WorldWideScience

Sample records for cell nucleus division

  1. Expression of the nucleus-encoded chloroplast division genes and proteins regulated by the algal cell cycle.

    Science.gov (United States)

    Miyagishima, Shin-Ya; Suzuki, Kenji; Okazaki, Kumiko; Kabeya, Yukihiro

    2012-10-01

    Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained by chloroplast division, which is performed by the constriction of a ring-like division complex at the division site. It is believed that the synchronization of the endosymbiotic and host cell division events was a critical step in establishing a permanent endosymbiotic relationship, such as is commonly seen in existing algae. In the majority of algal species, chloroplasts divide once per specific period of the host cell division cycle. In order to understand both the regulation of the timing of chloroplast division in algal cells and how the system evolved, we examined the expression of chloroplast division genes and proteins in the cell cycle of algae containing chloroplasts of cyanobacterial primary endosymbiotic origin (glaucophyte, red, green, and streptophyte algae). The results show that the nucleus-encoded chloroplast division genes and proteins of both cyanobacterial and eukaryotic host origin are expressed specifically during the S phase, except for FtsZ in one graucophyte alga. In this glaucophyte alga, FtsZ is persistently expressed throughout the cell cycle, whereas the expression of the nucleus-encoded MinD and MinE as well as FtsZ ring formation are regulated by the phases of the cell cycle. In contrast to the nucleus-encoded division genes, it has been shown that the expression of chloroplast-encoded division genes is not regulated by the host cell cycle. The endosymbiotic gene transfer of minE and minD from the chloroplast to the nuclear genome occurred independently on multiple occasions in distinct lineages, whereas the expression of nucleus-encoded MIND and MINE is regulated by the cell cycle in all lineages examined in this study. These results suggest that the timing of chloroplast division in algal cell cycle is restricted by the cell cycle-regulated expression of some but not all of the chloroplast division genes. In addition, it is

  2. C. elegans HAM-1 functions in the nucleus to regulate asymmetric neuroblast division.

    Science.gov (United States)

    Leung, Amy; Hua, Khang; Ramachandran, Pavitra; Hingwing, Kyla; Wu, Maria; Koh, Pei Luan; Hawkins, Nancy

    2016-02-01

    All 302 neurons in the C. elegans hermaphrodite arise through asymmetric division of neuroblasts. During embryogenesis, the C. elegans ham-1 gene is required for several asymmetric neuroblast divisions in lineages that generate both neural and apoptotic cells. By antibody staining, endogenous HAM-1 is found exclusively at the cell cortex in many cells during embryogenesis and is asymmetrically localized in dividing cells. Here we show that in transgenic embryos expressing a functional GFP::HAM-1 fusion protein, GFP expression is also detected in the nucleus, in addition to the cell cortex. Consistent with the nuclear localization is the presence of a putative DNA binding winged-helix domain within the N-terminus of HAM-1. Through a deletion analysis we determined that the C-terminus of the protein is required for nuclear localization and we identified two nuclear localization sequences (NLSs). A subcellular fractionation experiment from wild type embryos, followed by Western blotting, revealed that endogenous HAM-1 is primarily found in the nucleus. Our analysis also showed that the N-terminus is necessary for cortical localization. While ham-1 function is essential for asymmetric division in the lineage that generates the PLM mechanosensory neuron, we showed that cortical localization may not required. Thus, our results suggest that there is a nuclear function for HAM-1 in regulating asymmetric neuroblast division and that the requirement for cortical localization may be lineage dependent. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Developmental control of cell division

    NARCIS (Netherlands)

    Boxem, M. (Mike)

    2002-01-01

    During development of multicellular organisms, cell divisions need to be coordinated with the developmental program of the entire organism. Although the mechanisms that drive cells through the division cycle are well understood, very little is known about the pathways that link extracellular signals

  4. Fueling the Cell Division Cycle.

    Science.gov (United States)

    Salazar-Roa, María; Malumbres, Marcos

    2017-01-01

    Cell division is a complex process with high energy demands. However, how cells regulate the generation of energy required for DNA synthesis and chromosome segregation is not well understood. Recent data suggest that changes in mitochondrial dynamics and metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis crosstalk with, and are tightly regulated by, the cell division machinery. Alterations in energy availability trigger cell-cycle checkpoints, suggesting a bidirectional connection between cell division and general metabolism. Some of these connections are altered in human disease, and their manipulation may help in designing therapeutic strategies for specific diseases including cancer. We review here recent studies describing the control of metabolism by the cell-cycle machinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Do migrating cells need a nucleus?

    Science.gov (United States)

    Hawkins, Rhoda J

    2018-03-05

    How the nucleus affects cell polarity and migration is unclear. In this issue, Graham et al. (2018. J. Cell Biol. https://doi.org/10.1083/jcb.201706097) show that enucleated cells polarize and migrate in two but not three dimensions and propose that the nucleus is a necessary component of the molecular clutch regulating normal mechanical responses. © 2018 Hawkins.

  6. Stochastic models for cell division

    Science.gov (United States)

    Stukalin, Evgeny; Sun, Sean

    2013-03-01

    The probability of cell division per unit time strongly depends of age of cells, i.e., time elapsed since their birth. The theory of cell populations in the age-time representation is systematically applied for modeling cell division for different spreads in generation times. We use stochastic simulations to address the same issue at the level of individual cells. Our approach unlike deterministic theory enables to analyze the size fluctuations of cell colonies at different growth conditions (in the absence and in the presence of cell death, for initially synchronized and asynchronous cell populations, for conditions of restricted growth). We find the simple quantitative relation between the asymptotic values of relative size fluctuations around mean values for initially synchronized cell populations under growth and the coefficients of variation of generation times. Effect of initial age distribution for asynchronous growth of cell cultures is also studied by simulations. The influence of constant cell death on fluctuations of sizes of cell populations is found to be essential even for small cell death rates, i.e., for realistic growth conditions. The stochastic model is generalized for biologically relevant case that involves both cell reproduction and cell differentiation.

  7. Actomyosin contractility rotates the cell nucleus

    Science.gov (United States)

    Kumar, Abhishek; Maitra, Ananyo; Sumit, Madhuresh; Ramaswamy, Sriram; Shivashankar, G. V.

    2014-01-01

    The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells. PMID:24445418

  8. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  9. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  10. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  11. Cell Biology of the Caenorhabditis elegans Nucleus

    Science.gov (United States)

    Cohen-Fix, Orna; Askjaer, Peter

    2017-01-01

    Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology. PMID:28049702

  12. Genes involved in cell division in mycoplasmas

    OpenAIRE

    Alarcón, Frank; Vasconcelos, Ana Tereza Ribeiro de; Yim, Lucia; Zaha, Arnaldo

    2007-01-01

    Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw) cluster, which ...

  13. Structural dynamics of the cell nucleus

    Science.gov (United States)

    Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832

  14. Polarized Cell Division of Chlamydia trachomatis.

    Directory of Open Access Journals (Sweden)

    Yasser Abdelrahman

    2016-08-01

    Full Text Available Bacterial cell division predominantly occurs by a highly conserved process, termed binary fission, that requires the bacterial homologue of tubulin, FtsZ. Other mechanisms of bacterial cell division that are independent of FtsZ are rare. Although the obligate intracellular human pathogen Chlamydia trachomatis, the leading bacterial cause of sexually transmitted infections and trachoma, lacks FtsZ, it has been assumed to divide by binary fission. We show here that Chlamydia divides by a polarized cell division process similar to the budding process of a subset of the Planctomycetes that also lack FtsZ. Prior to cell division, the major outer-membrane protein of Chlamydia is restricted to one pole of the cell, and the nascent daughter cell emerges from this pole by an asymmetric expansion of the membrane. Components of the chlamydial cell division machinery accumulate at the site of polar growth prior to the initiation of asymmetric membrane expansion and inhibitors that disrupt the polarity of C. trachomatis prevent cell division. The polarized cell division of C. trachomatis is the result of the unipolar growth and FtsZ-independent fission of this coccoid organism. This mechanism of cell division has not been documented in other human bacterial pathogens suggesting the potential for developing Chlamydia-specific therapeutic treatments.

  15. The stem cell division theory of cancer.

    Science.gov (United States)

    López-Lázaro, Miguel

    2018-03-01

    All cancer registries constantly show striking differences in cancer incidence by age and among tissues. For example, lung cancer is diagnosed hundreds of times more often at age 70 than at age 20, and lung cancer in nonsmokers occurs thousands of times more frequently than heart cancer in smokers. An analysis of these differences using basic concepts in cell biology indicates that cancer is the end-result of the accumulation of cell divisions in stem cells. In other words, the main determinant of carcinogenesis is the number of cell divisions that the DNA of a stem cell has accumulated in any type of cell from the zygote. Cell division, process by which a cell copies and separates its cellular components to finally split into two cells, is necessary to produce the large number of cells required for living. However, cell division can lead to a variety of cancer-promoting errors, such as mutations and epigenetic mistakes occurring during DNA replication, chromosome aberrations arising during mitosis, errors in the distribution of cell-fate determinants between the daughter cells, and failures to restore physical interactions with other tissue components. Some of these errors are spontaneous, others are promoted by endogenous DNA damage occurring during quiescence, and others are influenced by pathological and environmental factors. The cell divisions required for carcinogenesis are primarily caused by multiple local and systemic physiological signals rather than by errors in the DNA of the cells. As carcinogenesis progresses, the accumulation of DNA errors promotes cell division and eventually triggers cell division under permissive extracellular environments. The accumulation of cell divisions in stem cells drives not only the accumulation of the DNA alterations required for carcinogenesis, but also the formation and growth of the abnormal cell populations that characterize the disease. This model of carcinogenesis provides a new framework for understanding the

  16. Molecular coordination of Staphylococcus aureus cell division

    Science.gov (United States)

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  17. Genes involved in cell division in mycoplasmas

    Directory of Open Access Journals (Sweden)

    Frank Alarcón

    2007-01-01

    Full Text Available Bacterial cell division has been studied mainly in model systems such as Escherichia coli and Bacillus subtilis, where it is described as a complex process with the participation of a group of proteins which assemble into a multiprotein complex called the septal ring. Mycoplasmas are cell wall-less bacteria presenting a reduced genome. Thus, it was important to compare their genomes to analyze putative genes involved in cell division processes. The division and cell wall (dcw cluster, which in E. coli and B. subtilis is composed of 16 and 17 genes, respectively, is represented by only three to four genes in mycoplasmas. Even the most conserved protein, FtsZ, is not present in all mycoplasma genomes analyzed so far. A model for the FtsZ protein from Mycoplasma hyopneumoniae and Mycoplasma synoviae has been constructed. The conserved residues, essential for GTP/GDP binding, are present in FtsZ from both species. A strong conservation of hydrophobic amino acid patterns is observed, and is probably necessary for the structural stability of the protein when active. M. synoviae FtsZ presents an extended amino acid sequence at the C-terminal portion of the protein, which may participate in interactions with other still unknown proteins crucial for the cell division process.

  18. Regulation of cell division in higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, T.W.

    1992-01-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  19. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation.

    Science.gov (United States)

    Shao, Wanchen; Dong, Juan

    2016-11-01

    Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants. Copyright © 2016. Published by Elsevier Inc.

