WorldWideScience

Sample records for cell nucleus

  1. Actomyosin contractility rotates the cell nucleus

    CERN Document Server

    Kumar, Abhishek; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G V

    2013-01-01

    The nucleus of the eukaryotic cell functions amidst active cytoskeletal filaments, but its response to the stresses carried by these filaments is largely unexplored. We report here the results of studies of the translational and rotational dynamics of the nuclei of single fibroblast cells, with the effects of cell migration suppressed by plating onto fibronectin-coated micro-fabricated patterns. Patterns of the same area but different shapes and/or aspect ratio were used to study the effect of cell geometry on the dynamics. On circles, squares and equilateral triangles, the nucleus undergoes persistent rotational motion, while on high-aspect-ratio rectangles of the same area it moves only back and forth. The circle and the triangle showed respectively the largest and the smallest angular speed. We show that our observations can be understood through a hydrodynamic approach in which the nucleus is treated as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active...

  2. Physical role for the nucleus in cell migration.

    Science.gov (United States)

    Fruleux, Antoine; Hawkins, Rhoda J

    2016-09-14

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration. PMID:27406341

  3. Physical role for the nucleus in cell migration

    Science.gov (United States)

    Fruleux, Antoine; Hawkins, Rhoda J.

    2016-09-01

    Cell migration is important for the function of many eukaryotic cells. Recently the nucleus has been shown to play an important role in cell motility. After giving an overview of cell motility mechanisms we review what is currently known about the mechanical properties of the nucleus and the connections between it and the cytoskeleton. We also discuss connections to the extracellular matrix and mechanotransduction. We identify key physical roles of the nucleus in cell migration.

  4. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties

    Science.gov (United States)

    Welsh, David K.; Takahashi, Joseph S.; Kay, Steve A.

    2013-01-01

    The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN. PMID:20148688

  5. Nonthermal Fluctuations and Mechanics of the Active Cell Nucleus

    CERN Document Server

    Smith, K; Byrd, H; MacKintosh, F C; Kilfoil, M L

    2013-01-01

    We present direct measurements of fluctuations in the nucleus of yeast cells. While prior work has shown these fluctuations to be active and non-thermal in character, their origin and time dependence are not understood. We show that nuclear fluctuations can be quantitatively understood by uncorrelated, active force fluctuations driving a nuclear medium that is dominated by an uncondensed DNA solution, for which we perform rheological measurements on an in vitro model system under similar conditions to what is expected in the nucleus. We conclude that the eukaryotic nucleus of living cells is a nonequilibrium soft material whose fluctuations are actively driven, and are far from thermal in their time dependence.

  6. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  7. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue

  8. Zero Crossing Edge Detection and Contour Tracing for Segmentation of Cervical Cell Nucleus .

    Directory of Open Access Journals (Sweden)

    B.V. Ramesh

    1993-07-01

    Full Text Available To automate the process of screening of normal and abnormal cervical cells, there is a need for automatic segmentation of the nucleus of these cells. This paper presents an algorithm using the Laplacian of Gaussian operator and contour tracer to segment the nucleus from the background. The algorithm has been tested on different kinds of images of cervical cells.

  9. Differentiation of adipose stem cells by nucleus pulposus cells: Configuration effect

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2007-01-01

    Degenerative disc disease (DDD) is a major cause of chronic low back pain. For mild/intermediate DDD, regeneration by injecting adipose stem cells (ASCs) into the nucleus pulposus (NP) may be considered. The goal of this study is to investigate whether NP cells can direct ASCs towards the NP phenoty

  10. The Cell Nucleus in Physiological and Experimentally Induced Hypometabolism

    Science.gov (United States)

    Malatesta, M.

    The main problem for manned space mission is, at present, represented by the mass penalty associated to the human presence. An efficient approach could be the induction of a hypometabolic stasis in the astronauts, thus drastically reducing the physical and psychological requirements of the crew. On the other hand, in the wild, a reduction in resource consumptions physiologi- cally occurs in certain animals which periodically enter hibernation, a hypometabolic state in which both the energy need and energy offer are kept at a minimum. During the last twelve years, we have been studying different tissues of hibernating dormice, with the aim of analyzing their features during the euthermia -hibernation-arousal cycle as well as getting insight into the mechanisms allowing adaptation to hypometabolism. We paid particular attention to the cell nucleus, as it is the site of chief metabolic functions, such as DNA replication and RNA transcription. Our observations revealed no significant modification in the basic features of cell nuclei during hibernation; however, the cell nuclei of hibernating dormice showed unusual nuclear bodies containing molecules involved in RNA pathways. Therefore, we supposed that they could represent storage/assembly sites of several factors for processing some RNA which could be slowly synthesised during hibernation and rapidly and abundantly released in early arousal in order to meet the increased metabolic needs of the cell. The nucleolus also underwent structural and molecular modifications during hibernation, maybe to continue important nucleolar functions, or, alternatively, permit a most efficient reactivation upon arousal. On the basis of the observations made in vivo , we recently tried to experimentally induce a reversible hypometabolic state in in vitro models, using cell lines derived from hibernating and non-hibernating species. By administering the synthetic opioid DADLE, we could significantly reduce both RNA transcrip- tion and

  11. Thermodynamic pathways to genome spatial organization in the cell nucleus.

    Science.gov (United States)

    Nicodemi, Mario; Prisco, Antonella

    2009-03-18

    The architecture of the eukaryotic genome is characterized by a high degree of spatial organization. Chromosomes occupy preferred territories correlated to their state of activity and, yet, displace their genes to interact with remote sites in complex patterns requiring the orchestration of a huge number of DNA loci and molecular regulators. Far from random, this organization serves crucial functional purposes, but its governing principles remain elusive. By computer simulations of a statistical mechanics model, we show how architectural patterns spontaneously arise from the physical interaction between soluble binding molecules and chromosomes via collective thermodynamics mechanisms. Chromosomes colocalize, loops and territories form, and find their relative positions as stable thermodynamic states. These are selected by thermodynamic switches, which are regulated by concentrations/affinity of soluble mediators and by number/location of their attachment sites along chromosomes. Our thermodynamic switch model of nuclear architecture, thus, explains on quantitative grounds how well-known cell strategies of upregulation of DNA binding proteins or modification of chromatin structure can dynamically shape the organization of the nucleus. PMID:19289043

  12. Estimated Radiation on Mars, Hits per Cell Nucleus

    Science.gov (United States)

    2002-01-01

    This global map of Mars shows estimates for amounts of high-energy-particle cosmic radiation reaching the surface, a serious health concern for any future human exploration of the planet.The estimates are based on cosmic-radiation measurements made on the way to Mars by the Mars radiation environment experiment, an instrument on NASA's 2001 Mars Odyssey spacecraft, plus information about Mars' surface elevations from the laser altimeter instrument on NASA's Mars Global Surveyor. The areas of Mars expected to have least radiation are where elevation is lowest, because those areas have more atmosphere above them to block out some of the radiation. Earth's thick atmosphere shields us from most cosmic radiation, but Mars has a much thinner atmosphere than Earth does.Colors in the map refer to the estimated average number of times per year each cell nucleus in a human there would be hit by a high-energy cosmic ray particle. The range is generally from two hits (color-coded green), a moderate risk level, to eight hits (coded red), a high risk level.NASA's Jet Propulsion Laboratory, Pasadena, Calif. manages the 2001 Mars Odyssey and Mars Global Surveyor missions for NASA's Office of Space Science, Washington D.C. The Mars radiation environment experiment was developed by NASA's Johnson Space Center. Lockheed Martin Astronautics, Denver, is the prime contractor for Odyssey, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Internal dynamics of a living cell nucleus investigated by dynamic light scattering

    Science.gov (United States)

    Suissa, M.; Place, C.; Goillot, E.; Freyssingeas, E.

    2008-08-01

    Recent progresses in cellular biology have shown that the nucleus of a living cell is a structured integration of many functional domains with a complex spatial organization. This organization, as well as molecular and biochemical processes, is time regulated. In the past years many investigations have been performed using fluorescent microscopy techniques to study the internal dynamics of the nucleus of a living cell. These investigations, however, have never focussed on the global internal dynamics of the nucleus, which is still unknown. In this article we present an original light scattering experimental device that we built to investigate this dynamics during biological processes. By means of this experimental set-up, we investigated the global dynamics of the nucleus of a living cell treated with a DNA replication inhibitor. This dynamics presents different and independent kinds of relaxation well separated in time that vary as a function of the cell cycle phases.

  14. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine–Zn(II) complexes

    OpenAIRE

    Duobin Chao; Shitan Ni

    2016-01-01

    Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low–cost non–precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine–Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation i...

  15. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  16. The three-dimensional organization of telomeres in the nucleus of mammalian cells

    Directory of Open Access Journals (Sweden)

    Perrin Mathilde

    2004-06-01

    Full Text Available Abstract Background The observation of multiple genetic markers in situ by optical microscopy and their relevance to the study of three-dimensional (3D chromosomal organization in the nucleus have been greatly developed in the last decade. These methods are important in cancer research because cancer is characterized by multiple alterations that affect the modulation of gene expression and the stability of the genome. It is, therefore, essential to analyze the 3D genome organization of the interphase nucleus in both normal and cancer cells. Results We describe a novel approach to study the distribution of all telomeres inside the nucleus of mammalian cells throughout the cell cycle. It is based on 3D telomere fluorescence in situ hybridization followed by quantitative analysis that determines the telomeres' distribution in the nucleus throughout the cell cycle. This method enables us to determine, for the first time, that telomere organization is cell-cycle dependent, with assembly of telomeres into a telomeric disk in the G2 phase. In tumor cells, the 3D telomere organization is distorted and aggregates are formed. Conclusions The results emphasize a non-random and dynamic 3D nuclear telomeric organization and its importance to genomic stability. Based on our findings, it appears possible to examine telomeric aggregates suggestive of genomic instability in individual interphase nuclei and tissues without the need to examine metaphases. Such new avenues of monitoring genomic instability could potentially impact on cancer biology, genetics, diagnostic innovations and surveillance of treatment response in medicine.

  17. Effect of vertebroplasty filler materials on viability and gene expression of human nucleus pulposus cells.

    Science.gov (United States)

    Lazáry, Aron; Speer, Gábor; Varga, Péter Pál; Balla, Bernadett; Bácsi, Krisztián; Kósa, János P; Nagy, Zsolt; Takács, István; Lakatos, Péter

    2008-05-01

    Consequences of intradiscal cement leakage--often occurring after vertebral cement augmentation for the treatment of vertebral compression fractures--are still unknown. In this study, we have investigated the influences of vertebroplasty filler materials (polymethylmethacrylate-, calcium phosphate- and calcium sulfate-based bone cement) on isolated nucleus pulposus cells. Cell viability of cultured human nucleus pulposus cells were measured after treatment with vertebroplasty filler materials. Gene expression profile of selected genes was determined with quantitative real-time PCR. The widely used polymethylmethacrylate and calcium phosphate cement significantly decreased cell number in a dose- and time-dependent manner while calcium sulfate cement affected cell viability less. Expression of genes involved in matrix metabolism of nucleus pulposus--aggrecan, collagens, small proteoglycans--as well as important transcription factors have also significantly changed due to treatment (e.g., 2.5-fold decrease in aggrecan expression was determined in cultures due to polymethylmethacrylate treatment). Our results suggest that vertebroplasty filler materials--depending on the type of applied material--can accelerate the degeneration of nucleus pulposus cells resulting in a less flexible disc in case of intradiscal cement leakage. This process may increase the risk of a subsequent new vertebral fracture, the main complication of vertebral augmentation. PMID:18176942

  18. Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus Cells In Vitro

    Institute of Scientific and Technical Information of China (English)

    Fenghua TAO; Feng LI; Guanghui LI; Feng PAN

    2008-01-01

    To find a new source of seed cells for constructing tissue-engineered intervertebral disc, nucleus pulposus (NP) cells and mesenchymal stem cells (MSCs) were isolated from New Zealand white rabbits. The nuclcus pulposus cells population was fluorescence-laelled and co-cultured with MSCs with or without direct contact. Morphological changes were observed every 12 h. Semi-quantitaive reverse transcriptase-polymerase chain reaction was performed to assess the expression levels of Sox-9, aggreacan and type Ⅱ collagen every 24 h after the co-culture. MSCs treated with direct contact rounded up and presented a ring-like appearance. The expression of marker genes was significantly increased when cells were co-cultured with direct contact for 24 h. No significant change was found after coculture without direct contact. Co-culture of NP cells and MSCs with direct contact is a reliable method for generating large amount of NP cells used for cell-based tissue engineering therapy.

  19. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine–Zn(II) complexes

    Science.gov (United States)

    Chao, Duobin; Ni, Shitan

    2016-05-01

    Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low–cost non–precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine–Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation induced emission (AIE) and intramolecular charge transfer (ICT). In addition, these terpyridine–Zn(II) complexes were successfully employed for nucleus staining in living cells. These results demonstrated simply obtained terpyridine–Zn(II) complexes are powerful tool for PPi detection and the development of PPi–related studies.

  20. Nanomolar pyrophosphate detection and nucleus staining in living cells with simple terpyridine-Zn(II) complexes.

    Science.gov (United States)

    Chao, Duobin; Ni, Shitan

    2016-01-01

    Great efforts have been made to develop fluorescent probes for pyrophosphate (PPi) detection. Nucleus staining with fluorescence microscopy has been also widely investigated. But fluorescent probes for PPi detection with high sensitivity in water medium and nucleus staining with low-cost non-precious metal complexes in living cells are still challenging. Herein, we report simple terpyridine-Zn(II) complexes for selective nanomolar PPi detection over ATP and ADP in water based on aggregation induced emission (AIE) and intramolecular charge transfer (ICT). In addition, these terpyridine-Zn(II) complexes were successfully employed for nucleus staining in living cells. These results demonstrated simply obtained terpyridine-Zn(II) complexes are powerful tool for PPi detection and the development of PPi-related studies. PMID:27198968

  1. Extracellular Matrix Ligand and Stiffness Modulate Immature Nucleus Pulposus Cell-Cell Interactions

    Science.gov (United States)

    Gilchrist, Christopher L.; Darling, Eric M.; Chen, Jun; Setton, Lori A.

    2011-01-01

    The nucleus pulposus (NP) of the intervertebral disc functions to provide compressive load support in the spine, and contains cells that play a critical role in the generation and maintenance of this tissue. The NP cell population undergoes significant morphological and phenotypic changes during maturation and aging, transitioning from large, vacuolated immature cells arranged in cell clusters to a sparse population of smaller, isolated chondrocyte-like cells. These morphological and organizational changes appear to correlate with the first signs of degenerative changes within the intervertebral disc. The extracellular matrix of the immature NP is a soft, gelatinous material containing multiple laminin isoforms, features that are unique to the NP relative to other regions of the disc and that change with aging and degeneration. Based on this knowledge, we hypothesized that a soft, laminin-rich extracellular matrix environment would promote NP cell-cell interactions and phenotypes similar to those found in immature NP tissues. NP cells were isolated from porcine intervertebral discs and cultured in matrix environments of varying mechanical stiffness that were functionalized with various matrix ligands; cellular responses to periods of culture were assessed using quantitative measures of cell organization and phenotype. Results show that soft (<720 Pa), laminin-containing extracellular matrix substrates promote NP cell morphologies, cell-cell interactions, and proteoglycan production in vitro, and that this behavior is dependent upon both extracellular matrix ligand and substrate mechanical properties. These findings indicate that NP cell organization and phenotype may be highly sensitive to their surrounding extracellular matrix environment. PMID:22087260

  2. Extracellular matrix ligand and stiffness modulate immature nucleus pulposus cell-cell interactions.

    Directory of Open Access Journals (Sweden)

    Christopher L Gilchrist

    Full Text Available The nucleus pulposus (NP of the intervertebral disc functions to provide compressive load support in the spine, and contains cells that play a critical role in the generation and maintenance of this tissue. The NP cell population undergoes significant morphological and phenotypic changes during maturation and aging, transitioning from large, vacuolated immature cells arranged in cell clusters to a sparse population of smaller, isolated chondrocyte-like cells. These morphological and organizational changes appear to correlate with the first signs of degenerative changes within the intervertebral disc. The extracellular matrix of the immature NP is a soft, gelatinous material containing multiple laminin isoforms, features that are unique to the NP relative to other regions of the disc and that change with aging and degeneration. Based on this knowledge, we hypothesized that a soft, laminin-rich extracellular matrix environment would promote NP cell-cell interactions and phenotypes similar to those found in immature NP tissues. NP cells were isolated from porcine intervertebral discs and cultured in matrix environments of varying mechanical stiffness that were functionalized with various matrix ligands; cellular responses to periods of culture were assessed using quantitative measures of cell organization and phenotype. Results show that soft (<720 Pa, laminin-containing extracellular matrix substrates promote NP cell morphologies, cell-cell interactions, and proteoglycan production in vitro, and that this behavior is dependent upon both extracellular matrix ligand and substrate mechanical properties. These findings indicate that NP cell organization and phenotype may be highly sensitive to their surrounding extracellular matrix environment.

  3. Computational prediction of strain-dependent diffusion of transcription factors through the cell nucleus.

    Science.gov (United States)

    Nava, Michele M; Fedele, Roberto; Raimondi, Manuela T

    2016-08-01

    Nuclear spreading plays a crucial role in stem cell fate determination. In previous works, we reported evidence of multipotency maintenance for mesenchymal stromal cells cultured on three-dimensional engineered niche substrates, fabricated via two-photon laser polymerization. We correlated maintenance of multipotency to a more roundish morphology of these cells with respect to those cultured on conventional flat substrates. To interpret these findings, here we present a multiphysics model coupling nuclear strains induced by cell adhesion to passive diffusion across the cell nucleus. Fully three-dimensional reconstructions of cultured cells were developed on the basis of confocal images: in particular, the level of nuclear spreading resulted significantly dependent on the cell localization within the niche architecture. We assumed that the cell diffusivity varies as a function of the local volumetric strain. The model predictions indicate that the higher the level of spreading of the cell, the higher the flux across the nucleus of small solutes such as transcription factors. Our results point toward nuclear spreading as a primary mechanism by which the stem cell translates its shape into a fate decision, i.e., by amplifying the diffusive flow of transcriptional activators into the nucleus. PMID:26476736

  4. THE COMPLEX ORGANIZATION OF EUKARYOTIC CELL NUCLEUS: THE NUCLEAR BODIES (I

    Directory of Open Access Journals (Sweden)

    Cristian Campeanu

    2012-10-01

    Full Text Available Identified short time after the discovery of cells, over 300 years ago, the cell nucleus of eukaryotes continuously focused the interest of scientists, which used increasingly sophisticated research tools to clarify its complex structure and functions. The results of all these studies, especially those carried out in the second half of the past century, proved and confirmed that the eukaryotic cell nucleus is the control center of all cellular activities and also ensures the continuity of genetic information along successive generations of cells. These vital functions are the result of selective expression of genes contained in the nuclear chromatin, which is a high ordered and dynamic structure, in permanent and bilateral relations with other nuclear components. Based on these considerations, the present review aims to synthetize the latest researches and concepts about the cell nuclear territory in three distinctive parts, according to the complexity of the topic

  5. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishikawa

    Full Text Available The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs. There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum.

  6. Nonlinear optical imaging and Raman microspectrometry of the cell nucleus throughout the cell cycle.

    Science.gov (United States)

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Prasad, Paras N

    2010-11-17

    Fundamental understanding of cellular processes at molecular level is of considerable importance in cell biology as well as in biomedical disciplines for early diagnosis of infection and cancer diseases, and for developing new molecular medicine-based therapies. Modern biophotonics offers exclusive capabilities to obtain information on molecular composition, organization, and dynamics in a cell by utilizing a combination of optical spectroscopy and optical imaging. We introduce here a combination of Raman microspectrometry, together with coherent anti-Stokes Raman scattering (CARS) and two-photon excited fluorescence (TPEF) nonlinear optical microscopy, to study macromolecular organization of the nucleus throughout the cell cycle. Site-specific concentrations of proteins, DNA, RNA, and lipids were determined in nucleoli, nucleoplasmic transcription sites, nuclear speckles, constitutive heterochromatin domains, mitotic chromosomes, and extrachromosomal regions of mitotic cells by quantitative confocal Raman microspectrometry. A surprising finding, obtained in our study, is that the local concentration of proteins does not increase during DNA compaction. We also demonstrate that postmitotic DNA decondensation is a gradual process, continuing for several hours. The quantitative Raman spectroscopic analysis was corroborated with CARS/TPEF multimodal imaging to visualize the distribution of protein, DNA, RNA, and lipid macromolecules throughout the cell cycle.

  7. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  8. Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells.

    Science.gov (United States)

    Ganguly, Abira; Bhattacharjee, Chumki; Bhave, Madhura; Kailaje, Vaishali; Jain, Bhawik K; Sengupta, Isha; Rangarajan, Annapoorni; Bhattacharyya, Dibyendu

    2016-03-01

    Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.

  9. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    OpenAIRE

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y. Eugene; Sun, Shouheng

    2008-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear locali...

  10. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab.

    Science.gov (United States)

    Nishida, Atsushi; Yasuno, Sato; Takeuchi, Atsuko; Awano, Hiroyuki; Lee, Tomoko; Niba, Emma Tabe Eko; Fujimoto, Takahiro; Itoh, Kyoko; Takeshima, Yasuhiro; Nishio, Hisahide; Matsuo, Masafumi

    2016-09-01

    The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.

  11. The bacterium endosymbiont of Crithidia deanei undergoes coordinated division with the host cell nucleus.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Machado Motta

    Full Text Available In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells.

  12. DNA damage-induced translocation of S100A11 into the nucleus regulates cell proliferation

    Directory of Open Access Journals (Sweden)

    Ulbricht Tobias

    2010-12-01

    Full Text Available Abstract Background Proteins are able to react in response to distinct stress stimuli by alteration of their subcellular distribution. The stress-responsive protein S100A11 belongs to the family of multifunctional S100 proteins which have been implicated in several key biological processes. Previously, we have shown that S100A11 is directly involved in DNA repair processes at damaged chromatin in the nucleus. To gain further insight into the underlying mechanism subcellular trafficking of S100A11 in response to DNA damage was analyzed. Results We show that DNA damage induces a nucleolin-mediated translocation of S100A11 from the cytoplasm into the nucleus. This translocation is impeded by inhibition of the phosphorylation activity of PKCα. Translocation of S100A11 into the nucleus correlates with an increased cellular p21 protein level. Depletion of nucleolin by siRNA severely impairs translocation of S100A11 into the nucleus resulting in a decreased p21 protein level. Additionally, cells lacking nucleolin showed a reduced colony forming capacity. Conclusions These observations suggest that regulation of the subcellular distribution of S100A11 plays an important role in the DNA damage response and p21-mediated cell cycle control.

  13. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications. PMID:18080259

  14. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  15. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  16. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    International Nuclear Information System (INIS)

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  17. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  18. Protective effect of cannabidiol on hydrogen peroxide‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells.

    Science.gov (United States)

    Chen, Jie; Hou, Chen; Chen, Xin; Wang, Dong; Yang, Pinglin; He, Xijing; Zhou, Jinsong; Li, Haopeng

    2016-09-01

    Cannabidiol, a major component of marijuana, protects nerves, and exerts antispasmodic, anti-inflammatory and anti‑anxiety effects. In the current study, the protective effect of cannabidiol was observed to prevent hydrogen peroxide (H2O2)‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells. Nucleus pulposus cells were isolated from rats and cultured in vitro, and H2O2 was used to construct the nucleus pulposus cell model. Cell viability of the nucleus pulposus cells was assessed using a 3‑(4,5-dimethylthiazol-2-yl)-2,5‑diphenyltetrazolium bromide assay. The ratio of apoptotic cells, and caspase‑3 or cyclooxygenase‑2 (COX‑2) mRNA expression was analyzed by annexin V‑fluorescein isothiocyanate/propidium‑iodide staining and reverse transcription‑quantitative polymerase chain reaction, respectively. The quantities of interleukin (IL)‑1β and interleukin‑6 were measured using a series of assay kits. B-cell lymphoma 2 (Bcl‑2) and inducible nitric oxide synthase (iNOS) protein expression levels were analyzed using western blotting. The present study identified that cannabidiol enhanced cell viability and reduced apoptosis in H2O2‑treated nucleus pulposus cells in vitro using a lumbar disc herniation (LDH) model. In addition, cannabidiol reduced caspase‑3 gene expression and augmented the Bcl‑2 protein expression levels in the nucleus pulposus cells following H2O2 exposure. Pre‑treatment with cannabidiol suppressed the promotion of COX‑2, iNOS, IL‑1β and IL‑6 expression in the nucleus pulposus cells following H2O2 exposure. Taken together, these results suggest that cannabidiol potentially exerts its protective effect on LDH via the suppression of anti‑apoptosis, anti‑inflammation and anti‑oxidative activities in nucleus pulposus cells. PMID:27430346

  19. Transplantation of gene-modified nucleus pulposus cells reverses rabbit intervertebral disc degeneration

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; LI Jian-min; HU You-gu

    2011-01-01

    Background Intervertebral disc degeneration is the main cause of low back pain. The purpose of this study was to explore potential methods for reversing the degeneration of lumbar intervertebral discs by transplantation of gene-modified nucleus pulposus cells into rabbit degenerative lumbar intervertebral discs after transfecting rabbit nucleus pulposus cells with adeno-associated virus 2 (AAV2)-mediated connective tissue growth factor (CTGF) and tissue inhibitor of metalloproteinases 1 (TIMP1) genes in vitro.Methods Computer tomography (CT)-guided percutaneous annulus fibrosus injury was performed to build degenerative lumbar intervertebral disc models in 60 New Zealand white rabbits. rAAV2-CTGF-IRES-TIMP1-transfected rabbit nucleus pulposus cells were transplanted into degenerative lumbar intervertebral discs (transplantation group),phosphate-buffered saline (PBS) was injected into degenerative lumbar intervertebral discs (degeneration control group)and normal lumbar intervertebral discs served as a blank control group. After 6, 10 and 14 weeks, the disc height index (DHI) and signal intensity in intervertebral discs were observed by X-ray and magnetic resonance imaging (MRI) analysis.The expression of CTGF and TIMP1 in nucleus pulposus tissue was determined by Western blotting analysis, the synthesis efficiency of proteoglycan was determined by a 35S-sulfate incorporation assay, and the mRNA expression of type Ⅱ collagen and proteoglycan was detected by RT-PCR.Results MRI confirmed that degenerative intervertebral discs appeared two weeks after percutaneous puncture.Transgenic nucleus pulposus cell transplantation could retard the rapid deterioration of the DHI. MRI indicated that degenerative intervertebral discs were relieved in the transplantation group compared with the degeneration control group. The expression of collagen Ⅱ mRNA and proteoglycan mRNA was significantly higher in the transplantation group and the blank control group compared with the

  20. miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2

    Science.gov (United States)

    Dai, Libing; Yao, Yicun; Qin, Shengnan; Xie, Han; Wang, Wen

    2016-01-01

    We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2. PMID:27635110

  1. Thymosin Beta-4 Recombinant Adeno-associated Virus Enhances Human Nucleus Pulposus Cell Proliferation and Reduces Cell Apoptosis and Senescence

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yi Wang; Qing-San Zhu; Yi-Wei Wang; Ruo-Feng Yin

    2015-01-01

    Background:Thymosin beta-4 (TB-4) is considered key roles in tissue development,maintenance and pathological processes.The study aimed to prove TB-4 positive biological function on nucleus pulposus (NP) cell apoptosis and slowing the process of cell aging while increasing the cell proliferation.Methods:TB-4 recombinant adeno-associated virus (AAV) was constructed and induced to human NP cells.Cell of same group were cultured without gene modification as controlled group.Proliferation capacity and cell apoptosis were observed during 6 passages of the cells.Morphology and expression of the TB-4 gene were documented as parameter of cell activity during cell passage.Results:NP cells with TB-4 transfection has normal TB-4 expression and exocytosis.NP cells with TB-4 transfection performed significantly higher cell activity than that at the control group in each generation.TB-4 recombinant AAV-transfected human NP cells also show slower cell aging,lower cell apoptosis and higher cell proliferation than control group.Conclusions:TB-4 can prevent NP cell apoptosis,slow NP cell aging and promote NP cell proliferation.AAV transfection technique was able to highly and stably express TB-4 in human NP cells,which may provide a new pathway for innovation in the treatment of intervertebral disc degenerative diseases.

  2. Folded genome as a platform for the functional compartmentalization of the eukaryotic cell nucleus

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2014-03-01

    Full Text Available In a number of recent studies a tight interconnection between the spatial organization of the eukaryotic genome and its functioning has been demonstrated. Moreover, it is becoming evident that the folded DNA by itself consti- tutes an important, if not the key, factor supporting the internal nuclear organization. In this review, we will discuss the current state of chromatin research with the special attention focused on chromosome territories, chromatin folding and dynamics, chromatin domains, transcription and replication factories. Based on this analysis we will show how interphase chromosomes define the assembly of different nuclear compartments and underlie the spatial compartmentalization of the cell nucleus.

  3. The formation of argpyrimidine, a methylglyoxal-arginine adduct, in the nucleus of neural cells

    International Nuclear Information System (INIS)

    Methylglyoxal (MG) is an endogenous metabolite in glycolysis and forms stable adducts primarily with arginine residues of intracellular proteins. The biological role of this modification in cell function is not known. In the present study, we found that a MG-detoxification enzyme glyoxalase I (GLO1) is mainly expressed in the ventricular zone (VZ) at embryonic day 16 which neural stem and progenitor cells localize. Moreover, immunohistochemical analysis revealed that argpyrimidine, a major MG-arginine adduct, is predominantly produced in cortical plate neurons not VZ during cerebral cortex development and is exclusively located in the nucleus. Immunoblotting experiment showed that the formation of argpyrimidine occurs on some nuclear proteins of cortical neurons. To our knowledge, this is first report of the argpyrimidine formation in the nucleus of neuron. These findings suggest that GLO1, which is dominantly expressed in the embryonic VZ, reduces the intracellular level of MG and suppresses the formation of argpyrimidine in neural stem and progenitor cells. Argpyrimidine may contribute to the neural differentiation and/or the maintenance of the differentiated state via the modification of nuclear proteins.

  4. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens.

    Science.gov (United States)

    MacAskill, Andrew F; Cassel, John M; Carter, Adam G

    2014-09-01

    Repeated exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the nucleus accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we used whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine exposure alters connectivity in the mouse NAc medial shell. Cocaine selectively enhanced amygdala innervation of MSNs expressing D1 dopamine receptors (D1-MSNs) relative to D2-MSNs. We also found that amygdala activity was required for cocaine-induced changes to behavior and connectivity. Finally, we established how heightened amygdala innervation can explain the structural and functional changes evoked by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell type- and input-specific connectivity in the NAc.

  5. Characterisation of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    Directory of Open Access Journals (Sweden)

    Remco eStam

    2013-10-01

    Full Text Available Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centres on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signalling. Here, we characterised three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localisation of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organisation, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility.

  6. ABCG2 Localizes to the Nucleus and Modulates CDH1 Expression in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shu-Ching Liang

    2015-03-01

    Full Text Available Breast cancer resistance protein [BCRP/ATP-binding cassette subfamily G member 2 (ABCG2] is a member of the ATP-binding cassette transporter family. The presence of ABCG2 on the plasma membrane in many kinds of human cancer cells contributes to multidrug resistance during chemotherapy, and it has been used as the side population marker for identifying cancer stem cells in lung cancers. We report here that, in addition to the membranous form, ABCG2 proteins are also found inside the nucleus, where they bind to the E-box of CDH1 (E-cadherin promoter and regulate transcription of this gene. Increased expression of ABCG2 causes an increase of E-cadherin and attenuates cell migration, whereas knockdown of ABCG2 downregulates E-cadherin and enhances cell motility. In mice, xenografted A549 cells that have less ABCG2 are more likely to metastasize from the subcutaneous inoculation site to the internal organs. However, for the cancer cells that have already entered the blood circulation, an increased level of ABCG2, and correspondingly increased E-cadherin, may facilitate circulating cancer cells to colonize at a distant site and form a metastatic tumor. We propose a novel role for nuclear ABCG2 that functions as a transcription regulator and participates in modulation of cancer metastasis.

  7. The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining

    Science.gov (United States)

    Saini, Anoop Kumar; Sharma, Vinay; Mathur, Pradeep; Shaikh, Mobin M.

    2016-01-01

    The morphology of nucleus and nucleolus is powerful indicator of physiological and pathological conditions. The specific staining of nucleolus recently gained much attention due to the limited and expensive availability of the only existing stain “SYTO RNA-Select”. Here, a new multifunctional salen type ligand (L1) and its Al3+ complex (1) are designed and synthesized. L1 acts as a chemosensor for Al3+ whereas 1 demonstrates specific staining of nucleus as well as nucleoli. The binding of 1 with nucleic acid is probed by DNase and RNase digestion in stained cells. 1 shows an excellent photostability, which is a limitation for existing nucleus stains during long term observations. 1 is assumed to be a potential candidate as an alternative to expensive commercial dyes for nucleus and nucleoli staining. PMID:27721431

  8. Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty.

    Science.gov (United States)

    Mohr, Margaret A; Garcia, Francisca L; DonCarlos, Lydia L; Sisk, Cheryl L

    2016-06-01

    The anteroventral periventricular nucleus (AVPV) orchestrates the neuroendocrine-positive feedback response that triggers ovulation in female rodents. The AVPV is larger and more cell-dense in females than in males, and during puberty, only females develop the capacity to show a positive feedback response. We previously reported a potential new mechanism to explain this female-specific gain of function during puberty, namely a female-biased sex difference in the pubertal addition of new cells to the rat AVPV. Here we first asked whether this sex difference is due to greater cell proliferation and/or survival in females. Female and male rats received the cell birthdate marker 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, ip) on postnatal day (P) 30; brains were collected at short and long intervals after BrdU administration to assess cell proliferation and survival, respectively. Overall, females had more BrdU-immunoreactive cells in the AVPV than did males, with no sex differences in the rate of cell attrition over time. Thus, the sex difference in pubertal addition of AVPV cells appears to be due to greater cell proliferation in females. Next, to determine the phenotype of pubertally born AVPV cells, daily BrdU injections were given to female rats on P28-56, and tissue was collected on P77 to assess colocalization of BrdU and markers for mature neurons or glia. Of the pubertally born AVPV cells, approximately 15% differentiated into neurons, approximately 19% into astrocytes, and approximately 23% into microglia. Thus, both neuro- and gliogenesis occur in the pubertal female rat AVPV and potentially contribute to maturation of female reproductive function. PMID:27145006

  9. Matrix stiffness determines the fate of nucleus pulposus-derived stem cells.

    Science.gov (United States)

    Navaro, Yosi; Bleich-Kimelman, Nadav; Hazanov, Lena; Mironi-Harpaz, Iris; Shachaf, Yonatan; Garty, Shai; Smith, Yoav; Pelled, Gadi; Gazit, Dan; Seliktar, Dror; Gazit, Zulma

    2015-05-01

    Intervertebral disc (IVD) degeneration and consequent low-back pain present a major medical challenge. Nucleus pulposus-derived stem cells (NP-SCs) may lead to a novel therapy for this severe disease. It was recently shown that survival and function of mature NP cells are regulated in part by tissue stiffness. We hypothesized that modification of matrix stiffness will influence the ability of cultured NP-SCs to proliferate, survive, and differentiate into mature NP cells. NP-SCs were subcultured in three-dimensional matrices of varying degrees of stiffness as measured by the material's shear storage modulus. Cell survival, activity, and rate of differentiation toward the chondrogenic or osteogenic lineage were analyzed. NP-SCs were found to proliferate and differentiate in all matrices, irrespective of matrix stiffness. However, matrices with a low shear storage modulus (G' = 1 kPa) promoted significantly more proliferation and chondrogenic differentiation, whereas matrices with a high modulus (G' = 2 kPa) promoted osteogenic differentiation. Imaging performed via confocal and scanning electron microscopes validated cell survival and highlighted stiffness-dependent cell-matrix interactions. These results underscore the effect of the matrix modulus on the fate of NP-SCs. This research may facilitate elucidation of the complex cross-talk between NP-SCs and their surrounding matrix in healthy as well as pathological conditions.

  10. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    Science.gov (United States)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  11. Mapping and morphometric analysis of synapses and spines on fusiform cells in the dorsal cochlear nucleus.

    Science.gov (United States)

    Salloum, Rony H; Chen, Guoyou; Velet, Liliya; Manzoor, Nauman F; Elkin, Rachel; Kidd, Grahame J; Coughlin, John; Yurosko, Christopher; Bou-Anak, Stephanie; Azadi, Shirin; Gohlsch, Stephanie; Schneider, Harold; Kaltenbach, James A

    2014-01-01

    Fusiform cells are the main integrative units of the mammalian dorsal cochlear nucleus (DCN), collecting and processing inputs from auditory and other sources before transmitting information to higher levels of the auditory system. Despite much previous work describing these cells and the sources and pharmacological identity of their synaptic inputs, information on the three-dimensional organization and utltrastructure of synapses on these cells is currently very limited. This information is essential since an understanding of synaptic plasticity and remodeling and pathologies underlying disease states and hearing disorders must begin with knowledge of the normal characteristics of synapses on these cells, particularly those features that determine the strength of their influence on the various compartments of the cell. Here, we employed serial block face scanning electron microscopy (SBFSEM) followed by 3D reconstructions to map and quantitatively characterize synaptic features on DCN fusiform cells. Our results reveal a relative sparseness of synapses on the somata of fusiform cells but a dense distribution of synapses on apical and basal dendrites. Synapses on apical dendrites were smaller and more numerous than on basal dendrites. The vast majority of axosomatic terminals were found to be linked to other terminals connected by the same axon or different branches of the same axon, suggesting a high degree of divergent input to fusiform cells. The size of terminals was correlated with the number of mitochondria and with the number of active zones, which was highly correlated with the number of postsynaptic densities, suggesting that larger terminals exert more powerful influence on the cell than smaller terminals. These size differences suggest that the input to basal dendrites, most likely those from the auditory nerve, provide the most powerful sources of input to fusiform cells, while those to apical dendrites (e.g., parallel fiber) are weaker but more

  12. Mapping and Morphometric Analysis of Synapses and Spines on Fusiform Cells in the Dorsal Cochlear Nucleus.

    Directory of Open Access Journals (Sweden)

    Rony H. Salloum

    2014-09-01

    Full Text Available Fusiform cells are the main integrative units of the mammalian dorsal cochlear nucleus (DCN, collecting and processing inputs from auditory and other sources before transmitting information to higher levels of the auditory system. Despite much previous work describing these cells and the sources and pharmacological identity of their synaptic inputs, information on the 3- dimensional organization and utltrastructure of synapses on these cells is currently very limited. This information is essential since an understanding of synaptic plasticity and remodeling and pathologies underlying disease states and hearing disorders must begin with knowledge of the normal characteristics of synapses on these cells, particularly those features that determine the strength of their influence on the various compartments of the cell. Here, we employed serial block face scanning electron microscopy (SBFSEM followed by 3D reconstructions to map and quantitatively characterize synaptic features on DCN fusiform cells. Our results reveal a relative sparseness of synapses on the somata of fusiform cells but a dense distribution of synapses on apical and basal dendrites. Synapses on apical dendrites were smaller and more numerous than on basal dendrites. The vast majority of axosomatic terminals were found to be linked to other terminals connected by the same axon or different branches of the same axon, suggesting a high degree of divergent input to fusiform cells. The size of terminals was correlated with the number of mitochondria and with the number of active zones, which was highly correlated with the number of postsynaptic densities, suggesting that larger terminals exert more powerful influence on the cell than smaller terminals. These size differences suggest that the input to basal dendrites, most likely those from the auditory nerve, provide the most powerful sources of input to fusiform cells, while those to apical dendrites (e.g., parallel fiber are weaker

  13. EphB4 localises to the nucleus of prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mertens-Walker, Inga, E-mail: inga.mertenswalker@qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia); Lisle, Jessica E. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia); Nyberg, William A. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Stephens, Carson R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia); Burke, Leslie [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Rutkowski, Raphael; Herington, Adrian C.; Stephenson, Sally-Anne [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia)

    2015-04-10

    The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor. - Highlights: • The EphB4 protein can be found in the nucleus of prostate cancer cell lines. • EphB4 contains two functional nuclear localisation signals. • Chromatin immunoprecipitation has identified potential genome sequences to which EphB4 binds. • Lef1 is a confirmed target for EphB4-mediated gene regulation.

  14. EphB4 localises to the nucleus of prostate cancer cells

    International Nuclear Information System (INIS)

    The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor. - Highlights: • The EphB4 protein can be found in the nucleus of prostate cancer cell lines. • EphB4 contains two functional nuclear localisation signals. • Chromatin immunoprecipitation has identified potential genome sequences to which EphB4 binds. • Lef1 is a confirmed target for EphB4-mediated gene regulation

  15. Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation

    Directory of Open Access Journals (Sweden)

    Tao eSun

    2012-09-01

    Full Text Available Stefin B (cystatin B is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB gene were reported in patients with Unverricht-Lundborg disease (EPM1. Our previous results showed that thymocytes isolated from stefin B-deficient mice are more sensitive to apoptosis induced by the protein kinase C inhibitor staurosporin (STS than the wild-type control cells. We have also shown that the increased expression of stefin B in the nucleus of T98G astrocytoma cells delayed cell cycle progression through the S phase. In the present study we examined if the nuclear or cytosolic functions of stefin B are responsible for the accelerated induction of apoptosis observed in the cells from stefin B-deficient mice. We have shown that the overexpression of stefin B in the nucleus, but not in the cytosol of astrocytoma T98G cells, delayed caspase-3 and-7 activation. Pretreatment of cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe-fluoromethylketone completely inhibited caspase activation, while treatment with the inhibitor of calpains- and papain-like cathepsins (2S,3S-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation. We concluded that the delay of caspase activation in T98G cells overexpressing stefin B in the nucleus is independent of cathepsin inhibition.

  16. A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Daliri

    2012-02-01

    Full Text Available A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010 which captures qualitative firing features of a detailed physiological model (Kanold & Manis, 2000.For our development we benefit from transient potassium currents properties i.e.fast activation and slow inactivation to generate long latency before start of firing.We compare our minimal model outputs in response to a hyperpolarizing stimulus fallowed by a depolarizing one with the data of KM-LIF model.The results conform well to the KM-LIF model with lower complexity.

  17. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs.

    Directory of Open Access Journals (Sweden)

    Stefan Stich

    Full Text Available Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC including changes in their immunogenic properties after 3-dimensional (3D-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS, a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have

  18. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis.

    Science.gov (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming

    2012-08-15

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  19. Agrobacterium tumefaciens and A. rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus.

    Science.gov (United States)

    Ream, Walt

    2009-07-01

    Agrobacterium tumefaciens and A. rhizogenes transport single-stranded DNA (ssDNA; T-strands) and virulence proteins into plant cells through a type IV secretion system. DNA transfer initiates when VirD2 nicks border sequences in the tumour-inducing plasmid, attaches to the 5' end, and pilots T-strands into plant cells. Agrobacterium tumefaciens translocates ssDNA-binding protein VirE2 into plant cells where it targets T-strands into the nucleus. Some A. rhizogenes strains lack VirE2 but transfer T-strands efficiently due to the GALLS gene, which complements an A. tumefaciens virE2 mutant. VirE2 and full-length GALLS (GALLS-FL) contain nuclear localization sequences that target these proteins to the plant cell nucleus. VirE2 binds cooperatively to T-strands allowing it to move ssDNA without ATP hydrolysis. Unlike VirE2, GALLS-FL contains ATP-binding and helicase motifs similar to those in TraA, a strand transferase involved in conjugation. VirE2 may accumulate in the nucleus and pull T-strands into the nucleus using the force generated by cooperative DNA binding. GALLS-FL accumulates inside the nucleus where its predicted ATP-dependent strand transferase may pull T-strands into the nucleus. These different mechanisms for nuclear import of T-strands may affect the efficiency and quality of transgenic events in plant biotechnology applications. PMID:21255274

  20. HHV-8 encoded LANA-1 alters the higher organization of the cell nucleus

    Directory of Open Access Journals (Sweden)

    Klein George

    2007-04-01

    Full Text Available Abstract The latency-associated nuclear antigen (LANA-1 of Human Herpes Virus 8 (HHV-8, alternatively called Kaposi Sarcoma Herpes Virus (KSHV is constitutively expressed in all HHV-8 infected cells. LANA-1 accumulates in well-defined foci that co-localize with the viral episomes. We have previously shown that these foci are tightly associated with the borders of heterochromatin 1. We have also shown that exogenously expressed LANA-1 causes an extensive re-organization of Hoechst 33248 DNA staining patterns of the nuclei in non-HHV-8 infected cells 2. Here we show that this effect includes the release of the bulk of DNA from heterochromatic areas, in both human and mouse cells, without affecting the overall levels of heterochromatin associated histone H3 lysine 9 tri-methylation (3MK9H3. The release of DNA from the heterochromatic chromocenters in LANA-1 transfected mouse cells co-incides with the dispersion of the chromocenter associated methylcytosin binding protein 2 (MECP2. The localization of 3MK9H3 to the remnants of the chromocenters remains unaltered. Moreover, exogeneously expressed LANA-1 leads to the relocation of the chromocenters to the nuclear periphery, indicating extensive changes in the positioning of the chromosomal domains in the LANA-1 harboring interphase nucleus. Using a series of deletion mutants we have shown that the chromatin rearranging effects of LANA-1 require the presence of a short (57 amino acid region that is located immediately upstream of the internal acidic repeats. This sequence lies within the previously mapped binding site to histone methyltransferase SUV39H1. We suggest that the highly concentrated LANA-1, anchored to the host genome in the nuclear foci of latently infected cells and replicated through each cell generation, may function as "epigenetic modifier". The induction of histone modification in adjacent host genes may lead to altered gene expression, thereby contributing to the viral oncogenesis.

  1. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2.

    Science.gov (United States)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p mechanical stress-induced nucleus pulpous cell proliferation (p mechanical stress (p mechanical stress (p mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.

  2. Computational prediction of Mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology.

    Science.gov (United States)

    Khan, Shahanavaj; Zakariah, Mohammed; Palaniappan, Sellappan

    2016-08-01

    Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.

  3. Hibernation as a Far-Reaching Programme for Cell Nucleus Activity Modulation

    Science.gov (United States)

    Malatesta, M.; Biggiogera, M.; Zancanaro, C.

    Maintaining part of the crew under hypometabolic conditions could help with the problems associated with long-term space missions. In the natural world, hibernators represent the most suitable model for a hypometabolic state. These animals are, in fact, able to drastically reduce all metabolic and physiological activities under adverse environmental conditions, but they can rapidly leave the depressed metabolic state as soon as the environment becomes favourable. Hibernators' cellular machinery must therefore undergo adaptive morpho-functional modifications to allow survival. Our studies on tissues of hibernating dormice revealed that the cell nucleus undergoes an important structural reorganisation during the hypometabolic period. Interestingly, despite the drastic reduction in pre-mRNA transcriptional and processing rate, cell nuclei of hibernating dormice never showed features typical of quiescence. Recent analyses revealed that pre-mRNA processing factors undergo an intranuclear redistribution which varies in different tissues. This suggests a programmed intranuclear reorganization of such molecules aimed to an efficient and rapid restoration of pre-mRNA processing upon arousal. Natural hibernation therefore appears as a highly programmed hypometabolic state rather than a simple fall of metabolic and physiological functions.

  4. Activity of cells in the lateral vestibular nucleus as a function of head position

    Science.gov (United States)

    Fujita, Y.; Rosenberg, Jay; Segundo, J. P.

    1968-01-01

    1. The spike activity of cells in the lateral vestibular nucleus was recorded in cats anaesthetized with pentobarbital sodium. Natural labyrinthine stimulation was applied by fixing the animal at different positions reached through roations about a longitudinal or transverse axis. 2. The majority of cells responded to rotations only about the longitudinal axis. Two types of response were found. The first was characterized by a transient change in activity which occurred only during the movement. The second type had an initial transient component and a subsequent steady component that persisted as long as the head remained fixed. 3. The interspike interval means, standard deviations, histograms and autocorrelograms of the steady response components of cells sensitive to lateral tilt were calculated. In every cell the relation between the head position with respect to gravity and the mean interspike interval of the steady discharge showed two main features. (a) `Directional sensitivity': the mean interval increased following rotation in one sense, and decreased following rotation in the other. In twenty-two out of thirty-three cells, the mean increased when the recording side was raised. The remaining cells showed the opposite relation. (b) `Multivaluedness': each particular position is associated with several different values of mean interval and these values had a relatively wide scatter. The curve that resulted from joining points in the order in which they occurred during the experiment was either closed, open, or combined closed and open portions. 4. The standard deviations, histograms and autocorrelograms also showed directional sensitivity and multivaluedness with respect to position. Several types of interspike interval histograms and autocorrelograms characterized lateral vestibular activity. The forms of the histogram and the autocorrelogram of the discharge from each cell usually remained unchanged during stimulation. 5. The extensive spread of the

  5. DGCR8 Localizes to the Nucleus as well as Cytoplasmic Structures in Mammalian Spermatogenic Cells and Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Akane Nakano

    2013-01-01

    Full Text Available The localization of DGCR8 in spermatogenic cells and sperm from rat and mouse was studied by immunofluorescence and immunoelectron microscopy. Spermatogenic cells from these species yielded similar DGCR8 localization pattern. Immunofluorescence microscopy results showed that DGCR8 localized to both the cytoplasm and nucleus. In the cytoplasm, diffuse cytosolic and discrete granular staining was observed. Dual staining showed that DGCR8 colocalized to the granules with MAEL (a nuage marker. In the nucleus of spermatocytes, both the nucleoli and nucleoplasm were stained, whereas in the nucleus of early spermatids small spots were stained. In late spermatids, DGCR8 localized to the tip of their head and to small granules (neck granules of the neck cytoplasm. The neck granules were also observed in the neck of epididymal sperm. Immunoelectron microscopy results showed that DGCR8 localized to nuage structures. Moreover, DGCR8 localized to nonnuage structures in late spermatids. DGCR8 also localized to the nucleolus and euchromatin in spermatocytes and round spermatids and to small granules in the nucleus of late spermatids. The results suggest that in spermatogenic cells DGCR8 localizes not only to the nuclei but also to the cytoplasmic structures such as nuage and nonnuage structures. Furthermore, DGCR8 seems to be imported into the egg with neck granules in sperm during fertilization.

  6. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells.

    Science.gov (United States)

    Fujita, Nobuyuki; Suzuki, Satoshi; Watanabe, Kota; Ishii, Ken; Watanabe, Ryuichi; Shimoda, Masayuki; Takubo, Keiyo; Tsuji, Takashi; Toyama, Yoshiaki; Miyamoto, Takeshi; Horiuchi, Keisuke; Nakamura, Masaya; Matsumoto, Morio

    2016-08-01

    Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.

  7. Descending projections from auditory cortex to excitatory and inhibitory cells in the nucleus of the brachium of the inferior colliculus

    Directory of Open Access Journals (Sweden)

    Jeffrey Garrett Mellott

    2014-10-01

    Full Text Available Descending projections from the auditory cortex (AC terminate in subcortical auditory centers from the medial geniculate nucleus (MG to the cochlear nucleus, allowing the AC to modulate the processing of acoustic information at many levels of the auditory system. The nucleus of the brachium of the inferior colliculus (NBIC is a large midbrain auditory nucleus that is a target of these descending cortical projections. The NBIC is a source of several auditory projections, including an ascending projection to the MG. This ascending projection appears to originate from both excitatory and inhibitory NBIC cells, but whether the cortical projections contact either of these cell groups is unknown. In this study, we first combined retrograde tracing and immunochemistry for glutamic acid decarboxylase (GAD, a marker of GABAergic cells to identify GABAergic and non-GABAergic NBIC projections to the MG. Our first result is that GAD-immunopositive cells constitute ~17% of the NBIC to MG projection. We then used anterograde labeling and electron microscopy to examine the AC projection to the NBIC. Our second result is that cortical boutons in the NBIC form synapses with round vesicles and asymmetric synapses, consistent with excitatory effects. Finally, we combined fluorescent anterograde labeling of corticofugal axons with immunochemistry and retrograde labeling of NBIC cells that project to the MG. These final results suggest first that AC axons contact both GAD-negative and GAD-positive NBIC cells and, second, that some of cortically-contacted cells project to the MG. Overall, the results imply that corticofugal projections can modulate both excitatory and inhibitory ascending projections from the NBIC to the auditory thalamus.

  8. Evaluation of CD24 as a marker to rapidly define the mesenchymal stem cell phenotype and its differentiation in human nucleus pulposus

    Institute of Scientific and Technical Information of China (English)

    Guan Xiaoming; Ma Xun; Zhang Li; Feng Haoyu; Ma Zhuo

    2014-01-01

    Background Recent studies have indicated that human nucleus pulposus contain mesenchymal stem cells (NP-MSCs).However,the immunophenotypic variation of NP-MSCs in vitro was unclear.The present study was conducted to address the immunophenotypic variation of mesenchymal stem cells in nucleus pulposus under continuous proliferation in vitro and show the difference between mesenchymal stem cells and nucleus pulposus cell.Methods Tissue samples were obtained from thoracolumbar burst fracture patients and degenerative disc disease patients who underwent discectomy and fusion procedures.Flow cytometric and laser scanning confocal microscope (LSCM) were used to detect the variation of mesenchymal stem cells in nucleus pulposus which were expressing CD105 and CD24 in condition with or without transforming growth factor β1 (TGF-β1).Results More than 90% of the analyzed primary cells of mesenchymal stem cells in nucleus pulposus fulfilled the general immunophenotyping criteria for MSCs,such as CD44,CD105 and CD29,but the marker of mature NP cells characterized as CD24 was negative.In continuous cultures,the proportion of mesenchymal stem cells which were expressing CD44,CD105 and CD29 in nucleus pulposus gradually decreased.The mesenchymal stem cells in nucleus pulposus cells were positive for CD105 and CD29,with slight positivity for CD44.The CD24 expression gradually increased in proliferation.Biparametric flow cytometry and laser scanning confocal microscopy confirmed the presence of cells which were expressing CD105 and CD24 independently,and only a small part of cells expressed both CD105 and CD24 simultaneously.TGF-β1 could stimulate mesenchymal stem cells in nucleus pulposus to express CD24.Conclusions Non-degenerative and degenerative NP contains mesechymal stem cells.The variation of CD24 can be used as a marker to identify the NP-MSCs differentiation into NP-like cells.

  9. Inflammatory Kinetics and Efficacy of Anti-inflammatory Treatments on Human Nucleus Pulposus Cells

    Science.gov (United States)

    Walter, Benjamin A; Purmessur, Devina; Likhitpanichkul, Morakot; Weinberg, Alan; Cho, Samuel K.; Qureshi, Sheeraz A.; Hecht, Andrew C.; Iatridis, James C.

    2015-01-01

    Study Design Human nucleus pulposus (NP) cell culture study investigating response to tumor necrosis factor-α (TNFα), effectiveness of clinically available anti-inflammatory drugs, and interactions between pro-inflammatory cytokines. Objective To characterize the kinetic response of pro-inflammatory cytokines released by human NP cells to TNFα stimulation and the effectiveness of multiple anti-inflammatories with 3 sub-studies: Timecourse, Same-time blocking, Delayed blocking. Summary of Background Data Chronic inflammation is a key component of painful intervertebral disc (IVD) degeneration. Improved efficacy of anti-inflammatories requires better understanding of how quickly NP cells produce pro-inflammatory cytokines and which pro-inflammatory mediators are most therapeutically advantageous to target. Methods Degenerated human NP cells (n=10) were cultured in alginate with or without TNFα (10ng/mL). Cells were incubated with one of four anti-inflammatories (anti-IL-6 receptor/atlizumab, IL-1 receptor anatagonist, anti-TNFα/infliximab and sodium pentosan polysulfate/PPS) in two blocking-studies designed to determine how intervention timing influences drug efficacy. Cell viability, protein and gene expression for IL-1β, IL-6 & IL-8 were assessed. Results Timecourse: TNFα substantially increased the amount of IL-6, IL-8 & IL-1β, with IL-1β and IL-8 reaching equilibrium within ~72 hours (IL-1β: 111±40pg/mL, IL-8: 8478±957pg/mL), and IL-6 not reaching steady state after 144 hours (1570±435 pg/mL). Anti-TNFα treatment was most effective at reducing the expression of all cytokines measured when added at the same time as TNFα stimulation. Similar trends were observed when drugs were added 72 hours after TNFα stimulation, however, no anti-inflammatories significantly reduced cytokine levels compared to TNF control. Conclusion IL-1β, IL-6 and IL-8 were expressed at different rates and magnitudes suggesting different roles for these cytokines in disease

  10. Identification of a Novel Nucleus Protein Involved in the Regulation of Urokinase in 95D Cells

    Institute of Scientific and Technical Information of China (English)

    Chang TONG; Li TAN; Ping LI; Yun-Song ZHU

    2005-01-01

    The urokinase-type plasminogen activator (uPA) plays an important role in cellular invasion.By using the downstream part of a 74 bp DNA region called the cooperation mediator (COM) of the uPA promoter as a bait sequence in the yeast one-hybrid screen, a gene called PBK1 was previously cloned from the cDNA library of the 95D lung cancer cell strain. In this study, the intracellular distribution of PBK1 was studied by using the transient transfection of pEGFP-C3-PBK1, and PBK1 was found to be localized in the nucleus. Co-transfection of pEGFP-C3-PBK1 and the deletion mutants of the pGL3-uPA promoter indicated that PBK1 can increase the uPA promoter activity by about 25% and this effect is uPA enhancer-dependent.Western blotting and Enzyme-linked immunoadsordent assay further confirmed that PBK1 can upregulate the expression of uPA. Our results suggest that PBK1 is involved in the regulation of uPA expression, which might provide a new clue to further understanding the regulation mechanism of uPA expression.

  11. Nucleus-associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and the role of cell geometry.

    Science.gov (United States)

    Flanders, D J; Rawlins, D J; Shaw, P J; Lloyd, C W

    1990-04-01

    To investigate the spatial relationship between the nucleus and the cortical division site, epidermal cells were selected in which the separation between these two areas is large. Avoiding enzyme treatment and air drying, Datura stramonium cells were labeled with antitubulin antibodies and the three-dimensional aspect of the cytoskeletons was reconstructed using computer-aided optical sectioning. In vacuolated cells preparing for division, the nucleus migrates into the center of the cell, suspended by transvacuolar strands. These strands are now shown to contain continuous bundles of microtubules which bridge the nucleus to the cortex. These nucleus-radiating microtubules adopt different configurations in cells of different shape. In elongated cells with more or less parallel side walls, oblique strands radiating from the nucleus to the long side walls are presumably unstable, for they are progressively realigned into a transverse disc (the phragmosome) as broad, cortical, preprophase bands (PPBs) become tighter. The phragmosome and the PPB are both known predictors of the division plane and our observations indicate that they align simultaneously in elongated epidermal cells. These observations suggest another hypothesis: that the PPB may contain microtubules polymerized from the nuclear surface. In elongated cells, the majority of the radiating microtubules, therefore, come to anchor the nucleus in the transverse plane, consistent with the observed tendency of such cells to divide perpendicular to the long axis. In nonrectangular isodiametric epidermal cells, which approximate regular hexagons in section, the radial microtubular strands emanating from the nucleus tend to remain associated with the middle of each subtending cell wall. The strands are not reorganized into a single dominant transverse bar, but remain as a starlike array until mitosis. PPBs in these cells are not as tight; they may only be a sparse accumulation of microtubules, even forming along non

  12. Requirement of cell nucleus for Sindbis virus replication in cultured Aedes albopictus cells.

    Science.gov (United States)

    Erwin, C; Brown, D T

    1983-02-01

    The ability of Sindbis virus to grow in enucleated BHK-21 (vertebrate) and Aedes albopictus (invertebrate) cells was tested to determine the dependence of this virus upon nuclear function in these two phylogenetically unrelated hosts. Although both cell types could be demonstrated to produce viable cytoplasts (enucleated cells) which produced virus-specific antigen subsequent to infection. BHK cytoplasts produced a significant number of progeny virions, whereas mosquito cytoplasts did not. The production of vesicular stomatitis virus in mosquito cells was not significantly reduced by enucleation. That such a host function was not essential for vesicular stomatitis virus growth in insect cells is supported by the observation that the production of this virus by mosquito cells is not actinomycin D sensitive. This result agrees with a previously published report in which it was shown that Sindbis virus maturation in invertebrate cells is inhibited by actinomycin D, indicating a possible requirement for host cell nuclear function (Scheefers-Borchel et al., Virology, 110:292-301, 1981).

