in the behavior and function of cells at the site of injury. One of the earliest events is the formation of the wound epithelium and subsequently the apical epidermal cap, which involves in vivo dedifferentiation that is controlled by signaling from the nerve. We have investigated the role of epigenetic modifications to the genome as a possible mechanism for regulating changes in gene expression patterns of keratinocytes of the wound and blastema epithelium that are involved in regeneration. We report a modulation of the expression DNMT3a, a de novo DNA methyltransferase, within the first 72 hours post injury that is dependent on nerve signaling. Treatment of skin wounds on the upper forelimb with decitabine, a DNA methyltransferase inhibitor, induced changes in gene expression and cellular behavior associated with a regenerative response. Furthermore, decitabine-treated wounds were able to participate in regeneration while untreated wounds inhibited a regenerative response. Elucidation of the specific epigenetic modifications that mediate cellular dedifferentiation likely will lead to insights for initiating a regenerative response in organisms that lack this ability.

  16. HER/ErbB Receptor Interactions and Signaling Patterns in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Opresko, Lee K.; Shankaran, Harish; Chrisler, William B.; Wiley, H. S.; Resat, Haluk

    2009-10-31

    Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that cell line dependence is not important, which can be misleading because different cell lines do not always respond to a particular stimulus in the same way. The lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. In this study, we report the development of a library of human mammary epithelial (HME) cell lines which express endogenous levels of the cell surface receptor EGFR/HER1, and different levels of HER2 and HER3. Using our clone library, we have quantified the interactions among the HER1-3 receptors and systematically investigated the existing hypotheses about their interaction patterns. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3. Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3, and revealed that EGFR and HER3 activations are only weakly linked in HME cells. We have also quantified the time-dependent activation patterns of the downstream effectors Erk and Akt. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 pathways activate Erk at significant levels. Our study shows that cell libraries formed from closely related clones can be a powerful resource for pursuing the quantitative investigations that are necessary for developing a systems level understanding of cell signaling.

  17. hESC Differentiation toward an Autonomic Neuronal Cell Fate Depends on Distinct Cues from the Co-Patterning Vasculature

    Directory of Open Access Journals (Sweden)

    Lisette M. Acevedo

    2015-06-01

    Full Text Available To gain insight into the cellular and molecular cues that promote neurovascular co-patterning at the earliest stages of human embryogenesis, we developed a human embryonic stem cell model to mimic the developing epiblast. Contact of ectoderm-derived neural cells with mesoderm-derived vasculature is initiated via the neural crest (NC, not the neural tube (NT. Neurovascular co-patterning then ensues with specification of NC toward an autonomic fate requiring vascular endothelial cell (EC-secreted nitric oxide (NO and direct contact with vascular smooth muscle cells (VSMCs via T-cadherin-mediated homotypic interactions. Once a neurovascular template has been established, NT-derived central neurons then align themselves with the vasculature. Our findings reveal that, in early human development, the autonomic nervous system forms in response to distinct molecular cues from VSMCs and ECs, providing a model for how other developing lineages might coordinate their co-patterning.

  18. A two-step patterning process increases the robustness of periodic patterning in the fly eye.

    Science.gov (United States)

    Gavish, Avishai; Barkai, Naama

    2016-06-01

    Complex periodic patterns can self-organize through dynamic interactions between diffusible activators and inhibitors. In the biological context, self-organized patterning is challenged by spatial heterogeneities ('noise') inherent to biological systems. How spatial variability impacts the periodic patterning mechanism and how it can be buffered to ensure precise patterning is not well understood. We examine the effect of spatial heterogeneity on the periodic patterning of the fruit fly eye, an organ composed of ∼800 miniature eye units (ommatidia) whose periodic arrangement along a hexagonal lattice self-organizes during early stages of fly development. The patterning follows a two-step process, with an initial formation of evenly spaced clusters of ∼10 cells followed by a subsequent refinement of each cluster into a single selected cell. Using a probabilistic approach, we calculate the rate of patterning errors resulting from spatial heterogeneities in cell size, position and biosynthetic capacity. Notably, error rates were largely independent of the desired cluster size but followed the distributions of signaling speeds. Pre-formation of large clusters therefore greatly increases the reproducibility of the overall periodic arrangement, suggesting that the two-stage patterning process functions to guard the pattern against errors caused by spatial heterogeneities. Our results emphasize the constraints imposed on self-organized patterning mechanisms by the need to buffer stochastic effects. Author summary Complex periodic patterns are common in nature and are observed in physical, chemical and biological systems. Understanding how these patterns are generated in a precise manner is a key challenge. Biological patterns are especially intriguing, as they are generated in a noisy environment; cell position and cell size, for example, are subject to stochastic variations, as are the strengths of the chemical signals mediating cell-to-cell communication. The need

  19. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning

    International Nuclear Information System (INIS)

    Raos, B J; Unsworth, C P; Costa, J L; Rohde, C A; Simpson, M C; Doyle, C S; Dickinson, M E; Bunting, A S; Murray, A F; Delivopoulos, E; Graham, E S

    2013-01-01

    Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO 2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO 2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics. (paper)

  20. The cancer paradigms of mammalian regeneration: can mammals regenerate as amphibians?

    Science.gov (United States)

    Sarig, Rachel; Tzahor, Eldad

    2017-04-01

    Regeneration in mammals is restricted to distinct tissues and occurs mainly by expansion and maturation of resident stem cells. During regeneration, even subtle mutations in the proliferating cells may cause a detrimental effect by eliciting abnormal differentiation or malignant transformation. Indeed, cancer in mammals has been shown to arise through deregulation of stem cells maturation, which often leads to a differentiation block and cell transformation. In contrast, lower organisms such as amphibians retain a remarkable regenerative capacity in various organs, which occurs via de- and re-differentiation of mature cells. Interestingly, regenerating amphibian cells are highly resistant to oncogenic transformation. Therapeutic approaches to improve mammalian regeneration mainly include stem-cell transplantations; but, these have proved unsuccessful in non-regenerating organs such as the heart. A recently developed approach is to induce de-differentiation of mature cardiomyocytes using factors that trigger their re-entry into the cell cycle. This novel approach raises numerous questions regarding the balance between transformation and regeneration induced by de-differentiation of mature mammalian somatic cells. Can this balance be controlled artificially? Do de-differentiated cells acquire the protection mechanisms seen in regenerating cells of lower organisms? Is this model unique to the cardiac tissue, which rarely develops tumors? This review describes regeneration processes in both mammals and lower organisms and, particularly, the ability of regenerating cells to avoid transformation. By comparing the characteristics of mammalian embryonic and somatic cells, we discuss therapeutic strategies of using various cell populations for regeneration. Finally, we describe a novel cardiac regeneration approach and its implications for regenerative medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email

  1. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  2. The structure and dynamics of patterns of Benard convection cells

    International Nuclear Information System (INIS)

    Rivier, N.; Imperial Coll. of Science and Technology, London; Lausanne Univ.

    1990-08-01

    Benard-Marangoni convection, in containers with large aspect ratio, exhibits space-filling cellular structures, highly deformable, but crystallized. They contain dislocations and grain boundaries generated and moved by elementary topological transformations, and are subjected to a weak shear stress due to the earth's rotation. The cellular structure and its fluctuations are analyzed from a crystallographic viewpoint, by using two complementary approaches. One is a global analysis of cellular structures in cylindrical symmetry. Their structural stability and defect pattern are obtained as topological mode-locking of a continuous structural parameter. The other, a local, molecular dynamics of the cells, gives a realistic parametrization of the forces and the transformations by generalizing the Voronoi cell construction in one extra dimension. 23 refs., 8 figs

  3. Differentiation within autologous fibrin scaffolds of porcine dermal cells with the mesenchymal stem cell phenotype

    International Nuclear Information System (INIS)

    Puente, Pilar de la; Ludeña, Dolores; López, Marta; Ramos, Jennifer; Iglesias, Javier

    2013-01-01

    Porcine mesenchymal stem cells (pMSCs) are an attractive source of cells for tissue engineering because their properties are similar to those of human stem cells. pMSCs can be found in different tissues but their dermal origin has not been studied in depth. Additionally, MSCs differentiation in monolayer cultures requires subcultured cells, and these cells are at risk of dedifferentiation when implanting them into living tissue. Following this, we attempted to characterize the MSCs phenotype of porcine dermal cells and to evaluate their cellular proliferation and differentiation in autologous fibrin scaffolds (AFSs). Dermal biopsies and blood samples were obtained from 12 pigs. Dermal cells were characterized by flow cytometry. Frozen autologous plasma was used to prepare AFSs. pMSC differentiation was studied in standard structures (monolayers and pellets) and in AFSs. The pMSCs expressed the CD90 and CD29 markers of the mesenchymal lineage. AFSs afforded adipogenic, osteogenic and chondrogenic differentiation. The porcine dermis can be proposed to be a good source of MSCs with adequate proliferative capacity and a suitable expression of markers. The pMSCs also showed optimal proliferation and differentiation in AFSs, such that these might serve as a promising autologous and implantable material for use in tissue engineering. -- Highlights: ► Low fibrinogen concentration provides a suitable matrix for cell migration and differentiation. ► Autologous fibrin scaffolds is a promising technique in tissue engineering. ► Dermal cells are an easily accessible mesenchymal stem cell source. ► Fibrin scaffolds afforded adipogenic, osteogenic and chondrogenic differentiation.

  4. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance.

    Science.gov (United States)

    Ando, Kazunori; Shibata, Eri; Hans, Stefan; Brand, Michael; Kawakami, Atsushi

    2017-12-04

    Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protein secretory patterns of rat Sertoli and peritubular cells are influenced by culture conditions

    International Nuclear Information System (INIS)

    Kierszenbaum, A.L.; Crowell, J.A.; Shabanowitz, R.B.; DePhilip, R.M.; Tres, L.L.

    1986-01-01

    An approach combining two-dimensional gel electrophoresis and autoradiography was used to correlate patterns of secretory proteins in cultures of Sertoli and peritubular cells with those observed in the incubation medium from segments of seminiferous tubules. Sertoli cells in culture and in seminiferous tubules secreted three proteins designated S70 (Mr 72,000-70,000), S45 (Mr 45,000), and S35 (Mr 35,000). Cultured Sertoli and peritubular cells and incubated seminiferous tubules secreted two proteins designated SP1 (Mr 42,000) and SP2 (Mr 50,000). SP1 and S45 have similar Mr but differ from each other in isoelectric point (pI). Cultured peritubular cells secreted a protein designated P40 (Mr 40,000) that was also seen in intact seminiferous tubules but not in seminiferous tubules lacking the peritubular cell wall. However, a large number of high-Mr proteins were observed only in the medium of cultured peritubular cells but not in the incubation medium of intact seminiferous tubules. Culture conditions influence the morphology and patterns of protein secretion of cultured peritubular cells. Peritubular cells that display a flat-stellate shape transition when placed in culture medium free of serum (with or without hormones and growth factors), accumulate various proteins in the medium that are less apparent when these cells are maintained in medium supplemented with serum. Two secretory proteins stimulated by follicle-stimulating hormone (FSH) (designated SCm1 and SCm2) previously found in the medium of cultured Sertoli cells, were also observed in the incubation medium of seminiferous tubular segments stimulated by FSH. Results of this study show that, although cultured Sertoli and peritubular cells synthesize and secrete proteins also observed in segments of incubated seminiferous tubules anther group of proteins lacks seminiferous tubular correlates

  6. Associations between somatic cell count patterns and the incidence of clinical mastitis

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2005-01-01

    Associations between clinical mastitis (CM) and the proportional distribution of patterns in somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a 12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations from 22,955

  7. The therapeutic implications of plasticity of the cancer stem cell phenotype.

    Directory of Open Access Journals (Sweden)

    Kevin Leder

    2010-12-01

    Full Text Available The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer.

  8. Antagonism between the transcription factors NANOG and OTX2 specifies rostral or caudal cell fate during neural patterning transition.

    Science.gov (United States)

    Su, Zhenghui; Zhang, Yanqi; Liao, Baojian; Zhong, Xiaofen; Chen, Xin; Wang, Haitao; Guo, Yiping; Shan, Yongli; Wang, Lihui; Pan, Guangjin

    2018-03-23

    During neurogenesis, neural patterning is a critical step during which neural progenitor cells differentiate into neurons with distinct functions. However, the molecular determinants that regulate neural patterning remain poorly understood. Here we optimized the "dual SMAD inhibition" method to specifically promote differentiation of human pluripotent stem cells (hPSCs) into forebrain and hindbrain neural progenitor cells along the rostral-caudal axis. We report that neural patterning determination occurs at the very early stage in this differentiation. Undifferentiated hPSCs expressed basal levels of the transcription factor orthodenticle homeobox 2 (OTX2) that dominantly drove hPSCs into the "default" rostral fate at the beginning of differentiation. Inhibition of glycogen synthase kinase 3β (GSK3β) through CHIR99021 application sustained transient expression of the transcription factor NANOG at early differentiation stages through Wnt signaling. Wnt signaling and NANOG antagonized OTX2 and, in the later stages of differentiation, switched the default rostral cell fate to the caudal one. Our findings have uncovered a mutual antagonism between NANOG and OTX2 underlying cell fate decisions during neural patterning, critical for the regulation of early neural development in humans. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    KAUST Repository

    Liu, Jia

    2014-12-01

    Power production in microbial reverse-electrodialysis cells (MRCs) can be limited by the internal resistance of the reverse electrodialysis stack. Typical MRC stacks use non-conductive spacers that block ion transport by the so-called spacer shadow effect. These spacers can be relatively thick compared to the membrane, and thus they increase internal stack resistance due to high solution (ohmic) resistance associated with a thick spacer. New types of patterned anion and cation exchange membranes were developed by casting membranes to create hemispherical protrusions on the membranes, enabling fluid flow between the membranes without the need for a non-conductive spacer. The use of the patterned membrane decreased the MRC stack resistance by ∼22 Ω, resulting in a 38% increase in power density from 2.50 ± 0.04 W m-2 (non-patterned membrane with a non-conductive spacer) to 3.44 ± 0.02 W m-2 (patterned membrane). The COD removal rate, coulombic efficiency, and energy efficiency of the MRC also increased using the patterned membranes compared to the non-patterned membranes. These results demonstrate that these patterned ion exchange membranes can be used to improve performance of an MRC. © 2014 Elsevier B.V. All rights reserved.

  10. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    Science.gov (United States)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  11. Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation.

    Directory of Open Access Journals (Sweden)

    Daniel Geberth

    2009-07-01

    Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.

  12. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    Science.gov (United States)

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pancreatic β-cell regeneration: Facultative or dedicated progenitors?

    Science.gov (United States)

    Afelik, Solomon; Rovira, Meritxell

    2017-04-15

    The adult pancreas is only capable of limited regeneration. Unlike highly regenerative tissues such as the skin, intestinal crypts and hematopoietic system, no dedicated adult stem cells or stem cell niche have so far been identified within the adult pancreas. New β cells have been shown to form in the adult pancreas, in response to high physiological demand or experimental β-cell ablation, mostly by replication of existing β cells. The possibility that new β cells are formed from other sources is currently a point of major controversy. Under particular injury conditions, fully differentiated pancreatic duct and acinar cells have been shown to dedifferentiate into a progenitor-like state, however the extent, to which ductal, acinar or other endocrine cells contribute to restoring pancreatic β-cell mass remains to be resolved. In this review we focus on regenerative events in the pancreas with emphasis on the restoration of β-cell mass. We present an overview of regenerative responses noted within the different pancreatic lineages, following injury. We also highlight the intrinsic plasticity of the adult pancreas that allows for inter-conversion of fully differentiated pancreatic lineages through manipulation of few genes or growth factors. Taken together, evidence from a number of studies suggest that differentiated pancreatic lineages could act as facultative progenitor cells, but the extent to which these contribute to β-cell regeneration in vivo is still a matter of contention. Copyright © 2016. Published by Elsevier B.V.

  14. Distribution of Vascular Patterns in Different Subtypes of Renal Cell Carcinoma. A Morphometric Study in Two Distinct Types of Blood Vessels.

    Science.gov (United States)

    Ruiz-Saurí, Amparo; García-Bustos, V; Granero, E; Cuesta, S; Sales, M A; Marcos, V; Llombart-Bosch, A

    2017-07-01

    To analyze the presence of mature and immature vessels as a prognostic factor in patients with renal cell carcinoma and propose a classification of renal cancer tumor blood vessels according to morphometric parameters. Tissue samples were obtained from 121 renal cell carcinoma patients who underwent radical nephrectomy. Staining with CD31 and CD34 was used to differentiate between immature (CD31+) and mature (CD34+) blood vessels. We quantified the microvascular density, microvascular area and different morphometric parameters: maximum diameter, minimum diameter, major axis, minor axis, perimeter, radius ratio and roundness. We found that the microvascular density was higher in CD31+ than CD34+ vessels, but CD34+ vessels were larger than CD31+ vessels, as well as being strongly correlated with the ISUP tumor grade. We also identified four vascular patterns: pseudoacinar, fascicular, reticular and diffuse. Pseudoacinar and fascicular patterns were more frequent in clear cell renal cell carcinoma (37.62 and 35.64% respectively), followed by reticular pattern (21.78%), while in chromophobe tumors the reticular pattern predominated (90%). The isolated pattern was present in all papillary tumors (100%). In healthy renal tissue, the pseudoacinar and isolated patterns were differentially found in the renal cortex and medulla respectively. We defined four distinct vascular patterns significantly related with the ISUP tumor grade in renal cell carcinomas. Further studies in larger series are needed in order to validate these results. Analysis of both mature and immature vessels (CD34+ and CD31+) provides additional information when evaluating microvascular density.

  15. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  16. Injury-activated glial cells promote wound healing of the adult skin in mice.

    Science.gov (United States)

    Parfejevs, Vadims; Debbache, Julien; Shakhova, Olga; Schaefer, Simon M; Glausch, Mareen; Wegner, Michael; Suter, Ueli; Riekstina, Una; Werner, Sabine; Sommer, Lukas

    2018-01-16

    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders.

  17. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite

    International Nuclear Information System (INIS)

    Catros, Sylvain; Fricain, Jean-Christophe; Guillotin, Bertrand; Pippenger, Benjamin; Bareille, Reine; Remy, Murielle; Amedee, Joelle; Guillemot, Fabien; Lebraud, Eric; Desbat, Bernard

    2011-01-01

    Developing tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue engineering products. The objective of this work was to determine laser printing parameters for patterning and assembling nano-hydroxyapatite (nHA) and human osteoprogenitors (HOPs) in two and three dimensions with LAB. The LAB workstation used in this study comprised an infrared laser focused on a quartz ribbon that was coated with a thin absorbing layer of titanium and a layer of bioink. The scanning system, quartz ribbon and substrate were piloted by dedicated software, allowing the sequential printing of different biological materials into two and/or three dimensions. nHA printing material (bioink) was synthesized by chemical precipitation and was characterized prior and following printing using transmission electron microscopy, Fourier transformed infrared spectroscopy and x-ray diffraction. HOP bioink was prepared using a 30 million cells ml -1 suspension in culture medium and cells were characterized after printing using a Live/Dead assay and osteoblastic phenotype markers (alcaline phosphatase and osteocalcin). The results revealed that LAB allows printing and organizing nHA and HOPs in two and three dimensions. LAB did not alter the physico-chemical properties of nHA, nor the viability, proliferation and phenotype of HOPs over time (up to 15 days). This study has demonstrated that LAB is a relevant method for patterning nHA and osteoblastic cells in 2D, and is also adapted to the bio-fabrication of 3D composite materials.