  20. Classical cadherins control nucleus and centrosome position and cell polarity.

    Science.gov (United States)

    Dupin, Isabelle; Camand, Emeline; Etienne-Manneville, Sandrine

    2009-06-01

    Control of cell polarity is crucial during tissue morphogenesis and renewal, and depends on spatial cues provided by the extracellular environment. Using micropatterned substrates to impose reproducible cell-cell interactions, we show that in the absence of other polarizing cues, cell-cell contacts are the main regulator of nucleus and centrosome positioning, and intracellular polarized organization. In a variety of cell types, including astrocytes, epithelial cells, and endothelial cells, calcium-dependent cadherin-mediated cell-cell interactions induce nucleus and centrosome off-centering toward cell-cell contacts, and promote orientation of the nucleus-centrosome axis toward free cell edges. Nucleus and centrosome off-centering is controlled by N-cadherin through the regulation of cell interactions with the extracellular matrix, whereas the orientation of the nucleus-centrosome axis is determined by the geometry of N-cadherin-mediated contacts. Our results demonstrate that in addition to the specific function of E-cadherin in regulating baso-apical epithelial polarity, classical cadherins control cell polarization in otherwise nonpolarized cells.

  1. Spindle Positioning and Cell Division in Caenorhabditis elegans

    OpenAIRE

    Voet, M. van der

    2010-01-01

    During cell division a cell duplicates its genetic material and segregates one intact copy into each daughter cell. However, cell division has many aspects in addition to the propagation of the genome. For instance, some cells divide asymmetrically, which contributes to the generation of cell diversity and maintenance of stem cell populations throughout the development and life of the organism. Two different mechanisms of asymmetric cell division exist. In one case the fate of the daughter ce...

  2. Formative cell divisions: principal determinants of plant morphogenesis.

    Science.gov (United States)

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  3. Cell Division Drives Epithelial Cell Rearrangements during Gastrulation in Chick.

    Science.gov (United States)

    Firmino, Joao; Rocancourt, Didier; Saadaoui, Mehdi; Moreau, Chloe; Gros, Jerome

    2016-02-08

    During early embryonic development, cells are organized as cohesive epithelial sheets that are continuously growing and remodeled without losing their integrity, giving rise to a wide array of tissue shapes. Here, using live imaging in chick embryo, we investigate how epithelial cells rearrange during gastrulation. We find that cell division is a major rearrangement driver that powers dramatic epithelial cell intercalation events. We show that these cell division-mediated intercalations, which represent the majority of epithelial rearrangements within the early embryo, are absolutely necessary for the spatial patterning of gastrulation movements. Furthermore, we demonstrate that these intercalation events result from overall low cortical actomyosin accumulation within the epithelial cells of the embryo, which enables dividing cells to remodel junctions in their vicinity. These findings uncover a role for cell division as coordinator of epithelial growth and remodeling that might underlie various developmental, homeostatic, or pathological processes in amniotes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of Polyhydroxybutyrate Production on Cell Division

    Science.gov (United States)

    Miller, Kathleen; Rahman, Asif; Hadi, Masood Z.

    2015-01-01

    Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.

  5. Spindle Positioning and Cell Division in Caenorhabditis elegans

    NARCIS (Netherlands)

    Voet, M. van der

    2010-01-01

    During cell division a cell duplicates its genetic material and segregates one intact copy into each daughter cell. However, cell division has many aspects in addition to the propagation of the genome. For instance, some cells divide asymmetrically, which contributes to the generation of cell

  6. Onset of cell division in maize germination: action of auxins

    International Nuclear Information System (INIS)

    de Jimenez, E.S.; Baiza, A.; Aguilar, R.

    1987-01-01

    Seed germination implies metabolic reactivation, synthesis of macromolecules and onset of cell division. During maize germination, meristematic tissues of embryos re-initiate cell division asynchronically. Since auxins are known to stimulate cell division, they asked how auxins might regulate cell cycle re-initiation. Embryonic tissues were incubated with and without auxins. A pulse of either 3 H-thymidine or 32 P-ortophosphate was given to the tissues. Mitotic indexes were determined and % of labeled mitotic cells recorded. Results indicated that meristematic cells re-initiate cell division either from G 1 or G 2 phases. Auxin stimulated differentially the cell division process of these cells. 32 P incorporation into cytoplasmic or nucleic histones was measured. Auxins stimulated this incorporation. Active turnover of histone phosphorylation occurred simultaneously to the cell division process. It is suggested that auxins might regulate the cell cycle by phosphorylation-dephosphorylation of histones

  7. Asymmetric Cell Divisions in the Epidermis

    Science.gov (United States)

    Poulson, Nicholas D.; Lechler, Terry

    2012-01-01

    Generation of three-dimensional tissue with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues this can also be coupled to the generation of diverse cell fates - a process known as asymmetric cell division (ACD). Understanding ACD’s has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACD’s also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD, but also to study their regulation during development. PMID:22449491

  8. Movement of beta-irradiated epidermal basal cells to the spinous-granular layers in the absence of cell division

    International Nuclear Information System (INIS)

    Etoh, H.; Taguchi, Y.H.; Tabachnick, J.

    1975-01-01

    Guinea-pig epidermis was irradiated with 3000 rad of beta rays 1 hr after two injections of [ 3 H]thymidine 5 hr apart (labeled cells in S phase and G 2 phase) or 18 hr after injection (labeled early G 1 cells). In nonirradiated epidermis labeled basal cells divided within 24 hr with daughter cells remaining in the basal layer, and approximately 50 percent of the labeled cells moved into the spinal layer by the 3rd day. Cell division in nonirradiated epidermis diluted the number of silver grains/nucleus, and lightly labeled cells were found in the granular layer by day 7. Beta irradiation inhibited cell division but it did not slow the rate of transit (ca 8 days) of irradiated labeled cells from basal to granular layer, some of these remaining heavily labeled. Although cell division may play some role in upward movement of basal cells in normal epidermis detachment of a basal cell from the basement membrane and its transit to the granular layer is unimpaired in the absence of cell division. These findings suggest that some radioresistant metabolic function(s), not cell division, is responsible for upward movement of basal cells. (auth)

  9. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com; Song, Guanbin, E-mail: song@cqu.edu.cn

    2016-10-15

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  10. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Song, Guanbin

    2016-01-01

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at

  11. Asymmetric cell division during T cell development controls downstream fate

    Science.gov (United States)

    Pham, Kim; Shimoni, Raz; Charnley, Mirren; Ludford-Menting, Mandy J.; Hawkins, Edwin D.; Ramsbottom, Kelly; Oliaro, Jane; Izon, David; Ting, Stephen B.; Reynolds, Joseph; Lythe, Grant; Molina-Paris, Carmen; Melichar, Heather; Robey, Ellen; Humbert, Patrick O.; Gu, Min

    2015-01-01

    During mammalian T cell development, the requirement for expansion of many individual T cell clones, rather than merely expansion of the entire T cell population, suggests a possible role for asymmetric cell division (ACD). We show that ACD of developing T cells controls cell fate through differential inheritance of cell fate determinants Numb and α-Adaptin. ACD occurs specifically during the β-selection stage of T cell development, and subsequent divisions are predominantly symmetric. ACD is controlled by interaction with stromal cells and chemokine receptor signaling and uses a conserved network of polarity regulators. The disruption of polarity by deletion of the polarity regulator, Scribble, or the altered inheritance of fate determinants impacts subsequent fate decisions to influence the numbers of DN4 cells arising after the β-selection checkpoint. These findings indicate that ACD enables the thymic microenvironment to orchestrate fate decisions related to differentiation and self-renewal. PMID:26370500

  12. Intracellular photoreceptive site for blue light-induced cell division in protonemata of the fern Adiantum [Pteridophyta]: Further analyses by polarized light irradiation and cell centrifugation

    International Nuclear Information System (INIS)

    Kadota, A.; Fushimi, Y.; Wada, M.

    1986-01-01

    The intracellular localization of the photoreceptive site for blue light-induced cell division in single-celled protonemata of Adiantum capillus-veneris L. was investigated using polarized light irradiation and protonemal cell centrifugation. The response to irradiation with polarized blue light showed no dependence on the direction of light polarization. However, centrifugation of the protonemata followed by microbeam irradiation showed that the site of blue light perception could be displaced together with the nucleus. Centrifugal treatment changed the distribution of intracellular organelles at the time of light exposure and basipetally displaced the nucleus about 90μm. This treatment had no effect on the induction of cell division with blue light if the protonemata were centrifuged again acropetally after the light treatment. Microbeam (30×30 μm2) irradiation with blue light of the apical 45–75 βm region, the receptive site of blue light in non-centrifuged cell, did not induce cell division. However, cell division was induced by irradiation of the nucleus-containing region, indicating that the photoreceptive site was displaced together with the nucleus by the centrifugation. These results suggest that the blue light receptor regulating cell division in Adiantum protonemata is not likely to be located on the plasma membrane. (author)

  13. (1) The Relationship of Protein Expression and Cell Division, (2) 3D Imaging of Cells Using Digital Holography, and (3) General Chemistry Enrollment at University of Michigan

    Science.gov (United States)

    Matz, Rebecca L.

    2012-01-01

    Chapter 1: The role of cell division in protein expression is important to understand in order to guide the development of better nonviral gene delivery materials that can transport DNA to the nucleus with high efficiency for a variety of cell types, particularly when nondividing cells are targets of gene therapy. We evaluated the relationship…

  14. Light mediated regulation of cell division, endoreduplication and cell expansion

    NARCIS (Netherlands)

    Okello, R.C.; Visser, de P.H.B.; Heuvelink, E.; Marcelis, L.F.M.; Struik, P.C.

    2016-01-01

    Cell division, endoreduplication and cell expansion are key processes for plant growth and development. Light is the main source of energy for plants and as such has a strong effect on plant growth and development. Insight into the role of light in cellular processes is important for our

  15. Activation of cell divisions in legume nodulation

    DEFF Research Database (Denmark)

    Nadzieja, Marcin

    Leguminous plants engage into symbiotic relationships with soil bacteria, rhizobia, and develop root nodules. This process initiates with recognition of bacteria derived signalling molecules called nod factors. The subsequent events lead to symbiotic infection and, occurring in parallel, de novo...... was shown to require auxin signalling. Cytokinin, in contrast, exert a negative regulation of bacterial entry into the root. During organogenesis, auxin and cytokinin maxima are known to accompany nodule primordia development and together regulate progression through the cell cycle. Moreover, application...... the two hormones require further investigation. In order to improve understanding in these areas we aimed to develop and characterise hormone and cell division markers in Lotus japonicus. Using the extensive genetic resources available in L. japonicus, these markers may then be used to develop a more...

  16. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute  towards a fundamental understanding of the  molecular basis of

  17. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equiva- lent function yet to be ... points controlling the cell division of these organisms? Is the cell division cycle of these organisms ..... mitotic-phase inhibitor and may become a useful tool for studies on the relationship ...

  18. Quantitative regulation of B cell division destiny by signal strength.

    Science.gov (United States)

    Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D

    2008-07-01

    Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.

  19. Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus.

    Science.gov (United States)

    Scheler, Björn; Schnepf, Vera; Galgenmüller, Carolina; Ranf, Stefanie; Hückelhoven, Ralph

    2016-05-01

    RHO GTPases are regulators of cell polarity and immunity in eukaryotes. In plants, RHO-like RAC/ROP GTPases are regulators of cell shaping, hormone responses, and responses to microbial pathogens. The barley (Hordeum vulgare L.) RAC/ROP protein RACB is required for full susceptibility to penetration by Blumeria graminis f.sp. hordei (Bgh), the barley powdery mildew fungus. Disease susceptibility factors often control host immune responses. Here we show that RACB does not interfere with early microbe-associated molecular pattern-triggered immune responses such as the oxidative burst or activation of mitogen-activated protein kinases. RACB also supports rather than restricts expression of defence-related genes in barley. Instead, silencing of RACB expression by RNAi leads to defects in cell polarity. In particular, initiation and maintenance of root hair growth and development of stomatal subsidiary cells by asymmetric cell division is affected by silencing expression of RACB. Nucleus migration is a common factor of developmental cell polarity and cell-autonomous interaction with Bgh RACB is required for positioning of the nucleus near the site of attack from Bgh We therefore suggest that Bgh profits from RACB's function in cell polarity rather than from immunity-regulating functions of RACB. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Cell Fate Decision Making through Oriented Cell Division.