  13. Induction of Chromosomal Aberrations at Fluences of Less Than One HZE Particle per Cell Nucleus

    Science.gov (United States)

    Hada, Megumi; Chappell, Lori J.; Wang, Minli; George, Kerry A.; Cucinotta, Francis A.

    2014-01-01

    The assumption of a linear dose response used to describe the biological effects of high LET radiation is fundamental in radiation protection methodologies. We investigated the dose response for chromosomal aberrations for exposures corresponding to less than one particle traversal per cell nucleus by high energy and charge (HZE) nuclei. Human fibroblast and lymphocyte cells where irradiated with several low doses of <0.1 Gy, and several higher doses of up to 1 Gy with O (77 keV/ (long-s)m), Si (99 keV/ (long-s)m), Fe (175 keV/ (long-s)m), Fe (195 keV/ (long-s)m) or Fe (240 keV/ (long-s)m) particles. Chromosomal aberrations at first mitosis were scored using fluorescence in situ hybridization (FISH) with chromosome specific paints for chromosomes 1, 2 and 4 and DAPI staining of background chromosomes. Non-linear regression models were used to evaluate possible linear and non-linear dose response models based on these data. Dose responses for simple exchanges for human fibroblast irradiated under confluent culture conditions were best fit by non-linear models motivated by a non-targeted effect (NTE). Best fits for the dose response data for human lymphocytes irradiated in blood tubes were a NTE model for O and a linear response model fit best for Si and Fe particles. Additional evidence for NTE were found in low dose experiments measuring gamma-H2AX foci, a marker of double strand breaks (DSB), and split-dose experiments with human fibroblasts. Our results suggest that simple exchanges in normal human fibroblasts have an important NTE contribution at low particle fluence. The current and prior experimental studies provide important evidence against the linear dose response assumption used in radiation protection for HZE particles and other high LET radiation at the relevant range of low doses.

  14. Mesenchymal stem cells regulate mechanical properties of human degenerated nucleus pulposus cells through SDF-1/CXCR4/AKT axis.

    Science.gov (United States)

    Liu, Ming-Han; Bian, Bai-Shi-Jiao; Cui, Xiang; Liu, Lan-Tao; Liu, Huan; Huang, Bo; Cui, You-Hong; Bian, Xiu-Wu; Zhou, Yue

    2016-08-01

    Transplantation of mesenchymal stem cells (MSCs) into the degenerated intervertebral disc (IVD) has shown promise for decelerating or arresting IVD degeneration. Cellular mechanical properties play crucial roles in regulating cell-matrix interactions, potentially reflecting specific changes that occur based on cellular phenotype and behavior. However, the effect of co-culturing of MSCs with nucleus pulposus cells (NPCs) on the mechanical properties of NPCs remains unknown. In our study, we demonstrated that co-culture of degenerated NPCs with MSCs resulted in significantly decreased mechanical moduli (elastic modulus, relaxed modulus, and instantaneous modulus) and increased biological activity (proliferation and expression of matrix genes) in degenerated NPCs, but not normal NPCs. SDF-1, CXCR4 ligand, was highly expressed in MSCs when co-cultured with degenerated NPCs. Inhibition of SDF-1 using CXCR4 antagonist AMD3100 or knocking-down CXCR4 in degenerated NPCs abolished the MSCs-induced decrease in the mechanical moduli and increased biological activity of degenerated NPCs, suggesting a crucial role for SDF-1/CXCR4 signaling. AKT and FAK inhibition attenuated the MSCs- or SDF-1-induced decrease in the mechanical moduli of degenerated NPCs. In conclusion, it was demonstrated in vitro that MSCs regulate the mechanical properties of degenerated NPCs through SDF-1/CXCR4/AKT signaling. These findings highlight a possible mechanical mechanism for MSCs-induced modulation with degenerated NPCs, which may be applicable to MSCs-based therapy for disc degeneration.

  15. κ-Opioid receptor in the nucleus is a novel prognostic factor of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Yong-Fa; Xu, Qing-Xia; Liao, Lian-Di; Xu, Xiu-E; Wu, Jian-Yi; Shen, Jian; Wu, Zhi-Yong; Shen, Jin-Hui; Li, En-Min; Xu, Li-Yan

    2013-09-01

    Opioid receptors, members of the G-protein-coupled receptor superfamily, appear to be involved in cancer progression. However, the expression and significance of opioid receptors in esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, we demonstrated by flow cytometry that μ, δ, and κ-opioid receptors (MOR, DOR, and KOR) are expressed to various degrees in ESCC cell lines. The KOR protein was further examined by several methods in ESCC cell lines and tissues. Immunocytochemical staining localized KOR to the cell membrane in KYSE180 cells and the nucleus in EC109 cells, whereas no signal or weak staining of the cytoplasm was observed in KYSE150 cells. The expression of KOR was confirmed in ESCC cells by Western blotting. Furthermore, immunohistochemistry staining showed that KOR was up-regulated in ESCC tissues compared with nontumorous esophageal epithelium (P = .004, χ(2) test). Moreover, high nuclear KOR expression was significantly correlated with lymph node metastasis in 256 ESCC cases (R = 0.144; P = .030, Kendall τB test). Patients with high nuclear KOR expression in ESCC had a significantly poorer prognosis (P = .001, log-rank test). Multivariate Cox analysis revealed that KOR in the nucleus was an independent prognostic factor (hazard ratio, 1.789; 95% confidence interval, 1.177-2.720; P = .006). Our results suggest that KOR is involved in the carcinogenesis or progression of ESCC and that nuclear KOR may be indicative of prognosis.

  16. Integrin-mediated interactions with extracellular matrix proteins for nucleus pulposus cells of the human intervertebral disc.

    Science.gov (United States)

    Bridgen, D T; Gilchrist, C L; Richardson, W J; Isaacs, R E; Brown, C R; Yang, K L; Chen, J; Setton, L A

    2013-10-01

    The extracellular matrix (ECM) of the human intervertebral disc is rich in molecules that interact with cells through integrin-mediated attachments. Porcine nucleus pulposus (NP) cells have been shown to interact with laminin (LM) isoforms LM-111 and LM-511 through select integrins that regulate biosynthesis and cell attachment. Since human NP cells lose many phenotypic characteristics with age, attachment and interaction with the ECM may be altered. Expression of LM-binding integrins was quantified for human NP cells using flow cytometry. The cell-ECM attachment mechanism was determined by quantifying cell attachment to LM-111, LM-511, or type II collagen after functionally blocking specific integrin subunits. Human NP cells express integrins β1, α3, and α5, with over 70% of cells positive for each subunit. Blocking subunit β1 inhibited NP cell attachment to all substrates. Blocking subunits α1, α2, α3, and α5 simultaneously, but not individually, inhibits NP cell attachment to laminins. While integrin α6β1 mediated porcine NP cell attachment to LM-111, we found integrins α3, α5, and β1 instead contributed to human NP cell attachment. These findings identify integrin subunits that may mediate interactions with the ECM for human NP cells and could be used to promote cell attachment, survival, and biosynthesis in cell-based therapeutics.

  17. Amyloid domains in the cell nucleus controlled by nucleoskeletal protein lamin B1 reveal a new pathway of mercury neurotoxicity

    Directory of Open Access Journals (Sweden)

    Florian Arnhold

    2015-02-01

    Full Text Available Mercury (Hg is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates, a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus, suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton.

  18. Akt is transferred to the nucleus of cells treated with apoptin, and it participates in apoptin-induced cell death

    DEFF Research Database (Denmark)

    Bay, GH; Kroczak, TJ; Ande, SR;

    2007-01-01

    . Downstream of PI3-K, Akt is activated and translocated to the nucleus together with apoptin. Direct interaction between apoptin and Akt is documented. Co-expression of nuclear Akt significantly potentiates cell death induced by apoptin. Thus, apoptin-facilitated nuclear Akt, in contrast to when in its...

  19. Chemical Topography of Efferent Projections from the Median Preoptic Nucleus to Pontine Monoaminergic Cell Groups in the Rat

    Science.gov (United States)

    Zardetto-Smith, Andrea M.; Johnson, Alan Kim

    1995-01-01

    This study examined efferent output from the median preoptic nucleus (MNPO) to pontine noradrenergic and serotonergic cell groups using an anterograde tracing technique (Phaseolus vulgaris leucoagglutinin, PHA-L) combined with glucose oxidase immunocytochemistry to serotonin (5-HT) or to dopamine-beta-hydroxylase (DBH). Injections of PHA-L into the ventral MNPO resulted in moderate axonal labeling within the region of the B7 and B8 serotonergic groups in the dorsal raphe. PHA-L labeled fibers and punctate processes were observed in close apposition to many of the 5-HT immunoreactive neurons in these regions. In contrast, sparse terminal labeling was found within the B5 group in the raphe pontis nucleus, and only trace fiber labeling observed in the B3 and B6 groups. Efferents from the MNPO also provided moderate innervation to the A6 and A7 noradrenergic groups. PHA-L labeled punctate processes were found most frequently in close apposition to DBH-immunoreactive neurons at mid- to caudal levels of the locus coeruleus. Some labeled axons were also present within the A7 and A5 groups. Additionally, a close apposition between labeled MNPO efferents and 5-HT fibers within the lateral parabrachial nucleus was observed. The results indicate the MNPO provides a topographic innervation of monoaminergic groups in the upper brainstem.

  20. PKCα translocation from mitochondria to nucleus is closely related to induction of apoptosis in gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    WU; Qiao(吴乔); LIU; Su(刘苏); DING; Liang(丁亮); YE; Xiaofeng(叶晓峰); SU; Wenjin(苏文金)

    2002-01-01

    PKCs have been implicated in the regulation of cellular differentiation, proliferation, apoptosis and signal transduction. It was demonstrated in this study that PKC? was located both at mitochondria and in cytosol in gastric cancer cell line BGC-823. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in the translocation of PKCα from both mitochondria and cytosol to nucleus as clearly shown by laser-scanning-confocal microscopy, while the protein level of PKCα was not changed by TPA treatment as detected by Western blot. The results also revealed that TPA-induced translocation of PKCα was in close association with apoptosis induction, and such association was further affirmed by other experiments where various apoptotic stimuli and specific inhibitors of PKC were used. Taken together, these findings indicate that translocation of PKCα from both mitochondria and cytosol to nucleus in gastric cancer cell is accompanied by induction of apoptosis, and may imply a new mechanism of the potential linking between cell apoptosis and PKCα translocation.

  1. Differentiation of rat adipose tissue-derived mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro

    Institute of Scientific and Technical Information of China (English)

    XIE Li-wei; FANG Huang; CHEN An-min; LI Feng

    2009-01-01

    Objective: To differentiate rat adipose tissue-derived mesenchymal stem cells (ADSCs) into cells with a nucleus pulposus-like phenotype in vitro,so as to lay a foundation for the cell-based transplantation therapy of degenerated intervertebral discs.Methods: Rat ADSCs were isolated only from the subcutaneous inguinal region and purified by limited dilution.ADSCs of the third passages were analyzed by fluorescence activated cell sorter (FACS) to detect the cell surface markers (Sca-1,CD44,CD45,CD11b).To induce ADSCs towards a nucleus pulposus-like phenotype,ADSCs were immobilized in 3-dimensional alginate hydrogels and cultured in an inducing medium containing transforming growth factor-betal (TGF-β1) under hypoxia (2% O2),while control groups under normoxia (21% O2) in alginate beads in medium with or without the presence of TGF-β1.Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was carded out to evaluate phenotypic and biosynthetic activities in the process of differentiation.Meanwhile,Alcian blue staining were used to detect the formation of sulfated glycosaminoglycans (GAGs) in the differentiated cells.Results: The purified ADSCs were fibroblast-like and proliferated rapidly in vitro.The flow cytometry showed that ADSCs were positive for Sea-1 and CD44,negative for CD45 and CD11b.The results of RT-PCR manifested that the gene expressions of Sox-9,aggrecan and collagen Ⅱ,which were chondrocyte specific,were upregulated in medium containing TGF-β1 under hypoxia (2% O2).Likewise,gene expression of HIF-la,which was characteristics of intervertebral discs,was also upregulated.Simultaneously,Alcian blue staining exhibited the formation of many GAGs.Conclusions: The approach in our experiment is a simple and effective way to acquire a large quantity of homogenous ADSCs.Rat ADSCs can be differentiated into nucleus pulposus-like cells.ADSCs may replace bone marrow mesenchymal stem cells as a new kind of seed cells in regeneration of

  2. 3D/4D architecture of chromosomal break point regions in the cell nucleus following irradiation of normal cells and tumor cells

    International Nuclear Information System (INIS)

    The development of an effective analytical methodology for a correct description of oncogenic chromosomal aberrations is the challenge of medical radiobiology with respect to preventive therapeutic methods. Scope of the project was a better understanding of the behavior of break point regions dependent on the genome loci, the chromatin folding, the involved repair proteins and the beam quality with respect to an improvement and an efficient prognosis of the health consequences following radiation exposure. New microscopic insights in the normal cell nucleus are supposed to allow a better understanding of the spatial interactions on a molecular scale.

  3. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin;

    2004-01-01

    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  4. Y-like retinal ganglion cells innervate the dorsal raphe nucleus in the Mongolian gerbil (Meriones unguiculatus.

    Directory of Open Access Journals (Sweden)

    Liju Luan

    Full Text Available BACKGROUND: The dorsal raphe nucleus (DRN of the mesencephalon is a complex multi-functional and multi-transmitter nucleus involved in a wide range of behavioral and physiological processes. The DRN receives a direct input from the retina. However little is known regarding the type of retinal ganglion cell (RGC that innervates the DRN. We examined morphological characteristics and physiological properties of these DRN projecting ganglion cells. METHODOLOGY/PRINCIPAL FINDINGS: The Mongolian gerbils are highly visual rodents with a diurnal/crepuscular activity rhythm. It has been widely used as experimental animals of various studies including seasonal affective disorders and depression. Young adult gerbils were used in the present study. DRN-projecting RGCs were identified following retrograde tracer injection into the DRN, characterized physiologically by extracellular recording and morphologically after intracellular filling. The result shows that DRN-projecting RGCs exhibit morphological characteristics typical of alpha RGCs and physiological response properties of Y-cells. Melanopsin was not detected in these RGCs and they show no evidence of intrinsic photosensitivity. CONCLUSIONS/SIGNIFICANCE: These findings suggest that RGCs with alpha-like morphology and Y-like physiology appear to perform a non-imaging forming function and thus may participate in the modulation of DRN activity which includes regulation of sleep and mood.

  5. Genetic cell targeting uncovers specific neuronal types and distinct subregions in the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Nguyen, Amanda Q; Dela Cruz, Julie A D; Sun, Yanjun; Holmes, Todd C; Xu, Xiangmin

    2016-08-15

    The bed nucleus of the stria terminalis (BNST) plays an important role in fear, stress, and anxiety. It contains a collection of subnuclei delineated by gross cytoarchitecture features; however, there has yet to be a systematic examination of specific BNST neuronal types and their associated neurochemical makeup. The present study focuses on improved characterization of the anterior BNST based on differing molecular and chemical expression aided by mouse genetics. Specific Cre driver lines crossed with a fluorescent reporter line were used for genetic cell targeting and immunochemical staining. Using this new approach, we were able to robustly identify specific excitatory and inhibitory cell types in the BNST. The presence and distribution of excitatory neurons were firmly established; glutamatergic neurons in the anterior BNST accounted for about 14% and 31% of dorsal and ventral BNST cells, respectively. GABAergic neurons expressing different isoforms of glutamic acid decarboxylase were found to have differential subregional distributions. Almost no parvalbumin-expressing cells were found in the BNST, while somatostatin-expressing cells and calretinin-expressing cells account for modest proportions of BNST cells. In addition, vasoactive intestinal peptide-expressing axonal plexuses were prominent in the oval and juxtacapsular subregions. In addition, we discovered that corticotropin-releasing hormone-expressing cells contain GABAergic and glutamatergic subpopulations. Together, this study reveals new information on excitatory and inhibitory neurons in the BNST, which will facilitate genetic dissection and functional studies of BNST subregions. J. Comp. Neurol. 524:2379-2399, 2016. © 2016 Wiley Periodicals, Inc. PMID:26718312

  6. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    Science.gov (United States)

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  7. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells.

    Science.gov (United States)

    Jaramillo, Blanca Estela; Ponce, Arturo; Moreno, Jacqueline; Betanzos, Abigail; Huerta, Miriam; Lopez-Bayghen, Esther; Gonzalez-Mariscal, Lorenza

    2004-07-01

    ZO-2 is a MAGUK protein that in confluent epithelial sheets localizes at tight junctions (TJ) whereas in sparse cultures accumulates in clusters at the nucleus. Here, we have characterized several nuclear properties of ZO-2. We observe that ZO-2 is present in the nuclear matrix and co-immunoprecipitates with lamin B(1) and actin from the nuclei of sparse cultures. We show that ZO-2 presents several NLS at its amino region, that when deleted, diminish the nuclear import of the ZO-2 amino segment and impair the ability of the region to regulate the transcriptional activity of promoters controlled by AP-1. Several RS repeats are detected in the ZO-2 amino segment, however, their deletion does not preclude the display of a speckled nuclear pattern. ZO-2 displays two putative NES. However, only the second one appears to be functional, as when conjugated to ovalbumin (OV), it is able to translocate this protein from the nucleus to the cytoplasm in a leptomycin B-sensitive way.

  8. Culture of nucleus pulposus cells from intervertebral disc on self-assembling KLD-12 peptide hydrogel scaffold

    International Nuclear Information System (INIS)

    KLD-12 peptide is a new self-assembling biomaterial and it has been used as cell scaffold for cartilage repair. In this study, self-assembled KLD-12 peptide nanofiber was fabricated and the biocompatibility of this scaffold for nucleus pulposus (NP) cells was evaluated. The structure of this scaffold was characterized by atomic force microscopy (AFM). This hydrogel was structurally integral and homogeneous. KLD-12 peptide was able to self-assemble into nanofibers with a diameter of 10-30 nm (mean: 13.7 ± 4.7 nm) and a length of hundreds of nanometers. Two-week culture of rabbits NP cells in this scaffold showed that the self-assembled hydrogel maintained the live cell number by 93% and the cell viability increased gradually with the culture time. The expression of type II collagen mRNA was further confirmed by reverse transcription polymerase chain reaction (RT-PCR). The expression of type II collagen was high in the hydrogel, however, type I collagen expression was observed in few cells. Furthermore, GAG content increased gradually accompanied with the extension of culture time. In conclusion, this self-assembled nanofiber scaffold provided a conducive microenvironment for NP cell to survive and proliferate in vitro.

  9. Block copolymer micelles target Auger electron radiotherapy to the nucleus of HER2-positive breast cancer cells.

    Science.gov (United States)

    Hoang, Bryan; Reilly, Raymond M; Allen, Christine

    2012-02-13

    Intracellular trafficking of Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. In the present study, block copolymer micelles (BCMs) were labeled with the Auger electron emitter indium-111 ((111)In) and loaded with the radiosensitizer methotrexate. HER2 specific antibodies (trastuzumab fab) and nuclear localization signal (NLS; CGYGPKKKRKVGG) peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake and intracellular distribution of the multifunctional BCMs were evaluated in a panel of breast cancer cell lines with different levels of HER2 expression. Indeed cell uptake was found to be HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS peptides to the surface of BCMs was found to result in a significant increase in nuclear uptake of the radionuclide (111)In. Successful nuclear targeting was shown to improve the antipoliferative effect of the Auger electrons as measured by clonogenic assays. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and (111)In in all breast cancer cell lines evaluated.

  10. Variations in gene and protein expression in canine chondrodystrophic nucleus pulposus cells following long-term three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Intervertebral disc (IVD degeneration greatly affects quality of life. The nucleus pulposus (NP of chondrodystrophic dog breeds (CDBs is similar to the human NP, because the cells disappear with age and are replaced by fibrochondrocyte-like cells. However, because IVD develops as early as within the first year of life, we used canines as a model to investigate in vitro the mechanisms underlying IVD degeneration. Specifically, we evaluated the potential of a three-dimensional (3D culture of healthy NP as an in vitro model system to investigate the mechanisms of IVD degeneration. Agarose hydrogels were populated with healthy NP cells from beagles after performing magnetic resonance imaging, and mRNA expression profiles and pericellular extracellular matrix (ECM protein distribution were determined. After 25 days of 3D culture, there was a tendency for redifferentiation into the native NP phenotype, and mRNA levels of Col2A1, COMP, and CK18 were not significantly different from those of freshly isolated cells. Our findings suggest that long-term 3D culture promoted chondrodystrophic NP redifferentiation through reconstruction of the pericellular microenvironment. Further, lipopolysaccharide (LPS induced expression of TNF-α, MMP3, MMP13, VEGF, and PGES mRNA in the 3D cultures, creating a molecular milieu that mimics that of degenerated NP. These results suggest that this in vitro model represents a reliable and cost-effective tool for evaluating new therapies for disc degeneration.

  11. On the properties and origin of the GABAB inhibitory postsynaptic potential recorded in morphologically identified projection cells of the cat dorsal lateral geniculate nucleus.

    Science.gov (United States)

    Soltesz, I; Lightowler, S; Leresche, N; Crunelli, V

    1989-01-01

    Intracellular recordings were performed from projection cells of the cat dorsal lateral geniculate nucleus in vitro to investigate the properties and origin of optic tract evoked inhibitory postsynaptic potentials mediated by GABAB receptors and their relationship to the physiologically different cell classes present in this nucleus. In all three main laminae of the dorsal lateral geniculate nucleus, stimulation of the optic tract evoked an excitatory postsynaptic potential followed by two inhibitory postsynaptic potentials. The first is a GABAA receptor mediated inhibitory postsynaptic potential since it was blocked by bicuculline, reversed in polarity following intracellular Cl- injection and had a reversal potential similar to the bicuculline sensitive hyperpolarizing effect of GABA. The second is a GABAB receptor mediated inhibitory postsynaptic potential. Its amplitude was not linearly related to membrane potential (maximal amplitude at -60 mV), it decreased when using frequencies of stimulation higher than 0.05 Hz and it was reversibly increased by addition of bicuculline to the perfusion medium. The reversal potential of GABAB inhibitory postsynaptic potentials was dependent on the extracellular K+ concentration but did not change in the presence of bicuculline or when recording with Cl- filled microelectrodes. While GABAA inhibitory postsynaptic potentials always abolished repetitive firing of projection cells, GABAB inhibitory postsynaptic potentials were able to block weak firing but unable to decrease strong activation of projection cells evoked by direct current injection. Optic tract evoked GABAB (as well as GABAA) inhibitory postsynaptic potentials could be recorded in slices which did not include the perigeniculate nucleus, thus indicating that they are generated by the interneurons of the dorsal lateral geniculate nucleus. Using intracellular injection of horseradish peroxidase, we have found that the GABAB inhibitory postsynaptic potentials are

  12. The nucleus of differentiated root plant cells: modifications induced by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    G Lingua

    2009-12-01

    Full Text Available The nuclei of plant cells show marked differences in chromatin organisation, related to their DNA content, which ranges from the type with large strands of condensed chromatin (reticulate or chromonematic nuclei to one with mostly decondensed chromatin (chromocentric or diffuse nuclei. A loosening of the chromatin structure generally occurs in actively metabolising cells, such as differentiating and secretory cells, in relation to their high transcriptional activity. Endoreduplication may occur, especially in plants with a small genome, which increases the availability of nuclear templates, the synthesis of DNA, and probably regulates gene expression. Here we describe structural and quantitative changes of the chromatin and their relationship with transcription that occur in differentiated cells following an increase of their metabolism. The nuclei of root cortical cells of three plants with different 2C DNA content (Allium porrum, Pisum sativum and Lycopersicon esculentm and their modifications induced by arbuscular mycorrhization, which strongly increase the metabolic activity of colonised cells, are taken as examples.

  13. The ups and downs of somatic cell nucleus transfer (SCNT) in humans

    OpenAIRE

    Fulka, Josef; Langerova, Alena; Loi, Pasqualino; Ptak, Grazyna; Albertini, David; Fulka, Helena

    2013-01-01

    Achieving successful somatic cell nuclear transfer (SCNT) in the human and subhuman primate relative to other mammals has been questioned for a variety of technical and logistical issues. Here we summarize the gradual evolution of SCNT technology from the perspective of oocyte quality and cell cycle status that has recently led to the demonstration of feasibility in the human for deriving chromosomally normal stem cells lines. With these advances in hand, prospects for therapeutic cloning mus...

  14. Transfer of a eubacteria-type cell division site-determining factor CrMinD gene to the nucleus from the chloroplast genome in Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    LIU WeiZhong; HU Yong; ZHANG RunJie; ZHOU WeiWei; ZHU JiaYing; LIU XiangLin; HE YiKun

    2007-01-01

    MinD is a ubiquitous ATPase that plays a crucial role in selection of the division site in eubacteria, chloroplasts, and probably Archaea. In four green algae, Mesostigma viride, Nephroselmis olivacea, Chlorella vulgaris and Prototheca wickerhamii, MinD homologues are encoded in the plastid genome. However, in Arabidopsis, MinD is a nucleus-encoded, chloroplast-targeted protein involved in chloroplast division, which suggests that MinD has been transferred to the nucleus in higher land plants. Yet the lateral gene transfer (LGT) of MinD from plastid to nucleus during plastid evolution remains poorly understood. Here, we identified a nucleus-encoded MinD homologue from unicellular green alga Chlamydomonas reinhardtii, a basal species in the green plant lineage. Overexpression of CrMinD in wild type E. coli inhibited cell division and resulted in the filamentous cell formation, clearly demonstrated the conservation of the MinD protein during the evolution of photosynthetic eukaryotes. The transient expression of CrMinD-egfp confirmed the role of CrMinD protein in the regulation of plastid division. Searching all the published plastid genomic sequences of land plants, no MinD homologues were found, which suggests that the transfer of MinD from plastid to nucleus might have occurred before the evolution of land plants.

  15. Mechanical trapping of the nucleus on micropillared surfaces inhibits the proliferation of vascular smooth muscle cells but not cervical cancer HeLa cells.

    Science.gov (United States)

    Nagayama, Kazuaki; Hamaji, Yumi; Sato, Yuji; Matsumoto, Takeo

    2015-07-16

    The interaction between cells and the extracellular matrix on a topographically patterned surface can result in changes in cell shape and many cellular functions. In the present study, we demonstrated the mechanical deformation and trapping of the intracellular nucleus using polydimethylsiloxane (PDMS)-based microfabricated substrates with an array of micropillars. We investigated the differential effects of nuclear deformation on the proliferation of healthy vascular smooth muscle cells (SMCs) and cervical cancer HeLa cells. Both types of cell spread normally in the space between micropillars and completely invaded the extracellular microstructures, including parts of their cytoplasm and their nuclei. We found that the proliferation of SMCs but not HeLa cells was dramatically inhibited by cultivation on the micropillar substrates, even though remarkable deformation of nuclei was observed in both types of cells. Mechanical testing with an atomic force microscope and a detailed image analysis with confocal microscopy revealed that SMC nuclei had a thicker nuclear lamina and greater expression of lamin A/C than those of HeLa cells, which consequently increased the elastic modulus of the SMC nuclei and their nuclear mechanical resistance against extracellular microstructures. These results indicate that the inhibition of cell proliferation resulted from deformation of the mature lamin structures, which might be exposed to higher internal stress during nuclear deformation. This nuclear stress-induced inhibition of cell proliferation occurred rarely in cancer cells with deformable nuclei. PMID:26054426

  16. Activation of the c-fos gene in prodynorphin- and proenkephalin-expressing cells of nucleus tractus solitarius after seizures.

    Science.gov (United States)

    Kanter, R K; Erickson, J T; Millhorn, D E

    1994-10-01

    We performed studies to determine the anatomical regions and chemical phenotypes of neurons within the rat medulla oblongata activated by pentylenetetrazole-induced seizures. Activated cells were identified by their expression of the c-fos gene, detected by in situ hybridization for c-fos mRNA and immunocytochemistry for Fos protein. Activated cells were located predominantly in nucleus tractus solitarius (NTS), with c-fos mRNA appearing within 20 min after seizures (peak at 1-2 h), followed by Fos immunoreactivity visible at 1 h (peak at 2-4 h). Neither nonspecific noxious stimulation by intraperitoneal injection of saline nor brief exposure to hypoxic or hypercapnic gas mixtures to stimulate chemoreceptors reproduced this pattern of labeling. Prodynorphin or proenkephalin mRNA, detected by in situ hybridization, was colocalized with Fos immunoreactivity in many NTS cells. Thus, seizures activate neuronal pathways in the medulla oblongata which express genes for endogenous opioids. Potential long-term effects of seizures are suggested by the in situ hybridization finding that NTS prodynorphin mRNA increased 24 h after seizures compared to control levels. PMID:7957742

  17. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus.

    Science.gov (United States)

    Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N; Beyer, Lisa A; Swiderski, Donald L; Kanicki, Ariane C; Kabara, Lisa L; Dolan, David F; Shore, Susan E; Raphael, Yehoash

    2016-09-22

    In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination. PMID:27403879

  18. Differential expression of extracellular-signal-regulated kinase 5 (ERK5) in normal and degenerated human nucleus pulposus tissues and cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Weiguo, E-mail: liangweiguo@tom.com [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Fang, Dejian [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Ye, Dongping [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009 (Australia); Zou, Longqiang; Shen, Yan; Dai, Libing [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); Xu, Jiake, E-mail: jiake.xu@uwa.edu.au [Guangzhou Institute of Traumatic Surgery, The Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou 510220 (China); School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2014-07-11

    Highlights: • ERK5 involved in NP cells. • ERK5 involved in NP tissue. • It was important modulator. - Abstract: Extracellular-signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and regulates a wide variety of cellular processes such as proliferation, differentiation, necrosis, apoptosis and degeneration. However, the expression of ERK5 and its role in degenerated human nucleus pulposus (NP) is hitherto unknown. In this study, we observed the differential expression of ERK5 in normal and degenerated human nucleus pulposus tissues by using immunohistochemical staining and Western blot. Treatment of NP cells with Pro-inflammatory cytokine, TNF-α decreased ERK5 gene expression as well as NP marker gene expression; including the type II collagen and aggrecan. Suppression of ERK5 gene expression in NP cells by ERK5 siRNA resulted in decreased gene expression of type II collagen and aggrecan. Furthermore, inhibition of ERK5 activation by BIX02188 (5 μM) decreased the gene expression of type II collagen and aggrecan in NP cells. Our results document the expression of ERK5 in degenerated nucleus pulposus tissues, and suggest a potential involvement of ERK5 in human degenerated nucleus pulposus.

  19. SGT, a Hsp90β binding partner, is accumulated in the nucleus during cell apoptosis

    International Nuclear Information System (INIS)

    In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90α but also Hsp90β. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90β and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90β and apoptosis

  20. [The molecular organizational characteristics of the cell nucleus components at different phases of the mitotic cycle and in the resting state].

    Science.gov (United States)

    S'iakste, N I

    1992-01-01

    Data about the changes of the cell nucleus structure at different levels of its organization are summarized in the review. The data about the change of the DNA break number during the cycle and in resting state are presented and the role of the changes of the repair efficiency in this process is discussed. The changes of the chromatin protein spectrum, the chromatin structure at nucleosomal and supranucleosomal levels, the DNA superhelicity, topoisomerase activity, nuclear matrix composition and structure are discussed as well. The nucleus structure during the S-phase and mitosis and the cycle-related changes of the chromatin structure in lower eukaryotes are reviewed separately.

  1. A fraction of neurofibromin interacts with PML bodies in the nucleus of the CCF astrocytoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Godin, Fabienne; Villette, Sandrine; Vallee, Beatrice; Doudeau, Michel; Morisset-Lopez, Severine [Centre de Biophysique Moleculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Universite d' Orleans et INSERM, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Ardourel, Maryvonne; Hevor, Tobias [Laboratoire de Neurobiologie, Universite d' Orleans, BP 6759, 45067 Orleans Cedex 2 (France); Pichon, Chantal [Centre de Biophysique Moleculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Universite d' Orleans et INSERM, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Benedetti, Helene, E-mail: helene.benedetti@cnrs-orleans.fr [Centre de Biophysique Moleculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Universite d' Orleans et INSERM, rue Charles Sadron, 45071 Orleans Cedex 2 (France)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer We validate the use of specific anti-Nf1 antibodies for immunofluorescence studies. Black-Right-Pointing-Pointer We detect Nf1 in the cytoplasm and nucleus of CCF cells. Black-Right-Pointing-Pointer We demonstrate that Nf1 partially colocalizes with PML nuclear bodies. Black-Right-Pointing-Pointer We demonstrate that there is a direct interaction between a fraction of Nf1 and the PML bodies. -- Abstract: Neurofibromatosis type 1 is a common genetic disease that causes nervous system tumors, and cognitive deficits. It is due to mutations within the NF1 gene, which encodes the Nf1 protein. Nf1 has been shown to be involved in the regulation of Ras, cAMP and actin cytoskeleton dynamics. In this study, using immunofluorescence experiments, we have shown a partial nuclear localization of Nf1 in the astrocytoma cell line: CCF and we have demonstrated that Nf1 partially colocalizes with PML (promyelocytic leukemia) nuclear bodies. A direct interaction between Nf1 and the multiprotein complex has further been demonstrated using 'in situ' proximity ligation assay (PLA).

  2. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  3. β-Adrenergic activation enhances NMDA-induced current in pyramidal cells of the basolateral nucleus of amygdala

    Institute of Scientific and Technical Information of China (English)

    LIU Xinqiu; CAO Xiaohua; LI Bao-ming

    2005-01-01

    NMDA receptor (NMDA-R) in the amygdala complex is critical for both long-term potentiation (LTP) and formation of conditioned fear memory. It is reported that activation of β-adrenoceptors (β-AR) in the amygdala facilitates LTP and enhances memory consolidation. The present study examined the regulatory effect of β-AR activation on NMDA-R mediated current in pyramidal cells of the basolateral nucleus of amygdala (BLA), using whole-cell recording technique. Bath application of the β-AR agonist isoproterenol enhanced NMDA-induced current, and this facilitatory effect was blocked by co-administered propranolol, a β-AR antagonist. The facilitatory effect of isoproterenol on NMDA-induced current could not be induced when the protein kinase A (PKA) inhibitor Rp-cAMPs was added in electrode internal solution.The present results suggest that β-AR activation in the BLA could modulate NMDA-R activity directly and positively, probably via PKA.

  4. Increased number of TH-immunoreactive cells in the ventral tegmental area after deep brain stimulation of the anterior nucleus of the thalamus.

    Science.gov (United States)

    Dela Cruz, J A D; Hescham, S; Adriaanse, B; Campos, F L; Steinbusch, H W M; Rutten, B P F; Temel, Y; Jahanshahi, A

    2015-09-01

    Dopamine (DA) has been long implicated with the processes of memory. In long-term memory, the hippocampus and ventral tegmental area (VTA) use DA to enhance long-term potentiation, while prefrontal DA D1 receptors are involved in working memory. Deep brain stimulation (DBS) of specific brain areas have been shown to affect memory impairments in animal models. Here, we tested the hypothesis that DBS could reverse memory impairments by increasing the number of dopaminergic cells in the VTA. Rats received DBS at the level of the mammillothalamic tract, the anterior nucleus of the thalamus, and entorhinal cortex before euthanasia. These regions are part of the so-called memory circuit. Brain sections were processed for c-Fos and tyrosine hydroxylase (TH) immunocytochemistry in the VTA and the substantia nigra pars compacta (SNc). c-Fos, TH and c-Fos/TH immunoreactive cells were analyzed by means of stereology and confocal microscopy. Our results showed that DBS of the anterior nucleus of the thalamus induced substantial higher numbers of TH-immunoreactive cells in the VTA, while there were no significant differences between the experimental groups in the number of TH immunoreactive cells in the SNc, c-Fos immunoreactive cells and c-Fos/TH double-labeled cells in both the SNc and VTA. Our findings suggest a phenotypic switch, or neurotransmitter respecification, of DAergic cells specifically in the VTA which may be induced by DBS in the anterior nucleus of the thalamus.

  5. Effect of corticosterone and adrenalectomy on NMDA-induced cholinergic cell death in rat magnocellular nucleus basalis

    NARCIS (Netherlands)

    Abraham, [No Value; Veenema, AH; Nyakas, C; Harkany, T; Bohus, BGJ; Luiten, PGM; Ábrahám, I.

    1997-01-01

    The present study demonstrates the effects of adrenalectomy and subcutaneously administered corticosterone on N-methyl-D-aspartate-induced neurodegeneration in the cholinergic magnocellular basal nucleus of the rat, NMDA was unilaterally injected into the nucleus basalis at different plasma corticos

  6. SDF-1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF-κB pathway

    Science.gov (United States)

    LIU, ZONGCHAO; MA, CHUAN; SHEN, JIELIANG; WANG, DAWU; HAO, JIE; HU, ZHENMING

    2016-01-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell-derived factor-1 (SDF-1)/C-X-C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF-1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF-1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor-κB (NF-κB) signaling pathway was investigated using CXCR4-siRNA and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF-1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF-1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post-transfection with CXCR4 siRNA compared with SDF-1 stimulation alone. Furthermore, SDF-1 treatment increased the level of phosphorylated NF-κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF-1. Taken together, SDF-1-mediated apoptosis was suppressed by NF-κB inhibition using PDTC. In conclusion, the SDF-1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF-κB pathway, thus suggesting that SDF-1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  7. Effects of age, replicative lifespan and growth rate of human nucleus pulposus cells on selecting age range for cell-based biological therapies for degenerative disc diseases.

    Science.gov (United States)

    Lee, J S; Lee, S M; Jeong, S W; Sung, Y G; Lee, J H; Kim, K W

    2016-07-01

    Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases. PMID:27149303

  8. A novel human gene spindlin1,encoding a protein localized in the cell nucleus and inducing NIH3T3 cell's transformation

    Institute of Scientific and Technical Information of China (English)

    GAO Yanhong; QIN Lipeng; ZHANG Peng; CHEN Lin; YUAN Hongfeng; BAI Cixian; YAN Fang; YUE Wen; PEI Xuetao

    2004-01-01

    A novel human gene, spindlin1, recently cloned in our laboratory, is highly expressed in the tissue of ovary cancer. To study its biological function, a vector expressing green fluorescent-spindlin1 fusion protein was constructed and transfected into COS-7 and NIH3T3 cells by lipofectamine methods. The results showed that the fusion protein pEGFP-N1-spindlin1 was localized in the nucleus of COS-7 and NIH3T3 cells. NIH3T3 cells which could stably express spindlin1 as a result of RT-PCR analysis compared with the parental NIH3T3 cells displayed a complete morphological change, improved the cell growth and increased the percentage of cells in G2/M phase (12.6% vs control cells at 3.4%). Furthermore, overexpressed spindlin1 cells formed colonies in soft agar, more motile in migration assay in vitro and formed tumors in nude mice. Our findings provide direct evidence that spindlin1 gene may be a prooncogene which is associated with tumorigenesis.

  9. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  10. An organism arises from every nucleus.

    OpenAIRE

    Nurullah Keklikoglu

    2009-01-01

    The fact that, cloning using somatic cell nuclear transfer (SCNT) method has been performed, opened new horizons for cloning, and changed the way of our understanding and approach to cell and nucleus. The progress in cloning technology, brought the anticipation of the ability to clone an organism from each somatic cell nucleus. Therefore, the 'Cell Theory' is about to take the additional statement as "An organism arises from every nucleus". The development of gene targeting procedures which c...

  11. Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of gudden in the rat: implications for path integration in the head direction cell circuit.

    Science.gov (United States)

    Sharp, P E; Tinkelman, A; Cho, J

    2001-06-01

    When a rat navigates through space, head direction (HD) cells provide an ongoing signal of the rat's directional heading. It is thought that these cells rely, in part, on angular path integration of the rat's head movements. This integration requires that the HD cell system receive information about angular head movements and that this information be combined with the current directional signal, to generate the next "predicted" direction. Recent data suggest that the dorsal tegmental nucleus (DTN) may play a critical role in helping to generate the HD cell signal. To test this, recordings were made from cells in the DTN in freely moving rats. The following cell types were found: (a) "classic" HD cells, (b) angular velocity cells, and (c) cells that fired as a function of both head direction and angular velocity. Thus, DTN cells exhibit firing characteristics that are critical to the neural circuit hypothesized for generation of the HD cell signal. PMID:11439447

  12. SDF‑1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF‑κB pathway.

    Science.gov (United States)

    Liu, Zongchao; Ma, Chuan; Shen, Jieliang; Wang, Dawu; Hao, Jie; Hu, Zhenming

    2016-07-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell‑derived factor‑1 (SDF‑1)/C‑X‑C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF‑1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF‑1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor‑κB (NF‑κB) signaling pathway was investigated using CXCR4‑siRNA and NF‑κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF‑1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF‑1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post‑transfection with CXCR4 siRNA compared with SDF‑1 stimulation alone. Furthermore, SDF‑1 treatment increased the level of phosphorylated NF‑κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF‑1. Taken together, SDF‑1‑mediated apoptosis was suppressed by NF‑κB inhibition using PDTC. In conclusion, the SDF‑1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF‑κB pathway, thus suggesting that SDF‑1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  13. [Transport of newly synthesized rRNA from the nucleus to the cytoplasm in freely suspended cells of parsley (Petroselinum sativum)].

    Science.gov (United States)

    Seitz, U; Seitz, U

    1972-06-01

    A rapidly labelled rRNA precursor can be detected in callus cells of Petroselinum sativum grown on a liquid synthetic medium. Its molecular weight has been calculated to be 2.3×10(6). This value agrees with that of the rRNA precursor from other plant material. In order to follow the synthesis and processing of rRNA in time and to correlate single steps in this process with cell organelles it was necessary to obtain pure fractions of nuclei and ribosomes. The isolation method for nuclei is given in detail. The nucleic acids are separated on polyacrylamide gels of low acrylamide concentration. Pulse-chase experiments show that the rRNA precursor is split into two fragments within the nucleus: an 18S and a 25S component. The 18S RNA leaves the nucleus rapidly. It is already found quantitatively in the ribosomal fraction after 30-60 min chase. At that time the 25S RNA is still within the nucleus; it appears much later in the ribosomes. Since the increase in ribosomal label occurs simultaneously with the decrease in nuclear label, it is concluded that there is no degradation of 18S RNA within the nucleus. Apparently there are two distinct transport mechanisms with different kinetics for the two RNA components. PMID:24477955

  14. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways.

    Directory of Open Access Journals (Sweden)

    Yujiro Hayashi

    Full Text Available Stem cell factor (mouse: Kitl, human: KITLG and insulin-like growth factor-1 (IGF1, acting via KIT and IGF1 receptor (IGF1R, respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST, the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC, the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2, a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i. GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes.

  15. Membrane-to-nucleus signaling links insulin-like growth factor-1- and stem cell factor-activated pathways.

    Science.gov (United States)

    Hayashi, Yujiro; Asuzu, David T; Gibbons, Simon J; Aarsvold, Kirsten H; Bardsley, Michael R; Lomberk, Gwen A; Mathison, Angela J; Kendrick, Michael L; Shen, K Robert; Taguchi, Takahiro; Gupta, Anu; Rubin, Brian P; Fletcher, Jonathan A; Farrugia, Gianrico; Urrutia, Raul A; Ordog, Tamas

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes. PMID:24116170

  16. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4

    Directory of Open Access Journals (Sweden)

    B. Chen

    2016-01-01

    Full Text Available This study aims to explore the effect of microRNA-21 (miR-21 on the proliferation of human degenerated nucleus pulposus (NP by targeting programmed cell death 4 (PDCD4 tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences, miR-21 inhibitor group (transfected with miR-21 inhibitors, miR-21 mimics group (transfected with miR-21 mimics and PDCD4 siRNA group (transfected with PDCD4 siRNAs. Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05. The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001. In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05. These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05. MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD.

  17. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement.

    Science.gov (United States)

    Hearing, Matthew C; Jedynak, Jakub; Ebner, Stephanie R; Ingebretson, Anna; Asp, Anders J; Fischer, Rachel A; Schmidt, Clare; Larson, Erin B; Thomas, Mark John

    2016-01-19

    Drug-evoked plasticity at excitatory synapses on medium spiny neurons (MSNs) of the nucleus accumbens (NAc) drives behavioral adaptations in addiction. MSNs expressing dopamine D1 (D1R-MSN) vs. D2 receptors (D2R-MSN) can exert antagonistic effects in drug-related behaviors, and display distinct alterations in glutamate signaling following repeated exposure to psychostimulants; however, little is known of cell-type-specific plasticity induced by opiates. Here, we find that repeated morphine potentiates excitatory transmission and increases GluA2-lacking AMPA receptor expression in D1R-MSNs, while reducing signaling in D2-MSNs following 10-14 d of forced abstinence. In vivo reversal of this pathophysiology with optogenetic stimulation of infralimbic cortex-accumbens shell (ILC-NAc shell) inputs or treatment with the antibiotic, ceftriaxone, blocked reinstatement of morphine-evoked conditioned place preference. These findings confirm the presence of overlapping and distinct plasticity produced by classes of abused drugs within subpopulations of MSNs that may provide targetable molecular mechanisms for future pharmacotherapies. PMID:26739562

  18. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  19. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons

    Science.gov (United States)

    Ch'ng, Toh Hean; DeSalvo, Martina; Lin, Peter; Vashisht, Ajay; Wohlschlegel, James A.; Martin, Kelsey C.

    2015-01-01

    Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1) in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation. PMID:26388727

  20. Temporal coding by cochlear nucleus bushy cells in DBA/2J mice with early onset hearing loss.

    Science.gov (United States)

    Wang, Yong; Manis, Paul B

    2006-12-01

    The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also

  1. A gibberellin-induced nuclease is localized in the nucleus of wheat aleurone cells undergoing programmed cell death

    OpenAIRE

    Domínguez, Fernándo; Moreno Onorato, Francisco Javier; Cejudo Fernández, Francisco Javier

    2003-01-01

    The aleurone layer of cereal grains undergoes a gibberellin-regulated process of programmed cell death (PCD) following germination. We have applied a combination of ultrastructural and biochemical approaches to analyze aleurone PCD in intact wheat grains. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay revealed that PCD was initiated in aleurone cells proximal to the embryo and then extended to distal cells. DNA fragmentation and terminal deoxynucleotidyl trans...

  2. Efficient Subcellular Targeting to the Cell Nucleus of Quantum Dots Densely Decorated with a Nuclear Localization Sequence Peptide.

    Science.gov (United States)

    Maity, Amit Ranjan; Stepensky, David

    2016-01-27

    Organelle-targeted drug delivery can enhance the efficiency of the intracellularly acting drugs and reduce their toxicity. We generated core-shell type CdSe-ZnS quantum dots (QDs) densely decorated with NLS peptidic targeting residues using a 3-stage decoration approach and investigated their endocytosis and nuclear targeting efficiencies. The diameter of the generated QDs increased following the individual decoration stages (16.3, 18.9, and 21.9 nm), the ζ-potential became less negative (-33.2, -17.5, and -11.9 mV), and characteristic changes appeared in the FTIR spectra following decoration with the linker and NLS peptides. Quantitative analysis of the last decoration stage revealed that 37.9% and 33.2% of the alkyne-modified NLS groups that were added to the reaction mix became covalently attached or adsorbed to the QDs surface, respectively. These numbers correspond to 63.6 and 55.7 peptides conjugated or adsorbed to a single QD (the surface density of 42 and 37 conjugated and adsorbed peptides per 1000 nm(2) of the QDs surface), which is higher than in the majority of previous studies that reported decoration efficiencies of formulations intended for nuclear-targeted drug delivery. QDs decorated with NLS peptides undergo more efficient endocytosis, as compared to other investigated QDs formulations, and accumulated to a higher extent in the cell nucleus or in close vicinity to it (11.9%, 14.6%, and 56.1% of the QDs endocytosed by an average cell for the QD-COOH, QD-azide, and QD-NLS formulations, respectively). We conclude that dense decoration of QDs with NLS residues increased their endocytosis and led to their nuclear targeting (preferential accumulation in the cells nuclei or in close vicinity to them). The experimental system and research tools that were used in this study allow quantitative investigation of the mechanisms that govern the QDs nuclear targeting and their dependence on the formulation properties. These findings will contribute to the

  3. Construction of a tissue engineered intervertebral disc with high biological activity using an allogeneic intervertebral disc supplemented with transfected nucleus pulposus cells expressing exogenous dopamine beta-hydroxylase.

    Science.gov (United States)

    Bai, M; Wang, Y H; Yin, H P; Li, S W

    2015-09-09

    This study addressed the in vitro construction and biological activity of tissue engineered intervertebral discs with exogenous human dopamine beta-hydroxylase (DBH) nucleus pulposus cells. pSNAV2.0-DBH expression plasmids were utilized to enhance the survival rates of intervertebral disc tissue cells. Various concentrations of transfected nucleus pulposus cells were injected into the discs, and DBH mRNA expression was determined using polymerase chain reaction amplification. Polysaccharide content and total collagen protein content in the engineered disc nucleus pulposus tissue were determined. The visible fluorescence intensities of the 1 x 10(5) and 1 x 10(6) groups vs the 1 x 10(4) group were significantly increased (P 0.05) at 7 days after injection. DBH mRNA expression could be detected in the all but the EGFP control group at 14 days culture. No significant difference was observed in the protein content between the 1 x 10(4) and the control groups at various times, while the protein content was significantly higher in the 1 x 10(5) vs the control and the 1 x 10(4) groups at 7-, 14-, and 21-day cultures. These results demonstrate that a tissue engineered intervertebral disc with high biological activity can be constructed by utilizing allogeneic intervertebral discs stored in liquid nitrogen and a 1 x 10(5) transfected nucleus pulposus cell complex with in vitro culture for 14 days. This model can be used in animal experiments to study the biological activity of the engineered discs.

  4. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  5. Low-concentration uranium enters the HepG2 cell nucleus rapidly and induces cell stress response.

    Science.gov (United States)

    Guéguen, Yann; Suhard, David; Poisson, Clémentine; Manens, Line; Elie, Christelle; Landon, Géraldine; Bouvier-Capely, Céline; Rouas, Caroline; Benderitter, Marc; Tessier, Christine

    2015-12-25

    This study aimed to compare the cell stress effects of low and high uranium concentrations and relate them to its localization, precipitate formation, and exposure time. The time-course analysis shows that uranium appears in cell nuclei as a soluble form within 5 min of exposure, and quickly induces expression of antioxidant and DNA repair genes. On the other hand, precipitate formations began at the very beginning of exposure at the 300-μM concentration, but took longer to appear at lower concentrations. Adaptive response might occur at low concentrations but are overwhelmed at high concentrations, especially when uranium precipitates are abundant.

  6. Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias. Studies on living cells.

    Science.gov (United States)

    Meindl, U; Zhang, D; Hepler, P K

    1994-07-01

    Rhodamine-phalloidin or FITC-phalloidin has been injected in small amounts into living, developing cells of Micrasterias denticulata and the stained microfilaments visualized by confocal laser scanning microscopy. The results reveal that two different actin filament systems are present in a growing cell: a cortical actin network that covers the inner surface of the cell and is extended far into the tips of the lobes in both the growing and the nongrowing semicell; it is also associated with the surface of the chloroplast. The second actin system ensheathes the nucleus at the isthmus-facing side during nuclear migration. Its arrangement corresponds to that of the microtubule system that has been described in earlier electron microscopic investigations. The spatial correspondence between the distribution of actin filaments and microtubules suggests a cooperation between both cytoskeleton elements in generating the motive force for nuclear migration. The function of the cortical actin network is not yet clear. It may be involved in processes like transport and fusion of secretory vesicles and may also function in shaping and anchoring the chloroplast. PMID:7983159

  7. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus.

    Science.gov (United States)

    Pollatzek, Eric; Hitzel, Norma; Ott, Daniela; Raisl, Katrin; Reuter, Bärbel; Gerstberger, Rüdiger

    2016-07-01

    The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the

  8. Interaction with DNA and different effect on the nucleus of cancer cells for copper(II) complexes of N-benzyl di(pyridylmethyl)amine.

    Science.gov (United States)

    Chen, Qiu-Yun; Fu, Hai-Jian; Zhu, Wei-Hua; Qi, Yan; Ma, Zheng-Ping; Zhao, Kai-Di; Gao, Jing

    2011-05-01

    Three new copper(II) complexes of N-benzyl di(pyridylmethyl)amine (phdpa) were synthesized and characterized by spectroscopic methods. The interaction between CT-DNA and the complexes was studied by UV and fluorescence titration methods. It was found that the complex [(phdpa)Cu(H(2)O)Ac)](Ac), with the non-planar aromatic heterocyclic ring ligand (phdpa), showed good anticancer properties and could cause the fragmentation of the nucleus, although its interaction with CT-DNA was weaker than that of 1,10-phenanthroline (phen)-based copper(II) complexes. The anticancer activities of copper(II) complexes with phdpa and phen based ligands are correlated to their binding constants with DNA, but phen-based copper(II) complexes did not cause the nucleus fragmentation of HeLa cells. [(phdpa)Cu(H(2)O)Ac)](Ac) can noticeably decrease the oxygen content of a culture solution and of HeLa cells, which make it a new nucleus and oxygen related anticancer copper(II) complex. Information obtained here would be helpful in the design of new antitumor complexes in oxidative therapy.

  9. A SAP domain-containing protein shuttles between the nucleus and cell membranes and plays a role in adhesion and migration in D. discoideum

    Directory of Open Access Journals (Sweden)

    Jessica S. Kelsey

    2013-02-01

    The AmpA protein reduces cell adhesion, thereby influencing cell migration in Dictyostelium. To understand how ampA influences cell migration, second site suppressors of an AmpA overexpressing cell line were created by REMI mutagenesis. Mutant candidates were identified by their ability to suppress the large plaques that the AmpA overexpressing cells form on bacterial lawns as a result of their increased rate of migration. One suppressor gene, sma, encodes an uncharacterized protein, which contains a SAP DNA-binding domain and a PTEN-like domain. Using sma gene knockouts and Sma-mRFP expressing cell lines, a role for sma in influencing cell migration was uncovered. Knockouts of the sma gene in a wild-type background enhanced chemotaxis. An additional role for Sma in influencing cell–cell adhesion was also demonstrated. Sma protein transitions between cytosolic and nuclear localizations as a function of cell density. In growing cells migrating to folic acid it is localized to regions of actin polymerization and absent from the nucleus. A role for Sma in influencing ampA mRNA levels is also demonstrated. Sma additionally appears to be involved in ampA pathways regulating cell size, actin polymerization, and cell substrate adhesion. We present insights to the SAP domain-containing group of proteins in Dictyostelium and provide evidence of a role for a SAP domain-containing protein shuttling from the nucleus to sites of actin polymerization during chemotaxis to folic acid and influencing the efficiency of migration.

  10. Three-Dimensional Organization of Chromosome Territories and the Human Cell Nucleus: Comparison between simulated Parameters and Experiments

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2000-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal stru

  11. A decrease in the addition of new cells in the nucleus accumbens and prefrontal cortex between puberty and adulthood in male rats.

    Science.gov (United States)

    Staffend, Nancy A; Mohr, Margaret A; DonCarlos, Lydia L; Sisk, Cheryl L

    2014-06-01

    Adolescence involves shifts in social behaviors, behavioral flexibility, and adaptive risk-taking that coincide with structural remodeling of the brain. We previously showed that new cells are added to brain regions associated with sexual behaviors, suggesting that cytogenesis may be a mechanism for acquiring adult-typical behaviors during adolescence. Whether pubertal cell addition occurs in brain regions associated with behavioral flexibility or motivation and whether these patterns differ between pubertal and adult animals had not been determined. Therefore, we assessed patterns of cell proliferation or survival in the prefrontal cortex and nucleus accumbens. Pubertal and adult male rats were given injections of bromo-deoxyuridine (BrdU). To assess cell proliferation, half of the animals from each group were sacrificed 24 h following the last injection. The remaining animals were sacrificed at Day 30 following the last injection to evaluate cell survival. Adult animals had significantly lower densities of BrdU-immunoreactive (ir) cells in the prefrontal cortex, irrespective of post-BrdU survival time, whereas in the nucleus accumbens, adult animals had a lower density of BrdU-ir cells at the short survival time; however, the density of BrdU-ir cells was equivalent in pubertal and adult animals at the longer survival time. These data provide evidence that cell addition during puberty may contribute to the remodeling of brain regions associated with behavioral flexibility and motivation, and this cell addition continues into adulthood, albeit at lower levels. Higher levels of cell proliferation or survival in younger animals may reflect a higher level of plasticity, possibly contributing to the dynamic remodeling of the pubertal brain. PMID:24339170

  12. Nuclear localization of P-glycoprotein is responsible for protection of the nucleus from doxorubicin in the resistant LoVo cell line.

    Science.gov (United States)

    Szaflarski, Witold; Sujka-Kordowska, Patrycja; Januchowski, Radosław; Wojtowicz, Karolina; Andrzejewska, Małgorzata; Nowicki, Michał; Zabel, Maciej

    2013-07-01

    The high expression of P-glycoprotein (P-gp) belongs to one of the most important factors causing multidrug-resistant (MDR) of cancer cells. P-gp is primarily associated with plasma membrane; however, small fraction of that protein is present in the nuclear envelope. Such phenomenon is observed in cancer cells and may result in the selection of MDR cells as the secondary tumor and/or resistant metastasis that significantly shorten patient survival rate. Here, we confirmed nuclear localization of P-gp in resistant LoVo cells and demonstrated its impact on doxorubicin efflux from the nucleus to cytoplasm. Furthermore, we showed that P-gp located at the nuclear envelope might have a different glycoside chain when compared to the form located in the cytoplasm. It suggests that the glycoside chain plays a role in the intracellular trafficking of P-gp and may decide about the destination place in the cell. PMID:23602050

  13. Nuclear localization of P-glycoprotein is responsible for protection of the nucleus from doxorubicin in the resistant LoVo cell line.