  18. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Catros, Sylvain; Fricain, Jean-Christophe; Guillotin, Bertrand; Pippenger, Benjamin; Bareille, Reine; Remy, Murielle; Amedee, Joelle; Guillemot, Fabien [INSERM, U577, University Victor Segalen Bordeaux 2, Bordeaux F-33076 (France); Lebraud, Eric [CNRS, Universite de Bordeaux, I.C.M.C.B., 87 Avenue du Dr A. Schweitzer, 33608 Pessac Cedex (France); Desbat, Bernard, E-mail: sylvaincatros@hotmail.com [CBMN UMR-CNRS 5248, 2 rue Robert Escarpit, 33607 Pessac (France)

    2011-06-15

    Developing tools to reproduce and manipulate the cell micro-environment, including the location and shape of cell patterns, is essential for tissue engineering. Parallel to inkjet printing and pressure-operated mechanical extruders, laser-assisted bioprinting (LAB) has emerged as an alternative technology to fabricate two- and three-dimensional tissue engineering products. The objective of this work was to determine laser printing parameters for patterning and assembling nano-hydroxyapatite (nHA) and human osteoprogenitors (HOPs) in two and three dimensions with LAB. The LAB workstation used in this study comprised an infrared laser focused on a quartz ribbon that was coated with a thin absorbing layer of titanium and a layer of bioink. The scanning system, quartz ribbon and substrate were piloted by dedicated software, allowing the sequential printing of different biological materials into two and/or three dimensions. nHA printing material (bioink) was synthesized by chemical precipitation and was characterized prior and following printing using transmission electron microscopy, Fourier transformed infrared spectroscopy and x-ray diffraction. HOP bioink was prepared using a 30 million cells ml{sup -1} suspension in culture medium and cells were characterized after printing using a Live/Dead assay and osteoblastic phenotype markers (alcaline phosphatase and osteocalcin). The results revealed that LAB allows printing and organizing nHA and HOPs in two and three dimensions. LAB did not alter the physico-chemical properties of nHA, nor the viability, proliferation and phenotype of HOPs over time (up to 15 days). This study has demonstrated that LAB is a relevant method for patterning nHA and osteoblastic cells in 2D, and is also adapted to the bio-fabrication of 3D composite materials.

  19. Two Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel Development.

    Science.gov (United States)

    Schneider, Rene; Tang, Lu; Lampugnani, Edwin R; Barkwill, Sarah; Lathe, Rahul; Zhang, Yi; McFarlane, Heather E; Pesquet, Edouard; Niittyla, Totte; Mansfield, Shawn D; Zhou, Yihua; Persson, Staffan

    2017-10-01

    The evolution of the plant vasculature was essential for the emergence of terrestrial life. Xylem vessels are solute-transporting elements in the vasculature that possess secondary wall thickenings deposited in intricate patterns. Evenly dispersed microtubule (MT) bands support the formation of these wall thickenings, but how the MTs direct cell wall synthesis during this process remains largely unknown. Cellulose is the major secondary wall constituent and is synthesized by plasma membrane-localized cellulose synthases (CesAs) whose catalytic activity propels them through the membrane. We show that the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1)/POM2 is necessary to align the secondary wall CesAs and MTs during the initial phase of xylem vessel development in Arabidopsis thaliana and rice ( Oryza sativa ). Surprisingly, these MT-driven patterns successively become imprinted and sufficient to sustain the continued progression of wall thickening in the absence of MTs and CSI1/POM2 function. Hence, two complementary principles underpin wall patterning during xylem vessel development. © 2017 American Society of Plant Biologists. All rights reserved.

  20. Development of a Novel Tissue Engineering Strategy Towards Whole Limb Regeneration

    National Research Council Canada - National Science Library

    Laurencin, Cato T

    2008-01-01

    .... In contrast to the bottom up approach of limb regeneration that relies on blastema formation outgrowth and cell dedifferentiation as seen in amphibians and lower vertebrates tissue engineering...

  1. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  2. Insulin-like growth factor-1 signaling in renal cell carcinoma

    International Nuclear Information System (INIS)

    Tracz, Adam F.; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M.

    2016-01-01

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells

  3. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling.

    Science.gov (United States)

    Poloz, Yekaterina; O'Day, Danton H

    2012-04-01

    Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility. Copyright © 2011 International Society of Differentiation. Published by Elsevier B

  4. Combined Cell Culture-Biosensing Platform Using Vertically Aligned Patterned Peptide Nanofibers for Cellular Studies

    DEFF Research Database (Denmark)

    Taskin, Mehmet B.; Sasso, Luigi; Dimaki, Maria

    2013-01-01

    it possible to avoid a loss of sensitivity because of the diffusion of the sample. The obtained results showed that the peptide nanofibers were suitable as a cell culturing substrate for PC12 cells. The peptide nanofibers could be employed as an alternative biological material to increase the adherence......This Article presents the development of a combined cell culture–biosensing platform using vertically aligned self-assembled peptide nanofibers. Peptide nanofibers were patterned on a microchip containing gold microelectrodes to provide the cells with a 3D environment enabling them to grow...... and proliferate. Gold microelectrodes were functionalized with conductive polymers for the electrochemical detection of dopamine released from PC12 cells. The combined cell culture–biosensing platform assured a close proximity of the release site, the cells and the active surface of the sensor, thereby rendering...

  5. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  6. Capillarity Guided Patterning of Microliquids.

    Science.gov (United States)

    Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li

    2015-06-01

    Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism.

    Directory of Open Access Journals (Sweden)

    Luke Gammon

    Full Text Available The glycolytic response of hypoxic cells is primarily mediated by the hypoxia inducible factor alpha (HIF-1α but even in the presence of abundant oxygen tumours typically show high rates of glycolysis. Higher levels of HIF-1α in tumours are associated with a poorer prognosis and up-regulation of markers of epithelial mesenchymal transition (EMT due to HIF-1α actions. We have recently shown that EMT occurs within the CD44(high cancer stem cell (CSC fraction and that epithelial and EMT CSCs are distinguished by high and low ESA expression, respectively. We here show that hypoxia induces a marked shift of the CSC fraction towards EMT leading to altered cell morphology, an increased proportion of CD44(high/ESA(low cells, patterns of gene expression typical of EMT, and enhanced sphere-forming ability. The size of EMT fractions returned to control levels in normoxia indicating a reversible process. Surprisingly, however, even under normoxic conditions a fraction of EMT CSCs was present and maintained high levels of HIF-1α, apparently due to actions of cytokines such as TNFα. Functionally, this EMT CSC fraction showed decreased mitochondrial mass and membrane potential, consumed far less oxygen per cell, and produced markedly reduced levels of reactive oxygen species (ROS. These differences in the patterns of oxygen metabolism of sub-fractions of tumour cells provide an explanation for the general therapeutic resistance of CSCs and for the even greater resistance of EMT CSCs. They also identify potential mechanisms for manipulation of CSCs.

  8. Activation of the Ca2+/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation

    International Nuclear Information System (INIS)

    Larrieu, Daniel; Thiebaud, Pierre; Duplaa, Cecile; Sibon, Igor; Theze, Nadine; Lamaziere, Jean-Marie Daniel

    2005-01-01

    Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca 2+ movements are essential to ensure SMC functions; one of the roles of Ca 2+ is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT 2 nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT 2 is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT 2 is critical in the acquisition and maintenance of SMC differentiation

  9. Aggregation patterns of fetal rat brain cells following exposure to X-irradiation

    International Nuclear Information System (INIS)

    Shoji, R.; Suzuki, K.; Lee, I.P.

    1980-01-01

    In our search for a simplified in vitro test system to assess the teratogenic effects of physical factors, we studied the effects of total maternal body X-irradiation on aggregation patterns of enzymatically isolated fetal rat brain cells and on ultrastructural aggregate changes. The fetal brain cells were derived from day 14 gestation fetuses of pregnant Sprague-Dawley (CD strain) rats exposed to X-irradiation (25 - 200 R) one hour prior to sacrifice. Notable changes in the cell aggregates following X-irradiation included a reduction in cell aggregate size and an increase in number. The frequency of cell aggregates was higher in the treated than in the control group, and the mean diameter of cell aggregates was inversely related to increasing X-irradiation doses. Transmission electron microscopy revealed in isolated cells features of degenerative process which were similar to those found in intact fetal brain lesions caused by maternal X-irradiation. Furthermore, scanning electron microscopy revealed that inhibition of cell aggregation following X-irradiation could probably be attributed to inhibition of membrane filopodia development and a consequent failure of cell aggregates to fuse into a greater cell aggregate mass. These results suggest that the membrane factors which influence cell aggregation may be a useful parameter to assess early effects of X-irradiation-induced brain deformity. Presently, the cell aggregation culture system is being further evaluated as a short term test system for environmental teratogens

  10. Plant breeding by using radiation mutation - Selection of herbicide-resistant cell lines by using {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo Yeon [Sunchun University, Sunchun (Korea); Seo, Yong Weon [Korea University, Seoul (Korea)

    2000-04-01

    In order to develop the herbicide resistant cell lines, micro calli derived from rice anther culture and mature seed of wheat cultivars were irradiated with gamma rays. 1) The callus was dedifferentiated by 7 or 21 day pretreatment at 7 deg. C in two rice cultivars, Ilpumbyeo ad Dongjinbyeo. 2) To check the optimum concentration of herbicide, three herbicides were tested with micro calli. 3) The optimum dose of gamma ray to seeds of wheat seemed to be from 100 to 150 Gy. 4) AFLP and RAPD technique were established to develope herbicide resistant molecular marker in rice. 34 refs., 10 figs., 5 tabs. (Author)

  11. Plasticity of male germline stem cells and their applications in reproductive and regenerative medicine

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2015-06-01

    Full Text Available Spermatogonial stem cells (SSCs, also known as male germline stem cells, are a small subpopulation of type A spermatogonia with the potential of self-renewal to maintain stem cell pool and differentiation into spermatids in mammalian testis. SSCs are previously regarded as the unipotent stem cells since they can only give rise to sperm within the seminiferous tubules. However, this concept has recently been challenged because numerous studies have demonstrated that SSCs cultured with growth factors can acquire pluripotency to become embryonic stem-like cells. The in vivo and in vitro studies from peers and us have clearly revealed that SSCs can directly transdifferentiate into morphologic, phenotypic, and functional cells of other lineages. Direct conversion to the cells of other tissues has important significance for regenerative medicine. SSCs from azoospermia patients could be induced to differentiate into spermatids with fertilization and developmental potentials. As such, SSCs could have significant applications in both reproductive and regenerative medicine due to their unique and great potentials. In this review, we address the important plasticity of SSCs, with focuses on their self-renewal, differentiation, dedifferentiation, transdifferentiation, and translational medicine studies.

  12. Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns

    International Nuclear Information System (INIS)

    Altman, R.; Harrich, D.; Garcia, J.A.; Gaynor, R.B.

    1988-01-01

    Human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) are human retroviruses which normally infect T-lymphoid cells. HTLV-I infection is associated with adult T-cell leukemia-lymphoma, and HTLV-II is associated with an indolent form of hairy-cell leukemia. To identify potential transcriptional regulatory elements of these two related human retroviruses, the authors performed DNase I footprinting of both the HTLV-I and HTLV-II long terminal repeats (LTRs) by using extracts prepared from uninfected T cells, HTLV-I and HTLV-II transformed T cells, and HeLa cells. Five regions of the HTLV-I LTR and three regions of the HTLV-II LTR showed protection by DNase I footprinting. All three of the 21-base-pair repeats previously shown to be important in HTLV transcriptional regulation were protected in the HTLV-I LTR, whereas only one of these repeats was protected in the HTLV-II LTR. Several regions exhibited altered protection in extracts prepared from lymphoid cells as compared with HeLa cells, but there were minimal differences in the protection patterns between HTLV-infected and uninfected lymphoid extracts. A number of HTLV-I and HTLV-II LTR fragments which contained regions showing protection in DNase I footprinting were able to function as inducible enhancer elements in transient CAT gene expression assays in the presence of the HTLV-II tat protein. The alterations in the pattern of the cellular proteins which bind to the HTLV-I and HTLV-II LTRs may in part be responsible for differences in the transcriptional regulation of these two related viruses

  13. Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration.

    Science.gov (United States)

    Shibata, Eri; Ando, Kazunori; Murase, Emiko; Kawakami, Atsushi

    2018-04-13

    The regenerative epidermis (RE) is a specialized tissue that plays an essential role in tissue regeneration. However, the fate of the RE during and after regeneration is unknown. In this study, we performed Cre- loxP -mediated cell fate tracking and revealed the fates of a major population of the RE cells that express fibronectin 1b ( fn1b ) during zebrafish fin regeneration. Our study showed that these RE cells are mainly recruited from the inter-ray epidermis, and that they follow heterogeneous cell fates. Early recruited cells contribute to initial wound healing and soon disappear by apoptosis, while the later recruited cells contribute to the regenerated epidermis. Intriguingly, many of these cells are also expelled from the regenerated tissue by a dynamic caudal movement of the epidermis over time, and in turn the loss of epidermal cells is replenished by a global self-replication of basal and suprabasal cells in fin. De-differentiation of non-basal epidermal cells into the basal epidermal cells did not occur during regeneration. Overall, our study reveals the heterogeneous fates of RE cells and a dynamic rearrangement of the epidermis during and after regeneration. © 2018. Published by The Company of Biologists Ltd.

  14. P27Kip1, regulated by glycogen synthase kinase-3β, results in HMBA-induced differentiation of human gastric cancer cells

    International Nuclear Information System (INIS)

    Wei, Min; Gu, Qinlong; Wang, Zhiwei; Yao, Hongliang; Yang, Zhongyin; Zhang, Qing; Liu, Bingya; Yu, Yingyan; Su, Liping; Zhu, Zhenggang

    2011-01-01

    Gastric cancer is the second most common cause of global cancer-related mortality. Although dedifferentiation predicts poor prognosis in gastric cancer, the molecular mechanism underlying dedifferentiation, which could provide fundamental insights into tumor development and progression, has yet to be elucidated. Furthermore, the molecular mechanism underlying the effects of hexamethylene bisacetamide (HMBA), a recently discovered differentiation inducer, requires investigation and there are no reported studies concerning the effect of HMBA on gastric cancer. Based on the results of FACS analysis, the levels of proteins involved in the cell cycle or apoptosis were determined using western blotting after single treatments and sequential combinations of HMBA and LiCl. GSK-3β and proton pump were investigated by western blotting after up-regulating Akt expression by Ad-Akt infection. To investigate the effects of HMBA on protein localization and the activities of GSK-3β, CDK2 and CDK4, kinase assays, immunoprecipitation and western blotting were performed. In addition, northern blotting and RNase protection assays were carried out to determine the functional concentration of HMBA. HMBA increased p27Kip1 expression and induced cell cycle arrest associated with gastric epithelial cell differentiation. In addition, treating gastric-derived cells with HMBA induced G0/G1 arrest and up-regulation of the proton pump, a marker of gastric cancer differentiation. Moreover, treatment with HMBA increased the expression and activity of GSK-3β in the nucleus but not the cytosol. HMBA decreased CDK2 activity and induced p27Kip1 expression, which could be rescued by inhibition of GSK-3β. Furthermore, HMBA increased p27Kip1 binding to CDK2, and this was abolished by GSK-3β inhibition. The results presented herein suggest that GSK-3β functions by regulating p27Kip1 assembly with CDK2, thereby playing a critical role in G0/G1 arrest associated with HMBA-induced gastric epithelial

  15. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  16. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro.

    Science.gov (United States)

    Yao, Xiuhua; Huang, Huiling; Li, Zhou; Liu, Xiaohua; Fan, Weijia; Wang, Xinping; Sun, Xuelian; Zhu, Jianmin; Zhou, Hongrui; Wei, Huaying

    2017-08-01

    Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

  17. DNA methylation patterns of imprinting centers for H19, SNRPN, and KCNQ1OT1 in single-cell clones of human amniotic fluid mesenchymal stem cell

    Directory of Open Access Journals (Sweden)

    Hsiu-Huei Peng

    2012-09-01

    Conclusion: In conclusion, human amniotic fluid mesenchymal stem cells contain a unique epigenetic signature during in vitro cell culture. H19 and KCNQ1OT1 possessed a substantial degree of hypermethylation status, and variable DNA methylation patterns of SNRPN was observed during in vitro cell culture of human amniotic fluid mesenchymal stem cells. Our results urge further understanding of epigenetic status of human amniotic fluid mesenchymal stem cells before it is applied in cell replacement therapy.

  18. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Schröpfer, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Feix, Sonja; Anacker, Jelena

    2010-01-01

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  19. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    Science.gov (United States)

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Vascular smooth muscle cells exhibit a progressive loss of rigidity with serial culture passaging.

    Science.gov (United States)

    Dinardo, Carla Luana; Venturini, Gabriela; Omae, Samantha Vieira; Zhou, Enhua H; da Motta-Leal-Filho, Joaquim Maurício; Dariolli, Rafael; Krieger, José Eduardo; Alencar, Adriano Mesquita; Costa Pereira, Alexandre

    2012-01-01

    One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.

  1. Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors.

    Science.gov (United States)

    Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul

    2017-07-01

    Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.

  2. Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche

    Directory of Open Access Journals (Sweden)

    Alvarez-Buylla Elena R

    2010-10-01

    Full Text Available Abstract Background Recent experimental work has uncovered some of the genetic components required to maintain the Arabidopsis thaliana root stem cell niche (SCN and its structure. Two main pathways are involved. One pathway depends on the genes SHORTROOT and SCARECROW and the other depends on the PLETHORA genes, which have been proposed to constitute the auxin readouts. Recent evidence suggests that a regulatory circuit, composed of WOX5 and CLE40, also contributes to the SCN maintenance. Yet, we still do not understand how the niche is dynamically maintained and patterned or if the uncovered molecular components are sufficient to recover the observed gene expression configurations that characterize the cell types within the root SCN. Mathematical and computational tools have proven useful in understanding the dynamics of cell differentiation. Hence, to further explore root SCN patterning, we integrated available experimental data into dynamic Gene Regulatory Network (GRN models and addressed if these are sufficient to attain observed gene expression configurations in the root SCN in a robust and autonomous manner. Results We found that an SCN GRN model based only on experimental data did not reproduce the configurations observed within the root SCN. We developed several alternative GRN models that recover these expected stable gene configurations. Such models incorporate a few additional components and interactions in addition to those that have been uncovered. The recovered configurations are stable to perturbations, and the models are able to recover the observed gene expression profiles of almost all the mutants described so far. However, the robustness of the postulated GRNs is not as high as that of other previously studied networks. Conclusions These models are the first published approximations for a dynamic mechanism of the A. thaliana root SCN cellular pattering. Our model is useful to formally show that the data now available are not

  3. Characteristic cytokine generation patterns in cancer cells and infiltrating lymphocytes in oral squamous cell carcinomas and the influence of chemoradiation combined with immunotherapy on these patterns.