    Science.gov (United States)

    Dewey, Evan B; Taylor, Danielle T; Johnston, Christopher A

    2015-12-01

    The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.

  1. Incorporation of mammalian actin into microfilaments in plant cell nucleus

    Directory of Open Access Journals (Sweden)

    Paves Heiti

    2004-04-01

    Full Text Available Abstract Background Actin is an ancient molecule that shows more than 90% amino acid homology between mammalian and plant actins. The regions of the actin molecule that are involved in F-actin assembly are largely conserved, and it is likely that mammalian actin is able to incorporate into microfilaments in plant cells but there is no experimental evidence until now. Results Visualization of microfilaments in onion bulb scale epidermis cells by different techniques revealed that rhodamine-phalloidin stained F-actin besides cytoplasm also in the nuclei whereas GFP-mouse talin hybrid protein did not enter the nuclei. Microinjection of fluorescently labeled actin was applied to study the presence of nuclear microfilaments in plant cells. Ratio imaging of injected fluorescent rabbit skeletal muscle actin and phalloidin staining of the microinjected cells showed that mammalian actin was able to incorporate into plant F-actin. The incorporation occurred preferentially in the nucleus and in the perinuclear region of plant cells whereas part of plant microfilaments, mostly in the periphery of cytoplasm, did not incorporate mammalian actin. Conclusions Microinjected mammalian actin is able to enter plant cell's nucleus, whereas incorporation of mammalian actin into plant F-actin occurs preferentially in the nucleus and perinuclear area.

  2. Cell division cycle 45 promotes papillary thyroid cancer progression via regulating cell cycle.

    Science.gov (United States)

    Sun, Jing; Shi, Run; Zhao, Sha; Li, Xiaona; Lu, Shan; Bu, Hemei; Ma, Xianghua

    2017-05-01

    Cell division cycle 45 was reported to be overexpressed in some cancer-derived cell lines and was predicted to be a candidate oncogene in cervical cancer. However, the clinical and biological significance of cell division cycle 45 in papillary thyroid cancer has never been investigated. We determined the expression level and clinical significance of cell division cycle 45 using The Cancer Genome Atlas, quantitative real-time polymerase chain reaction, and immunohistochemistry. A great upregulation of cell division cycle 45 was observed in papillary thyroid cancer tissues compared with adjacent normal tissues. Furthermore, overexpression of cell division cycle 45 positively correlates with more advanced clinical characteristics. Silence of cell division cycle 45 suppressed proliferation of papillary thyroid cancer cells via G1-phase arrest and inducing apoptosis. The oncogenic activity of cell division cycle 45 was also confirmed in vivo. In conclusion, cell division cycle 45 may serve as a novel biomarker and a potential therapeutic target for papillary thyroid cancer.

  3. Impact of the cell division cycle on gene circuits

    Science.gov (United States)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  4. Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells.

    Science.gov (United States)

    Zhang, Dan; Wang, Yijia; Zhang, Shiwu

    2014-01-01

    Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast, Saccharomyces cerevisiae, which reproduces by asymmetric cell division, has long been a model for asymmetric cell division studies. PGCCs produce daughter cells asymmetrically in a manner similar to yeast, in that both use budding for cell polarization and cytokinesis. Here, we review the results of recent studies and discuss the similarities in the budding process between yeast and PGCCs.

  5. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  6. Action at a Distance in the Cell's Nucleus

    Science.gov (United States)

    Kondev, Jane

    Various functions performed by chromosomes involve long-range communication between DNA sequences that are tens of thousands of bases apart along the genome, and microns apart in the nucleus. In this talk I will discuss experiments and theory relating to two distinct modes of long-range communication in the nucleus, chromosome looping and protein hopping along the chromosome, both in the context of DNA-break repair in yeast. Yeast is an excellent model system for studies that link chromosome conformations to their function as there is ample experimental evidence that yeast chromosome conformations are well described by a simple, random-walk polymer model. Using a combination of polymer physics theory and experiments on yeast cells, I will demonstrate that loss of polymer entropy due to chromosome looping is the driving force for homology search during repair of broken DNA by homologous recombination. I will also discuss the spread of histone modifications along the chromosome and away from the DNA break point in the context of simple physics models based on chromosome looping and kinase hopping, and show how combining physics theory and cell-biology experiment can be used to dissect the molecular mechanism of the spreading process. These examples demonstrate how combined theoretical and experimental studies can reveal physical principles of long-range communication in the nucleus, which play important roles in regulation of gene expression, DNA recombination, and chromatin modification. This work was supported by the NSF DMR-1206146.

  7. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Light micrograph of an asymmetrically dividing T. indica cell at various time intervals. Progress over a 12 hr period, showing that the larger component does not undergo further division. (A) 0 h, cell division at an early stage. (B) 5 h, lower half of cell undergoing further division. (C) 12 h, differentiated ...

  8. Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants.

    Science.gov (United States)

    Kosetsu, Ken; Murata, Takashi; Yamada, Moé; Nishina, Momoko; Boruc, Joanna; Hasebe, Mitsuyasu; Van Damme, Daniël; Goshima, Gohta

    2017-10-17

    Proper orientation of the cell division axis is critical for asymmetric cell divisions that underpin cell differentiation. In animals, centrosomes are the dominant microtubule organizing centers (MTOC) and play a pivotal role in axis determination by orienting the mitotic spindle. In land plants that lack centrosomes, a critical role of a microtubular ring structure, the preprophase band (PPB), has been observed in this process; the PPB is required for orienting (before prophase) and guiding (in telophase) the mitotic apparatus. However, plants must possess additional mechanisms to control the division axis, as certain cell types or mutants do not form PPBs. Here, using live imaging of the gametophore of the moss Physcomitrella patens , we identified acentrosomal MTOCs, which we termed "gametosomes," appearing de novo and transiently in the prophase cytoplasm independent of PPB formation. We show that gametosomes are dispensable for spindle formation but required for metaphase spindle orientation. In some cells, gametosomes appeared reminiscent of the bipolar MT "polar cap" structure that forms transiently around the prophase nucleus in angiosperms. Specific disruption of the polar caps in tobacco cells misoriented the metaphase spindles and frequently altered the final division plane, indicating that they are functionally analogous to the gametosomes. These results suggest a broad use of transient MTOC structures as the spindle orientation machinery in plants, compensating for the evolutionary loss of centrosomes, to secure the initial orientation of the spindle in a spatial window that allows subsequent fine-tuning of the division plane axis by the guidance machinery. Copyright © 2017 the Author(s). Published by PNAS.

  9. Biased DNA Segregation during Stem Cell Division

    OpenAIRE

    Anversa, Piero; Leri, Annarosa; Kajstura, Jan

    2012-01-01

    Adult skeletal muscle stem cells are a heterogeneous cell population characterized by a small subset of undifferentiated cells that express at high level the paired/homeodomain gene Pax7. This category of satellite cells divides predominantly by asymmetric chromatid segregation generating a daughter cell that carries the mother DNA and retains stem cell property, and a daughter cell that inherits the newly-synthesized DNA and acquires the myocyte lineage.1

  10. Genome organization during the cell cycle: unity in division.

    Science.gov (United States)

    Golloshi, Rosela; Sanders, Jacob T; McCord, Rachel Patton

    2017-09-01

    During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  11. Indole prevents Escherichia coli cell division by modulating membrane potential

    OpenAIRE

    Chimerel, Catalin; Field, Christopher M.; Pi?ero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3?5?mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological proces...

  12. Cell-Division Behavior in a Heterogeneous Swarm Environment.

    Science.gov (United States)

    Erskine, Adam; Herrmann, J Michael

    2015-01-01

    We present a system of virtual particles that interact using simple kinetic rules. It is known that heterogeneous mixtures of particles can produce particularly interesting behaviors. Here we present a two-species three-dimensional swarm in which a behavior emerges that resembles cell division. We show that the dividing behavior exists across a narrow but finite band of parameters and for a wide range of population sizes. When executed in a two-dimensional environment the swarm's characteristics and dynamism manifest differently. In further experiments we show that repeated divisions can occur if the system is extended by a biased equilibrium process to control the split of populations. We propose that this repeated division behavior provides a simple model for cell-division mechanisms and is of interest for the formation of morphological structure and to swarm robotics.

  13. Tools for visualization of phosphoinositides in the cell nucleus.

    Science.gov (United States)

    Kalasova, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Yildirim, Sukriye; Uličná, Lívia; Venit, Tomáš; Hozák, Pavel

    2016-04-01

    Phosphoinositides (PIs) are glycerol-based phospholipids containing hydrophilic inositol ring. The inositol ring is mono-, bis-, or tris-phosphorylated yielding seven PIs members. Ample evidence shows that PIs localize both to the cytoplasm and to the nucleus. However, tools for direct visualization of nuclear PIs are limited and many studies thus employ indirect approaches, such as staining of their metabolic enzymes. Since localization and mobility of PIs differ from their metabolic enzymes, these approaches may result in incomplete data. In this paper, we tested commercially available PIs antibodies by light microscopy on fixed cells, tested their specificity using protein-lipid overlay assay and blocking assay, and compared their staining patterns. Additionally, we prepared recombinant PIs-binding domains and tested them on both fixed and live cells by light microscopy. The results provide a useful overview of usability of the tools tested and stress that the selection of adequate tools is critical. Knowing the localization of individual PIs in various functional compartments should enable us to better understand the roles of PIs in the cell nucleus.

  14. An Arabidopsis Homolog of the Bacterial Cell Division Inhibitor SulA Is Involved in Plastid DivisionW⃞

    Science.gov (United States)

    Raynaud, Cécile; Cassier-Chauvat, Corinne; Perennes, Claudette; Bergounioux, Catherine

    2004-01-01

    Plastids have evolved from an endosymbiosis between a cyanobacterial symbiont and a eukaryotic host cell. Their division is mediated both by proteins of the host cell and conserved bacterial division proteins. Here, we identified a new component of the plastid division machinery, Arabidopsis thaliana SulA. Disruption of its cyanobacterial homolog (SSulA) in Synechocystis and overexpression of an AtSulA-green fluorescent protein fusion in Arabidopsis demonstrate that these genes are involved in cell and plastid division, respectively. Overexpression of AtSulA inhibits plastid division in planta but rescues plastid division defects caused by overexpression of AtFtsZ1-1 and AtFtsZ2-1, demonstrating that its role in plastid division may involve an interaction with AtFtsZ1-1 and AtFtsZ2-1. PMID:15208387

  15. Coordination of Chromosome Segregation and Cell Division in Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Amy L. Bottomley

    2017-08-01

    Full Text Available Productive bacterial cell division and survival of progeny requires tight coordination between chromosome segregation and cell division to ensure equal partitioning of DNA. Unlike rod-shaped bacteria that undergo division in one plane, the coccoid human pathogen Staphylococcus aureus divides in three successive orthogonal planes, which requires a different spatial control compared to rod-shaped cells. To gain a better understanding of how this coordination between chromosome segregation and cell division is regulated in S. aureus, we investigated proteins that associate with FtsZ and the divisome. We found that DnaK, a well-known chaperone, interacts with FtsZ, EzrA and DivIVA, and is required for DivIVA stability. Unlike in several rod shaped organisms, DivIVA in S. aureus associates with several components of the divisome, as well as the chromosome segregation protein, SMC. This data, combined with phenotypic analysis of mutants, suggests a novel role for S. aureus DivIVA in ensuring cell division and chromosome segregation are coordinated.