    Science.gov (United States)

    Szaflarski, Witold; Sujka-Kordowska, Patrycja; Januchowski, Radosław; Wojtowicz, Karolina; Andrzejewska, Małgorzata; Nowicki, Michał; Zabel, Maciej

    2013-07-01

    The high expression of P-glycoprotein (P-gp) belongs to one of the most important factors causing multidrug-resistant (MDR) of cancer cells. P-gp is primarily associated with plasma membrane; however, small fraction of that protein is present in the nuclear envelope. Such phenomenon is observed in cancer cells and may result in the selection of MDR cells as the secondary tumor and/or resistant metastasis that significantly shorten patient survival rate. Here, we confirmed nuclear localization of P-gp in resistant LoVo cells and demonstrated its impact on doxorubicin efflux from the nucleus to cytoplasm. Furthermore, we showed that P-gp located at the nuclear envelope might have a different glycoside chain when compared to the form located in the cytoplasm. It suggests that the glycoside chain plays a role in the intracellular trafficking of P-gp and may decide about the destination place in the cell.

  14. Impact of Bep or Carboplatin Chemotherapy on Testicular Function and Sperm Nucleus of Subjects with Testicular Germ Cell Tumor.

    Science.gov (United States)

    Ghezzi, Marco; Berretta, Massimiliano; Bottacin, Alberto; Palego, Pierfrancesco; Sartini, Barbara; Cosci, Ilaria; Finos, Livio; Selice, Riccardo; Foresta, Carlo; Garolla, Andrea

    2016-01-01

    Young males have testicular germ cells tumors (TGCT) as the most common malignancy and its incidence is increasing in several countries. Besides unilateral orchiectomy (UO), the treatment of TGCT may include surveillance, radiotherapy, or chemotherapy (CT), basing on tumor histology and stage of disease. It is well known that both radio and CT may have negative effects on testicular function, affecting spermatogenesis, and sex hormones. Many reports investigated these aspects in patients treated with bleomycin, etoposide, and cisplatin (BEP), after UO. In contrast no data are available on the side effects of carboplatin treatment in these patients. We included in this study 212 consecutive subjects who undergone to sperm banking at our Andrology and Human Reproduction Unit after UO for TGCT. Hundred subjects were further treated with one or more BEP cycles (BEP-group), 54 with carboplatin (CARB group), and 58 were just surveilled (S-group). All patients were evaluated for seminal parameters, sperm aneuploidy, sperm DNA, sex hormones, volume of the residual testis at baseline (T0) and after 12 (T1) and 24 months (T2) from UO or end of CT. Seminal parameters, sperm aneuploidies, DNA status, gonadic hormones, and testicular volume at baseline were not different between groups. At T1, we observed a significant reduction of sperm concentration and sperm count in the BEP group versus baseline and versus both Carb and S-group. A significant increase of sperm aneuploidies was present at T1 in the BEP group. Similarly, the same group at 1 had altered sperm DNA integrity and fragmentation compared with baseline, S-group and Carb group. These alterations were persistent after 2 years from the end of BEP treatment. Despite a slight improvement at T2, the BEP group had still higher percentages of sperm aneuploidies than other groups. No impairment of sperm aneuploidies and DNA status were observed in the Carb group both after 1 and 2 years from the end of treatment. Despite

  15. IMPACT OF BEP OR CARBOPLATIN CHEMOTHERAPY ON TESTICULAR FUNCTION AND SPERM NUCLEUS OF SUBJECTS WITH TESTICULAR GERM CELL TUMOR

    Directory of Open Access Journals (Sweden)

    Marco eGhezzi

    2016-05-01

    Full Text Available Young males have testicular germ cells tumours (TGCT as the most common malignancy and its incidence is increasing in several countries. Besides unilateral orchiectomy (UO, the treatment of TGCT may include surveillance, radiotherapy or chemotherapy (CT, basing on tumour histology and stage of disease. It is well known that both radio and CT may have negative effects on testicular function, affecting spermatogenesis and sex hormones. Many reports investigated these aspects in patients treated with bleomycin, etoposide and cisplatin (BEP, after UO. In contrast no data are available on the side effects of carboplatin treatment in these patients. We included in this study 212 consecutive subjects who undergone to sperm banking at our Andrology and Human Reproduction Unit after UO for TGCT. Hundred subjects were further treated with one or more BEP cycles (BEP-group, 54 with carboplatin (Carb group and 58 were just surveilled (S-group. All patients were evaluated for seminal parameters, sperm aneuploidy, sperm DNA, sex hormones, volume of the residual testis at baseline (T0 and after 12 (T1 and 24 months (T2 from UO or end of CT. Seminal parameters, sperm aneuploidies, DNA status, gonadic hormones and testicular volume at baseline were not different between groups. At T1 we observed a significant reduction of sperm concentration and sperm count in the BEP group versus baseline and versus both Carb and S- group. A significant increase of sperm aneuploidies was present at T1 in the BEP group. Similarly, the same group at 1 had altered sperm DNA integrity and fragmentation compared with baseline, S group and Carb group. These alterations were persistent after two years from the end of BEP treatment. Despite a slight improvement at T2, the BEP group had still higher percentages of sperm aneuploidies than other groups. No impairment of sperm aneuploidies and DNA status were observed in the Carb group both after one and two years from the end of treatment

  16. Amaranth lunasin-like peptide internalizes into the cell nucleus and inhibits chemical carcinogen-induced transformation of NIH-3T3 cells.

    Science.gov (United States)

    Maldonado-Cervantes, Enrique; Jeong, Hyung Jin; León-Galván, Fabiola; Barrera-Pacheco, Alberto; De León-Rodríguez, Antonio; González de Mejia, Elvira; de Lumen, Ben O; Barba de la Rosa, Ana P

    2010-09-01

    Because an unbalanced diet is an important risk factor for several illnesses, interest has increased in finding novel health-promoting foods. Amaranth produces seeds that not only have substantial nutritional properties but that also contain phytochemical compounds as rutin and nicotiflorin and peptides with antihypertensive and anticarcinogenic activities. We report that a cancer-preventive peptide in amaranth has activities similar to those of soybean lunasin. The amaranth lunasin-like peptide, however, requires less time than the soybean lunasin to internalize into the nucleus of NIH-3T3 cells, and inhibits histone acetylation (H(3) and H(4) in a 70 and 77%, respectively). The amaranth lunasin-like peptide inhibited the transformation of NIH-3T3 cells to cancerous foci. The open reading frame (ORF) of amaranth lunasin corresponds to a bifunctional inhibitor/lipid-transfer protein (LTP). LTPs are a family of proteins that in plants are implicated in different functions, albeit all linked to developmental processes and biotic and abiotic stress resistance. Our results open new intriguing questions about the function of lunasin in plants and support that amaranth is a food alternative containing natural peptides with health-promoting benefits.

  17. In silico prediction of escherichia coli proteins targeting the host cell nucleus, with special reference to their role in colon cancer etiology.

    Science.gov (United States)

    Khan, Abdul Arif

    2014-06-01

    The potential role of Escherichia coli in the development of colorectal carcinoma (CRC) has been investigated in many studies. Although the exact mechanism is not clear, chronic inflammation caused by E. coli and other related events are suggested as possible causes behind E. coli-induced colon cancer. It has been found that CRC cells, but not normal cells, are colonized by an intracellular form of E. coli. We predicted nuclear targeting of bacterial proteins in the host cell through computational tools nuclear localization signal (NLS) mapper and balanced subcellular localization predictor (BaCeILo). During intracellular E. coli residence, such targeting is highly likely and may have a possible role in colon cancer etiology. We observed that several gene expression-associated proteins of E. coli can migrate to the host nucleus during intracellular infections. This situation provides an opportunity for competitive interaction of host and pathogen proteins with similar cellular substrates, thereby increasing the chances of development of colon cancer. Moreover, the results indicated that proteins localized in the membrane of E. coli mostly act as secretary proteins in host cells. No exact correlation was observed between NLS prediction and nuclear localization prediction by BaCeILo. This is partly because of a number of reasons, including that only 30% of nuclear proteins carry NLS and that proteins <40 kDa molecular weight can passively target the host nucleus. This study concludes that detection of gene expression-specific E. coli proteins and their targeting of the nucleus may have a profound impact on CRC etiology. PMID:24611522

  18. 微柱对细胞核形态影响的研究%Studys on Effects of Micropillars on Cell Nucleus Shapes

    Institute of Scientific and Technical Information of China (English)

    安燕飞; 王进义

    2015-01-01

    目的::探讨微柱对3种细胞细胞核形态的影响。方法:在高度10μm,直径18μm,间距15μm 的 PDMS 微柱上分别培养3种细胞(表皮细胞、内皮细胞和成纤维细胞),24 h 后对其细胞核形态参数包括平均面积、周长、纵横比以及圆度值进行测量,并与其在平面上的相应值进行比较分析。结果:微柱上表皮细胞和内皮细胞的细胞核变形明显,核平均面积较平面上小很多,出现了弯月形和哑铃形;而成纤维细胞核则变形较小,仍为椭圆形,只是纵横比增大。结论:本实验采用的微柱尺度会使得3种细胞有不同程度的细胞核变形。%Objective:Effects of micropillar on cell nucleus shapes of three different kinds of cells was discussed.Methods:First, these three different kinds of cells(epithelial cell,fibroblast and endothelial cell)were cultured on an array of PDMS micropillars which were 10 μm in height,18 μm in diameter and 15 μm in edge to edge spacing.Then,a quantitative and comparative analysis of the cell nucleus shapes was given by measuring the average area,aspect ratio and their circularity of the cells both on the micropillars and on the flat substrate.Results:Distinct nuclear deformation such as crescent,and dumbbell was observed of epithelial cells and endothelial cells on the micropillar substrate and their nuclear average areas were much smaller than that of the the cells on the flat substrate,when nucleus shape of fibroblasts was still in oval but just with a larger aspect ratio.Conclusion:Different degree of nuclear deformation would be induced by the micropillars that we used in this paper.

  19. Cytoskeleton, endoplasmic reticulum and nucleus alterations in CHO-K1 cell line after Crotalus durissus terrificus (South American rattlesnake venom treatment

    Directory of Open Access Journals (Sweden)

    B. P. Tamieti

    2007-01-01

    Full Text Available Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.

  20. Insulin Phosphorylates Tyrosine Residue 464 of Tub and Translocates Tubby into the Nucleus in HIRcB Cells

    OpenAIRE

    Kim, Jin Wook; Kim, Hyeon Soo; Kim, Sang Dae; Park, Jung Yul

    2014-01-01

    Background The tubby protein has a motif that might be relevant for its action in the insulin signaling pathway. Previous studies have indicated that tubby undergoes phosphorylation on tyrosine residues in response to several stimuli and is known to localize in the nucleus as well as in the plasma membrane. However, the relationship between phosphorylation and nuclear translocation is not well understood. Here, we report that insulin directly phosphorylates tubby, which translocates into the ...

  1. Penetration of short fluorescence-labeled peptides into the nucleus in HeLa cells and in vitro specific interaction of the peptides with deoxyribooligonucleotides and DNA.

    Science.gov (United States)

    Fedoreyeva, L I; Kireev, I I; Khavinson, V Kh; Vanyushin, B F

    2011-11-01

    Marked fluorescence in cytoplasm, nucleus, and nucleolus was observed in HeLa cells after incubation with each of several fluorescein isothiocyanate-labeled peptides (epithalon, Ala-Glu-Asp-Gly; pinealon, Glu-Asp-Arg; testagen, Lys-Glu-Asp-Gly). This means that short biologically active peptides are able to penetrate into an animal cell and its nucleus and, in principle they may interact with various components of cytoplasm and nucleus including DNA and RNA. It was established that various initial (intact) peptides differently affect the fluorescence of the 5,6-carboxyfluorescein-labeled deoxyribooligonucleotides and DNA-ethidium bromide complexes. The Stern-Volmer constants characterizing the degree of fluorescence quenching of various single- and double-stranded fluorescence-labeled deoxyribooligonucleotides with short peptides used were different depending on the peptide primary structures. This indicates the specific interaction between short biologically active peptides and nucleic acid structures. On binding to them, the peptides discriminate between different nucleotide sequences and recognize even their cytosine methylation status. Judging from corresponding constants of the fluorescence quenching, the epithalon, pinealon, and bronchogen (Ala-Glu-Asp-Leu) bind preferentially with deoxyribooligonucleotides containing CNG sequence (CNG sites are targets for cytosine DNA methylation in eukaryotes). Epithalon, testagen, and pinealon seem to preferentially bind with CAG- but bronchogen with CTG-containing sequences. The site-specific interactions of peptides with DNA can control epigenetically the cell genetic functions, and they seem to play an important role in regulation of gene activity even at the earliest stages of life origin and in evolution.

  2. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells.

    Directory of Open Access Journals (Sweden)

    Enken Drecoll

    Full Text Available BACKGROUND: Alpha-particle emitting isotopes are effective novel tools in cancer therapy, but targeted delivery into tumors is a prerequisite of their application to avoid toxic side effects. Peritoneal carcinomatosis is a widespread dissemination of tumors throughout the peritoneal cavity. As peritoneal carcinomatosis is fatal in most cases, novel therapies are needed. F3 is a tumor homing peptide which is internalized into the nucleus of tumor cells upon binding to nucleolin on the cell surface. Therefore, F3 may be an appropriate carrier for alpha-particle emitting isotopes facilitating selective tumor therapies. PRINCIPAL FINDINGS: A dimer of the vascular tumor homing peptide F3 was chemically coupled to the alpha-emitter (213Bi ((213Bi-DTPA-[F3](2. We found (213Bi-DTPA-[F3](2 to accumulate in the nucleus of tumor cells in vitro and in intraperitoneally growing tumors in vivo. To study the anti-tumor activity of (213Bi-DTPA-[F3](2 we treated mice bearing intraperitoneally growing xenograft tumors with (213Bi-DTPA-[F3](2. In a tumor prevention study between the days 4-14 after inoculation of tumor cells 6x1.85 MBq (50 microCi of (213Bi-DTPA-[F3](2 were injected. In a tumor reduction study between the days 16-26 after inoculation of tumor cells 6x1.85 MBq of (213Bi-DTPA-[F3](2 were injected. The survival time of the animals was increased from 51 to 93.5 days in the prevention study and from 57 days to 78 days in the tumor reduction study. No toxicity of the treatment was observed. In bio-distribution studies we found (213Bi-DTPA-[F3](2 to accumulate in tumors but only low activities were found in control organs except for the kidneys, where (213Bi-DTPA-[F3](2 is found due to renal excretion. CONCLUSIONS/SIGNIFICANCE: In conclusion we report that (213Bi-DTPA-[F3](2 is a novel tool for the targeted delivery of alpha-emitters into the nucleus of tumor cells that effectively controls peritoneal carcinomatosis in preclinical models and may also be

  3. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    Science.gov (United States)

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  4. Differentiation of adipose-derived stem cells toward nucleus pulposuslike cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhicheng; Li Fang; Tian Haiquan; Guan Kai; Zhao Guangmin; Shan Jianlin; Ren Dajiang

    2014-01-01

    Background Injectable three-dimensional (3D) scaffolds have the advantages of fluidity and moldability to fill irregularshaped defects,simple incorporation of bioactive factors,and limited surgical invasiveness.Adipose-derived stem cells (ADSCs) are multipotent and can be differentiated toward nucleus pulposus (NP)-Iike cells.A hypoxic environment may be important for differentiation to NP-like cells because the intervertebral disc is an avascular tissue.Hence,we investigated the induction effects of hypoxia and an injectable 3D chitosan-alginate (C/A) gel scaffold on ADSCs.Methods The C/A gel scaffold consisted of medical-grade chitosan and alginate.Gel porosity was calculated by liquid displacement method.Pore microstructure was analyzed by light and scanning electron microscopy.ADSCs were isolated and cultured by conventional methods.Passage 2 BrdU-labeled ADSCs were co-cultured with the C/A gel.ADSCs were divided into three groups (control,normoxia-induced,and hypoxia-induced groups).In the control group,cells were cultured in 10% FBS/DMEM.Hypoxia-induced and normoxia-induced groups were induced by adding transforming growth factor-β1,dexamethasone,vitamin C,sodium pyruvate,proline,bone morphogenetic protein-7,and 1% ITS-plus to the culture medium and maintaining in 2% and 20% O2,respectively.Histological and morphological changes were observed by light and electron microscopy.ADSCs were characterized by flow cytometry.Cell viability was investigated by BrdU incorporation.Proteoglycan and type Ⅱ collagen were measured by safranin O staining and the Sicool method,respectively.mRNA expression of hypoxia-inducing factor-1α (HIF-1α),aggrecan,and Type Ⅱ collagen was determined by reverse transcription-polymerase chain reaction.Results C/A gels had porous exterior surfaces with 80.57% porosity and 50-200 μm pore size.Flow cytometric analysis of passage 2 rabbit ADSCs showed high CD90 expression,while CD45 expression was very low.The morphology of

  5. 3D/4D architecture of chromosomal break point regions in the cell nucleus following irradiation of normal cells and tumor cells; 3D/4D Architektur von chromosomalen Bruchpunktregionen im Zellkern nach Bestrahlung von Normalzellen und Tumorzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, M.; Cremer, C.; Friedl, A.; Dollinger, G.; Loebrich, M.; Friedland, W.

    2015-01-15

    The development of an effective analytical methodology for a correct description of oncogenic chromosomal aberrations is the challenge of medical radiobiology with respect to preventive therapeutic methods. Scope of the project was a better understanding of the behavior of break point regions dependent on the genome loci, the chromatin folding, the involved repair proteins and the beam quality with respect to an improvement and an efficient prognosis of the health consequences following radiation exposure. New microscopic insights in the normal cell nucleus are supposed to allow a better understanding of the spatial interactions on a molecular scale.

  6. ChAcNLS, a Novel Modification to Antibody-Conjugates Permitting Target Cell-Specific Endosomal Escape, Localization to the Nucleus, and Enhanced Total Intracellular Accumulation.

    Science.gov (United States)

    Beaudoin, Simon; Rondeau, Andreanne; Martel, Olivier; Bonin, Marc-Andre; van Lier, Johan E; Leyton, Jeffrey V

    2016-06-01

    The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high

  7. THE MORPHOLOGICAL CHANGES IN MUSCLE SPINDLES AND ALTERATIONS IN CELL ACTIVITY OF THE RATS' RED NUCLEUS AFTER 2 WEEKS' SIMULATED WEIGHTLESSNESS

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongjin; Fan Xiaoli; Wu Sudi; Li Qiang

    2006-01-01

    Objective To study the morphological changes of soleus muscle spindle and electrical activity of neurons in Red Nucleus(RN) of the rat after 2 weeks' simulated weightlessness, and to reveal the interaction between proprioceptive inputs of muscle spindles and reciprocal alterations in RN under simulated weightlessness. Methods Twenty female rats were exposed to weightlessness simulated by tail-suspension for 14 days (SW-14d). Body weight(200-220g) matched female rats were control group(Con). The morphological changes in isolated muscle spindle of soleus muscle, the discharges of red nucleus neurons were observed after 14d tail-suspensions by silver staining and extracellular recording respectively. Results Compared with control group ,the nerve ending of muscle spindle in SW-14d was distorted, degenerated and dissolved; the diameters of intrafusal fibers and capsule in equatorial region of soleus muscle spindles were diminished(P<0.05). The spontaneous cell activity and discharge of RN neurons (spikes/s) induced by afferent firing from muscle spindles after injection of succinylcholine were reduced after 2 weeks' simulated weightlessness respectively (18.44±5.96 vs. 10.19±6.88, 32.50±8.08 vs. 16.86±5.97, P<0.01). Conclusion The degeneration of muscle spindle induced by simulated weightlessness may be one of the causes that led to alterations in discharges of RN.

  8. CS/PAA@TPGS/PLGA nanoparticles with intracellular pH-sensitive sequential release for delivering drug to the nucleus of MDR cells.

    Science.gov (United States)

    Wang, Ying-Ying; Zhang, Dan-Dan; Kong, Yan-Yan; Shao, Luan-Luan; Zhang, Fen-Yi; Gao, Yu; Mu, Xu; Wang, Jie; Li, Hao-Fan; Yu, Shu-Qin; Xu, Qian

    2016-09-01

    Development of novel nano-drug delivery systems (NDDS) that can transport anticancer drugs into cell nuclei is still a highly desirable strategy for reversing multi-drug resistance (MDR) in cancer therapy. Herein, we designed and prepared a novel NDDS, designated S@L NPs, in which several smaller nanoparticles are contained within a larger nanoparticle. Our S@L NPs (CS/PAA/VP-16@TPGS/PLGA NPs) possess a structure in which smaller nanoparticles (Chitosan-Poly(acrylic acid) nanoparticles, CS/PAA NPs) containing the drug etoposide (VP-16) are loaded within a larger nanoparticle (Vitamin E d-a-tocopheryl polyethylene glycol 1000 succinate-modified poly(lactic-co-glycolic acid) nanoparticles, TPGS/PLGA NPs). The system utilizes intracellular pH gradients to achieve pH-sensitive sequential release within different intracellular domains of MDR cells. S@L NPs could be triggered to degrade and release CS/PAA/VP-16 NPs in the acid environment of the cytosol, endosomes or lysosomes, and CS/PAA/VP-16 NPs were capable of entering the nucleus through nucleopores. It is significant that CS/PAA/VP-16 NPs exhibit disaggregation in the alkaline environment of the nucleus and thereby release the contained anticancer drug. Further mechanistic studies showed that CS/PAA/VP-16 NPs escaped retention and degradation within lysosomes and protected the drug from P-glycoprotein-induced efflux. Simultaneously, S@L NPs enhanced the anticancer effect of the loaded drug by inducing autophagy and apoptosis of MDR cells. This novel NDDS may provide a promising platform for nuclear drug delivery for reversing MDR. PMID:27289313

  9. The Significance of Studying the Origin of the Cell Nucleus and the Way for Studying%细胞核起源研究的意义和研究途径的探讨

    Institute of Scientific and Technical Information of China (English)

    李靖炎

    2001-01-01

    The cell nucleus as the controller of all genetic and physiological activities within the cell,is the most prominent marker of eukaryotic cells.The formation of the cell nucleus is the key event during the origin of eukaryotic cells.The first appearance of the primitive cell nucleus indicates the emergence of the first eukaryotic cell.The research on the origin of the cell nucleus not only enriches the modern cell biology and evolutionary biology,but might also even influence the further development of the molecular cell biology by stimulating cell biologists to consider the significance of the viewpoint of evolution to cell researches.   However,for a long time,on the origin of the cell nucleus there were only several reckless and assumptions and a few earnest efforts which were unsuccessful or only indirectly related to the formation of the nucleus.One of the main reasons for this situation seems to be the lack of a practical way for the study.   Through searching for a long time we found a way.The essential point of the way is to consider the comprehension of the primitive nucleus as the key link for understanding the whole process of and early evolution of the cell nucleus.We have already known that the prokaryotic ancestor of eukaryotes must be one kind of ancient archaea (Li,1999).The primitive cell nucleus should be an intermediate link between the archaeal nucleoid and the typical cell nucleus.In order to obtain some features of the original nucleus,We' d better study the most primitive protists we can find today and investigate all aspects of their cell nucleus thoroughly.Then,combined with the present knowledge on archaea we would be able to propose a hypothetical model for the primitive cell nucleus,and arrange various possible experiments to examine it from various aspects in order to test,to modify,to improve it,or replace it with a new one.Along this way,we would finally obtain a convincing model of the primitive cell

  10. Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells ‘feel’ outside and in?

    OpenAIRE

    Buxboim, Amnon; Ivanovska, Irena L.; Discher, Dennis E.

    2010-01-01

    Cellular organization within a multicellular organism requires that a cell assess its relative location, taking in multiple cues from its microenvironment. Given that the extracellular matrix (ECM) consists of the most abundant proteins in animals and contributes both structure and elasticity to tissues, ECM probably provides key physical cues to cells. In vivo, in the vicinity of many tissue cell types, fibrous characteristics of the ECM are less discernible than the measurably distinct elas...

  11. Human Tissue Factor Pathway Inhibitor-2 is Internalized by Cells and Translocated to the Nucleus by the Importin System

    OpenAIRE

    Kempaiah, Prakasha; Chand, Hitendra S.; Kisiel, Walter

    2008-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a serine proteinase inhibitor that induces caspase-mediated apoptosis when offered to a variety of tumor cells. In order to investigate the mechanism of TFPI-2-induced apoptosis, we initially studied the uptake and trafficking of TFPI-2 by HT-1080 cells. Exogenously offered TFPI-2 was rapidly internalized and distributed in both the cytosolic and nuclear fractions. Nuclear localization of TFPI-2 was also detected in a variety of endothelial cells ...

  12. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype.

    Science.gov (United States)

    Zhou, Xiaopeng; Tao, Yiqing; Wang, Jingkai; Liu, Dongyu; Liang, Chengzhen; Li, Hao; Chen, Qixin

    2016-07-01

    Type II collagen is reported to have the capability of guiding adipose-derived stem cells (ADSCs) to differentiate towards a nucleus pulposus (NP)-like phenotype. So this study aimed to establish a three-dimensional (3D) collagen scaffold using N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide and N-hydroxysuccinimide (EDAC/NHS) to increase the efficiency of ADSC differentiation into NP-like cells. Physical properties, such as porosity, biodegradation, and microstructure, and biological characteristics such as cytotoxicity, cell proliferation, and expression of relevant genes and proteins were measured to evaluate the efficacy of different scaffolds. Collagen scaffolds cross-linked with EDAC/NHS exhibited higher biological stability, better spatial structure, and higher gene and protein expression of functional markers such as aggrecan, SOX9 and COL2 than those of other groups. Based on the results, freeze-dried type II collagen cross-linked with EDAC/NHS formed the best 3D scaffold, for inducing ADSC proliferation and differentiation toward a NP-like phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1687-1693, 2016. PMID:26940048

  13. Levofloxacin increases the effect of serum deprivation on anoikis of rat nucleus pulposus cells via Bax/Bcl-2/caspase-3 pathway.

    Science.gov (United States)

    Yang, Si-Dong; Bai, Zhi-Long; Zhang, Feng; Ma, Lei; Yang, Da-Long; Ding, Wen-Yuan

    2014-12-01

    Levofloxacin, a fluoroquinolone, is a widely-used and effective antibiotic. However, various adverse side effects are associated with levofloxacin. The purpose of this study was to further explore the effects of levofloxacin on rat nucleus pulposus cells (NPCs). Inverted phase-contrast microscopy, flow cytometry and caspase-3 activity assays were used and revealed that serum deprivation induced apoptosis, which was markedly increased by levofloxacin in a dose-dependent manner. Simultaneously, levofloxacin decreased cell binding to type II collagen (COL2). Thus, levofloxacin-induced apoptosis exhibits characteristics of anoikis, the process by which cell death is triggered by separation from the extracellular matrix, which contains COL2. Furthermore, real-time quantitative RT-PCR was used to further confirm that levofloxacin downregulates COL2 expression in a dose-dependent manner. At last, western blot was used to find that levofloxacin increased the ratio of Bax/Bcl-2 and active caspase-3 in a dose-dependent manner. Levofloxacin therefore increases the effects of serum deprivation on anoikis by downregulating COL2 in rat NPCs in vitro via Bax/Bcl-2/caspase-3 pathway. This research provides a novel insight into the mechanisms of levofloxacin-induced toxicity and may potentially lead to a better understanding of the clinical effects of levofloxacin, especially in terms of intervertebral disc degeneration. PMID:25224805

  14. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Directory of Open Access Journals (Sweden)

    Xiaofei Cheng

    2016-01-01

    Full Text Available Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM. Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9, matrix metalloproteinase 3 (MMP-3, and tissue inhibitor of metalloproteinase 1 (TIMP-1, was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  15. Cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator muscle are located in the mesencephalic trigeminal nucleus in rats.

    Science.gov (United States)

    Fujita, Kenya; Matsuo, Kiyoshi; Yuzuriha, Shunsuke; Kawagishi, Kyutaro; Moriizumi, Tetsuji

    2012-12-01

    Since the levator and frontalis muscles lack interior muscle spindles despite being antigravity mixed muscles to involuntarily sustain eyelid opening and eyebrow lifting, this study has proposed a hypothetical mechanism to compensate for this anatomical defect. The voluntary contraction of fast-twitch fibres of the levator muscle stretches the mechanoreceptors in Müller's muscle to evoke proprioception, which continuously induces reflex contraction of slow-twitch fibres of the levator and frontalis muscles. This study confirmed the presence of cell bodies of the trigeminal proprioceptive neurons that transmit reflex contraction of the levator and frontalis muscles. After confirming that severing the trigeminal proprioceptive fibres that innervate the mechanoreceptors in Müller's muscle induced ipsilateral eyelid ptosis, Fluorogold was applied as a tracer to the proximal stump of the trigeminal proprioceptive nerve in rats. Fluorogold labelled the cell bodies of the trigeminal proprioceptive neurons, not in any regions of the rat brain including the trigeminal ganglion, but in the ipsilateral mesencephalic trigeminal nucleus neighbouring the locus ceruleus. Some Fluorogold particles accumulated in the area of the locus ceruleus. The trigeminal proprioceptive neurons could be considered centrally displaced ganglion cells to transmit afferent signal from the mechanoreceptors in Müller's muscle to the mesencephalon, where they may be able to make excitatory synaptic connections with both the oculomotor neurons and the frontalis muscle motoneurons for the involuntary coordination of the eyelid and eyebrow activities, and potentially to the locus ceruleus.

  16. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells.

    Science.gov (United States)

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying; Zhao, Jie

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism. PMID:27635402

  17. High Glucose-Induced Oxidative Stress Mediates Apoptosis and Extracellular Matrix Metabolic Imbalances Possibly via p38 MAPK Activation in Rat Nucleus Pulposus Cells

    Science.gov (United States)

    Cheng, Xiaofei; Ni, Bin; Zhang, Feng; Hu, Ying

    2016-01-01

    Objectives. To investigate whether high glucose-induced oxidative stress is implicated in apoptosis of rat nucleus pulposus cells (NPCs) and abnormal expression of critical genes involved in the metabolic balance of extracellular matrix (ECM). Methods. NPCs were cultured with various concentrations of glucose to detect cell viability and apoptosis. Cells cultured with high glucose (25 mM) were untreated or pretreated with N-acetylcysteine or a p38 MAPK inhibitor SB 202190. Reactive oxygen species (ROS) production was evaluated. Activation of p38 MAPK was measured by Western blot. The expression of ECM metabolism-related genes, including type II collagen, aggrecan, SRY-related high-mobility-group box 9 (Sox-9), matrix metalloproteinase 3 (MMP-3), and tissue inhibitor of metalloproteinase 1 (TIMP-1), was analyzed by semiquantitative RT-PCR. Results. High glucose reduced viability of NPCs and induced apoptosis. High glucose resulted in increased ROS generation and p38 MAPK activation. In addition, it negatively regulated the expression of type II collagen, aggrecan, Sox-9, and TIMP-1 and positively regulated MMP-3 expression. These results were changed by pretreatment with N-acetylcysteine or SB 202190. Conclusions. High glucose might promote apoptosis of NPCs, trigger ECM catabolic pathways, and inhibit its anabolic activities, possibly through a p38 MAPK-dependent oxidative stress mechanism.

  18. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-κB and JNK inhibition.

    Science.gov (United States)

    Xu, Kang; Chen, Weijian; Wang, Xiaofei; Peng, Yan; Liang, Anjing; Huang, Dongsheng; Li, Chunhai; Ye, Wei

    2015-09-01

    Proteoglycan degradation contributing to the pathogenesis of intervertebral disc (IVD) degeneration is induced by inflammatory cytokines, such as tumor necrosis factor‑α (TNF‑α) and interleukin‑1β (IL‑1β). Cell autophagy exists in degenerative diseases, including osteoarthritis and intervertebral disc degeneration. However, the autophagy induced by TNF‑α and IL‑1β and the corresponding molecular mechanism appear to be cell‑type dependent. The effect and mechanism of autophagy regulated by TNF‑α and IL‑1β in IVDs remains unclear. Additionally, the impact of autophagy on the catabolic effect in inflammatory conditions also remains elusive. In the present study, autophagy activator and inhibitor were used to demonstrate the impact of autophagy on the catabolic effect induced by TNF‑α. A critical role of autophagy was identified in rat nucleus pulposus (NP) cells: Inhibition of autophagy suppresses, while activation of autophagy enhances, the catabolic effect of cytokines. Subsequently, the autophagy‑related gene expression in rat NP cells following TNF‑α and IL‑1β treatment was observed using immunofluorescence, quantitative polymerase chain reaction and western blot analysis; however, no association was present. In addition, nuclear factor κB (NF‑κB), c‑Jun N‑terminal kinase (JNK), extracellular signal‑regulated kinases and p38 mitogen‑activated protein kinase inhibitors and TNF‑α were used to determine the molecular mechanism of autophagy during the inflammatory conditions, and only the NF‑κB and JNK inhibitor were found to enhance the autophagy of rat NP cells. Finally, IKKβ knockdown was used to further confirm the effect of the NF‑κB signal on human NP cells autophagy, and the data showed that IKKβ knockdown upregulated the autophagy of NP cells during inflammatory conditions.

  19. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus

    Directory of Open Access Journals (Sweden)

    Jasmin Luc

    2010-12-01

    Full Text Available Abstract Background Glial cells have been shown to directly participate to the genesis and maintenance of chronic pain in both the sensory ganglia and the central nervous system (CNS. Indeed, glial cell activation has been reported in both the dorsal root ganglia and the spinal cord following injury or inflammation of the sciatic nerve, but no data are currently available in animal models of trigeminal sensitization. Therefore, in the present study, we evaluated glial cell activation in the trigeminal-spinal system following injection of the Complete Freund's Adjuvant (CFA into the temporomandibular joint, which generates inflammatory pain and trigeminal hypersensitivity. Results CFA-injected animals showed ipsilateral mechanical allodynia and temporomandibular joint edema, accompanied in the trigeminal ganglion by a strong increase in the number of GFAP-positive satellite glial cells encircling neurons and by the activation of resident macrophages. Seventy-two hours after CFA injection, activated microglial cells were observed in the ipsilateral trigeminal subnucleus caudalis and in the cervical dorsal horn, with a significant up-regulation of Iba1 immunoreactivity, but no signs of reactive astrogliosis were detected in the same areas. Since the purinergic system has been implicated in the activation of microglial cells during neuropathic pain, we have also evaluated the expression of the microglial-specific P2Y12 receptor subtype. No upregulation of this receptor was detected following induction of TMJ inflammation, suggesting that any possible role of P2Y12 in this paradigm of inflammatory pain does not involve changes in receptor expression. Conclusions Our data indicate that specific glial cell populations become activated in both the trigeminal ganglia and the CNS following induction of temporomandibular joint inflammation, and suggest that they might represent innovative targets for controlling pain during trigeminal nerve sensitization.

  20. In vitro culture of mouse nucleus pulposus cells of intervertebral disc by multiple enzymatic digestions%多次胶原酶消化法培养小鼠椎间盘髓核细胞

    Institute of Scientific and Technical Information of China (English)

    张兴凯; 曹鹏; 王君; 梁裕; 吴文坚

    2011-01-01

    BACKGROUND: In vitro culture of nucleus pulposus cells of intervertebral disc is an important method to study degeneration of intervertebral disc. However, it is difficult to culture nucleus pulposus cells in vitro because the intervertebral disc is an avascular organ and nucleus pulposus cells poorly differentiate and proliferate.OBJECTIVE: To establish the method for in vitro culture of nucleus pulposus cells of intervertebral disc, and provide a reliable tool for research of phenotype changes of nucleus pulposus cells in degenerative disc and disc cell transplantation for treatment of degenerative disc diseases.METHODS: Mouse nucleus pulposus tissue was collected and repeatedly digested using collagenase. Cells were cultured and subcultured. The secretion of collagen Ⅱ and aggrecan of passage 2 cells were detected by immunohistochemistry and RT -PCR,The results were compared with other types of cells.RESULTS AND CONCLUSION: Nucleus pulposus cells of intervertebral disc exhibit a chondrocyte-like shape after adhesion.Immunohistochemistry study showed that the cells were positive for collagen Ⅱ and aggrecan staining. RT -PCR study showed that secretions of collagen Ⅱ and aggrecan in cultured cells were equal to those of chondrocyes and had significant difference from those of osteoblasts and fibroblasts. Multiple enzymatic digestions of nucleus pulposus can release a large amount of pure nucleus pulposus cells which had stable phenotype and can settle basis for research and treatment of intervertebal disc diseases.%背景:椎间盘为无血运组织,椎间盘髓核细胞为分化终末细胞,细胞增殖能力较差,体外培养难度较大.目的:探索小鼠椎间盘髓核细胞体外分离培养的方法.方法:取小鼠椎间盘髓核组织,使用多次胶原酶消化的方法,分离培养髓核组织细胞,接种,传代,取第2代细胞,分别采用免疫细胞化学和RT-PCR方法检测椎间盘髓核细胞特征性分泌物Ⅱ型胶原和聚合蛋白

  1. A pericentrin-related protein homolog in Aspergillus nidulans plays important roles in nucleus positioning and cell polarity by affecting microtubule organization.

    Science.gov (United States)

    Chen, Peiying; Gao, Rongsui; Chen, Shaochun; Pu, Li; Li, Pin; Huang, Ying; Lu, Ling

    2012-12-01

    Pericentrin is a large coiled-coil protein in mammalian centrosomes that serves as a multifunctional scaffold for anchoring numerous proteins. Recent studies have linked numerous human disorders with mutated or elevated levels of pericentrin, suggesting unrecognized contributions of pericentrin-related proteins to the development of these disorders. In this study, we characterized AnPcpA, a putative homolog of pericentrin-related protein in the model filamentous fungus Aspergillus nidulans, and found that it is essential for conidial germination and hyphal development. Compared to the hyphal apex localization pattern of calmodulin (CaM), which has been identified as an interactive partner of the pericentrin homolog, GFP-AnPcpA fluorescence dots are associated mainly with nuclei, while the accumulation of CaM at the hyphal apex depends on the function of AnPcpA. In addition, the depletion of AnPcpA by an inducible alcA promoter repression results in severe growth defects and abnormal nuclear segregation. Most interestingly, in mature hyphal cells, knockdown of pericentrin was able to significantly induce changes in cell shape and cytoskeletal remodeling; it resulted in some enlarged compartments with condensed nuclei and anucleate small compartments as well. Moreover, defects in AnPcpA significantly disrupted the microtubule organization and nucleation, suggesting that AnPcpA may affect nucleus positioning by influencing microtubule organization.

  2. Modulation of synaptic potentials and cell excitability by dendritic KIR and KAS channels in nucleus accumbens medium spiny neurons: A computational study

    Indian Academy of Sciences (India)

    Jessy John; Rohit Manchanda

    2011-06-01

    The nucleus accumbens (NAc), a critical structure of the brain reward circuit, is implicated in normal goal-directed behaviour and learning as well as pathological conditions like schizophrenia and addiction. Its major cellular substrates, the medium spiny (MS) neurons, possess a wide variety of dendritic active conductances that may modulate the excitatory post synaptic potentials (EPSPs) and cell excitability. We examine this issue using a biophysically detailed 189-compartment stylized model of the NAc MS neuron, incorporating all the known active conductances. We find that, of all the active channels, inward rectifying K+ (KIR) channels play the primary role in modulating the resting membrane potential (RMP) and EPSPs in the down-state of the neuron. Reduction in the conductance of KIR channels evokes facilitatory effects on EPSPs accompanied by rises in local input resistance and membrane time constant. At depolarized membrane potentials closer to up-state levels, the slowly inactivating A-type potassium channel (KAs) conductance also plays a strong role in determining synaptic potential parameters and cell excitability. We discuss the implications of our results for the regulation of accumbal MS neuron biophysics and synaptic integration by intrinsic factors and extrinsic agents such as dopamine.

  3. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    OpenAIRE

    Yujiro Hayashi; Asuzu, David T.; Gibbons, Simon J.; Aarsvold, Kirsten H.; Bardsley, Michael R.; Lomberk, Gwen A.; Angela J Mathison; Michael L Kendrick; K Robert Shen; Takahiro Taguchi; Anu Gupta; Rubin, Brian P.; Fletcher, Jonathan A.; Gianrico Farrugia; Urrutia, Raul A.

    2013-01-01

    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neopla...

  4. Photon Exchange in Nucleus-Nucleus Collisions

    OpenAIRE

    Bertulani, Carlos A.

    2002-01-01

    The strong electromagnetic fields in peripheral heavy ion collisions give rise to photon-photon and photon-nucleus interactions. I present a general survey of the photon-photon and photon-hadron physics accessible in these collisions. Among these processes I discuss the nuclear fragmentation through the excitation of giant resonances, the Coulomb dissociation method for application in nuclear astrophysics, and the production of particles.

  5. PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling.

    OpenAIRE

    Jones, A W; Z. Yao; Vicencio, J. M.; Karkucinska-Wieckowska, A.; Szabadkai, G.

    2012-01-01

    Over the past two decades, a complex nuclear transcriptional machinery controlling mitochondrial biogenesis and function has been described. Central to this network are the PGC-1 family coactivators, characterised as master regulators of mitochondrial biogenesis. Recent literature has identified a broader role for PGC-1 coactivators in both cell death and cellular adaptation under conditions of stress, here reviewed in the context of the pathology associated with cancer, neurodegeneration and...

  6. Different generations of rabbit nucleus pulposus cells:Morphological and biological properties%不同代次兔髓核细胞的形态学特征和生物学性状*★

    Institute of Scientific and Technical Information of China (English)

    武海军; 银和平; 李树文; 白明; 杜志才; 曹振华

    2013-01-01

    properties of nucleus pulposus cells can provide theoretical basis for studying the mechanism underlying intervertebral disc degeneration, construction of the intervertebral disc by tissue engineering, and gene therapy. OBJECTIVE: To investigate the characteristics of different generations of rabbit nucleus pulposus cells, searching for the best suitable seed cells to treat degenerative disc diseases. METHODS: Nucleus pulposus cells from New Zealand white rabbits were separated, cultured and then passaged. The morphological changes of primary, passages 3 and 4 nucleus pulposus cells were observed by hematoxylin-eosin staining under an inverted microscope. The biological properties of rabbit nucleus pulposus cells were observed. Aggrecan and type Ⅱ colagen expressions w ere detected by toluidine blue and immunocytochemistry staining, respectively. Type nucleus pulposus cells were detected by reverse transcription-PCR. RESULTS AND CONCLUSION: Rabbit nucleus pulposus cells were successful y cultured and passaged in vitro. Primary nucleus pulposus cells were round or polygonal, and the average adherence time was 7 days. The first and third generations of nucleus pulposus cells were round or polygonal, and have strong vitality. Hematoxylin-eosin staining showed that nuclei were in a uniform blue-black, and cytoplasm showed light pink. The cytoplasm of nucleus pulposus cells was sky blue stained for toluidine blue staining, and type II col agen immunohistochemical staining showed the cytoplasm of nucleus pulposus cells displayed yel owish-brown. Passage 4 nucleus pulposus cells appeared with degeneration, and type mRNA expression was significantly decreased compared with previous generations. The first three generations of nucleus pulposus cells were exuberant in metabolism and showed consistent phenotypes and normal expression of aggrecan and type Ⅱ col agen. Passage 4 nucleus pulposus cells began to age and degenerate.

  7. Thymosin Beta 4 May Translocate from the Cytoplasm in to the Nucleus in HepG2 Cells following Serum Starvation. An Ultrastructural Study

    Science.gov (United States)

    Piludu, Marco; Piras, Monica; Pichiri, Giuseppina; Coni, Pierpaolo; Orrù, Germano; Cabras, Tiziana; Messana, Irene; Faa, Gavino; Castagnola, Massimo

    2015-01-01

    Due to its actin-sequestering properties, thymosin beta-4 (Tβ4) is considered to play a significant role in the cellular metabolism. Several physiological properties of Tβ4 have been reported;, however, many questions concerning its cellular function remain to be ascertained. To better understand the role of this small peptide we have analyzed by means of transmission immunoelectron microscopy techniques the ultrastructural localization of Tβ4 in HepG2 cells. Samples of HepG2 cells were fixed in a mixture of 3% formaldehyde and 0.1% glutaraldehyde in 0.1 M cacodylate buffer and processed for standard electron microscopic techniques. The samples were dehydrated in a cold graded methanol series and embedded in LR gold resin. Ultrathin sections were labeled with rabbit antibodies to Tβ4, followed by gold-labeled goat anti-rabbit, stained with uranyl acetate and bismuth subnitrate, observed and photographed in a JEOL 100S transmission electron microscope. High-resolution electron microscopy showed that Tβ4 was mainly restricted to the cytoplasm of HepG2 growing in complete medium. A strong Tβ4 reactivity was detected in the perinuclear region of the cytoplasmic compartment where gold particles appeared strictly associated to the nuclear membrane. In the nucleus specific Tβ4 labeling was observed in the nucleolus. The above electron microscopic results confirm and extend previous observations at light microscopic level, highlighting the subcellular distribution of Tβ4 in both cytoplasmic and nuclear compartments of HepG2 cells. The meaning of Tβ4 presence in the nucleolus is not on the best of our knowledge clarified yet. It could account for the interaction of Tβ4 with nucleolar actin and according with this hypothesis, Tβ4 could contribute together with the other nucleolar acting binding proteins to modulate the transcription activity of the RNA polymerases. PMID:25835495

  8. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    OpenAIRE

    Sanal, Madhusudana Girija

    2014-01-01

    Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC), we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT) made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence e...

  9. Regulated pH-Responsive Polymeric Micelles for Doxorubicin Delivery to the Nucleus of Liver Cancer Cells.

    Science.gov (United States)

    Li, Hao; Li, Xian; Zhang, Chao; Sun, Qiquan; Yi, Wei; Wang, Xuan; Cheng, Du; Chen, Shupeng; Liang, Biling; Shuai, Xintao

    2016-06-01

    A diblock copolymer of poly(ethylene glycol) (PEG) and poly(γ-benzyl L-glutamate) (PBLG), PEG-PBLG, was synthesized via the ring-opening polymerization of γ-benzyl L-glutamate N-carboxyanhydride (BLG-NCA) using allyl-PEG-NH2 as a macroinitiator. After deprotection of the benzyl groups, N,N-diisopropyl ethylenediamine (DIP) was conjugated to poly(L-glutamic acid) (PGA) blocks as side groups. The pendant DIP groups on the PGA blocks greatly enhance the pH-sensitivity of poly(ethylene glycol)-block-poly[N-(N',N'-diisopropylaminoethyl) glutamide] [PEG-PGA(DIP)] micelles, and a higher grafting percentage of DIP favors a faster acid-response. In neutral aqueous solution, the PEG-PGA(DIP) can self-assemble into stable micelles featuring an acid-responsive PGA(DIP) core with the encapsulated anticancer drug doxorubicin (DOX). In an acidic environment, the hydrophobic-hydrophilic transition of the PGA block leads to the gradual expansion and disassembly of these micelles and, consequently, an accelerated release of DOX. Thus, DOX transported by PEG-PGA(DIP) micelles can be entrapped more efficiently into the nuclei of hepatoma Bel 7402 cells.

  10. Nucleus Accumbens-Associated Protein 1 Expression Has Potential as a Marker for Distinguishing Oral Epithelial Dysplasia and Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Joji Sekine

    Full Text Available Oral epithelial dysplasia (OED and carcinoma in situ (CIS are defined by dysplastic cells in the epithelium. Over a third of oral squamous cell carcinoma (OSCC patients present with associated OED. However, accurate histopathological diagnosis of such lesions is difficult. Nucleus accumbens-associated protein 1 (NAC1 is a member of the Pox virus and Zinc finger/Bric-a-brac Tramtrack Broad complex family of proteins, and is overexpressed in OSCC. This study aimed to determine whether NAC1 has the potential to be used as a marker to distinguish OED and OSCC.The study included 114 patients (64 men, 50 women. There were 67, 10, and 37 patients with OED, CIS, and OSCC, respectively. NAC1 labeling indices (LIs and immunoreactivity intensities (IRI were evaluated. The patients' pathological classification was significantly associated with age, sex, NAC1 LIs, and NAC1 IRI (p = 0.025, p = 0.022, p 50% positivity the sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV were 0.766, 0.910, 0.857, and 0.847, respectively. For NAC1 IRI with ≤ 124 positive pixels, the sensitivity, specificity, PPV, and NPV were 0.787, 0.866, 0.804, and 0.853, respectively. Though there are several potential limitations to this study and the results were obtained from a retrospective analysis of a single site cohort, the data suggest that the NAC1 LIs/IRI is a strong predictor of CIS/OSCC.NAC1 has potential as a marker for distinguishing OED from CIS/OSCC.

  11. Viscoelastic properties of human normal nucleus pulposus cells%正常髓核细胞的黏弹性研究

    Institute of Scientific and Technical Information of China (English)

    任龙韬; 卫陈刚; 牛建鹏; 郭志坚; 郝海虎

    2011-01-01

    Objective To study the viscoelastic properties of nucleus pulposus (NP) cells from human in vitro. Methods NP was obtained from discarded NP tissue of 3 scoliosis patients aged from 13 to 16 years. Pancreatin and collagenase type Ⅱ were used to digest NP and cells were isolated from NP. Type Ⅱ collagen immunofluorescence and Fan seaing were used to identify NP cells. The micropipette aspiration test was used in combination with a three-parameter viscoelastic solid model to measure the mechanical properties of NP cells. Results The mean diameter of the digested NP cells was ( 15.40 ± 1.83) μm. In response to a prescribed pressure, the NP cells exhibited viscolastic solid creep behavior, which was characterized initially by a jump in displacement followed by a monotony decreasing rate of deformation that generally reached an equilibrium. NP cells were deformed to a length as much as 2 times the radius of the micropipette without completely entering the micropipette. The viscolastic parameters were k1 (0. 101 ±0. 052) kPa, k2 (0. 353 ± 0. 199) kPa, and μ ( 3. 034 ± 1. 843 ) kPa· s, respectively. Only the k1 was positively correlated to the cell diameter (r =-0. 389, P < 0. 05 ). Conclusion Human normal NP cells behave as a typical viscolastic solid creep. Micropipette aspiration technique is a valid method for the study on biomechanics of NP cells.%目的 观察正常髓核细胞的黏弹性。方法 髓核组织取材于3例脊柱侧凸矫形手术者术中取出废弃的髓核组织,用胰蛋白酶和Ⅱ型胶原酶消化分离细胞,Ⅱ型胶原免疫荧光组化和蕃红染色进行细胞鉴定,测量细胞直径,采用微管吸吮技术分析髓核细胞的黏弹性特性。结果 髓核细胞直径为(15.40±1.83)μm,正常髓核细胞的黏弹性参数k1(0.101 ±0.052) kPn、k2(0.353±0.199) kPa和μ(3.034±1.843) kPa·s。直线相关性分析表明,仅k1与髓核细胞直径明显相关(r=-0.389,P<0.05)。结论 正常髓核细胞表现为典

  12. 外侧膝状体细胞对边缘的响应模型%Response of Lateral Geniculate Nucleus Cells to Edges

    Institute of Scientific and Technical Information of China (English)

    任远

    2014-01-01

    Edges composing of stimuli of different intensities are common in both natural scenes and digital images.Edge detection is a basic step for machine visual systems,particularly machine biological visual systems.This paper establishes a model of lateral geniculate nucleus (LGN)cells in a primary visual pathway,describes the LGN cell response to edges,and provides feature representations for designing image processing approaches based on neural mechanism. According to physiological characteristics of retinal ganglion cells,the paper uses the classical model of difference of Gaussians to describe the LGN cell response to stimuli,and obtains a re-sponse function via reasonable simplifications.Through simple analyses,several mathematical properties of the response function are obtained,which agree with the physiological characteristics of neurons.By further simplifying the contrast of a stimulus,a normalized response function is obtained.Numeric experiments show that similarities exist between the function’s response curve and the physiological curve discovered in a previous neural science research,showing validity of the described model.%边缘检测是机器视觉系统与生物视觉系统处理视觉信息的基础阶段。为初级视觉通路中的外侧膝状体(LGN)细胞建立一个模型,描述其对边缘的响应,为构建基于神经机制的图像处理方法提供特征表征。根据神经节细胞感受野的生理特性,用经典的高斯差模型描述 LGN 细胞对刺激的响应,通过合理地简化得到相对简单的响应函数。通过简单数学分析,能够得到函数的几点数学性质,且这些性质都与神经元的生理特性相符。进一步简化刺激的对比度,得到归一化的响应函数。数值实验发现,函数的响应曲线和神经科学研究得到的生理曲线具有相似性,说明该数学模型的合理性。

  13. 兔髓核与纤维环细胞生物学特性差异的研究%Different biological characteristics between nucleus pulposus and annulus fibrosus cells in rabbits

    Institute of Scientific and Technical Information of China (English)

    谢健; 童培建; 肖鲁伟; 金红婷; 吴承亮; 单乐天; 毛强; 潘佳菲

    2013-01-01

    Objective:To compare biological characteristics between nucleus pulposus and annulus fibrosus cells in vitro model.Methods:Five New Zealand white rabbits (2 to 3 kg,either gender) were isolated nucleus pulposus and annulus fibrosus under sterilized condition,then cultured in nutrient solution with 15% FBS and DMEM/F12 (1∶1) by enzyme digestion combined with tissue block method.When 90% cells fused,subcultring were performed.Cell morphology were observed by inverted phase contrast microscope,cell viability were detected by trypan blue staining,histological were observed by a toluidine blue and HE staining,cell proliferation were tested by MTT method,then the cell morphology,viability,proliferation between nucleus pulposus and annulus fibrosus were compared.Results:There were no obvioualy differences between nucleus pulposus and annulus fibrosus in original and the first strain.Physalides were appeared in annulus fibrosus on the second generation.The strapping time was later,and activity was lower in nucleus pulposus than annulus fibrosus.The growth of cell proliferation in nucleus pulposus was lower than annulus fibrosus from the ninth day.Conclusion:The cell activity in annulus fibrosus is higher than nucleus pulposus.Digenerative disc disease may caused by recession of nucleus pulposus,local biomechnical changes,furether caused structure change and function loss of annulus fibrosus.%目的:同时建立兔髓核细胞与纤维环细胞体外培养模型,比较两者生物学特性差异.方法:新西兰大白兔5只(2~3 kg,雌雄不限),无菌条件下分离髓核及纤维环,酶消化法联合组织块法含15%FBS的DMEM/F12(1∶1)培养液培养,当细胞90%融合后进行传代培养.通过倒置相差显微镜观测细胞形态,台盼蓝染色测定细胞活力,甲苯胺蓝和HE染色进行组织学观察,MTT法测定细胞增殖,分析比较髓核细胞与纤维环细胞形态、活力、增殖的差异.结果:原代及第1代髓核细胞和纤维

  14. An organism arises from every nucleus.

    Directory of Open Access Journals (Sweden)

    Nurullah Keklikoglu

    2009-12-01

    Full Text Available The fact that, cloning using somatic cell nuclear transfer (SCNT method has been performed, opened new horizons for cloning, and changed the way of our understanding and approach to cell and nucleus. The progress in cloning technology, brought the anticipation of the ability to clone an organism from each somatic cell nucleus. Therefore, the 'Cell Theory' is about to take the additional statement as "An organism arises from every nucleus". The development of gene targeting procedures which can be applied with SCNT, showed us that it may be possible to obtain different versions of the original genetic constitution of a cell. Because of this opportunity which is provided by SCNT, in reproductive cloning, it would be possible to clone enhanced organisms which can adapt to different environmental conditions and survive. Furthermore, regaining the genetic characteristics of ancestors or reverse herediter variations would be possible. On the other hand, in therapeutic cloning, more precise and easily obtainable alternatives for cell replacement therapy could be presented. However, while producing healthier or different organisms from a nucleus, it is hard to foresee the side effects influencing natural processes in long term is rather difficult.

  15. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system

    OpenAIRE

    Chon, Brian H; Lee, Esther J.; Jing, Liufang; Lori A Setton; Chen, Jun

    2013-01-01

    Introduction Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) – originating from the Wharton’s jelly – remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. Howev...

  16. Enhancement of φ Mesons in Relativistic Nucleus-Nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The фmeson production in relativistic nucleus-nucleus collisions is investigated systematically usinga hadron-string cascade model LUCIAE. Within the framework of the model and relying on the collective

  17. A thalamic input to the nucleus accumbens mediates opiate dependence.

    Science.gov (United States)

    Zhu, Yingjie; Wienecke, Carl F R; Nachtrab, Gregory; Chen, Xiaoke

    2016-02-11

    Chronic opiate use induces opiate dependence, which is characterized by extremely unpleasant physical and emotional feelings after drug use is terminated. Both the rewarding effects of a drug and the desire to avoid withdrawal symptoms motivate continued drug use, and the nucleus accumbens is important for orchestrating both processes. While multiple inputs to the nucleus accumbens regulate reward, little is known about the nucleus accumbens circuitry underlying withdrawal. Here we identify the paraventricular nucleus of the thalamus as a prominent input to the nucleus accumbens mediating the expression of opiate-withdrawal-induced physical signs and aversive memory. Activity in the paraventricular nucleus of the thalamus to nucleus accumbens pathway is necessary and sufficient to mediate behavioural aversion. Selectively silencing this pathway abolishes aversive symptoms in two different mouse models of opiate withdrawal. Chronic morphine exposure selectively potentiates excitatory transmission between the paraventricular nucleus of the thalamus and D2-receptor-expressing medium spiny neurons via synaptic insertion of GluA2-lacking AMPA receptors. Notably, in vivo optogenetic depotentiation restores normal transmission at these synapses and robustly suppresses morphine withdrawal symptoms. This links morphine-evoked pathway- and cell-type-specific plasticity in the paraventricular nucleus of the thalamus to nucleus accumbens circuit to opiate dependence, and suggests that reprogramming this circuit holds promise for treating opiate addiction.

  18. ULTRASTRUCTURE OF THE RAT MESENCEPHALIC TRIGEMINAL NUCLEUS

    NARCIS (Netherlands)

    LIEM, RSB; COPRAY, JCVM; VANWILLIGEN, JD

    1991-01-01

    The subcellular morphology of the mesencephalic trigeminal (Me5) nucleus in the rat was studied by transmission electron microscopy. Most neurons in the thin rostral as well as in the major caudal part of Me5 appeared as large (40-50-mu-m), round-to ovoid-shaped unipolar cells. A few neurons (estima

  19. Neuroprotection Against NMDA Induced Cell Death in Rat Nucleus Basalis by Ca2+ Antagonist Nimodipine, Influence of Aging and Developmental Drug Treatment

    NARCIS (Netherlands)

    Luiten, P.G.M.; Douma, B.R.K.; Zee, E.A. van der; Nyakas, C.

    1995-01-01

    In the current study the neuroprotective effect of the L-type calcium channel antagonist nimodipine in rat brain was investigated in N-methyl-D-aspartate-induced neuronal degeneration in vivo. In the present model NMDA was unilaterally injected in the magnocellular nucleus basalis and the neurotoxic

  20. Neutrino nucleus cross sections

    CERN Document Server

    Athar, M Sajjad; Singh, S K; Vacas, M J Vicente

    2008-01-01

    We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $\\Delta $- dominance model taking into account the renormalization of $\\Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.

  1. Polarized Proton Nucleus Scattering

    OpenAIRE

    Kopeliovich, B. Z.; Trueman, T. L.

    2000-01-01

    We show that, to a very good approximation, the ratio of the spin-flip to the non-flip parts of the elastic proton-nucleus amplitude is the same as for proton-nucleon scattering at very high energy. The result is used to do a realistic calculation of the analyzing power A_N for pC scattering in the Coulomb-nuclear interference (CNI) region of momentum transfer.