    Science.gov (United States)

    Yamamoto, Tetsuya; Kimura, Tsuyoshi; Ueta, Eisaku; Tatemoto, Yukihiro; Osaki, Tokio

    2003-01-01

    Cytokines produced by tumor cells and tumor-infiltrating lymphocytes (TIL) appear to regulate tumor cell growth and the cytotoxic activity of TIL. The objectives of the present study were to investigate cytokine generation patterns in tumor cells and TIL and to examine the influence of cancer therapy on this cytokine production and the cytotoxic activity of TIL. We determined the levels of cytokines produced by tumor cells and TIL in vitro and measured the cytotoxic activity of TIL against Daudi cells in patients with oral squamous cell carcinoma (OSC) before and 1 week after the start of concomitant chemo-radio-immunotherapy. Before the therapy, OSC cells generated higher levels of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) than did oral keratinocytes isolated from the noninflamed gingivae of healthy individuals, but both kinds of cells generated similar levels of interleukin (IL)-1beta and IL-6. Compared with peripheral blood mononuclear cells (PBMC) of the patients, TIL produced higher levels of IL-1beta, IL-6, IL-10, TNF-alpha and TGF-beta, whereas their production of IL-12 and interferon-gamma (IFN-gamma) was only slightly higher than that in PBMC. After 1 week of therapy, the cytokine production by OSC cells had largely decreased, while the production of TNF-alpha, IFN-gamma, TGF-beta and IL-12 by TIL had increased greatly, although other cytokine levels were almost constant during the investigations. The cytotoxic activity of TIL was higher than that of PBMC before the therapy, and this activity was strongly increased by 1 week of therapy. These results suggest that the cytokine productivities of TIL and tumor cells differ from those of PBMC and normal keratinocytes, respectively, and that chemo-radio-immunotherapy modulates in situ cytokine generation, which is advantageous for inhibition of tumor cell growth and activation of TIL. Copyright 2003 S. Karger AG

  4. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  5. Bipolar Plasma Membrane Distribution of Phosphoinositides and Their Requirement for Auxin-Mediated Cell Polarity and Patterning in Arabidopsis

    NARCIS (Netherlands)

    Tejos, R.; Sauer, M.; Vanneste, S.; Palacios-Gomez, M.; Li, H.; Heilmann, M.; van Wijk, R.; Vermeer, J.E.M.; Heilmann, I.; Munnik, T.; Friml, J.

    2014-01-01

    Cell polarity manifested by asymmetric distribution of cargoes, such as receptors and transporters, within the plasma membrane (PM) is crucial for essential functions in multicellular organisms. In plants, cell polarity (re)establishment is intimately linked to patterning processes. Despite the

  6. Oesophageal epithelial cell proliferation and food consumption patterns following irradiation

    International Nuclear Information System (INIS)

    Burholt, D.R.

    1986-01-01

    The murine data presented illustrate the influence of food consumption on the proliferative rate of the oesophageal epithelium during recovery from radiation damage. Refeeding at a time before the initiation of the normal hyperplastic response results in a decreased time interval between treatment and increased rates of cell proliferation, while reduced food consumption during the normal period of hyperproliferation results in reduced proliferative activity. The finding that recovery kinetics may be altered by changing food consumption patterns should be an important consideration in the analysis of antineoplastic agent-induced proliferative perturbations, as many treatments themselves produce reduced levels of food consumption. (UK)

  7. Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations

    Czech Academy of Sciences Publication Activity Database

    Koukalová, Blažena; Fojtová, Miloslava; Lim, Yoong Kar; Fulneček, Jaroslav; Leitch, Rowland Andrew; Kovařík, Aleš

    2005-01-01

    Roč. 139, - (2005), s. 275-286 ISSN 0032-0889 Institutional research plan: CEZ:AV0Z50040507 Keywords : pluripotent tobacco cells * epigenetic changes Subject RIV: BO - Biophysics Impact factor: 6.114, year: 2005

  8. A bio-inspired spatial patterning circuit.

    Science.gov (United States)

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  9. Chicken HOXA3 Gene: Its Expression Pattern and Role in Branchial Nerve Precursor Cell Migration

    Science.gov (United States)

    Watari-Goshima, Natsuko; Chisaka, Osamu

    2011-01-01

    In vertebrates, the proximal and distal sensory ganglia of the branchial nerves are derived from neural crest cells (NCCs) and placodes, respectively. We previously reported that in Hoxa3 knockout mouse embryos, NCCs and placode-derived cells of the glossopharyngeal nerve were defective in their migration. In this report, to determine the cell-type origin for this Hoxa3 knockout phenotype, we blocked the expression of the gene with antisense morpholino oligonucleotides (MO) specifically in either NCCs/neural tube or placodal cells of chicken embryos. Our results showed that HOXA3 function was required for the migration of the epibranchial placode-derived cells and that HOXA3 regulated this cell migration in both NCCs/neural tube and placodal cells. We also report that the expression pattern of chicken HOXA3 was slightly different from that of mouse Hoxa3. PMID:21278919

  10. Patterns of lipofuscin accumulation in ganglionic nerve cells of superior cervical ganglion in humans

    Directory of Open Access Journals (Sweden)

    Živković Vladimir

    2008-01-01

    Full Text Available Background/Aim. Considering available literature lipofuscin is a classical age pigment of postmitotic cells, and a consistently recognized phenomenon in humans and animals. Lipofuscin accumulation is characteristic for nerve cells that are postmitotic. This research was focused on lipofuscin accumulation in ganglionic cells (GC (postganglionic sympathetic cell bodies of superior cervical ganglion in humans during ageing. Methods. We analysed 30 ganglions from cadavers ranging from 20 to over 80 years of age. As material the tissue samples were used from the middle portion of the ganglion, which was separated from the surrounding tissue by the method of macrodissection. The tissue samples were routinely fixed in 10% neutral formalin and embedded in paraffin for classical histological analysis, then three consecutive (successive sections 5 μm thick were made and stained with hematoxylin and eosin method (HE, silver impregnation technique by Masson Fontana and trichrome stain by Florantin. Results. Immersion microscopy was used to analyse patterns of lipofuscin accumulation during ageing making possible to distinguish diffuse type (lipofuscin granules were irregularly distributed and non-confluent, unipolar type (lipofuscin granules were grouped at the end of the cell, bipolar type (lipofuscin granules were concentrated at the two opposite ends of a cell with the nucleus in between at the center of a cell, annular type (lipofuscin granules were in the shape of a complete or incomplete ring around the nucleus and a cell completely filled with lipofuscin (two subtypes distinguishing, one with visible a nucleus, and the other with invisible one. Even at the age of 20 there were cells with lipofuscin granules accumulated in diffuse way, but in smaller numbers; the GC without lipofuscin were dominant. Growing older, especially above 60 years, all of the above mentioned patterns of lipofuscin accumulation were present with the evident increase in cells

  11. Evaluation of RPE65, CRALBP, VEGF, CD68, and tyrosinase gene expression in human retinal pigment epithelial cells cultured on amniotic membrane.

    Science.gov (United States)

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Khalooghi, Keynoush; Ahmadieh, Hamid; Kanavi, Mojgan Rezaie; Samiei, Shahram; Pakravesh, Jalil

    2011-06-01

    The retinal pigment epithelium (RPE) plays a key role in the maintenance of the normal functions of the retina. Tissue engineering using amniotic membrane as a substrate to culture RPE cells may provide a promising new strategy to replace damaged RPE. We established a method of culturing RPE cells over the amniotic membrane as a support for their growth and transplantation. The transcription of specific genes involved in cellular function of native RPE, including RPE65, CRALBP, VEGF, CD68, and tyrosinase, were then measured using quantitative real-time PCR. Data showed a considerable increase in transcription of RPE65, CD68, and VEGF in RPE cells cultured on amniotic membrane. The amounts of CRALBP and tyrosinase transcripts were not affected. This may simply indicate that amniotic membrane restricted dedifferentiation of RPE cells in culture. The results suggest that amniotic membrane may be considered as an elective biological substrate for RPE cell culture.

  12. The potential of induced pluripotent stem cell derived hepatocytes.

    Science.gov (United States)

    Hannoun, Zara; Steichen, Clara; Dianat, Noushin; Weber, Anne; Dubart-Kupperschmitt, Anne

    2016-07-01

    Orthotopic liver transplantation remains the only curative treatment for liver disease. However, the number of patients who die while on the waiting list (15%) has increased in recent years as a result of severe organ shortages; furthermore the incidence of liver disease is increasing worldwide. Clinical trials involving hepatocyte transplantation have provided encouraging results. However, transplanted cell function appears to often decline after several months, necessitating liver transplantation. The precise aetiology of the loss of cell function is not clear, but poor engraftment and immune-mediated loss appear to be important factors. Also, primary human hepatocytes (PHH) are not readily available, de-differentiate, and die rapidly in culture. Hepatocytes are available from other sources, such as tumour-derived human hepatocyte cell lines and immortalised human hepatocyte cell lines or porcine hepatocytes. However, all these cells suffer from various limitations such as reduced or differences in functions or risk of zoonotic infections. Due to their significant potential, one possible inexhaustible source of hepatocytes is through the directed differentiation of human induced pluripotent stem cells (hiPSCs). This review will discuss the potential applications and existing limitations of hiPSC-derived hepatocytes in regenerative medicine, drug screening, in vitro disease modelling and bioartificial livers. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  14. Automated patterning and probing with multiple nanoscale tools for single-cell analysis.

    Science.gov (United States)

    Li, Jiayao; Kim, Yeonuk; Liu, Boyin; Qin, Ruwen; Li, Jian; Fu, Jing

    2017-10-01

    The nano-manipulation approach that combines Focused Ion Beam (FIB) milling and various imaging and probing techniques enables researchers to investigate the cellular structures in three dimensions. Such fusion approach, however, requires extensive effort on locating and examining randomly-distributed targets due to limited Field of View (FOV) when high magnification is desired. In the present study, we present the development that automates 'pattern and probe' particularly for single-cell analysis, achieved by computer aided tools including feature recognition and geometric planning algorithms. Scheduling of serial FOVs for imaging and probing of multiple cells was considered as a rectangle covering problem, and optimal or near-optimal solutions were obtained with the heuristics developed. FIB milling was then employed automatically followed by downstream analysis using Atomic Force Microscopy (AFM) to probe the cellular interior. Our strategy was applied to examine bacterial cells (Klebsiella pneumoniae) and achieved high efficiency with limited human interference. The developed algorithms can be easily adapted and integrated with different imaging platforms towards high-throughput imaging analysis of single cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Patterns of expression of cell wall related genes in sugarcane

    Directory of Open Access Journals (Sweden)

    Lima D.U.

    2001-01-01

    Full Text Available Our search for genes related to cell wall metabolism in the sugarcane expressed sequence tag (SUCEST database (http://sucest.lbi.dcc.unicamp.br resulted in 3,283 reads (1% of the total reads which were grouped into 459 clusters (potential genes with an average of 7.1 reads per cluster. To more clearly display our correlation coefficients, we constructed surface maps which we used to investigate the relationship between cell wall genes and the sugarcane tissues libraries from which they came. The only significant correlations that we found between cell wall genes and/or their expression within particular libraries were neutral or synergetic. Genes related to cellulose biosynthesis were from the CesA family, and were found to be the most abundant cell wall related genes in the SUCEST database. We found that the highest number of CesA reads came from the root and stem libraries. The genes with the greatest number of reads were those involved in cell wall hydrolases (e.g. beta-1,3-glucanases, xyloglucan endo-beta-transglycosylase, beta-glucosidase and endo-beta-mannanase. Correlation analyses by surface mapping revealed that the expression of genes related to biosynthesis seems to be associated with the hydrolysis of hemicelluloses, pectin hydrolases being mainly associated with xyloglucan hydrolases. The patterns of cell wall related gene expression in sugarcane based on the number of reads per cluster reflected quite well the expected physiological characteristics of the tissues. This is the first work to provide a general view on plant cell wall metabolism through the expression of related genes in almost all the tissues of a plant at the same time. For example, developing flowers behaved similarly to both meristematic tissues and leaf-root transition zone tissues. Besides providing a basis for future research on the mechanisms of plant development which involve the cell wall, our findings will provide valuable tools for plant engineering in the

  16. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    Science.gov (United States)

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  17. Quantification of variability in trichome patterns

    Directory of Open Access Journals (Sweden)

    Bettina eGreese

    2014-11-01

    Full Text Available While pattern formation is studied in various areas of biology, little is known about the intrinsic noise leading to variations between individual realizations of the pattern. One prominent example for de novo pattern formation in plants is the patterning of trichomes on Arabidopsis leaves, which involves genetic regulation and cell-to-cell communication. These processes are potentially variable due to , e.g., the abundance of cell components or environmental conditions. To elevate the understanding of the regulatory processes underlying the pattern formation it is crucial to quantitatively analyze the variability in naturally occurring patterns. Here, we review recent approaches towards characterization of noise on trichome initiation. We present methods for the quantification of spatial patterns, which are the basis for data-driven mathematical modeling and enable the analysis of noise from different sources. Besides the insight gained on trichome formation, the examination of observed trichome patterns also shows that highly regulated biological processes can be substantially affected by variability.

  18. Widespread molecular patterns associated with drug sensitivity in breast cancer cell lines, with implications for human tumors.

    Directory of Open Access Journals (Sweden)

    Chad J Creighton

    Full Text Available BACKGROUND: Recent landmark studies have profiled cancer cell lines for molecular features, along with measuring the corresponding growth inhibitory effects for specific drug compounds. These data present a tool for determining which subsets of human cancer might be more responsive to particular drugs. To this end, the NCI-DREAM-sponsored DREAM7: Drug Sensitivity Prediction Challenge (sub-challenge 1 set out to predict the sensitivities of 18 breast cancer cell lines to 31 previously untested compounds, on the basis of molecular profiling data and a training subset of cell lines. METHODS AND RESULTS: With 47 teams submitting blinded predictions, team Creighton scored third in terms of overall accuracy. Team Creighton's method was simple and straightforward, incorporated multiple expression data types (RNA-seq, gene array, RPPA, and incorporated all profiled features (not only the "best" predictive ones. As an extension of the approach, cell line data, from public datasets of expression profiling coupled with drug sensitivities (Barretina, Garnett, Heiser were used to "predict" the drug sensitivities in human breast tumors (using data from The Cancer Genome Atlas. Drug sensitivity correlations within human breast tumors showed differences by expression-based subtype, with many associations in line with the expected (e.g. Lapatinib sensitivity in HER2-enriched cancers and others inviting further study (e.g. relative resistance to PI3K inhibitors in basal-like cancers. CONCLUSIONS: Molecular patterns associated with drug sensitivity are widespread, with potentially hundreds of genes that could be incorporated into making predictions, as well as offering biological clues as to the mechanisms involved. Applying the cell line patterns to human tumor data may help generate hypotheses on what tumor subsets might be more responsive to therapies, where multiple cell line datasets representing various drugs may be used, in order to assess consistency of

  19. Testis cancer: the forgotten poster child.

    Science.gov (United States)

    Raghavan, Derek

    2014-07-15

    In germ cell cancers, the unique reversibility of malignancy and the balance between somatic differentiation and dedifferentiation may be critical to late relapse that is dominated by non-germ cell elements. Targeting regulators of differentiation may provide a solution, and this may be elucidated via serial liquid biopsies (via circulating tumor cells). ©2014 American Association for Cancer Research.

  20. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    Science.gov (United States)

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells/tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capacity of signaling factors that regulate 3-D neural tissue patterning in vitro and differential responses of the resulting neural populations to various biomolecules have not yet been fully understood. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog (SHH) signaling, this study generated different 3-D neuronal cultures that were mainly comprised of either cortical glutamatergic neurons or motor neurons. Abundant glutamatergic neurons were observed following the treatment with an antagonist of SHH signaling, cyclopamine, while Islet-1 and HB9-expressing motor neurons were enriched by an SHH agonist, purmorphamine. In neurons derived with different neural patterning factors, whole-cell patch clamp recordings showed similar voltage-gated Na(+)/K(+) currents, depolarization-evoked action potentials and spontaneous excitatory post-synaptic currents. Moreover, these different neuronal populations exhibited differential responses to three classes of biomolecules, including (1) matrix metalloproteinase inhibitors that affect extracellular matrix remodeling; (2) N-methyl-d-aspartate that induces general neurotoxicity; and (3) amyloid β (1-42) oligomers that cause neuronal subtype-specific neurotoxicity. This study should advance our understanding of hiPSC self-organization and neural tissue development and provide a transformative approach to establish 3-D models for neurological disease modeling and drug discovery. Appropriate neural patterning of human induced pluripotent stem cells (hiPSCs) is critical to generate specific neural cells, tissues and even mini-brains that are physiologically relevant to model neurological diseases. However, the capability of sonic hedgehog-related small molecules to tune

  1. Dense pattern optical multipass cell

    Science.gov (United States)

    Silver, Joel A [Santa Fe, NM

    2009-01-13

    A multiple pass optical cell and method comprising providing a pair of opposed cylindrical mirrors having curved axes with substantially equal focal lengths, positioning an entrance hole for introducing light into the cell and an exit hole for extracting light from the cell, wherein the entrance hole and exit hole are coextensive or non-coextensive, introducing light into the cell through the entrance hole, and extracting light from the cell through the exit hole.

  2. Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning

    International Nuclear Information System (INIS)

    Occhetta, P; Piraino, F; Redaelli, A; Rasponi, M; Sadr, N; Moretti, M

    2013-01-01

    Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells–cells and cells–extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs. (paper)

  3. The thiol compounds glutathione and homoglutathione differentially affect cell development in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Pasternak, Taras; Asard, Han; Potters, Geert; Jansen, Marcel A K

    2014-01-01

    Glutathione (GSH) is an important scavenger of Reactive Oxygen Species (ROS), precursor of metal chelating phytochelatins, xenobiotic defence compound and regulator of cell proliferation. Homoglutathione (hGSH) is a GSH homologue that is present in several taxa in the family of Fabaceae. It is thought that hGSH performs many of the stress-defence roles typically ascribed to GSH, yet little is known about the potential involvement of hGSH in controlling cell proliferation. Here we show that hGSH/GSH ratios vary across organs and cells and that these changes in hGSH/GSH ratio occur during dedifferentiation and/or cell cycle activation events. The use of a GSH/hGSH biosynthesis inhibitor resulted in impaired cytokinesis in isolated protoplasts, showing the critical importance of these thiol-compounds for cell division. However, exposure of isolated protoplasts to exogenous GSH accelerated cytokinesis, while exogenous hGSH was found to inhibit the same process. We conclude that GSH and hGSH have distinct functional roles in cell cycle regulation in Medicago sativa L. GSH is associated with meristemic cells, and promotes cell cycle activation and induction of somatic embryogenesis, while hGSH is associated with differentiated cells and embryo proliferation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Regulated expression of the neural cell adhesion molecule L1 by specific patterns of neural impulses.

    Science.gov (United States)

    Itoh, K; Stevens, B; Schachner, M; Fields, R D

    1995-11-24

    Development of the mammalian nervous system is regulated by neural impulse activity, but the molecular mechanisms are not well understood. If cell recognition molecules [for example, L1 and the neural cell adhesion molecule (NCAM)] were influenced by specific patterns of impulse activity, cell-cell interactions controlling nervous system structure could be regulated by nervous system function at critical stages of development. Low-frequency electrical pulses delivered to mouse sensory neurons in culture (0.1 hertz for 5 days) down-regulated expression of L1 messenger RNA and protein (but not NCAM). Fasciculation of neurites, adhesion of neuroblastoma cells, and the number of Schwann cells on neurites was reduced after 0.1-hertz stimulation, but higher frequencies or stimulation after synaptogenesis were without effect.

  5. Donor‐Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte‐Like Cells

    Science.gov (United States)

    Heslop, James A.; Kia, Richard; Pridgeon, Christopher S.; Sison‐Young, Rowena L.; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W.; Mills, John S.; Kitteringham, Neil R.; Park, Bong K.