  16. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    checkpoints' which are known to regulate the eukaryotic cell cycle may be absent or altered in. E. histolytica. [Banerjee S, Das S and Lohia A 2002 Eukaryotic checkpoints are absent in the cell division cycle of Entamoeba histolytica; J. Biosci. (Suppl.

  17. Process for control of cell division

    Science.gov (United States)

    Cone, C. D., Jr. (Inventor)

    1977-01-01

    A method of controlling mitosis of biological cells was developed, which involved inducing a change in the intracellular ionic hierarchy accompanying the cellular electrical transmembrane potential difference (Esubm) of the cells. The ionic hierarchy may be varied by imposing changes on the relative concentrations of Na(+), K(+) and Cl(-), or by directly imposing changes in the physical Esubm level across the cell surface.

  18. Endothelial cell division in angiogenic sprouts of differing cellular architecture

    OpenAIRE

    Aydogan, Vahap; Lenard, Anna; Denes, Alexandru Stefan; Sauteur, Loic; Belting, Heinz-Georg; Affolter, Markus

    2015-01-01

    ABSTRACT The vasculature of the zebrafish trunk is composed of tubes with different cellular architectures. Unicellular tubes form their lumen through membrane invagination and transcellular cell hollowing, whereas multicellular vessels become lumenized through a chord hollowing process. Endothelial cell proliferation is essential for the subsequent growth and maturation of the blood vessels. However, how cell division, lumen formation and cell rearrangement are coordinated during angiogenic ...

  19. Indole prevents Escherichia coli cell division by modulating membrane potential

    Science.gov (United States)

    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane. PMID:22387460

  20. Contour Detection of Leukocyte Cell Nucleus Using Morphological Image

    Science.gov (United States)

    Supriyanti, R.; Satrio, G. P.; Ramadhani, Y.; Siswandari, W.

    2017-04-01

    Leukocytes are blood cells that do not contain color pigments. Leukocyte function to the tool body’s defenses. Abnormal forms of leukocytes can be a sign of serious diseases such example is leukemia. Most laboratories still use cell morphology examination to assist the diagnosis of illness associated with white blood cells such example is leukemia because of limited resources, both infrastructure, and human resources as happens in developing nations, such as Indonesia. This examination is less expensive and quicker process. However, morphological review requires the expertise of a specialist clinical pathology were limited. This process is sometimes less valid cause in some cases trying to differentiate morphology blast cells into the type of myoblasts, lymphoblast, monoblast, or erythroblast thus potentially misdiagnosis. The goal of this research is to develop a detection device types of blood cells automatically as lower-priced, easy to use and accurate so that the tool can be distributed across all units in existing health services throughout Indonesia and in particular for remote areas. However, because the variables used in the identification of abnormal leukocytes are very complex, in this paper, we emphasize on the contour detection of leukocyte cell nucleus using the morphological image. The results show that this method is promising for further development.

  1. Memorizing Shape to Orient Cell Division.

    Science.gov (United States)

    Michel, Marcus; Dahmann, Christian

    2016-03-21

    A century ago, Oscar Hertwig discovered that cells orient their cleavage plane orthogonal to their long axis. Reporting recently in Nature, Bosveld et al. (2016) shed light on how, showing that NuMA/Mud localization at tricellular junctions provides mitotic cells with the memory of interphase shape used to orient cleavage plane. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Stimulatory Effect of Notochordal-Cell Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan; Doeselaar, Marina van; Meij, Björn; Tryfonidou, M; Ito, Keita

    2015-01-01

    OBJECTIVES: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP)

  3. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture

    NARCIS (Netherlands)

    de Vries, Stefan A H; van Doeselaar, Marina; Meij, Björn P; Tryfonidou, Marianna A; Ito, K

    2016-01-01

    Objectives: Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP)

  4. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans

    OpenAIRE

    1987-01-01

    The establishment of cell division axes was examined in the early embryonic divisions of Caenorhabditis elegans. It has been shown previously that there are two different patterns of cleavage during early embryogenesis. In one set of cells, which undergo predominantly determinative divisions, the division axes are established successively in the same orientation, while division axes in the other set, which divide mainly proliferatively, have an orthogonal pattern of division. We have investig...

  5. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  6. Balanced transcription of cell division genes in Bacillus subtilis as revealed by single cell analysis

    NARCIS (Netherlands)

    Trip, Erik Nico; Veening, Jan-Willem; Stewart, Eric J.; Errington, Jeff; Scheffers, Dirk-Jan

    2013-01-01

    Cell division in bacteria is carried out by a set of conserved proteins that all have to function at the correct place and time. A cell cycle-dependent transcriptional programme drives cell division in bacteria such as Caulobacter crescentus. Whether such a programme exists in the Gram-positive

  7. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    in the green alga Tetraselmis indica. Supplementary figure 1. Light micrograph of an asymmetrically dividing T. indica cell at various time intervals. Progress over a 12 hr period, showing that the larger component does not undergo further division. (A) 0 h, cell division at an early stage. (B) 5 h, lower half of cell undergoing ...

  8. Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors.

    Science.gov (United States)

    Nakashima, Kie; Umeshima, Hiroki; Kengaku, Mineko

    2015-06-01

    Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma. However, the details and mechanisms underlying neurogenesis from GCPs are not well understood. Using long-term live-cell imaging of proliferating GCPs transfected with a fluorescent newborn-granule cell marker, we found that GCPs underwent predominantly symmetric divisions, generating two GCPs or two neurons, while asymmetric divisions generating a GCP and a neuron were only occasionally observed, in both dissociated culture and within tissues of isolated cerebellar lobules. We found no significant difference in cell cycle length between proliferative and neurogenic divisions, or any consistent changes in cell cycle length during repeated proliferative division. Unlike neural stem cells in the cerebral cortex and spinal cord, which generate many neurons by repeated asymmetric division, cerebellar GCPs produce neurons predominantly by terminal symmetric division. These results indicate diverse mechanisms of neurogenesis in the mammalian brain. © 2015 Wiley Periodicals, Inc.

  9. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  10. Regulation of cell division in higher plants. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, T.W.

    1992-07-01

    Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant`s essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.

  11. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    exhibited a synthetic sick phenotype and aberrant cell divisions. The crystal structure showed that ZapB exists as a dimer that is 100% coiled-coil. In vitro, ZapB self-assembled into long filaments and bundles. These results raise the possibility that ZapB stimulates Z ring formation directly via its...

  12. Asymmetric cell division of stem cells in the lung and other systems

    Directory of Open Access Journals (Sweden)

    Mohamed eBerika

    2014-07-01

    Full Text Available New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric versus symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division in the lung stem cells with other tissues in different organisms.

  13. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  14. Spatial and dynamic organization of molecular structures in the cell nucleus

    NARCIS (Netherlands)

    Brouwer, Anne-Kee

    2010-01-01

    In this thesis we attempt to provide a better understanding of the principles that underlie the spatial dynamic organization of the cell nucleus. Chapter 1 reviews the current status of knowledge about the structural and functional organization of the cell nucleus. In chapter 2, the development of a

  15. A Mutant Isoform of ObgE Causes Cell Death by Interfering with Cell Division

    Directory of Open Access Journals (Sweden)

    Liselot Dewachter

    2017-06-01

    Full Text Available Cell division is a vital part of the cell cycle that is fundamental to all life. Despite decades of intense investigation, this process is still incompletely understood. Previously, the essential GTPase ObgE, which plays a role in a myriad of basic cellular processes (such as initiation of DNA replication, chromosome segregation, and ribosome assembly, was proposed to act as a cell cycle checkpoint in Escherichia coli by licensing chromosome segregation. We here describe the effect of a mutant isoform of ObgE (ObgE∗ that causes cell death by irreversible arrest of the cell cycle at the stage of cell division. Notably, chromosome segregation is allowed to proceed normally in the presence of ObgE∗, after which cell division is blocked. Under conditions of rapid growth, ongoing cell cycles are completed before cell cycle arrest by ObgE∗ becomes effective. However, cell division defects caused by ObgE∗ then elicit lysis through formation of membrane blebs at aberrant division sites. Based on our results, and because ObgE was previously implicated in cell cycle regulation, we hypothesize that the mutation in ObgE∗ disrupts the normal role of ObgE in cell division. We discuss how ObgE∗ could reveal more about the intricate role of wild-type ObgE in division and cell cycle control. Moreover, since Obg is widely conserved and essential for viability, also in eukaryotes, our findings might be applicable to other organisms as well.

  16. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  17. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  18. Prothymosin alpha interacts with free core histones in the nucleus of dividing cells.

    Science.gov (United States)

    Covelo, Guillermo; Sarandeses, Concepción S; Díaz-Jullien, Cristina; Freire, Manuel

    2006-11-01

    The acidic protein prothymosin alpha (ProTalpha), with a broad presence in mammalian cells, has been widely considered to have a role in cell division, through an unrevealed mechanism in which histones may be involved in view of their ability to interact with ProTalpha in vitro. Results of co-immunoprecipitation experiments presented here demonstrate that ProTalpha interacts in vivo with core histones in proliferating B-lymphocytes (NC-37 cells). This interaction occurs with histones H3, H2A, H2B and H4 located free in the nucleoplasm, whereas no interaction was detected with histone H1, mono-nucleosome particles or chromatin. Moreover, the core histones form part of a nuclear multiprotein complex of about 700 kDa separated by ProTalpha-Sepharose affinity, with components including H3 and H4 acetyltranferases, H3 methyltransferases, hnRNP isotypes A3, A2/B1 and R, ATP-dependent and independent DNA helicases II, beta-actin and vimentin, all co-purifying by gel filtration. This indicates that the interaction of ProTalpha with core histones in the nucleus may be related to the structural modification of histones H3 and H4, and hence to chromatin activity, raising the possibility that the other proteins in the nuclear complex may play a role in this process.

  19. The Cell Nucleus in Physiological and Experimentally Induced Hypometabolism

    Science.gov (United States)

    Malatesta, M.

    The main problem for manned space mission is, at present, represented by the mass penalty associated to the human presence. An efficient approach could be the induction of a hypometabolic stasis in the astronauts, thus drastically reducing the physical and psychological requirements of the crew. On the other hand, in the wild, a reduction in resource consumptions physiologi- cally occurs in certain animals which periodically enter hibernation, a hypometabolic state in which both the energy need and energy offer are kept at a minimum. During the last twelve years, we have been studying different tissues of hibernating dormice, with the aim of analyzing their features during the euthermia -hibernation-arousal cycle as well as getting insight into the mechanisms allowing adaptation to hypometabolism. We paid particular attention to the cell nucleus, as it is the site of chief metabolic functions, such as DNA replication and RNA transcription. Our observations revealed no significant modification in the basic features of cell nuclei during hibernation; however, the cell nuclei of hibernating dormice showed unusual nuclear bodies containing molecules involved in RNA pathways. Therefore, we supposed that they could represent storage/assembly sites of several factors for processing some RNA which could be slowly synthesised during hibernation and rapidly and abundantly released in early arousal in order to meet the increased metabolic needs of the cell. The nucleolus also underwent structural and molecular modifications during hibernation, maybe to continue important nucleolar functions, or, alternatively, permit a most efficient reactivation upon arousal. On the basis of the observations made in vivo , we recently tried to experimentally induce a reversible hypometabolic state in in vitro models, using cell lines derived from hibernating and non-hibernating species. By administering the synthetic opioid DADLE, we could significantly reduce both RNA transcrip- tion and

  20. Control of cell division and radiation injury in mouse skin

    International Nuclear Information System (INIS)

    Yamaguchi, Takeo

    1974-01-01

    The method for determining the inhibitors of cell division (chalone-adrenalin system) in the irradiated epidermis and blood was developed using the epidermis of mouse ear conch during the cure of wounds (in vivo), and the epidermis cultured for a long period (in vitro). The whole body was irradiated with 200KV, 20 mA x-rays of 96 R/min filtered by 0.5 mmCu + 0.5 mmAl. Chalone, which is a physiologically intrinsic substance to control the proliferation, inhibits the DNA synthesis. From changes in cell division with time, chalone in the epidermis is considered to inhibit each process from G 2 to M, from G 2 to S, from G 1 to S. Adrenalin is indispensable when epidermal chalone acts the inhibition of cell division. Chalone activities in the epidermis irradiated with almost lethal doses were decreased. Factors to inhibit the proliferation of the epidermis by the potentiation of chalone and adrenalin are present in sera of animals irradiated to x-rays. (Serizawa, K.)