  2. Hadron nucleus interactions

    International Nuclear Information System (INIS)

    The elastic and inelastic scattering of intermediate energy (less than or equal to 1 GeV) protons by nuclei is considered first. The discussion focuses on the determination of the proton-nucleus optical potential in terms of the elementary nucleon-nucleon scattering amplitudes and the properties of the target and residual nucleus. The result is a series of terms for the optical potential. Then the interaction of pions with nuclei for energies in the neighborhood of the Δ-resonance is discussed. In this energy domain an incident pion will with high probability be absorbed by a nucleon to produce the Δ-resonance and thus form a Δ-particle hole state in the nucleus. Next, the subject of hypernuclei is taken up. The Λ hypernuclei and a recently observed Σ hypernuclei comprise situations in which the core nucleus can be probed by a baryon of roughly the same mass as a nucleon, with similar albeit not identical interactions with nucleons. But the Λ (or Σ) does not need to satisfy the Pauli exclusion principle with respect to the nucleons, and therefore can be in orbits forbidden to it if it were a nucleon. As the energy of the projectile increases, it becomes correspondingly more important to take relativistic effects into account. The importance of these effects is strikingly revealed by experiments involving the collision of ultrarelativistic hadrons, protons, pions, kaons (up to Fermilab energies) with nuclei. This phenomenon forms part of the final topic, which includes as well as the collision of relativistic heavy ion projectiles with nuclei. A nuclear Weiszaecker-Williams method developed for dealing with peripheral collisions is described. 32 figures, 10 tables

  3. Antinucleon-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dover, C.B.

    1987-01-01

    Recent experimental and theoretical results on anti p-nucleus interactions are reviewed. We focus on determinations of the anti p optical potential from elastic scattering, the use of (anti p, anti p') inelastic scattering to reveal aspects of the spin-isospin dependence of N anti N amplitudes, and some puzzling features of (anti p, anti n) charge exchange reactions on nuclei. 47 refs., 7 figs.

  4. Protein quality control in the nucleus.

    Science.gov (United States)

    Jones, Ramon D; Gardner, Richard G

    2016-06-01

    The nucleus is the repository for the eukaryotic cell's genetic blueprint, which must be protected from harm to ensure survival. Multiple quality control (QC) pathways operate in the nucleus to maintain the integrity of the DNA, the fidelity of the DNA code during replication, its transcription into mRNA, and the functional structure of the proteins that are required for DNA maintenance, mRNA transcription, and other important nuclear processes. Although we understand a great deal about DNA and RNA QC mechanisms, we know far less about nuclear protein quality control (PQC) mechanisms despite that fact that many human diseases are causally linked to protein misfolding in the nucleus. In this review, we discuss what is known about nuclear PQC and we highlight new questions that have emerged from recent developments in nuclear PQC studies. PMID:27015023

  5. The nucleus: a black box being opened.

    Science.gov (United States)

    van Driel, R; Humbel, B; de Jong, L

    1991-12-01

    Until recently our knowledge about the structural and functional organization of the cell nucleus was very limited. Recent technical developments in the field of ultrastructural analysis, combined with ongoing research on the properties of the nuclear matrix, give new insight into how the nucleus is structured. Two types of observations shape our ideas about nuclear organization. First, most nuclear functions (replication, transcription, RNA processing, and RNA transport) are highly localized within the nucleus, rather than diffusely distributed. Moreover, they are associated with the nuclear matrix. Second, chromatin is organized in discrete loops, bordered by nuclear matrix attachment sequences (MARs). Each loop may contain one or several genes. The arrangement of chromatin in loops has profound consequences for the regulation of gene expression.

  6. TATA-binding protein-related factor 2 is localized in the cytoplasm of mammalian cells and much of it migrates to the nucleus in response to genotoxic agents.

    Science.gov (United States)

    Park, Kyoung-ae; Tanaka, Yuji; Suenaga, Yusuke; Tamura, Taka-aki

    2006-10-31

    TBP (TATA-binding protein)-related factor 2 (TRF2) regulates transcription during a nuber of cellular processes. We previously demonstrated that it is localized in the cytoplasm and is translocated to the nucleus by DNA-damaging agents. However, the cytoplasmic localization of TRF2 is controversial. In this study, we reconfirmed its cytoplasmic localization in various ways and examined its nuclear migration. Stresses such as heat shock, redox agents, heavy metals, and osmotic shock did not affect localization whereas genotoxins such as methyl methanesulfonate (MMS), cisplatin, etoposide, and hydroxyurea caused it to migrate to the nucleus. Adriamycin, mitomycin C and gamma-rays had no obvious effect. We determined optimal conditions for the nuclear migration. The proportions of cells with nuclei enriched for TRF2 were 25-60% and 5-10% for stressed cells and control cells, respectively. Nuclear translocation was observed after 1 h, 4 h and 12 h for cisplatin, etoposide and MMS and hydroxyurea, respectively. The association of TRF2 with the chromatin and promoter region of the proliferating cell nuclear antigen (PCNA) gene, a putative target of TRF2, was increased by MMS treatment. Thus TRF2 may be involved in genotoxin-induced transcriptional regulation. PMID:17085973

  7. Neutrino-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, H.; /Tufts U.; Garvey, G.; /Los Alamos; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  8. Antineutron-nucleus annihilation

    CERN Document Server

    Botta, E

    2001-01-01

    The n-nucleus annihilation process has been studied by the OBELIX experiment at the CERN Low Energy Antiproton Ring (LEAR) in the (50-400) MeV/c projectile momentum range on C, Al, Cu, Ag, Sn, and Pb nuclear targets. A systematic survey of the annihilation cross- section, sigma /sub alpha /(A, p/sub n/), has been performed, obtaining information on its dependence on the target mass number and on the incoming n momentum. For the first time the mass number dependence of the (inclusive) final state composition of the process has been analyzed. Production of the rho vector meson has also been examined. (13 refs).

  9. Nucleus-nucleus potential with shell-correction contribution

    CERN Document Server

    Denisov, V Yu

    2015-01-01

    The full relaxed-density potential between spherical nuclei is considered as a sum of the macroscopic and shell-correction contributions. The macroscopic part of the potential is related to a nucleus-nucleus potential obtained in the framework of the extended Thomas-Fermi approach with the Skyrme and Coulomb forces and the relaxed-density ansatz for evaluation of proton and neutron densities of interacting nuclei. A simple prescription for the shell-correction part of the total potential is discussed. The parameters of the shell-correction and macroscopic parts of the relaxed-density potential are found by fitting the empirical barrier heights of the 89 nucleus-nucleus systems as well as macroscopic potentials evaluated for 1485 nucleus-nucleus systems at 12 distances around touching points.

  10. Higgs-Boson Production in Nucleus-Nucleus Collisions

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  11. Inhibition of Wnt signaling by cucurbitacin B in breast cancer cells: reduction of Wnt-associated proteins and reduced translocation of galectin-3-mediated β-catenin to the nucleus.

    Science.gov (United States)

    Dakeng, Sumana; Duangmano, Suwit; Jiratchariyakul, Weena; U-Pratya, Yaowalak; Bögler, Oliver; Patmasiriwat, Pimpicha

    2012-01-01

    The cucurbitacins are tetracyclic triterpenes found in plants of the family Cucurbitaceae. Cucurbitacins have been shown to have anti-cancer and anti-inflamatory activities. We investigated the anti-cancer activity of cucurbitacin B extracted from Thai medicinal plant Trichosanthes cucumerina Linn. Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results indicated that cucurbitacin B from T. cucumerina Linn. has a cytotoxic effect on breast cancer cell lines SKBR-3 and MCF-7 with an IC50 of 4.60 and 88.75 µg/ml, respectively. Growth inhibition was attributed to G2/M phase arrest and apoptosis. Cyclin D1, c-Myc, and β-catenin expression levels were reduced. Western blot analysis showed increased PARP cleavage and decreased Wnt-associated signaling molecules β-catenin, galectin-3, cyclin D1 and c-Myc, and corresponding changes in phosphorylated GSK-3β levels. Cucurbitacin B treatment inhibited translocation to the nucleus of β-catenin and galectin-3. The depletion of β-catenin and galectin-3 in the nucleus was confirmed by cellular protein fractionation. T-cell factor (TCF)/lymphoid enhancer factor (LEF)-dependent transcriptional activity was disrupted in cucurbitacin B treated cells as tested by a TCF reporter assay. The relative luciferase activity was reduced when we treated cells with cucurbitacin B compound for 24 h. Our data suggest that cucurbitacin B may in part induce apoptosis and exert growth inhibitory effect via interruption the Wnt signaling.

  12. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Wang, Xiao-Hu; Hong, Xin; Zhu, Lei; Wang, Yun-Tao; Bao, Jun-Ping; Liu, Lei; Wang, Feng; Wu, Xiao-Tao

    2015-04-01

    Although tumor necrosis factor alpha (TNF-α) is known to play a critical role in intervertebral disc (IVD) degeneration, the effect of TNF-α on nucleus pulposus (NP) cells has not yet been elucidated. The aim of this study was to explore the effect of TNF-α on proliferation of human NP cells. NP cells were treated with different concentrations of TNF-α. Cell proliferation was determined by cell counting kit-8 (CCK-8) analysis and Ki67 immunofluorescence staining, and expression of cyclin B1 was studied by quantitative real-time RT-PCR. Cell cycle was measured by flow cytometry and cell apoptosis was analyzed using an Annexin V-fluorescein isothiocyanate (FITC) & propidium iodide (PI) apoptosis detection kit. To identify the mechanism by which TNF-α induced proliferation of NP cells, selective inhibitors of major signaling pathways were used and Western blotting was carried out. Treatment with TNF-α increased cell viability (as determined by CCK-8 analysis) and expression of cyclin B1 and the number of Ki67-positive and S-phase NP cells, indicating enhancement of proliferation. Consistent with this, NP cell apoptosis was suppressed by TNF-α treatment. Moreover, inhibition of NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) blocked TNF-α-stimulated proliferation of NP cells. In conclusion, the current findings suggest that the effect of TNF-α on IVD degeneration involves promotion of the proliferation of human NP cells via the NF-κB, JNK, and p38 MAPK pathways.

  13. Protein quality control in the nucleus

    DEFF Research Database (Denmark)

    Nielsen, Sofie V.; Poulsen, Esben Guldahl; Rebula, Caio A.;

    2014-01-01

    to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system...... to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about...... these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation....

  14. The retrotrapezoid nucleus and breathing.

    Science.gov (United States)

    Guyenet, Patrice G; Stornetta, Ruth L; Abbott, Stephen B G; Depuy, Seth D; Kanbar, Roy

    2012-01-01

    The retrotrapezoid nucleus (RTN) is located in the rostral medulla oblongata close to the ventral surface and consists of a bilateral cluster of glutamatergic neurons that are non-aminergic and express homeodomain transcription factor Phox2b throughout life. These neurons respond vigorously to increases in local pCO(2) via cell-autonomous and paracrine (glial) mechanisms and receive additional chemosensory information from the carotid bodies. RTN neurons exclusively innervate the regions of the brainstem that contain the respiratory pattern generator (RPG). Lesion or inhibition of RTN neurons largely attenuates the respiratory chemoreflex of adult rats whereas their activation increases respiratory rate, inspiratory amplitude and active expiration. Phox2b mutations that cause congenital central hypoventilation syndrome in humans prevent the development of RTN neurons in mice. Selective deletion of the RTN Phox2b-VGLUT2 neurons by genetic means in mice eliminates the respiratory chemoreflex in neonates.In short, RTN Phox2b-VGLUT2 neurons are a major nodal point of the CNS network that regulates pCO(2) via breathing and these cells are probable central chemoreceptors. PMID:23080151

  15. M-31 mutant (virA::Tn5) of Agrobacterium tumefaciens is capable of transferring its T-DNA into the nucleus of host cell, but incapable of integrating it into the chromosome.

    Science.gov (United States)

    Majumder, P; Yoshida, H; Shioiri, H; Nozue, M; Kojima, M

    2000-01-01

    An avirulent mutant (M-31 strain) was produced by the transposon (Tn5) mutagenesis of Agrobacterium tumefaciens (A-208 strain). A binary vector, pIG121-Hm, containing a kanamycin resistance gene (nptII) and beta-glucuronidase (GUS) gene with an intron, was introduced into M-31 and A-208 strains. The resultant Agrobacteria were inoculated onto leaves of Kalanchoe daigremontiana and to tobacco BY-2 cells to assay GUS activity to monitor the T-DNA transfer into the nuclei of host cells. The results indicated that T-DNA was transferred into the nuclei of cells of both host plants inoculated with the M-31 mutant. The M-31 mutant strain had an insertion of Tn5 in the virA gene on its Ti plasmid. The introduction of the virA gene in the M-31 mutant complemented its avirulent phenotype. No kanamycin-resistant cells were observed when the M-31 mutant harboring the pIG121-Hm was inoculated to tobacco BY-2 cells. The M-31 mutant (virA::Tn5) seems to transfer T-DNA into the nucleus of the host cell, but is unable to integrate it to the chromosome. PMID:16232864

  16. Caudal topographic nucleus isthmi and the rostral nontopographic nucleus isthmi in the turtle, Pseudemys scripta.

    Science.gov (United States)

    Sereno, M I; Ulinski, P S

    1987-07-15

    Isthmotectal projections in turtles were examined by making serial section reconstructions of axonal and dendritic arborizations that were anterogradely or retrogradely filled with HRP. Two prominent tectal-recipient isthmic nuclei--the caudal magnocellular nucleus isthmi (Imc) and the rostral magnocellular nucleus isthmi (Imr)--exhibited strikingly different patterns of organization. Imc cells have flattened, bipolar dendritic fields that cover a few percent of the area of the cell plate constituting the nucleus and they project topographically to the ipsilateral tectum without local axon branches. The topography was examined explicitly at the single-cell level by using cases with two injections at widely separated tectal loci. Each Imc axon terminates as a compact swarm of several thousand boutons placed mainly in the upper central gray and superficial gray layers. One Imc terminal spans less that 1% of the tectal surface. Imr cells, by contrast, have large, sparsely branched dendritic fields overlapped by local axon collaterals while distally, their axons nontopographically innervate not only the deeper layers of the ipsilateral tectum but also ipsilateral Imc. Imr receives a nontopographic tectal input that contrasts with the topographic tectal input to Imc. Previous work on nucleus isthmi emphasized the role of the contralateral isthmotectal projection (which originates from a third isthmic nucleus in turtles) in mediating binocular interactions in the tectum. The present results on the two different but overlapping ipsilateral tecto-isthmo-tectal circuits set up by Imc and Imr are discussed in the light of physiological evidence for selective attention effects and local-global interactions in the tectum.

  17. Formation of light particles in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    The principal experimental results on the yield of the light charged particles in nucleus-nucleus collisions at the low and intermediate energies are reviewed. Inclusive spectra of light particles and their coincidences with the characteristic KX-rays, γ-rays, neutrons, projectile-like fragments, other light particles, fission fragments, and evaporation residues are analyzed. The main theoretical models used for the description of the light particle formation are briefly outlined together with their merits and shortcomings. The unsolved problems of fast light particle formation, in particular, and of nucleus-nucleus interaction dynamics, on the whole, are discussed with the outlooks of new experiments able to clear up some of these problems. (author) 144 refs., 40 figs., 2 tabs

  18. M-CSF TARGETING INTO LCL NUCLEUS BEHAVES AS A MALIGNANCY PROMOTOR

    Institute of Scientific and Technical Information of China (English)

    曹震宇; 吴克复; 宋玉华; 李戈; 林永敏; 饶青; 马小彤

    2003-01-01

    Objective: To investigate the functions of nM-CSF in malignant cells. Methods: recombinant M-CSF was targeted into cell nucleus by employing a eukaryotic expression plasmid vector pCMV/myc/nuc. The constructed plasmid was transfected into cells of EBV transformed lymphoblastoid cell line (LCL). RT-PCR, Western blot and immunofluorescent staining showed that recombinant M-CSF was localized into LCL cell nucleus. The transgenic cells showed elevated proliferation potential, enhanced resistance to apoptosis and increased ability of in vitro migration. Conclusion: Nucleus presenting M-CSF might act as a promoting factor in the processes of cell malignancy.

  19. 肝细胞生长因子对体外培养的人退变髓核细胞生物学活性影响%Effect of hepatocyte growth factor on the biological activity of the human degeneration nucleus pulposus cells cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    满孝旭; 马迅; 关晓明; 张丽

    2011-01-01

    Objective To explore the effect of hepatocyte growth factor (HGF) on the biological activity of the human degeneration nucleus pulposus cells cultured in vitro. Methods The human nucleus pulposus were collected ,and the nucleus pulposus cells were isolated and cultured . To observe HGF receptor expression in nucleus pulposus cells by immunohistochemical staining . The experimental groups were cultured with 0,5,50,500 ng/ml HGF,the optimal concentration was selected by MTT. The 3rd generation of nucleus pulposus cells were selected aid divided into HGF ,HGF + IG,IGF and control group, reverse transcription-polymerase chain reaction ( RT-PCR) was used to determine levels of type II collagen, proteoglycan and SOX9; flow cytometer were used to detect cell cycle. Results Nucleus pulposus cells expressed HGF receptor. HGF could significantly promote the proliferation of the human degeneration nucleus pulposus cells , which had a significant different compared with the control group . Various concentrations of HGF were effective to promote the nucleus pulposus cells proliferation and the optimal HGF concentration was 50 ng/ ml. The human degeneration nucleus pulposus cells under HGF ,IGF and HGF + IGF had shown to keep type II collagen, proteoglycan and SOX9 expression positive and increasing , and the proportion of cells into the proliferative phase increased compared with control group , which HGF + IGF was more effective. Conclusions Nucleus pulposus cells expressed HGF receptor. HGF can promote the proliferation of the human degeneration nucleus pulposus cells cultured in vitro, enhance the expression of extracellular matrix .The combined effects of HGF and IGF are better than alone.%目的 探讨肝细胞生长因子(HGF)对体外培养的人退变髓核细胞的生物学作用.方法 收集人退变髓核组织标本,分离培养髓核细胞;免疫组化染色观察HGF受体在髓核细胞中表达;设立不同浓度HGF组(0 ng/ml,5 ng/ml,50 ng/ml,500 ng/ml),采

  20. Transcripts of the MHM region on the chicken Z chromosome accumulate as non-coding RNA in the nucleus of female cells adjacent to the DMRT1 locus.

    Science.gov (United States)

    Teranishi, M; Shimada, Y; Hori, T; Nakabayashi, O; Kikuchi, T; Macleod, T; Pym, R; Sheldon, B; Solovei, I; Macgregor, H; Mizuno, S

    2001-01-01

    The male hypermethylated (MHM) region, located near the middle of the short arm of the Z chromosome of chickens, consists of approximately 210 tandem repeats of a BamHI 2.2-kb sequence unit. Cytosines of the CpG dinucleotides of this region are extensively methylated on the two Z chromosomes in the male but much less methylated on the single Z chromosome in the female. The state of methylation of the MHM region is established after fertilization by about the 1-day embryonic stage. The MHM region is transcribed only in the female from the particular strand into heterogeneous, high molecular-mass, non-coding RNA, which is accumulated at the site of transcription, adjacent to the DMRT1 locus, in the nucleus. The transcriptional silence of the MHM region in the male is most likely caused by the CpG methylation, since treatment of the male embryonic fibroblasts with 5-azacytidine results in hypo-methylation and active transcription of this region. In ZZW triploid chickens, MHM regions are hypomethylated and transcribed on the two Z chromosomes, whereas MHM regions are hypermethylated and transcriptionally inactive on the three Z chromosomes in ZZZ triploid chickens, suggesting a possible role of the W chromosome on the state of the MHM region. PMID:11321370

  1. Thalamic reticular nucleus in Caiman crocodilus: Relationship with the dorsal thalamus.

    Science.gov (United States)

    Pritz, M B

    2016-05-13

    The thalamic reticular nucleus was investigated in one group of crocodilians, Caiman crocodilus. This neuronal aggregate is composed of two parts: a compact portion and a diffuse region made up of scattered cells within the forebrain bundles. In Caiman, both the lateral and medial forebrain bundles project to the telencephalon and the thalamic reticular nucleus is associated with each fiber tract. In the lateral forebrain bundle, the compact area is termed the nucleus of the dorsal peduncle (dorsal peduncular nucleus) while the diffuse part is called the perireticular area. In the medial forebrain bundle, the interstitial nucleus comprises one part of the compact area while another region without a specific neuronal label is also present. Similar to the perireticular cells of the lateral forebrain bundle, scattered cells are also present in the medial forebrain bundle. Morphological features of the thalamic reticular nucleus are revealed with stains for the following: fibers; cells; succinic acid dehydrogenase; and acetylcholinesterase. Regardless of which dorsal thalamic nucleus was injected, a localized region of the thalamic reticular nucleus contained retrogradely labeled cells and anterogradely labeled axons and terminals. This grouping was termed clusters and was felt to represent the densest interconnection between the dorsal thalamus and the reticular nucleus. Using clusters as an index of interconnections, the reticular nucleus was divided into sectors, each of which was associated with a specific dorsal thalamic nucleus. An organization similar to that found in Caiman is present in other sauropsids as well as in mammals. These data suggest that a thalamic reticular nucleus is present in all amniotes and has morphological properties similar to those described in this analysis. Lastly, a hypothesis is presented to explain how the external shape of the reticular nucleus in Caiman might be transformed into the homologous area in a representative bird and

  2. Three-dimensional organization of the human interphase nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); W. Waldeck (Waldemar); J. Langowski (Jörg)

    2002-01-01

    markdownabstractTo approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics methods. The 30 nm chromatin fibre was folded according to the Mu

  3. Three-dimensional organization of the human interphase nucleus.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); W. Waldeck (Waldemar); J. Langowski (Jörg)

    2002-01-01

    textabstractTo approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics methods. The 30 nm chromatin fibre was folded according to the Multi-

  4. Three-dimensional organization of the human interphase nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); M. Wachsmuth (Malte); W. Waldeck (Waldemar); J. Langowski (Jörg)

    2002-01-01

    textabstractTo approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics methods. The 30 nm chromatin fibre was folded according to the Mul

  5. A stereological study of the mediodorsal thalamic nucleus in Down syndrome

    DEFF Research Database (Denmark)

    Karlsen, A S; Korbo, S; Uylings, H B M;

    2014-01-01

    The total number of neurons and glial cells in the mediodorsal thalamic (MDT) nucleus of four aged females with Down syndrome (DS; mean age 69years) was estimated and compared to six age- and sex-matched controls. The MDT nucleus was delineated on coronal sections, and cell numbers (large and small...

  6. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells

    International Nuclear Information System (INIS)

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl+ K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5 is

  7. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells.

    Science.gov (United States)

    Weber, Axel; Borghouts, Corina; Brendel, Christian; Moriggl, Richard; Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd

    2015-01-01

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl+ K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5 is

  8. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F+ HEL Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Axel Weber

    2015-03-01

    Full Text Available Signal transducers and activators of transcription (Stats play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML and Jak2(V617F in other myeloproliferative diseases (MPD. We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl+ K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL

  9. 脂肪与髓核来源间充质干细胞在转化生长因子β1诱导下向类髓核细胞分化%Mesenchymal stem cells derived from adipose and nucleus pulposus tissue differentiate towards nucleus pulposus-like cells induced by transforming growth factor-beta 1

    Institute of Scientific and Technical Information of China (English)

    薛晨晖; 马迅; 关晓明; 张辉; 张丽

    2015-01-01

    背景:大量研究表明多种组织来源的成体干细胞在体外均可向类髓核细胞分化。椎间盘髓核组织来源间充质干细胞在转化生长因子β1诱导下能否向类髓核细胞分化?其分化能力与脂肪间充质干细胞相比是否有差异目前未见报道。目的:比较脂肪间充质干细胞与髓核间充质干细胞在转化生长因子β1诱导下向类髓核细胞诱导分化能力的差异。方法:分别取大鼠腹股沟处脂肪组织与尾段脊柱,采用机械酶消化法分离培养脂肪间充质干细胞与髓核间充质干细胞。流式细胞仪检测两种细胞 CD105、CD90、CD29、CD45、CD44、CD34、CD24的表达。脂肪间充质干细胞与髓核间充质干细胞各自分为诱导组、无因子诱导组和对照组,诱导组以转化生长因子β1标准软骨诱导液培养,无因子诱导组以不含转化生长因子β1的软骨诱导液培养,对照组以含体积分数为10%胎牛血清的DMEM/F12培养液培养。培养14 d后用RT-PCR检测各组细胞Ⅱ型胶原、蛋白多糖、SOX-9基因的表达。结果与结论:两种细胞CD105、CD90、CD29表达阳性,CD45、CD44、CD34、CD24表达阴性。向类髓核细胞诱导培养14 d后两种细胞诱导组Ⅱ型胶原、蛋白多糖、SOX-9基因表达水平较对照组均明显升高,差异有显著性意义(P <0.05);髓核间充质干细胞诱导组3种基因的表达水平明显高于脂肪间充质干细胞诱导组,差异有显著性意义(P <0.05)。提示脂肪间充质干细胞与髓核间充质干细胞均具有向类髓核细胞分化的能力,而髓核间充质干细胞相对于脂肪间充质干细胞其软骨相关基因表达更高,可能更适合于作为组织工程髓核研究的种子细胞。%BACKGROUND:A large number of studies have shown that adult stem cels derived from multiple tissues are available to differentiate towards nucleus pulposus-like celsin vitro. It is unclear whether

  10. Pion degrees of freedom in nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, D.N.; Senatorov, A.V.

    1988-07-01

    Within the framework of the theory of finite Fermi systems with the pion degree of freedom singled out explicitly we have discovered a number of qualitative effects which must be taken into account in calculations of the equation of state of heated dense nuclear matter. These effects are simulated in a calculation of the main characteristics of nucleus-nucleus collisions. The regularities found are in agreement with experimental indications, which confirms the idea of softness of the pion mode in dense heated nuclear matter.

  11. Dynamical nucleus-nucleus potential at short distances

    OpenAIRE

    Jiang, Yongying; Wang, Ning; Li, Zhuxia; Scheid, Werner

    2010-01-01

    The dynamical nucleus-nucleus potentials for fusion reactions 40Ca+40Ca, 48Ca+208Pb and 126Sn+130Te are studied with the improved quantum molecular dynamics (ImQMD) model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for 40Ca+40Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depth of the fusion pockets are close to the results of time-dependent Hartree-Fock c...

  12. Selected Experimental Highlights from Nucleus-Nucleus Collisions at RHIC

    CERN Document Server

    Huang, H Z

    2006-01-01

    Nucleus-nucleus collisions at RHIC produce high temperature and high energy density matter which exhibits partonic degrees of freedom. We will discuss measurements of nuclear modification factors for light hadrons and non-photonic electrons from heavy quark decays, which reflect the flavor dependence of energy loss of high momentum partons traversing the dense QCD medium. The hadronization of bulk partonic matter exhibits collectivity in effective partonic degrees of freedom. Nuclear collisions at RHIC provide an intriguing environment, where many constituent quark ingredients are readily available for possible formation of exotic particles through quark coalescences or recombinations.

  13. The use of Optical Magnetic Twisting Cytometry and Flourescence Resonance Energy Transfer to quantify force-induced protein dissociation in the nucleus of a living cell

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yeh-Chuin Poh & Ning Wang ### Abstract Mechanical forces are known to play a significant role in biological processes. These forces can be transmitted to the cell through the cytoskeletal filament network, inducing different biochemical responses within the cytoplasm. Although there have been ample reports showing that cytoplasmic enzymes can be directly activated by a local stress on the cell surface via integrins, there has been no evidence that mechanical forces can di...

  14. The deafferented reticular thalamic nucleus generates spindle rhythmicity.

    Science.gov (United States)

    Steriade, M; Domich, L; Oakson, G; Deschênes, M

    1987-01-01

    The hypothesis that nucleus reticularis thalami (RE) is the generator of spindle rhythmicity during electroencephalogram (EEG) synchronization was tested in acutely prepared cats. Unit discharges and focal waves were extracellularly recorded in the rostral pole of RE nucleus, which was completely disconnected by transections from all other thalamic nuclei. In some experiments, additional transections through corona radiata created a triangular island in which the rostral RE pole survived with the caudate nucleus, putamen, basal forebrain nuclei, prepyriform area, and the adjacent cortex. Similar results were obtained in two types of experiments: brain stem-transected preparations that exhibited spontaneous spindle sequences, and animals under ketamine anesthesia in which transient spindling was repeatedly precipitated during recording by very low doses of a short-acting barbiturate. Both spindle-related rhythms (7- to 16-Hz waves grouped in sequences that recur with a rhythm of 0.1-0.3 Hz) are seen in focal recordings of the deafferented RE nucleus. The presence of spindling rhythmicity in the disconnected RE nucleus contrasts with total absence of spindles in cortical EEG leads and in thalamic recordings behind the transection. Oscillations within the same frequency range as that of spontaneous spindles can be evoked in the deafferented RE nucleus by subcortical white matter stimulation. In deafferented RE cells, the burst structure consists of an initially biphasic acceleration-deceleration pattern, eventually leading to a long-lasting tonic tail. Quantitative group data show that the burst parameters of disconnected RE cells are very similar to those of RE neurons with intact connections. In the deafferented RE nucleus, spike bursts of RE neurons recur periodically (0.1-0.3 Hz) in close time-relation with simultaneously recorded focal spindle sequences. The burst occurrence of deafferented RE cells is greatly reduced after systemic administration of bicuculline

  15. A combinatorial relative mass value evaluation of endogenous bioactive proteins in three-dimensional cultured nucleus pulposus cells of herniated intervertebral discs: identification of potential target proteins for gene therapeutic approaches.

    Directory of Open Access Journals (Sweden)

    Demissew S Mern

    Full Text Available Painful degenerative disc diseases have been targeted by different biological treatment approaches. Nucleus pulposus (NP cells play a central role in intervertebral disc (IVD maintenance by orchestrating catabolic, anabolic and inflammatory factors that affect the extracellular matrix. IVD degeneration is associated with imbalances of these factors, resulting in a catabolic inflammatory metabolism. Therefore, accurate knowledge about their quantity and quality with regard to matrix synthesis is vital for a rational gene therapeutic approach. NP cells were isolated from 63 patients operated due to lumbar disc herniation (mean age 56 / range 29 - 84 years. Then, three-dimensional culture with low-glucose was completed in a collagen type I scaffold for four weeks. Subsequently cell proliferation evaluation was performed using 3-(4, 5-dimethylthiazolyl-2-2,5-diphenyltetrazolium bromide and intracellular concentration of 28 endogenously expressed anabolic, catabolic, inflammatory factors and relevant matrix proteins was determined by enzyme-linked immunosorbent assay. Specimen-related grades of degeneration were confirmed by preoperative magnetic resonance imaging. Independent from gender, age and grade of degeneration proliferation rates remained similar in all groups of NP cells. Progressive grades of degeneration, however, showed a significant influence on accumulation of selective groups of factors such as disintegrin and metalloproteinase with thrombospondin motifs 4 and 5, matrix metalloproteinase 3, metalloproteinase inhibitor 1 and 2, interleukin-1β and interleukin-1 receptor. Along with these changes, the key NP matrix proteins aggrecan and collagen II decreased significantly. The concentration of anabolic factors bone morphogenetic proteins 2, 4, 6 and 7, insulin-like growth factor 1, transforming growth factor beta 1 and 3, however, remained below the minimal detectable quantities. These findings indicate that progressive degenerative

  16. Expression of the DYRK1A gene correlates with its 3D positioning in the interphase nucleus of Down syndrome cells.

    Science.gov (United States)

    Paz, Nerea; Felipe-Blanco, Izaskun; Royo, Félix; Zabala, Amaia; Guerra-Merino, Isabel; García-Orad, África; Zugaza, José L; Parada, Luis A

    2015-06-01

    Down syndrome is a common birth defect caused by trisomy of chromosome 21. Chromosomes occupy distinct territories in interphase nuclei, and their distribution within the nuclear space is nonrandom. In humans with Down syndrome, two chromosomes 21 frequently localize proximal to one another and distant from the third chromosome. Here, we investigated the nuclear organization of DYRK1A and SOD1, two genes mapping to chromosome 21 that greatly contribute to the pathology. We found that DYRK1A conserves its central positioning between normal and trisomic cells, whereas SOD1 adopts more peripheral distribution in trisomic cells. We also found that the relative position of these genes with respect to each other varies among the different copies of chromosome territories 21 within a cell, and that this distinct distribution is associated with differences in their expression levels. All together, our results may explain, at least in part, the difference in the expression level of these two genes implicated in the pathogenesis of Down syndrome. PMID:25645734

  17. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  18. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  19. Advanced microscopy techniques used for comparison of UVA- and γ-irradiation-induced DNA damage in the cell nucleus and nucleolus.

    Science.gov (United States)

    Stixová, L; Hrušková, T; Sehnalová, P; Legartová, S; Svidenská, S; Kozubek, S; Bártová, E

    2014-01-01

    Every day, genomes are affected by genotoxic factors that create multiple DNA lesions. Several DNA repair systems have evolved to counteract the deleterious effects of DNA damage. These systems include a set of DNA repair mechanisms, damage tolerance processes, and activation of cell-cycle checkpoints. This study describes selected confocal microscopy techniques that investigate DNA damage-related nuclear events after UVA- and γ-irradiation and compare the DNA damage response (DDR) induced by the two experimental approaches. In both cases, we observed induction of the nucleotide excision repair (NER) pathway and formation of localized double-strand breaks (DSBs). This was confirmed by analysis of cyclobutane pyrimidine dimers (CPDs) in the DNA lesions and by increased levels of γH2AX and 53BP1 proteins in the irradiated genome. DNA damage by UVA-lasers was potentiated by either BrdU or Hoechst 33342 pre-sensitization and compared to non-photosensitized cells. DSBs were also induced without BrdU or Hoechst 33342 pre-treatment. Interestingly, no cyclobutane pyrimidine dimers (CPDs) were detected after 405 nm UVA laser micro-irradiation in non-photosensitized cells. The effects of UVA and γ-irradiation were also studied by silver staining of nucleolar organizer regions (AgNORs). This experimental approach revealed changes in the morphology of nucleoli after genome injury. Additionally, to precisely characterize DDR in locally induced DNA lesions, we analysed the kinetics of the 53BP1 protein involved in DDR by fluorescence recovery after photobleaching (FRAP).

  20. 1,25-Dihydroxyvitamin D3 translocates protein kinase C beta to nucleus and enhances plasma membrane association of protein kinase C alpha in renal epithelial cells.

    Science.gov (United States)

    Simboli-Campbell, M; Gagnon, A; Franks, D J; Welsh, J

    1994-02-01

    1,25-Dihydroxycholecalciferol (1,25-(OH)2-D3) increases membrane-associated protein kinase C (PKC) activity and immunoreactivity in renal epithelial (Madin Darby bovine kidney, MDBK) cells (Simboli-Campbell, M., Franks, D. J., and Welsh, J. E. (1992) Cell Signalling 4, 99-109). We have now characterized the effects of 1,25-(OH)2-D3 on the subcellular localization of three individual isozymes by immunofluorescence and immunoblotting. Although the total amount of PKC alpha, PKC beta, and PKC zeta are unaffected by 1,25-(OH)2-D3, this steroid hormone induces subcellular redistribution of both PKC alpha and PKC beta. Treatment with 1,25-(OH)2-D3 (100 nM, 24 h) enhances plasma membrane association of PKC alpha and induces translocation of PKC beta to the nuclear membrane. The effects of 1,25-(OH)2-D3 appear to be limited to the calcium-dependent PKC isozymes, since 1,25-(OH)2-D3 has no effect on the calcium independent isozyme, PKC zeta. In contrast to rapid transient PKC translocation seen in response to agents which interact with membrane receptors to induce phospholipid hydrolysis, modulation of PKC alpha and PKC beta is observed after 24 h treatment with 1,25-(OH)2-D3. In MDBK cells, the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) (100 nM, 24 h) down-regulates PKC alpha and, to a lesser extent, PKC zeta, without altering their subcellular distribution. TPA also induces translocation of PKC beta to the nuclear membrane. MDBK cells treated with 1,25-(OH)2-D3, but not TPA, exhibit enhanced phosphorylation of endogenous nuclear proteins. In addition to the distinct effects of 1,25-(OH)2-D3 and TPA on PKC isozyme patterns, 1,25-(OH)2-D3 up-regulates both the vitamin D receptor and calbindin D-28K, whereas TPA down-regulates the expression of both proteins. These data support the involvement of PKC in the mechanism of action of 1,25-(OH)2-D3 and specifically implicate PKC beta in 1,25-(OH)2-D3-mediated nuclear events. PMID:8106362

  1. Squish and squeeze-the nucleus as a physical barrier during migration in confined environments.

    Science.gov (United States)

    McGregor, Alexandra Lynn; Hsia, Chieh-Ren; Lammerding, Jan

    2016-06-01

    From embryonic development to cancer metastasis, cell migration plays a central role in health and disease. It is increasingly becoming apparent that cells migrating in three-dimensional (3-D) environments exhibit some striking differences compared with their well-established 2-D counterparts. One key finding is the significant role the nucleus plays during 3-D migration: when cells move in confined spaces, the cell body and nucleus must deform to squeeze through available spaces, and the deformability of the large and relatively rigid nucleus can become rate-limiting. In this review, we highlight recent findings regarding the role of nuclear mechanics in 3-D migration, including factors that govern nuclear deformability, and emerging mechanisms by which cells apply cytoskeletal forces to the nucleus to facilitate nuclear translocation. Intriguingly, the 'physical barrier' imposed by the nucleus also impacts cytoplasmic dynamics that affect cell migration and signaling, and changes in nuclear structure resulting from the mechanical forces acting on the nucleus during 3-D migration could further alter cellular function. These findings have broad relevance to the migration of both normal and cancerous cells inside living tissues, and motivate further research into the molecular details by which cells move their nuclei, as well as the consequences of the mechanical stress on the nucleus.

  2. Transverse Energy in nucleus-nucleus collisions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tincknell, M.

    1988-11-15

    The status of Transverse Energy (E/sub T/) in relativistic nucleus-nucleus collisions at the Brookhaven AGS and the CERN SPS is reviewed. The definition of E/sub T/ and its physical significance are discussed. The basic techniques and limitations of the experimental measurements are presented. The acceptances of the major experiments to be discussed are shown, along with remarks about their idiosyncrasies. The data demonstrate that the nuclear geometry of colliding spheres primarily determines the shapes of the observed spectra. Careful account of the acceptances is crucial to comparing and interpreting results. It is concluded that nuclear stopping power is high, and that the amount of energy deposited into the interaction volume is increasing with beam energy even at SPS energies. The energy densities believed to be obtained at the SPS are close to the critical values predicted for the onset of a quark-gluon plasma. 25 refs., 8 figs.

  3. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S. [University of North Bengal, Department of Physics (India); Singh, G. [SUNY at Fredonia, Department of Computer and Information Science (United States)

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  4. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from 84Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from 28Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured

  5. Pattern adaptation of relay cells in the lateral geniculate nucleus of binocular and monocular vision-deprived cats%双眼和单眼视觉剥夺猫外膝体细胞的图形适应

    Institute of Scientific and Technical Information of China (English)

    王伟; 寿天德

    2000-01-01

    为测定丘脑外膝体细胞的图形适应是否依赖于早期视觉经验, 在细胞外记录了双眼和单眼缝合的猫外膝体中继细胞对长时间运动光栅刺激的反应. 在双眼剥夺猫,占68%的记录到的细胞在30 s内反应下降到稳定值,其平均反应值下降33%,适应程度较正常猫显著.在单眼剥夺猫,记录到的剥夺眼驱动的和非剥夺眼驱动的细胞中,分别有占53%和44%的细胞显示图形适应, 两者差别不大.研究表明, 早期视剥夺能增强或保持图形适应, 提示图形适应是外膝体细胞常见的固有性质,可能主要由遗传因素所决定.%To test whether the pattern adaptation in thalamus is dependent upon postnatal visual experience during early life, the responses of relay cells to prolonged drifting grating stimulation were recorded extracellularly from the dorsal lateral geniculate nucleus (dLGN) of cats reared with binocular and monocular lid suture. In binocular vision-deprived cats, 68% of cells recorded showed significant adaptation to prolonged grating stimuli within 30 s, with a mean response decrease of 33%, and then stabilized gradually. This adaptation was stronger than that of relay cells in normal cats. In monocular vision-deprived cats, 53% of the cells driven by the deprived eye showed similar adaptation as did 44% of the cells driven by the non-deprived eye. These results indicate that pattern adaptation could be maintained or even enhanced after visual deprivation in early life. It is suggested that pattern adaptation is a general and intrinsic property of the dLGN cells, which may be mainly determined by genetic factors.

  6. 粗山羊草细胞质对普通小麦细胞核的遗传效应%Genetic Effects of the Cytoplasm from Aegilops squarrosa L. on the Wheat Cell Nucleus

    Institute of Scientific and Technical Information of China (English)

    张玲丽; 卢碧霞; 马守才; 张永杰

    2001-01-01

    将粗山羊草细胞质导入普通小麦,研究其对普通小麦细胞核的遗传效应。结果表明,粗山羊草细胞质对普通小麦开花习性具有优良的作用;能增加小麦的株高,提高小穗数、穗粒数、结实率和发芽势,但延迟小麦的生育期;对其他性状影响不显著;粗山羊草细胞质对普通小麦细胞核之间有一定的核质杂种优势。%The genetic effects of Aegilops squarrosa L. cytoplasm were studied by transferring Aegilops squarrosa L. cytoplasm into wheat. The results showed that Aegilops squarrosa L. cytoplasm had fine effects on wheat flowering habits and characteristics.Meanwhile, plant height, number of spikelets, grains per spike,setting rate and germinating potential of wheat were improved significantly, but wheat growth phase was lengthened. There were no significant effects on other agronomic characters. There was sure nucleo-cytoplasmic heterosis between Ae. squarrosa L. cytoplasm and wheat cell nucleus.

  7. Self-Targeted, Shape-Assisted, and Controlled-Release Self-Delivery Nanodrug for Synergistic Targeting/Anticancer Effect of Cytoplasm and Nucleus of Cancer Cells.

    Science.gov (United States)

    Li, Yang; Lin, Jinyan; Huang, Yu; Li, Yanxiu; Yang, Xiangrui; Wu, Hongjie; Wu, Shichao; Xie, Liya; Dai, Lizong; Hou, Zhenqing

    2015-11-25

    We constructed 10-hydroxycamptothecin (CPT) "nanodrugs" with functionalization of lipid-PEG-methotrexate (MTX) to prepare high-drug-loaded, and sustained/controlled-release MTX-PEG-CPT nanorods (NRs), in which MTX drug itself can serve as a specific "targeting ligand". The self-targeted nanodrug can codeliver both CPT and MTX drugs with distinct anticancer mechanisms. Furthermore, MTX-PEG-CPT NRs significantly reduced burst release, improved blood circulation and tumor accumulation, enhanced cellular uptake, and synergistically increased anticancer effect against tumor cells compared with MTX-PEG-CPT nanospheres (NSs) and either both free drugs or individual free drug. Therefore, the synergistic targeting/therapeuticy nano-multi-drug codelivery assisted by shape design may advantageously offer a promising new strategy for nanomedicine. PMID:26529185

  8. CTP synthase forms cytoophidia in the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Ke-Mian [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193 (China); Chang, Chia-Chun [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Shen, Qing-Ji [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom); Sung, Li-Ying, E-mail: liyingsung@ntu.edu.tw [Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, ROC (China); Liu, Ji-Long, E-mail: jilong.liu@dpag.ox.ac.uk [MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT (United Kingdom)

    2014-04-15

    CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase. - Highlights: • CTP synthase forms cytoophidia not only in the cytoplasm but also in the nucleus. • Glutamine deprivation and Glutamine analogs promotes cytoophidium formation. • N-cytoophidia exhibit distinct morphology when compared to C-cytoophidia. • Both CTP synthase 1 and CTP synthase 2 form cytoophidia in mammalian cells. • Fusions of cytoophidia occur in the cytoplasm and nucleus.

  9. Kaonic nuclei and kaon-nucleus interactions

    CERN Document Server

    Ikuta, K; Masutani, K

    2002-01-01

    Although kaonic atoms provide valuable information concerning the K sup - -nucleus interaction at low energies, they cannot fully determine the K sup - - nucleus optical potential. We demonstrate that K sup - nuclear bound states, if they exist, can be useful in investigating the K sup - -nucleus interaction, especially in the interior of the nucleus. In order to show this possibility, we calculate the double differential cross sections for (K sup - , P) using the Green function method. (author)

  10. Evidence for a periaqueductal gray-nucleus retroambiguus spinal cord pathway in the rat

    NARCIS (Netherlands)

    Holstege, G.; Kerstens, Lenka; Moes, M.C.; Horst, V.G.J.M. van der

    1997-01-01

    The nucleus retroambiguus in the cat has been shown to receive strong projections from the periaqueductal gray and to send fibres to distinct motoneuronal cell groups in brainstem and spinal cord. The nucleus retroambiguus plays a role in the production of vocalization and possibly copulatory (lordo

  11. Red nucleus and rubrospinal tract disorganization in the absence of Pou4f1

    Directory of Open Access Journals (Sweden)

    Jesus E. eMartinez-Lopez

    2015-02-01

    Full Text Available The red nucleus is a neuronal population that plays an important role in forelimb motor control and locomotion. Histologically it is subdivided into two subpopulations, the parvocellular red nucleus located in the diencephalon and the magnocellular red nucleus in the mesencephalon. The red nucleus integrates signals from motor cortex and cerebellum and projects to spinal cord interneurons and motor neurons through the rubrospinal tract. Pou4f1 is a transcription factor highly expressed in this nucleus that has been related to its specification. Here we profoundly analyzed consequences of Pou4f1 loss-of-function in development, maturation and axonal projection of the red nucleus. Surprisingly, red nucleus neurons are specified and maintained in the mutant, no cell death was detected. Nevertheless, the nucleus appeared disorganized with a strong delay in radial migration and with a wider neuronal distribution; the neurons did not form a compacted population as they do in controls, Robo1 and Slit2 were miss-expressed. Cplx1 and Npas1, expressed in the red nucleus, are transcription factors involved in neurotransmitter release, neuronal maturation and motor function processes among others. In our mutant mice, both transcription factors are lost, suggesting an abnormal maturation of the red nucleus. The resulting altered nucleus occupied a wider territory. Finally, we examined rubrospinal tract development and found that the red nucleus neurons were able to project to the spinal cord but their axons appeared defasciculated. These data suggest that Pou4f1 is necessary for the maturation of red nucleus neurons but not for their specification and maintenance.

  12. Atom as a "Dressed" Nucleus

    CERN Document Server

    Kalitvianski, V

    2008-01-01

    It is shown that electrostatic potential of atomic nucleus seen by a fast charged projectile at short distances is quite smeared due to nucleus motion around the atomic center of inertia. For example, the size of positive charge cloud in the Hydrogen ground state is much larger than the proper proton size. It is even bigger for the target atom in an excited state. Therefore the elastic scattering at large angles is generally weaker than the Rutherford one. In other words, the resulting elastic interaction with an atom at short distances is softer than the Colombian one due to a natural cutoff. In addition, the large angle scattering leads to the target atom excitations due to hitting the nucleus (inelastic processes). It is also shown that the Rutherford cross section is in fact the inclusive rather than the elastic one. These results are analogous to the QED ones. The difference and the value of the presented below non relativistic atomic calculations is in non perturbatively (exact) dressing that immediatel...

  13. Cell transplantation and tissue engineering reconstruction of nucleus pulposus in the treatment of intervertebral disc degeneration%细胞移植及髓核组织工程重建修复椎间盘退变

    Institute of Scientific and Technical Information of China (English)

    陈清河; 叶君健

    2011-01-01

    背景:通过细胞组织工程将细胞或细胞支架复合体植入退变缺损的椎间盘内,使退变的椎间盘再生可能是治疗椎间盘退变性疾病最为理想的方法.目的:评价组织工程髓核体内移植抑制腰椎间盘退变的临床疗效及应用前景.方法:由第一作者检索1990/2010 PubMed数据、中国知网及万方数据库有关组织工程髓核、组织工程材料及骨髓间充质干细胞治疗腰椎间盘退变方面的文献.结果与结论:目前常用的细胞支架主要包括胶原支架、琼脂糖支架、藻酸盐支架、聚乙醇酸支架与壳聚糖支架以及复合材料等.通过自体椎间盘细胞或间充质干细胞结合基因技术筛选种子细胞,进行细胞和/或细胞支架复合体移植恢复或再生相关细胞外基质的合成,通过逆转和修复椎间盘细胞病理性改变,为退变的椎间盘组织和功能恢复提供了全新的治疗策略.%BACKGROUND: It is the best ideal therapy for degenerative disc diseases to implant cells or cell scaffold complex into thedegenerated disc so as to improve the regeneration of the intervertebral disc.OBJECTIVE: To evaluate the clinical effect and prospect of in vivo transplantation of nucleus pulposus cells for degenerative discdiseases.METHODS: The first author retrieved PubMed, CNKI, and Wanfang databases for articles about tissue engineering nucleuspulposus, tissue engineering materials and bone marrow mesenchymal stem cells for treatment of degenerative disc diseasespublished from 1990 to 2010.RESULTS AND CONCLUSION: The common scaffolds include collagen scaffold, agarose scaffold, alginate scaffold, polyglycolicacid scaffold, chitosan scaffold and composite scaffold. By gene screening technique, the seed cells were selected fromautologous disc cells or mesenchymal stem cells. Then, the cells and/or cell scaffold complex transplantation was for synthesis ofregenerated extracellular matrix. It provides a new therapeutic strategy for

  14. Immobility, inheritance and plasticity of shape of the yeast nucleus

    Directory of Open Access Journals (Sweden)

    Andrulis Erik D

    2007-11-01

    Full Text Available Abstract Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades" which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.

  15. 细胞核形态定量在小细胞肺癌的纤支镜细胞学中的应用研究%Application of cell nucleus morphometry in the bronchofiberscope brush cytology of small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    王文清; 郭华雄; 龚平; 赵廷宽; 李春燕

    2011-01-01

    Objective To investigate the differential diagnostic value of the quantitative analysis on the cell nucleus morphometry in the bronchofiberscope cytological brush for small cell lung cancer (SCLC). Methods By high multimedia image and word analysis system (HMIAS 2000), cell nucleus from SCLC tissues (22 cases), non small cell lung cancer tissues (76 cases) and benign lesions (40 cases) were quantitatively stereological studied with multi parameters. Results In all the 22 parameters, there were significant differences of 20 parameters between benigh lesions and small cell lung cancer between SCLC and benign lesions (P < 0.05), and of 16 parameters between SCLC and NSCLC (P<0.05). Conclusion The morphological characteristics of SCLC, NSCLC, and benign lesion were present by cell nucleus morphometry in the bronchofiberscope brush cytology of SCLC, which is valuable for the differential diagnosis for SCLC.%目的:探讨基于纤维支气管镜刷片细胞涂片中,多参数的细胞核形态定量分析对小细胞肺癌与非小细胞肺癌的鉴别诊断价值.方法:利用HMIAS-2000医学图文分析测量系统,对组织学确诊的纤维支气管镜刷片的小细胞肺癌与非小细胞肺癌的细胞核进行形态定量研究(腺癌48例、鳞癌28例、小细胞癌22例,阴性对照组40例).结果:在22个形态定量参数中,小细胞肺癌与良性对照20项参数有显著统计学差异(P<0.05),小细胞肺癌与非小细胞肺癌16项有统计学差异(P<0.05).结论:小细胞肺癌的多参数的形态计量揭示了纤支镜刷片细胞学的细胞核形态学计量特征,对辅助鉴别诊断小细胞肺癌具有一定的意义.

  16. Reduced Vglut2/Slc17a6 Gene Expression Levels throughout the Mouse Subthalamic Nucleus Cause Cell Loss and Structural Disorganization Followed by Increased Motor Activity and Decreased Sugar Consumption

    Science.gov (United States)

    Smith-Anttila, Casey J.A.; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Andersson, Malin; Dumas, Sylvie

    2016-01-01

    The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson’s disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.

  17. Pion production at 1800 in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    A survey experiment of pion production at 1800 in nucleus-nucleus collisions is presented. Beams of 1.05 GeV/A and 2.1 GeV/A protons, alphas, and carbon were used, as well as proton beams of 0.80 GeV, 3.5 GeV, and 4.89 GeV, and argon beams of 1.05 GeV/A and 1.83 GeV/A. This is the first such experiment to use the heavier beams. Targets used ranged from carbon to lead. An in-depth review of the literature, both experimental and theoretical, is also presented. The systematics of the data are discussed, and comparisons are made both with prior experiments and with the predictions of the models reviewed. The cross sections appear consistent with a simple single nucleon-nucleon collision picture, without the need for collective or other exotic effects. Suggestions for future work are made

  18. Applying the elastic model for various nucleus-nucleus fusion

    International Nuclear Information System (INIS)

    The Elastic Model of two free parameters m,d given by Scalia has been used for wider energy regions to fit the available experimental data for potential barriers and cross sections. In order to generalize Scalia's formula in both sub- and above-barrier regions, we calculated m, d for pairs rather than those given by Scalia and compared the calculated cross sections with the experimental data. This makes a generalization of the Elastic Model in describing fusion process. On the other hand, Scalia's range of interacting systems was 24 ≤ A ≤194 where A is the compound nucleus mass number. Our extension of that model includes an example of the pairs of A larger than his final limit aiming to make it as a general formula for any type of reactants: light, intermediate or heavy systems. A significant point is the comparison of Elastic Model calculations with the well known methods studying complete fusion and compound nucleus formation, namely with the resultants of using Proximity potential with either Sharp or Smooth cut-off approximations

  19. Resonances in -light nucleus systems

    Indian Academy of Sciences (India)

    K P Khemchandani; N G Kelkar; M Nowakowski; B K Jain

    2006-04-01

    We locate resonances in -light nucleus elastic scattering using the time delay method. We solve few-body equations within the finite rank approximation in order to calculate the -matrices and hence the time delay for the - 3He and - 4He systems. We find a resonance very close to the threshold in - 3 He elastic scattering, at about 0.5 MeV above threshold with a width of ∼ 2 MeV. The calculations also hint at the presence of sub-threshold states in both the cases.

  20. Turbulent mixing condensation nucleus counter

    Science.gov (United States)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  1. Biocarbon-coated LiFePO4 nucleus nanoparticles enhancing electrochemical performances

    DEFF Research Database (Denmark)

    Zhang, X.G.; Zhang, X.D.; He, W.;

    2012-01-01

    We report a green biomimetic method to synthesize biocarbon-coated LiFePO4 nucleus nanoparticles using yeast cells as both a structural template and a biocarbon source for high-power lithium-ion batteries....

  2. New results on nuclear multifragmentation in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies

    International Nuclear Information System (INIS)

    Some new aspects on the multifragmentation processes in nucleus-nucleus and nucleon-nucleus collisions at high energies are discussed in this work. Experimental data obtained in international collaborations (for example, MULTI Collaboration with KEK Tsukuba (Japan) and SKM 200 Collaboration with JINR Dubna (Russia)) are used to discuss new mechanisms in the target nucleus fragmentation. Correlations with stopping power, participant region size and energy density are included. Comparisons of the experimental results with the predictions of a phenomenological geometric model of intermediate mass fragment multiplicity, caloric curves and angular distributions are also presented. These results are used for global description of the multifragmentation processes in nucleon-nucleus and nucleus-nucleus collisions at relativistic energies. The size of the participant region and the average intermediate mass fragments multiplicity are taken into consideration using the free space probability. A few correlations between the deposited energy in the participant region and stability state of the intermediate mass fragments are presented in this work. The importance of the collision geometry in the multifragmentation processes is stressed. The results suggest different time moments for the incident nucleus fragmentation and for the target nucleus fragmentation. The associated entropies are distinct. (authors)

  3. Study of compatibility of acellular cartilage extracellular matrix-derived porous scaffolds with sheep nucleus pulposus cells%软骨脱细胞细胞外基质多孔支架与山羊髓核细胞生物相容性研究

    Institute of Scientific and Technical Information of China (English)

    伍耀宏; 徐宝山; 杨强; 李秀兰; 张杨; 夏群; 张春秋; 许海委

    2013-01-01

    Objective To study the compatibility of acellular cartilage extracellular matrix-derived porous scaffolds with sheep nucleus pulposus cells.Methods Articular cartilage derived from pigs was physically shattered and decellularized,and then made into porous scaffolds with freeze-drying techniques.Nucleus pulposus cells were isolated from the goat lumbar intervertebral disc,and P1 generation were obtained after culturing.The toxicity of leaching liquor from scaffolds was tested by MTT assay.The cells were seeded onto scaffolds with a density of 5 x 106/ml and cultured for 48h in vitro,activity and adhesion for cells on scaffolds were evaluated by inverted microscope,HE staining,LIVE/DEAD staining and scanning electron microscopy.Results Acellular cartilage extracellular matrix-derived porous scaffolds were smooth and transparent,isolated nucleus pulposus cells showed typical chondrocyte-like morphology.MTT assay demonstrated that proliferation among the groups has no significant difference(P>0.05).Cells showed spherical or short-spindle morphology and attached to the scaffolds evenly under the inverted microscope and scanning electron microscopy,and HE staining confirmed the even attachment of the cells.All the cells showed green fluorescence (live cells) while no red fluorescence (dead cells) was observed after staining with LIVE/DEAD dye.Conclusion The acellular cartilage extracellular matrix-derived porous scaffolds can be used as the nucleus pulposus tissue for sharing similar extracellular matrix composition with nucleus pulposus tissue and possess good cell compatibility with the sheep nucleus pulposus cells.%目的 制备软骨脱细胞细胞外基质多孔支架,并探讨其与山羊髓核细胞的生物相容性.方法 猪关节软骨经研磨、脱细胞、冷冻干燥技术等处理制成三维多孔支架;从山羊腰椎间盘中分离出髓核细胞,培养后获取P1代细胞;四甲基偶氮唑蓝(MTT)检测支架浸提

  4. Tissue engineered allograft total disc transplantation using exogenous nucleus pulposus cells: an experimental study in a beagle model%犬同种异体椎间盘复合髓核细胞移植初探

    Institute of Scientific and Technical Information of China (English)

    辛洪奎; 张超; 王德利; 吴剑宏; 王超峰; 何勍; 阮狄克

    2012-01-01

    功能的潜力,有望保证同种异体椎间盘移植的远期疗效.%Objectives: To investigate in vivo rehepitation of the transplanted tissue engineered allograft total disc and to explore the biological effect of nucleus pulposus(NP) cells or hTERT gene transfected NP cells on allograft total disc transplantation. Methods: Eighteen canine lumbar intervertebral discs were obtained from 5 canines and cryopreserved in liquid nitrogen. Canine nucleus pulposus cells were isolated and transduced with rAAV-hTERT. The cells were injected into the discs to construct a "tissue-engineered" allograft disc(group A). NP cells and DMEM/F12 were used for positive control(group B) and blank control(group C) respectively. 18 beagle dogs received the 3 groups of allograft IVD composites implantation respectively. Radiographic examination was performed at 4, 8 and 12 weeks after implantation. At 12 weeks after operation, all dogs were sacrificed and the lumbar spines were harvested for the biomechanical test and histological analysis, ectogenic NP cell tracing and hTERT mRNA analysis. Results: Bony fusion between intervertebral disc allograft and adjacent host intervertebral body was observed in all animals. The disc height and T2 signal intensity preservation'in "group A and B were better than group C. MRI showed typical degenerative changes in group C. In group A, the normalized grayscale of the transplanted disc in MRI image was significant higher than that of the controls at 12 weeks. Biomechanical test showed a poor stability preservation in group C compared with group A and B. PKH-26 positive cells were identified within the allograft discs in group A at 12 weeks, which provided matrix for cell survival. Histological analysis showed the NP cell morphology, cell number and distribution of the allograft discs were better preserved in group A and B than group C at 12 weeks of follow -up. Conclusions: NP cells or hTERT loaded NP cells intervention can effectively resist the

  5. Determination of Coil Inductances Cylindrical Iron Nucleus

    Directory of Open Access Journals (Sweden)

    Azeddine Mazouz

    2014-03-01

    Full Text Available The paper describes the investigation and development of a structure and performance characteristics of a coil iron nucleus cylindrical (C.I.N.C. The coil iron nucleus cylindrical is a nonlinear electro radio in which the moving of the nucleus in a sense or in other causes change in inductance and can reach extreme values at the superposition of nucleus and coil centers. The variation of the inductance and the degree of freedom of movement of the nucleus can lead to a device with electromechanical conversion The aim of this paper is the determination and visualization of self inductance and mutual of the (C.I.N.C based on geometric dimensions and the displacement of the nucleus.  