    2017-01-01

    Abstract Drug‐induced liver injury is the greatest cause of post‐marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)‐derived hepatocyte‐like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this “resetting” is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte‐ and dermal fibroblast‐derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC‐derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast‐derived iPSCs. We conclude that the donor and inter‐clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC‐derived HLCs. Stem Cells Translational Medicine 2017;6:1321–1331 PMID:28456008

  6. Wnt/Yes-Associated Protein Interactions During Neural Tissue Patterning of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Bejoy, Julie; Song, Liqing; Zhou, Yi; Li, Yan

    2018-04-01

    Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-brain-like structures. During the self-assembly process, Wnt signaling plays an important role in regional patterning and establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects of Wnt signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human iPSK3 cells through embryoid body formation. Our results indicate that Wnt activation induces nuclear localization of YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may indicate the bidirectional interactions of Wnt signaling and YAP expression during neural tissue patterning, which have the significance in neurological disease modeling, drug screening, and neural tissue regeneration.

  7. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  8. Clinicopathological and Targeted Exome Gene Features of a Patient with Metastatic Acinic Cell Carcinoma of the Parotid Gland Harboring an ARID2 Nonsense Mutation and CDKN2A/B Deletion

    Directory of Open Access Journals (Sweden)

    Wayne A. Warner

    2015-01-01

    Full Text Available We describe the presentation, treatment, clinical outcome, and targeted genome analysis of a metastatic salivary acinic cell carcinoma (AciCC. A 71-year-old male presented with a 3 cm right tail of a parotid lesion, first detected as a nodule by the patient seven months earlier. He had a right total parotidectomy with cranial nerve VII resection, right facial nerve resection and grafting, resection of the right conchal cartilage, and right modified radical neck dissection. The primary tumor revealed AciCC with two distinct areas: a well-differentiated component with glandular architecture and a dedifferentiated component with infiltrative growth pattern associated with prominent stromal response, necrosis, perineural invasion, and cellular pleomorphism. Tumor staging was pT4 N0 MX. Immunohistochemistry staining showed pankeratin (+, CD56 (−, and a Ki67 proliferation index of 15%. Upon microscopic inspection, 49 local lymph nodes resected during parotidectomy were negative for cancer cells. Targeted sequencing of the primary tumor revealed deletions of CDKN2A and CDKN2B, a nonsense mutation in ARID2, and single missense mutations of unknown significance in nine other genes. Despite postoperative localized radiation treatment, follow-up whole body PET/CT scan showed lung, soft tissue, bone, and liver metastases. The patient expired 9 months after resection of the primary tumor.

  9. Differential consolidation and pattern reverberations within episodic cell assemblies in the mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Remus Oşan

    2011-02-01

    Full Text Available One hallmark feature of consolidation of episodic memory is that only a fraction of original information, which is usually in a more abstract form, is selected for long-term memory storage. How does the brain perform these differential memory consolidations? To investigate the neural network mechanism that governs this selective consolidation process, we use a set of distinct fearful events to study if and how hippocampal CA1 cells engage in selective memory encoding and consolidation. We show that these distinct episodes activate a unique assembly of CA1 episodic cells, or neural cliques, whose response-selectivity ranges from general-to-specific features. A series of parametric analyses further reveal that post-learning CA1 episodic pattern replays or reverberations are mostly mediated by cells exhibiting event intensity-invariant responses, not by the intensity-sensitive cells. More importantly, reactivation cross-correlations displayed by intensity-invariant cells encoding general episodic features during immediate post-learning period tend to be stronger than those displayed by invariant cells encoding specific features. These differential reactivations within the CA1 episodic cell populations can thus provide the hippocampus with a selection mechanism to consolidate preferentially more generalized knowledge for long-term memory storage.

  10. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective.

    Science.gov (United States)

    Zirra, Alexandra; Wiethoff, Sarah; Patani, Rickie

    2016-01-01

    Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs) became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  11. Neural Conversion and Patterning of Human Pluripotent Stem Cells: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Alexandra Zirra

    2016-01-01

    Full Text Available Since the reprogramming of adult human terminally differentiated somatic cells into induced pluripotent stem cells (hiPSCs became a reality in 2007, only eight years have passed. Yet over this relatively short period, myriad experiments have revolutionized previous stem cell dogmata. The tremendous promise of hiPSC technology for regenerative medicine has fuelled rising expectations from both the public and scientific communities alike. In order to effectively harness hiPSCs to uncover fundamental mechanisms of disease, it is imperative to first understand the developmental neurobiology underpinning their lineage restriction choices in order to predictably manipulate cell fate to desired derivatives. Significant progress in developmental biology provides an invaluable resource for rationalising directed differentiation of hiPSCs to cellular derivatives of the nervous system. In this paper we begin by reviewing core developmental concepts underlying neural induction in order to provide context for how such insights have guided reductionist in vitro models of neural conversion from hiPSCs. We then discuss early factors relevant in neural patterning, again drawing upon crucial knowledge gained from developmental neurobiological studies. We conclude by discussing open questions relating to these concepts and how their resolution might serve to strengthen the promise of pluripotent stem cells in regenerative medicine.

  12. to view fulltext PDF

    Indian Academy of Sciences (India)

    2016-11-30

    Nov 30, 2016 ... tion of the autosomes and sex-chromosomes of maternal origin from those of ...... of being able to rejuvenate cells without de-differentiation are self-evident. ...... Singh PB 1994 Molecular mechanisms of cellular determination:.

  13. Dialysate White Blood Cell Change after Initial Antibiotic Treatment Represented the Patterns of Response in Peritoneal Dialysis-Related Peritonitis.

    Science.gov (United States)

    Tantiyavarong, Pichaya; Traitanon, Opas; Chuengsaman, Piyatida; Patumanond, Jayanton; Tasanarong, Adis

    2016-01-01

    Background. Patients with peritoneal dialysis-related peritonitis usually have different responses to initial antibiotic treatment. This study aimed to explore the patterns of response by using the changes of dialysate white blood cell count on the first five days of the initial antibiotic treatment. Materials and Methods. A retrospective cohort study was conducted. All peritoneal dialysis-related peritonitis episodes from January 2014 to December 2015 were reviewed. We categorized the patterns of antibiotic response into 3 groups: early response, delayed response, and failure group. The changes of dialysate white blood cell count for each pattern were determined by multilevel regression analysis. Results. There were 644 episodes in 455 patients: 378 (58.7%) of early response, 122 (18.9%) of delayed response, and 144 (22.3%) of failure episodes. The patterns of early, delayed, and failure groups were represented by the average rate reduction per day of dialysate WBC of 68.4%, 34.0%, and 14.2%, respectively (p value patterns, which were categorized by types of responses, have variable rates of WBC declining. Clinicians should focus on the delayed response and failure patterns in order to make a decision whether to continue medical therapies or to aggressively remove the peritoneal catheter.

  14. New insights into redox regulation of stem cell self-renewal and differentiation.

    Science.gov (United States)

    Ren, Fenglian; Wang, Kui; Zhang, Tao; Jiang, Jingwen; Nice, Edouard Collins; Huang, Canhua

    2015-08-01

    Reactive oxygen species (ROS), the natural byproducts of aerobic metabolism, are precisely orchestrated to evoke diverse signaling pathways. To date, studies have focused mainly on the detrimental effects of ROS in stem cells. Recently, accumulating evidence has suggested that ROS also function as second messengers that modulate stem cell self-renewal and differentiation by regulating intricate signaling networks. Although many efforts have been made to clarify the general effects of ROS on signal transduction in stem cells, less is known about the initial and direct executors of ROS signaling, which are known as 'redox sensors'. Modifications of cysteine residues in redox sensors are of significant importance in the modulation of protein function in response to different redox conditions. Intriguingly, most key molecules in ROS signaling and cell cycle regulation (including transcriptional factors and kinases) that are crucial in the regulation of stem cell self-renewal and differentiation have the potential to be redox sensors. We highlight herein the importance of redox regulation of these key regulators in stem cell self-renewal and differentiation. Understanding the mechanisms of redox regulation in stem cell self-renewal and differentiation will open exciting new perspectives for stem cell biology. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Analysis of spatial relationships in three dimensions: tools for the study of nerve cell patterning

    Directory of Open Access Journals (Sweden)

    Raven Mary A

    2008-07-01

    Full Text Available Abstract Background Multiple technologies have been brought to bear on understanding the three-dimensional morphology of individual neurons and glia within the brain, but little progress has been made on understanding the rules controlling cellular patterning. We describe new matlab-based software tools, now available to the scientific community, permitting the calculation of spatial statistics associated with 3D point patterns. The analyses are largely derived from the Delaunay tessellation of the field, including the nearest neighbor and Voronoi domain analyses, and from the spatial autocorrelogram. Results Our tools enable the analysis of the spatial relationship between neurons within the central nervous system in 3D, and permit the modeling of these fields based on lattice-like simulations, and on simulations of minimal-distance spacing rules. Here we demonstrate the utility of our analysis methods to discriminate between two different simulated neuronal populations. Conclusion Together, these tools can be used to reveal the presence of nerve cell patterning and to model its foundation, in turn informing on the potential developmental mechanisms that govern its establishment. Furthermore, in conjunction with analyses of dendritic morphology, they can be used to determine the degree of dendritic coverage within a volume of tissue exhibited by mature nerve cells.

  16. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Kielland-Brandt, M.C.; Nilsson-Tillgren, T.

    1979-01-01

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [ 35 S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  17. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Luchuan; Lv, Bin; Chen, Bo [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Guan, Ming [Department of General Surgery, Qihe People' s Hospital, Qihe, Shandong 251100 (China); Sun, Yongfeng [Department of General Surgery, Licheng District People' s Hospital, Jinan, Shandong 250115 (China); Li, Haipeng [Department of General Surgery, Caoxian People' s Hospital, Caoxian, Shandong 274400 (China); Zhang, Binbin; Ding, Changyuan; He, Shan [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Zeng, Qingdong, E-mail: qingdz0201@163.com [Department of General Surgery, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China)

    2015-07-10

    Dedifferentiated thyroid carcinoma (DTC) with the loss of radioiodine uptake (RAIU) is often observed in clinical practice under radioiodine therapy, indicating the challenge for poor prognosis. MicroRNA (miRNA) has emerged as a promising therapeutic target in many diseases; yet, the role of miRNAs in RAIU has not been generally investigated. Based on recent studies about miRNA expression in papillary or follicular thyroid carcinomas, the expression profiles of several thyroid relative miRNAs were investigated in one DTC cell line, derived from normal DTC cells by radioiodine treatment. The top candidate miR-146b, with the most significant overexpression profiles in dedifferentiated cells, was picked up. Further research found that miR-146b could be negatively regulated by histone deacetylase 3 (HDAC3) in normal cells, indicating the correlation between miR-146b and Na{sup +}/I{sup −} symporter (NIS)-mediated RAIU. Fortunately, it was confirmed that miR-146b could regulate NIS expression/activity; what is more important, miR-146b interference would contribute to the recovery of radioiodine-sensitivity in dedifferentiated cells via positively regulating NIS. In the present study, it was concluded that NIS-mediated RAIU could be modulated by miR-146b; accordingly, miR-146b might serve as one of targets to enhance efficacy of radioactive therapy against poorly differential thyroid carcinoma (PDTC). - Highlights: • Significant upregulated miR-146b was picked up from thyroid relative miRNAs in DTC. • MiR-146b was negatively regulated by HDAC3 in normal thyroid carcinoma cells. • NIS activity and expression could be regulated by miR-146b in thyroid carcinoma. • MiR-146b inhibition could recover the decreased radioiodine-sensitivity of DTC cells.

  18. Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns.

    Science.gov (United States)

    de Goede, Olivia M; Lavoie, Pascal M; Robinson, Wendy P

    2017-01-01

    Premature infants are highly vulnerable to infection. This is partly attributable to the preterm immune system, which differs from that of the term neonate in cell composition and function. Multiple studies have found differential DNA methylation (DNAm) between preterm and term infants' cord blood; however, interpretation of these studies is limited by the confounding factor of blood cell composition. This study evaluates the epigenetic impact of preterm birth in isolated hematopoietic cell populations, reducing the concern of cell composition differences. Genome-wide DNAm was measured using the Illumina 450K array in T cells, monocytes, granulocytes, and nucleated red blood cells (nRBCs) isolated from cord blood of 5 term and 5 preterm (blood cells (nRBCs) showed the most extensive changes in DNAm, with 9258 differentially methylated (DM) sites (FDR  0.10) discovered between preterm and term infants compared to the blood cell populations. The direction of DNAm change with gestational age at these prematurity-DM sites followed known patterns of hematopoietic differentiation, suggesting that term hematopoietic cell populations are more epigenetically mature than their preterm counterparts. Consistent shifts in DNAm between preterm and term cells were observed at 25 CpG sites, with many of these sites located in genes involved in growth and proliferation, hematopoietic lineage commitment, and the cytoskeleton. DNAm in preterm and term hematopoietic cells conformed to previously identified DNAm signatures of fetal liver and bone marrow, respectively. This study presents the first genome-wide mapping of epigenetic differences in hematopoietic cells across the late gestational period. DNAm differences in hematopoietic cells between term and <31 weeks were consistent with the hematopoietic origin of these cells during ontogeny, reflecting an important role of DNAm in their regulation. Due to the limited sample size and the high coincidence of prematurity and

  19. Diverse phosphorylation patterns of B cell receptor-associated signaling in naïve and memory human B cells revealed by phosphoflow, a powerful technique to study signaling at the single cell level

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2012-10-01

    Full Text Available Following interaction with cognate antigens, B cells undergo cell activation, proliferation and differentiation. Ligation of the B cell receptor (BCR leads to the phosphorylation of BCR-associated signaling proteins within minutes of antigen binding, a process with profound consequences for the fate of the cells and development of effector immunity. Phosphoflow allows a rapid evaluation of various signaling pathways in complex heterogenous cell subsets. This novel technique was used in combination with multi-chromatic flow cytometry and fluorescent-cell barcoding to study phosphorylation of BCR-associated signaling pathways in naïve and memory human B cell subsets. Proteins of the initiation (Syk, propagation (Btk, Akt and integration (p38MAPK and Erk1/2 signaling units were studied. Switched memory (Sm CD27+ and Sm CD27- phosphorylation patterns were similar when stimulated with anti-IgA or -IgG. In contrast, naïve and unswitched memory (Um cells showed significant differences following IgM stimulation. Enhanced phosphorylation of Syk was observed in Um cells, suggesting a lower activation threshold. This is likely the result of higher amounts of IgM on the cell surface, higher pan-Syk levels and enhanced susceptibility to phosphatase inhibition. All other signaling proteins evaluated also showed some degree of enhanced phosphorylation in Um cells. Furthermore, both the PLC-γ2 and PI3K pathways were activated in Um cells, while only the PI3K pathway was activated on naïve cells. Um cells were the only ones that activated signaling pathways when stimulated with fluorescently-labeled S. Typhi and S. pneumoniae. Finally, simultaneous evaluation of signaling proteins at the single cell level (multi-phosphorylated cells revealed that interaction with gram positive and negative bacteria resulted in complex and diverse signaling patterns. Phosphoflow holds great potential to accelerate vaccine development by identifying signaling profiles in good

  20. Solution processed large area fabrication of Ag patterns as electrodes for flexible heaters, electrochromics and organic solar cells

    DEFF Research Database (Denmark)

    Gupta, Ritu; Walia, Sunil; Hösel, Markus

    2014-01-01

    , the process takes only a few minutes without any expensive instrumentation. The electrodes exhibited excellent adhesion and mechanical properties, important for flexible device application. Using Ag patterned electrodes, heaters operating at low voltages, pixelated electrochromic displays as well as organic...... solar cells have been demonstrated. The method is extendable to produce defect-free patterns over large areas as demonstrated by roll coating....

  1. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.

    Science.gov (United States)

    Smith, Lucas; Cho, Sangkyun; Discher, Dennis E

    2017-11-01

    Stem cells are particularly 'plastic' cell types that are induced by various cues to become specialized, tissue-functional lineages by switching on the expression of specific gene programs. Matrix stiffness is among the cues that multiple stem cell types can sense and respond to. This seminar-style review focuses on mechanosensing of matrix elasticity in the differentiation or early maturation of a few illustrative stem cell types, with an intended audience of biologists and physical scientists. Contractile forces applied by a cell's acto-myosin cytoskeleton are often resisted by the extracellular matrix and transduced through adhesions and the cytoskeleton ultimately into the nucleus to modulate gene expression. Complexity is added by matrix heterogeneity, and careful scrutiny of the evident stiffness heterogeneity in some model systems resolves some controversies concerning matrix mechanosensing. Importantly, local stiffness tends to dominate, and 'durotaxis' of stem cells toward stiff matrix reveals a dependence of persistent migration on myosin-II force generation and also rigid microtubules that confer directionality. Stem and progenitor cell migration in 3D can be further affected by matrix porosity as well as stiffness, with nuclear size and rigidity influencing niche retention and fate choices. Cell squeezing through rigid pores can even cause DNA damage and genomic changes that contribute to de-differentiation toward stem cell-like states. Contraction of acto-myosin is the essential function of striated muscle, which also exhibit mechanosensitive differentiation and maturation as illustrated in vivo by beating heart cells and by the regenerative mobilization of skeletal muscle stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Yamada, Tomoe; Lu, Hongxu; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2008-01-01

    Cartilaginous gene expression decreased when chondrocytes were expanded on cell-culture plates. Understanding the dedifferentiation mechanism may provide valuable insight into cartilage tissue engineering. Here, we demonstrated the relationship between the nuclear shape and gene expression during in vitro expansion culture of chondrocytes. Specifically, the projected nuclear area increased and cartilaginous gene expressions decreased during in vitro expansion culture. When the nuclear deformation was recovered by cytochalasin D treatment, aggrecan expression was up-regulated and type I collagen (Col1a2) expression was down-regulated. These results suggest that nuclear deformation may be one of the mechanisms for chondrocyte dedifferentiation during in vitro expansion culture

  3. Gene therapy of thyroid carcinoma

    International Nuclear Information System (INIS)

    Zheng Wei; Tan Jian

    2007-01-01

    Normally, differentiated thyroid carcinoma(DTC) is a disease of good prognosis, but about 30% of the tumors are dedifferentiate, which are inaccessible to standard therapeutic procedures such as 'operation, 131 I therapy and thyroid hormone'. Both internal and abroad experts are researching a new therapy of dedifferentiated thyroid carcinoma--gene therapy. Many of them utilize methods of it, but follow different strategies: (1) transduction of the thyroid sodium/iodide transporter gene to make tissues that do not accumulate iodide treatable by 131 I therapy; (2) strengthening of the anti-tumor immune response; (3) suicide gene therapy; (4) depression the generation of tumor cells; (5) gene therapy of anti- vascularization. (authors)

  4. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  5. Donor-Dependent and Other Nondefined Factors Have Greater Influence on the Hepatic Phenotype Than the Starting Cell Type in Induced Pluripotent Stem Cell Derived Hepatocyte-Like Cells.