  1. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  2. Polyplex exposure inhibits cell cycle, increases inflammatory response, and can cause protein expression without cell division.

    Science.gov (United States)

    Matz, Rebecca L; Erickson, Blake; Vaidyanathan, Sriram; Kukowska-Latallo, Jolanta F; Baker, James R; Orr, Bradford G; Banaszak Holl, Mark M

    2013-04-01

    We sought to evaluate the relationship between cell division and protein expression when using commercial poly(ethylenimine) (PEI)-based polyplexes. The membrane dye PKH26 was used to assess cell division, and cyan fluorescent protein (CFP) was used to monitor protein expression. When analyzed at the whole population level, a greater number of cells divided than expressed protein, regardless of the level of protein expression observed, giving apparent consistency with the hypothesis that protein expression requires cells to pass through mitosis in order for the transgene to overcome the nuclear membrane. However, when the polyplex-exposed population was evaluated for the amount of division in the protein-expressing subpopulation, it was observed that substantial amounts of expression had occurred in the absence of division. Indeed, in HeLa S3 cells, this represented the majority of expressing cells. Of interest, the doubling time for both cell lines was slowed by ~2-fold upon exposure to polyplexes. This change was not altered by the origin of the plasmid DNA (pDNA) transgene promoter (cytomegalovirus (CMV) or elongation factor-1 alpha (EF1α)). Gene expression arrays in polyplex-exposed HeLa S3 cells showed upregulation of cell cycle arrest genes and downregulation of genes related to mitosis. Chemokine, interleukin, and toll-like receptor genes were also upregulated, suggesting activation of proinflammatory pathways. In summary, we find evidence that a cell division-independent expression pathway exists, and that polyplex exposure slows cell division and increases inflammatory response.

  3. Asymmetric cell division in plants: mechanisms of symmetry breaking and cell fate determination.

    Science.gov (United States)

    Pillitteri, Lynn Jo; Guo, Xiaoyu; Dong, Juan

    2016-11-01

    Asymmetric cell division is a fundamental mechanism that generates cell diversity while maintaining self-renewing stem cell populations in multicellular organisms. Both intrinsic and extrinsic mechanisms underpin symmetry breaking and differential daughter cell fate determination in animals and plants. The emerging picture suggests that plants deal with the problem of symmetry breaking using unique cell polarity proteins, mobile transcription factors, and cell wall components to influence asymmetric divisions and cell fate. There is a clear role for altered auxin distribution and signaling in distinguishing two daughter cells and an emerging role for epigenetic modifications through chromatin remodelers and DNA methylation in plant cell differentiation. The importance of asymmetric cell division in determining final plant form provides the impetus for its study in the areas of both basic and applied science.

  4. Primary radiation damage and disturbance in cell divisions

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Lee, Yun-Jong; Kim, Jae-Hun; Petin, Vladislav G.; Nili, Mohammad

    2008-01-01

    Survived cells from a homogeneous population exposed to ionizing radiation form various colonies of different sizes and morphology on a solid nutrient medium, which appear at different time intervals after irradiation. Such a phenomenon agrees well with the modern theory of microdosimetry and classical hit-and-target models of radiobiology. According to the hit-principle, individual cells exposed to the same dose of radiation are damaged in different manners. It means that the survived cells can differ in the content of sublethal damage (hits) produced by the energy absorbed into the cell and which is not enough to give rise to effective radiation damage which is responsible for cell killing or inactivation. In diploid yeast cells, the growth rate of cells from 250 colonies of various sizes appeared at different time intervals after irradiation with 600 Gy of gamma radiation from a 60 Co isotopic source was analyzed. The survival rate after irradiation was 20%. Based on the analyses results, it was possible to categorize the clones grown from irradiated cells according to the number of sub-lesions from 1 to 4. The clones with various numbers of sub-lesions were shown to be different in their viability, radiosensitivity, sensitivity to environmental conditions, and the frequency of recombination and respiratory deficient mutations. Cells from unstable clones exhibited an enhanced radiosensitivity, and an increased portion of morphologically changed cells, nonviable cells and respiration mutants, as well. The degree of expression of the foregoing effects was higher if the number of primary sublethal lesions was greater in the originally irradiated cell. Disturbance in cell division can be characterized by cell inactivation or incorrect distribution of mitochondria between daughter cells. Thus, the suggested methodology of identification of cells with a definite number of primary sublethal lesions will promote further elucidation of the nature of primary radiation

  5. Correlation between cationic lipid-based transfection and cell division.

    Science.gov (United States)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. Copyright © 2016. Published by Elsevier Inc.

  6. Connecting the dots of the bacterial cell cycle: Coordinating chromosome replication and segregation with cell division.

    Science.gov (United States)

    Hajduk, Isabella V; Rodrigues, Christopher D A; Harry, Elizabeth J

    2016-05-01

    Proper division site selection is crucial for the survival of all organisms. What still eludes us is how bacteria position their division site with high precision, and in tight coordination with chromosome replication and segregation. Until recently, the general belief, at least in the model organisms Bacillus subtilis and Escherichia coli, was that spatial regulation of division comes about by the combined negative regulatory mechanisms of the Min system and nucleoid occlusion. However, as we review here, these two systems cannot be solely responsible for division site selection and we highlight additional regulatory mechanisms that are at play. In this review, we put forward evidence of how chromosome replication and segregation may have direct links with cell division in these bacteria and the benefit of recent advances in chromosome conformation capture techniques in providing important information about how these three processes mechanistically work together to achieve accurate generation of progenitor cells. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Huntingtin Regulates Mammary Stem Cell Division and Differentiation

    Directory of Open Access Journals (Sweden)

    Salah Elias

    2014-04-01

    Full Text Available Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington’s disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties.

  8. Dido3 PHD Modulates Cell Differentiation and Division

    Directory of Open Access Journals (Sweden)

    Jovylyn Gatchalian

    2013-07-01

    Full Text Available Death Inducer Obliterator 3 (Dido3 is implicated in the maintenance of stem cell genomic stability and tumorigenesis. Here, we show that Dido3 regulates the expression of stemness genes in embryonic stem cells through its plant homeodomain (PHD finger. Binding of Dido3 PHD to histone H3K4me3 is disrupted by threonine phosphorylation that triggers Dido3 translocation from chromatin to the mitotic spindle. The crystal structure of Dido3 PHD in complex with H3K4me3 reveals an atypical aromatic-cage-like binding site that contains a histidine residue. Biochemical, structural, and mutational analyses of the binding mechanism identified the determinants of specificity and affinity and explained the inability of homologous PHF3 to bind H3K4me3. Together, our findings reveal a link between the transcriptional control in embryonic development and regulation of cell division.

  9. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  10. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Høst, Thomas; Hay-Schmidt, Anders

    2017-01-01

    division (ACD) from the 1st to the 4th cell cycle. ACDs were distinguished as failed cell divisions and multi-cell divisions. ACDs were recognized in 37.0% (no. 88/238) of good morphology blastocysts that were vitrified-warmed and transferred in our clinic. Good morphology blastocysts with ACDs showed...... a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd......: 18.5%; 4th: 18.1%). More blastocysts presented failed cell divisions (no. 95) than multi-cell divisions (no. 14). Live births were achieved from blastocysts showing multi-cell divisions at any cell cycle and failed cell divisions from the 2nd cell cycle. Analyses of the subgroup of first blastocyst...

  11. NuMA in rat testis--evidence for roles in proliferative activity and meiotic cell division.

    Science.gov (United States)

    Taimen, Pekka; Parvinen, Martti; Osborn, Mary; Kallajoki, Markku

    2004-08-15

    NuMA is a well-characterized organizer of the mitotic spindle, which is believed to play a structural role in interphase nucleus. We studied the expression of NuMA in rat seminiferous epithelium in detail. Different stages of the cycle of the seminiferous epithelium were identified using transillumination. Corresponding areas were microdissected and analysed using immunofluorescence, immunohistochemistry, or immunoblotting. NuMA was expressed in Sertoli cells, proliferating type A and B spermatogonia, and early spermatids but it was absent in late spermatids and mature spermatozoa. Interestingly, NuMA-positive primary spermatocytes lost their nuclear NuMA at the beginning of long-lasting prophase of the first meiotic division. A strong expression was again observed at the end of the prophase and finally, a redistribution of NuMA into pole regions of the meiotic spindle was observed in first and second meiotic divisions. In immunoblotting, a single 250-kDa protein present in all stages of the rat seminiferous epithelial cycle was detected. Our results show that NuMA is not essential for the organization of nuclear structure in all cell types and suggest that its presence is more likely connected to the proliferation phase of the cells. They also suggest that NuMA may play an important role in meiotic cell division.

  12. Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division.

    Science.gov (United States)

    Grob, Alice; McStay, Brian

    2014-01-01

    The cell nucleus is functionally compartmentalized into numerous membraneless and dynamic, yet defined, bodies. The cell cycle inheritance of these nuclear bodies (NBs) is poorly understood at the molecular level. In higher eukaryotes, their propagation is challenged by cell division through an "open" mitosis, where the nuclear envelope disassembles along with most NBs. A deeper understanding of the mechanisms involved can be achieved using the engineering principles of synthetic biology to construct artificial NBs. Successful biogenesis of such synthetic NBs demonstrates knowledge of the basic mechanisms involved. Application of this approach to the nucleolus, a paradigm of nuclear organization, has highlighted a key role for mitotic bookmarking in the cell cycle propagation of NBs.

  13. Regulation of cell division in higher plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  14. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies.

    Science.gov (United States)

    Hlavová, Monika; Vítová, Milada; Bišová, Kateřina

    2016-01-01

    A synchronous population of cells is one of the prerequisites for studying cell cycle processes such as DNA replication, nuclear and cellular division. Green algae dividing by multiple fission represent a unique single cell system enabling the preparation of highly synchronous cultures by application of a light-dark regime similar to what they experience in nature. This chapter provides detailed protocols for synchronization of different algal species by alternating light-dark cycles; all critical points are discussed extensively. Moreover, detailed information on basic analysis of cell cycle progression in such cultures is presented, including analyses of nuclear, cellular, and chloroplast divisions. Modifications of basic protocols that enable changes in cell cycle progression are also suggested so that nuclear or chloroplast divisions can be followed separately.

  15. Asymmetric cell division and its role in cell fate determination

    Indian Academy of Sciences (India)

    The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first green alga, the `ancestral green flagellate'. Relatively large-celled unicellular ...

  16. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells.

    Science.gov (United States)

    Shang, Guanning; Ma, Xu; Lv, Gang

    2018-01-01

    Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.

  17. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions.