  6. Comparison of characteristics of different generations of rabbit nucleus pulposus cells after cryopreservation%不同代次兔髓核细胞冻存后的生物学特性比较

    Institute of Scientific and Technical Information of China (English)

    徐学振; 于占革; 杨威; 魏伟; 李念龙; 张东

    2011-01-01

    Objective:To compare the characteristics of different generations of rabbit nucleus pulposus cells (NPC) after cryopreservate and search for the best generation suitable for cryopreseryation as seed cells.Method: 10 New Zealand white rabbits(3-4 months old) were used,and the thoracic and lumbar(T1/2-L7/S1) NPC were separated immediately after general anesthesia under strictly aseptic conditions and cultured in vitro:control group (group A,n=10),the original generational cells;group B,C,D,E and F respectively representing the first,second,third,forth and fifth generation cells (each group n=10 and cell concentration 1×105/ml) were cryopreserved for 2-3 months and then continued for two weeks after recovery.The Trypan Blue and MTT were used for detecting cell survival rates and cell growth activity respectively;the proteoglycan (PG) synthesis and glycosaminoglycans(GAG) accumulation were tested;and the expression of type Ⅱ collagen gene were evaluated by RT-PCR.All the results were analyzed statistically using the SPSS 13.0 software package.Result:Cell survival rate of group B and C was close to that of group A on the 2nd day(P>0.05) and group D,E and F had obviously lower cell survival rate than that of group A,B and C(P<0.05).Cells of each group proliferated in different degrees.The growth tendency of group A,B,C and D was closer,and group A,B and C showed no time-related difference (P>0.05),while group D had worse cell survival rate than group A (P< 0.05).The proliferation of group E on the loth and 14th days as well as each time point of group F showed no significant difference(P>0.05).PG synthesis and GAG accumulation of group A,B and C at each time point were higher than that of group D,E and F at the corresponding time point (P<0.05).The collagen Ⅱgene expression of group A,B and C was higher than that of group D and E (P<0.05),and group F had lowest expression (P<0.01 ).Conclusion: After cryopreservation, different generations of cells

  7. Integrated Azimuthal Correlations in Nucleus-Nucleus Collisions at CERN SPS

    OpenAIRE

    Grebieszkow, Katarzyna; Mrowczynski, Stanislaw

    2011-01-01

    Azimuthal correlations of particles produced in nucleus-nucleus collisions at CERN SPS are discussed. The correlations quantified by the integral measure Phi are shown to be dominated by effects of collective flow.

  8. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  9. Antibaryon-nucleus bound states

    CERN Document Server

    Hrtánková, J

    2014-01-01

    We calculated antibaryon ($\\bar{B}$ = $\\bar{p}$, $\\bar{\\Lambda}$, $\\bar{\\Sigma}$, $\\bar{\\Xi}$) bound states in selected nuclei within the relativistic mean-field (RMF) model. The G-parity motivated $\\bar{B}$-meson coupling constants were scaled to yield corresponding potentials consistent with available experimental data. Large polarization of the nuclear core caused by $\\bar{B}$ was confirmed. The $\\bar{p}$ annihilation in the nuclear medium was incorporated by including a phenomenological imaginary part of the optical potential. The calculations using a complex $\\bar{p}$-nucleus potential were performed fully self-consistently. The $\\bar{p}$ widths significantly decrease when the phase space reduction is considered for $\\bar{p}$ annihilation products, but they still remain sizeable for potentials consistent with $\\bar{p}$-atom data.

  10. Information Processing in the Parabrachial Nucleus of the Pons: Temporal Relationships of Input and Output

    OpenAIRE

    Di Lorenzo, Patricia M.; Platt, Daniel; Victor, Jonathan D.

    2009-01-01

    As the second synapse in the central gustatory pathway of the rodent, the parabrachial nucleus of the pons (PbN) receives information about taste stimuli directly from the nucleus of the solitary tract (NTS). Data show that NTS cells amplify taste responses before transmitting taste-related signals to the PbN. NTS cells of varied response profiles send converging input to PbN cells, though input from NTS cells with similar profiles is more effective at driving PbN responses. PbN cells follow ...

  11. Three-dimensional organization of the human interphase nucleus.

    OpenAIRE

    Knoch, Tobias; Münkel, Christian; Waldeck, Waldemar; Langowski, Jörg

    2002-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal structure, except during cell division. Only recently has it become apparent that chromosomes occupy distinct 'territories' also in interphase. Two models for the detailed folding of the 30 nm chromatin fi...

  12. GlyT2+ Neurons in the Lateral Cerebellar Nucleus

    OpenAIRE

    Uusisaari, Marylka; Knöpfel, Thomas

    2009-01-01

    The deep cerebellar nuclei (DCN) are a major hub in the cerebellar circuitry but the functional classification of their neurons is incomplete. We have previously characterized three cell groups in the lateral cerebellar nucleus: large non-GABAergic neurons and two groups of smaller neurons, one of which express green fluorescence protein (GFP) in a GAD67/GFP mouse line and is therefore GABAergic. However, as a substantial number of glycinergic and glycine/GABA co-expressing neurons have been ...

  13. Cellular effects of swim stress in the dorsal raphe nucleus

    OpenAIRE

    Kirby, Lynn G.; Pan, Yu-Zhen; Freeman-Daniels, Emily; Rani, Shobha; Nunan, John D.; Akanwa, Adaure; Beck, Sheryl G

    2007-01-01

    Swim stress regulates forebrain 5-hydroxytryptamine (5-HT) release in a complex manner and its effects are initiated in the serotonergic dorsal raphe nucleus (DRN). The purpose of this study was to examine the effects of swim stress on the physiology of DRN neurons in conjunction with 5-HT immunohistochemistry. Basic membrane properties, 5-HT1A and 5-HT1B receptor-mediated responses and glutamatergic excitatory postsynaptic currents (EPSCs) were measured using whole-cell patch clamp technique...

  14. Functional network inference of the suprachiasmatic nucleus.

    Science.gov (United States)

    Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R

    2016-04-19

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  15. Functional network inference of the suprachiasmatic nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Abel, John H.; Meeker, Kirsten; Granados-Fuentes, Daniel; St. John, Peter C.; Wang, Thomas J.; Bales, Benjamin B.; Doyle, Francis J.; Herzog, Erik D.; Petzold, Linda R.

    2016-04-04

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure.

  16. Functional network inference of the suprachiasmatic nucleus.

    Science.gov (United States)

    Abel, John H; Meeker, Kirsten; Granados-Fuentes, Daniel; St John, Peter C; Wang, Thomas J; Bales, Benjamin B; Doyle, Francis J; Herzog, Erik D; Petzold, Linda R

    2016-04-19

    In the mammalian suprachiasmatic nucleus (SCN), noisy cellular oscillators communicate within a neuronal network to generate precise system-wide circadian rhythms. Although the intracellular genetic oscillator and intercellular biochemical coupling mechanisms have been examined previously, the network topology driving synchronization of the SCN has not been elucidated. This network has been particularly challenging to probe, due to its oscillatory components and slow coupling timescale. In this work, we investigated the SCN network at a single-cell resolution through a chemically induced desynchronization. We then inferred functional connections in the SCN by applying the maximal information coefficient statistic to bioluminescence reporter data from individual neurons while they resynchronized their circadian cycling. Our results demonstrate that the functional network of circadian cells associated with resynchronization has small-world characteristics, with a node degree distribution that is exponential. We show that hubs of this small-world network are preferentially located in the central SCN, with sparsely connected shells surrounding these cores. Finally, we used two computational models of circadian neurons to validate our predictions of network structure. PMID:27044085

  17. Nucleus accumbens receives gastric vagal inputs

    Institute of Scientific and Technical Information of China (English)

    Sangeeta MEHENDALE; Jing-tian XIE; Han H AUNG; Xiong-Fei GUAN; Chun-Su YUAN

    2004-01-01

    AIM: To localize and characterize the response of single accumbal neurons to electrical stimulation of the gastric vagal fibers. METHODS: Unitary responses to electrical stimulation of the ventral and dorsal gastric vagal fibers which serve the proximal stomach were recorded extracellularly in the nucleus accumbens in anesthetized cats.RESULTS: The evoked units recorded in the nucleus accumbens consisted of phasic and tonic responses, with a mean latency of (396±43) ms. Convergence of ventral and dorsal gastric vagal inputs onto single phasic and tonic accumbal units was observed. For tonic inhibitory responses, convergence was exhibited when stimulation applied to both the ventral and dorsal gastric vagal branches resulted in a significantly longer inhibitory period than did stimulation of a single gastric vagal branch. Comparing the gastric vagally evoked accumbal unitary responses to the neuronal responses recorded in the nucleus tractus solitarius, parabrachial nucleus and hypothalamus in our previous studies, our data showed a higher percentage of single spike responses and shorter response duration's in the nucleus accumbens than in the other nuclei. This suggests that the synaptic drive from the gastric vagal inputs to the nucleus accumbens is less powerful than in the other structures. CONCLUSION: The present study localized and characterized gastric vagally evoked responses in the nucleus accumbens, which suggest that the nucleus accumbens may process gastric signals concerned with the ingestive process.

  18. Angular characteristics of pion-nucleus interaction

    International Nuclear Information System (INIS)

    In the present paper pion-nucleus interactions have been studied using nuclear emulsion technique. The investigation of these interactions is expected to provide some very useful information about the multiparticle production mechanism. Nuclear emulsion is a material which memorizes the tracks of charged particles. When a primary particle collides with a nucleus, it may interact with the nucleons of the target nucleus in two ways. In the first case, independent reactions may take place between the incident particle and the nucleons present in the target nucleus. Secondly the primary particle may interact coherently with the various nucleons of the target nucleus and the secondary particles are produced. Angular distribution of charged secondaries produced in these interactions has been studied for central collision events. Different workers have used different criterion for the selection of central collisions. We analysed the events with high shower particle multiplicity i.e., Ns ≥ 28 and call them as central collision events

  19. Structures and functions in the crowded nucleus: new biophysical insights

    Directory of Open Access Journals (Sweden)

    Ronald eHancock

    2014-09-01

    Full Text Available Concepts and methods from the physical sciences have catalysed remarkable progress in understanding the cell nucleus in recent years. To share this excitement with physicists and encourage their interest in this field, this review offers an overview of how the physics which underlies structures and functions in the nucleus is becoming more clear thanks to methods which have been developed to simulate and study macromolecules, polymers, and colloids. The environment in the nucleus is very crowded with macromolecules, making entropic (depletion forces major determinants of interactions. Simulation and experiments are consistent with their key role in forming membraneless compartments such as nucleoli, PML and Cajal bodies, and discrete territories for chromosomes. The chromosomes, giant linear polyelectrolyte polymers, exist in vivo in a state like a polymer melt. Looped conformations are predicted in crowded conditions, and have been confirmed experimentally and are central to the regulation of gene expression. Polymer theory has revealed how the chromosomes are so highly compacted in the nucleus, forming a crumpled globule with fractal properties which avoids knots and entanglements in DNA while allowing facile accessibility for its replication and transcription. Entropic repulsion between looped polymers can explain the confinement of each chromosome to a discrete region of the nucleus. Crowding and looping are predicted to facilitate finding the specific targets of factors which modulate activities of DNA. Simulation shows that entropic effects contribute to finding and repairing potentially lethal double-strand breaks in DNA by increasing the mobility of the broken ends, favouring their juxtaposition for repair. Signaling pathways are strongly influenced by crowding, which favours a processive mode of response (consecutive reactions without releasing substrates. This new information contributes to understanding the sometimes counter

  20. [Possibility of the morphometry of the neuronal body and nucleus in cryostat sections of nerve tissue].

    Science.gov (United States)

    Krasnov, I B

    1982-02-01

    A method of fixation by the Carnoy liquid and of gallocyanine staining is proposed in order to obtain clear-cut boundaries of the neuron body, nucleus and nucleolus in cryostat sections of non-fixed frozen nerve tissue, for subsequent morphometry of the body and nucleus of nerve cells. In the resulting sections, the clearness of boundaries of the body and nucleus in a neuron is sufficient for measuring its diameter with the coefficient of variation not exceeding 2.5%. PMID:7041376

  1. Music and the nucleus accumbens.

    Science.gov (United States)

    Mavridis, Ioannis N

    2015-03-01

    Music is a universal feature of human societies over time, mainly because it allows expression and regulation of strong emotions, thus influencing moods and evoking pleasure. The nucleus accumbens (NA), the most important pleasure center of the human brain (dominates the reward system), is the 'king of neurosciences' and dopamine (DA) can be rightfully considered as its 'crown' due to the fundamental role that this neurotransmitter plays in the brain's reward system. Purpose of this article was to review the existing literature regarding the relation between music and the NA. Studies have shown that reward value for music can be coded by activity levels in the NA, whose functional connectivity with auditory and frontal areas increases as a function of increasing musical reward. Listening to music strongly modulates activity in a network of mesolimbic structures involved in reward processing including the NA. The functional connectivity between brain regions mediating reward, autonomic and cognitive processing provides insight into understanding why listening to music is one of the most rewarding and pleasurable human experiences. Musical stimuli can significantly increase extracellular DA levels in the NA. NA DA and serotonin were found significantly higher in animals exposed to music. Finally, passive listening to unfamiliar although liked music showed activations in the NA. PMID:25102783

  2. β-Catenin Can Be Transported into the Nucleus in a Ran-unassisted Manner

    OpenAIRE

    Yokoya, Fumihiko; Imamoto, Naoko; Tachibana, Taro; Yoneda, Yoshihiro

    1999-01-01

    The nuclear accumulation of β-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of β-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, β-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin–sensitive manner. In the cell-free import assay, β-catenin rapidly migrates into the nucleus without the exogenous addition of cyto...

  3. Isolation, culture and identification of nucleus pulposus-derived mesenchymal stem cells from adult rats in vitro%大鼠椎间盘髓核来源间充质干细胞的体外分离及培养鉴定

    Institute of Scientific and Technical Information of China (English)

    芮云峰; 王善正; 谢鑫荟; 孙明辉; 林禹丞; 李刚; 王宸

    2013-01-01

    背景:目前椎间盘髓核组织的细胞组成和特性仍未阐明。  目的:旨在建立大鼠椎间盘髓核来源间充质干细胞的体外培养体系,并对其体外多项分化潜能进行鉴定。  方法:体外培养SD大鼠盘髓核来源间充质干细胞,取第3代细胞进行三系诱导分化,将成骨、成脂和成软骨分化作为实验组,基础细胞培养作为对照组。  结果与结论:低密度培养获得的髓核来源细胞早期可形成葵花样细胞集落,克隆样生长。第3代后,细胞形态趋向均一,呈成纤维细胞样生长。成骨诱导28 d,实验组茜素红染色阳性,且 RunX2、osteopontin 及osteocalcin表达较对照组显著增高(P OBJECTIVE:To establish the in vitro culture system of rat nucleus pulposus-derived mesenchymal stem cells and to identify their multi-lineage differentiation potential. METHODS:Mesenchymal stem cells from the nucleus pulposus tissues of Sprague-Dawley rats were cultured in vitro. Then, cells at passage 3 were induced to differentiate into osteoblasts, adipocytes and chondrocytes as experimental group. cells cultured with basic culture medium served as controls. RESULTS AND CONCLUSION:cells isolated from rat nucleus pulposus could form the sunflower-like colonies and exhibit clone-like growth when they cultured at a low density. cells at passage 3 became homogeneous and exhibited fibroblast-like morphology. After 28 days of osteogenic induction, arizarin red positive signals were detected in the experimental group. The mRNA expressions of RunX2, osteopontin and osteocalcin were significantly increased in the experimental group, compared to the control group (P<0.05). After 21 days of adipogenic induction, oil red-O positive cells were detected in the experimental group. The mRNA expressions of C/EBPαand PPARγ2 were significantly increased in the experimental group, compared to the control group (P<0.05). After 21 days of chondrogenic

  4. Computational Diversity in the Cochlear Nucleus Angularis of the Barn Owl

    OpenAIRE

    Köppl, Christine; Carr, Catherine E.

    2002-01-01

    The cochlear nucleus angularis (NA) is widely assumed to form the starting point of a brain stem pathway for processing sound intensity in birds. Details of its function are unclear, however, and its evolutionary origin and relationship to the mammalian cochlear-nucleus complex are obscure. We have carried out extracellular single-unit recordings in the NA of ketamine-anesthetized barn owls. The aim was to re-evaluate the extent of heterogeneity in NA physiology because recent studies of cell...

  5. Analysis of Subthreshold Antiproton Production in p-Nucleus and Nucleus-Nucleus Collisions in the RBUU Approach

    CERN Document Server

    Teis, S; Maruyama, T; Mosel, U; Teis, Stefan; Cassing, Wolfgang; Maruyama, Tomoyuki; Mosel, Ulrich

    1994-01-01

    We calculate the subthreshold production of antiprotons in the Lorentz-covariant RBUU approach employing a weighted testparticle method to treat the antiproton propagation and absorption nonperturbatively. We find that the pbar differential cross sections are highly sensitive to the baryon and antiproton selfenergies in the dense baryonic environment. Adopting the baryon scalar and vector selfenergies from the empirical optical potential for proton-nucleus elastic scattering and from Dirac-Brueckner calculations at higher density rho > rho_0 we examine the differential pbar spectra as a function of the antiproton selfenergy. A detailed comparison with the available experimental data for p-nucleus and nucleus-nucleus reactions shows that the antiproton feels a moderately attractive mean-field at normal nuclear matter density rho_0 which is in line with a dispersive potential extracted from the free annihilation cross section.

  6. Nucleus accumbens stimulation in pathological obesity.

    Science.gov (United States)

    Harat, Marek; Rudaś, Marcin; Zieliński, Piotr; Birska, Julita; Sokal, Paweł

    2016-01-01

    One of the potential treatment methods of obesity is deep brain stimulation (DBS) of nucleus accumbens. We describe the case of 19 years old woman with hypothalamic obesity. She weighted 151.4 kg before DBS and the non-surgical methods proved to be inefficient. She was treated with implantation of DBS electrode to nucleus accumbens bilaterally. Results were measured with body mass index and neuropsychological tests. Follow-up was 14 months. Fourteen months after surgery weight was 138 kg, BMI was 48.3. Neuropsychological test results were intact. The presented case supports the thesis of treatment of obesity with nucleus accumbens stimulation. PMID:27154450

  7. Three-dimensional organization of the human interphase nucleus

    OpenAIRE

    Knoch, Tobias; Wachsmuth, Malte; Waldeck, Waldemar; Langowski, Jörg

    2002-01-01

    textabstractTo approach the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic properties of interphase chromosomes and cell nuclei were simulated with Monte Carlo and Brownian Dynamics methods. The 30 nm chromatin fibre was folded according to the Multi-Loop-Subcompartment (MLS) model, in which ~100 kbp loops form rosettes, connected by a linker, and the Random-Walk/Giant-Loop (RW/GL) topology, in which 1-5 Mbp loops are attached to a flexible bac...

  8. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Selyuzhenkov, I; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Mills, G B; Planeta, R J; Rubbia, A; Robert, A L; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Sgalaberna, D; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Igolkin, S; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Zambelli, L A; Sadovskiy, A; Morozov, S; Petukhov, O; Szuba, M K; Mathes, H; Herve, A E; Roehrich, D; Marino, A D; Wyszynski, O J; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Rondio, E; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Taranenko, A; Cirkovic, M; Gazdzicki, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Larsen, D T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Kobayashi, T; Blondel, A P P; Hasler, A; Damyanova, A; Stroebele, H W; Rustamov, A; Klochkov, V; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Veberic, D; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Ereditato, A; Paolone, V; Korzenev, A; Unger, M T; Wilczek, A G; Stepaniak, J M; Matulewicz, T N; Seryakov, A; Susa, T; Staszel, P P; Marcinek, A J; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  9. NPY and VGF Immunoreactivity Increased in the Arcuate Nucleus, but Decreased in the Nucleus of the Tractus Solitarius, of Type-II Diabetic Patients

    Science.gov (United States)

    Saderi, Nadia; Salgado-Delgado, Roberto; Avendaño-Pradel, Rafael; Basualdo, Maria del Carmen; Ferri, Gian-Luca; Chávez-Macías, Laura; Escobar, Carolina; Buijs, Ruud M.

    2012-01-01

    Ample animal studies demonstrate that neuropeptides NPY and α-MSH expressed in Arcuate Nucleus and Nucleus of the Tractus Solitarius, modulate glucose homeostasis and food intake. In contrast is the absence of data validating these observations for human disease. Here we compare the post mortem immunoreactivity of the metabolic neuropeptides NPY, αMSH and VGF in the infundibular nucleus, and brainstem of 11 type-2 diabetic and 11 non-diabetic individuals. α-MSH, NPY and tyrosine hydroxylase in human brain are localized in the same areas as in rodent brain. The similar distribution of NPY, α-MSH and VGF indicated that these neurons in the human brain may share similar functionality as in the rodent brain. The number of NPY and VGF immuno positive cells was increased in the infundibular nucleus of diabetic subjects in comparison to non-diabetic controls. In contrast, NPY and VGF were down regulated in the Nucleus of the Tractus Solitarius of diabetic patients. These results suggest an activation of NPY producing neurons in the arcuate nucleus, which, according to animal experimental studies, is related to a catabolic state and might be the basis for increased hepatic glucose production in type-2 diabetes. PMID:22808091

  10. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus.

    Science.gov (United States)

    Yoshikawa, Tomoko; Nakajima, Yoshihiro; Yamada, Yoshiko; Enoki, Ryosuke; Watanabe, Kazuto; Yamazaki, Maya; Sakimura, Kenji; Honma, Sato; Honma, Ken-ichi

    2015-11-01

    Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms. PMID:26342201

  11. Snake-like chromatin in conjunctival cells of normal elderly persons and of patients with primary Sjögren's syndrome and other connective tissue diseases

    DEFF Research Database (Denmark)

    Bjerrum, Kirsten Birgitte

    1995-01-01

    Ophthalmology, snake-like chromatin, cytoplasm ratio, keratoconjunctivitis sicca, nucleus, goblet cell......Ophthalmology, snake-like chromatin, cytoplasm ratio, keratoconjunctivitis sicca, nucleus, goblet cell...

  12. Parabrachial nucleus involvement in multiple system atrophy☆

    OpenAIRE

    Benarroch, E.E.; Schmeichel, A.M.; Low, P. A.; Parisi, J.E.

    2013-01-01

    Multiple system atrophy (MSA) is associated with respiratory dysfunction, including sleep apnea, respiratory dysrhythmia, and laryngeal stridor. Neurons of the parabrachial nucleus (PBN) control respiratory rhythmogenesis and airway resistance.

  13. The nucleus in Finland - The second report

    International Nuclear Information System (INIS)

    The Finnish Nuclear Society (FNS) started the distribution of the Nucleus bulletin at the beginning of 1988. The volume of distribution has been extended since, including today nearly 1,000 persons. Both the English and the Finnish version of the bulletin is sent to various opinion leaders of society, i.e. the members of the parliament, ministries, the media, representatives of industry and other decision-makers of the energy field. After the five-year history of the Nucleus in Finland, it is time to look back and sum up the present status of the Nucleus. This report gives a short summary concerning the present distribution and its efficiency, the experiences gained and the influence of the bulletin in Finland. The first questionnaire was sent in November 1988, and the survey was repeated among the Finnish readers of the Nucleus in autumn 1992. The results of the latter survey are given in this report

  14. Testing string dynamics in lepton nucleus reactions

    International Nuclear Information System (INIS)

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus (ell A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs

  15. Effect of apigenin on apoptotic rate and matrix metabolism of human nucleus pulposus cells cultured in vitro under hydrostatic pressure%静水压下芹菜素对体外培养人髓核细胞凋亡率及基质代谢的影响

    Institute of Scientific and Technical Information of China (English)

    柳根哲; 陈江; 徐林; 李春根; 孙旗; 乔卫平; 朱志强

    2012-01-01

    BACKGROUND: Abnormal biomechanical environment and over-expression nitric oxide are the two important factors in theprocess of intervertebral disc degeneration.OBJECTIVE: To discuss the effect of apigenin on the apoptotic rate and matrix metabolism of monolayer cultured human nucleuspulposus cells in vitro under different hydrostatic pressures.METHODS: In the hydrostatic pressure loading system, 0.1-3 MPa pressure was imposed on the human nucleus pulposus cells(passage 4) in monolayer culture in vitro for 2 hours, while using apigenin and nitric oxide donor to intervene on nucleus pulposuscells, and analyzing the effect of apigenin on the apoptotic rate, matrix metalloproteinase and matrix metabolism of humannucleus pulposus cells under hydrostatic pressure.RESULTS AND CONCLUSION: Under 0.3 MPa hydrostatic pressure, apigenin could reduce the degradation of extracellularmatrix by regulating the balance between matrix metallo proteinases-3 (MMP-3) and human tissue inhibitor of metal protease-1(TIMP-1), and improving nucleus pulposus cells inhibition status due to the high concentration of nitric oxide. Under 3 MPahydrostatic pressure, apigenin had a role in reducing the apoptotic rate of nucleus pulposus cells and could alleviate theunbalance between the MMP-3 and TIMP-1. The results showed that apigenin has an influence on the function status andapoptotic rate of nucleus pulposus cells, the balance between MMP-3 and TIMP-1, and the effects are different under differenthydrostatic pressure environments.%背景:生物力学环境的异常及一氧化氮过度表达是椎间盘退变进程中重要的影响因素.目的:探讨静水压下芹菜素对体外单层培养的人髓核细胞凋亡率及基质代谢的影响.方法:在静水压加载系统中对体外单层培养的人髓核细胞(传4代)施以0.1~3.0 MPa的静压,加压2 h,同时使用芹菜素和一氧化氮供体对髓核细胞进行干预,分析不同静水压下芹菜素对髓核细胞凋亡率、基

  16. Role of the RVM in Descending Pain Regulation Originating from the Cerebrospinal Fluid-Contacting Nucleus.

    Science.gov (United States)

    Fei, Yan; Wang, Xin; Chen, Songsong; Zhou, Qiangqiang; Zhang, Chao; Li, Ying; Sun, Lihong; Zhang, Licai

    2016-07-01

    Evidence has suggested that cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) is correlated with the development and recurrence of pain. A recent research showed that the CSF-contacting nucleus acts as a component of the descending 5-hydroxytryptamine (5-HT) system and plays a role in descending pain inhibition. However, limited studies are conducted to investigate the relationship between the CSF-contacting nucleus and pain. In present study, we explored the effect of CSF-contacting nucleus on nociceptive behaviors in both normal and neuropathic rats via targeted ablation of the CSF-contacting nucleus in the brainstem, using cholera toxin subunit B-saporin (CB-SAP), a cytotoxin coupled to cholera toxin subunit B. The CB-SAP-treated rats showed aggravated thermal hyperalgesia and mechanical allodynia. Also, results from immunohistochemical experiments showed that rostral ventromedial medulla (RVM) received fiber projection from the CSF-contacting nucleus, which disappeared after ablation of the CSF-contacting nucleus, and the CB-SAP treated rats showed downregulation of c-Fos expression in the RVM as compared with the rats receiving i.c.v. injection of phosphate buffer saline (PBS). A significant downregulation of 5-HT-labeled neurons and tryptophan hydroxylase 2 (TPH2) as the marker of 5-HT cells in the RVM, and 5-HT expression in spinal dorsal horn in both normal and chronic constriction injury (CCI) rats after i.c.v. injection of CB-SAP was observed. These results suggested that RVM may be involved in descending pain modulation originating from the CSF-contacting nucleus. PMID:26961890

  17. Deiters' Nucleus. Its Role in Cerebellar Ideogenesis : The Ferdinando Rossi Memorial Lecture.

    Science.gov (United States)

    Voogd, Jan

    2016-02-01

    Otto Deiters (1834-1863) was a promising neuroscientist who, like Ferdinando Rossi, died too young. His notes and drawings were posthumously published by Max Schultze in the book "Untersuchungen über Gehirn und Rückenmark." The book is well-known for his dissections of nerve cells, showing the presence of multiple dendrites and a single axon. Deiters also made beautiful drawings of microscopical sections through the spinal cord and the brain stem, the latter showing the lateral vestibular nucleus which received his name. This nucleus, however, should be considered as a cerebellar nucleus because it receives Purkinje cell axons from the vermal B zone in its dorsal portion. Afferents from the labyrinth occur in its ventral part. The nucleus gives rise to the lateral vestibulospinal tract. The cerebellar B module of which Deiters' nucleus is the target nucleus was used in many innovative studies of the cerebellum on the zonal organization of the olivocerebellar projection, its somatotopical organization, its microzones, and its role in posture and movement that are the subject of this review.

  18. Investigation of the (232)Th Nucleus Excitations at the FEL {gamma} - Nucleus Colliders

    CERN Document Server

    Koru, H; Sultansoy, S F; Sarer, B

    2001-01-01

    The physics search potential of the FEL {gamma} - Nucleus colliders is analysed using excitations of the (232)Th nucleus. It is shown that, due to the monochromacity of FEL {gamma} beam and high statistics, proposed colliders will play an important role in the field of "traditional" nuclear physics.

  19. Observation of high energy gamma rays in intermediate energy nucleus-nucleus collisions

    NARCIS (Netherlands)

    Beard, K.B.; Benenson, W.; Bloch, C.; Kashy, E.; Stevenson, J.; Morrissey, D.J.; Plicht, J. van der; Sherrill, B.; Winfield, J.S.

    1985-01-01

    High energy electrons and positrons observed in medium energy nucleus-nucleus collisions are shown to be primarily due to the external conversion of high energy gamma rays. The reaction 14N+Cu was studied at E/A=40 MeV, and a magnetic spectrograph was used with a specially constructed multiwire prop

  20. Temperature measurement of quark-gluon plasma formed in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    We discuss lepton pair and real photon emission from quark-gluon plasma, which is very likely to be formed in high energy nucleus-nucleus collisions. Measurement of pair production cross-section will provide one with accurate information of the temperature of this plasma. (author)

  1. IMACULAT - an open access package for the quantitative analysis of chromosome localization in the nucleus.

    Directory of Open Access Journals (Sweden)

    Ishita Mehta

    Full Text Available The alteration in the location of the chromosomes within the nucleus upon action of internal or external stimuli has been implicated in altering genome function. The effect of stimuli at a whole genome level is studied by using two-dimensional fluorescence in situ hybridization (FISH to delineate whole chromosome territories within a cell nucleus, followed by a quantitative analysis of the spatial distribution of the chromosome. However, to the best of our knowledge, open access software capable of quantifying spatial distribution of whole chromosomes within cell nucleus is not available. In the current work, we present a software package that computes localization of whole chromosomes - Image Analysis of Chromosomes for computing localization (IMACULAT. We partition the nucleus into concentric elliptical compartments of equal area and the variance in the quantity of any chromosome in these shells is used to determine its localization in the nucleus. The images are pre-processed to remove the smudges outside the cell boundary. Automation allows high throughput analysis for deriving statistics. Proliferating normal human dermal fibroblasts were subjected to standard a two-dimensional FISH to delineate territories for all human chromosomes. Approximately 100 images from each chromosome were analyzed using IMACULAT. The analysis corroborated that these chromosome territories have non-random gene density based organization within the interphase nuclei of human fibroblasts. The ImageMagick Perl API has been used for pre-processing the images. The source code is made available at www.sanchak.com/imaculat.html.

  2. UNCOVERING THE NUCLEUS CANDIDATE FOR NGC 253

    Energy Technology Data Exchange (ETDEWEB)

    Günthardt, G. I.; Camperi, J. A. [Observatorio Astronómico, Universidad Nacional de Córdoba (Argentina); Agüero, M. P. [Observatorio Astronómico, Universidad Nacional de Córdoba, and CONICET (Argentina); Díaz, R. J.; Gomez, P. L.; Schirmer, M. [Gemini Observatory, AURA (United States); Bosch, G., E-mail: gunth@oac.uncor.edu, E-mail: camperi@oac.uncor.edu, E-mail: mpaguero@oac.uncor.edu, E-mail: rdiaz@gemini.edu, E-mail: pgomez@gemini.edu, E-mail: mschirmer@gemini.edu, E-mail: guille@fcaglp.unlp.edu.ar [Instituto de Astrofísica de La Plata (CONICET-UNLP) (Argentina)

    2015-11-15

    NGC 253 is the nearest spiral galaxy with a nuclear starburst that becomes the best candidate for studying the relationship between starburst and active galactic nucleus activity. However, this central region is veiled by large amounts of dust, and it has been so far unclear which is the true dynamical nucleus to the point that there is no strong evidence that the galaxy harbors a supermassive black hole co-evolving with the starburst as was supposed earlier. Near-infrared (NIR) spectroscopy, especially NIR emission line analysis, could be advantageous in shedding light on the true nucleus identity. Using Flamingos-2 at Gemini South we have taken deep K-band spectra along the major axis of the central structure and through the brightest infrared source. In this work, we present evidence showing that the brightest NIR and mid-infrared source in the central region, already known as radio source TH7 and so far considered just a large stellar supercluster, in fact presents various symptoms of a genuine galactic nucleus. Therefore, it should be considered a valid nucleus candidate. Mentioning some distinctive aspects, it is the most massive compact infrared object in the central region, located at 2.″0 of the symmetry center of the galactic bar, as measured in the K-band emission. Moreover, our data indicate that this object is surrounded by a large circumnuclear stellar disk and it is also located at the rotation center of the large molecular gas disk of NGC 253. Furthermore, a kinematic residual appears in the H{sub 2} rotation curve with a sinusoidal shape consistent with an outflow centered in the candidate nucleus position. The maximum outflow velocity is located about 14 pc from TH7, which is consistent with the radius of a shell detected around the nucleus candidate, observed at 18.3 μm (Qa) and 12.8 μm ([Ne ii]) with T-ReCS. Also, the Brγ emission line profile shows a pronounced blueshift and this emission line also has the highest equivalent width at this

  3. Inner Structure of Boiling Nucleus and Interfacial Energy Between Nucleus and Bulk Liquid

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Dong; TIAN Yong; PENG Xiao-Feng; WANG Bu-Xuan

    2004-01-01

    @@ A model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent on the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provide solid theoretical evidence to clarify the definition of nucleation rate and understand the nucleation phenomenon with insight into the physical nature.

  4. Nucleus-Nucleus Potential at Near-Barrier Energies from Self Consistent Calculations

    CERN Document Server

    Skalski, J

    2003-01-01

    We determine the static nucleus-nucleus potential from Hartree-Fock (HF) calculations with the Skyrme interaction. To this aim, HF equations are solved on a spatial mesh, with the initial configuration consisting of target and projectile positioned at various relative distances. For a number of reaction partners, the calculated barrier heights reasonably well compare with those extracted from the measured fusion and capture cross sections. At smaller target-projectile distances, our results show the intrinsic barriers to heavy compound nucleus formation. We speculate on their possible connection with the fusion hindrance observed for large Z sub T Z sub P.

  5. Morphometric characteristics of Neuropeptide Y immunoreactive neurons of human cortical amygdaloid nucleus

    Directory of Open Access Journals (Sweden)

    Mališ Miloš

    2008-01-01

    Full Text Available Introduction Cortical amygdaloid nucleus belongs to the corticomedial part of the amygdaloid complex. In this nucleus there are neurons that produce neuropetide Y. This peptide has important roles in sleeping, learning, memory, gastrointestinal regulation, anxiety, epilepsy, alcoholism and depression. Material and methods We investigated morphometric characteristics (numbers of primary dendrites, longer and shorter diameters of cell bodies and maximal radius of dendritic arborization of NPY immunoreactive neurons of human cortical amygdaloid nucleus on 6 male adult human brains, aged 46 to 77 years, by immunohistochemical avidin-biotin technique. Results Our investigation has shown that in this nucleus there is a moderate number of NPY immunoreactive neurons. 67% of found neurons were nonpyramidal, while 33% were pyramidal. Among the nonpyramidal neurons the dominant groups were multipolar neurons (41% - of which 25% were multipolar irregular, and 16% multipolar oval. Among the pyramidal neurons the dominant groups were the neurons with triangular shape of cell body (21%. All found NPY immunoreactive neurons (pyramidal and nonpyramidal altogether had intervals of values of numbers of primary dendrites 2 to 6, longer diameters of cell bodies 13 to 38 µm, shorter diameters of cell bodies 9 to 20 µm and maximal radius of dendritic arborization 50 to 340 µm. More than a half of investigated neurons (57% had 3 primary dendrites. Discussion and conclusion The other researchers did not find such percentage of pyramidal immunoreactive neurons in this amygdaloid nucleus. If we compare our results with the results of the ather researchers we can conclude that all pyramidal NPY immunoreactive neurons found in this human amygdaloid nucleus belong to the class I of neurons, and that all nonpyramidal NPY immunoreactive neurons belong to the class II of neurons described by other researchers. We suppose that all found pyramidal neurons were projectional.

  6. The dolphin cochlear nucleus: topography, histology and functional implications.

    Science.gov (United States)

    Malkemper, E P; Oelschläger, H H A; Huggenberger, S

    2012-02-01

    Despite the outstanding auditory capabilities of dolphins, there is only limited information available on the cytology of the auditory brain stem nuclei in these animals. Here, we investigated the cochlear nuclei (CN) of five brains of common dolphins (Delphinus delphis) and La Plata dolphins (Pontoporia blainvillei) using cell and fiber stain microslide series representing the three main anatomical planes. In general, the CN in dolphins comprise the same set of subnuclei as in other mammals. However, the volume ratio of the dorsal cochlear nucleus (DCN) in relation to the ventral cochlear nucleus (VCN) of dolphins represents a minimum among the mammals examined so far. Because, for example, in cats the DCN is necessary for reflexive orientation of the head and pinnae towards a sound source, the massive restrictions in head movability in dolphins and the absence of outer ears may be correlated with the reduction of the DCN. Moreover, the same set of main neuron types were found in the dolphin CN as in other mammals, including octopus and multipolar cells. Because the latter two types of neurons are thought to be involved in the recognition of complex sounds, including speech, we suggest that, in dolphins, they may be involved in the processing of their communication signals. Comparison of the toothed whale species studied here revealed that large spherical cells were present in the La Plata dolphin but absent in the common dolphin. These neurons are known to be engaged in the processing of low-frequency sounds in terrestrial mammals. Accordingly, in the common dolphin, the absence of large spherical cells seems to be correlated with a shift of its auditory spectrum into the high-frequency range above 20 kHz. The existence of large spherical cells in the VCN of the La Plata dolphin, however, is enigmatic asthis species uses frequencies around 130 kHz.

  7. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus.

    Science.gov (United States)

    Del Pino Sans, Javier; Clements, Kelsey J; Suvorov, Alexander; Krishnan, Sudha; Adams, Hillary L; Petersen, Sandra L

    2016-08-01

    Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (pbrain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns. PMID:27185484

  8. Effects of adeno-associated virus (AAV) of transforming growth factors β1 and β3 (TGFβ1,3) on promoting synthesis of glycosaminoglycan and collagen type Ⅱ of dedifferentiated nucleus pulposus (NP) cells

    Institute of Scientific and Technical Information of China (English)

    SAI; JiaMing; HU; YouGu; WANG; DeChun

    2007-01-01

    The effects of AAV-TGFβ1 and AAV-TGFβ3 on promoting synthesis of glycosaminoglycan and collagen type Ⅱ of dedifferentiated rabbit lumbar disc NP cells were studied in this work. The rabbit lumbar disc NP cells were isolated and cultured. The earlier and later dedifferentiated NP cells were established by subculture. The AAV transfection efficiency to dedifferentiated NP cells was analyzed with AAV-EGFP in vitro. After dedifferentiated NP cells were transfected by AAV-TGFβ1 or AAV-TGFβ3, their biological effects on promoting synthesis of glycosaminoglycan or collagen type Ⅱ were detected and compared by the methods of 35S incorporation or immunoblotting. The experimental results showed that AAV could transfect efficiently the earlier dedifferentiated NP cells, but its transfection rate was shown to be at a low level to the later dedifferentiated NP cells. Both AAV-TGFβ1 and AAV-TGFβ3 could promote the earlier dedifferentiated NP cells to synthesize glycosaminoglycan and collagen type Ⅱ, and the effect of AAV-TGFβ1 was better than that of AAV-TGFβ3. For the later dedifferentiated NP cells, the AAV-TGFβ3 could promote their synthesis, but AAV-TGFβ1 could slightly inhibit their synthesis. Therefore, AAV-TGFβ1 and AAV-TGFβ3 could be used for the earlier dedifferentiated NP cells, and the TGFβ3 could be used as the objective gene for the later dedifferentiated NP cells.

  9. Hypoxia activates nucleus tractus solitarii neurons projecting to the paraventricular nucleus of the hypothalamus

    OpenAIRE

    King, T. Luise; Heesch, Cheryl M.; Clark, Catharine G.; Kline, David D.; Hasser, Eileen M.

    2012-01-01

    Peripheral chemoreceptor afferent information is sent to the nucleus tractus solitarii (nTS), integrated, and relayed to other brain regions to alter cardiorespiratory function. The nTS projects to the hypothalamic paraventricular nucleus (PVN), but activation and phenotype of these projections during chemoreflex stimulation is unknown. We hypothesized that activation of PVN-projecting nTS neurons occurs primarily at high intensities of hypoxia. We assessed ventilation and cardiovascular para...

  10. Forward-backward correlations in nucleus-nucleus collisions: baseline contributions from geometrical fluctuations

    OpenAIRE

    Konchakovski, V. P.; Hauer, M.; Torrieri, G.; Gorenstein, M. I.; Bratkovskaya, E. L.

    2008-01-01

    We discuss the effects of initial collision geometry and centrality bin definition on correlation and fluctuation observables in nucleus-nucleus collisions. We focus on the forward-backward correlation coefficient recently measured by the STAR Collaboration in Au+Au collisions at RHIC. Our study is carried out within two models: the Glauber Monte Carlo code with a `toy' wounded nucleon model and the hadron-string dynamics (HSD) transport approach. We show that strong correlations can arise du...

  11. Study of -nucleus interaction through the formation of -nucleus bound state

    Indian Academy of Sciences (India)

    V Jha; B J Roy; A Chatterjee; H Machner

    2006-05-01

    The question of possible existence of -mesic nuclei is quite intriguing. Answer to this question will deeply enrich our understanding of -nucleus interaction which is not so well-understood. We review the experimental efforts for the search of -mesic nuclei and describe the physics motivation behind it. We present the description of an experiment for the search of -nucleus bound state using the GeV proton beam, currently being performed at COSY.

  12. Centrality Dependence of Flow in High-Energy Nucleus-Nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    杨红艳; 周代翠; 杨纯斌; 蔡勖

    2002-01-01

    Directed flow and elliptic flow of final state particles in high-energy nucleus-nucleus collisions in the EMU01 experiment have been studied. The dependences of directed flow and elliptic flow on incident energy and impact centrality of outgoing particles are presented. The results exhibit strong dependence of flow on centrality and energy. We also suggest a more reliable way to determine the event plane resolution here.

  13. Fusion cross sections for reactions involving medium & heavy nucleus-nucleus systems

    OpenAIRE

    Atta, Debasis; Basu, D. N.

    2014-01-01

    Existing data on near-barrier fusion excitation functions of medium and heavy nucleus-nucleus systems have been analyzed using a simple diffused barrier formula derived assuming the Gaussian shape of the barrier height distributions. Fusion cross section is obtained by folding the Gaussian barrier distribution with the classical expression for the fusion cross section for a fixed barrier. The energy dependence of the fusion cross section, thus obtained, provides good description to the existi...

  14. Transverse momentum spectra in high-energy nucleus-nucleus, proton-nucleus and proton-proton collisions

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Jie

    2011-01-01

    The transverse momentum distributions of final-state particles produced in nucleus-nucleus (AA),proton-nucleus (pA),and proton-proton (pp) collisions at high energies are investigated using a multisource ideal gas model.Our calculated results show that the contribution of hard emission can be neglected in the study of transverse momentum spectra of charged pions and kaons produced in Cu-Cu collisions at (√SNN)=22.5 GeV.And if we consider the contribution of hard emission,the transverse momentum spectra of p and (P) produced in Cu-Cu collisions at (√SNN)=22.5 GeV,KsO produced in Pb-Pb collisions at 158 A GeV,J/ψ particles produced in p-Pb collisions at 400 GeV and π+,K+,p produced in proton-proton collisions at (√S)=200 GeV,can be described by the model,especially in the tail part of spectra.

  15. Critical periods during development of the dentate nucleus and their clinical significance

    Directory of Open Access Journals (Sweden)

    Gudović Radmila

    2007-01-01

    Full Text Available Introduction. The aim of this study was to identify the critical periods in the development of the human dentate nucleus in fetuses of different gestational ages and in one newborn brain. Material and Methods. The fetal brains were fixed in alcohol-formalin-acetic acid, embedded in paraffin, cut into 30m sections, and stained with cresyl violet. The sections were examined by light microscopy. In order to identify vulnerable periods, histological and stereological analyses were done. Formation of the dentate nucleus. The first appearance of the dentate nucleus was noticed in fetus of 12.5 weeks of gestation (wg, and its cells corresponded to the first and second stage of maturation. Formation of the dorsomedial lamina begins at the end of the 13th wg, and it starts to fold at 19.5 wg. At this time, cells correspond to the third stage of maturation, and formation of the ventromedial lamina begins. The first folds of the ventromedial lamina are noticed at 23.5 wg. Fourth stage maturity cells are noticed at 23.5 wg. remaining conspicuous up to birth. The numerical density of the nerve cell nuclei shows a constant decrease. Conclusion. Based on our results, we can conclude that during development of the dentate nucleus, there are two vulnerable periods. The first one corresponds to the fourth month of intrauterine life, and the second to the intensive growth of the dorsomedial and ventrolateral lamina (20.0 - 24.5 wg.

  16. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus

    NARCIS (Netherlands)

    Lin, K.; Limpens, E.H.M.; Zhang, Z.; Ivanov, S.; Saunders, D.G.O.; Mu, D.; Pang, E.; Cao, H.; Cha, H.; Lin, T.; Zhou, Q.; Shang, Y.; Li, Y.; Sharma, T.C.; Velzen, van R.; Ruijter, de N.C.A.; Aanen, D.K.; Win, J.; Kamoun, S.; Bisseling, T.; Geurts, R.; Huang, S.W.

    2014-01-01

    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. A

  17. ATG5: a distinct role in the nucleus.

    Science.gov (United States)

    Simon, Hans-Uwe; Friis, Robert

    2014-01-01

    Both apoptotic and autophagic pathways are activated in cells during anticancer treatment using DNA-damaging agents. Thus, the outcome is balanced between apoptotic cell death and enhanced autophagy, with the possibility of prolonged cell survival. It seems intuitively obvious that this survival mechanism might interfere with the desired tumor cell killing. We addressed this question by tipping the balance in favor of autophagy, using etoposide or cisplatin at low, sublethal doses. Over 4 days, only a little apoptosis was observed, but both drugs sharply increased autophagic flux. Surprisingly, cells underwent a cell cycle arrest at G 2/M, followed later by mitotic catastrophe with formation of multipolar spindles, missegregated chromosomes, or enlarged, irregular, sometimes multiple nuclei. Why? The answer is that even a low level of DNA damage not only upregulates autophagy, but also provokes the recruitment of an autophagy-related protein, ATG5, to the nucleus, where it binds BIRC5/survivin, thereby interfering with correct assembly of the chromosome passenger complex needed for cytokinesis.

  18. 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport

    OpenAIRE

    Brunet, Anne; Kanai, Fumihiko; Stehn, Justine; Xu, Jian; Sarbassova, Dilara; Frangioni, John V.; Dalal, Sorab N.; DeCaprio, James A.; Greenberg, Michael E.; Yaffe, Michael B.

    2002-01-01

    14-3-3 proteins regulate the cell cycle and prevent apoptosis by controlling the nuclear and cytoplasmic distribution of signaling molecules with which they interact. Although the majority of 14-3-3 molecules are present in the cytoplasm, we show here that in the absence of bound ligands 14-3-3 homes to the nucleus. We demonstrate that phosphorylation of one important 14-3-3 binding molecule, the transcription factor FKHRL1, at the 14-3-3 binding site occurs within the nucleus immediately bef...

  19. Hadron production in the nucleus fragmentation region

    Energy Technology Data Exchange (ETDEWEB)

    Betemps, Marcos Andre [Universidade Federal de Pelotas, RS (Brazil). Conjunto Agrotecnico Visconde da Graca]. E-mail: marcos.betemps@ufpel.edu.br; Ducati, Maria Beatriz Gay [Universidade Federal de Pelotas, RS (Brazil)]. E-mail: beatriz.gay@ufrgs.br

    2008-09-15

    The RHIC hadron production data in hadronic collisions at the forward rapidities may hint the evidence of the Color Glass Condensate (CGC). However, in the opposite region, backward rapidities, new effects should be important in order to describe the observables. In this work, the charged hadron and {pi}{sup 0} productions are investigated in the fragmentation region of the nucleus (backward rapidities) considering dAu and pp collisions in the context of the Color Glass Condensate. In the backward rapidity region, only the proton can be treated as a CGC, and the large x nuclear effects need to be considered in order to describe the cross section. The results are shown by means of the nuclear modification ratio comparing the proton-nucleus and proton-proton cross sections and such ratio presents some dependences on the large x nuclear effects. (author)

  20. Single pion production in neutrino nucleus scattering

    CERN Document Server

    Hernández, E; Vacas, M J Vicente

    2013-01-01

    We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results are incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.

  1. Coherency in Neutrino-Nucleus Elastic Scattering

    CERN Document Server

    Kerman, S; Deniz, M; Wong, H T; Chen, J -W; Li, H B; Lin, S T; Liu, C -P; Yue, Q

    2016-01-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter ($\\alpha$) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold and target nucleus are studied. The ranges of $\\alpha$ which can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in $\\alpha$ would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to $\\alpha$>0.95 are derived.

  2. Coherency in neutrino-nucleus elastic scattering

    Science.gov (United States)

    Kerman, S.; Sharma, V.; Deniz, M.; Wong, H. T.; Chen, J.-W.; Li, H. B.; Lin, S. T.; Liu, C.-P.; Yue, Q.; Texono Collaboration

    2016-06-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α ) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold, and target nucleus are studied. The ranges of α that can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α >0.95 are derived.

  3. Correlations in neutrino-nucleus scattering

    CERN Document Server

    Van Cuyck, Tom; Jachowicz, Natalie; González-Jiménez, Raul; Martini, Marco; Ryckebusch, Jan; Van Dessel, Nils

    2016-01-01

    We present a detailed study of charged-current quasielastic neutrino-nucleus scattering and of the influence of correlations on one- and two-nucleon knockout processes. The quasielastic neutrino-nucleus scattering cross sections, including the influence of long-range correlations, are evaluated within a continuum random phase approximation approach. The short-range correlation formalism is implemented in the impulse approximation by shifting the complexity induced by the correlations from the wave functions to the operators. The model is validated by confronting $(e,e^\\prime)$ cross-section predictions with electron scattering data in the kinematic region where the quasielastic channel is expected to dominate. Further, the $^{12}$C$(\

  4. Nickel-48, a very magic nucleus

    International Nuclear Information System (INIS)

    Ni48, which is doubly magic and very exotic, has been observed in an experiment performed at the GANIL accelerator. This nucleus, which is composed of 20 neutrons and 28 protons, is the most neutron-deficient nucleus that can be obtained, its decay mode has not yet been determined but theory predicts a 2-proton emission. Ni48 nuclei were obtained when accelerated (75 MeV/A) Ni58 ions had undergone fragmentation on natural nickel target. During this experiment 4 nuclei of Ni48 were produced as well as other very exotic nuclei: 90 nuclei of Ni49, 50 of Fe45 and 290 of Cr42. This experiment lasted 10 days and 1017 Ni58 ions were projected on the target. (A.C.)

  5. Hadron production in the nucleus fragmentation region

    International Nuclear Information System (INIS)

    The RHIC hadron production data in hadronic collisions at the forward rapidities may hint the evidence of the Color Glass Condensate (CGC). However, in the opposite region, backward rapidities, new effects should be important in order to describe the observables. In this work, the charged hadron and π0 productions are investigated in the fragmentation region of the nucleus (backward rapidities) considering dAu and pp collisions in the context of the Color Glass Condensate. In the backward rapidity region, only the proton can be treated as a CGC, and the large x nuclear effects need to be considered in order to describe the cross section. The results are shown by means of the nuclear modification ratio comparing the proton-nucleus and proton-proton cross sections and such ratio presents some dependences on the large x nuclear effects. (author)

  6. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  7. The fast Ice Nucleus chamber FINCH

    Science.gov (United States)

    Bundke, U.; Nillius, B.; Jaenicke, R.; Wetter, T.; Klein, H.; Bingemer, H.

    2008-11-01

    We present first results of our new developed Ice Nucleus (IN) counter FINCH from the sixth Cloud and Aerosol Characterization Experiment (CLACE 6) campaign at Jungfraujoch station, 3571 m asl. Measurements were made at the total and the ICE CVI inlet. Laboratory measurements of ice onset temperatures by FINCH are compared to those of the static diffusion chamber FRIDGE (FRankfurt Ice Deposition Freezing Experiment). Within the errors of both new instruments the results compare well to published data.

  8. Control of nucleus accumbens activity with neurofeedback

    OpenAIRE

    Greer, Stephanie M.; Trujillo, Andrew J.; Glover, Gary H.; Knutson, Brian

    2014-01-01

    The nucleus accumbens (NAcc) plays critical roles in healthy motivation and learning, as well as in psychiatric disorders (including schizophrenia and attention deficit hyperactivity disorder). Thus, techniques that confer control of NAcc activity might inspire new therapeutic interventions. By providing second-to-second temporal resolution of activity in small subcortical regions, functional magnetic resonance imaging (fMRI) can resolve online changes in NAcc activity, which can then be pres...

  9. Development of a Mobile Ice Nucleus Counter

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Gregory; Kulkarni, Gourihar

    2014-07-10

    An ice nucleus counter has been constructed. The instrument uses built-in refrigeration systems for wall cooling. A cascade refrigeration system will allow the cold wall to operate as low as -70 deg C, and a single stage system can operate the warm wall at -45 deg C. A unique optical particle counter has been constructed using polarization detection of the scattered light. This allows differentiation of the particles exiting the chamber to determine if they are ice or liquid.

  10. Revisiting the supratrigeminal nucleus in the rat.

    Science.gov (United States)

    Fujio, T; Sato, F; Tachibana, Y; Kato, T; Tomita, A; Higashiyama, K; Ono, T; Maeda, Y; Yoshida, A

    2016-06-01

    The supratrigeminal nucleus (Vsup), originally proposed as a premotoneuron pool in the trigeminal reflex arc, is a key structure of jaw movement control. Surprisingly, however, the location of the rat Vsup has not precisely been defined. In light of our previous cat studies, we made two hypotheses regarding the rat Vsup: (1) the Vsup is cytoarchitectonically distinguishable from its surrounding structures; (2) the Vsup receives central axon terminals of the trigeminal mesencephalic nucleus (Vmes) neurons which are primary afferents innervating muscle spindles of jaw-closing muscles and periodontal ligaments around the teeth. To test the first hypothesis, we examined the cytoarchitecture of the rat Vsup. The Vsup was identified as an area medially adjacent to the dorsomedial part of trigeminal principal sensory nucleus (Vp), and extended from the level just rostral to the caudal two-thirds of the trigeminal motor nucleus (Vmo) to the level approximately 150μm caudal to the Vmo. Our rat Vsup was much smaller and its location was considerably different in comparison to the Vsup reported previously. To evaluate the second hypothesis, we tested the distribution patterns of Vmes primary afferent terminals in the cytoarchitectonically identified Vsup. After transganglionic tracer applications to the masseter, deep temporal, and medial pterygoid nerves, a large number of axon terminals were observed in all parts of Vsup (especially in its medial part). After applications to the inferior alveolar, infraorbital, and lingual nerves, a small number of axon terminals were labeled in the caudolateral Vsup. The Vsup could also be identified electrophysiologically. After electrical stimulation of the masseter nerve, evoked potentials with slow negative component were isolated only in the Vsup. The present findings suggest that the rat Vsup can be cytoarchitectonically and electrophysiologically identified, receives somatotopic termination of the trigeminal primary afferents, and

  11. Neutrino-nucleus CCQE-like scattering

    CERN Document Server

    Nieves, J; Simo, I Ruiz; Sanchez, F; Vacas, M J Vicente

    2014-01-01

    RPA correlations, spectral function and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions without emitted pions are discussed. We pay attention to the influence of RPA and multi-nucleon mechanisms on the MiniBooNE and MINERvA flux folded differential cross sections, the MiniBooNE flux unfolded total cross section and the neutrino energy reconstruction.

  12. Radiative corrections to pion-nucleus bremsstrahlung

    OpenAIRE

    Kaiser, N.(Physik Department T39, Technische Universität München, Garching, D-85747, Germany); Friedrich, J. M.

    2008-01-01

    We calculate the one-photon loop radiative corrections to virtual pion Compton scattering $\\pi^- \\gamma^* \\to \\pi^- \\gamma$, that subprocess which determines in the one-photon exchange approximation the pion-nucleus bremsstrahlung reaction $\\pi^- Z\\to \\pi^- Z \\gamma$. Ultraviolet and infrared divergencies of the loop integrals are both treated by dimensional regularization. Analytical expressions for the ${\\cal O}(\\alpha)$ corrections to the virtual Compton scattering amplitudes, $A(s,u,Q)$ a...

  13. Theoretical highlights of neutrino-nucleus interactions

    CERN Document Server

    Alvarez-Ruso, Luis

    2009-01-01

    The recent theoretical developments in the field of neutrino-nucleus interactions in the few-GeV region are reviewed based on the presentations made at the NuInt09 Workshop. The topics of electron scattering and its connections with neutrino interactions, neutrino induced quasielastic scattering and pion production (coherent and incoherent) are covered, with special emphasis on the challenges that arise in the comparison with new experimental data.