    Science.gov (United States)

    Heslop, James A; Kia, Richard; Pridgeon, Christopher S; Sison-Young, Rowena L; Liloglou, Triantafillos; Elmasry, Mohamed; Fenwick, Stephen W; Mills, John S; Kitteringham, Neil R; Goldring, Chris E; Park, Bong K

    2017-05-01

    Drug-induced liver injury is the greatest cause of post-marketing drug withdrawal; therefore, substantial resources are directed toward triaging potentially dangerous new compounds at all stages of drug development. One of the major factors preventing effective screening of new compounds is the lack of a predictive in vitro model of hepatotoxicity. Primary human hepatocytes offer a metabolically relevant model for which the molecular initiating events of hepatotoxicity can be examined; however, these cells vary greatly between donors and dedifferentiate rapidly in culture. Induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) offer a reproducible, physiologically relevant and genotypically normal model cell; however, current differentiation protocols produce HLCs with a relatively immature phenotype. During the reprogramming of somatic cells, the epigenome undergoes dramatic changes; however, this "resetting" is a gradual process, resulting in an altered differentiation propensity, skewed toward the lineage of origin, particularly in early passage cultures. We, therefore, performed a comparison of human hepatocyte- and dermal fibroblast-derived iPSCs, assessing the impact of epigenetic memory at all stages of HLC differentiation. These results provide the first isogenic assessment of the starting cell type in human iPSC-derived HLCs. Despite a trend toward improvement in hepatic phenotype in albumin secretion and gene expression, few significant differences in hepatic differentiation capacity were found between hepatocyte and fibroblast-derived iPSCs. We conclude that the donor and inter-clonal differences have a greater influence on the hepatocyte phenotypic maturity than the starting cell type. Therefore, it is not necessary to use human hepatocytes for generating iPSC-derived HLCs. Stem Cells Translational Medicine 2017;6:1321-1331. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of Alpha

  6. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  7. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    Science.gov (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Sharp-Wave Ripples Orchestrate the Induction of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Josef H.L.P. Sadowski

    2016-03-01

    Full Text Available Place cell firing patterns reactivated during hippocampal sharp-wave ripples (SWRs in rest or sleep are thought to induce synaptic plasticity and thereby promote the consolidation of recently encoded information. However, the capacity of reactivated spike trains to induce plasticity has not been directly tested. Here, we show that reactivated place cell firing patterns simultaneously recorded from CA3 and CA1 of rat dorsal hippocampus are able to induce long-term potentiation (LTP at synapses between CA3 and CA1 cells but only if accompanied by SWR-associated synaptic activity and resulting dendritic depolarization. In addition, we show that the precise timing of coincident CA3 and CA1 place cell spikes in relation to SWR onset is critical for the induction of LTP and predictive of plasticity generated by reactivation. Our findings confirm an important role for SWRs in triggering and tuning plasticity processes that underlie memory consolidation in the hippocampus during rest or sleep.

  9. Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis.

    Science.gov (United States)

    Kuppe, Christoph; Gröne, Hermann-Josef; Ostendorf, Tammo; van Kuppevelt, Toin H; Boor, Peter; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2015-11-01

    Parietal epithelial cells (PECs) are involved in the development of sclerotic lesions in primary focal and segmental glomerulosclerosis (FSGS). Here, the role of PECs was explored in the more common secondary FSGS lesions in 68 patient biopsies, diagnosed with 11 different frequently or rarely encountered glomerular pathologies and additional secondary FSGS lesions. For each biopsy, one section was quadruple stained for PECs (ANXA3), podocytes (synaptopodin), PEC matrix (LKIV69), and Hoechst (nuclei), and a second was quadruple stained for activated PECs (CD44 and cytokeratin-19), PEC matrix, and nuclei. In all lesions, cellular adhesions (synechiae) between Bowman's capsule and the tuft were formed by cells expressing podocyte and/or PEC markers. Cells expressing PEC markers were detected in all FSGS lesions independent of the underlying glomerular disease and often stained positive for markers of activation. Small FSGS lesions, which were hardly identified on PAS sections previously, were detectable by immunofluorescent staining using PEC markers, potentially improving the diagnostic sensitivity to identify these lesions. Thus, similar patterns of cells expressing podocyte and/or PEC markers were found in the formation of secondary FSGS lesions independent of the underlying glomerular disease. Hence, our findings support the hypothesis that FSGS lesions follow a final cellular pathway to nephron loss that includes involvement of cells expressing PEC markers.

  10. The developing cancer stem-cell model: clinical challenges and opportunities.

    Science.gov (United States)

    Vermeulen, Louis; de Sousa e Melo, Felipe; Richel, Dick J; Medema, Jan Paul

    2012-02-01

    During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Different Cytokine and Chemokine Expression Patterns in Malignant Compared to Those in Nonmalignant Renal Cells

    Directory of Open Access Journals (Sweden)

    Nadine Gelbrich

    2017-01-01

    Full Text Available Objective. Cytokines and chemokines are widely involved in cancer cell progression and thus represent promising candidate factors for new biomarkers. Methods. Four renal cell cancer (RCC cell lines (Caki-1, 786-O, RCC4, and A498 and a nonmalignant renal cell line (RC-124 were examined with respect to their proliferation. The cytokine and chemokine expression pattern was examined by a DNA array (Human Cytokines & Chemokines RT2 Profiler PCR Array; Qiagen, Hilden, Germany, and expression profiles were compared. Results. Caki-1 and 786-O cells exhibited significantly increased proliferation rates, whereas RCC4 and A498 cells demonstrated attenuated proliferation, compared to nonmalignant RC-124 cells. Expression analysis revealed 52 cytokines and chemokines primarily involved in proliferation and inflammation and differentially expressed not only in malignant and nonmalignant renal cells but also in the four RCC cell lines. Conclusion. This is the first study examining the expression of 84 cytokines and chemokines in four RCC cell lines compared to that in a nonmalignant renal cell line. VEGFA, NODAL, and BMP6 correlated with RCC cell line proliferation and, thus, may represent putative clinical biomarkers for RCC progression as well as for RCC diagnosis and prognosis.

  12. Differential expression pattern of extracellular matrix molecules during chondrogenesis of mesenchymal stem cells from bone marrow and adipose tissue

    DEFF Research Database (Denmark)

    Mehlhorn, A T; Niemeyer, P; Kaiser, S

    2006-01-01

    Adipose-derived adult stem cells (ADASCs) or bone marrow-derived mesenchymal stem cells (BMSCs) are considered as alternative cell sources for cell-based cartilage repair due to their ability to produce cartilage-specific matrix. This article addresses the differential expression pattern...... chondroinduction. TGF-beta1 induces alternative splicing of the alpha(1)-procollagen type II transcript in BMSCs, but not in ADASCs. These findings may direct the development of a cell-specific culture environment either to prevent hypertrophy in BMSCs or to promote chondrogenic maturation in ADASCs....

  13. Effects of serotonin on expression of the LDL receptor family member LR11 and 7-ketocholesterol-induced apoptosis in human vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagayama, Daiji; Ishihara, Noriko [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Bujo, Hideaki [Department of Clinical Laboratory Medicine, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Shirai, Kohji [Department of Vascular Function, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan); Tatsuno, Ichiro, E-mail: ichiro.tatsuno@med.toho-u.ac.jp [Center of Diabetes, Endocrinology and Metabolism, Toho University, Sakura Medical Center, 564-1, Shimoshizu, Sakura-City, Chiba 285-8741 (Japan)

    2014-04-18

    Highlights: • The dedifferentiation of VSMCs in arterial intima is involved in atherosclerosis. • 5-HT showed proliferative effect on VSMCs which was abolished by sarpogrelate. • 5-HT enhanced expression of LR11 mRNA in VSMCs which was abolished by sarpogrelate. • 5-HT suppressed 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. • The mechanisms explain the 5-HT-induced remodeling of arterial structure. - Abstract: Serotonin (5-HT) is a known mitogen for vascular smooth muscle cells (VSMCs). The dedifferentiation and proliferation/apoptosis of VSMCs in the arterial intima represent one of the atherosclerotic changes. LR11, a member of low-density lipoprotein receptor family, may contribute to the proliferation of VSMCs in neointimal hyperplasia. We conducted an in vitro study to investigate whether 5-HT is involved in LR11 expression in human VSMCs and apoptosis of VSMCs induced by 7-ketocholesterol (7KCHO), an oxysterol that destabilizes plaque. 5-HT enhanced the proliferation of VSMCs, and this effect was abolished by sarpogrelate, a selective 5-HT2A receptor antagonist. Sarpogrelate also inhibited the 5-HT-enhanced LR11 mRNA expression in VSMCs. Furthermore, 5-HT suppressed the 7KCHO-induced apoptosis of VSMCs via caspase-3/7-dependent pathway. These findings provide new insights on the changes in the differentiation stage of VSMCs mediated by 5-HT.

  14. Promoter methylation patterns in Richter syndrome affect stem-cell maintenance and cell cycle regulation and differ from de novo diffuse large B-cell lymphoma.

    Science.gov (United States)

    Rinaldi, Andrea; Mensah, Afua Adjeiwaa; Kwee, Ivo; Forconi, Francesco; Orlandi, Ester M; Lucioni, Marco; Gattei, Valter; Marasca, Roberto; Berger, Françoise; Cogliatti, Sergio; Cavalli, Franco; Zucca, Emanuele; Gaidano, Gianluca; Rossi, Davide; Bertoni, Francesco

    2013-10-01

    In a fraction of patients, chronic lymphocytic leukaemia (CLL) can transform to Richter syndrome (RS), usually a diffuse large B-cell lymphoma (DLBCL). We studied genome-wide promoter DNA methylation in RS and clonally related CLL-phases of transformed patients, alongside de novo DLBCL (of non-germinal centre B type), untransformed-CLL and normal B-cells. The greatest differences in global DNA methylation levels were observed between RS and DLBCL, indicating that these two diseases, although histologically similar, are epigenetically distinct. RS was more highly methylated for genes involved in cell cycle regulation. When RS was compared to the preceding CLL-phase and with untransformed-CLL, RS presented a higher degree of methylation for genes possessing the H3K27me3 mark and PRC2 targets, as well as for gene targets of TP53 and RB1. Comparison of the methylation levels of individual genes revealed that OSM, a stem cell regulatory gene, exhibited significantly higher methylation levels in RS compared to CLL-phases. Its transcriptional repression by DNA methylation was confirmed by 5-aza-2'deoxycytidine treatment of DLBCL cells, determining an increased OSM expression. Our results showed that methylation patterns in RS are largely different from de novo DLBCL. Stem cell-related genes and cell cycle regulation genes are targets of DNA methylation in RS. © 2013 John Wiley & Sons Ltd.

  15. Notch-mediated post-translational control of Ngn3 protein stability regulates pancreatic patterning and cell fate commitment

    DEFF Research Database (Denmark)

    Qu, Xiaoling; Afelik, Solomon; Jensen, Jan Nygaard

    2013-01-01

    of ducts. On one hand, Ngn3 cell-intrinsically activates endocrine target genes; on the other, Ngn3 cell-extrinsically promotes lateral signaling via the Dll1>Notch>Hes1 pathway which substantially limits its ability to sustain endocrine formation. Prior to endocrine commitment, the Ngn3-mediated...... involves transcriptional repression as previously shown, but also incorporates a novel post-translational mechanism. In addition to its ability to promote endocrine fate, we provide evidence of a competing ability of Ngn3 in the patterning of multipotent progenitor cells in turn controlling the formation...

  16. Time-Qualified Patterns of Variation of PPARγ, DNMT1, and DNMT3B Expression in Pancreatic Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Valerio Pazienza

    2012-01-01

    Full Text Available Carcinogenesis is related to the loss of homeostatic control of cellular processes regulated by transcriptional circuits and epigenetic mechanisms. Among these, the activities of peroxisome proliferator-activated receptors (PPARs and DNA methyltransferases (DNMTs are crucial and intertwined. PPARγ is a key regulator of cell fate, linking nutrient sensing to transcription processes, and its expression oscillates with circadian rhythmicity. Aim of our study was to assess the periodicity of PPARγ and DNMTs in pancreatic cancer (PC. We investigated the time-related patterns of PPARG, DNMT1, and DNMT3B expression monitoring their mRNA levels by qRT-PCR at different time points over a 28-hour span in BxPC-3, CFPAC-1, PANC-1, and MIAPaCa-2 PC cells after synchronization with serum shock. PPARG and DNMT1 expression in PANC-1 cells and PPARG expression in MIAPaCa-2 cells were characterized by a 24 h period oscillation, and a borderline significant rhythm was observed for the PPARG, DNMT1, and DNMT3B expression profiles in the other cell lines. The time-qualified profiles of gene expression showed different shapes and phase relationships in the PC cell lines examined. In conclusion, PPARG and DNMTs expression is characterized by different time-qualified patterns in cell lines derived from human PC, and this heterogeneity could influence cell phenotype and human disease behaviour.

  17. Dermal γδ T-Cells Can Be Activated by Mitochondrial Damage-Associated Molecular Patterns.

    Directory of Open Access Journals (Sweden)

    Martin G Schwacha

    Full Text Available Gamma delta T-cells have been shown to be important to the early immunoinflammatory response to injury, independent of infection. This unique T-cell population acts to regulate cell trafficking and the release of cytokines and growth factors. We propose this sterile inflammatory response is in part associated with damage associated molecular patterns (DAMPs generated by major injury, such as burn, and mediated via toll-like receptors (TLRs. It is unknown whether DAMPs can activate resident γδ T-cells that reside in skin.Gamma delta T-cells were isolated from the skin of male C57BL/6 mice by enzymatic digestion. Mitochondrial DAMPs (MTDs were generated from mitochondria isolated from mouse livers by sonication and centrifugation. Dermal γδ T-cells were incubated with MTDs (0-500 μg/ml for 24 hr and cells and supernatants were collected for analysis.MTDs activated dermal γδ T-cells, as evidenced by increased TLR2 and TLR4 expression following in vitro exposure. MTDs also induced the production of inflammatory cytokines (IL-1β, IL-6, and growth factors (PDGF and VEGF by γδ T-cells.These findings herein support the concept that MTDs released after tissue/cellular injury are capable of activating dermal γδ T-cells. We propose that the activation of this unique T-cell population is central in the initiation of sterile inflammation and also contributes to the subsequent healing processes.

  18. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Ersoy, Fulya; Emadi, Sharareh; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Three-dimensional (3D) printing offers potential to fabricate high-throughput and low-cost fabrication of microfluidic devices as a promising alternative to traditional techniques which enables efficient design iterations in the development stage. In this study, we demonstrate a single-step fabrication of a 3D transparent microfluidic chip using two alternative techniques: a stereolithography-based desktop 3D printer and a two-step fabrication using an industrial 3D printer based on polyjet technology. This method, compared to conventional fabrication using relatively expensive materials and labor-intensive processes, presents a low-cost, rapid prototyping technique to print functional 3D microfluidic chips. We enhance the capabilities of 3D-printed microfluidic devices by coupling 3D cell encapsulation and spatial patterning within photocrosslinkable gelatin methacryloyl (GelMA). The platform presented here serves as a 3D culture environment for long-term cell culture and growth. Furthermore, we have demonstrated the ability to print complex 3D microfluidic channels to create predictable and controllable fluid flow regimes. Here, we demonstrate the novel use of 3D-printed microfluidic chips as controllable 3D cell culture environments, advancing the applicability of 3D printing to engineering physiological systems for future applications in bioengineering.

  19. High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates

    OpenAIRE

    Neto, Ana I.; Custódio, Catarina A.; Wenlong Song; Mano, J. F.

    2011-01-01

    We propose a new low cost platform for high-throughput analysis that permits screening the biological performance of independent combinations of biomaterials, cells and culture media. Patterned superhydrophobic flat substrates with controlled wettable spots are used to produce microarray chips for accelerated multiplexing evaluation. This work was partially supported by Fundação para a Ciência e Tecnologia (FCT) under project PTDC/FIS/68517/2006.

  20. Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development.

    Science.gov (United States)

    Napsucialy-Mendivil, Selene; Alvarez-Venegas, Raúl; Shishkova, Svetlana; Dubrovsky, Joseph G

    2014-12-01

    Arabidopsis homolog of trithorax1 (ATX1/SDG27), a known regulator of flower development, encodes a H3K4histone methyltransferase that maintains a number of genes in an active state. In this study, the role of ATX1 in root development was evaluated. The loss-of-function mutant atx1-1 was impaired in primary root growth. The data suggest that ATX1 controls root growth by regulating cell cycle duration, cell production, and the transition from cell proliferation in the root apical meristem (RAM) to cell elongation. In atx1-1, the quiescent centre (QC) cells were irregular in shape and more expanded than those of the wild type. This feature, together with the atypical distribution of T-divisions, the presence of oblique divisions, and the abnormal cell patterning in the RAM, suggests a lack of coordination between cell division and cell growth in the mutant. The expression domain of QC-specific markers was expanded both in the primary RAM and in the developing lateral root primordia of atx1-1 plants. These abnormalities were independent of auxin-response gradients. ATX1 was also found to be required for lateral root initiation, morphogenesis, and emergence. The time from lateral root initiation to emergence was significantly extended in the atx1-1 mutant. Overall, these data suggest that ATX1 is involved in the timing of root development, stem cell niche maintenance, and cell patterning during primary and lateral root development. Thus, ATX1 emerges as an important player in root system architecture. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Development of Targeted Molecular Therapy for Cancers Harboring BAP1 Mutations

    Science.gov (United States)

    2016-10-01

    study in cultured cells because the loss of BAP1 results in stem cell-like behavior; the cells proliferate slowly, become dedifferentiated and are...result is the inhibition of histone H2A ubiquitination and the accumulation of ubiquitin at the DNA double- strand break sites. The PRC1-mediated...immunodeficiency allows the growth of human cancer cells and cancer stem cells with significant fidelity to the original tumor. b. Actual or anticipated

  2. Hydroxypropyl cellulose methacrylate as a photo-patternable and biodegradable hybrid paper substrate for cell culture and other bioapplications.

    Science.gov (United States)

    Qi, Aisha; Hoo, Siew Pei; Friend, James; Yeo, Leslie; Yue, Zhilian; Chan, Peggy P Y

    2014-04-01

    In addition to the choice of appropriate material properties of the tissue construct to be used, such as its biocompatibility, biodegradability, cytocompatibility, and mechanical rigidity, the ability to incorporate microarchitectural patterns in the construct to mimic that found in the cellular microenvironment is an important consideration in tissue engineering and regenerative medicine. Both these issues are addressed by demonstrating a method for preparing biodegradable and photo-patternable constructs, where modified cellulose is cross-linked to form an insoluble structure in an aqueous environment. Specifically, hydroxypropyl cellulose (HPC) is rendered photocrosslinkable by grafting with methylacrylic anhydride, whose linkages also render the cross-linked construct hydrolytically degradable. The HPC is then cross-linked via a photolithography-based fabrication process. The feasibility of functionalizing these HPC structures with biochemical cues is verified post-fabrication, and shown to facilitate the adhesion of mesenchymal progenitor cells. The HPC constructs are shown to be biocompatible and hydrolytically degradable, thus enabling cell proliferation and cell migration, and therefore constituting an ideal candidate for long-term cell culture and implantable tissue scaffold applications. In addition, the potential of the HPC structure is demonstrated as an alternative substrate to paper microfluidic diagnostic devices for protein and cell assays. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm.

    Directory of Open Access Journals (Sweden)

    Marta Luz

    Full Text Available BACKGROUND: Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. RESULTS: We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. CONCLUSIONS: Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.

  4. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm.

    Science.gov (United States)

    Luz, Marta; Spannl-Müller, Stephanie; Özhan, Günes; Kagermeier-Schenk, Birgit; Rhinn, Muriel; Weidinger, Gilbert; Brand, Michael

    2014-01-01

    Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.

  5. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.