    Science.gov (United States)

    Azzarello, Antonino; Hoest, Thomas; Hay-Schmidt, Anders; Mikkelsen, Anne Lis

    2017-06-01

    This study included 238 good morphology blastocysts, which were transferred after vitrification-warming to 152 women by single blastocyst transfer in Holbæk Fertility Clinic, Denmark. Time-lapse recordings of transferred good morphology blastocysts were reassessed to recognize every abnormal cell division (ACD) from the 1st to the 4th cell cycle. ACDs were distinguished as failed cell divisions and multi-cell divisions. ACDs were recognized in 37.0% (no. 88/238) of good morphology blastocysts that were vitrified-warmed and transferred in our clinic. Good morphology blastocysts with ACDs showed a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd: 18.5%; 4th: 18.1%). More blastocysts presented failed cell divisions (no. 95) than multi-cell divisions (no. 14). Live births were achieved from blastocysts showing multi-cell divisions at any cell cycle and failed cell divisions from the 2nd cell cycle. Analyses of the subgroup of first blastocyst transferred to each patient showed similar to results. In conclusion, good morphology blastocysts presenting ACDs can result in live birth although lower compared to blastocysts with solely regular cell division. Pre-implantation embryos in vitro may undergo self-selection or correcting processes. This supports the transfer of blastocysts instead of cleavage stage embryos, giving first priority to blastocyst showing solely regular cell divisions, and giving second priority to blastocysts presenting ACDs at any cell cycle. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. Tools for visualization of phosphoinositides in the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Kalasová, Ilona; Fáberová, Veronika; Kalendová, Alžběta; Uličná, Lívia; Yildirim, Sukriye; Venit, Tomáš; Hozák, Pavel

    2016-01-01

    Roč. 145, č. 4 (2016), s. 485-496 ISSN 0948-6143 R&D Projects: GA ČR GA16-03403S; GA ČR GAP305/11/2232; GA MŠk(CZ) ED1.1.00/02.0109; GA CR GA16-03403S Grant - others:Human Frontier Science Program(FR) RGP0017/2013 Institutional support: RVO:68378050 Keywords : Nucleus * Phosphoinositides * PI(4,5)P2 * PI(4)P Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.553, year: 2016

  19. From HeLa cell division to infectious diarrhoea

    Energy Technology Data Exchange (ETDEWEB)

    Stephen, J.; Osborne, M.P.; Spencer, A.J.; Warley, A. (Univ. of Birmingham (England))

    1990-09-01

    Hela S3 cells were grown in suspension both randomly and, synchronously using hydroxyurea which blocks cells at the G1/S interface. Cryosections were prepared, freeze-dried and analyzed by X-ray microanalysis. As cells moved into S and through M phases (Na) and (Cl) increased; both returned to normal levels upon re-entering G1 phase. The Na/K ratio was 1:1 in G1 phase. Infection of HeLa S3 cells in G1 phase with vaccinia virus resulted in no change in intracellular (Na). Infection of neonatal mice with murine rotavirus was localized to villus tip enterocytes and gave rise to diarrhoea which was maximal at 72h post-infection (p.i.). Diarrhoea was preceded by ischemia of villi (18-42h p.i.) and villus shortening (maximal at 42h p.i.), and was also coincident with a dramatic regrowth of villi. At 48h p.i. a proliferative zone of electron lucent cells was observed in villus base regions. Cryosections of infected gut, taken before, during, and after infection, together with corresponding age-matched controls, were freeze-dried and analysed by X-ray microanalysis. At 48h p.i. electron lucent villus base cells were shown to be more hydrated, and, to contain higher levels of both Na and Cl and lower levels of P, S, K and Mg than corresponding control cells. These studies increase confidence in the use of X-ray microanalysis in studying biological systems, provide some insight into the process of cell division, and constitute the basis of a new concept of diarrhoeal secretion.27 references.

  20. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  1. Factors affecting daughter cells' arrangement during the early bacterial divisions.

    Directory of Open Access Journals (Sweden)

    Pin-Tzu Su

    Full Text Available On agar plates, daughter cells of Escherichia coli mutually slide and align side-by-side in parallel during the first round of binary fission. This phenomenon has been previously attributed to an elastic material that restricts apparently separated bacteria from being in string. We hypothesize that the interaction between bacteria and the underneath substratum may affect the arrangement of the daughter bacteria. To test this hypothesis, bacterial division on hyaluronic acid (HA gel, as an alternative substratum, was examined. Consistent with our proposition, the HA gel differs from agar by suppressing the typical side-by-side alignments to a rare population. Examination of bacterial surface molecules that may contribute to the daughter cells' arrangement yielded an observation that, with disrupted lpp, the E. coli daughter cells increasingly formed non-typical patterns, i.e. neither sliding side-by-side in parallel nor forming elongated strings. Therefore, our results suggest strongly that the early cell patterning is affected by multiple interaction factors. With oscillatory optical tweezers, we further demonstrated that the interaction force decreased in bacteria without Lpp, a result substantiating our notion that the side-by-side sliding phenomenon directly reflects the strength of in-situ interaction between bacteria and substratum.

  2. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells.

    Science.gov (United States)

    Tekari, Adel; Chan, Samantha C W; Sakai, Daisuke; Grad, Sibylle; Gantenbein, Benjamin

    2016-05-23

    The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.

  3. Temperature-induced labelling of Fluo-3 AM selectively yields brighter nucleus in adherent cells.

    Science.gov (United States)

    Meng, Guixian; Pan, Leiting; Li, Cunbo; Hu, Fen; Shi, Xuechen; Lee, Imshik; Drevenšek-Olenik, Irena; Zhang, Xinzheng; Xu, Jingjun

    2014-01-17

    Fluo-3 is widely used to study cell calcium. Two traditional approaches: (1) direct injection and (2) Fluo-3 acetoxymethyl ester (AM) loading, often bring conflicting results in cytoplasmic calcium ([Ca(2+)]c) and nuclear calcium ([Ca(2+)]n) imaging. AM loading usually yields a darker nucleus than in cytoplasm, while direct injection always induces a brighter nucleus which is more responsive to [Ca(2+)]n detection. In this work, we detailedly investigated the effects of loading and de-esterification temperatures on the fluorescence intensity of Fluo-3 in response to [Ca(2+)]n and [Ca(2+)]c in adherent cells, including osteoblast, HeLa and BV2 cells. Interestingly, it showed that fluorescence intensity of nucleus in osteoblast cells was about two times larger than that of cytoplasm when cells were loaded with Fluo-3 AM at 4 °C and allowed a subsequent step for de-esterification at 20 °C. Brighter nuclei were also acquired in HeLa and BV2 cells using the same experimental condition. Furthermore, loading time and adhesion quality of cells had effect on fluorescence intensity. Taken together, cold loading and room temperature de-esterification treatment of Fluo-3 AM selectively yielded brighter nucleus in adherent cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Role of the Nucleus as a Sensor of Cell Environment Topography.

    Science.gov (United States)

    Anselme, Karine; Wakhloo, Nayana Tusamda; Rougerie, Pablo; Pieuchot, Laurent

    2017-12-28

    The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Host Actin Polymerization Tunes the Cell Division Cycle of an Intracellular Pathogen

    Directory of Open Access Journals (Sweden)

    M. Sloan Siegrist

    2015-04-01

    Full Text Available Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.

  6. Chloroplast division checkpoint in eukaryotic algae

    Science.gov (United States)

    Sumiya, Nobuko; Fujiwara, Takayuki; Era, Atsuko; Miyagishima, Shin-ya

    2016-01-01

    Chloroplasts evolved from a cyanobacterial endosymbiont. It is believed that the synchronization of endosymbiotic and host cell division, as is commonly seen in existing algae, was a critical step in establishing the permanent organelle. Algal cells typically contain one or only a small number of chloroplasts that divide once per host cell cycle. This division is based partly on the S-phase–specific expression of nucleus-encoded proteins that constitute the chloroplast-division machinery. In this study, using the red alga Cyanidioschyzon merolae, we show that cell-cycle progression is arrested at the prophase when chloroplast division is blocked before the formation of the chloroplast-division machinery by the overexpression of Filamenting temperature-sensitive (Fts) Z2-1 (Fts72-1), but the cell cycle progresses when chloroplast division is blocked during division-site constriction by the overexpression of either FtsZ2-1 or a dominant-negative form of dynamin-related protein 5B (DRP5B). In the cells arrested in the prophase, the increase in the cyclin B level and the migration of cyclin-dependent kinase B (CDKB) were blocked. These results suggest that chloroplast division restricts host cell-cycle progression so that the cell cycle progresses to the metaphase only when chloroplast division has commenced. Thus, chloroplast division and host cell-cycle progression are synchronized by an interactive restriction that takes place between the nucleus and the chloroplast. In addition, we observed a similar pattern of cell-cycle arrest upon the blockage of chloroplast division in the glaucophyte alga Cyanophora paradoxa, raising the possibility that the chloroplast division checkpoint contributed to the establishment of the permanent organelle. PMID:27837024

  7. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  8. Cell division cycle 20 overexpression predicts poor prognosis for patients with lung adenocarcinoma.

    Science.gov (United States)

    Shi, Run; Sun, Qi; Sun, Jing; Wang, Xin; Xia, Wenjie; Dong, Gaochao; Wang, Anpeng; Jiang, Feng; Xu, Lin

    2017-03-01

    The cell division cycle 20, a key component of spindle assembly checkpoint, is an essential activator of the anaphase-promoting complex. Aberrant expression of cell division cycle 20 has been detected in various human cancers. However, its clinical significance has never been deeply investigated in non-small-cell lung cancer. By analyzing The Cancer Genome Atlas database and using some certain online databases, we validated overexpression of cell division cycle 20 in both messenger RNA and protein levels, explored its clinical significance, and evaluated the prognostic role of cell division cycle 20 in non-small-cell lung cancer. Cell division cycle 20 expression was significantly correlated with sex (p = 0.003), histological classification (p overexpression of cell division cycle 20 was significantly associated with bigger primary tumor size (p = 0.0023), higher MKI67 level (r = 0.7618, p Overexpression of cell division cycle 20 is associated with poor prognosis in lung adenocarcinoma patients, and its overexpression can also be used to identify high-risk groups. In conclusion, cell division cycle 20 might serve as a potential biomarker for lung adenocarcinoma patients.