  14. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl{sup +} K562 and Jak2(V617F){sup +} HEL Leukemia Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Axel [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany); Borghouts, Corina [Ganymed Pharmaceuticals AG, Mainz 55131 (Germany); Brendel, Christian [Boston Children’s Hospital, Division of Hematology/Oncology, Boston, MA 02115 (United States); Moriggl, Richard [Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna 1090 (Austria); Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd, E-mail: Groner@em.uni-frankfurt.de [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany)

    2015-03-19

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl{sup +} K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells

  15. Efficient nucleus detector in histopathology images.

    Science.gov (United States)

    Vink, J P; Van Leeuwen, M B; Van Deurzen, C H M; De Haan, G

    2013-02-01

    In traditional cancer diagnosis, (histo)pathological images of biopsy samples are visually analysed by pathologists. However, this judgment is subjective and leads to variability among pathologists. Digital scanners may enable automated objective assessment, improved quality and reduced throughput time. Nucleus detection is seen as the corner stone for a range of applications in automated assessment of (histo)pathological images. In this paper, we propose an efficient nucleus detector designed with machine learning. We applied colour deconvolution to reconstruct each applied stain. Next, we constructed a large feature set and modified AdaBoost to create two detectors, focused on different characteristics in appearance of nuclei. The proposed modification of AdaBoost enables inclusion of the computational cost of each feature during selection, thus improving the computational efficiency of the resulting detectors. The outputs of the two detectors are merged by a globally optimal active contour algorithm to refine the border of the detected nuclei. With a detection rate of 95% (on average 58 incorrectly found objects per field-of-view) based on 51 field-of-view images of Her2 immunohistochemistry stained breast tissue and a complete analysis in 1 s per field-of-view, our nucleus detector shows good performance and could enable a range of applications in automated assessment of (histo)pathological images. PMID:23252774

  16. The nucleus basalis in Huntington's disease.

    Science.gov (United States)

    Clark, A W; Parhad, I M; Folstein, S E; Whitehouse, P J; Hedreen, J C; Price, D L; Chase, G A

    1983-10-01

    The nucleus basalis of Meynert (nbM) provides most of the cholinergic input to the cerebral cortex. The loss of cortical choline acetyltransferase (CAT) activity in Alzheimer's disease (AD) and senile dementia of the Alzheimer's type (SDAT) appears to be related to a severe depopulation of the nbM in this dementia. In Huntington's disease (HD), by contrast, there is no loss of cortical CAT activity. The present quantitative study indicates that (1) there is no significant loss of neurons from the nbM in HD, and (2) that the previously described cytologic changes in the neurons of this nucleus in HD patients do not differ significantly from controls. These findings are consistent with the working hypothesis that the types of dementia associated with reductions of neocortical CAT activity are characterized by dysfunction or death of neurons in the nbM, but dementing disorders with normal neocortical CAT activity manifest no major abnormalities in this cholinergic nucleus of the basal forebrain. PMID:6225032

  17. Hypocretinergic facilitation of synaptic activity of neurons in the nucleus pontis oralis of the cat.

    Science.gov (United States)

    Xi, Ming Chu; Fung, Simon J; Yamuy, Jack; Morales, Francisco R; Chase, Michael H

    2003-06-27

    The present study was undertaken to explore the neuronal mechanisms of hypocretin actions on neurons in the nucleus pontis oralis (NPO), a nucleus which plays a key role in the generation of active (REM) sleep. Specifically, we sought to determine whether excitatory postsynaptic potentials (EPSPs) evoked by stimulation of the laterodorsal tegmental nucleus (LDT) and spontaneous EPSPs in NPO neurons are modulated by hypocretin. Accordingly, recordings were obtained from NPO neurons in the cat in conjunction with the juxtacellular microinjection of hypocretin-1 onto intracellularly recorded cells. The application of hypocretin-1 significantly increased the mean amplitude of LDT-evoked EPSPs of NPO neurons. In addition, the frequency and the amplitude of spontaneous EPSPs in NPO neurons increased following hypocretin-1 administration. These data suggest that hypocretinergic processes in the NPO are capable of modulating the activity of NPO neurons that receive excitatory cholinergic inputs from neurons in the LDT. PMID:12763260

  18. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.

    Science.gov (United States)

    Mikhailova, Maria A; Bass, Caroline E; Grinevich, Valentina P; Chappell, Ann M; Deal, Alex L; Bonin, Keith D; Weiner, Jeff L; Gainetdinov, Raul R; Budygin, Evgeny A

    2016-10-01

    Recent optogenetic studies demonstrated that phasic dopamine release in the nucleus accumbens may play a causal role in multiple aspects of natural and drug reward-related behaviors. The role of tonic dopamine release in reward consummatory behavior remains unclear. The current study used a combinatorial viral-mediated gene delivery approach to express ChR2 on mesolimbic dopamine neurons in rats. We used optical activation of this dopamine circuit to mimic tonic dopamine release in the nucleus accumbens and to explore the causal relationship between this form of dopamine signaling within the ventral tegmental area (VTA)-nucleus accumbens projection and consumption of a natural reward. Using a two bottle choice paradigm (sucrose vs. water), the experiments revealed that tonic optogenetic stimulation of mesolimbic dopamine transmission significantly decreased reward consummatory behaviors. Specifically, there was a significant decrease in the number of bouts, licks and amount of sucrose obtained during the drinking session. Notably, activation of VTA dopamine cell bodies or dopamine terminals in the nucleus accumbens resulted in identical behavioral consequences. No changes in water intake were evident under the same experimental conditions. Collectively, these data demonstrate that tonic optogenetic stimulation of VTA-nucleus accumbens dopamine release is sufficient to inhibit reward consummatory behavior, possibly by preventing this circuit from engaging in phasic activity that is thought to be essential for reward-based behaviors.

  19. Characterization of a novel Dp71 dystrophin-associated protein complex (DAPC) present in the nucleus of HeLa cells: Members of the nuclear DAPC associate with the nuclear matrix

    International Nuclear Information System (INIS)

    Dystrophin is an essential component in the assembly and maintenance of the dystrophin-associated protein complex (DAPC), which includes members of the dystroglycan, syntrophin, sarcoglycan and dystrobrevin protein families. Distinctive complexes have been described in the cell membrane of different tissues and cultured cells. In this work, we report the identification and characterization of a novel DAPC present in the nuclei of HeLa cells, which contains dystrophin Dp71 as a key component. Using confocal microscopy and cell fractionation analyses, we found the presence of Dp71, β-sarcoglycan, β-dystroglycan, α- and β-syntrophin, α1- and β-dystrobrevin and nNOS in the nuclei of HeLa cells. Furthermore, we demonstrated by co-immunoprecipitation experiments that most of these proteins form a complex in the nuclear compartment. Next, we analyze the possible association of the nuclear DAPC with the nuclear matrix. We found the presence of Dp71, β-dystroglycan, nNOS, β-sarcoglycan, α/β syntrophin, α1-dystrobrevin and β-dystrobrevin in the nuclear matrix protein fractions and in situ nuclear matrix preparations from HeLa cells. Moreover, we found that Dp71, β-dystroglycan and β-dystrobrevin co-immunoprecipitated with the nuclear matrix proteins lamin B1 and actin. The association of members of the nuclear DAPC with the nuclear matrix indicates that they may work as scaffolding proteins involved in nuclear architecture

  20. Development of the sexually dimorphic nucleus of the preoptic area and the influence of estrogen-like compounds*****

    Institute of Scientific and Technical Information of China (English)

    Zhen He; Sherry Ann Ferguson; Li Cui; Lazar John Greenfield; Merle Gale Paule

    2013-01-01

    One of the wel -defined sexual y dimorphic structures in the brain is the sexual y dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexual y dimorphic nucleus of the preoptic area can be delineated histological y using conventional Nissl staining or immunohistochemical y using calbindin D28K immunoreactivity. There is increasing use of the bindin D28K-delineated neural cluster to define the sexual y dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexual y dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cellactivity, including proliferation and migration presumably from the 3rd ventricle stem cellniche, may play a critical role in the postnatal development of the sexual y dimorphic nucleus of the preoptic area and its distinguishing sexual y dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexual y dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexual y dimor-phic nucleus of the preoptic area via an increase in stem cellactivity originating from the 3rd ventricle stem cellniche.

  1. Low P sub T hadron-nucleus interactions

    Science.gov (United States)

    Holynski, R.; Wozniak, K.

    1985-01-01

    The possibility of describing hadron-nucleus (hA) interactions is discussed in terms of a number of independent collisions of the projectile inside the target nucleus. This multiple rescattering may occur on a particle or quark parton level. To investigate the characteristics of hA interactions as a function of antineutrinos advantage is taken of the correlation between the average number antineutrinos of collisions of the projectile inside the nucleus and the number Ng of fast protons ejected from the struck nucleus. The relation antineutrinos vs Ng obtained in antineutrinos was used. For a given target nucleus this allows the selection of interactions occurring at different impact parameters.

  2. 低强度脉冲超声通过PI3K/Akt通路促进人退变髓核细胞合成细胞外基质%Low-intensity pulsed ultrasound stimulates the extracellular matrix synthesis of human degenerative nucleus pulposus cells via activating PI3K/Akt pathway

    Institute of Scientific and Technical Information of China (English)

    张晓军; 胡侦明; 郝杰; 沈皆亮

    2013-01-01

    Objective To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on the extracellular matrix synthesis of human degenerative nucleus pulposus cells and explore the underlying mechanism. Methods The nucleus pul-posus cells acquired from human degenerative lumbar intervertebral discs were cultured by monolayer culture and identified. After three passages, the cells were cultured in calcium alginate beads. Experimental groups were stimulated by LIPUS (LI-PUS group) for 1 week (20 min/d) or treated with LY294002 simultaneously (LY294002 group), and control group was treated in the same way without LIPUS stimulation. The concentrations of aggrecan and Col2α1 in culture supernatant were detected by ELISA. The expression levels of aggrecan and Col2α1 mRNA were dertermined by RT-PCR. The expression levels of aggrecan, Col2α1, Akt and p-Akt proteins were examined by Western blotting. Results The concentrations of aggrecan and Col2α1 in the LIPUS group group was significantly higher than those in the control group (P0.05). The levels of aggrecan and Col2α1 proteins were significantly lower in the LY294002 group than in the LIPUS group ( P<0.05). Conclusion The LIPUS can stimulate the extracellular matrix synthesis of degenerative human nucleus pulposus cells cultured in calcium alginate beads via activating PI3K/Akt pathway.%目的 探讨低强度脉冲超声(LIPUS)对人退变髓核细胞合成细胞外基质的影响及机制.方法 取人腰椎退变髓核组织,进行髓核细胞的分离、培养、鉴定,取P3代细胞转至藻酸钙凝珠培养.实验分组如下:LIPUS组:超声刺激1周,20 min/d;对照组:不予超声刺激同条件培养1周;LY294002组:超声刺激并加入LY294002共培养1周.应用ELISA法检测上清中髓核细胞分泌的aggrcan和Ⅱ型胶原(Col2α1);RT-PCR法检测细胞中aggrecan和Col2α1在mRNA水平的表达差异;Western blot法检测细胞中aggrecan、Col2α1、Akt及p-Akt的表达差异.结果 予

  3. Perkembangan Praimplantasi Embrio Mencit dengan Materi Genetik yang Berasal dari Parental, Maternal, dan Inti Sel Somatik (PRE-IMPLANTATION DEVELOPMENT OF MOUSE EMBRYO WITH GENETIC MATERIAL DERIVED FROM PARENTAL, MATERNAL AND SOMATIC CELL NUCLEUS

    Directory of Open Access Journals (Sweden)

    Harry Murti

    2014-05-01

    Full Text Available Cloned embryo and parthenogenetic embryo are a potential source of stem cells for regenerativemedicine. Stem cells derived from those embryos are expected to overcome the ethical issues to the use offertilization embryos for therapeutic purposes. The pre-implantation development is a critical step fordeveloping embryos reach the blastocyst stage. The objectives in vivo of this research are to produce mousecloned embryo, parthenogenetic embryo, and fertilized embryo and to study stages of  in vitro pre-implantation development culture. In vivo fertilized embryos, mouse oocytes, and cumulus cells were usedin this study. Treatment was performed on female mice superovulated with PMSG and hCG injections.Two-cell stage of in vivo fertilized embryos were collected on the second day post hCG injection. Clonedembryos were produced through Somatic Cell Nuclear Transfer (SCNT, which included enucleation, nucleartransfer and artificial activation. Parthenogenetic embryos were produced with artificial activationtechnique. The result of the research indicated that SCNT application was able to produce cloned embryos which could develop to blastocyst stage (3,2%. In addition, artificial activation of oocytes could produceparthenogenetic embryos which were able to develop up to the blastocyst stage (8,6%. In conclusion,efficiency level of parthenogenetic embryos that is able to reach the blastocyst stage was higher than in thecloned embryos. Fertilized embryos shows a better development and more efficient compared to in vitrocloned embryos and parthenogenetic embryos cultures.

  4. Formation of proton-fragments in hadron-nucleus and nucleus-nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Full text: The investigation of production of protons in hadron- and nucleus-nucleus interactions is a key problem allowing one to establish the singularities of dynamics of nuclear interactions. The formation of proton-fragments at high energies of colliding particles proceeds within both the interaction of hadrons with nuclei and in the process of decay of the nucleus or its de-excitation at peripheral interactions. At different stages of interaction of impinging particle with target nucleus, the different mechanisms of formation of proton-fragments: the direct knock-out of intranuclear nucleons in the process of high energy cascade of an initial hadron, intranuclear cascade of produced particles, decay of the excited multi-nucleon fragments and of the thermalized remnant nucleus, and the coalescence of nuclear fragments to the new clusters are realized with the certain probability, connected to the interaction parameters (the interaction energy, the parameter of collision, the intranuclear density, the configuration of Fermi momentum of nucleons and clusters of target nucleus et al.). In its turn, the mechanisms of formation of the final nuclear fragments are closely related to the type of excitation of an initial nucleus. The peripheral interactions proceed at small transfers of the momentum of an impinging particle and represent the wide class of reactions covering the processes from diffractive or coulomb collective excitations of the whole nucleus to the direct quasi-elastic knock-out of the separate nucleons. Non-peripheral interactions are caused by comparatively high local transfers of momentum to the intranuclear clusters allowing the development of intranuclear cascade and the asymmetric redistribution of energy of an impinging particle. The central collisions causing the full decay of nucleus on nucleons or few-nucleon fragments, are the limiting case of the maximal development of the intranuclear cascade. The interaction of the initial particles with

  5. J/ψ production in proton-nucleus and nucleus-nucleus interactions at the CERN SPS

    International Nuclear Information System (INIS)

    The NA38 and NA50 experiments at the CERN SPS have measured charmonium production in different colliding systems with the aim of observing a phase transition from ordinary hadronic matter towards a state in which quarks and gluons are deconfined (Quark Gluon Plasma, QGP). This experimental research is based on the prediction that the J/ψ yield should be suppressed in deconfined matter. The analysis of the data collected by the NA50 experiment with Pb-Pb collisions at 158 GeV/c per nucleon shows that the J/ψ is anomalously suppressed with respect to the pattern observed in proton-nucleus and light ion reactions. (orig.)

  6. 基于颜色矩阵映射的细胞图像核、浆提取方法研究%Extract Method Research of Cell Nucleus, Plasma of Image Based on Color Matrix Mapping

    Institute of Scientific and Technical Information of China (English)

    王萌; 张留龙; 赵运立

    2012-01-01

    目的 使用一种有别于传统的直接将彩图转换为灰度图进行分割的方法,用于细胞图像预处理.方法 使用颜色矩阵映射法提取细胞图像核、浆.结果 根据细胞核、浆的取值范围来映射彩色图像的颜色矩阵,直接取得细胞核、浆.结论 采用颜色矩阵映射法处理之后,得到的图像颜色对比较明显,背景平坦,能够较好地保留细胞形态,对后期细胞分割提供了更准确、有效的信息.%Objective A method which is different from the traditional way of converting color image into gray image directly, is used in cell image preprocessing. Methods We used color matrix mapping to extract cell nuclear, plasma of image. Results According to value range of cell nuclear and plasma to map the color matrix of a color image, the cell nuclear and plasma could be obtained directly. Conclusion After using the color matrix mapping, image obtained has obvious color contrast, smooth background cell form better reserved. It can provide more accurate, effective information for cell segmentation in later period.

  7. Oscillations of moments in high-energy nucleus-nucleus collisions

    Institute of Scientific and Technical Information of China (English)

    杨红艳; 周代翠; 钱琬燕; 王晓荣

    2001-01-01

    The definitions of density function and moment of multiplicity distribution are introduced,and the method of moment analysis in e+ e- and proton-proton (pp) interactions is extended into nu-cleus-nucleus (AA) interactions. We analyze the data for relativistic nucleus-nucleus collisions and cal-culate the values of Hq for charged particle multiplicity distributions, by which we study systematically the dependences of Hq on incident energy, mass of colliding system, pseudorapidity interval, centrality and truncation of multiplicity. We compare the oscillation structures induced by e + e-, pp and AA inter-actions, and the comparison and analysis are carried out between experimental data and QCD predic-tion. The latest results are given in this paper.

  8. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the n

  9. Study on chemical equilibrium in nucleus-nucleus collisions at relativistic energies

    CERN Document Server

    Manninen, J; Keränen, A; Gazdzicki, M; Stock, R; Manninen, Jaakko; Becattini, Francesco; Keranen, Antti; Gazdzicki, Marek; Stock, Reinhard

    2004-01-01

    We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the chemical equilibration of the system as a function of center of mass energy and of the parameters of the source. Additionally, we have tested and compared different versions of the statistical model, with special emphasis on possible explanations of the observed strangeness hadronic phase space under-saturation.

  10. The effect of the relative nuclear size on the nucleus-nucleus interactions

    Science.gov (United States)

    Erofeeva, I. N.; Murzin, V. S.; Sivoklokov, S. Y.; Smirnova, L. N.

    1985-01-01

    The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere.

  11. Nucleus-nucleus potential, energy dissipation and mass dispersion in fusion and transfer reactions

    CERN Document Server

    Washiyama, Kouhei; Ayik, Sakir

    2009-01-01

    The nucleus-nucleus potential and energy dissipation in fusion reactions are obtained from microscopic mean-field dynamics. The deduced potentials nicely reproduce the one extracted from experimental data. Energy dissipation shows a universal behaviour between different reactions. Also, the dispersion of mass distribution in transfer reaction is investigated in a stochastic mean-field dynamics. By including initial fluctuations in collective space, the description of the dispersion is much improved compared to that of mean field only. The result is consistent with the macroscopic phenomenological analysis of the experimental data.

  12. Aspects of Coulomb dissociation and interference in peripheral nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystrand, Joakim; Baltz, Anthony; Klein, Spencer R.

    2001-10-21

    Coherent vector meson production in peripheral nucleus-nucleus collisions is discussed. These interactions may occur for impact parameters much larger than the sum of the nuclear radii. Since the vector meson production is always localized to one of the nuclei, the system acts as a two-source interferometer in the transverse plane. By tagging the outgoing nuclei for Coulomb dissociation it is possible to obtain a measure of the impact parameter and thus the source separation in the interferometer. This is of particular interest since the life-time of the vector mesons are generally much shorter than the impact parameters of the collisions.

  13. Azimuthal correlations of hadrons and fragments in nucleus-nucleus collisions

    Institute of Scientific and Technical Information of China (English)

    LI Hui-Ling

    2011-01-01

    Two-particle (two-fragment) azimuthal correlation functions are studied by using a simple formula which describes uniformly azimuthal distributions of final-state charged particles and nuclear fragments.This formula is obtained in the framework of a multi-source thermal model (or multi-source ideal gas model).The calculated results are compared and found to be in agreement with the experimental data of charged hadrons and nuclear fragments in nucleus-nucleus collisions at intermediate and high energies.

  14. Dynamical aspects of intermediate-energy nucleus-nucleus collisions. Pt. 4

    International Nuclear Information System (INIS)

    The production of pions in intermediate energy nucleus-nucleus collisions by incoherent nucleon-nucleon collisions is studied within a microscopic quantal phase-space approach. Employing free production rates for the elementary process N+N → π+X experimental data for inclusive pion yields are approximately reproduced from 20-150 MeV/u within the first collision approximation. These results indicate that cooperative phenomena - apart from the time-dependent mean field - seem to play a minor role for energetic particle production even at very low bombarding energy. (orig.)

  15. High energy nucleus--nucleus studies at the Berkeley Bevalac. [Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.S.

    1976-09-01

    A survey of high-energy nucleus--nucleus experiments performed at the Berkeley Bevalac Facility is presented. Experimental results are divided into the general areas of peripheral and central collisions. Results on projectile and target fragmentation, total cross-section measurements, pion and photon production, and charged-particle multiplicities are stressed. Recently, there have been theoretical predictions concerning the possibility of observing new phenomena such as shock waves, pion condensates, or collapsed nuclear matter. Existing data relevant to some of these speculations are discussed. A brief discussion of future developments with high-energy nuclear beams is also presented. 27 figures, 1 table.

  16. Contemporary models of the atomic nucleus

    CERN Document Server

    Nemirovskii, P E

    2013-01-01

    Contemporary Models of the Atomic Nucleus discusses nuclear structure and properties, expounding contemporary theoretical concepts of the low-energy nuclear processes underlying in nuclear models. This book focuses on subjects such as the optical nuclear model, unified or collective model, and deuteron stripping reaction. Other topics discussed include the basic nuclear properties; shell model; theoretical analysis of the shell model; and radiative transitions and alpha-decay. The deuteron theory and the liquid drop nuclear model with its application to fission theory are also mentioned, but o

  17. Dust activity of Comet Halley's nucleus

    Science.gov (United States)

    Keller, H. U.; Delamere, W. A.; Huebner, W. F.; Reitsema, H.; Schmidt, H. U.; Schmidt, W. K. H.; Whipple, Fred L.; Wilhelm, K.

    1986-01-01

    Images obtained by the Halley multicolor camera using the clear filter with a pass band from 300 to 1000 nm were used to study dust activity in the comet nucleus. Comparisons with ground based observations confirm that dust production towards the Sun increases in activity relative to the southern background source while the Giotto spacecraft was approaching. This is in agreement with the assumption that the sunward activity becomes stronger when the source rotates towards the Sun. Estimated dust column density is 90 billion/sqm, with optical thickness less than or = 0.3. Surface reflectivity is less than 1%, indicating a very rough surface with large fractions of shadowed areas.

  18. Unveiling the nucleus of NGC 7172

    Science.gov (United States)

    Smajić, S.; Fischer, S.; Zuther, J.; Eckart, A.

    2012-08-01

    Aims: We present the results of near-infrared (NIR) H + K European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 7172. We investigate the central 800 pc, concentrating on excitation conditions, morphology, and stellar content. NGC 7172 was selected from a sample of the ten nearest Seyfert 2 galaxies from the Veron-Cetty & Veron catalogue. All objects were chosen as test cases for adaptive optics (AO) assisted observations that allow a detailed study (at high spatial and spectral resolution) of the nuclear and host environments. NGC 7172 has a prominent dustlane crossing the central galaxy region from east to west, which makes it an ideal candidate to investigate the effect of obscuration by strong galactic extinction on (active) galaxies and their classification. Methods: The NIR is less influenced by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy and provides us with the opportunity to analyze several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 4″ × 4″ field of view (FOV). Results: We present emission and absorption line measurements in the central 800 pc of NGC 7172. The detection of [Si vi] and broad Paα and Brγ components are clear signs of an accreting super-massive black hole hiding behind the prominent dustlane at visible wavelengths. Hot temperatures of about 1300 K are indicative of a dusty torus in the nuclear region. Narrow components of Paα and Brγ enable us to make an extinction measurement. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation of these lines is caused by an active galactic nucleus. The central region of the galactic disk is predominantly inhabited by gas, dust, and an old K-M type giant stellar population. The gaseous, molecular, and

  19. Evolutionary implications of localization of the signaling scaffold protein parafusin to both cilia and the nucleus.

    Science.gov (United States)

    Satir, Birgit Hegner; Wyroba, Elzbieta; Liu, Li; Lethan, Mette; Satir, Peter; Christensen, Søren Tvorup

    2015-02-01

    Parafusin (PFUS), a 63 kDa protein first discovered in the eukaryote Paramecium and known for its role in apicomplexan exocytosis, provides a model for the common origin of cellular systems employing scaffold proteins for targeting and signaling. PFUS is closely related to eubacterial rather than archeal phosphoglucomutases (PGM) - as we proved by comparison of their 88 sequences - but has no PGM activity. Immunofluorescence microscopy analysis with a PFUS-specific peptide antibody showed presence of this protein around the base region of primary cilia in a variety of mammalian cell types, including mouse embryonic (MEFs) and human foreskin fibroblasts (hFFs), human carcinoma stem cells (NT-2 cells), and human retinal pigment epithelial (RPE) cells. Further, PFUS localized to the nucleus of fibroblasts, and prominently to nucleoli of MEFs. Localization studies were confirmed by Western blot analysis, showing that the PFUS antibody specifically recognizes a single protein of ca. 63 kDa in both cytoplasmic and nuclear fractions. Finally, immunofluorescence microscopy analysis showed that PFUS localized to nuclei and cilia in Paramecium. These results support the suggestion that PFUS plays a role in signaling between nucleus and cilia, and that the cilium and the nucleus both evolved around the time of eukaryotic emergence. We hypothesize that near the beginnings of eukaryotic cell evolution, scaffold proteins such as PFUS arose as peripheral membrane protein identifiers for cytoplasmic membrane trafficking and were employed similarly during the subsequent evolution of exocytic, nuclear transport, and ciliogenic mechanisms.

  20. beta-catenin can be transported into the nucleus in a Ran-unassisted manner.

    Science.gov (United States)

    Yokoya, F; Imamoto, N; Tachibana, T; Yoneda, Y

    1999-04-01

    The nuclear accumulation of beta-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of beta-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, beta-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin-sensitive manner. In the cell-free import assay, beta-catenin rapidly migrates into the nucleus without the exogenous addition of cytosol, Ran, or ATP/GTP. Cytoplasmic injection of mutant Ran defective in its GTP hydrolysis did not prevent beta-catenin import. Studies using tsBN2, a temperature-sensitive mutant cell line that possesses a point mutation in the RCC1 gene, showed that the import of beta-catenin is insensitive to nuclear Ran-GTP depletion. These results show that beta-catenin possesses the ability to constitutively translocate through the nuclear pores in a manner similar to importin beta in a Ran-unassisted manner. We further showed that beta-catenin also rapidly exits the nucleus in homokaryons, suggesting that the regulation of nuclear levels of beta-catenin involves both nuclear import and export of this molecule.

  1. {sup 123}I-labeled HIV-1 tat peptide radioimmunoconjugates are imported into the nucleus of human breast cancer cells and functionally interact in vitro and in vivo with the cyclin-dependent kinase inhibitor, p21{sup WAF-1/Cip-1}

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Meiduo [University Health Network, Division of Nuclear Medicine, Toronto, ON (Canada); University of Toronto, Department of Pharmaceutical Sciences, Toronto, ON (Canada); Chen, Paul; Wang, Judy; Scollard, Deborah A. [University Health Network, Division of Nuclear Medicine, Toronto, ON (Canada); Vallis, Katherine A. [University Health Network, Department of Radiation Oncology, Toronto, ON (Canada); University of Toronto, Department of Medical Biophysics, Toronto, ON (Canada); Reilly, Raymond M. [University Health Network, Division of Nuclear Medicine, Toronto, ON (Canada); University of Toronto, Department of Pharmaceutical Sciences, Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); University of Toronto, Leslie Dan Faculty of Pharmacy, Toronto, ON (Canada)

    2007-03-15

    To evaluate the internalization and nuclear translocation of {sup 123}I-tat-peptide radioimmunoconjugates in MDA-MB-468 breast cancer cells and their ability to interact with the cyclin-dependent kinase inhibitor, p21{sup WAF-1/Cip-1}. Peptides [GRKKRRQRRRPPQGYGC] harboring the nuclear-localizing sequence from HIV tat domain were conjugated to anti-p21{sup WAF-1/Cip-1} antibodies. Immunoreactivity was assessed by Western blot using lysate from MDA-MB-468 cells exposed to EGF to induce p21{sup WAF-1/Cip-1}. Internalization and nuclear translocation were measured. The ability of tat-anti-p21{sup WAF-1/Cip-1} to block G{sub 1}-S phase arrest in MDA-MB-468 cells caused by EGF-induced p21{sup WAF-1/Cip-1} was evaluated. Tumor and normal tissue uptake were determined at 48 h p.i. in athymic mice implanted s.c. with MDA-MB-468 xenografts injected intratumorally with EGF. There was 13.4{+-}0.2% of radioactivity internalized by MDA-MB-468 cells incubated with {sup 123}I-tat-anti-p21{sup WAF-1/Cip-1} and 34.6{+-}3.1% imported into the nucleus. Tat-anti-p21{sup WAF-1/Cip-1}(8 {mu}M) decreased the proportion of EGF-treated cells in G{sub 1} phase from 81.9{+-}0.7% to 46.1{+-}0.7% (p<0.001), almost restoring the G{sub 1} phase fraction to that of unexposed cells (25.8{+-}0.2%). Non-specific tat-mouse IgG did not block EGF-induced G{sub 1}-S phase arrest. Tumor uptake of radioactivity was higher in mice injected with EGF to induce p21{sup WAF-1/Cip-1} than in mice not receiving EGF (3.1{+-}0.4% versus 1.8{+-}0.2% ID/g; p=0.04). Western blot analysis of tumors revealed a threefold increase in the p21{sup WAF-1/Cip-1}/{beta}-actin ratio. We conclude that intracellular and nuclear epitopes in cancer cells can be functionally targeted with tat-radioimmunoconjugates to exploit many more epitopes for imaging and radiotherapeutic applications than have previously been accessible. (orig.)

  2. Experimental study of collective flow phenomena in high-energy nucleus-nucleus collisions

    CERN Document Server

    Chkhaidze, L V; Kharkhelauri, L L

    2002-01-01

    The results of the experimental study of collective flow phenomena, such as the sideward and elliptic flow of nuclear matter, discovered during the last 10-15 years in high-energy nucleus-nucleus collisions are presented in this review. Sideward (often termed directed) and elliptic flows have been observed for protons, antiprotons, light nuclei, pions, kaons, and lambdas emitted in nucleus-nucleus collisions at 0.1-1.8 GeV/nucleon of LBL Bevalac and GSI/SIS by Plastic-Ball, Streamer Chamber, EOS-NPC, FOPI, LAND, TAPS, and KAOS collaborations; at 2-4 GeV/nucleon of Dubna JINR by SKM-200-GIBS, Propane Buble Chamber, and Emulsion Chamber collaborations; at 2-14 GeV/nucleon of BNL AGS, by the E877, E895, and E917 collaborations; and at 60 and 200 GeV/nucleon of CERN SPS, by the WA98 and NA49 collaborations and more recently by the STAR at RHIC BNL. In the review, the results of the SKM-200-GIBS collaboration of JINR are presented and compared with the results of different experiments by Bevalac, GSI/SIS, BNL, and...

  3. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (Eγ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar36 + Au197, Ag107, Ni58, C12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  4. Radiative corrections to pion-nucleus bremsstrahlung

    CERN Document Server

    Kaiser, N

    2008-01-01

    We calculate the one-photon loop radiative corrections to virtual pion Compton scattering $\\pi^- \\gamma^* \\to \\pi^- \\gamma$, that subprocess which determines in the one-photon exchange approximation the pion-nucleus bremsstrahlung reaction $\\pi^- Z\\to \\pi^- Z \\gamma$. Ultraviolet and infrared divergencies of the loop integrals are both treated by dimensional regularization. Analytical expressions for the ${\\cal O}(\\alpha)$ corrections to the virtual Compton scattering amplitudes, $A(s,u,Q)$ and $B(s,u,Q)$, are derived with their full dependence on the (small) photon virtuality $Q$ from 9 classes of contributing one-loop diagrams. Infrared finiteness of these virtual radiative corrections is achieved (in the standard way) by including soft photon radiation below an energy cut-off $\\lambda$. In the region of low $\\pi^- \\gamma$ center-of-mass energies, where the pion-nucleus bremsstrahlung process is used to extract the pion electric and magnetic polarizabilities, we find radiative corrections up to about -3% fo...

  5. 3-(Benzodioxan-2-ylmethoxy)-2,6-difluorobenzamides bearing hydrophobic substituents at the 7-position of the benzodioxane nucleus potently inhibit methicillin-resistant Sa and Mtb cell division.

    Science.gov (United States)

    Straniero, Valentina; Pallavicini, Marco; Chiodini, Giuseppe; Zanotto, Carlo; Volontè, Luca; Radaelli, Antonia; Bolchi, Cristiano; Fumagalli, Laura; Sanguinetti, Maurizio; Menchinelli, Giulia; Delogu, Giovanni; Battah, Basem; De Giuli Morghen, Carlo; Valoti, Ermanno

    2016-09-14

    Lipophilic substituents at benzodioxane C (7) of 3-(benzodioxan-2-ylmethoxy)-2,6-difluorobenzamide improve the antibacterial activity against methicillin-resistant Staphylococcus aureus strains to MIC values in the range of 0.2-2.5 μg/mL, whereas hydrophilic substituents at the same position and modifications at the benzodioxane substructure, excepting for replacement with 2-cromanyl, are deleterious. Some of the lead compounds also exhibit good activity against Mtb. Parallel SARs to those of 3-(2-benzothiazol-2-ylmethoxy)-2,6-difluorobenzamide, well known FtsZ inhibitor, and cells alterations typical of FtsZ inhibition indicate such a protein as the target of these potent antibacterial benzodioxane-benzamides. PMID:27191617

  6. Projections of medullary and pontine noradrenergic neurons to the horizontal limb of the nucleus of diagonal band in the rat.

    Science.gov (United States)

    Senatorov, V V; Renaud, L P

    1999-01-01

    Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.

  7. Analysis of Intermediate-Energy Nucleus-Nucleus Spallation, Fission, and Fragmentation Reactions with the LAQGSM code

    OpenAIRE

    Mashnik, S. G.; Gudima, K. K.; Prael, R. E.; Sierk, A. J.

    2003-01-01

    The LAQGSM code has been recently developed at Los Alamos National Laboratory to simulate nuclear reactions for proton radiography applications. We have benchmarked our code against most available measured data both for proton-nucleus and nucleus-nucleus interactions at incident energies from 10 MeV to 800 GeV and have compared our results with predictions of other current models used by the nuclear community. Here, we present a brief description of our code and show illustrative results obta...

  8. Specific energy from Auger and conversion electrons of 131I, 188Re-anti-CD20 to a lymphocyte's nucleus

    Science.gov (United States)

    Torres-García, E.; Carrillo-Cazares, T. A.

    2011-01-01

    The typical radionuclides used to label anti-CD20 in the treatment of non-Hodgkin's lymphoma are 90Y, 131I, and 188Re, with the emission of beta particles, Auger electrons, and conversion electrons for the latter two. The aim of the present work was to calculate the contribution of high linear energy transfer radiation as Auger electrons (AE) and conversion electrons (CE) of 131I and 188Re-anti-CD20 to mean specific energy into the cell nucleus by Monte Carlo simulation (MCS), so as to infer therapeutic effectiveness on a dosimetric basis. MCS was used to quantify the frequency-mean specific energy into the cell nucleus, where the cell was modeled by two concentric spheres, considering two cell models. The results showed that 10% and 33% of the mean-specific energies (z¯) per disintegration imparted to the cell nucleus for both geometries are due to AE and CE; on the other hand, if the hit of AE and CE occurs, the contribution to (z¯) is about 64% and 86% for 131I and 188Re, respectively. According to the amount of specific energy from AE and CE into the cell nucleus by positive event, they can cause catastrophic effects in the nuclear DNA in the treatment of non-Hodgkin's lymphoma with 131I, 188Re-anti-CD20.

  9. Laser-Nucleus Interactions: The Quasiadiabatic Regime

    CERN Document Server

    Pálffy, Adriana; Hoefer, Axel; Weidenmüller, Hans A

    2015-01-01

    The interaction between nuclei and a strong zeptosecond laser pulse with coherent MeV photons is investigated theoretically. We provide a first semi-quantitative study of the quasiadiabatic regime where the photon absorption rate is comparable to the nuclear equilibration rate. In that regime, multiple photon absorption leads to the formation of a compound nucleus in the so-far unexplored regime of excitation energies several hundred MeV above the yrast line. The temporal dynamics of the process is investigated by means of a set of master equations that account for dipole absorption, stimulated dipole emission, neutron decay and induced fission in a chain of nuclei. That set is solved numerically by means of state-of-the-art matrix exponential methods also used in nuclear fuel burnup and radioactivity transport calculations. Our quantitative estimates predict the excitation path and range of nuclei reached by neutron decay and provide relevant information for the layout of future experiments.

  10. Nature of multiple-nucleus cluster galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, D.

    1984-05-01

    In models for the evolution of galaxy clusters which include dynamical friction with the dark binding matter, the distribution of galaxies becomes more concentrated to the cluster center with time. In a cluster like Coma, this evolution could increase by a factor of approximately 3 the probability of finding a galaxy very close to the cluster center, without decreasing the typical velocity of such a galaxy significantly below the cluster mean. Such an enhancement is roughly what is needed to explain the large number of first-ranked cluster galaxies which are observed to have extra ''nuclei''; it is also consistent with the high velocities typically measured for these ''nuclei.'' Unlike the cannibalism model, this model predicts that the majority of multiple-nucleus systems are transient phenomena, and not galaxies in the process of merging.

  11. Delta-nucleus dynamics: proceedings of symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P. (eds.)

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  12. Delta-nucleus dynamics: proceedings of symposium

    International Nuclear Information System (INIS)

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta Δ(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe Δ-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented

  13. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ˜70 eV, substantially lower than that of liquid water  ˜78 eV. Monte Carlo simulations for 10-50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ˜1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  14. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol

    Science.gov (United States)

    McNamara, A. L.; Kam, W. W. Y.; Scales, N.; McMahon, S. J.; Bennett, J. W.; Byrne, H. L.; Schuemann, J.; Paganetti, H.; Banati, R.; Kuncic, Z.

    2016-08-01

    Gold nanoparticles (GNPs) have shown potential as dose enhancers for radiation therapy. Since damage to the genome affects the viability of a cell, it is generally assumed that GNPs have to localise within the cell nucleus. In practice, however, GNPs tend to localise in the cytoplasm yet still appear to have a dose enhancing effect on the cell. Whether this effect can be attributed to stress-induced biological mechanisms or to physical damage to extra-nuclear cellular targets is still unclear. There is however growing evidence to suggest that the cellular response to radiation can also be influenced by indirect processes induced when the nucleus is not directly targeted by radiation. The mitochondrion in particular may be an effective extra-nuclear radiation target given its many important functional roles in the cell. To more accurately predict the physical effect of radiation within different cell organelles, we measured the full chemical composition of a whole human lymphocytic JURKAT cell as well as two separate organelles; the cell nucleus and the mitochondrion. The experimental measurements found that all three biological materials had similar ionisation energies  ∼70 eV, substantially lower than that of liquid water  ∼78 eV. Monte Carlo simulations for 10–50 keV incident photons showed higher energy deposition and ionisation numbers in the cell and organelle materials compared to liquid water. Adding a 1% mass fraction of gold to each material increased the energy deposition by a factor of  ∼1.8 when averaged over all incident photon energies. Simulations of a realistic compartmentalised cell show that the presence of gold in the cytosol increases the energy deposition in the mitochondrial volume more than within the nuclear volume. We find this is due to sub-micron delocalisation of energy by photoelectrons, making the mitochondria a potentially viable indirect radiation target for GNPs that localise to the cytosol.

  15. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis.

    Science.gov (United States)

    Scofield, M D; Heinsbroek, J A; Gipson, C D; Kupchik, Y M; Spencer, S; Smith, A C W; Roberts-Wolfe, D; Kalivas, P W

    2016-07-01

    The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances. PMID:27363441

  16. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    Science.gov (United States)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  17. RanBPM is an acetylcholinesterase-interacting protein that translocates into the nucleus during apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiaowen Gong; Weiyuan Ye; Haibo Zhou; Xiaohui Ren; Zhigang Li; Weiyin Zhou; Jun Wu; Yicheng Gong; Qi Ouyang; Xiaolin Zhao; Xuejun Zhang

    2009-01-01

    Acetylcholinesterase (ACHE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further con-firmed by coimmunoprecipitation analysis. In HEK293T cells, RanBPM and AChE were hetero-geneously expressed in the cisplatin-untreated cyto-plasmic extracts and in the cisplatin-treated cytoplasmic or nuclear extracts. Our previous studies performed using morphologic methods have shown that AChE translocates from the cytoplasm to the nucleus during apoptosis. Taken together, these results suggest that RanBPM is an AChE-interacting protein that is translocated from the cytoplasm into the nucleus during apoptosis, similar to the trans-location observed in case of ACHE.

  18. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E;

    2015-01-01

    signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats...... with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0.004). CONCLUSION: We...... find a strong negative correlation between plasma triglyceride concentrations and the number of kisspeptin neurons in the rat arcuate nucleus regardless of the percentage of fat in the diet. In line with the lipotoxicity hypothesis, our results suggest that it is the level of hypertriglyceridemia per...

  19. Study by Monte Carlo simulation of the absorbed dose in cells of breast cancer of the line MDA-MB231, due to sources of {sup 111}In, {sup 177}Lu and {sup 99m}Tc internalized in the nucleus. First results; Estudio por simulacion Monte Carlo de la dosis absorbida en celulas de cancer de seno de la linea MDA-MB231, debida a fuentes de {sup 11I}n, {sup 177}Lu y {sup 99m}Tc internalizadas en el nucleo. Primeros resultados

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E. L.; Perez A, M., E-mail: leticia.rojas@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    The necessity to design innovative treatments and to diagnose the cancer early, has taken to investigate therapies at cellular and molecular level. The design of appropriate radio-molecules to these therapies makes necessary to characterize in way exhaustive radionuclides that they are of accessible production in our country and to study as distributing the dose at cellular level with bio-molecules glued them. In this context, was realized the present work. Using Monte Carlo simulation, the energy deposited in a geometric model of cells of breast cancer was obtained, MDA-MB231, due to different radionuclides. The energy deposited in the nucleus was evaluated, in the cytoplasm and in the membrane of the cell, using the simulation code Monte Carlo Penelope 2008. A punctual source was simulated in the center of the cell nucleus. In each case all the emissions of each radionuclide majors to 400 eV were simulated. The energies deposited by disintegration in the nucleus, cytoplasm, membrane of the cell and in a sphere of 2 cm surrounding the source (in eV) were: 4.30E3, 4.85E2, 1.07E2 and 3.29E4, correspondingly, for the {sup 111}In; 4.46E3, 3.76E3, 1.26E3 and 1.33E5 for the {sup 177}Lu and; 2.12E3, 2.58E2, 9.33E1 and 1.88E4 for the {sup 99m}Tc. We can conclude that if the union of these radionuclides happens to a compound that was internalized to the cell nucleus, the best for therapy at this level is the conjugate with the {sup 177}Lu, followed by that with {sup 111}In and in third place that with {sup 99m}Tc. (Author)

  20. 非接触共培养脊索细胞诱导骨髓间充质干细胞向类软骨细胞分化的实验研究%Induction of mesenchymal stem cells to nucleus pulposus phenotype by indirect co-culture in vitro

    Institute of Scientific and Technical Information of China (English)

    张彦男; 邵增务; 吴永超; 王佰川; 马凯歌; 丁凡; 杨述华

    2012-01-01

    目的:分离兔髓核脊索细胞(notochordal cells,NC)及骨髓间充质干细胞(mesenchymal stem cell,MSC),通过非接触共培养探讨NC对MSC细胞表型的影响.方法:4~6周龄新西兰兔8只,取胸腰段脊柱的髓核,用密度梯度离心提取NC,同时取其股骨骨髓用FICOLL液分离MSC,将NC和MSC等比例(1:1)通过transwell培养板进行非接触共培养作为实验组,单纯MSC细胞培养作为对照组,光镜下观察细胞的生长情况.对两组的MSC行免疫组化及RT-PCR、Western-blot检测MSC细胞表型的改变情况.结果:原代NC呈圆形或椭圆形,细胞体积大,细胞增殖不明显;MSC贴壁生长,呈三角形或梭形,漩涡状排列.甲苯胺蓝染色:对照组MSC细胞核淡染,胞体染色不明显,染色阴性;实验组MSC可见从第3天开始胞体及胞外基质出现紫红色,第5天染色更加明显.Ⅱ型胶原免疫组化对照组MSC淡染,细胞形态不清楚;实验组第3天出现MSC内出现棕黄色深染,随着时间推移细胞染色加深呈阳性表现.RT-PCR检测,经过5d非接触共培养后实验组蛋白聚糖的基因表达为对照组的2.35倍(P<0.05),Ⅱ型胶原的基因表达为对照组的1.61倍(P<0.05),对照组Ⅰ型胶原的基因表达为实验组的2.56倍(P<0.05).Western-blot检测后发现:经过5d非接触共培养,实验组蛋白聚糖的含量为对照组的1.61倍(P<0.05),Ⅱ型胶原的表达为对照组的10.04倍(P<0.05)(P<0.05).结论:在非接触共培养条件下脊索细胞可以诱导骨髓间充质干细胞表型发生变化,向类软骨细胞方向分化,这将为组织工程化髓核的种子细胞筛选提供新选择.%Objectives: To isolate and co-culture notochordal cells(NC) and mesenchymal stem cells(MSCs) from immature nucleus pulposus (NP) of New Zealand rabbit,and to investigate the induction of notochordal cells to mesenchymal stem cells. Methods: Notochordal cells were harvested from immature NPs of 8 New Zealand rabbits (4-6 we

  1. Heavy flavors in nucleus-nucleus collisions at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Nardi Marzia

    2014-04-01

    Full Text Available A multi-step setup for heavy-flavor studies in high-energy nucleus-nucleus (AA collisions — addressing within a comprehensive framework the initial QQ¯$Q\\overline Q $ production, the propagation in the hot medium until decoupling and the final hadronization and decays — is presented. The propagation of the heavy quarks in the medium is described in a framework provided by the relativistic Langevin equation and the corresponding numerical results are compared to experimental data from RHIC and the LHC. In particular, outcomes for the nuclear modification factor RAA and for the elliptic flow υ2 of D/B mesons, heavy-flavor electrons and non-prompt J/ψ’s are displayed.

  2. Experimental and phenomenological investigations of QCD matter in high-energy nucleus-nucleus collisions

    Energy Technology Data Exchange (ETDEWEB)

    Andronic, Anton

    2014-07-15

    This thesis is heterogeneous, comprising experimental papers at low energies (SIS-18 at GSI) and at the LHC, papers on phenomenology of high-energy nucleus-nucleus collisions, and papers on detectors. The overview covers the experimental papers and those on phenomenology. I have chosen to write it in a general manner, intended to be accessible to non-experts. It emphasizes recent measurements and their understanding at the LHC. The detector papers, which address many principle aspects of gaseous detectors, are summarized and placed in context in the review I co-wrote and which closes the stack. The detector papers included here are the outcome of an R and D program for the Transition Radiation Detector of ALICE.

  3. Forward-backward correlations in nucleus-nucleus collisions: baseline contributions from geometrical fluctuations

    CERN Document Server

    Konchakovski, V P; Torrieri, G; Gorenstein, M I; Bratkovskaya, E L

    2008-01-01

    We discuss the effects of initial collision geometry and centrality bin definition on correlation and fluctuation observables in nucleus-nucleus collisions. We focus on the forward-backward correlation coefficient recently measured by the STAR Collaboration in Au+Au collisions at RHIC. Our study is carried out within two models: the Glauber Monte Carlo code with a `toy' wounded nucleon model and the hadron-string dynamics (HSD) transport approach. We show that strong correlations can arise due to averaging over events in one centrality bin. We, furthermore, argue that a study of the dependence of correlations on the centrality bin definition as well as the bin size may distinguish between these `trivial' correlations and correlations arising from `new physics'.

  4. Dissipation and fluctuation of the relative momentum in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    The dissipation of the relative momentum in nucleus-nucleus collisions is treated in terms of a Langevin equation with a fluctuating force. Equations of motion for first and second moments of the macroscopic variables are derived directly from the Langevin equation. The properties of the fluctuating force which results from random particle exchange are investigated in detail. Drift and diffusion coefficients are calculated microscopically and analytical expressions are given which can be used in any trajectory calculation. An important feature of the model is that the Einstein relation between dissipation and fluctuation turns out to be only a limiting case of a more general expression which included nonthermal fluctuations. By treating the two nuclei as intrinsically equilibrated but not in thermal equilibrium with respect to each other several important aspects of the dissipative behaviour, seen in heavy ion collisions with final energies above the Coloumb barrier, can be understood. (orig.)

  5. Jet energy loss and bulk parton collectivity in nucleus-nucleus collisions at RHIC

    Institute of Scientific and Technical Information of China (English)

    HUANG Huan-Zhong

    2009-01-01

    Nucleus-nucleus collisions at RHIC produce high temperature and high energy density matter which exhibits paxtonic degrees of freedom. We will discuss measurements of nuclear modification factors for light hadrons and non-photonic electrons from heavy quark decays, which reflect the flavor dependence of energy loss of high momentum partons traversing the dense QCD medium. The dense QCD medium responds to energy loss of high momentum patrons in a pattern consistent with that expected from a hydrodynamic fluid. The hadronization of bulk partonic matter exhibits collectivity with effective partonic degrees of freedom. Nuclear collisions at RHIC provide an intriguing environment, where many constituent quark ingredients are readily available for possible formation of exotic particles through quark coalescence or recombinations.

  6. Nonmonotonic Target Excitation Dependence of Pion Clans in Relativistic Nucleus-Nucleus Collisions

    Science.gov (United States)

    Ghosh, Dipak; Deb, Argha; Dutta, Srimonti

    Target excitation dependence of fluctuation of produced pions (i.e. classifying data of the fluctuation pattern on pions on the basis of the number of gray tracks) is studied for nucleus-nucleus collisions at different projectile energies. In each set the experimental multiplicity distribution is compared with the negative binomial distribution (NBD), which is found to describe the experimental distribution quite well. Target excitation dependence is studied in respect of the clan model parameters bar {n}c and bar {N}, which are extracted from the NBD fit parameters bar {n} and k. A detailed comparison between different interactions at the same energy and the same interactions at different energies is also drawn. A nonmonotonic dependence of D2/bar {n} on is revealed, which is also a characteristic of multiplicity fluctuations at RHIC data.

  7. Production of cold fragments in nucleus-nucleus collisions in the Fermi-energy domain

    CERN Document Server

    Veselsky, M

    2007-01-01

    The reaction mechanism of nucleus-nucleus collisions at projectile energies around the Fermi energy is investigated with emphasis on the production of fragmentation-like residues. The results of simulations are compared to experimental mass distributions of elements with Z = 21 - 29 observed in the reactions 86Kr+124,112Sn at 25 AMeV. The model of incomplete fusion is modified and a component of excitation energy of the cold fragment dependent on isospin asymmetry is introduced. The modifications in the model of incomplete fusion appear consistent with both overall model framework and available experimental data. A prediction is provided for the production of very neutron-rich nuclei using a secondary beam of 132Sn where e.g. the reaction 132Sn+238U at 28 AMeV appears as a possible alternative to the use of fragmentation reactions at higher energies.

  8. Nuclear Effects in Neutrino-Nucleus Interactions and the MINERvA Neutrino Nucleus Scattering Program

    Science.gov (United States)

    Morfín, Jorge G.

    2011-09-01

    Nuclear effects of charged current deep inelastic neutrino-iron scattering have been studied in the frame-work of a χ2 analysis of parton distribution functions (PDFs)1. A set of iron PDFs have been extracted which are then used to compute xBj-dependent and Q2-dependent nuclear correction factors for iron structure functions which are required in global analyses of free nucleon PDFs. Upon comparing our results with nuclear correction factors from neutrino-nucleus scattering models and correction factors for l±-iron scattering we find that, except for very high xBj, our correction factors differ in both shape and magnitude from the correction factors of the models and charged-lepton scattering. The MINERvA neutrino-nucleus scattering experiment at Fermilab, will systematically study neutrino nuclear effects off of He, C, Fe and Pb for a more thorough A-dependent study of nuclear PDFs and these correction factors.

  9. Role of G-proteins in the effects of leptin on pedunculopontine nucleus (PPN) neurons

    OpenAIRE

    Beck, Paige; Mahaffey, Susan; Urbano, Francisco J.; Garcia-Rill, Edgar

    2013-01-01

    The pedunculopontine nucleus (PPN), the cholinergic arm of the reticular activating system, regulates waking and rapid eye movement (REM) sleep. Here, we demonstrate immunohistochemical labeling of the leptin receptor signaling isoform in PPN neurons, and investigated the effects of G-protein modulation and the leptin triple antagonist (TA) on the action of leptin in the PPN. Whole-cell patch clamp recordings were performed in rat brainstem slices from 9–17 day old pups. Previous results show...

  10. Feline Immunodeficiency Virus as a Gene Transfer Vector in the Rat Nucleus Tractus Solitarii

    OpenAIRE

    Lin, L. H.; Langasek, J. E.; Talman, L. S.; Taktakishvili, O. M.; Talman, W. T.

    2009-01-01

    Gene transfer has been used to examine the role of putative neurotransmitters in the nucleus tractus solitarii (NTS). Most such studies used adenovirus vector-mediated gene transfer although adenovirus vector transfects both neuronal and non-neuronal cells. Successful transfection in the NTS has also been reported with lentivirus as the vector. Feline immunodeficiency virus (FIV), a lentivirus, may preferentially transfect neurons and could be a powerful tool to delineate physiological effect...

  11. Three-dimensional organization of the human interphase nucleus: Experiments compared to simulations.

    OpenAIRE

    Knoch, Tobias; Münkel, Christian; Waldeck, Waldemar; Langowski, Jörg

    2000-01-01

    markdownabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal structure, except during cell division. Only recently has it become apparent that chromosomes occupy distinct 'territories' also in interphase. Two models for the detailed folding of the 30 nm chromati...

  12. GABAergic control of the ascending input from the median raphe nucleus to the limbic system

    OpenAIRE

    Li, Shaomin; Varga, Viktor; Sik, Attila; Kocsis, Bernat

    2005-01-01

    The median raphe nucleus (MRN) is the primary source of serotonergic afferents to the limbic system which are generally considered to suppress hippocampal theta oscillations. GABA receptors are expressed in the MRN by serotonergic and non-serotonergic cells, including GABAergic and glutamatergic neurons. This study investigated the mechanisms by which the fluctuating GABA tone in the MRN leads to induction or suppression of hippocampal theta rhythm. 1. We found that MRN application of the GAB...

  13. Nucleus -nucleus interactions at a few GeV/C per nucleon

    International Nuclear Information System (INIS)

    Introduction: Since the period of the ancient Egyptians people are looking for unusual phenomena, which may enable to give interpretation for nature. Physicists believe that the study of A-A interactions will shed light on the mechanism of high-energy nuclear interactions. It is important to systematize the results of nucleus-nucleus interactions and to have an overall picture of cross-section, multiplicity-distributions, angular distributions, etc It is important to systematize the results of nucleus-nucleus interactions and to have an overall picture of: cross-section, multiplicity-distributions, angular distributions, etc Beams: Beams are mainly from Dubna Synchrophasotron including 1H, 2H, 3He, 4He, 12C, 160,22Ne, 24Mg, 28Si and 32S at 4.1∼ 4.5 GeV/c. Experimental Technique: Stacks of Br-2 emulsion were exposed to 4.1- 4.5 A GeV/c nuclei at Dubna Synchrophasotron. The pellicles of emulsion have the dimensions of 20 cm x 10 cm x 600 μm (undeveloped emulsion). The intensity of the beam was ≡104 particles/cm2 and the beam diameter was approximately 1 cm. The emitted particles are classified to:Shower tracks producing s-particleshaving a relative ionization I*≤ 1.4. Its multiplicity is denoted by ns after the exclusion of tracks having an emission angle θ≤3ο.Grey tracks producing g-particleshaving I* > 1.4 and L>3 mm. Its multiplicity is denoted by ng and does not include those tracks with an emission angle θ≤ 3ο. Black tracks producing b-particleshaving L b and does not include those tracks having an angle of emission θ≤3ο.The band gtracks are both called heavily ionizing tracks producing h-particlesand nh denotes its multiplicity

  14. Depolarizing actions of hydrogen sulfide on hypothalamic paraventricular nucleus neurons.

    Directory of Open Access Journals (Sweden)

    C Sahara Khademullah

    Full Text Available Hydrogen sulfide (H2S is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH secretion. Since the paraventricular nucleus of the hypothalamus (PVN is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS was bath applied at various concentrations (0.1, 1, 10, and 50 mM. NaHS (1, 10, and 50 mM elicited a concentration-response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects following administration. Cells responded and recovered from NaHS administration quickly and the effects were repeatable. Input differences from baseline and during the NaHS-induced depolarization uncovered a biphasic response, implicating both a potassium and non-selective cation conductance. The results from the neuronal population of the PVN shed light on the possible physiological role that H2S has in autonomic and endocrine function.

  15. Implications of gamma band activity in the pedunculopontine nucleus.

    Science.gov (United States)

    Garcia-Rill, E; Luster, B; D'Onofrio, S; Mahaffey, S; Bisagno, V; Urbano, F J

    2016-07-01

    The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder. PMID:26597124

  16. The Confined Hydrogen Atom with a Moving Nucleus

    Science.gov (United States)

    Fernandez, Francisco M.

    2010-01-01

    We study the hydrogen atom confined to a spherical box with impenetrable walls but, unlike earlier pedagogical articles on the subject, we assume that the nucleus also moves. We obtain the ground-state energy approximately by means of first-order perturbation theory and show that it is greater than that for the case in which the nucleus is clamped…

  17. A Frame Nucleus on a Two-side Prequantale

    Institute of Scientific and Technical Information of China (English)

    XUShao-xian; WANGShun-qin; MAFei-fei

    2004-01-01

    In this paper, a Frame nucleus and prime elements in a Prequantale are defined. The concrete structure of a Frame prequantic quotient is considered, and the relation between the half-prime element and the Frame nucleus in a two-side Prequantale are obtained.