    Science.gov (United States)

    Levin, Michael; Stevenson, Claire G

    2012-01-01

    Achieving control over cell behavior and pattern formation requires molecular-level understanding of regulatory mechanisms. Alongside transcriptional networks and biochemical gradients, there functions an important system of cellular communication and control: transmembrane voltage gradients (V(mem)). Bioelectrical signals encoded in spatiotemporal changes of V(mem) control cell proliferation, migration, and differentiation. Moreover, endogenous bioelectrical gradients serve as instructive cues mediating anatomical polarity and other organ-level aspects of morphogenesis. In the past decade, significant advances in molecular physiology have enabled the development of new genetic and biophysical tools for the investigation and functional manipulation of bioelectric cues. Recent data implicate V(mem) as a crucial epigenetic regulator of patterning events in embryogenesis, regeneration, and cancer. We review new conceptual and methodological developments in this fascinating field. Bioelectricity offers a novel way of quantitatively understanding regulation of growth and form in vivo, and it reveals tractable, powerful control points that will enable truly transformative applications in bioengineering, regenerative medicine, and synthetic biology.

  6. Specificity of interaction between carcinogenic polynuclear aromatic hydrocarbons and nuclear proteins: widespread occurrence of a restricted pattern of histone-binding in intact cells

    International Nuclear Information System (INIS)

    MacLeod, M.C.; Pelling, J.C.; Slaga, T.J.; Nikbakht-Noghrei, P.A.; Mansfield, B.K.; Selkirk, J.K.

    1982-01-01

    Metabolic activation of benzo(a)pyrene [B(a)P] produces a number of potentially reactive metabolites. The endproducts of one metabolic pathway, 7,8-dihydroxy-9,10-oxy-7,8,9,10-tetrahydro-B(a)P (BPDE) are responsible for essentially all DNA adduct formation in animal cells treated with B(a)P, and a particular stereoisomer, designated (+)-anti-BPDE is thought to be the ultimate carcinogenic derivative of B(a)P. In hamster embryo cell nuclei treated with (+)-anti-BPDE, two of the histones of the nucleosomal core, H3 and H2A, are covalently modified, while the remaining core histones, H4 and H2B, are essentially unmodified. All four purified core histones, however, serve as targets. 7,12-dimethylbenz(a)anthracene and 3-methylcholanthrene show the same pattern of histone binding in hamster embryo cells. Treatment of mouse embryo cells with [ 3 H]-BPDE results in covalent binding of the hydrocarbon to histones H3 and H2A among the many cellular targets, while histones H2B and H4 are not bound. Similar binding patterns are seen in mouse embryo cells, a permanent murine, fibroblastic cell line, and a human mammary epithelial cell line, T47D, treated with [ 3 H]B(a)P. Again, the histones are unevenly labeled, displaying the H3 and H2A pattern. Histone-binding in the human cells may also be mediated by BPDE. Similar BPDE binding patterns were observed in other murine and human cell lines and in primary cultures of murine epidermal epithelial cells. The restriction of histone H2B and H4 binding appears to be general when intact cultured cells are studied. This specificity was not observed in a mixed reconstituted system in which rat liver microsomes were used to activate B(a)P. This finding reinforces reservations concerning the use of microsomal systems to probe the interactions of carcinogens with macromolecules and the relationships of adduct formation with the processes of carcinogenesis

  7. Basal cell carcinoma: CD56 and cytokeratin 5/6 staining patterns in the differential diagnosis with Merkel cell carcinoma.

    Science.gov (United States)

    Panse, Gauri; McNiff, Jennifer M; Ko, Christine J

    2017-06-01

    Basal cell carcinoma (BCC) can resemble Merkel cell carcinoma (MCC) on histopathological examination and while CK20 is a useful marker in this differential, it is occasionally negative in MCC. CD56, a sensitive marker of neuroendocrine differentiation, is sometimes used to identify MCC, but has been reportedly variably positive in BCC as well. In contrast, CK5/6 consistently labels BCC but is not expressed in neuroendocrine tumors. We evaluated 20 cases of BCC for the pattern of CD56 and cytokeratin 5/6 (CK5/6) staining, hypothesizing that these 2 stains could differentiate BCC from MCC in difficult cases. Seventeen cases of MCC previously stained with CD56 were also examined. All BCCs showed patchy expression of CD56 except for 2 cases, which showed staining of greater than 70% of tumor. CK5/6 was diffusely positive in all cases of BCC. Fifteen of 17 MCCs were diffusely positive for CD56. The difference in the pattern of CD56 expression between MCC and BCC (diffuse vs patchy, respectively) was statistically significant (P < .05). BCC typically shows patchy CD56 expression and diffuse CK5/6 positivity. These 2 markers can be used to distinguish between BCC and MCC in challenging cases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Induced Foxp3+ T cells colonising tolerated allografts exhibit the hypomethylation pattern typical of mature regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Robert eHilbrands

    2016-04-01

    Full Text Available Regulatory T cells expressing the transcription factor Foxp3 require acquisition of a specific hypomethylation pattern to ensure optimal functional commitment, limited lineage plasticity and long-term maintenance of tolerance. A better understanding of the molecular mechanisms involved in the generation of these epigenetic changes in vivo will contribute to the clinical exploitation of Foxp3+Treg. Here we show that both in vitro and in vivo generated antigen specific Foxp3+Treg can acquire Treg-specific epigenetic characteristics and prevent skin graft rejection in an animal model.

  9. Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell

    DEFF Research Database (Denmark)

    Norrman, Kion; Vesterager Madsen, Morten; Gevorgyan, Suren

    2010-01-01

    The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed...... by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material...... and the two electrodes indium−tin−oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H218O and 18O2 enabled detailed information on where and to what extent uptake took place...

  10. Hyperbaric oxygen therapy in a true regenerative environment, the regenerating limb of the axolotl

    DEFF Research Database (Denmark)

    Hansen, Kasper; Lauridsen, Henrik; Pedersen, Michael

    2012-01-01

    vertebrates such as the urodele amphibians (salamanders and newts), are excellent animal models for regenerative studies. The iconic Mexican axolotl (Ambystoma mexicanum) is capable of regenerating whole limbs, tail, jaw, and many inner organs, by dedifferentiation of cells to form a blastema (collection...

  11. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    Science.gov (United States)

    Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810

  12. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    KAUST Repository

    Ghiotto, Fabio; Marcatili, Paolo

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV-diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥ 2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation.

  13. Metastatic Patterns of Myxoid/Round Cell Liposarcoma: A Review of a 25-Year Experience

    Directory of Open Access Journals (Sweden)

    Naofumi Asano

    2012-01-01

    Full Text Available Myxoid/round cell liposarcoma (MRCL, unlike other soft tissue sarcomas, has been associated with unusual pattern of metastasis to extrapulmonary sites. In an attempt to elucidate the clinical features of MRCL with metastatic lesions, 58 cases, from the medical database of Keio University Hospital were used for the evaluation. 47 patients (81% had no metastases, whereas 11 patients (11% had metastases during their clinical course. Among the 11 patients with metastatic lesions, 8 patients (73% had extrapulmonary metastases and 3 patients (27% had pulmonary metastases. Patients were further divided into three groups; without metastasis, with extrapulmonary metastasis, and with pulmonary metastasis. When the metastatic patterns were stratified according to tumor size, there was statistical significance between the three groups (P=0.028. The 8 cases with extrapulmonary metastases were all larger than 10 cm. Similarly, histological grading had a significant impact on metastatic patterns (P=0.027. 3 cases with pulmonary metastatic lesions were all diagnosed as high grade. In conclusion, large size and low histological grade were significantly associated with extrapulmonary metastasis.

  14. Enhancement of silicon using micro-patterned surfaces of thin films

    Directory of Open Access Journals (Sweden)

    E Kaivosoja

    2010-04-01

    Full Text Available Micro-textured biomaterials might enhance cytocompatibility of silicon-based micro-electro-mechanical system (bio-MEMS dummies. Photolithography-physical vapour deposition was used to produce diamond-like carbon (DLC or Ti squares and circles on silicon, and also their inverse replicas; then DLC and Ti were compared for their guiding potential, using a SaOS-2 cell model. Scanning electron microscopy at 48 hours indicated cells were well-spread on large-sized patterns (several cells on one pattern and assumed the geometrical architecture of underlying features. Medium-sized patterns (slightly smaller than solitary indicator cells were inhabited by singular cells, which stretched from one island to another, assuming longitudinal or branching morphologies. On small-sized patterns (much smaller than individual cells cells covered large micro-textured areas, but cellular filopodia bypassed the bare silicon. Immunofluorescence and confocal laser scanning microscopy indicated that the actin cytoskeleton and vinculin-containing adhesion junctions were present on the patterned areas, but not on the bare silicon. Cell density/coverage disclosed a 3.4-3.7-fold preference for the biomaterial patterns over silicon substrate (p < 0.001. Differences in the cellular response between materials were lost at 120 hours when cells were confluent. The working hypothesis was proven; enhancement by micro-patterning depends on the pattern size, shape and material and can be used to improve biocompatibility during the initial integration phase of the device.

  15. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media

    NARCIS (Netherlands)

    Veening, J. -W.; Smits, W. K.; Hamoen, L. W.; Kuipers, O. P.

    Aim: Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. Methods and Results: Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of

  16. Evaluation of CD307a expression patterns during normal B-cell maturation and in B-cell malignancies by flow cytometry.

    Science.gov (United States)

    Auat, Mariangeles; Cardoso, Chandra Chiappin; Santos-Pirath, Iris Mattos; Rudolf-Oliveira, Renata Cristina Messores; Matiollo, Camila; Lange, Bárbara Gil; da Silva, Jessica Pires; Dametto, Gisele Cristina; Pirolli, Mayara Marin; Colombo, Maria Daniela Holthausen Perico; Santos-Silva, Maria Claudia

    2018-02-24

    Flow cytometric immunophenotyping is deemed a fundamental tool for the diagnosis of B-cell neoplasms. Currently, the investigation of novel immunophenotypic markers has gained importance, as they can assist in the precise subclassification of B-cell malignancies by flow cytometry. Therefore, the purpose of the present study was to evaluate the expression of CD307a during normal B-cell maturation and in B-cell malignancies as well as to investigate its potential role in the differential diagnosis of these entities. CD307a expression was assessed by flow cytometry in normal precursor and mature B cells and in 115 samples collected from patients diagnosed with precursor and mature B-cell neoplasms. CD307a expression was compared between neoplastic and normal B cells. B-acute lymphoblastic leukemia cases exhibited minimal expression of CD307a, displaying a similar expression pattern to that of normal B-cell precursors. Mantle cell lymphoma (MCL) cases showed the lowest levels of CD307a among mature B-cell neoplasms. CD307a expression was statistically lower in MCL cases than in chronic B lymphocytic leukemia (CLL) and marginal zone lymphoma (MZL) cases. No statistical differences were observed between CD307a expression in neoplastic and normal plasma cells. These results indicate that the assessment of CD307a expression by flow cytometry could be helpful to distinguish CLL from MCL, and the latter from MZL. Although these results are not entirely conclusive, they provide a basis for further studies in a larger cohort of patients. © 2018 International Clinical Cytometry Society. © 2018 International Clinical Cytometry Society.

  17. Self-organization of yeast cells on modified polymer surfaces after dewetting: new perspectives in cellular patterning

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy); Satriano, S [Department of Chemical Sciences, University of Catania, Catania (Italy); Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2006-08-23

    In recent years, biological micro-electro-mechanical systems (commonly referred to as BioMEMS) have found widespread use, becoming increasingly prevalent in diagnostics and therapeutics. Cell-based sensors are nowadays gaining increasing attention, due to cellular built-in natural selectivity and physiologically relevant response to biologically active chemicals. On the other hand, surrogate microbial systems, including yeast models, have become a useful alternative to animal and mammalian cell systems for high-throughput screening for the identification of new pharmacological agents. A main obstacle in biosensor device fabrication is the need for localized geometric confinement of cells, without losing cell viability and sensing capability. Here we illustrate a new approach for cellular patterning using dewetting processes to control cell adhesion and spatial confinement on modified surfaces. By the control of simple system parameters, a rich variety of morphologies, ranging through hexagonal arrays, polygonal networks, bicontinuous structures, and elongated fingers, can be obtained.

  18. Facts about Stem Cells and Importance of Them

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-05-01

    Full Text Available Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three accessible sources of autologous adult stem cells in humans: Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest, Adipose tissue (lipid cells, which requires extraction by liposuction, and Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation, and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation

  19. Metamorphosis of the Drosophila visceral musculature and its role in intestinal morphogenesis and stem cell formation.

    Science.gov (United States)

    Aghajanian, Patrick; Takashima, Shigeo; Paul, Manash; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2016-12-01

    The visceral musculature of the Drosophila intestine plays important roles in digestion as well as development. Detailed studies investigating the embryonic development of the visceral muscle exist; comparatively little is known about postembryonic development and metamorphosis of this tissue. In this study we have combined the use of specific markers with electron microscopy to follow the formation of the adult visceral musculature and its involvement in gut development during metamorphosis. Unlike the adult somatic musculature, which is derived from a pool of undifferentiated myoblasts, the visceral musculature of the adult is a direct descendant of the larval fibers, as shown by activating a lineage tracing construct in the larval muscle and obtaining labeled visceral fibers in the adult. However, visceral muscles undergo a phase of remodeling that coincides with the metamorphosis of the intestinal epithelium. During the first day following puparium formation, both circular and longitudinal syncytial fibers dedifferentiate, losing their myofibrils and extracellular matrix, and dissociating into mononuclear cells ("secondary myoblasts"). Towards the end of the second day, this process is reversed, and between 48 and 72h after puparium formation, a structurally fully differentiated adult muscle layer has formed. We could not obtain evidence that cells apart from the dedifferentiated larval visceral muscle contributed to the adult muscle, nor does it appear that the number of adult fibers (or nuclei per fiber) is increased over that of the larva by proliferation. In contrast to the musculature, the intestinal epithelium is completely renewed during metamorphosis. The adult midgut epithelium rapidly expands over the larval layer during the first few hours after puparium formation; in case of the hindgut, replacement takes longer, and proceeds by the gradual caudad extension of a proliferating growth zone, the hindgut proliferation zone (HPZ). The subsequent

  20. Methylation patterns in sentinel genes in peripheral blood cells of heavy smokers: Influence of cruciferous vegetables in an intervention study.

    Science.gov (United States)

    Scoccianti, Chiara; Ricceri, Fulvio; Ferrari, Pietro; Cuenin, Cyrille; Sacerdote, Carlotta; Polidoro, Silvia; Jenab, Mazda; Hainaut, Pierre; Vineis, Paolo; Herceg, Zdenko

    2011-09-01

    Changes in DNA methylation patterns are a hallmark of tobacco-induced carcinogenesis. We have conducted a randomized 4-week intervention trial to investigate the effects of three dietary regimens to modify DNA methylation patterns in peripheral white blood cells of heavy smokers. A group of 88 smokers were randomly assigned to and distributed among three diets, including (1) normal isocaloric diet (balanced in fruits and vegetables), according to international guidelines; (2) a diet enriched in flavonoids and isothiocyanates (particularly cruciferous vegetables); (3) a regimen consisting of diet 1 supplemented with flavonoids (green tea and soy products). Methylation patterns were analyzed by pyrosequencing in LINE1 (Long Interspersed DNA Elements), RASSF1A, ARF and CDKN2a (tumor suppressor genes), MLH1 (mismatch DNA repair) and MTHFR (folate metabolism). Three distinct patterns of methylation were observed. In LINE1, methylation showed a small but reproducible increase with all three regimens. MTHFR was constitutively methylated with no significant modulation by diets. The four other loci showed low basal levels of methylation with no substantial change after intervention. These data suggest that the isocaloric diet may stabilize global epigenetic (LINE1 DNA methylation) patterns in peripheral white blood cells but does not provide evidence for methylation changes in specific genes associated with this short-term dietary intervention.

  1. Fluctuations in Blood Marginal Zone B-Cell Frequencies May Reflect Migratory Patterns Associated with HIV-1 Disease Progression Status.

    Science.gov (United States)

    Gauvin, Julie; Chagnon-Choquet, Josiane; Poudrier, Johanne; Roger, Michel

    2016-01-01

    We have previously shown that overexpression of BLyS/BAFF was associated with increased relative frequencies of innate "precursor" marginal zone (MZ)-like B-cells in the blood of HIV-1-infected rapid and classic progressors. However, along with relatively normal BLyS/BAFF expression levels, these cells remain unaltered in elite-controllers (EC), rather, percentages of more mature MZ-like B-cells are decreased in the blood of these individuals. Fluctuations in frequencies of blood MZ-like B-cell populations may reflect migratory patterns associated with disease progression status, suggesting an important role for these cells in HIV-1 pathogenesis. We have therefore longitudinally measured plasma levels of B-tropic chemokines by ELISA-based technology as well as their ligands by flow-cytometry on blood B-cell populations of HIV-1-infected individuals with different rates of disease progression and uninfected controls. Migration potential of B-cell populations from these individuals were determined by chemotaxis assays. We found important modulations of CXCL13-CXCR5, CXCL12-CXCR4/CXCR7, CCL20-CCR6 and CCL25-CCR9 chemokine-axes and increased cell migration patterns in HIV progressors. Interestingly, frequencies of CCR6 expressing cells were significantly elevated within the precursor MZ-like population, consistent with increased migration in response to CCL20. Although we found little modulation of chemokine-axes in EC, cell migration was greater than that observed for uninfected controls, especially for MZ-like B-cells. Overall the immune response against HIV-1 may involve recruitment of MZ-like B-cells to peripheral sites. Moreover, our findings suggest that "regulated" attraction of these cells in a preserved BLyS/BAFF non-inflammatory environment, such as encountered in EC could be beneficial to the battle and even control of HIV.

  2. Recurrence of squamous cell carcinoma of the oesophagus after curative surgery: rates and patterns on imaging studies correlated with tumour location and pathological stage

    International Nuclear Information System (INIS)

    Lee, S.J.; Lee, K.S.; Yim, Y.J.; Kim, T.S.; Shim, Y.M.; Kim, K.

    2005-01-01

    Many factors have been related to recurrence after resection of squamous cell carcinoma of the oesophagus. These include age, gender, location and local stage of tumours, cell differentiation, lymph node metastasis and vascular involvement. The recurrence rates of squamous cell carcinoma after curative surgery are high (34-79%). Tumour recurrence is categorized as locoregional or distant. Lymph node recurrence and haematogenous metastasis to solid organs (commonly to the lung) are the usual patterns of recurrence. Awareness of recurrence patterns, particularly on imaging studies, is essential for the diagnosis of recurrent tumours on follow-up examinations

  3. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Science.gov (United States)

    Potdar, Alka A; Jeon, Junhwan; Weaver, Alissa M; Quaranta, Vito; Cummings, Peter T

    2010-03-10

    Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells) that exist in multi-cellular organisms (humans) follow a bimodal correlated random walk (BCRW). Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases) each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation). Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  4. Human mammary epithelial cells exhibit a bimodal correlated random walk pattern.

    Directory of Open Access Journals (Sweden)

    Alka A Potdar

    2010-03-01

    Full Text Available Organisms, at scales ranging from unicellular to mammals, have been known to exhibit foraging behavior described by random walks whose segments confirm to Lévy or exponential distributions. For the first time, we present evidence that single cells (mammary epithelial cells that exist in multi-cellular organisms (humans follow a bimodal correlated random walk (BCRW.Cellular tracks of MCF-10A pBabe, neuN and neuT random migration on 2-D plastic substrates, analyzed using bimodal analysis, were found to reveal the BCRW pattern. We find two types of exponentially distributed correlated flights (corresponding to what we refer to as the directional and re-orientation phases each having its own correlation between move step-lengths within flights. The exponential distribution of flight lengths was confirmed using different analysis methods (logarithmic binning with normalization, survival frequency plots and maximum likelihood estimation.Because of the presence of non-uniform turn angle distribution of move step-lengths within a flight and two different types of flights, we propose that the epithelial random walk is a BCRW comprising of two alternating modes with varying degree of correlations, rather than a simple persistent random walk. A BCRW model rather than a simple persistent random walk correctly matches the super-diffusivity in the cell migration paths as indicated by simulations based on the BCRW model.