  9. Cell division in Escherichia coli cultures monitored at single cell resolution

    Directory of Open Access Journals (Sweden)

    Luidalepp Hannes

    2008-04-01

    Full Text Available Abstract Background A fundamental characteristic of cells is the ability to divide. To date, most parameters of bacterial cultures, including cell division, have been measured as cell population averages, assuming that all bacteria divide at a uniform rate. Results We monitored the division of individual cells in Escherichia coli cultures during different growth phases. Our experiments are based on the dilution of green fluorescent protein (GFP upon cell division, monitored by flow cytometry. The results show that the vast majority of E. coli cells in exponentially growing cultures divided uniformly. In cultures that had been in stationary phase up to four days, no cell division was observed. However, upon dilution of stationary phase culture into fresh medium, two subpopulations of cells emerged: one that started dividing and another that did not. These populations were detectable by GFP dilution and displayed different side scatter parameters in flow cytometry. Further analysis showed that bacteria in the non-growing subpopulation were not dead, neither was the difference in growth capacity reducible to differences in stationary phase-specific gene expression since we observed uniform expression of several stress-related promoters. The presence of non-growing persisters, temporarily dormant bacteria that are tolerant to antibiotics, has previously been described within growing bacterial populations. Using the GFP dilution method combined with cell sorting, we showed that ampicillin lyses growing bacteria while non-growing bacteria retain viability and that some of them restart growth after the ampicillin is removed. Thus, our method enables persisters to be monitored even in liquid cultures of wild type strains in which persister formation has low frequency. Conclusion In principle, the approaches developed here could be used to detect differences in cell division in response to different environmental conditions and in cultures of unicellular

  10. Formation of tRNA granules in the nucleus of heat-induced human cells

    International Nuclear Information System (INIS)

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-01-01

    Highlights: ► tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. ► tRNAs form the unique granules in the nucleus. ► tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA Met (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA Met was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  11. Segrosome complex formation during DNA trafficking in bacterial cell division

    Directory of Open Access Journals (Sweden)

    Maria A. Oliva

    2016-09-01

    Full Text Available Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialised partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  12. The three-dimensional organization of telomeres in the nucleus of mammalian cells

    Directory of Open Access Journals (Sweden)

    Perrin Mathilde

    2004-06-01

    Full Text Available Abstract Background The observation of multiple genetic markers in situ by optical microscopy and their relevance to the study of three-dimensional (3D chromosomal organization in the nucleus have been greatly developed in the last decade. These methods are important in cancer research because cancer is characterized by multiple alterations that affect the modulation of gene expression and the stability of the genome. It is, therefore, essential to analyze the 3D genome organization of the interphase nucleus in both normal and cancer cells. Results We describe a novel approach to study the distribution of all telomeres inside the nucleus of mammalian cells throughout the cell cycle. It is based on 3D telomere fluorescence in situ hybridization followed by quantitative analysis that determines the telomeres' distribution in the nucleus throughout the cell cycle. This method enables us to determine, for the first time, that telomere organization is cell-cycle dependent, with assembly of telomeres into a telomeric disk in the G2 phase. In tumor cells, the 3D telomere organization is distorted and aggregates are formed. Conclusions The results emphasize a non-random and dynamic 3D nuclear telomeric organization and its importance to genomic stability. Based on our findings, it appears possible to examine telomeric aggregates suggestive of genomic instability in individual interphase nuclei and tissues without the need to examine metaphases. Such new avenues of monitoring genomic instability could potentially impact on cancer biology, genetics, diagnostic innovations and surveillance of treatment response in medicine.

  13. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Kampinga, H.H.

    1989-01-01

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  14. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    Science.gov (United States)

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis.

  15. Influence of collagen type II and nucleus pulposus cells on aggregation and differentiation of adipose tissue-derived stem cells

    NARCIS (Netherlands)

    Lu, Z.F.; Zandieh Doulabi, B.; Wuisman, P.I.; Bank, R.A.; Helder, M.N.

    2008-01-01

    Tissue microenvironment plays a critical role in guiding local stem cell differentiation. Within the intervertebral disc, collagen type II and nucleus pulposus (NP) cells are two major components. This study aimed to investigate how collagen type II and NP cells affect adipose tissue-derived stem

  16. Mechanisms of Regulating Tissue Elongation in Drosophila Wing: Impact of Oriented Cell Divisions, Oriented Mechanical Forces, and Reduced Cell Size

    Science.gov (United States)

    Li, Yingzi; Naveed, Hammad; Kachalo, Sema; Xu, Lisa X.; Liang, Jie

    2014-01-01

    Regulation of cell growth and cell division plays fundamental roles in tissue morphogenesis. However, the mechanisms of regulating tissue elongation through cell growth and cell division are still not well understood. The wing imaginal disc of Drosophila provides a model system that has been widely used to study tissue morphogenesis. Here we use a recently developed two-dimensional cellular model to study the mechanisms of regulating tissue elongation in Drosophila wing. We simulate the effects of directional cues on tissue elongation. We also computationally analyze the role of reduced cell size. Our simulation results indicate that oriented cell divisions, oriented mechanical forces, and reduced cell size can all mediate tissue elongation, but they function differently. We show that oriented cell divisions and oriented mechanical forces act as directional cues during tissue elongation. Between these two directional cues, oriented mechanical forces have a stronger influence than oriented cell divisions. In addition, we raise the novel hypothesis that reduced cell size may significantly promote tissue elongation. We find that reduced cell size alone cannot drive tissue elongation. However, when combined with directional cues, such as oriented cell divisions or oriented mechanical forces, reduced cell size can significantly enhance tissue elongation in Drosophila wing. Furthermore, our simulation results suggest that reduced cell size has a short-term effect on cell topology by decreasing the frequency of hexagonal cells, which is consistent with experimental observations. Our simulation results suggest that cell divisions without cell growth play essential roles in tissue elongation. PMID:24504016

  17. Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review

    Science.gov (United States)

    Xing, Fuyong; Yang, Lin

    2016-01-01

    Digital pathology and microscopy image analysis is widely used for comprehensive studies of cell morphology or tissue structure. Manual assessment is labor intensive and prone to inter-observer variations. Computer-aided methods, which can significantly improve the objectivity and reproducibility, have attracted a great deal of interest in recent literatures. Among the pipeline of building a computer-aided diagnosis system, nucleus or cell detection and segmentation play a very important role to describe the molecular morphological information. In the past few decades, many efforts have been devoted to automated nucleus/cell detection and segmentation. In this review, we provide a comprehensive summary of the recent state-of-the-art nucleus/cell segmentation approaches on different types of microscopy images including bright-field, phase-contrast, differential interference contrast (DIC), fluorescence, and electron microscopies. In addition, we discuss the challenges for the current methods and the potential future work of nucleus/cell detection and segmentation. PMID:26742143

  18. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    Science.gov (United States)

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  19. Cell and plastid division are coordinated through the prereplication factor AtCDT1

    Science.gov (United States)

    Raynaud, Cécile; Perennes, Claudette; Reuzeau, Christophe; Catrice, Olivier; Brown, Spencer; Bergounioux, Catherine

    2005-01-01

    The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to alter both nuclear DNA replication and plastid division in Arabidopsis thaliana. These data constitute molecular evidence for relationships between the cell-cycle and plastid division. Moreover, the severe developmental defects observed in AtCDT1-RNA interference (RNAi) plants underline the importance of coordinated cell and organelle division for plant growth and morphogenesis. PMID:15928083

  20. Light can rescue auxin-dependent synchrony of cell division in a tobacco cell line

    Czech Academy of Sciences Publication Activity Database

    Qiao, F.; Petrášek, Jan; Nick, P.

    2010-01-01

    Roč. 61, č. 2 (2010), s. 503-510 ISSN 0022-0957 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin transport * cell division * NPA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.818, year: 2010 http://jxb.oxfordjournals.org/content/61/2/503.abstract

  1. Three-Dimensional Organization of Chromosome Territories and the Human Interphase Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1998-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte

  2. Three-Dimensional Organization of Chromosome Territories and the Human Cell Nucleus

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    1999-01-01

    textabstractTo study the three-dimensional organization of chromosome territories and the human interphase cell nucleus we developed models, which could be compared to experiments. Despite the successful linear sequencing of the human genome its 3D-organization is widely unknown. Using Monte

  3. The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation.

    Science.gov (United States)

    Mizukawa, Benjamin; O'Brien, Eric; Moreira, Daniel C; Wunderlich, Mark; Hochstetler, Cindy L; Duan, Xin; Liu, Wei; Orr, Emily; Grimes, H Leighton; Mulloy, James C; Zheng, Yi

    2017-09-14

    As a central regulator of cell polarity, the activity of CDC42 GTPase is tightly controlled in maintaining normal hematopoietic stem and progenitor cell (HSC/P) functions. We found that transformation of HSC/P to acute myeloid leukemia (AML) is associated with increased CDC42 expression and activity in leukemia cells. In a mouse model of AML, the loss of Cdc42 abrogates MLL-AF9 -induced AML development. Furthermore, genetic ablation of CDC42 in both murine and human MLL-AF9 (MA9) cells decreased survival and induced differentiation of the clonogenic leukemia-initiating cells. We show that MLL-AF9 leukemia cells maintain cell polarity in the context of elevated Cdc42-guanosine triphosphate activity, similar to nonmalignant, young HSC/Ps. The loss of Cdc42 resulted in a shift to depolarized AML cells that is associated with a decrease in the frequency of symmetric and asymmetric cell divisions producing daughter cells capable of self-renewal. Importantly, we demonstrate that inducible CDC42 suppression in primary human AML cells blocks leukemia progression in a xenograft model. Thus, CDC42 loss suppresses AML cell polarity and division asymmetry, and CDC42 constitutes a useful target to alter leukemia-initiating cell fate for differentiation therapy. © 2017 by The American Society of Hematology.

  4. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum.

    Directory of Open Access Journals (Sweden)

    Takahiro Ishikawa

    Full Text Available The cerebellum generates its vast amount of output to the cerebral cortex through the dentate nucleus (DN that is essential for precise limb movements in primates. Nuclear cells in DN generate burst activity prior to limb movement, and inactivation of DN results in cerebellar ataxia. The question is how DN cells become active under intensive inhibitory drive from Purkinje cells (PCs. There are two excitatory inputs to DN, mossy fiber and climbing fiber collaterals, but neither of them appears to have sufficient strength for generation of burst activity in DN. Therefore, we can assume two possible mechanisms: post-inhibitory rebound excitation and disinhibition. If rebound excitation works, phasic excitation of PCs and a concomitant inhibition of DN cells should precede the excitation of DN cells. On the other hand, if disinhibition plays a primary role, phasic suppression of PCs and activation of DN cells should be observed at the same timing. To examine these two hypotheses, we compared the activity patterns of PCs in the cerebrocerebellum and DN cells during step-tracking wrist movements in three Japanese monkeys. As a result, we found that the majority of wrist-movement-related PCs were suppressed prior to movement onset and the majority of wrist-movement-related DN cells showed concurrent burst activity without prior suppression. In a minority of PCs and DN cells, movement-related increases and decreases in activity, respectively, developed later. These activity patterns suggest that the initial burst activity in DN cells is generated by reduced inhibition from PCs, i.e., by disinhibition. Our results indicate that suppression of PCs, which has been considered secondary to facilitation, plays the primary role in generating outputs from DN. Our findings provide a new perspective on the mechanisms used by PCs to influence limb motor control and on the plastic changes that underlie motor learning in the cerebrocerebellum.

  5. Positive control of cell division : FtsZ is recruited by SsgB during sporulation of Streptomyces

    NARCIS (Netherlands)

    Willemse, J.; Borst, J.W.; Waal, de E.C.; Bisseling, T.; Wezel, van G.P.

    2011-01-01

    In bacteria that divide by binary fission, cell division starts with the polymerization of the tubulin homolog FtsZ at mid-cell to form a cell division scaffold (the Z ring), followed by recruitment of the other divisome components. The current view of bacterial cell division control starts from the

  6. Positive control of cell division: FtsZ is recruited by SsgB during sporulation of Streptomyces

    NARCIS (Netherlands)

    Willemse, J.; Borst, J.W.; Waal, de E.; Bisseling, T.; Wezel, van G.P.