  18. Recurrent Inhibition to the Medial Nucleus of the Trapezoid Body in the Mongolian Gerbil (Meriones Unguiculatus)

    Science.gov (United States)

    Dondzillo, Anna; Thompson, John A.; Klug, Achim

    2016-01-01

    Principal neurons in the medial nucleus of the trapezoid body (MNTB) receive strong and temporally precise excitatory input from globular bushy cells in the cochlear nucleus through the calyx of Held. The extremely large synaptic currents produced by the calyx have sometimes led to the view of the MNTB as a simple relay synapse which converts incoming excitation to outgoing inhibition. However, electrophysiological and anatomical studies have shown the additional presence of inhibitory glycinergic currents that are large enough to suppress action potentials in MNTB neurons at least in some cases. The source(s) of glycinergic inhibition to MNTB are not fully understood. One major extrinsic source of glycinergic inhibitory input to MNTB is the ventral nucleus of the trapezoid body. However, it has been suggested that MNTB neurons receive additional inhibitory inputs via intrinsic connections (collaterals of glycinergic projections of MNTB neurons). While several authors have postulated their presence, these collaterals have never been examined in detail. Here we test the hypothesis that collaterals of MNTB principal cells provide glycinergic inhibition to the MNTB. We injected dye into single principal neurons in the MNTB, traced their projections, and immunohistochemically identified their synapses. We found that collaterals terminate within the MNTB and provide an additional source of inhibition to other principal cells, creating an inhibitory microcircuit within the MNTB. Only about a quarter to a third of MNTB neurons receive such collateral inputs. This microcircuit could produce side band inhibition and enhance frequency tuning of MNTB neurons, consistent with physiological observations. PMID:27489949

  19. The small GTPase RhoA localizes to the nucleus and is activated by Net1 and DNA damage signals.

    Directory of Open Access Journals (Sweden)

    Adi D Dubash

    Full Text Available BACKGROUND: Rho GTPases control many cellular processes, including cell survival, gene expression and migration. Rho proteins reside mainly in the cytosol and are targeted to the plasma membrane (PM upon specific activation by guanine nucleotide exchange factors (GEFs. Accordingly, most GEFs are also cytosolic or associated with the PM. However, Net1, a RhoA-specific GEF predominantly localizes to the cell nucleus at steady-state. Nuclear localization for Net1 has been seen as a mechanism for sequestering the GEF away from RhoA, effectively rendering the protein inactive. However, considering the prominence of nuclear Net1 and the fact that a biological stimulus that promotes Net1 translocation out the nucleus to the cytosol has yet to be discovered, we hypothesized that Net1 might have a previously unidentified function in the nucleus of cells. PRINCIPAL FINDINGS: Using an affinity precipitation method to pulldown the active form of Rho GEFs from different cellular fractions, we show here that nuclear Net1 does in fact exist in an active form, contrary to previous expectations. We further demonstrate that a fraction of RhoA resides in the nucleus, and can also be found in a GTP-bound active form and that Net1 plays a role in the activation of nuclear RhoA. In addition, we show that ionizing radiation (IR specifically promotes the activation of the nuclear pool of RhoA in a Net1-dependent manner, while the cytoplasmic activity remains unchanged. Surprisingly, irradiating isolated nuclei alone also increases nuclear RhoA activity via Net1, suggesting that all the signals required for IR-induced nuclear RhoA signaling are contained within the nucleus. CONCLUSIONS/SIGNIFICANCE: These results demonstrate the existence of a functional Net1/RhoA signaling pathway within the nucleus of the cell and implicate them in the DNA damage response.

  20. Characterization of cap binding proteins associated with the nucleus

    International Nuclear Information System (INIS)

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-(32P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m7GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m7GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m7GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  1. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle

    Directory of Open Access Journals (Sweden)

    Angel eNunez

    2013-11-01

    Full Text Available The perifornical area in the posterior lateral hypothalamus (PeFLH has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins, mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC nucleus (contributing to wakefulness and the oral pontine reticular nucleus (PnO nucleus (contributing to REM sleepAnatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle.

  2. Spontaneous fission of superheavy nucleus $^{286}$Fl

    CERN Document Server

    Poenaru, Dorin N

    2016-01-01

    The decimal logarithm of spontaneous fission half-life of the superheavy nucleus $^{286}$Fl experimentally determined is $\\log_{10} T_f^{exp} (s) = -0.632$. We present a method to calculate the half-life based on the cranking inertia and the deformation energy, functions of two independent surface coordinates, using the best asymmetric two center shell model. In the first stage we study the statics. At a given mass asymmetry up to about $\\eta=0.5$ the potential barrier has a two hump shape, but for larger $\\eta$ it has only one hump. The touching point deformation energy versus mass asymmetry shows the three minima, produced by shell effects, corresponding to three decay modes: spontaneous fission, cluster decay and $\\alpha$~decay. The least action trajectory is determined in the plane $(R,\\eta)$ where $R$ is the separation distance of the fission fragments and $\\eta$ is the mass asymmetry. We may find a sequence of several trajectories one of which gives the least action. The parametrization with two deforma...

  3. The new magic nucleus 96Zr

    International Nuclear Information System (INIS)

    The 96Zr nucleus is expected to be magic due to the subshell closures at Z = 40 and N = 56. Recent gamma-spectroscopic studies involving in-beam techniques and beta decay certainly revealed a remarkably simple level pattern consisting of the 1,750 keV 2+ - 2,439 keV 3+ doublet, a few levels decaying to the 3- octupole state by strong E1 or E2 transitions, and a band built on the shape isomeric first excited 0+ state. While quadrupole vibrational collectivity is restricted to this latter intruder band the octupole mode is expected to be strong, according to systematics and an earlier lifetime result for the 3- state. since low-lying particle-hole excitations, and a strong octupole mode in particular, are typical for magic nuclei like 208Pb it is important to test to what extent 96Zr resembles the well known magic nuclei. In this paper, inelastic deuteron scattering and RPA studies show that the lowest states of doubly closed subshell 96Zr are particle-hole excitations, the first 2+ state being a neutron excitation of 3s1/2 2d5/2-1 type. The octupole collectively is enhanced by a factor of about two with respect to 90Zr due mainly to the contribution of 1h1 1/2 2d5/2-1 neutron excitations, suggesting an unusually high B(E3) value

  4. Observation of the antimatter helium-4 nucleus.

    Science.gov (United States)

    2011-05-19

    High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang; in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus (4He), also known as the anti-α (α), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the α-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level. Antimatter nuclei with B Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic and coalescent nucleosynthesis models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of 4He in cosmic radiation.

  5. Responses of suprachiasmatic nucleus neurons to light and dark adaptation: Relative contributions of melanopsin and rod-cone inputs

    NARCIS (Netherlands)

    Drouyer, Elise; Rieux, Camille; Hut, Roelof A.; Cooper, Howard M.

    2007-01-01

    The circadian oscillator in the suprachiasmatic nucleus (SCN) is entrained to the environmental light/dark cycle through photic information conveyed from the retina. The vast majority of projections to the SCN arise from melanopsin-expressing ganglion cells that are intrinsically light sensitive and

  6. ZONAL ORGANIZATION OF THE FLOCCULOVESTIBULAR NUCLEUS PROJECTION IN THE RABBIT - A COMBINED AXONAL TRACING AND ACETYLCHOLINESTERASE HISTOCHEMICAL-STUDY

    NARCIS (Netherlands)

    TAN, J; EPEMA, AH; VOOGD, J

    1995-01-01

    With the use of retrograde transport of horseradish peroxidase we confirmed the observation of Yamamoto and Shimoyama ([1977] Neurosci Lett. 5:279-283) that Purkinje cells of the rabbit flocculus projecting to the medial vestibular nucleus are located in two discrete zones, FZ(II) and FZ(IV), that a

  7. Identification of different types of respiratory neurones in the dorsal brainstem nucleus tractus solitarius of the rat

    NARCIS (Netherlands)

    Subramanian, Hari H.; Chow, Chin Moi; Balnave, Ron J.

    2007-01-01

    In Nembutal anaesthetised, spontaneously breathing rats, stereotaxic mapping of the nucleus tractus solitarius (NTS) for respiratory neuronal activity was undertaken. Eight different types of respiratory cells were found between 0.25 and 1.5 mm lateral to midline, extending 0.5 mm caudal to 1.5 mm r

  8. Noradrenaline as a putative neurotransmitter mediating hypotension—induced FOs—like immunoreactivity in the supraoptic nucleus of the rat

    Institute of Scientific and Technical Information of China (English)

    SHENEH; XIASUN

    1995-01-01

    Hemorrhage or hypotension induces extensive Fos-like immunoreactivity in the magnocellular neurosecretory cells in the supraoptic nucleus of the hypothalamus in rat,especially in the vasopressin neurons.The present study was to explore the neurotransmitter mediating this effect,Microinfusion of the alpha-adrenergic blocker into the supraoptic nucleus reduced the hypotension-induced FOs.whereas beta-antagonist did not affect it significantly.Alaha1-and alpha2-antagonist,prazosin and yohimbine,both reduced the Fos-Positive cell counts.However,the effective dosage of yohimbine was much larger,Alpha1-agonist,methoxamine,induced abundant Fos-like immunoreactivity in the vasopressin cells in this nucleus,while beta-and alpha2-agonist did not elicit such effect.Administration of the noradrenergic re-uptake inhibitor desipramine,to this nucleus to locally accumulate the spontaneously released noradrenaline from the nerve terminals also induced Fos expression,mostly in the vasopressin cells.

  9. Ultraviolet-induced movement of the human DNA repair protein, xeroderma pigmentosum type G, in the nucleus

    International Nuclear Information System (INIS)

    Xeroderma pigmentosum type G (XPG) is a human genetic disease exhibiting extreme sensitivity to sunlight. XPG patients are defective XPG endonuclease, which is an enzyme essential for DNA repair of the major kinds of solar ultraviolet (UV)-induced DNA damages. Here we describe a novel dynamics of this protein within the cell nucleus after UV irradiation of human cells. USing confocal microscopy, we have localized the immunofluorescent, antigenic signal of XPG protein to foci throughout the cell nucleus. Our biochemical studies also established that XPG protein forms a tight association with nuclear structure(s). In human skin fibroblast cells, the number of XPG foci decreased within 2 h after UV irradiation, whereas total nuclear XPG fluorescence intensity remained constant, suggesting redistribution of XPG from a limited number of nuclear foci to the nucleus overall. Within 8 h after UV, most XPG antigenic signal was found as foci. Using β-galactosidase-XPG fusion constructs (β-gal-XPG) transfected into HeLa cells, we have identified a single region of XPG that is evidently responsible both for foci formation and for the UV dynamic response. The fusion protein carrying the C terminus of XPG (amino acids 1146-1185) localized β-gal specific antigenic signal to foci and to the nucleolus regions. After UV irradiation, antigenic β-gal translocated reversibly from the subnuclear structures to the whole nucleus with kinetics very similar to the movements of XPG protein. These findings lead us to propose a model in which distribution of XPG protein may regulate the rate of DNA repair within transcriptionally active and inactive compartments of the cell nucleus. 50 refs., 5 figs., 1 tab

  10. Sirtuin 1Maitains Survival via PKB Signaling in Degenerative Human Disc Nucleus Pulposus Cells%沉默信息调节因子2同源蛋白1通过Akt/PKB通路抑制人退变椎间盘髓核细胞凋亡

    Institute of Scientific and Technical Information of China (English)

    王大武; 胡侦明; 郝杰; 何斌; 甘强; 钟小明; 沈皆亮; 方济

    2012-01-01

    Many studies have demonstrated that Sirtuin 1, an NAD+-dependent deacetylase, reduces apoptosis in several different cells. However, the role of Sirtuin 1 in apoptosis of disc nucleus pulposus (NP) cells remains unclear. The present study was performed to determine whether degenerative human NP would express Sirtuin 1, and to investigate the role of Sirtuin 1 in NP cells apoptosis. Here we show that Sirtuin 1 mRNA and protein levels in disc NP from patients ( 55 years) with lumbar disc herniation (LDH). The rate of apoptosis was far fewer in resveratrol-treated NP cells than that in siRNA transfected or nicotinamide-treated NP cells. We also tried to explore the signaling molecules that mediate the protective property of Sirtuin 1 by Western blot and inhibitor analysis. After Sirtuin 1 siRNA transfected, NP cells decreased phosphorylation of Akt, while resveratrol phosphorylated Akt. Treatment with LY294002 or Akt siRNA increased the rate of apoptosis. Our results indicate that Sirtuin 1 plays a critical role in survival of degenerative human NP cells through the Akt anti-apoptotic signaling pathway.%沉默信息调节因子2同源蛋白1(silent mating type information regulation 2 homolog 1,SIRT1/sirtuin 1)是组蛋白去乙酰化酶,参与表观遗传修饰调节,促进多种细胞的生存,但目前对椎间盘髓核细胞的作用未见研究.为了阐明临床不同来源的椎间盘髓核手术标本SIRTl的表达变化,用免疫组化、定量RT-PCR、Western blot方法对中老年腰椎间盘突出症病人及青壮年腰椎骨折病人术中髓核标本进行研究,表明老年人髓核SIRTl的mRNA及蛋白质水平均显著低于青壮年的髓核.同时,用resveratrol(SIRT 1激动剂)、烟碱(SIRT1抑制剂)、SIRT1-siRNA对培养的退变髓核细胞进行处理或转染后,用流式细胞仪检测凋亡率变化,结果表明resveratrol能显著促进退变髓核细胞生存,相反,当烟碱或SIRT1-siRNA转染后则显著促进髓核细胞

  11. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

    Science.gov (United States)

    Boyer, Patrick D; Ganesh, Sairaam; Qin, Zhao; Holt, Brian D; Buehler, Markus J; Islam, Mohammad F; Dahl, Kris Noel

    2016-02-10

    Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the

  12. Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains.

    Science.gov (United States)

    Boyer, Patrick D; Ganesh, Sairaam; Qin, Zhao; Holt, Brian D; Buehler, Markus J; Islam, Mohammad F; Dahl, Kris Noel

    2016-02-10

    Single-walled carbon nanotubes (SWCNTs) have great potential for cell-based therapies due to their unique intrinsic optical and physical characteristics. Consequently, broad classes of dispersants have been identified that individually suspend SWCNTs in water and cell media in addition to reducing nanotube toxicity to cells. Unambiguous control and verification of the localization and distribution of SWCNTs within cells, particularly to the nucleus, is needed to advance subcellular technologies utilizing nanotubes. Here we report delivery of SWCNTs to the nucleus by noncovalently attaching the tail domain of the nuclear protein lamin B1 (LB1), which we engineer from the full-length LMNB1 cDNA. More than half of this low molecular weight globular protein is intrinsically disordered but has an immunoglobulin-fold composed of a central hydrophobic core, which is highly suitable for associating with SWCNTs, stably suspending SWCNTs in water and cell media. In addition, LB1 has an exposed nuclear localization sequence to promote active nuclear import of SWCNTs. These SWCNTs-LB1 dispersions in water and cell media display near-infrared (NIR) absorption spectra with sharp van Hove peaks and an NIR fluorescence spectra, suggesting that LB1 individually disperses nanotubes. The dispersing capability of SWCNTs by LB1 is similar to that by albumin proteins. The SWCNTs-LB1 dispersions with concentrations ≥150 μg/mL (≥30 μg/mL) in water (cell media) remain stable for ≥75 days (≥3 days) at 4 °C (37 °C). Further, molecular dynamics modeling of association of LB1 with SWCNTs reveal that the exposure of the nuclear localization sequence is independent of LB1 binding conformation. Measurements from confocal Raman spectroscopy and microscopy, NIR fluorescence imaging of SWCNTs, and fluorescence lifetime imaging microscopy show that millions of these SWCNTs-LB1 complexes enter HeLa cells, localize to the nucleus of cells, and interact with DNA. We postulate that the

  13. The chromosome as a dynamic structure of the cell nucleus

    Institute of Scientific and Technical Information of China (English)

    WOLFGANGHENNIG

    1993-01-01

    Out view of eukaryotic chromosomes is still very much dictated by the classic ideas of geneticists and cytologists considering the chromosome just as a vehicle for genes. This one-sided view of chromosomes may have been strongly influenced by the many cytological observations made on polytene chromosomes.

  14. Retinal projection to the pretectal nucleus lentiformis mesencephali in pigeons (Columba livia).

    Science.gov (United States)

    Wylie, Douglas R; Kolominsky, Jeffrey; Graham, David J; Lisney, Thomas J; Gutierrez-Ibanez, Cristian

    2014-12-01

    In birds, the nucleus of the basal optic root (nBOR) and the nucleus lentiformis mesencephali (LM) are retinal-recipient nuclei involved in the analysis of optic flow and the generation of the optokinetic response. The nBOR receives retinal input from displaced ganglion cells (DGCs), which are found at the margin of the inner nuclear and inner plexiform layers, rather than the ganglion cell layer. The LM receives afferents from retinal ganglion cells, but whether DGCs also project to LM remains unclear. To resolve this issue, we made small injections of retrograde tracer into LM and examined horizontal sections through the retina. For comparison, we also had cases with injections in nBOR, the optic tectum, and the anterior dorsolateral thalamus (the equivalent to the mammalian lateral geniculate nucleus). From all LM injections both retinal ganglion cells and DGCs were labeled. The percentage of DGCs, as a proportion of all labeled cells, varied from 2-28%, and these were not different in morphology or size compared to those labeled from nBOR, in which the proportion of DGCs was much higher (84-93%). DGCs were also labeled after injections into the anterior dorsolateral thalamus. The proportion was small (2-3%), and these DGCs were smaller in size than those projecting to the nBOR and LM. No DGCs were labeled from an injection in the optic tectum. Based on an analysis of size, we suggest that different populations of retinal ganglion cells are involved in the projections to LM, nBOR, the optic tectum, and the anterior dorsolateral thalamus.

  15. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Liu Dongjuan

    2012-11-01

    Full Text Available Abstract Introduction Post-traumatic stress disorder (PTSD is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS. The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM. Levels of Cytochrome c (Cyt-C was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM. The change of thiamine monophosphatase (TMP levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated

  16. Notochordal cells maintain the proliferation and phenotype of chondrocyte-like cells in the disc nucleus pulposus%脊索细胞维持椎间盘髓核软骨样细胞增殖与表型的研究进展

    Institute of Scientific and Technical Information of China (English)

    杨哲; 李树文

    2016-01-01

    BACKGROUND:The immature disc nucleus pulposus is composed of notochordal cels, but there is no notochordal cel in the mature human intervertebral disc, in which the notochordal cels are replaced by chondrocyte-like cels. It is very important to comprehend the disappearance of the notochordal cels; however, it is stil unknown at present. OBJECTIVE: To elaborate the feasibility of notochordal cels to maintain the proliferation and phenotype of chondrocyte-like cels and to induce the cartilage-like differentiation of bone marrow mesenchymal stem cels. METHODS: The first author used the computer to retrieve PubMed and Wanfang databases using the key words of “notochord cels; nucleus pulposus cels; identify” in English and Chinese, respectively. Totaly 9 896 relevant articles published from January 1999 to August 2015 were retrieved. Repetitive studies were excluded, and finaly 36 articles were in accordance with the inclusion criteria. RESULTS AND CONCLUSION:Now, the main functions of notochordal cels are to promote synthesis of extracelular matrix in the nucleus pulposus, induce directional differentiation of mesenchymal cels into nucleus pulposus cels or act as “seed cels” to form the nucleus pulposus cels. The presence and disappearance of notochordal cels is related to intervertebral disc degeneration. Cel apoptosis is involved in static compressionviadeath receptor signals, and then leads to intervertebral disc degeneration. fas ligand can mediate the reduction of notochordal cels, and hypoxia-inducible factor can induce spinal cord injury thereby triggering cel death and complete disappearance of nucleus pulposus. The measurement and verification of immune makers of notochordal cels, CK-8, CK-18 and galectin-3, can benefit to the identification and isolation of notochordal cels, and thereby help the studies on cel growth and differentiation, function and its mechanism of apoptosis.%背景:未成熟的椎间盘髓核是由脊索细胞所组成,但在

  17. Catecholaminergic projections from the solitary tract nucleus to the perifornical hypothalamus.

    Science.gov (United States)

    Pierret, P; Christolomme, A; Bosler, O; Perrin, J; Orsini, J C

    1994-01-01

    The source of adrenergic and other catecholaminergic fibers innervating the perifornical lateral hypothalamus was localized in the medulla after combination of Fluoro-Gold retrograde tracing and immunohistochemistry for either tyrosine-hydroxylase or phenylethanolamine-N-methyltransferase. Following perifornical injections, Fluoro-Gold-labeled neurons were observed mainly in regions including the noradrenergic and adrenergic cell groups. In the caudal solitary tract nucleus, two kinds of doubly labeled neurons were found: a) numerous noradrenergic neurons in the A2 group at the level of, or caudal to the area postrema; b) some adrenergic neurons in the C2 group at a level immediately rostral to the area postrema. These catecholaminergic neurons connecting the caudal solitary tract nucleus to the perifornical hypothalamus might convey feeding relevant information such as glycemic level or satiety signals.

  18. Translocation of Neurospora crassa transcription factor NUC-1 into the nucleus is induced by phosphorus limitation.

    Science.gov (United States)

    Peleg, Y; Addison, R; Aramayo, R; Metzenberg, R L

    1996-09-01

    NUC-1, a basic helix-loop-helix zipper protein, activates the expression of several genes involved in phosphorus acquisition in Neurospora crassa. In the present study we investigated whether posttranscriptional mechanisms control the activity of NUC-1. The NUC-1 level was higher (up to fivefold) in wild-type cells grown at low external phosphate concentration and in mutant strains expressing the phosphorus acquisition genes constitutively than in a wild-type strain grown at high external phosphate concentration. Using indirect immunofluorescence we demonstrated that NUC-1 is localized at least predominantly in the cytosol when wild-type N. crassa is grown with an adequate supply of phosphate, whereas NUC-1 is largely concentrated in the nucleus upon limitation of external phosphate. In mutant strains expressing the phosphorus acquisition genes constitutively, NUC-1 localization was also primarily in the nucleus. Thus, subcellular compartmentation of regulatory proteins is an important mechanism in regulating gene expression in filamentous fungi.

  19. Variability of the Radio Nucleus of the Galaxy M81

    CERN Document Server

    Bietenholz, M F; Rupen, M P

    1997-01-01

    M81 is the nearest galaxy with an active galactic nucleus, with the possibly exception of Cen A. The nucleus is exceptionally compact. Here we present results from new VLA and VLBI observations of the nucleus of M81. The VLA shows that its flux density is variable by 50% on a timescale of weeks. The spectral index is also somewhat variable on the same timescale. The VLBI imaging results show that there is structure on scales <0.5 mas, and that this structure is variable, also on a timescale of weeks.

  20. Quarkonium-nucleus bound states from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Beane, S.  R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S.  D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M.  J. [Univ. of Washington, Seattle, WA (United States)

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  1. Differentiation of bone marrow mesenchymal stem cells(BMMSCs) to nucleus-like pulposus tranfected by TGF-β1 in the mimic microgravity environment%模拟微重力下转化生长因子β1诱导骨髓间充质干细胞向髓核样细胞分化

    Institute of Scientific and Technical Information of China (English)

    韩成龙; 姜超

    2011-01-01

    目的:观察模拟微重力条件下体外转化生长因子β1(transforming growth factor-β1,TGF-β1)诱导骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMMSCs)向髓核样细胞表型分化的效果.方法:取成年兔骨髓间充质干细胞分离培养并增殖至第3代后建立3个培养组:微重力诱导培养组(A组),将经TGF-β1转染后的BMMSCs在藻酸钙凝胶微球及旋转式细胞培养系统内进行模拟微重力条件下动态培养;诱导培养组(B组),将经TGF-β1转染后的BMMSCs在藻酸钙凝胶微球内培养;模拟微重力自然分化组(C组),将BMMSCs在藻酸钙凝胶微球内置于旋转式细胞培养系统内培养.在培养的第3、7、14、21天分别检测以上各组BMMSCs中TGF-β1的含量变化及BMMSCs的增殖能力,应用免疫组化、甲苯胺蓝染色检测各组Ⅱ型胶原表达情况,采用RT-PCR法检测各组BMMSCs的蛋白聚糖及Ⅱ型胶原蛋白mRNA的表达.结果:培养至第14天,A、B组中已可观察到呈多角形的类髓核样细胞,C组呈不规则形.从第3天开始,上清液中TGF-β1的含量和BMMSCs中DNA的含量A组较B、C两组明显增高(P<0.05),且随时间的延长而逐渐增高.A组在免疫组化染色中可见Ⅱ型胶原蛋白染色阳性,B组呈弱阳性,C组无明显变化.RT-PCR结果显示A、B组的BMMSCs中已有蛋白聚糖和Ⅱ型胶原蛋白mRNA的表达.结论:模拟微重力条件下TGF-β1转染的BMMSCs在一定时间内可增加合成蛋白聚糖及Ⅱ型胶原蛋白的能力.%Objective:To observe the differentiation of bone marrow mesenchymal stem cells (BMMSCs) to nucleus-like pulposus phenotype transfected by TGF-β1 and cultured in the mimic microgravity in vitro.Method:Bone marrow mesenchymal stem cells (BMMSCs) obtained from adult rabbit were cultured and proliferated to the third generation,which were assigned into 3 groups as followers:micro-gravity inducing group(group A),BMMSCs transfected by TGF-β1 were cultured in calcium alginate

  2. Neurons of the ventral medulla oblongata that contain both somatostatin and enkephalin immunoreactivities project to nucleus tractus solitarii and spinal cord.

    Science.gov (United States)

    Millhorn, D E; Seroogy, K; Hökfelt, T; Schmued, L C; Terenius, L; Buchan, A; Brown, J C

    1987-10-20

    The ventral aspect of the medulla oblongata of colchicine-treated rats was examined immunohistochemically using mouse monoclonal antibodies raised against somatostatin (SOM) and rabbit polyclonal antibodies to methionine enkephalin (ENK). Numerous perikarya showed positive immunostaining for both antisera. For the most part, the double-labelled cells were located (1) along the ventrolateral surface in a region that corresponds to nucleus paragigantocellularis, (2) in the region of nucleus gigantocellularis-nucleus raphe magnus and (3) in a discrete area just above the inferior olivary nucleus. In an attempt to determine the projection sites of the SOM/ENK somata, the retrogradely transported fluorescent dye Fluoro-Gold was injected into either the nucleus tractus solitarii (NTS) or the upper part of the thoracic spinal cord. SOM/ENK cells in all 3 regions were labelled by dye administered into the spinal cord whereas only those SOM/ENK cells located in nucleus paragigantocellularis were stained by dye microinjected into NTS. This is the first evidence of a SOM/ENK projection from the ventral medulla to either the spinal cord or NTS. PMID:2446706

  3. Structural Description of Polyaromatic Nucleus in Residue

    Institute of Scientific and Technical Information of China (English)

    Zhang Huicheng; Yan Yongjie; Sun Wanfu; Wang Jifeng

    2007-01-01

    The proton nuclear magnetic resonance spectroscopy(1H-NMR),the synchronous fluorescence spectrometry(SFS)and the rutheniam ions catalyzed oxidation(RICO)method wen used to determine the chemical structure of polyaromatic nucleus in Oman residue fractions.The results of1H-NMR analyses showed that the average numbers of aromatic rings in the aromatics,resins and asphaltenes units were 3.2,5.6 and 8.2.respectively.SFS was used to investigate the distribution of aromatic tings in residue fractions,the main distribution range of aromatic rings in aromatics,resins and asphaltenes were 3-4 rings,3-5 rings and more than 5 tings,respectively.The aromatic network in residue fractions was oxidized to produce numerous carboxylic acids.The types and content of benzenepolycarboxylic acids,such as phthalic acid,benzenetricarboxylic acids,benzenetetracarbOxylic acids,benzenepentacarboxylic acid and benzenehexacarboxylic acid disclosed the condensed types of aromatic nuclei in the core.The biphenyl fraction(BIPH),the cata-condensed fraction(CATA),the peri-condensed fraction(PERI)and the condensed index(BCI)were calculated based on the benzenepolycarboxylic acids formed.The results implied that there was less biphenyl type structures in all residue fractions.The aromatics fraction was almost composed of the cata-condensed type system,and the asphaltenes fraction was wholly composed of the peri-condensed type system,while in the resins fraction co-existed the two types,herein the peri-condensed type Was predominant over the cata-condensed type.Based on the analytical results obtained in the study,the components-aromatics,resins and asphaltenes-were given the likely structural models.

  4. Macaque accessory optic system: I. Definition of the medial terminal nucleus

    International Nuclear Information System (INIS)

    The organization of the accessory optic system (AOS) has been studied in the macaque monkey following intravitreal injections of tritiated amino acids in one eye. Retinal projections to the dorsal (DTN) and the lateral (LTN) terminal nuclei are identical to those previously described in other primate species. We observed an additional group of retinorecipient cells of the AOS, located between the cerebral peduncle and the substantia nigra, which we define as the interstitial nucleus of the superior fasiculus, medial fibers. In this report, we focus our attention on the medial terminal nucleus (MTN). Although a ventral division of this nucleus (MTNv) was not observed in the macaque, the retina projects to a group of cells in the midbrain reticular formation (MRF), which we argue to be homologous to the dorsal division of the MTN (MTNd). To provide evidence in support of this homology, the retinal projection to the MTNv and MTNd was also examined in 21 additional species from 11 orders of mammals including carnivores, marsupials, lagomorphs, rodents, bats, insectivores, tree shrews, hyraxes, pholidotes, edentates, and five additional species of primates. Whereas the retina projects to both ventral and dorsal divisions in all species studied, in haplorhine primates only the projection to the MTNd is conserved. The relative topological position of the MTNd in the MRF, dorsomedial to the substantia nigra and ventrolateral to the red nucleus, remains constant throughout the mammals. The trajectory of fiber paths innervating the MTNd is also similar in all species. In addition, the MTNd has comparable afferent and efferent connections with retina, pretectum, and vestibular nuclei in all species thus far studied. These results support the unequivocal conclusion that the MTNd is an unvarying feature of the mammalian AOS

  5. Transient expression of somatostatin messenger RNA and peptide in the hypoglossal nucleus of the neonatal rat.

    Science.gov (United States)

    Seroogy, K B; Bayliss, D A; Szymeczek, C L; Hökfelt, T; Millhorn, D E

    1991-06-21

    The postnatal developmental expression of somatostatin mRNA and peptide in the rat hypoglossal nucleus was analyzed using immunocytochemical and in situ hybridization techniques. Both the neuropeptide and its cognate mRNA were found to be transiently present within a subpopulation of hypoglossal motoneurons during the neonatal period. At the day of birth, a large population of perikarya situated in caudal, ventral regions of the hypoglossal nucleus expressed somatostatin. By postnatal day 7, the number of hypoglossal somata which expressed somatostatin had diminished considerably, and by 2 weeks postnatal, only few such cell bodies were found. By 3-4 weeks postnatal, somatostatin peptide- and mRNA-containing hypoglossal motoneurons were rarely observed, and in the adult, they were never detected, despite the use of colchicine. A double-labeling co-localization technique was used to demonstrate that somatostatin, when present perinatally, always coexisted with calcitonin gene-related peptide in hypoglossal motoneurons. The latter peptide, in contrast to somatostatin, was expressed in large numbers of somata throughout the entire hypoglossal nucleus and persisted within the motoneurons throughout development into adulthood. These results demonstrate that somatostatin is transiently expressed in motoneurons of the caudal, ventral tier of the hypoglossal nucleus in the neonatal rat. The developmental disappearance of somatostatin is most likely not due to cell death; hypoglossal somata continue to express calcitonin gene-related peptide, with which somatostatin coexisted perinatally, a high levels throughout development. Thus, it appears that the regulation of somatostatin expression in hypoglossal neurons occurs at the level of gene transcription or mRNA stability/degradation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1680035

  6. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus

    DEFF Research Database (Denmark)

    Launholt, Dorte; Merkle, Thomas; Houben, Andreas;

    2006-01-01

    HMGproteins appear to be involved in the regulation of transcription and other DNA-dependent processes. We have examined the subcellular localization of Arabidopsis thaliana HMGA, HMGB1, and HMGB5, revealing that they localize to the cell nucleus. They display a speckled distribution pattern throughout the chromatin...... of interphase nuclei, whereas none of the proteins associate with condensed mitotic chromosomes. HMGA is targeted to the nucleus by a monopartite nuclear localization signal, while efficient nuclear accumulation of HMGB1/5 requires large portions of the basic N-terminal part of the proteins. The acidic C......-terminal domain interferes with nucleolar targeting of HMGB1. Fluorescence recovery after photobleaching experiments revealed that HMGA and HMGB proteins are extremely dynamic in the nucleus, indicating that they bind chromatin only transiently before moving on to the next site, thereby continuously scanning...

  7. Presence of a dynorphin-like peptide in a restricted subpopulation of catecholaminergic neurons in rat nucleus tractus solitarii.

    Science.gov (United States)

    Ceccatelli, S; Seroogy, K B; Millhorn, D E; Terenius, L

    1992-09-01

    Immunofluorescence colocalization techniques were used to examine the extent of coexistence of the endogenous opioid peptide dynorphin with catecholamines and the related opioid peptide enkephalin within neurons of the rat medulla oblongata. Immunoreactivities for dynorphin and the catecholamine-synthesizing enzyme tyrosine hydroxylase were found to coexist within a limited subpopulation of A2 catecholamine cells, localized to the medial nucleus of the nucleus tractus solitarii. Colocalization of the two opioid peptides was found mainly within perikarya situated in the medial and ventrolateral nuclei of the nucleus tractus solitarii. Triple-labeling studies revealed only rare cases of catecholamine/dynorphin/enkephalin coexistence. These data demonstrate that dynorphin is present within a restricted subpopulation of catecholamine neurons in the dorsal medulla oblongata. In addition, the content of either of the opioids enkephalin or dynorphin appears to distinguish subsets of medullary catecholamine neurons. PMID:1356595

  8. Study of chemical equilibrium in nucleus-nucleus collisions at AGS and SPS energies

    CERN Document Server

    Becattini, F; Keränen, A; Manninen, J; Stock, Reinhard

    2003-01-01

    We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the strangeness production as a function of centre of mass energy and of the parameters of the source. We have tested and compared different versions of the statistical model, with special emphasis on possible explanations of the observed strangeness hadronic phase space under-saturation. We show that, in this energy range, the use of hadron yields at midrapidity instead of in full phase space artificially enhances strangeness production and could lead to incorrect conclusions as far as the occurrence of full chemical equilibrium is concerned. In addition to the basic model with an extra strange quark non-equilibrium parameter, we have tested three more schemes: a two-component model superimposing hadrons coming out of single nucleon-nucleon interactions to those emerging from larg...

  9. Nucleus--nucleus interactions in the inner crust of neutron stars

    CERN Document Server

    Kobyakov, D

    2016-01-01

    The interaction between nuclei in the inner crust of neutron stars consists of two contributions, the so-called "direct" interaction and an "induced" one due to density changes in the neutron fluid. For large nuclear separations $r$ the contributions from nuclear forces to each of these terms are shown to be nonzero. In the static limit they are equal in magnitude but have opposite signs and they cancel exactly. We analyze earlier results on effective interactions in the light of this finding. We consider the properties of long-wavelength collective modes and, in particular, calculate the degree of mixing between the lattice phonons and the phonons in the neutron superfluid. Using microscopic theory, we calculate the net non-Coulombic contribution to the nucleus--nucleus interaction and show that, for large $r$, the leading term is due to exchange of two phonons and varies as $1/r^7$: it is an analog of the Casimir--Polder interaction between neutral atoms.

  10. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential

    CERN Document Server

    Khoa, Dao T; Loan, Doan Thi; Loc, Bui Minh

    2016-01-01

    Realistic density dependent CDM3Yn versions of the M3Y interaction have been used in an extended Hartree-Fock (HF) calculation of nuclear matter (NM), with the nucleon single-particle potential determined from the total NM energy based on the Hugenholtz-van Hove theorem that gives rise naturally to a rearrangement term (RT). Using the RT of the single-nucleon potential obtained exactly at different NM densities, the density- and energy dependence of the CDM3Yn interactions was modified to account properly for both the RT and observed energy dependence of the nucleon optical potential. Based on a local density approximation, the double-folding model of the nucleus-nucleus optical potential has been extended to take into account consistently the rearrangement effect and energy dependence of the nuclear mean-field potential, using the modified CDM3Yn interactions. The extended double-folding model was applied to study the elastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies, wher...

  11. Electromagnetic probes of a pure-glue initial state in nucleus-nucleus collisions at LHC

    CERN Document Server

    Vovchenko, V; Gorenstein, M I; Satarov, L M; Mishustin, I N; Kämpfer, B; Stoecker, H

    2016-01-01

    Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of the chemically nonequilibrated system is described by the ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the LHC energy of $\\sqrt{s_{_{\\rm NN}}} = 2.76$ TeV. We test the sensitivity of the results to the choice of equilibration times, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of t...

  12. Statistical Model of the Early Stage of nucleus-nucleus collisions with exact strangeness conservation

    CERN Document Server

    Poberezhnyuk, R V; Gorenstein, M I

    2015-01-01

    The Statistical Model of the Early Stage, SMES, describes a transition between confined and deconfined phases of strongly interacting matter created in nucleus-nucleus collisions. The model was formulated in the late 1990s for central Pb+Pb collisions at the CERN SPS energies. It predicted several signals of the transition (onset of deconfinement) which were later observed by the NA49 experiment. The grand canonical ensemble was used to calculate entropy and strangeness production. This approximation is valid for reactions with mean multiplicities of particles carrying conserved charges being significantly larger than one. Recent results of NA61/SHINE on hadron production in inelastic p+p interactions suggest that the deconfinement may also take place in these reactions. However, in this case mean multiplicity of particles with non-zero strange charge is smaller than one. Thus for the modeling of p+p interactions the exact strangeness conservation has to be implemented in the SMES. This extension of the SMES ...

  13. Relativistic transport approach for nucleus-nucleus collisions based on a NJL lagrangian

    CERN Document Server

    Ehehalt, W; Ehehalt, Wolfgang; Cassing, Wolfgang

    1995-01-01

    We formulate a covariant transport approach for high energy nucleus-nucleus collisions where the real part of the hadron selfenergies is evaluated on the basis of a NJL-type Lagrangian for the quark degrees of freedom. The parameters of the model Lagrangian are fixed by the Gell-Mann, Oakes and Renner relation, the pion-nucleon \\Sigma-term, the nucleon energy as well as the nuclear binding energy at saturation density \\rho_0. We find the resulting scalar and vector selfenergies for nucleons to be well in line with either Dirac-Brueckner results or those from the phenomenological optical potential when accounting for a swelling of the nucleon at finite nuclear matter density. The imaginary part of the hadron selfenergies is determined by a string fragmentation model which accounts for the in-medium mass of hadrons in line with the chiral dynamics employed. The applicability of the 'chiral' transport approach is demonstrated in comparison with experimental data from SIS to SPS energies. The enhancement of the K...

  14. EOS: A time projection chamber for the study of nucleus-nucleus collisions at the Bevalac

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, H.G.; Odyniec, G.; Rai, G.; Seidl, P.

    1986-12-01

    The conceptual design is presented for a detector to identify and measure (..delta..p/p approx. = 1%) most of the 200 or so mid-rapidity charged particles (p, d, t, /sup 3/He, /sup 4/He, ..pi../sup + -/, K/sup + -/) produced in each central nucleus-nucleus collision (Au + Au) at Bevalac energies, as well as K/sub 3//sup 0/ and ..lambda../sup 0/. The beam particles and heavy spectator fragments are excluded from the detection volume by means of a central vacuum pipe. Particle identification is achieved by a combination of dE/dx measurements in the TPC, and of time-of-flight measurements in a scintillator array. The TPC is single-ended and its end cap is entirely covered with cathode pads (about 25,000 pads and about 1000 anode wires). A non-uniform pad distribution is proposed to accommodate the high multiplicity of particles emitted at forward angles. The performance of the detector is assessed with regard to multihit capability, tracking, momentum resolution, particle identification, ..lambda../sup 0/ reconstruction, space charge effects, field non-uniformity, dynamic range, data acquisition rate, and data analysis rate. 72 refs., 48 figs., 11 tabs.

  15. Energy-Dependence of Nucleus-Nucleus Potential and Friction Parameter in Fusion Reactions

    CERN Document Server

    Wen, Kai; Li, Zhu-Xia; Wu, Xi-Zhen; Zhang, Ying-Xun; Zhou, Shan-Gui

    2014-01-01

    Applying a macroscopic reduction procedure on the improved quantum molecular dynamics (ImQMD), the energy dependences of the nucleus-nucleus potential, the friction parameter, and the random force characterizing a one-dimensional Langevin-type description of the heavy-ion fusion process are investigated. Systematic calculations with the ImQMD show that the fluctuation-dissipation relation found in the symmetric head-on fusion reactions at energies just above the Coulomb barrier fades out when the incident energy increases. It turns out that this dynamical change with increasing incident energy is caused by a specific behavior of the friction parameter which directly depends on the microscopic dynamical process, i.e., on how the collective energy of the relative motion is transferred into the intrinsic excitation energy. It is shown microscopically that the energy dissipation in the fusion process is governed by two mechanisms: One is caused by the nucleon exchanges between two fusing nuclei, and the other is ...

  16. Semiclassical model for single-particle transitions in nucleus-nucleus interactions

    International Nuclear Information System (INIS)

    A previously elaborated semiclassical one-body model for the dynamics of a single particle, moving in two potentials, in heavy-ion reactions or in fissioning systems has been extended with respect to the inclusion of angular momenta and more realistic separable potentials. The collective relative motion is assumed to proceed along a trajectory which is calculated from classical equations of motion including conservative and phenomenological friction forces. The formalism has been derived involving three-dimensional trajectories for symmetric as well as for asymmetric nucleus-nucleus systems. The model allows for the calculation of correct quantum mechanical transition amplitudes to final bound and continuum states. It has been applied for the investigation of the excitation of a neutron during a fission process, covering also non-statistical differential emission probabilities. From the numerical calculations, using parameters adapted to 252Cf(sf), one can conclude that in the underlying model without 'sudden' processes the energy spectrum consists of two parts. The low lying component is created in the neck region while a high lying part seems to be governed mainly by the dynamics of the underlying collective motion rather than by the specific initial conditions. (orig.)

  17. Isotope Dependence of Superheavy Nucleus Formation Cross Section

    Institute of Scientific and Technical Information of China (English)

    LIU Zu-Hua; BAG Jing-Dong

    2006-01-01

    The dynamical process in the superheavy nucleus synthesis is studied on the basis of the two-dimensional Smolu-chowski equation. Special attention is paid to the isotope dependence of the cross section for the superheavy nucleus formation by means of making a comparison among the reaction systems of 54Fe + 204Pb, 56Fe + 206Pb, and 58Fe + 208Pb. It is found by this comparison that the formation cross section is very sensitive to the conditional saddle-point height and the neutron separation energy of the compound nucleus. Reaction systems with lower height of conditional saddle-point and smaller neutron separation energy are more favourable for the synthesis of the superheavy nucleus.

  18. Red nucleus connectivity as revealed by constrained spherical deconvolution tractography.

    Science.gov (United States)

    Milardi, Demetrio; Cacciola, Alberto; Cutroneo, Giuseppina; Marino, Silvia; Irrera, Mariangela; Cacciola, Giorgio; Santoro, Giuseppe; Ciolli, Pietro; Anastasi, Giuseppe; Calabrò, Rocco Salvatore; Quartarone, Angelo

    2016-07-28

    Previous Diffusion Tensor Imaging studies have demonstrated that the human red nucleus is widely interconnected with sensory-motor and prefrontal cortices. In this study, we assessed red nucleus connectivity by using a multi-tensor model called non- negative Constrained Spherical Deconvolution (CSD), which is able to resolve more than one fiber orientation per voxel. Connections of the red nuclei of fifteen volunteers were studied at 3T using CSD axonal tracking. We found significant connectivity between RN and the following cortical and subcortical areas: cerebellar cortex, thalamus, paracentral lobule, postcentral gyrus, precentral gyrus, superior frontal gyrus and dentate nucleus. We confirmed that red nucleus is tightly linked with the cerebral cortex and has dense subcortical connections with thalamus and cerebellar cortex. These findings may be useful in a clinical context considering that RN is involved in motor control and it is known to have potential to compensate for injury of the corticospinal tract. PMID:27181514

  19. Nucleus management in manual small incision cataract surgery by phacosection

    Directory of Open Access Journals (Sweden)

    Ravindra M

    2009-01-01

    Full Text Available Nucleus management is critical in manual small incision cataract surgery (MSICS, as the integrity of the tunnel, endothelium and posterior capsule needs to be respected. Several techniques of nucleus management are in vogue, depending upon the specific technique of MSICS. Nucleus can be removed in toto or bisected or trisected into smaller segments. The pressure in the eye can be maintained at the desired level with the use of an anterior chamber maintainer or kept at atmospheric levels. In MSICS, unlike phacoemulsification, there is no need to limit the size of the tunnel or restrain the size of capsulorrhexis. Large well-structured tunnels and larger capsulorrhexis provide better control on the surgical maneuvers. Safety and simplicity of MSICS has made it extremely popular. The purpose of this article is to describe nucleus management by phacosection in MSICS.

  20. Asymptotic properties of high-pT particle production in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions at high energies

    CERN Document Server

    Tokarev, M V

    2001-01-01

    The concept of z-scaling reflecting the general features of particle substructure, constituent interaction and mechanism of particle formation is reviewed. Experimental data on the cross sections obtained at ISR, SpS and Tevatron are used in the analysis. The properties of data z-presentation, the energy and angular independencies, the power law, A- and F-dependencies, are discussed. The use of z-scaling to search for new physics phenomena in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions is suggested. The violation of z-scaling characterized by the change of the fractal dimension is considered as a new and complimentary signature of nuclear phase transition.

  1. How did nucleus and sexual reproduction come into being?

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2016-08-01

    Full Text Available The origin of eukaryote is a fundamental, forbidding evolutionary puzzle, and the popular scenarios of eukaryogenesis are far from being clear. So far, there have been various theories (e.g., syntrophic model, autogenous model, viral eukaryogenesis model, exomembrane hypothesis, but few explain why. I observed that C-value (the amount of DNA contained within a haploid nucleus increased by 3.5 orders of magnitude from prokaryote to eukaryotes, which is inconceivably close to the packing ratio of DNA in extant eukaryotes. Thus, it is never convincing to explain eukaryogenesis solely by using accident phagocytosis, symbiosis or parasitism (the influential endosymbiont theory unfortunately took the wrong turning!, but what is important is to explain why genome increased so sharply. This may be mainly related to DNA replication errors or polyploidization, of course not completely ruling out the possible contribution from lateral gene flow or genetic integration between individuals of different species. It is above suspicion that successful packing of DNA (finally into chromosome was a key step towards eukaryogenesis, of course also accompanied with structural differentiation in cell and development of more subtle and complex cell division, and so on. This paper presents “packing and structurization hypothesis” to explain eukaryogenesis. In addition, from a molecular genetic point of view, sexual reproduction is never a mystery as it is just a process to merge two individual genomes, by which diverse genetic information of the species are dispersed into its individuals. On the other hand, from an ecological point of view, the original motivation of “sex” was accidently coupled with dormancy.

  2. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats.

    Science.gov (United States)

    Kastman, Hanna E; Blasiak, Anna; Walker, Leigh; Siwiec, Marcin; Krstew, Elena V; Gundlach, Andrew L; Lawrence, Andrew J

    2016-11-01

    Alcoholism is a chronic relapsing disorder and a major global health problem. Stress is a key precipitant of relapse in human alcoholics and in animal models of alcohol seeking. The brainstem nucleus incertus (NI) contains a population of relaxin-3 neurons that are highly responsive to psychological stressors; and the ascending NI relaxin-3/RXFP3 signalling system is implicated in stress-induced reinstatement of alcohol seeking. The NI receives orexinergic innervation and expresses orexin1 (OX1) and orexin2 (OX2) receptor mRNA. In alcohol-preferring (iP) rats, we examined the impact of yohimbine-induced reinstatement of alcohol seeking on orexin neuronal activation, and the effect of bilateral injections into NI of the OX1 receptor antagonist, SB-334867 (n = 16) or the OX2 receptor antagonist, TCS-OX2-29 (n = 8) on stress-induced reinstatement of alcohol seeking. We also assessed the effects of orexin-A on NI neuronal activity and the involvement of OX1 and OX2 receptors using whole cell patch-clamp recordings in rat brain slices. Yohimbine-induced reinstatement of alcohol seeking activated orexin neurons. Bilateral NI injections of TCS-OX2-29 attenuated yohimbine-induced reinstatement of alcohol seeking. In contrast, intra-NI injection of SB-334867 had no significant effect. In line with these data, orexin-A (600 nM) depolarized a majority of NI neurons recorded in coronal brain slices (18/28 cells), effects prevented by bath application of TCS-OX2-29 (10 μM), but not SB-334867 (10 μM). These data suggest an excitatory orexinergic input to NI contributes to yohimbine-induced reinstatement of alcohol seeking, predominantly via OX2 receptor signalling. PMID:27395787

  3. C. elegans HAM-1 functions in the nucleus to regulate asymmetric neuroblast division.

    Science.gov (United States)

    Leung, Amy; Hua, Khang; Ramachandran, Pavitra; Hingwing, Kyla; Wu, Maria; Koh, Pei Luan; Hawkins, Nancy

    2016-02-01

    All 302 neurons in the C. elegans hermaphrodite arise through asymmetric division of neuroblasts. During embryogenesis, the C. elegans ham-1 gene is required for several asymmetric neuroblast divisions in lineages that generate both neural and apoptotic cells. By antibody staining, endogenous HAM-1 is found exclusively at the cell cortex in many cells during embryogenesis and is asymmetrically localized in dividing cells. Here we show that in transgenic embryos expressing a functional GFP::HAM-1 fusion protein, GFP expression is also detected in the nucleus, in addition to the cell cortex. Consistent with the nuclear localization is the presence of a putative DNA binding winged-helix domain within the N-terminus of HAM-1. Through a deletion analysis we determined that the C-terminus of the protein is required for nuclear localization and we identified two nuclear localization sequences (NLSs). A subcellular fractionation experiment from wild type embryos, followed by Western blotting, revealed that endogenous HAM-1 is primarily found in the nucleus. Our analysis also showed that the N-terminus is necessary for cortical localization. While ham-1 function is essential for asymmetric division in the lineage that generates the PLM mechanosensory neuron, we showed that cortical localization may not required. Thus, our results suggest that there is a nuclear function for HAM-1 in regulating asymmetric neuroblast division and that the requirement for cortical localization may be lineage dependent.

  4. miR-155 Inhibits Nucleus Pulposus Cells’ Degeneration through Targeting ERK 1/2

    Directory of Open Access Journals (Sweden)

    Dongping Ye

    2016-01-01

    Full Text Available We first investigated the difference in microRNA expression between normal NP cells and degenerative NP cells using gene chip. We have found that the expression of ERK1/2 was decreased with overexpression of miR-155 in normal nucleus pulposus cell. Expression of ERK1/2 was increased with inhibition of miR-155. Overexpression or inhibition of miR-155 had no effects on the expression level of mRNA ERK1/2 in nucleus pulposus cell, which showed that miR-155 affected the expression of pERK1/2 after transcription of ERK1/2 mRNA indicating that ERK1/2 was a new target protein regulated by miR-155. In the degeneration of intervertebral disc, inhibited miR-155 decreased the expressions of extracellular main matrix collagen II and glycosaminoglycan and increased expression of ERK1/2. Taken together, our data suggested that miR-155 was the identified miRNA which regulated NP cells degenerated through directly targeting ERK1/2.

  5. Neutral current neutrino-nucleus interactions at high energies

    CERN Document Server

    Ducati, M B Gay; Machado, M V T

    2008-01-01

    We present a QCD analysis of the neutral current neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section.

  6. The integrative role of the pedunculopontine nucleus in human gait.

    Science.gov (United States)

    Lau, Brian; Welter, Marie-Laure; Belaid, Hayat; Fernandez Vidal, Sara; Bardinet, Eric; Grabli, David; Karachi, Carine

    2015-05-01

    The brainstem pedunculopontine nucleus has a likely, although unclear, role in gait control, and is a potential deep brain stimulation target for treating resistant gait disorders. These disorders are a major therapeutic challenge for the ageing population, especially in Parkinson's disease where gait and balance disorders can become resistant to both dopaminergic medication and subthalamic nucleus stimulation. Here, we present electrophysiological evidence that the pedunculopontine and subthalamic nuclei are involved in distinct aspects of gait using a locomotor imagery task in 14 patients with Parkinson's disease undergoing surgery for the implantation of pedunculopontine or subthalamic nuclei deep brain stimulation electrodes. We performed electrophysiological recordings in two phases, once during surgery, and again several days after surgery in a subset of patients. The majority of pedunculopontine nucleus neurons (57%) recorded intrasurgically exhibited changes in activity related to different task components, with 29% modulated during visual stimulation, 41% modulated during voluntary hand movement, and 49% modulated during imaginary gait. Pedunculopontine nucleus local field potentials recorded post-surgically were modulated in the beta and gamma bands during visual and motor events, and we observed alpha and beta band synchronization that was sustained for the duration of imaginary gait and spatially localized within the pedunculopontine nucleus. In contrast, significantly fewer subthalamic nucleus neurons (27%) recorded intrasurgically were modulated during the locomotor imagery, with most increasing or decreasing activity phasically during the hand movement that initiated or terminated imaginary gait. Our data support the hypothesis that the pedunculopontine nucleus influences gait control in manners extending beyond simply driving pattern generation. In contrast, the subthalamic nucleus seems to control movement execution that is not likely to be gait

  7. Leading nucleon and the proton-nucleus inelasticity

    CERN Document Server

    Bellandi, J; Dias de Deus, J

    1999-01-01

    We present in this paper a calculation of the average proton-nucleus inelasticity. Using an Iterative Leading Particle Model and the Glauber model, we relate the leading particle distribution in nucleon-nucleus interactions with the respective one in nucleon- proton collisions. To describe the leading particle distribution in nucleon-proton collisions, we use the Regge Mueller formalism. Contribution to 26th ICRC - Salt Lake City, Utah. August, 1999. HE 1.1.14

  8. New computational methods for determining antikaon-nucleus bound states

    International Nuclear Information System (INIS)

    Optical potential for antikaon-nucleus strong interactions are constructed using elementary antikaon-nucleus potentials determined previously. The optical potentials are used to determine the existence of a kaon hypernucleus. Modern three dimensional visualization techniques are used to study model dependences, new methods for speeding the calculation of the optical potential are developed, and previous approximation to avoid full Fermi averaging are eliminated. 19 refs., 21 figs., 3 tabs

  9. Inelaticity in hadron-nucleus collisions from emulsion chamber studies

    CERN Document Server

    Wilk, G

    1999-01-01

    The inelasticity of hadron-carbon nucleus collisions in the energy region exceeding 100 TeV is estimated from the carbon-emulsion chamber data at Pamirs to be $ = 0.65\\pm 0.08$. When combined with the recently presented data on hadron-lead nucleus collisions taken at the same energy range it results in the $K\\sim A^{0.086}$ mass number dependence of inelasticity. The evaluated partial inelasticity for secondary ($\

  10. Nucleus Pearl Coating Process of Freshwater Mussel Anodonta woodiana (Unionidae)

    OpenAIRE

    WASMEN MANALU; DEDY DURYADI SOLIHIN; SATA YOSHIDA SRIE RAHAYU; RIDWAN AFFANDI

    2013-01-01

    The limiting factor which is a weakness of sea water pearl production are high costs, the risk of major business failures and a long coating time. From the issue of freshwater pearls appear to have prospects of alternative substitution for sea water pearl. This present study aimed to evaluate effect of loads (the number and diameter nucleus) on freshwater pearl coating process and the number and size of the appropriate nucleus diameter, to produce the optimum coating thickness of half-round p...

  11. Specific structure of the 6He nucleus and fragmentation experiments

    International Nuclear Information System (INIS)

    Within the framework of the microscopic α+2n model, transverse momentum distributions of α-particles and neutrons as well as α-particle - neutron momentum correlation function have been calculated for the radioactive 6He nucleus fragmentation. The results show that these momentum distributions reflect a specific structure of the 6He nucleus, i.e. the experiments on fragmentation provide with the information on 6He structure. (orig.)

  12. Shell Correction at the Saddle Point for Superheavy Nucleus

    Institute of Scientific and Technical Information of China (English)

    张炜; 张时声; 张双全; 孟杰

    2003-01-01

    The potential energy surface for superheavy nucleus has been studied within the framework of the constrained relativistic mean field theory, and the shell correction energy as a function of deformation has been extracted by the Strutinsky shell correction procedure. Contrary to the usual expectation, the shell correction energy at the saddle point is too important to be neglected, and it has essential contribution to the fission barrier in superheavy nucleus.

  13. The giant panda (Ailuropoda melanoleuca) somatic nucleus can dedifferentiate in rabbit ooplasm and support early development of the reconstructed egg

    Institute of Scientific and Technical Information of China (English)

    陈大元; 孙青原; 刘冀珑; 李光鹏; 廉莉; 王敏康; 韩之明; 宋祥芬; 李劲松; 孙强; 陈玉村; 张亚平; 丁波

    1999-01-01

    The giant panda skeletal muscle cells, uterus epithelial cells and mammary gland cells from an adult individual were cultured and used as nucleus donor for the construction of interspecies embryos by transferring them into enucleated rabbit eggs. All the three kinds of somatic cells were able to reprogram in rabbit ooplasm and support early embryo development, of which mammary gland cells were proven to be the best, followed by uterus epithelial cells and skeletal muscle cells. The experiments showed that direct injection of mammary gland cell into enucleated rabbit ooplasm, combined with in vivo development in ligated rabbit oviduct, achieved higher blastoeyst development than in vitro culture after the somatic cell was injected into the perivitelline space and fused with the enucleated egg by electrical stimulation. The chromosome analysis demonstrated that the genetic materials in reconstructed blastocyst cells were the same as that in panda somatic cells. In addition, giant panda mitochondrial DNA (

  14. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  15. SIRT1通过AKT通路和ERK1/2通路共同调节退变髓核细胞细胞外基质的合成%SIRT1 regulating extracellular matrix sythesis via AKT and ERK1/2 signalling in degenerative human disc nucleus pulposus cells

    Institute of Scientific and Technical Information of China (English)

    沈皆亮; 胡侦明; 钟小明; 张晓军

    2013-01-01

    Objective To examine the impact of silent mating type information regulation 2 homolog 1 ( SIRT1/sirtuin 1 ) on the synthesis of extracellular matrix in degenerative nucleus pulposus cells ( DNPCs ). Methods Degenerative pulposus cells were isolated, cultivated and identifed. Cells from the 2nd passage were treated with resveratrol (SIRT1 activator) , metformin (SIRT1 activator) , nicotinam-ide (SIRT1 inhibitor) and SIRT1-siRNA. Then collagen Ⅱ, Aggrecan, p-AKT, t-AKT, p-ERKl/2 and t-EKR1/2 were examined by Western blot. Before successive irritation by LY294002 ( PI3K inhibitor) and PD98059 ( ERK inhibitor) , DNPCs were co-cultivated with resveratrol. Expressions of collagen Ⅱ and Aggrecan were observed. Results Expressions of collagen Ⅱ and Aggrecan and the phosphorylation of AKT and ERK1/2 were significantly improved after irritation by SIRT1 activator, but were remarkably reduced after treatment with nicotinam-ide and related SIRT1 -siRNA. The expressions of collagen Ⅱ and Aggrecan were also significantly lowered after treatment with LY294002 and PD98059. Conclusions The expression of extracellular matrix in degenerative pulposus cells can be up-regulated by SIRT1 through either AKT or ERK1/2, thus preventing the degeneration of intervertebral disc.%目的 研究沉默信息调节因子2同源蛋白1(SIRT1/sirtuin 1)对已退变的人椎间盘髓核细胞(DNPCs)合成细胞外基质的影响.方法 对人DNPCs进行分离、培养及其细胞鉴定,第一部分取P2代细胞用白藜芦醇(RES,SIRT1激动剂)、二甲双胍(MET,SIRT1激动剂)、尼克酰胺(NAM,S1RT1抑制剂)、SIRT1-siRNA进行相应处理,采用Western印迹检测Ⅱ型胶原(COLLA2α1)、聚蛋白多糖(Aggrecan)及其p-AKT、t-AKT、p-ERK1/2、t-EKR1/2.第二部分先RES与P2代细胞共培养后分别加入PI3K与ERK的特异性抑制剂LY294002PD98059,观察COLLA2α1、Aggrecan的表达情况.结果 用SIRT1激动剂刺激以后COLLA2α1、Aggrecan

  16. A Universal Description of Pseudorapidity Distributions in Both Nucleus-Nucleus and p-p Collisions at Currently Available Energies

    Directory of Open Access Journals (Sweden)

    Z. J. Jiang

    2016-01-01

    Full Text Available Investigations have shown that the collective motion appears not only in nucleus-nucleus but also in p-p collisions. The best tool for depicting such collective motion is relativistic hydrodynamics. In this paper, the collective motion is assumed to obey the hydrodynamic model which integrates the features of Landau and Hwa-Bjorken theory and is one of a very few analytically solvable models. The fluid is then supposed to freeze out into charged particles from a space-like hypersurface with a fixed time of tFO. The investigations of present paper show that this part of charged particles together with leading particles, which, by conventional definition, carry on the quantum numbers of colliding nucleons and take away the most part of incident energy, can give a proper universal description to the pseudorapidity distributions of charged particles measured in both nucleus-nucleus and p-p collisions at currently available energies.