  5. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor.

    Science.gov (United States)

    Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F

    1997-06-01

    Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.

  6. Upcyte® Microvascular Endothelial Cells Repopulate Decellularized Scaffold

    Science.gov (United States)

    Dally, Iris; Hartmann, Nadja; Münst, Bernhard; Braspenning, Joris; Walles, Heike

    2013-01-01

    A general problem in tissue engineering is the poor and insufficient blood supply to guarantee tissue cell survival as well as physiological tissue function. To address this limitation, we have developed an in vitro vascularization model in which a decellularized porcine small bowl segment, representing a capillary network within a collagen matrix (biological vascularized scaffold [BioVaSc]), is reseeded with microvascular endothelial cells (mvECs). However, since the supply of mvECs is limited, in general, and as these cells rapidly dedifferentiate, we have applied a novel technology, which allows the generation of large batches of quasi-primary cells with the ability to proliferate, whilst maintaining their differentiated functionality. These so called upcyte mvECs grew for an additional 15 population doublings (PDs) compared to primary cells. Upcyte mvECs retained endothelial characteristics, such as von Willebrandt Factor (vWF), CD31 and endothelial nitric oxide synthase (eNOS) expression, as well as positive Ulex europaeus agglutinin I staining. Upcyte mvECs also retained biological functionality such as tube formation, cell migration, and low density lipoprotein (LDL) uptake, which were still evident after PD27. Initial experiments using MTT and Live/Dead staining indicate that upcyte mvECs repopulate the BioVaSc Scaffold. As with conventional cultures, these cells also express key endothelial molecules (vWF, CD31, and eNOS) in a custom-made bioreactor system even after a prolonged period of 14 days. The combination of upcyte mvECs and the BioVaSc represents a novel and promising approach toward vascularizing bioreactor models which can better reflect organs, such as the liver. PMID:22799502

  7. In vitro identification and characterization of CD133(pos cancer stem-like cells in anaplastic thyroid carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Giovanni Zito

    Full Text Available Recent publications suggest that neoplastic initiation and growth are dependent on a small subset of cells, termed cancer stem cells (CSCs. Anaplastic Thyroid Carcinoma (ATC is a very aggressive solid tumor with poor prognosis, characterized by high dedifferentiation. The existence of CSCs might account for the heterogeneity of ATC lesions. CD133 has been identified as a stem cell marker for normal and cancerous tissues, although its biological function remains unknown.ATC cell lines ARO, KAT-4, KAT-18 and FRO were analyzed for CD133 expression. Flow cytometry showed CD133(pos cells only in ARO and KAT-4 (64+/-9% and 57+/-12%, respectively. These data were confirmed by qRT-PCR and immunocytochemistry. ARO and KAT-4 were also positive for fetal marker oncofetal fibronectin and negative for thyrocyte-specific differentiating markers thyroglobulin, thyroperoxidase and sodium/iodide symporter. Sorted ARO/CD133(pos cells exhibited higher proliferation, self-renewal, colony-forming ability in comparison with ARO/CD133(neg. Furthermore, ARO/CD133(pos showed levels of thyroid transcription factor TTF-1 similar to the fetal thyroid cell line TAD-2, while the expression in ARO/CD133(neg was negligible. The expression of the stem cell marker OCT-4 detected by RT-PCR and flow cytometry was markedly higher in ARO/CD133(pos in comparison to ARO/CD133(neg cells. The stem cell markers c-KIT and THY-1 were negative. Sensitivity to chemotherapy agents was investigated, showing remarkable resistance to chemotherapy-induced apoptosis in ARO/CD133(pos when compared with ARO/CD133(neg cells.We describe CD133(pos cells in ATC cell lines. ARO/CD133(pos cells exhibit stem cell-like features--such as high proliferation, self-renewal ability, expression of OCT-4--and are characterized by higher resistance to chemotherapy. The simultaneous positivity for thyroid specific factor TTF-1 and onfFN suggest they might represent putative thyroid cancer stem-like cells. Our in

  8. Comparative Analysis of WUSCHEL-Related Homeobox Genes Revealed Their Parent-of-Origin and Cell Type-Specific Expression Pattern During Early Embryogenesis in Tobacco

    Directory of Open Access Journals (Sweden)

    Xuemei Zhou

    2018-03-01

    Full Text Available WUSCHEL-related homeobox (WOX gene is a plant-specific clade of homeobox transcription factors. Increasing evidences reveal that WOXs play critical roles in early embryogenesis, which involves zygote development, initiation of zygote division, and apical or basal cell lineage establishment. However, how WOXs regulate these developmental events remains largely unknown, and even detailed expression pattern in gametes and early proembryos is not yet available. Here, 13 WOX family genes were identified in Nicotiana tabacum genome. Comparative analysis of 13 WOX family genes with their homologs in Arabidopsis thaliana reveals relatively conserved expression pattern of WUS and WOX5 in shoot/root apical meristem. Whereas variations were also found, e.g., lacking homolog of WOX8 (a marker for suspensor cell in tobacco genome and the expression of WOX2/WOX9 in both apical cell and basal cell. Transient transcriptional activity analysis revealed that WOXs in WUS clade have repressive activities for their target's transcription, whereas WOXs in ancient and intermediate clade have activation activities, giving a molecular basis for the phylogenetic classification of tobacco WOXs into three major clades. Expression pattern analysis revealed that some WOXs (e.g., WOX 13a expressed in both male and female gametes and some WOXs (e.g., WOX 11 and WOX 13b displayed the characteristics of parent-of-origin genes. Interestingly, some WOXs (e.g., WOX2 and WOX9, which are essential for early embryo patterning, were de novo transcribed in zygote, indicating relevant mechanism for embryo pattern formation is only established in zygote right after fertilization and not carried in by gametes. We also found that most WOXs displayed a stage-specific and cell type-specific expression pattern. Taken together, this work provides a detailed landscape of WOXs in tobacco during fertilization and early embryogenesis, which will facilitate the understanding of their specific roles

  9. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  10. Expression pattern of clinically relevant markers in paediatric germ cell- and sex-cord stromal tumours is similar to adult testicular tumours

    DEFF Research Database (Denmark)

    Mosbech, Christiane Hammershaimb; Svingen, Terje; Nielsen, John Erik

    2014-01-01

    Paediatric germ cell tumours (GCTs) are rare and account for less than 3 % of childhood cancers. Like adult GCTs, they probably originate from primordial germ cells, but the pattern of histopathological types is different, and they occur predominantly in extragonadal sites along the body midline....

  11. Understanding patterns of invasion: a novel approach to assessment of podoplanin expression in the prediction of lymph node metastasis in oral squamous cell carcinoma.

    Science.gov (United States)

    Sharma, Ankita; Boaz, Karen; Natarajan, Srikant

    2018-03-01

    Cellular motility is considered to be central to the process of metastasis, and podoplanin expression can be explored as a prospective link, owing to its ability to modulate the actin cytoskeleton. We aimed to evaluate the tumoral expression of D2-40 (monoclonal antibody against podoplanin) in pathologically neck-node-negative/positive cases (pN0/N+) to characterise the pattern of invasion, potentially explaining the role of various patterns of invasion in causing tumour metastasis. Paraffin-embedded tissue blocks of 60 oral squamous cell carcinoma cases of known nodal status were selected for immunohistochemical staining of tumour (invasive front) by D2-40 along with routine staining by haematoxylin and eosin. Various staining patterns were assessed and evaluated for D2-40 expression, and correlated with nodal status. Tumoral D2-40 expression correspondingly increased with nodal metastasis (P = 0.261). Furthermore, D2-40 staining was more efficient in detecting individual tumour cells, and also characterised the motility factor irrespective of the pattern of invasion (P = 0.001). The pattern of D2-40 staining did not show a significant association with tumour grade, indicating that motility is an overlooked, albeit important, component of the pattern of invasion in routine histological grading. D2-40 expression successfully identifies the motility profile of tumour, irrespective of the pattern of invasion. The presence of larger motile islands in the tumour cohort supports the concept of 'collective cell migration'. Podoplanin also aids evasion of immune responses by inducing platelet aggregation over tumour cells, thereby favouring distant metastasis. A multivariate model using immunohistochemical staining with D2-40 provides greater sensitivity for the prediction of lymph node metastasis. © 2017 John Wiley & Sons Ltd.

  12. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available A recently developed strategy of sequencing alternative polyadenylation (APA sites (SAPAS with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here, we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs and differentiated mouse embryonic fibroblast cells (MEFs as controls. As a result, we obtained 99,944 poly(A sites, approximately 40% of which were newly detected in our experiments. These poly(A sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site

  13. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    Science.gov (United States)

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  14. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  15. Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.

    Directory of Open Access Journals (Sweden)

    William A May

    Full Text Available Despite intensive treatment with chemotherapy, radiotherapy and surgery, over 70% of patients with metastatic Ewing's Sarcoma Family of Tumors (EFT will die of their disease. We hypothesize that properly characterized laboratory models reflecting the drug resistance of clinical tumors will facilitate the application of new therapeutic agents to EFT. To determine resistance patterns, we studied newly established EFT cell lines derived from different points in therapy: two established at diagnosis (CHLA-9, CHLA-32, two after chemotherapy and progressive disease (CHLA-10, CHLA-25, and two at relapse after myeloablative therapy and autologous bone marrow transplantation (post-ABMT (CHLA-258, COG-E-352. The new lines were compared to widely studied EFT lines TC-71, TC-32, SK-N-MC, and A-673. These lines were extensively characterized with regard to identity (short tandem repeat (STR analysis, p53, p16/14 status, and EWS/ETS breakpoint and target gene expression profile. The DIMSCAN cytotoxicity assay was used to assess in vitro drug sensitivity to standard chemotherapy agents. No association was found between drug resistance and the expression of EWS/ETS regulated genes in the EFT cell lines. No consistent association was observed between drug sensitivity and p53 functionality or between drug sensitivity and p16/14 functionality across the cell lines. Exposure to chemotherapy prior to cell line initiation correlated with drug resistance of EFT cell lines in 5/8 tested agents at clinically achievable concentrations (CAC or the lower tested concentration (LTC: (cyclophosphamide (as 4-HC and doxorubicin at CAC, etoposide, irinotecan (as SN-38 and melphalan at LTC; P<0.1 for one agent, and P<0.05 for four agents. This panel of well-characterized drug-sensitive and drug-resistant cell lines will facilitate in vitro preclinical testing of new agents for EFT.

  16. Modeling and inferring cleavage patterns in proliferating epithelia.

    Directory of Open Access Journals (Sweden)

    Ankit B Patel

    2009-06-01

    Full Text Available The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate "signature" equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

  17. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation

    DEFF Research Database (Denmark)

    Graakjaer, Jesper; Christensen, Rikke; Kolvraa, Steen

    2007-01-01

    were measured using Fluorescence In Situ Hybridization (Q-FISH). RESULTS: A telomere length pattern was found to exist in primary hMSC's as well as in hMSC-telo1. This pattern is similar to what was previously found in lymphocytes and fibroblasts. The cells were then exposed to a high dose of ionizing...... radiation. Irradiation caused profound changes in chromosome specific telomere lengths, effectively destroying the telomere length pattern. Following long term culturing after irradiation, a telomere length pattern was found to re-emerge. However, the new telomere length pattern did not resemble...

  18. Ripple/Carcinoid pattern sebaceoma with apocrine differentiation.

    Science.gov (United States)

    Misago, Noriyuki; Narisawa, Yutaka

    2011-02-01

    Sebaceoma is a benign sebaceous neoplasm, which has been reported to show characteristic growth patterns, such as, ripple, labyrinthine/sinusoidal, and carcinoid-like patterns. Another recent finding regarding in sebaceoma is the observation of apocrine differentiation within the sebaceoma lesion. This report describes a case of carcinoid (a partial ripple and labyrinthine) pattern sebaceoma with apocrine differentiation with a literature review and immunohistochemical studies. The various characteristic growth patterns in sebaceoma were suggested to simply be variations of the same growth pattern arranged in cords, namely, a unified term "ripple/carcinoid pattern." The primitive sebaceous germinative cells in sebaceoma may still have the ability to undergo apocrine differentiation. Most of the reports so far on sebaceoma with apocrine differentiation, including the present case, describe a ripple/carcinoid pattern, thus suggesting that ripple/carcinoid pattern sebaceoma is composed of more primitive sebaceous germinative cells than conventional sebaceoma.

  19. Patterns of labeling of intraspinal reactive cells in rats injected with [3H]thymidine prior to or following sciatic axotomy

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Walls, R.C.

    1981-01-01

    Labeling patterns of reactive cells which occur in the spinal cord following sciatic axotomy were investigated by autoradiography following administration of [ 3 H]thymidine (2 μCi/g body weight/injection). In this investigation the labeling patterns in reactive cells were compared when [ 3 H]thymidine was injected: (1) prior to or (2) following surgery. Immature rats underwent sciatic axotomy and were killed 3 days later (20 days of age). Some of their littermates served as sham-operated controls, and others were killed on the day of surgery to evaluate intraspinal labeling at that time. In one series of animals, a single injection of [ 3 H]thymidine was administered 2 h prior to autopsy. This procedure resulted in heavy labeling of 6.2% of the cells classified as reactive cells. In the second series, 3 injections of [ 3 H]thymidine were given on the day prior to surgery. On the third post-operative day, 19.4% of the reactive cells were labeled, and the majority of these were lightly labeled, suggesting that they had undergone several cell divisions. The data from both injection protocols indicate that the magnitude of the cellular response to axotomy would be markedly underestimated, if one were to consider only labeled cells. The present investigators concluded that these particular applications of [ 3 H]thymidine autoradiography provide valuable information on reactions of the central nervous system to injury but are of little value in determining origins of the reactive cells. (Auth.)

  20. High Throughput Micro-Well Generation of Hepatocyte Micro-Aggregates for Tissue Engineering

    NARCIS (Netherlands)

    Gevaert, Elien; Dollé, Laurent; Billiet, Thomas; Dubruel, Peter; van Grunsven, Leo; van Apeldoorn, Aart A.; Cornelissen, Ria

    2014-01-01

    The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the

  1. Fluorescence In Situ Hybridization for MDM2 Amplification as a Routine Ancillary Diagnostic Tool for Suspected Well-Differentiated and Dedifferentiated Liposarcomas: Experience at a Tertiary Center

    Directory of Open Access Journals (Sweden)

    Khin Thway

    2015-01-01

    Full Text Available Background. The assessment of MDM2 gene amplification by fluorescence in situ hybridization (FISH has become a routine ancillary tool for diagnosing atypical lipomatous tumor (ALT/well-differentiated liposarcoma and dedifferentiated liposarcoma (WDL/DDL in specialist sarcoma units. We describe our experience of its utility at our tertiary institute. Methods. All routine histology samples in which MDM2 amplification was assessed with FISH over a 2-year period were included, and FISH results were correlated with clinical and histologic findings. Results. 365 samples from 347 patients had FISH for MDM2 gene amplification. 170 were positive (i.e., showed MDM2 gene amplification, 192 were negative, and 3 were technically unsatisfactory. There were 122 histologically benign cases showing a histology:FISH concordance rate of 92.6%, 142 WDL/DDL (concordance 96.5%, and 34 cases histologically equivocal for WDL (concordance 50%. Of 64 spindle cell/pleomorphic neoplasms (in which DDL was a differential diagnosis, 21.9% showed MDM2 amplification. Of the cases with discrepant histology and FISH, all but 3 had diagnoses amended following FISH results. For discrepancies of benign histology but positive FISH, lesions were on average larger, more frequently in “classical” (intra-abdominal or inguinal sites for WDL/DDL and more frequently core biopsies. Discrepancies of malignant histology but negative FISH were smaller, less frequently in “classical” sites but again more frequently core biopsies. Conclusions. FISH has a high correlation rate with histology for cases with firm histologic diagnoses of lipoma or WDL/DDL. It is a useful ancillary diagnostic tool in histologically equivocal cases, particularly in WDL lacking significant histologic atypia or DDL without corresponding WDL component, especially in larger tumors, those from intra-abdominal or inguinal sites or core biopsies. There is a significant group of well-differentiated adipocytic neoplasms

  2. Induced Retro-Differentiation of Human Retinal Pigment Epithelial Cells on PolyHEMA.

    Science.gov (United States)

    Nazemroaya, Fatemeh; Soheili, Zahra-Soheila; Samiei, Shahram; Deezagi, Abdolkhalegh; Ahmadieh, Hamid; Davari, Malihe; Heidari, Razeih; Bagheri, Abouzar; Darvishalipour-Astaneh, Shamila

    2017-10-01

    Retinal pigment epithelium (RPE) cells represent a great potential to rescue degenerated cells of the damaged retina. Activation of the virtually plastic properties of RPE cells may aid in recovery of retinal degenerative disorders without the need for entire RPE sheet transplantation. Poly (2-hydroxyethyl methacrylate)(PolyHEMA) is one of the most important hydrogels in the biomaterials world. This hydrophobic polymer does not normally support attachment of mammalian cells. In the current study we investigated the effect of PolyHEMA as a cell culture substrate on the growth, differentiation, and plasticity of hRPE cells. hRPE cells were isolated from neonatal human globes and cultured on PolyHEMA and polystyrene substrates (as controls) in 24-well culture plates. DMEM/F12 was supplemented with 10% fetal bovine serum (FBS) and/or 30% human amniotic fluid (HAF) for cultured cells on polystyrene and PolyHEMA coated vessels. Morphology, rate of cell proliferation and cell death, MTT assay, immunocytochemistry and Real-Time RT-PCR were performed to investigate the effects of PolyHEMA on the growth and differentiation of cultured hRPE cells. Proliferation rate of the cells that had been cultured on PolyHEMA was reduced; PolyHEMA did not induce cell death in the hRPE cultures. hRPE cells cultured on PolyHEMA formed many giant spheroid colonies. The giant colonies were re-cultured and the presence of retinal progenitor markers and markers of hRPE cells were detected in cell cultures on PolyHEMA. PolyHEMA seems to be promising for both maintenance and de-differentiation of hRPE cells and expansion of the retinal progenitor cells from the cultures that are originated from hRPE cells. J. Cell. Biochem. 118: 3080-3089, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. DNA Methylation Patterns in Cord Blood of Neonates Across Gestational Age: Association With Cell-Type Proportions.

    Science.gov (United States)

    Braid, Susan M; Okrah, Kwame; Shetty, Amol; Corrada Bravo, Hector

    A statistical methodology is available to estimate the proportion of cell types (cellular heterogeneity) in adult whole blood specimens used in epigenome-wide association studies (EWAS). However, there is no methodology to estimate the proportion of cell types in umbilical cord blood (also a heterogeneous tissue) used in EWAS. The objectives of this study were to determine whether differences in DNA methylation (DNAm) patterns in umbilical cord blood are the result of blood cell type proportion changes that typically occur across gestational age and to demonstrate the effect of cell type proportion confounding by comparing preterm infants exposed and not exposed to antenatal steroids. We obtained DNAm profiles of cord blood using the Illumina HumanMethylation27k BeadChip array for 385 neonates from the Boston Birth Cohort. We estimated cell type proportions for six cell types using the deconvolution method developed by . The cell type proportion estimates segregated into two groups that were significantly different by gestational age, indicating that gestational age was associated with cell type proportion. Among infants exposed to antenatal steroids, the number of differentially methylated CpGs dropped from 127 to 1 after controlling for cell type proportion. EWAS utilizing cord blood are confounded by cell type proportion. Careful study design including correction for cell type proportion and interpretation of results of EWAS using cord blood are critical.