  17. ELECTROPHYSIOLOGICAL PROPERTIES OF MORPHOLOGICALLY-IDENTIFIED MEDIAL VESTIBULAR NUCLEUS NEURONS PROJECTING TO THE ABDUCENS NUCLEUS IN THE CHICK EMBRYO

    OpenAIRE

    Gottesman-Davis, Adria; Shao, Mei; Hirsch, June C.; Peusner, Kenna D.

    2010-01-01

    Neurons in the medial vestibular nucleus (MVN) show a wide range of axonal projection pathways, intrinsic firing properties, and responses to head movements. To determine whether MVN neurons participating in the vestibulocular reflexes (VOR) have distinctive electrophysiological properties related to their output pathways, a new preparation was devised using transverse brain slices containing the chicken MVN and abducens nucleus. Biocytin Alexa Fluor was injected extracellularly into the abdu...

  18. 沉默p53和p21基因延缓髓核细胞衰老退变实验研究%EFFECT OF SILENCING p53 AND p21 ON DELAYING SENESCENCE OF NUCLEUS PULPOSUS CELLS

    Institute of Scientific and Technical Information of China (English)

    张涛; 钱济先; 姬振伟; 马云雷; 贠喆; 蔡承魁; 裘秀春; 马保安

    2012-01-01

    Objective The senescence and death of nucleus pulposus (NP) cells are the pathologic basis of intervertebral disc degeneration (IVD). To investigate the molecular phenotypes and senescent mechanism of NP cells, and to identify the method of alleviating senescence of NP cells. Methods The primary NP cells were harvested from male Sprague Dawley rats (8-10 weeks old); the hypoxia inducible factor 1α (HIF-1α), HIF-1β, matrix metalloproteinase 2 (MMP-2), and collagen type Ⅱ as phenotypic markers were identified through immunocytochemical staining. RT-PCR and Western blot were used to test the silencing effect of NP cells after the NP cells were transfected with p53 and p21 small interference RNA (siRNA). Senescence associated-β-galactosidase (SA-β-gal) staining was used to test the senescence of NP cells, flow cytometry to test the change of cell cycle, the growth curve analysis to test the NP cells proliferation. Results Immunocytochemical staining showed that NP cells expressed HIF-1α, HIF-1α, MMP-2, and collagen type Ⅱ. RT-PCR and Western blot showed that the relative expressions of mRNA and protein of p53 and p21 were significantly inhibited in NP cells at passage 35 after transfected with p53 and p21 siRNA. The percentage of SA-p-gal-positive NP cells at passage 35 was significantly higher than that at passage 1 (P < 0.001). And the percentage of SA-β-gal-positive NP cells in the p53 siRNA transfection group and p21 siRNA transfection group were significantly lower than that in control group (P < 0.001). The flow cytometry showed that the G1 phase of NP cells in p53 siRNA transfection group and p21 siRNA transfection group was significantly shorter than that in control group (P < 0.05), but the S phase of NP cells in p53 siRNA transfection group and p21 siRNA transfection group were significantly longer than that in control group (P < 0.05). In addition, the growth curve showed that the growth rate of NP cells could be promoted after

  19. Herpesvirus nuclear egress: Pseudorabies Virus can simultaneously induce nuclear envelope breakdown and exit the nucleus via the envelopment-deenvelopment-pathway.

    Science.gov (United States)

    Schulz, Katharina S; Klupp, Barbara G; Granzow, Harald; Passvogel, Lars; Mettenleiter, Thomas C

    2015-11-01

    Herpesvirus replication takes place in the nucleus and in the cytosol. After entering the cell, nucleocapsids are transported to nuclear pores where viral DNA is released into the nucleus. After gene expression and DNA replication new nucleocapsids are assembled which have to exit the nucleus for virion formation in the cytosol. Since nuclear pores are not wide enough to allow passage of the nucleocapsid, nuclear egress occurs by vesicle-mediated transport through the nuclear envelope. To this end, nucleocapsids bud at the inner nuclear membrane (INM) recruiting a primary envelope which then fuses with the outer nuclear membrane (ONM). In the absence of this regulated nuclear egress, mutants of the alphaherpesvirus pseudorabies virus have been described that escape from the nucleus after virus-induced nuclear envelope breakdown. Here we review these exit pathways and demonstrate that both can occur simultaneously under appropriate conditions. PMID:25678269

  20. Electrotonic signals along intracellular membranes may interconnect dendritic spines and nucleus.

    Directory of Open Access Journals (Sweden)

    Isaac Shemer

    2008-03-01

    Full Text Available Synapses on dendritic spines of pyramidal neurons show a remarkable ability to induce phosphorylation of transcription factors at the nuclear level with a short latency, incompatible with a diffusion process from the dendritic spines to the nucleus. To account for these findings, we formulated a novel extension of the classical cable theory by considering the fact that the endoplasmic reticulum (ER is an effective charge separator, forming an intrinsic compartment that extends from the spine to the nuclear membrane. We use realistic parameters to show that an electrotonic signal may be transmitted along the ER from the dendritic spines to the nucleus. We found that this type of signal transduction can additionally account for the remarkable ability of the cell nucleus to differentiate between depolarizing synaptic signals that originate from the dendritic spines and back-propagating action potentials. This study considers a novel computational role for dendritic spines, and sheds new light on how spines and ER may jointly create an additional level of processing within the single neuron.

  1. On the Role of the Transition State Nucleus in Fission

    International Nuclear Information System (INIS)

    Although it is well-known that times. In order for fission to compete favourably with gamma-ray and neutron emission, a fixed amount of energy, equivalent to an activation energy in a chemical reaction, must be supplied to the heavy nucleus. This energy (often referred to as the fission threshold) is approximately 5 to 6 MeV for U238, and is the minimum energy required to produce the deformed transition state nucleus (zero internal excitation energy). In the process of stretching the original nucleus into the transition state nucleus (whose distortion is sometimes described as the saddle-point deformation), the increase in energy due to the short-range nuclear forces (surface tension) is greater than the decrease in energy due to the long-range Coulomb forces. However, as the particular distortion defining the transition state nucleus is approached, the decrease in Coulomb energy becomes equal to the increase in surface energy. The degree of distortion needed to produce the transition state nucleus is a function of several nuclear parameters and, hence, the saddle shape and threshold energy for fission change markedly for different nuclei. Since a large fraction of the excitation energy of the initial compound nucleus is consumed in deformation energy in passing to the fission saddle point, the transition state nucleus is thermodynamically ''cold''. Hence, for low excitation energies where the non-fission degrees of freedom favour the passage of the barrier with only a small kinetic energy, it seems reasonable to postulate that the traversal time of the saddle or the lifetime of the transition state nucleus is many orders of magnitude longer than the characteristic nuclear time. This leads to the prediction that the highly deformed transition state nucleus will have properties, including a spectrum of excited states, analogous to those of normal nuclei. Information on highly deformed transition state nuclei obtained by fission-fragment angular distribution studies

  2. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    Energy Technology Data Exchange (ETDEWEB)

    Konchakovski, Volodymyr P.

    2009-10-01

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the

  3. Fluctuations and correlations in nucleus-nucleus collisions within transport approaches

    International Nuclear Information System (INIS)

    The current thesis is devoted to a systematic study of fluctuations and correlations in heavy-ion collisions, which might be considered as probes for the phase transition and the critical point in the phase diagram, within the Hadron-String- Dynamics (HSD) microscopic transport approach. This is a powerful tool to study nucleus-nucleus collisions and allows to completely simulate experimental collisions on an event-by-event basis. Thus, the transport model has been used to study fluctuations and correlations including the influence of experimental acceptance as well as centrality, system size and collision energy. The comparison to experimental data can separate the effects induced by a phase transition since there is no phase transition in the HSD version used here. Firstly the centrality dependence of multiplicity fluctuations has been studied. Different centrality selections have been performed in the analysis in correspondence to the experimental situation. For the fixed target experiment NA49 events with fixed numbers of the projectile participants have been studied while in the collider experiment PHENIX centrality classes of events have been defined by the multiplicity in certain phase space region. A decrease of participant number fluctuations (and thus volume fluctuations) in more central collisions for both experiments has been obtained. Another area of this work addresses to transport model calculations of multiplicity fluctuations in nucleus-nucleus collisions as a function of colliding energy and system size. This study is in full correspondence to the experimental program of the NA61 Collaboration at the SPS. Central C+C, S+S, In+In, and Pb+Pb nuclear collisions at Elab = 10, 20, 30, 40, 80, 158 AGeV have been investigated. The expected enhanced fluctuations - attributed to the critical point and phase transition - can be observed experimentally on top of a monotonic and smooth 'hadronic background'. These findings should be helpful for the optimal

  4. Nucleus24人工耳蜗系统直电极与弯电极神经反应遥测值的比较%Compare NRT value of straight electrode and contour electrode in Nucleus24 cochlear implant system

    Institute of Scientific and Technical Information of China (English)

    陶勇; 郑芸; 王恺; 孟照莉; 胥科

    2012-01-01

    Objectlve;To learn the neural response of spiral ganglion cell to electrical stimulus by comparing the neural response teletnetry(NRT) value between straight electrode and contour electrode in Nucleus 24 cochlear implant system. Method: Fourty-six patients with Nucleus 24 cochlear implants were paired into two groups: 23 with contour electrode and 23 with straight electrode respectively. NRT value of each group were tested and com-pared. Resull:The NRT value of straight electrode fell in the range of 160 μV to 170 μV and contour electrode 150 μV to 160 /zV. The NRT were going up higher a little bit from electrode twenty to electrode one. Conclusion; The contour electrode requires less power consumption than straight electrode in Nucleus 24 cochlear implant sys-tem.%目的:测试和比较Nucleus 24人工耳蜗系统中直电极与弯电极神经反应遥测(NRT)值的差别,分析内耳螺旋神经节细胞对不同电极电刺激反应特性的差异.方法:对46例进行耳蜗植入和编程的Nucleus 24人工耳蜗系统直电极与弯电板患者进行配对分析,计算患者vNRT值的均值,并进行统计学比较.结果:直电极的NRT值为160~170 μV,弯电极为150~160 μV,总的趋势是低频值较低而高频值较高.结论:Nucleus 24人工耳蜗系统弯电极较直电极所需电刺激量略低.

  5. Pedunculopontine Nucleus Gamma Band Activity-Preconscious Awareness, Waking, and REM Sleep

    Directory of Open Access Journals (Sweden)

    Francisco J Urbano

    2014-10-01

    Full Text Available The pedunculopontine nucleus (PPN is a major component of the reticular activating system (RAS that regulates waking and REM sleep, states of high frequency EEG activity. Recently, we described the presence of high threshold, voltage-dependent N- and P/Q-type calcium channels in RAS nuclei that subserve gamma band oscillations in the mesopontine pedunculopontine nucleus (PPN, intralaminar parafascicular nucleus (Pf, and pontine Subcoeruleus nucleus dorsalis (SubCD. Cortical gamma band activity participates in sensory perception, problem solving, and memory. Rather than participating in the temporal binding of sensory events as in the cortex, gamma band activity in the RAS may participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions. That is, the RAS may play an early permissive role in volition. Our latest results suggest that, 1 the manifestation of gamma band activity during waking may employ a separate intracellular pathway compared to that during REM sleep, 2 neuronal calcium sensor (NCS-1 protein, which is over expressed in schizophrenia and bipolar disorder, modulates gamma band oscillations in the PPN in a concentration-dependent manner, 3 leptin, which undergoes resistance in obesity resulting in sleep dysregulation, decreases sodium currents in PPN neurons, accounting for its normal attenuation of waking, and 4 following our discovery of electrical coupling in the RAS, we hypothesize that there are cell clusters within the PPN that may act in concert. These results provide novel information on the mechanisms controlling high frequency activity related to waking and REM sleep by elements of the RAS.

  6. PREFACE: 11th International Conference on Nucleus-Nucleus Collisions (NN2012)

    Science.gov (United States)

    Li, Bao-An; Natowitz, Joseph B.

    2013-03-01

    The 11th International Conference on Nucleus-Nucleus Collisions (NN2012) was held from 27 May to 1 June 2012, in San Antonio, Texas, USA. It was jointly organized and hosted by The Cyclotron Institute at Texas A&M University, College Station and The Department of Physics and Astronomy at Texas A&M University-Commerce. Among the approximately 300 participants were a large number of graduate students and post-doctoral fellows. The Keynote Talk of the conference, 'The State of Affairs of Present and Future Nucleus-Nucleus Collision Science', was given by Dr Robert Tribble, University Distinguished Professor and Director of the TAMU Cyclotron Institute. During the conference a very well-received public lecture on neutrino astronomy, 'The ICEcube project', was given by Dr Francis Halzen, Hilldale and Gregory Breit Distinguished Professor at the University of Wisconsin, Madison. The Scientific program continued in the general spirit and intention of this conference series. As is typical of this conference a broad range of topics including fundamental areas of nuclear dynamics, structure, and applications were addressed in 42 plenary session talks, 150 parallel session talks, and 21 posters. The high quality of the work presented emphasized the vitality and relevance of the subject matter of this conference. Following the tradition, the NN2012 International Advisory Committee selected the host and site of the next conference in this series. The 12th International Conference on Nucleus-Nucleus Collisions (NN2015) will be held 21-26 June 2015 in Catania, Italy. It will be hosted by The INFN, Laboratori Nazionali del Sud, INFN, Catania and the Dipartimento di Fisica e Astronomia of the University of Catania. The NN2012 Proceedings contains the conference program and 165 articles organized into the following 10 sections 1. Heavy and Superheavy Elements 2. QCD and Hadron Physics 3. Relativistic Heavy-Ion Collisions 4. Nuclear Structure 5. Nuclear Energy and Applications of

  7. Femtosecond laser combined with non-chopping rotation phacoemulsification technique for soft-nucleus cataract surgery: a prospective study.

    Science.gov (United States)

    Chen, Hui; Lin, Haotian; Chen, Wan; Zhang, Bo; Xiang, Wu; Li, Jing; Chen, Weirong; Liu, Yizhi

    2016-01-01

    Soft-lens cataract surgeries are becoming increasingly common for cataract surgeons and chopping the soft nucleus using conventional techniques is problematic. We introduced a femtosecond laser combined with a non-chopping rotation phacoemulsification technique for soft-nucleus cataract surgery and evaluated the safety and efficacy of using this technique. Sixty-six patients with soft-nucleus cataracts ranging from grade 1~3 were divided into 3 groups based on nuclear staging. Those groups were further divided into three subgroups: femtosecond laser pretreatment combined with a non-chopping rotation phacoemulsification technique (subgroup 1), conventional manual cataract surgery with a non-chopping rotation technique (subgroup 2) and conventional manual cataract surgery with a quick-chop technique (subgroup 3).Patients were followed up at 1, 7, and 30 days after surgery. There was an 84.6% and a 63.34% reduction in ultrasound time and cumulative dissipated energy, respectively, between the subgroup 1 and the subgroup 3; and this was associated with a 36.1% and 29.7% reduction in endothelial cell loss and aqueous flare. There were no adverse events at the follow-up times. With its reduced ultrasound energy, endothelial cell loss and aqueous flare, the femtosecond laser pretreatment combined with a non-chopping rotation technique was more efficient than conventional manual cataract surgery for soft-nucleus cataracts. PMID:26728573

  8. Neurons excitability changes in rat medial vestibular nucleus following vestibular neurectomy

    Institute of Scientific and Technical Information of China (English)

    金麟毅

    2008-01-01

    Intrinsic excitabilities of acutely isolated medial vestibular nucleus (MVN) neurons of rats with normal labyrinth and with undergoingvestibular compensation from 30 min to 24 h after unilateral vestibular deafferentation (UVD) were compared. In control rats, proportions of type A andB cells were 30 and 70%, respectively, however, the proportion of type A cells increased following UVD. Bursting discharge and irregular firingpatterns were recorded from 2 to 12 h post UVD. The spontaneous discharge rate of neurons in the ipsilesional MVN increased significantly at 2 hpost-UVD and remained high until 12 h post-UVD in both type A and type B cells. Mter-hyperpolarization (AHP) of the MVN neurons decreasedsignificantly from 2 h post-UVD in both types of cells. These results suggest that the early stage of vestibular compensation after peripheralneurectomy is associated with an increase in intrinsic excitability due to reduction of AHP in MVN neurons.

  9. The Giant Cell.

    Science.gov (United States)

    Stockdale, Dennis

    1998-01-01

    Provides directions for the construction of giant plastic cells, including details for building and installing the organelles. Also contains instructions for preparing the ribosomes, nucleolus, nucleus, and mitochondria. (DDR)

  10. 体外静水压环境下细胞因子诱导骨髓间充质干细胞向髓核样细胞分化%Cytokine-induced differentiation of bone marrow mesenchymal stem cells into nucleus pulposus-like cells under hydrostatic pressure in vitro

    Institute of Scientific and Technical Information of China (English)

    陈江; 贾育松; 柳根哲; 孙旗; 白文博; 王利

    2016-01-01

    BACKGROUND:Differentiation of bone marrow mesenchymal stem cels is induced by integrated factors.In vitro interaction of cytokine complex and certain cel mechanical stimulation is carried out to further improve the efficiency of bone marrow mesenchymal stem cels differentiating into nucleus pulposus-like cels. OBJECTIVE:To investigate the differentiation of bone marrow mesenchymal stem cels into nucleus pulposus-like cels induced by transforming growth factor-β1 and insulin-like growth factor-1 under hydrostatic pressure. METHODS: Bone marrow mesenchymal stem cels from adult rats were separated, cultured and purified in vitro. Passage 3 cels were induced in vitrowith transforming growth factor-β1 and insulin-like growth factor-1 under hydrostatic pressure (hydrostatic pressure group), with transforming growth factor-β1 and insulin-like growth factor-1 under normal pressure (drug group), or with normal culture medium under normal pressure (blank control group). RESULTS AND CONCLUSION:At day 14 after culture, polygonal nucleus pulposus-like cels were observed in the hydrostatic pressure group, but irregular cels in the drug group. There was no obvious change in the blank control group. Levels of colagen type II and DNA were higher in the hydrostatic pressure group than the other two groups. These findings indicate that the combination of transforming growth factor-β1 and insulin-like growth factor-1 can successfuly induce the differentiation of bone marrow mesenchymal stem cels into nucleus pulposus-like cels under hydrostatic pressure, and the differentiation efficiency is higher under hydrostatic pressure than under normal pressure.%背景:骨髓间充质干细胞的诱导分化受到综合因素的共同作用,体外通过一定的细胞力学刺激结合细胞因子复合体共同作用,以期进一步提高干细胞髓核样细胞分化的效率。目的:观察在体外静水压环境下转化生长因子β1联合类胰岛素生长因子1诱导骨

  11. Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients.

    Science.gov (United States)

    Magnin, M; Morel, A; Jeanmonod, D

    2000-01-01

    Microelectrode-guided stereotactic operations performed in 29 parkinsonian patients allowed the recording of 86 cells located in the globus pallidus and 563 in thalamic nuclei. In the globus pallidus, the average firing rate was significantly higher in the internal (91+/-52 Hz) than in the external (60+/-21 Hz) subdivision. This difference was further accentuated when the average firing rate in the external subdivision was compared with that of the internal part of the internal subdivision (114+/-30 Hz). A rhythmic modulation in globus pallidus activities was observed in 19.7% of the cells, and this only during rest tremor episodes. In these cases, modulation frequency of unit activities was not statistically different from the rest tremor frequency (average: 4.6+/-0.5 vs 4. 4+/-0.4 Hz, respectively). In the medial thalamus, four types of unit activities could be defined. A sporadic type was mainly found in the parvocellular division of the mediodorsal nucleus (96.8% of the cells recorded) and in the centre median-parafascicular complex (74.2%). Two other types of activities characterized by random or rhythmic bursts fulfilling the extracellular criteria of low-threshold calcium spike bursts were concentrated in the central lateral nucleus (62.3%) and the paralamellar division of the mediodorsal nucleus (34.1%). These activities could be recorded independently of the presence of a rest tremor. When a tremor episode occurred, the rhythmic low-threshold calcium spike bursts had an interburst frequency similar to rest tremor frequency, although they were not synchronized with it. The fourth type, the so-called tremor locked, was also characterized by rhythmic bursts which, however, did not display low-threshold calcium spike burst properties. These bursts occurred only when a rest tremor was present and was in-phase with the electromyographic bursts. All tremor-locked cells were located in the centre median-parafascicular complex. In the lateral thalamus, cells

  12. Hypertrophic degeneration of the inferior olivary nucleus impacts perception of gravity

    Directory of Open Access Journals (Sweden)

    Alexander A Tarnutzer

    2012-05-01

    Full Text Available Interruption of the Guillain-Mollaret triangle interconnecting the red nucleus, the inferior olivary nucleus and the contralateral dentate nucleus is predicted to interfere with the dentate nucleus’ role in estimating direction of gravity. In a patient with pendular nystagmus due to hypertrophic inferior olivary nucleus degeneration secondary to ponto-mesencephalic hemorrhage, perceived vertical shifted from clockwise to counter-clockwise deviations within 4 months. We hypothesize that synchronized oscillations of inferior olivary nucleus neurons induce a loss of inhibitory control, leading to hyperactivity of the contralateral dentate nucleus and, as a result, to perceived vertical roll-tilt to the side of the overactive dentate nucleus.

  13. Constructing and identifying a lentiviral vector of RNA interference targeting matrix metalloproteinases-3 gene in human degenerative nucleus pulposus cells%人基质金属蛋白酶3基因RNA慢病毒载体构建及在人退变髓核细胞中的鉴定

    Institute of Scientific and Technical Information of China (English)

    曹进; 傅培荣; 房晶; 杨建坤; 位华卫; 李思源; 高峰; 西永明

    2016-01-01

    BACKGROUND: Inhibiting the degradation of extracellular matrix in the intervertebral disc can delay the degenerative process of intervertebral disc. Matrix metalloproteinases-3 (MMP3) is considered as a key enzyme for degradation of extracelular matrix components such as type II collagen and aggrecan. OBJECTIVE:To construct the short hairpin RNA lentiviral vector targeting human MMP3 gene and to detect its efficiency of gene silence by infecting human degenerative nucleus pulposus cells. METHODS:According to the human MMP3 mRNA (NM_002422.4) sequence, four groups of the short hairpin RNA gene sequences targeting MMP3 were designed, synthesized and annealed to form double stranded DNA fragments, which were connected with the LV3 vectors digested by BamHI andEcoRI enzymes, and then transfected into the competent cels. The positive clones were identified by PCR, and analyzed by sequencing. The packaging and titer of lentivirus were determined after transfecting 293T cells. Human degenerative nucleus pulposus cels were infected with lentivirus vector, and the transfection efficiency of each group was observed under inverted fluorescence microscope. The interfering efficiency was detected by real time-PCR and western blot at 72 and 96 hours. RESULTS AND CONCLUSION:The ds-oligo DNA was successfully inserted into the lentiviral vector as confirmed by electrophoresis and sequence analysis. The recombinant lentivirus was harvested from 293T cels with a viral titer of 1-5 ×108 TU/mL. RNA interference targeting the GCC AGG CTT TCC CAA GCA AAT sequences with the highest interfering efficiency in MMP3 gene at 72 and 96 hours resulted in suppression of MMP3 mRNA expression by 98% and 72%, respectively; and at 96 hours, the interfering efficiency of protein expression was 57.2%. The recombinant lentivirus vector containing RNA interference targeting MMP3 gene is successfuly constructed, which lays a foundation for further studies on the MMP3 function and gene therapy.%背景:

  14. Nucleus Pearl Coating Process of Freshwater Mussel Anodonta woodiana (Unionidae

    Directory of Open Access Journals (Sweden)

    WASMEN MANALU

    2013-03-01

    Full Text Available The limiting factor which is a weakness of sea water pearl production are high costs, the risk of major business failures and a long coating time. From the issue of freshwater pearls appear to have prospects of alternative substitution for sea water pearl. This present study aimed to evaluate effect of loads (the number and diameter nucleus on freshwater pearl coating process and the number and size of the appropriate nucleus diameter, to produce the optimum coating thickness of half-round pearls. The research consists of experimental implantation of 2, 4, and 6 nucleus number per individual mussel was maintained by the method stocked in hapa in bottom waters. Observation method and factorial randomized block design used in the study of the influence of the load to the successfulness of pearl coating and the pearl layer thickness. The results showed that A. woodiana can be utilized as a producer of freshwater pearls. In addition, the number of optimum nucleus that can be attached to the mussel A. woodiana was 2 grains/individuals with a diameter of 10 mm. Shells implanted with the optimum nucleus diameter and number of pearls produced the highest layer thickness of 17 m after 9 months cultivation. This result was good enough compared with the layer thickness of sea water pearl production after the same cultivation time.

  15. Mechanism of inhibition of calcium channels in rat nucleus tractus solitarius by neurotransmitters.

    OpenAIRE

    Rhim, H; Toth, P. T.; Miller, R. J.

    1996-01-01

    1. High-threshold Ca2+ channel currents were measured every 15 s following a 200 ms voltage step from -80 mV to 0 mV in order to study the coupling mechanism between neurotransmitter receptors and Ca2+ channels in neurones acutely isolated from the nucleus tractus solitarius (NTS) of the rat. 2. Application of 30 microM baclofen (GABAB receptor agonist) caused 38.9 +/- 1.2% inhibition of the peak inward Ba2+ current (IBa2+) in most NTS cells tested (n = 85 of 88). Somatostatin, 300 nM, also r...

  16. A Well-Controlled Nucleus Pulposus Tissue Culture System with Injection Port for Evaluating Regenerative Therapies

    OpenAIRE

    Arkesteijn, ITM Irene; Mouser, WHM; F Mwale; van Dijk; Ito, K Keita

    2015-01-01

    In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular...

  17. Experimentally induced postinhibitory rebound in rat nucleus ambiguus is dependent on hyperpolarization parameters and membrane potential.

    Science.gov (United States)

    Dean, J B; Czyzyk-Krzeska, M; Millhorn, D E

    1989-06-01

    Postinhibitory rebound (PIR), a transient depolarization subsequent to release from experimental hyperpolarization, was identified and characterized in 81% of the cells studied in the nucleus ambiguus in slices from medulla of rat. Hyperpolarizing current pulses were administered via the recording microelectrode in the bridge-balanced mode to test for PIR. The voltage trajectory was characterized by a depolarizing sag during the pulse, rebound depolarization (PIR) after the pulse and increased input resistance during rebound. The amplitude and time course of PIR were dependent on prepulse membrane potential, pulse amplitude and pulse duration. These results suggest a potential role of PIR in respiratory rhythmogenesis. PMID:2771207

  18. Spontaneous cluster activity in the inferior olivary nucleus in brainstem slices from postnatal mice

    DEFF Research Database (Denmark)

    Rekling, Jens C; Reveles Jensen, Kristian; Jahnsen, Henrik

    2012-01-01

    largely unknown. Here we show that the IO in in vitro slices from postnatal mice spontaneously generates clusters of neurons with synchronous Ca2+ transients. Neurons in the principal olive (PO), and the vestibular-related dorsomedial cell column (dmcc), showed an age-dependent increase in spontaneous......A distinctive property of the cerebellar system is olivocerebellar modules, where synchronized electrical activity in neurons in the inferior olivary nucleus (IO) evokes organized activity in the cerebellar cortex. However, the exact function of these modules, and how they are developed, is still...

  19. Tuning in caudal fastigial nucleus units during natural and galvanic labyrinth stimulation.

    Science.gov (United States)

    Schlosser, H G; Guldin, W O; Grüsser, O J

    2001-05-25

    Neurons of the caudal fastigial nucleus were investigated by means of single unit recordings. Natural vestibular stimuli were applied as well as galvanic labyrinth polarization. One-third of the neurons showed a convergence of vertical and horizontal canals. More than 80% of the neurons responded to polarization of both the ipsilateral and contralateral canals (binaural responders). Most neurons had a limited response range. Two classes of neurons could be distinguished: up to 1 Hz responders and up to 10 Hz responders. In addition a group of fastigial cells showed a tuning within a small range of frequencies (sharp-tuning responders).

  20. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  1. Optimal reactions for the synthesis of superheavy nucleus 270Hs

    Institute of Scientific and Technical Information of China (English)

    LIU Zuhua; BAO Jingdong

    2006-01-01

    The superheavy nucleus 270 Hs iS expected to be a "double-magic" deformed nucleus.We have calculated its cross sections of evaporation residue for the reactions 248Cm(26Mg,4n)270Hs,244pu(30Si,4n)270Hs,238U(36S,4n)270Hs and 226Ra(48Ca,4n)270Hs using a two-parameter Smoluchowski equation.It is found from our results that 226Ra(48Ca,4n)270Hs and 238U(36S,4n)270Hs are two optimal reactions for the synthesis of the superheavy nucleus 270Hs due to their large negative Q-values.

  2. Microinjection of limonene into caudate nucleus inhibits IMC of rats

    Institute of Scientific and Technical Information of China (English)

    Hong Guo; Xin Yi Zhu; Yi Quan Wei; De Zhi Yang

    2000-01-01

    AIM We have discovered that Limonene modulates interdigestive myoelectrical complexes (IMCs) ofgastrointestinal tract in rats. In this research we will elucidate weather limonene affects acetylcholine M-receptor in caudate nucleus.METHODS Changes of IMCs were studied after limonene and/or atropine were microinjected into caudatenucleus. IMCs were recorded by a RM-6200 four-channel recorder and then delivered to Maclab and PowerMacintosh.RESULTS The active phases of IMCs occupied about 40% of total cycle in average. After microinjection oflimonene into caudate nucleus, the active phases were significantly shortened, while the cycle time of IMCswere not changed significantly. The inhibitory effects of limonene were abolished by pretreatment withatropine, whilst the atropine has no effect on IMCs.CONCLUSION It is suggested that limonene inhabits the gastrointestinal IMCs by affecting M-receptor incaudate nucleus.

  3. Extreme alpha-clustering in the 18O nucleus

    CERN Document Server

    Johnson, E D; Goldberg, V Z; Brown, S; Robson, D; Crisp, A M; Cottle, P D; Fu, C; Giles, J; Green, B W; Kemper, K W; Lee, K; Roeder, B T; Tribble, R E

    2009-01-01

    The structure of the 18O nucleus at excitation energies above the alpha decay threshold was studied using 14C+alpha resonance elastic scattering. A number of states with large alpha reduced widths have been observed, indicating that the alpha-cluster degree of freedom plays an important role in this N not equal Z nucleus. However, the alpha-cluster structure of this nucleus is very different from the relatively simple pattern of strong alpha-cluster quasi-rotational bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced width exceeding the single particle limit was identified at an excitation energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are common in light nuclei and give possible explanations of this feature.

  4. Dynamics in the Gravitational Field of a Cometary Nucleus

    CERN Document Server

    Jiang, Yu

    2014-01-01

    The study of dynamics near the comet is a very important topic in orbital mechanics. In this paper we are interested in analyzing the dynamical behaviors in the vicinity of a cometary nucleus. Equilibrium points and periodic orbits are discussed. There are four equilibrium points in the potential of the comet 1P/Halley nucleus, positions and eigenvalues of these equilibrium points are presented. About the periodic orbits, it is found that there are five topological classes of stably periodic orbits and six topological classes of unstably periodic orbits in the potential field of a cometary nucleus. It is found that the resonant periodic orbit can be stable, and there exist stably non-resonant periodic orbits, stably resonant periodic orbits and unstably resonant periodic orbits in the potential field of cometary nuclei. The periodic orbits with the 1:1, 1:2, and 1:8 resonances are presented.

  5. New integral formula and its applications to light nucleus reactions

    CERN Document Server

    Sun, Xiaojun

    2015-01-01

    A new integral formula, which has not been compiled in any integral tables or mathematical softwares, is proposed to obtain the analytical energy-angular spectra of the particles that are sequentially emitted from the discrete energy levels of the residual nuclei in the statistical theory of light nucleus reaction (STLN). In the cases of the neutron induced light nucleus reactions, the demonstration of the kinetic energy conservation in the sequential emission processes becomes straightforward thanks to this new integral formula and it is also helpful to largely reduce the volume of file-6 in nuclear reaction databases. Furthermore, taking p+$^9$Be reaction at 18 MeV as an example, this integral formula is extended to calculate the energy-angular spectra of the sequentially emitted neutrons for proton induced light nucleus reactions in the frame of STLN.

  6. Estradiol target neurons in the hypothalamic arcuate nucleus and lateral ventromedial nucleus of young adult, reproductively senescent, and monosodium glutamate-lesioned female golden hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, G.C.; Lamperti, A.A.

    1983-09-01

    Histoautoradiographic methods were used to assess estrogen target neurons in the hypothalamic arcuate nucleus (ARC) and ventromedial nucleus, lateral portion (LVM), comparing young adult and aged female golden hamsters. A subgroup of young adult females had ARC lesions induced by monosodium glutamate at neonatal day 8. All were ovariectomized to remove endogenous estrogens. Controls were given nonradioactive estradiol. After /sup 3/H-estradiol (/sup 3/H-E2) was injected intravenously, hypothalami were removed, frozen, and processed for histoautoradiography. In the ARC and LVM the ratio of /sup 3/H-E2 labelled neurons to total neurons counted was significantly lower in the older animals. Young females with ARC lesions had very few /sup 3/H-E2 labelled neurons remaining in the ARC but had a normal complement in the LVM. Although /sup 3/H-E2 labelled ARC neurons were notably decreased in old females, those ARC neurons that were labelled in the old had virtually the same frequency distribution of the labelling index as in the young, suggesting no change in the average estrogen uptake per target cell.

  7. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    Science.gov (United States)

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour.

  8. Discharge properties of neurons recorded in the parvalbumin-positive (PV1) nucleus of the rat lateral hypothalamus.

    Science.gov (United States)

    Lintas, Alessandra

    2014-06-13

    This study reports for the first time the extracellular activity recorded, in anesthetized rats, from cells located in an identified cluster of parvalbumin (PV)-positive neurons of the lateral hypothalamus forming the PV1-nucleus. Random-like firing characterized the majority (21/30) of the cells, termed regular cells, with a median firing rate of 1.7 spikes/s, Fano factor equal to 1, and evenly distributed along the rostro-caudal axis. Four cells exhibiting an oscillatory activity in the range 1.6-2.1Hz were observed only in the posterior part of the PV1-nucleus. The asynchronous activity of PV1 neurons is likely to produce a "network-driven" effect on their main target within the periaqueductal gray matter. The hypothesis is raised that background random-like firing of PV1-nucleus is associated with functional network activity likely to contribute dynamic information related to condition transitions of awareness and non-conscious perception. PMID:24780564

  9. Spectra Statistics for the Odd-Odd Nucleus 86Nb

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ren-Rong; ZHU Shun-Quan; CHENG Nan-Pu

    2001-01-01

    The energy levels of the odd-odd nucleus 86 Nb at low spins are calculated by using quasi-particles plus a rotor model. The distribution of the nearest-neighbour spacing and the spectral rigidity are studied. We find that the chaotic degree of the energy spectra increases with the increasing spin and reaches a maximum at I = 10; then it decreases gradually for spins above I = 10. The recoil term in the model Haniltonian makes the energy spectra slightly regular. The Coriolis force, however, makes the spectra chaotic and plays a major role in the spectral statistics of the odd-odd nucleus 86Nb.

  10. Final State Interactions Effects in Neutrino-Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Tomasz [Univ. of Wroctaw (Poland); Juszczak, Cezary [Univ. of Wroctaw (Poland); Sobczyk, Jan T. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2012-07-01

    Final State Interactions effects are discussed in the context of Monte Carlo simulations of neutrino-nucleus interactions. A role of Formation Time is explained and several models describing this effect are compared. Various observables which are sensitive to FSI effects are reviewed including pion-nucleus interaction and hadron yields in backward hemisphere. NuWro Monte Carlo neutrino event generator is described and its ability to understand neutral current $\\pi^0$ production data in $\\sim 1$ GeV neutrino flux experiments is demonstrated.

  11. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morfín, Jorge G.; Nieves, Juan; Sobczyk, Jan T.

    2012-01-01

    Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  12. An occultation of the inner Seyfert nucleus of NGC 4151

    International Nuclear Information System (INIS)

    The brightness of the unresolved nucleus of NGC 4151 was monitored over five months in 1983. Variations of ≅ 0.1 mag/day were observed in the U-band and no significant variation was found of the -OIII] 5007 A emission line. However, an event that was observed on the nights of the 10/11 and 11/12 February 1983 in the continuum around 5672 A has all the characteristics of an occultation. It is proposed that an inner synchrotron nucleus of ≅ 3 a.u. diameter was occulted by an opaque cloud ≅ 6 a.u. across on those two nights

  13. Sensitivity of reaction cross sections to halo nucleus density distributions

    OpenAIRE

    Alkhazov, G. D.; Sarantsev, V. V.

    2013-01-01

    In order to clear up the sensitivity of the nucleus--nucleus reaction cross sections $\\sigma_R$ to the nuclear matter distributions in exotic halo nuclei, we have calculated the values of $\\sigma_R$ for scattering of $^6$He, $^{11}$Li, and $^{19}$C nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon. The calculations were performed in the "rigid target" approximation to the Glauber theory, different shapes of the nuclear density distributions in $^6$He, $^{11}$Li, and $^{19}$C ...

  14. Hyper deformation and clustering configuration in 168Yb nucleus

    International Nuclear Information System (INIS)

    Recently an exhaustive experimental search for hyper deformation in 168Yb with β ∼ 1.0 and axis ratio 3:1 at spins 70-80ℎ has yielded negative result which is attributed either to the fact that the fission of the compound nucleus prevented population of hyper deformed states or that the amount of angular momentum brought into the compound system was not sufficient to allow population of hyper deformed states. A systematic theoretical search for detection of such hyper deformation in this nucleus using the cranked Nilsson Strutinsky method with tuning to fixed spins was undertaken

  15. Examination of the fission time of the Z =120 nucleus

    Science.gov (United States)

    Sikdar, A. K.; Ray, A.; Chatterjee, A.

    2016-04-01

    We show that the large difference in the measured lifetime for asymmetric fission of the highly excited (T ≈1.5 -MeV ) Z =120 nucleus as measured by the atomic techniques (crystal blocking and x-ray methods) with those measured by the nuclear techniques (mass-angle distribution and prefission neutron multiplicity) cannot be due to the different sensitivities of the atomic and nuclear techniques in different time domains. The claim of formation of a superheavy Z =120 nucleus with a high fission barrier on the basis of an observed long fission time by the atomic techniques is in direct conflict with all other available measurements and calculations.

  16. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    OpenAIRE

    Hammer H.-W.; Phillips D.R.

    2010-01-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accurac...

  17. Low-energy rotational bands in the nucleus155Eu

    Science.gov (United States)

    Katajanheimo, R.; Liljavirta, H.; Siivola, A.; Hammarén, E.; Liukkonen, E.

    1984-02-01

    Excited states in the nucleus155Eu have been produced during in-beam bombardments of a154Sm target with3He beams at 22 and 27 MeV. Decay gamma rays were detected using coincidence equipment optimized for low-energy photons. The level scheme is based on the observed γγ-coincidence relationships combined with the information on relative intensities. Tentatively suggested spin assignments follow from the apparent rotational character of the nucleus. Experimental observations are compared with predictions calculated from a particle-rotor model with a nonspheroidal Woods-Saxon potential.

  18. Formation and decay of a hot compound nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B.V.; Dalmolin, F.T.; Dutra, M.; Santos, T.J., E-mail: brett@ita.br [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos SP (Brazil); Souza, S.R. [Universidade Federal de Rio Grande do Sul (UFRS), Porto Alegre RS, (Brazil); Universidade Federal de Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Fisica; Donangelo, R. [Instituto de Fisica, Universidad de la Republica de Uruguay, Montevideo (Uruguay); Universidade Federal de Rio Grande do Sul (UFRS), Porto Alegre RS, (Brazil)

    2014-07-01

    The compound nucleus plays an important role in nuclear reactions over a wide range of projectile-target combinations and energies. The limits that angular momentum places on its formation and existence are, for the most part, well understood. The limits on its excitation energy are not as clear. Here we first analyze general geometrical and thermodynamical features of a hot compound nucleus. We then discuss the manners by which it can decay and close by speculating on the high energy limit to its formation and existence. (author)

  19. Recent Developments in Neutrino/Antineutrino-Nucleus Interactions

    Directory of Open Access Journals (Sweden)

    Jorge G. Morfín

    2012-01-01

    Full Text Available Recent experimental results and developments in the theoretical treatment of neutrino-nucleus interactions in the energy range of 1–10 GeV are discussed. Difficulties in extracting neutrino-nucleon cross sections from neutrino-nucleus scattering data are explained and significance of understanding nuclear effects for neutrino oscillation experiments is stressed. Detailed discussions of the status of two-body current contribution in the kinematic region dominated by quasielastic scattering and specific features of partonic nuclear effects in weak DIS scattering are presented.

  20. Study on Action of Acupuncture on Ventromedial Nucleus of Hypothalamus in Obese Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Effects of acupuncture on the spontaneous discharge of nerve cells and levels of monoamine neurotransmitters in ventromedial nucleus of hypothalamus (VMH) of the obese rats were investigated. Results indicated that the levels of tyrosine (Tyr) and dopamine (DA) were lowered, the levels of 5-hydroxytryptamine (5-HT) and 5-hydoxyindole acetic acid (5-HIAA) increased, and the frequency of the spontaneous discharge of nerve cells in VMH lowered in the obese rat group as compared with the normal group. When acupuncture obtained the effect of weight reduction, the frequency of spontaneous discharges of nerve cells in VMH were markedly increased, and the levels of Tyr, DA and tryptamine (Typ) and 5-HT/5-HIAA ratio elevated, and the 5-HT level lowered. It is suggested that the virtuous regulative action of acupuncture on VMH might be one of the key factors in acupuncture for weight reduction.

  1. High plasma triglyceride levels strongly correlate with low kisspeptin in the arcuate nucleus of male rats

    DEFF Research Database (Denmark)

    Overgaard, A; Axel, A M; Lie, M E;

    2015-01-01

    signals to the GnRH neurons. METHODS: In this study, we measured body weight and plasma concentrations of leptin, insulin, testosterone, and triglycerides after high fat diet exposure and correlated these parameters with the number of kisspeptin-immunoreactive neurons in the arcuate nucleus of male rats....... In this model, a high fat diet (45% or 60% energy from fat, respectively) or a control diet (10% energy from fat) was provided after weaning for three months. RESULTS: We find a significant increase in body weight and plasma leptin concentration, but no change in the number of kisspeptin......-immunoreactive cells with increased fat in the diet. Kisspeptin-immunoreactive cells are not correlated with body weight, testosterone, leptin or insulin. However, we find that the number of kisspeptin-immunoreactive cells is strongly and negatively correlated with the level of plasma triglycerides (R2=0.49, p=0...

  2. Effect on biological characteristics of rat nucleus pulposus mesenchymal stem cell under different concentration fetal bovine serum%不同体积浓度胎牛血清对大鼠髓核间充质干细胞生物学特性的影响

    Institute of Scientific and Technical Information of China (English)

    宋亮; 张宁; 关晓明; 陈辉; 马迅

    2014-01-01

    目的:研究大鼠髓核间充质干细胞(NPMSCs)体外培养的最佳血清体积浓度并探讨椎间盘退变的机制。方法用胶原酶、胰酶序贯消化法从SD大鼠腰部和尾部的椎间盘组织中提取NPMSCs,并进行体外培养,将其传代。①利用流式细胞仪对第3代传代NPMSCs细胞表型CD29、CD34、CD24、CD90、CD105进行鉴定;②利用普通PCR鉴定体外培养的NPMSCs细胞基因Sox2、Nanog的表达;③在37℃、21%O2、5%CO2的细胞培养箱中用成骨、成软骨、成脂培养液诱导培养第3代传代NPMSCs,2周以后,用染色剂对其染色,观察其成脂、成骨、成软骨能力。④在37℃、21%O2、5%CO2的细胞培养箱中用不同血清体积浓度(0%、5%、10%、20%、30%)的 DMEM-F12血清培养液培养第3代传代 NPMSCs,72h 后利用CCK-8法检测细胞的增殖,并采用RT-PCR检测细胞蛋白多糖、Ⅱ型胶原、SOX9的mRNA表达,借助流式细胞仪对细胞进行细胞凋亡的检测。结果①大鼠NPMSCs的成骨、成软骨能力强,成脂能力较差,且其细胞表面高度表达CD29、CD90、CD105,低度表达CD24、CD34,细胞基因 Sox2、Nanog 高度表达。②随着培养液血清体积浓度增加, OD 值增大, NPM-SCs的凋亡率降低,细胞蛋白多糖、Ⅱ型胶原、SOX9基因的mRNA表达增加。结论①大鼠NPMSCs具有间充质干细胞特性;②细胞外营养影响大鼠NPMSCs的增殖、分泌、凋亡。%Objective To investigate the optimum volume concentration of serum for the culture of the rat nucleus mes-enchymal stem cells (NPMSCs) in vitro and the mechanism of intervertebral disc degeneration. Methods NPMSCs was iso-lated and cultured from the lumbar and caudal of the SD rats by Collagenase,trypsin sequential digestion method,and then they were cultured subcultured in vitro. ①Flow cytometry was used to identify the cell phenotype CD29,CD34,CD24,CD90,CD105 of the third generation NPMSCs.

  3. Analysis of Intermediate-Energy Nucleus-Nucleus Spallation, Fission, and Fragmentation Reactions with the LAQGSM code

    CERN Document Server

    Mashnik, S G; Prael, R E; Sierk, A J

    2003-01-01

    The LAQGSM code has been recently developed at Los Alamos National Laboratory to simulate nuclear reactions for proton radiography applications. We have benchmarked our code against most available measured data both for proton-nucleus and nucleus-nucleus interactions at incident energies from 10 MeV to 800 GeV and have compared our results with predictions of other current models used by the nuclear community. Here, we present a brief description of our code and show illustrative results obtained with LAQGSM for neutron spectra measured recently by Nakamura's groups for reactions induced by light and medium nuclei on targets from C to Pb at several incident energies from 95 to 600 MeV/nucleon and with the recent GSI measurements of spallation, fission, and fragmentation yields from A+p and A+A reactions at incident energies near and below 1 GeV/nucleon. Further necessary work is outlined.

  4. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    Science.gov (United States)

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works. PMID:27480780

  5. A comparative analysis of mechanisms of fast light particles production in nucleus-nucleus collisions at low and intermediate energies

    CERN Document Server

    Denikin, A S

    2002-01-01

    The dynamics and the mechanisms of formation of pre-equilibrium light particles in nucleus-nucleus collisions at low and intermediate energies are discussed in terms of a classical four-body model. The energy and angular distributions of light particles have been calculated. It has been found that at energies lower than 50A MeV the formation of the most high-energy part of the nuclear spectrum occurs at the expense of the acceleration of light target particles with the mean field of the projectile. The obtained data are in good agreement with available experimental data

  6. Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry

    OpenAIRE

    Huo, Shuaidong; Jin, Shubin; Ma, Xiaowei; Xue, Xiangdong; Yang, Keni; Kumar, Anil; Wang, Paul C.; Zhang, Jinchao; Hu, Zhongbo; Liang, Xing-Jie

    2014-01-01

    The aim of this study was to determine the size-dependent penetration ability of gold nanoparticles and the potential application of ultrasmall gold nanoparticles for intranucleus delivery and therapy. We synthesized gold nanoparticles with diameters of 2, 6, 10, and 16 nm and compared their intracellular distribution in MCF-7 breast cancer cells. Nanoparticles smaller than 10 nm (2 and 6 nm) could enter the nucleus, whereas larger ones (10 and 16 nm) were found only in the cytoplasm. We then...

  7. Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris

    OpenAIRE

    Nicolás Palanca-Castán

    2015-01-01

    Interaural time differences (ITDs) are an important cue for the localization of sounds in azimuthal space. Both birds and mammals have specialized, tonotopically-organized nuclei in the brain stem for the processing of ITD: medial superior olive (MSO) in mammals and nucleus laminaris (NL) in birds. The specific way in which ITDs are derived was long assumed to conform to a delay-line model in which arrays of systematically arranged cells create a representation of auditory space with differen...

  8. Expression of survivin detected by immunohistochemistry in the cytoplasm and in the nucleus is associated with prognosis of leiomyosarcoma and synovial sarcoma patients

    International Nuclear Information System (INIS)

    Survivin, a member of the inhibitor of apoptosis-protein family suppresses apoptosis and regulates cell division. It is strongly overexpressed in the vast majority of cancers. We were interested if survivin detected by immunohistochemistry has prognostic relevance especially for patients of the two soft tissue sarcoma entities leiomyosarcoma and synovial sarcoma. Tumors of leiomyosarcoma (n = 24) and synovial sarcoma patients (n = 26) were investigated for their expression of survivin by immunohistochemistry. Survivin expression was assessed in the cytoplasm and the nucleus of tumor cells using an immunoreactive scoring system (IRS). We detected a survivin expression (IRS > 2) in the cytoplasm of 20 leiomyosarcomas and 22 synovial sarcomas and in the nucleus of 12 leiomyosarcomas and 9 synovial sarcomas, respectively. There was no significant difference between leiomyosarcoma and synovial sarcoma samples in their cytoplasmic or nuclear expression of survivin. Next, all sarcoma patients were separated in four groups according to their survivin expression in the cytoplasm and in the nucleus: group 1: negative (IRS 0 to 2); group 2: weak (IRS 3 to 4); group 3: moderate (IRS 6 to 8); group 4: strong (IRS 9 to 12). In a multivariate Cox's regression hazard analysis survivin expression detected in the cytoplasm or in the nucleus was significantly associated with overall survival of patients in group 3 (RR = 5.7; P = 0.004 and RR = 5.7; P = 0.022, respectively) compared to group 2 (reference). Patients whose tumors showed both a moderate/strong expression of survivin in the cytoplasm and a moderate expression of survivin in the nucleus (in both compartments IRS ≥ 6) possessed a 24.8-fold increased risk of tumor-related death (P = 0.003) compared to patients with a weak expression of survivin both in the cytoplasm and in the nucleus. Survivin protein expression in the cytoplasma and in the nucleus detected by immunohistochemistry is significantly associated with

  9. Empirical Example of Nucleus with Transitional Dynamical Symmetry X(5)

    Institute of Scientific and Technical Information of China (English)

    张大立; 赵惠英

    2002-01-01

    By analysing the energy spectrum, E2 transition rates and branching ratios, it is shown explicitly that the nucleus 150Nd provides an empirical example with X(5) symmetry at the critical point of the transition from U(5) to SU(3) symmetry.

  10. Nucleus accumbens dopamine receptors in the consolidation of spatial memory.

    NARCIS (Netherlands)

    Mele, A.; Avena, M.; Roullet, P.; Leonibus, E. de; Mandillo, S.; Sargolini, F.; Coccurello, R.; Oliverio, A.

    2004-01-01

    Nucleus accumbens dopamine is known to play an important role in motor activity and in behaviours governed by drugs and natural reinforcers, as well as in non-associative forms of learning. At the same time, activation of D1 and D2 dopamine receptors has been suggested to promote intracellular event

  11. Three-dimensional organization of the human interphase nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); W. Waldeck (Waldemar); J. Langowski (Jörg)

    2000-01-01

    textabstractDespite the successful linear sequencing of the human genome its three-dimensional structure is widely unknown, although it is important for gene regulation and replication. For a long time the interphase nucleus has been viewed as a 'spaghetti soup' of DNA without much internal structur

  12. Theory status of quarkonium production in proton-nucleus collisions

    CERN Document Server

    Lansberg, J P

    2015-01-01

    I give a brief overview of the recent theoretical progress in the study of quarkonium production in proton-nucleus collisions in view of the recent LHC and RHIC results. A special emphasis is put on the excited states such as the psi', Upsilon(2S) and Upsilon(3S).

  13. Parity non-conserving effects in neutron-nucleus scattering

    International Nuclear Information System (INIS)

    The present lecture reviews the motivations which led to study the contribution of the neutron-nucleus component to parity-non-conserving effects observed in medium-heavy nuclei and considers its present status. It is shown that it cannot account for those experimental data. The order interpretation of these effects, which cannot lead to precise statements, is schematically described

  14. Saturating Cronin effect in ultrarelativistic proton-nucleus collisions

    CERN Document Server

    Papp, G; Fái, G; Papp, Gabor; Levai, Peter; Fai, George

    2000-01-01

    Pion and photon production cross sections are analyzed in proton-proton and proton-nucleus collisions at energies 20 GeV < s^1/2 < 60 GeV. We separate the proton-proton and nuclear contributions to transverse-momentum broadening and suggest a new mechanism for the nuclear enhancement in the high transverse-momentum region.

  15. RELATIVISTIC CALCULATIONS OF THE SUPERHEAVY NUCLEUS 114-298

    NARCIS (Netherlands)

    BOERSMA, HF

    1993-01-01

    We investigate ground-state properties of the superheavy nucleus with N = 184 and Z = 114, (298)114, using conventional relativistic mean-field theory and density-dependent mean-field theory, which reproduces Dirac-Brueckner calculations in nuclear matter. Our calculations provide support for N = 18

  16. Deexcitation of superdeformed bands in the nucleus Tb-151

    NARCIS (Netherlands)

    Finck, C; Appelbe, D; Beck, FA; Byrski, T; Cullen, D; Curien, D; deFrance, G; Duchene, G; Erturk, S; Haas, B; Khadiri, N; Kharraja, B; Prevost, D; Rigollet, C; Stezowski, O; Twin, P; Vivien, JP; Zuber, K

    1997-01-01

    The aim of this work is to get more informations about the decay-out of superdeformed bands. One of the best candidates in the mass A similar or equal to 150 region for that kind of research is the nucleus Tb-151. From previous works, it has been established that the first excited band goes lower in

  17. Rapid feedback processing in human nucleus accumbens and motor thalamus

    NARCIS (Netherlands)

    Schüller, T.; Gründler, T.O.J.; Jocham, G.; Klein, T.A.; Timmermann, L.; Visser-Vandewalle, V.E.R.M.; Kuhn, J.

    2015-01-01

    The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structu

  18. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit.

    Science.gov (United States)

    D'Agostino, Giuseppe; Lyons, David J; Cristiano, Claudia; Burke, Luke K; Madara, Joseph C; Campbell, John N; Garcia, Ana Paula; Land, Benjamin B; Lowell, Bradford B; Dileone, Ralph J; Heisler, Lora K

    2016-01-01

    The nucleus of the solitary tract (NTS) is a key gateway for meal-related signals entering the brain from the periphery. However, the chemical mediators crucial to this process have not been fully elucidated. We reveal that a subset of NTS neurons containing cholecystokinin (CCK(NTS)) is responsive to nutritional state and that their activation reduces appetite and body weight in mice. Cell-specific anterograde tracing revealed that CCK(NTS) neurons provide a distinctive innervation of the paraventricular nucleus of the hypothalamus (PVH), with fibers and varicosities in close apposition to a subset of melanocortin-4 receptor (MC4R(PVH)) cells, which are also responsive to CCK. Optogenetic activation of CCK(NTS) axon terminals within the PVH reveal the satiating function of CCK(NTS) neurons to be mediated by a CCK(NTS)→PVH pathway that also encodes positive valence. These data identify the functional significance of CCK(NTS) neurons and reveal a sufficient and discrete NTS to hypothalamus circuit controlling appetite. PMID:26974347

  19. Ultrastructural Changes of Caudate Nucleus in Mice Chronically Treated with Manganese.

    Science.gov (United States)

    Villalobos, Virginia; Hernández-Fonseca, Juan Pablo; Bonilla, Ernesto; Medina-Leendertz, Shirley; Mora, Marylu; Mosquera, Jesús

    2015-01-01

    Manganese (Mn) is able to cross the blood-brain barrier and induces functional and structural alterations during the intoxication by this metal. Therefore, the effects of chronic administration of Mn in the caudate nucleus of mice were evaluated by electron microscopy. Male albino mice were injected intraperitoneally with MnCl2 (5 mg/kg/d) 5 d per week during 9 weeks. The control group received only 0.9% of NaCl solution. The caudate nuclei were extracted and subsequently processed to be observed on a conventional transmission electron microscope at 2, 4, 6, and 9 weeks after treatment. A high percentage of vacuolated and swollen mitochondria were found throughout all the analyzed periods. Myelin disarrangement and ultrastructural alterations related to edema were observed increased in Mn-treated mice at week 9. Granular degeneration of myelin at week 9 accompanied with deposition of electron dense granules in the neuropil was also observed. Edema in neuropil and glial cells was detected from week 2 to week 9 accompanied by swollen mitochondria. Neuronal bodies, synaptic terminals, and perivascular cells were found swollen. Decreased electron density in postsynaptic areas and decreased and dispersed synaptic vesicles in presynaptic areas were noted in Mn-treated animals. Some neurons from Mn-treated mice showed cisternae dilation of the Golgi apparatus. These results suggest that Mn-treatment produces structural alterations in the caudate nucleus that could be responsible for some of the neurotoxic effects of this metal. PMID:25569534

  20. Appetite controlled by a cholecystokinin nucleus of the solitary tract to hypothalamus neurocircuit.

    Science.gov (United States)

    D'Agostino, Giuseppe; Lyons, David J; Cristiano, Claudia; Burke, Luke K; Madara, Joseph C; Campbell, John N; Garcia, Ana Paula; Land, Benjamin B; Lowell, Bradford B; Dileone, Ralph J; Heisler, Lora K

    2016-03-14

    The nucleus of the solitary tract (NTS) is a key gateway for meal-related signals entering the brain from the periphery. However, the chemical mediators crucial to this process have not been fully elucidated. We reveal that a subset of NTS neurons containing cholecystokinin (CCK(NTS)) is responsive to nutritional state and that their activation reduces appetite and body weight in mice. Cell-specific anterograde tracing revealed that CCK(NTS) neurons provide a distinctive innervation of the paraventricular nucleus of the hypothalamus (PVH), with fibers and varicosities in close apposition to a subset of melanocortin-4 receptor (MC4R(PVH)) cells, which are also responsive to CCK. Optogenetic activation of CCK(NTS) axon terminals within the PVH reveal the satiating function of CCK(NTS) neurons to be mediated by a CCK(NTS)→PVH pathway that also encodes positive valence. These data identify the functional significance of CCK(NTS) neurons and reveal a sufficient and discrete NTS to hypothalamus circuit controlling appetite.