  4. SOX17 Regulates Cholangiocyte Differentiation and Acts as a Tumor Suppressor in Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Merino-Azpitarte, M; Lozano, E; Perugorria, M J

    2017-01-01

    /function was evaluated along the differentiation of human induced pluripotent stem cells (iPSC) into cholangiocytes, in the dedifferentiation process of normal human cholangiocytes (NHC) in culture and in cholangiocarcinogenesis. Lentiviruses for SOX17 overexpression or knock-down were used. Gene expression and DNA......BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a biliary malignancy linked to genetic and epigenetic abnormalities, such as hypermethylation of SOX17 promoter. Here, the role of SOX17 in cholangiocyte differentiation and cholangiocarcinogenesis was studied. METHODS: SOX17 expression...... methylation profiling were performed. RESULTS: SOX17 expression is induced in the last stage of cholangiocyte differentiation from iPSC and regulates the acquisition of biliary markers. SOX17 becomes downregulated in NHC undergoing dedifferentiation; experimental SOX17 knock-down in differentiated NHC...

  5. Rapid fabrication of microfluidic polymer electrolyte membrane fuel cell in PDMS by surface patterning of perfluorinated ion-exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong-Ak; Han, Jongyoon [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Batista, Candy [Roxbury Community College, 1234 Columbus Ave., Roxbury Crossing, MA 02120 (United States); Sarpeshkar, Rahul [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2008-09-01

    In this paper we demonstrate a simple and rapid fabrication method for a microfluidic polymer electrolyte membrane (PEM) fuel cell using polydimethylsiloxane (PDMS), which has become the de facto standard material in BioMEMS. Instead of integrating a Nafion sheet film between two layers of a PDMS device in a traditional ''sandwich format,'' we pattern a perfluorinated ion-exchange resin such as a Nafion resin on a glass substrate using a reversibly bonded PDMS microchannel to generate an ion-selective membrane between the fuel-cell electrodes. After this patterning step, the assembly of the microfluidic fuel cell is accomplished by simple oxygen plasma bonding between the PDMS chip and the glass substrate. In an example implementation, the planar PEM microfluidic fuel cell generates an open circuit voltage of 600-800 mV and delivers a maximum current output of nearly 4 {mu}A. To enhance the power output of the fuel cell we utilize self-assembled colloidal arrays as a support matrix for the Nafion resin. Such arrays allow us to increase the thickness of the ion-selective membrane to 20 {mu}m and increase the current output by 166%. Our novel fabrication method enables rapid prototyping of microfluidic fuel cells to study various ion-exchange resins for the polymer electrolyte membrane. Our work will facilitate the development of miniature, implantable, on-chip power sources for biomedical applications. (author)

  6. Targeting TBP-associated factors in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Jennifer R Ribeiro

    2014-03-01

    Full Text Available As ovarian tumors progress, they undergo a process of dedifferentiation, allowing adaptive changes in growth and morphology that promote metastasis and chemoresistance. Herein, we outline a hypothesis that TATA-box binding protein (TBP associated factors (TAFs, which compose the RNA Polymerase II initiation factor, TFIID, contribute to regulation of dedifferentiation states in ovarian cancer. Numerous studies demonstrate that TAFs regulate differentiation and proliferation states; their expression is typically high in pluripotent cells and reduced upon differentiation. Strikingly, TAF2 exhibits copy number increases or mRNA overexpression in 73% of high grade serous ovarian cancers (HGSC. At the biochemical level, TAF2 directs TFIID to TATA-less promoters by contact with an Initiator element, which may lead to the deregulation of the transcriptional output of these tumor cells. TAF4, which is altered in 66% of HGSC, is crucial for the stability of the TFIID complex and helps drive dedifferentiation of mouse embryonic fibroblasts to induced pluripotent stem cells. Its ovary-enriched paralog, TAF4B, is altered in 26% of HGSC. Here, we show that Taf4b mRNA correlates with Cyclin D2 mRNA expression in human granulosa cell tumors. TAF4B may also contribute to regulation of tumor microenvironment due to its estrogen-responsiveness and ability to act as a cofactor for NFκB. Conversely, TAF9, a cofactor for p53 in regulating apoptosis, may act as a tumor suppressor in ovarian cancer, since it is downregulated or deleted in 98% of HGSC. We conclude that a greater understanding of mechanisms of transcriptional regulation that execute signals from oncogenic signaling cascades is needed in order to expand our understanding of the etiology and progression of ovarian cancer, and most importantly to identify novel targets for therapeutic intervention.

  7. Well-Controlled Cell-Trapping Systems for Investigating Heterogeneous Cell-Cell Interactions.

    Science.gov (United States)

    Kamiya, Koki; Abe, Yuta; Inoue, Kosuke; Osaki, Toshihisa; Kawano, Ryuji; Miki, Norihisa; Takeuchi, Shoji

    2018-03-01

    Microfluidic systems have been developed for patterning single cells to study cell-cell interactions. However, patterning multiple types of cells to understand heterogeneous cell-cell interactions remains difficult. Here, it is aimed to develop a cell-trapping device to assemble multiple types of cells in the well-controlled order and morphology. This device mainly comprises a parylene sheet for assembling cells and a microcomb for controlling the cell-trapping area. The cell-trapping area is controlled by moving the parylene sheet on an SU-8 microcomb using tweezers. Gentle downward flow is used as a driving force for the cell-trapping. The assembly of cells on a parylene sheet with round and line-shaped apertures is demonstrated. The cell-cell contacts of the trapped cells are then investigated by direct cell-cell transfer of calcein via connexin nanopores. Finally, using the device with a system for controlling the cell-trapping area, three different types of cells in the well-controlled order are assembled. The correct cell order rate obtained using the device is 27.9%, which is higher than that obtained without the sliding parylene system (0.74%). Furthermore, the occurrence of cell-cell contact between the three cell types assembled is verified. This cell-patterning device will be a useful tool for investigating heterogeneous cell-cell interactions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Expression patterns of tight junction components induced by CD24 in an oral epithelial cell-culture model correlated to affected periodontal tissues.

    Science.gov (United States)

    Ye, P; Yu, H; Simonian, M; Hunter, N

    2014-04-01

    Previously we demonstrated uniformly strong expression of CD24 in the epithelial attachment to the tooth and in the migrating epithelium of the periodontitis lesion. Titers of serum antibodies autoreactive with CD24 peptide correlated with reduced severity of periodontal disease. Ligation of CD24 expressed by oral epithelial cells induced formation of tight junctions that limited paracellular diffusion. In this study, we aimed to reveal that the lack of uniform expression of tight junction components in the pocket epithelium of periodontitis lesions is likely to contribute to increased paracellular permeability to bacterial products. This is proposed as a potential driver of the immunopathology of periodontitis. An epithelial culture model with close correspondence for expression patterns for tight junction components in periodontal epithelia was used. Immunohistochemical staining and confocal laser scanning microscopy were used to analyse patterns of expression of gingival epithelial tight junction components. The minimally inflamed gingival attachment was characterized by uniformly strong staining at cell contacts for the tight junction components zona occludens-1, zona occludens-2, occludin, junction adhesion molecule-A, claudin-4 and claudin-15. In contrast, the pocket epithelium of the periodontal lesion showed scattered, uneven staining for these components. This pattern correlated closely with that of unstimulated oral epithelial cells in culture. Following ligation of CD24 expressed by these cells, the pattern of tight junction component expression of the minimally inflamed gingival attachment developed rapidly. There was evidence for non-uniform and focal expression only of tight junction components in the pocket epithelium. In the cell-culture model, ligation of CD24 induced a tight junction expression profile equivalent to that observed for the minimally inflamed gingival attachment. Ligation of CD24 expressed by gingival epithelial cells by lectin

  9. BMPR2 inhibition induced apoptosis and autophagy via destabilization of XIAP in human chondrosarcoma cells

    Science.gov (United States)

    Jiao, G; Guo, W; Ren, T; Lu, Q; Sun, Y; Liang, W; Ren, C; Yang, K; Sun, K

    2014-01-01

    Bone morphogenetic proteins (BMPs) are multifunctional proteins, and their receptors (BMPRs) have crucial roles in the process of signaling. However, their function in cancer is somewhat inconsistent. It has been demonstrated that more prevalent expression of bone morphogenetic protein receptor 2 (BMPR2) has been detected in dedifferentiated chondrosarcomas than conventional chondrosarcomas. Here, we find that BMPR2 inhibition induces apoptosis and autophagy of chondrosarcoma. We found that BMPR2 expression was correlated with the clinicopathological features of chondrosarcomas, and could predict the treatment outcome. Knockdown of BMPR2 by small interfering RNA results in growth inhibition in chondrosarcoma cells. Silencing BMPR2 promoted G2/M cell cycle arrest, induced chondrosarcoma cell apoptosis through caspase-3-dependent pathway via repression of X-linked inhibitor of apoptosis protein (XIAP) and induced autophagy of chondrosarcoma cells via XIAP-Mdm2-p53 pathway. Inhibition of autophagy induced by BMPR2 small interfering RNA (siBMPR2) sensitized chondrosarcoma cells to siBMPR2-induced apoptotic cell death, suggesting that autophagy has a protective role for chondrosarcoma cells in context of siBMPR2-induced apoptotic cell death. In vivo tumorigenicity assay in mice indicated that inhibition of BMPR2 reduced tumor growth. Taken together, our results suggest that BMPR2 has a significant role in the tumorigenesis of chondrosarcoma, and could be an important prognostic marker for chondrosarcoma. BMPR2 inhibition could eventually provide a promising therapy for chondrosarcoma treatment. PMID:25501832

  10. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  11. Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    Science.gov (United States)

    Granchi, Donatella; Ochoa, Gorka; Leonardi, Elisa; Devescovi, Valentina; Baglìo, Serena Rubina; Osaba, Lourdes; Baldini, Nicola; Ciapetti, Gabriela

    2010-06-01

    Bone marrow is commonly used as a source of adult multipotent mesenchymal stem cells (MSCs), defined for their ability to differentiate in vitro into multiple lineages. The ex vivo-expanded MSCs are currently being evaluated as a strategy for the restoration of function in damaged skeletal tissue, both in cell therapy and tissue engineering applications. The aim of this study was to define gene expression patterns underlying the differentiation of MSCs into mature osteoblasts during the expansion in vitro, and to explore a variety of cell functions that cannot be easily evaluated using morphological, cytochemical, and biochemical assays. Cell cultures were obtained from bone marrow samples of six individuals undergoing total hip replacement, and a large-scale transcriptome analysis, using Affymetrix HG-U133A Plus 2.0 array (Affymetrix((R)), Santa Clara, CA), was performed at the occurrence of specific events, including the appearance of MSC surface markers, formation of colonies, and deposition of mineral nodules. We focused our attention on 213 differentially upregulated genes, some belonging to well-known pathways and some having one or more Gene Ontology annotations related to bone cell biology, including angiogenesis, bone-related genes, cell communication, development and morphogenesis, transforming growth factor-beta signaling, and Wnt signaling. Twenty-nine genes, whose role in bone cell pathophysiology has not been described yet, were found. In conclusion, gene expression patterns that characterize the early, intermediate, and late phases of the osteogenic differentiation process of ex vivo-expanded MSCs were defined. These signatures represent a useful tool to monitor the osteogenic process, and to analyze a broad spectrum of functions of MSCs cultured on scaffolds, especially when the constructs are conceived for releasing growth factors or other signals to promote bone regeneration.

  12. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis.

    Science.gov (United States)

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara

    2009-10-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.

  13. Activation of Sox3 Gene by Thyroid Hormone in the Developing Adult Intestinal Stem Cell During Xenopus Metamorphosis

    Science.gov (United States)

    Sun, Guihong; Fu, Liezhen; Wen, Luan

    2014-01-01

    The maturation of the intestine into the adult form involves the formation of adult stem cells in a thyroid hormone (T3)-dependent process in vertebrates. In mammals, this takes place during postembryonic development, a period around birth when the T3 level peaks. Due to the difficulty of manipulating late-stage, uterus-enclosed embryos, very little is known about the development of the adult intestinal stem cells. Interestingly, the remodeling of the intestine during the T3-dependent amphibian metamorphosis mimics the maturation of mammalian intestine. Our earlier microarray studies in Xenopus laevis revealed that the transcription factor SRY (sex-determining region Y)-box 3 (Sox3), well known for its involvement in neural development, was upregulated in the intestinal epithelium during metamorphosis. Here, we show that Sox3 is highly and specifically expressed in the developing adult intestinal progenitor/stem cells. We further show that its induction by T3 is independent of new protein synthesis, suggesting that Sox3 is directly activated by liganded T3 receptor. Thus, T3 activates Sox3 as one of the earliest changes in the epithelium, and Sox3 in turn may facilitate the dedifferentiation of the larval epithelial cells into adult stem cells. PMID:25211587

  14. Patterns of development of unspecific reaction of cells and modification of chemical protection

    International Nuclear Information System (INIS)

    Veksler, A.M.; Korystov, Yu.N.; Kublik, L.N.; Ehjdus, L.Kh.

    1980-01-01

    A study was made of a correlation between radioprotective efficiency of different chemical agents (weak electrolytes) and conditions of treatment. It was demonstrated that the pattern of changes in the protection efficiency, with modification thereof, is similar to that of the development of unspecific reaction and determined by the intracellular concentration of the chemical agents, which, in turn, is function of physicochemical parameters of the substance and pH gradient between cell and medium. With similar intracellular concentration, caffeine-benzoate, thioglicolic acid and caffeine proved to be equally effective, while the protective effect of cysteamine was appreciably higher

  15. Cell expression patterns of CD147 in N-diethylnitrosamine/phenobarbital-induced mouse hepatocellular carcinoma.

    Science.gov (United States)

    Lu, Meng; Wu, Jiao; He, Feng; Wang, Xi-Long; Li, Can; Chen, Zhi-Nan; Bian, Huijie

    2015-02-01

    Overexpression of CD147/basigin in hepatic cells promotes the progression of hepatocellular carcinoma (HCC). Whether CD147 also expressed in liver non-parenchymal cells and associated with HCC development was unknown. The aim of the study was to explore time-dependent cell expression patterns of CD147 in a widely accepted N-diethylnitrosamine/phenobarbital (DEN/PB)-induced HCC mouse model. Liver samples collected at month 1-12 of post-DEN/PB administration were assessed the localization of CD147 in hepatocytes, endothelial cells, hepatic stellate cells, and macrophages. Immunohistochemistry analysis showed that CD147 was upregulated in liver tumors during month 1-8 of DEN/PB induction. Expression of CD147 was positively correlated with cytokeratin 18, a hepatocyte marker (r = 0.7857, P = 0.0279), CD31 (r = 0.9048, P = 0.0046), an endothelial cell marker, and CD68, a macrophage marker (r = 0.7619, P = 0.0368). A significant correlation was also observed between CD147 and alpha-smooth muscle actin (r = 0.8857, P = 0.0333) at DEN/PB initiation and early stage of tumor formation. Immunofluorescence and fluorescence in situ hybridization showed that CD147 co-expressed with cytokeratin 18, CD31, alpha-smooth muscle actin, and CD68. Moreover, there existed positive correlations between CD147 and microvessel density (r = 0.7857, P = 0.0279), CD147 and Ki-67 (r = 0.9341, P = 0.0022) in the development of DEN/PB-induced HCC. In conclusion, our results demonstrated that CD147 was upregulated in the liver parenchymal and mesenchymal cells and involved in angiogenesis and tumor cell proliferation in the development of DEN/PB-induced HCC.

  16. Multiciliated cell basal bodies align in stereotypical patterns coordinated by the apical cytoskeleton

    Science.gov (United States)

    Herawati, Elisa; Kanoh, Hatsuho

    2016-01-01

    Multiciliated cells (MCCs) promote fluid flow through coordinated ciliary beating, which requires properly organized basal bodies (BBs). Airway MCCs have large numbers of BBs, which are uniformly oriented and, as we show here, align linearly. The mechanism for BB alignment is unexplored. To study this mechanism, we developed a long-term and high-resolution live-imaging system and used it to observe green fluorescent protein–centrin2–labeled BBs in cultured mouse tracheal MCCs. During MCC differentiation, the BB array adopted four stereotypical patterns, from a clustering “floret” pattern to the linear “alignment.” This alignment process was correlated with BB orientations, revealed by double immunostaining for BBs and their asymmetrically associated basal feet (BF). The BB alignment was disrupted by disturbing apical microtubules with nocodazole and by a BF-depleting Odf2 mutation. We constructed a theoretical model, which indicated that the apical cytoskeleton, acting like a viscoelastic fluid, provides a self-organizing mechanism in tracheal MCCs to align BBs linearly for mucociliary transport. PMID:27573463

  17. Expression patterns of cell cycle components in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors

    NARCIS (Netherlands)

    Agesen, Trude Holmeide; Florenes, Viva Ann; Molenaar, Willemina M.; Lind, Guro E.; Berner, Jeane-Marie; Plaat, Boudewijn E.C.; Komdeur, Rudy; Myklebost, Ola; van den Berg, Eva; Lothe, Ragnhild A.

    The molecular biology underlying the development of highly malignant peripheral nerve sheath tumors (MPNSTs) remains mostly unknown. In the present study, the expression pattern of 10 selected cell cycle components is investigated in a series of 15 MPNSTs from patients with (n = 9) or without (n =

  18. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L. [Department of Hematology, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai Xuhui District Central Hospital, Shanghai (China)

    2015-01-20

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS.

  19. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes

    International Nuclear Information System (INIS)

    Xiong, H.; Yang, X.Y.; Han, J.; Wang, Q.; Zou, Z.L.

    2015-01-01

    The purpose of this study was to explore cytokine expression patterns and cytogenetic abnormalities of mesenchymal stem cells (MSCs) from the bone marrow microenvironment of Chinese patients with myelodysplastic syndromes (MDS). Bone marrow samples were obtained from 30 cases of MDS (MDS group) and 30 healthy donors (control group). The expression pattern of cytokines was detected by customized protein array. The karyotypes of MSCs were analyzed using fluorescence in situ hybridization. Compared with the control group, leukemia inhibitory factor, stem cell factor (SCF), stromal cell-derived factor (SDF-1), bone morphogenetic protein 4, hematopoietic stem cell (HSC) stimulating factor, and transforming growth factor-β in the MDS group were significantly downregulated (P<0.05), while interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and programmed death ligand (B7-H1) were significantly upregulated (P<0.05). For chromosome abnormality analysis, the detection rate of abnormal karyotypes (+8, -8, -20, 20q-, -Y, -7, 5q-) was 30% in the MDS group and 0% in the control group. In conclusion, the up- and downregulated expression of these cytokines might play a key role in the pathogenesis of MDS. Among them, SCF and SDF-1 may play roles in the apoptosis of HSCs in MDS; and IFN-γ, TNF-α, and B7-H1 may be associated with apoptosis of bone marrow cells in MDS. In addition, the abnormal karyotypes might be actively involved in the pathogenesis of MDS. Further studies are required to determine the role of abnormal karyotypes in the occurrence and development of MDS

  20. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.