    2011-01-01

    In bacteria that divide by binary fission, cell division starts with the polymerization of the tubulin homolog FtsZ at mid-cell to form a cell division scaffold (the Z ring), followed by recruitment of the other divisome components. The current view of bacterial cell division control starts from the

  7. Adequacy of herniated disc tissue as a cell source for nucleus pulposus regeneration.

    Science.gov (United States)

    Hegewald, Aldemar A; Endres, Michaela; Abbushi, Alexander; Cabraja, Mario; Woiciechowsky, Christian; Schmieder, Kirsten; Kaps, Christian; Thomé, Claudius

    2011-02-01

    The object of this study was to characterize the regenerative potential of cells isolated from herniated disc tissue obtained during microdiscectomy. The acquired data could help to evaluate the feasibility of these cells for autologous disc cell transplantation. From each of 5 patients (mean age 45 years), tissue from the nucleus pulposus compartment as well as from herniated disc was obtained separately during microdiscectomy of symptomatic herniated lumbar discs. Cells were isolated, and in vitro cell expansion for cells from herniated disc tissue was accomplished using human serum and fibroblast growth factor-2. For 3D culture, expanded cells were loaded in a fibrin-hyaluronan solution on polyglycolic acid scaffolds for 2 weeks. The formation of disc tissue was documented by histological staining of the extracellular matrix as well as by gene expression analysis of typical disc marker genes. Cells isolated from herniated disc tissue showed significant signs of dedifferentiation and degeneration in comparison with cells from tissue of the nucleus compartment. With in vitro cell expansion, further dedifferentiation with distinct suppression of major matrix molecules, such as aggrecan and Type II collagen, was observed. Unlike in previous reports of cells from the nucleus compartment, the cells from herniated disc tissue showed only a weak redifferentiation process in 3D culture. However, propidium iodide/fluorescein diacetate staining documented that 3D assembly of these cells in polyglycolic acid scaffolds allows prolonged culture and high viability. Study results suggested a very limited regenerative potential for cells harvested from herniated disc tissue. Further research on 2 major aspects in patient selection is suggested before conducting reasonable clinical trials in this matter: 1) diagnostic strategies to predict the regenerative potential of harvested cells at a radiological or cell biology level, and 2) clinical assessment strategies to elucidate the

  8. Raman spectroscopy for DNA quantification in cell nucleus.

    Science.gov (United States)

    Okotrub, K A; Surovtsev, N V; Semeshin, V F; Omelyanchuk, L V

    2015-01-01

    Here we demonstrate the feasibility of a novel approach to quantify DNA in cell nuclei. This approach is based on spectroscopy analysis of Raman light scattering, and avoids the problem of nonstoichiometric binding of dyes to DNA, as it directly measures the signal from DNA. Quantitative analysis of nuclear DNA contribution to Raman spectrum could be reliably performed using intensity of a phosphate mode at 1096 cm(-1) . When compared to the known DNA standards from cells of different animals, our results matched those values at error of 10%. We therefore suggest that this approach will be useful to expand the list of DNA standards, to properly adjust the duration of hydrolysis in Feulgen staining, to assay the applicability of fuchsines for DNA quantification, as well as to measure DNA content in cells with complex hydrolysis patterns, when Feulgen densitometry is inappropriate. © 2014 International Society for Advancement of Cytometry.

  9. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  10. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  11. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    OpenAIRE

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G.; Chin, Y. Eugene; Sun, Shouheng

    2008-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear locali...

  12. Phenotypic plasticity and effects of selection on cell division symmetry in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Uttara N Lele

    Full Text Available Aging has been demonstrated in unicellular organisms and is presumably due to asymmetric distribution of damaged proteins and other components during cell division. Whether the asymmetry-induced aging is inevitable or an adaptive and adaptable response is debated. Although asymmetric division leads to aging and death of some cells, it increases the effective growth rate of the population as shown by theoretical and empirical studies. Mathematical models predict on the other hand, that if the cells divide symmetrically, cellular aging may be delayed or absent, growth rate will be reduced but growth yield will increase at optimum repair rates. Therefore in nutritionally dilute (oligotrophic environments, where growth yield may be more critical for survival, symmetric division may get selected. These predictions have not been empirically tested so far. We report here that Escherichia coli grown in oligotrophic environments had greater morphological and functional symmetry in cell division. Both phenotypic plasticity and genetic selection appeared to shape cell division time asymmetry but plasticity was lost on prolonged selection. Lineages selected on high nutrient concentration showed greater frequency of presumably old or dead cells. Further, there was a negative correlation between cell division time asymmetry and growth yield but there was no significant correlation between asymmetry and growth rate. The results suggest that cellular aging driven by asymmetric division may not be hardwired but shows substantial plasticity as well as evolvability in response to the nutritional environment.

  13. HEK293 cells express dystrophin Dp71 with nucleus-specific localization of Dp71ab.

    Science.gov (United States)

    Nishida, Atsushi; Yasuno, Sato; Takeuchi, Atsuko; Awano, Hiroyuki; Lee, Tomoko; Niba, Emma Tabe Eko; Fujimoto, Takahiro; Itoh, Kyoko; Takeshima, Yasuhiro; Nishio, Hisahide; Matsuo, Masafumi

    2016-09-01

    The dystrophin gene consists of 79 exons and encodes tissue-specific isoforms. Mutations in the dystrophin gene cause Duchenne muscular dystrophy, of which a substantial proportion of cases are complicated by non-progressive mental retardation. Abnormalities of Dp71, an isoform transcribed from a promoter in intron 62, are a suspected cause of mental retardation. However, the roles of Dp71 in human brain have not been fully elucidated. Here, we characterized dystrophin in human HEK293 cells with the neuronal lineage. Reverse transcription-PCR amplification of the full-length dystrophin transcript revealed the absence of fragments covering the 5' part of the dystrophin cDNA. In contrast, fragments covering exons 64-79 were present. The Dp71 promoter-specific exon G1 was shown spliced to exon 63. We demonstrated that the Dp71 transcript comprised two subisoforms: one lacking exon 78 (Dp71b) and the other lacking both exons 71 and 78 (Dp71ab). Western blotting of cell lysates using an antibody against the dystrophin C-terminal region revealed two bands, corresponding to Dp71b and Dp71ab. Immunohistochemical examination with the dystrophin antibody revealed scattered punctate signals in the cytoplasm and the nucleus. Western blotting revealed one band corresponding to Dp71b in the cytoplasm and two bands corresponding to Dp71b and Dp71ab in the nucleus, with Dp71b being predominant. These results indicated that Dp71ab is a nucleus-specific subisoform. We concluded that Dp71, comprising Dp71b and Dp71ab, was expressed exclusively in HEK293 cells and that Dp71ab was specifically localized to the nucleus. Our findings suggest that Dp71ab in the nucleus contributes to the diverse functions of HEK293 cells.

  14. Division probability and division delay in diploid Syrian hamster cells following a range of X-ray doses

    International Nuclear Information System (INIS)

    Joshi, G.P.; Nelson, W.J.; Revell, S.H.; Shaw, C.A.

    1982-01-01

    The first mitotic division probability and division delay of Gl-irradiated Syrian hamster cells (BHK 21 Cl3/A) have been measured following a range of single X-ray doses from 0.2 to 3.8 Gy. Synchronous cell samples were obtained by mitotic selection (mitosis M 0 ) and the data were gathered from visual observations of living cells by methods described in previous papers. The probability of reaching mitosis M 1 remained close to unity in the control cell sample and over the whole dose range (mean > 0.99), and therefore earlier work in the literature showing that cells which lose their clonogenic capacity do so after M 1 and not before it was confirmed. The mean interphase O duration increased linearly with radiation dose, and the regression fit had a slope of 1.32 hours/Gy and a zero-dose value of 10.17 hours. The linear relationship also confirms earlier work, for instance, that based on time-lapse cinemicrography. (author)

  15. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  16. Dividing the Archaeal Way : The Ancient Cdv Cell-Division Machinery

    NARCIS (Netherlands)

    Caspi, Y.; Dekker, C.

    2018-01-01

    Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique

  17. Nonapical symmetric divisions underlie horizontal cell layer formation in the developing retina in vivo

    NARCIS (Netherlands)

    Godinho, Leanne; Williams, Philip R.; Claassen, Yvonne; Provost, Elayne; Leach, Steven D.; Kamermans, Maarten; Wong, Rachel O. L.

    2007-01-01

    Symmetric cell divisions have been proposed to rapidly increase neuronal number late in neurogenesis, but how critical this mode of division is to establishing a specific neuronal layer is unknown. Using in vivo time-lapse imaging methods, we discovered that in the laminated zebrafish retina, the

  18. In situ mechanical characterization of the cell nucleus by atomic force microscopy.

    Science.gov (United States)

    Liu, Haijiao; Wen, Jun; Xiao, Yun; Liu, Jun; Hopyan, Sevan; Radisic, Milica; Simmons, Craig A; Sun, Yu

    2014-04-22

    The study of nuclear mechanical properties can provide insights into nuclear dynamics and its role in cellular mechanotransduction. While several methods have been developed to characterize nuclear mechanical properties, direct intracellular probing of the nucleus in situ is challenging. Here, a modified AFM (atomic force microscopy) needle penetration technique is demonstrated to mechanically characterize cell nuclei in situ. Cytoplasmic and nuclear stiffness were determined based on two different segments on the AFM indentation curves and were correlated with simultaneous confocal Z-stack microscopy reconstructions. On the basis of direct intracellular measurement, we show that the isolated nuclei from fibroblast-like cells exhibited significantly lower Young's moduli than intact nuclei in situ. We also show that there is in situ nucleus softening in the highly metastatic bladder cancer cell line T24 when compared to its less metastatic counterpart RT4. This technique has potential to become a reliable quantitative measurement tool for intracellular mechanics studies.

  19. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-07

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications.

  20. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  1. Inter-chromosomal gene regulation in the mammalian cell nucleus.

    Science.gov (United States)

    de Laat, Wouter; Grosveld, Frank

    2007-10-01

    Cellular phenotypes can critically rely on mono-allelic gene expression. Recent studies suggest that in mammalian cells inter-chromosomal DNA interactions may mediate the decision which allele to activate and which to silence. Here, these findings are discussed in the context of knowledge on gene competition, chromatin dynamics, and nuclear organization. We argue that data obtained by 4C technology strongly support the idea that chromatin folds according to self-organizing principles. In this concept, the nuclear positioning of a given locus is probabilistic as it also depends on the properties of neighbouring DNA segments and, by extrapolation, the whole chromosome. The linear distribution of repetitive DNA sequences and of active and inactive DNA regions is important for the folding and relative positioning of chromosomes. This stochastic concept of nuclear organization predicts that tissue-specific interactions between two selected loci present on different chromosomes will be rare.

  2. Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated...

    DEFF Research Database (Denmark)

    Vrang, N.; Larsen, P.J.; Mikkelsen, J.D.

    1995-01-01

    Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry......Suprachiasmatic nucleus, paraventricular nucleus, circadian rhythms, phaseolus vulgaris-leucoagglutinin, corticotropin-releasing factor, dual immunocytochemistry...

  3. Patterns of cell division in the filamentous Desmidiaceae, close green algal relatives of land plants.

    Science.gov (United States)

    Hall, John D; McCourt, Richard M; Delwiche, Charles F

    2008-06-01

    Patterns of cell division and cross wall formation vary among the charophytes, green algae closely related to land plants. One group of charophytes, the conjugating green algae (Zygnematophyceae), is species-rich and is known to vary substantially in the mode of cell division, but the details of these cell division patterns and their phylogenetic distribution remain poorly understood. We studied cross wall development in filamentous Desmidiaceae (a clade of conjugating green algae) using differential interference contrast and fluorescence light microscopy. All strains investigated had centripetal encroachment of a septum, but with several different developmental patterns. In most cases, cell wall formation was delayed with respect to the Cosmarium-type of cell division, and the cross wall was modified considerably after deposition in a manner specific to the particular clade of filamentous desmids. These characteristics were mapped on a phylogeny estimated from a data set of two organellar genes, and the evolutionary implications of the character state distribution were evaluated. The data suggest a complex history of evolution of cell division in this lineage and also imply that Desmidium and Spondylosium are polyphyletic. These results indicate that many features of the cell shape are determined at the time of cell division in conjugating green algae.

  4. Imaging and quantification of amyloid fibrillation in the cell nucleus.

    Science.gov (United States)

    Arnhold, Florian; Scharf, Andrea; von Mikecz, Anna

    2015-01-01

    Xenobiotics, as well as intrinsic processes such as cellular aging, contribute to an environment that constantly challenges nuclear organization and function. While it becomes increasingly clear that proteasome-dependent proteolysis is a major player, the topology and molecular mechanisms of nuclear protein homeostasis remain largely unknown. We have shown previously that (1) proteasome-dependent protein degradation is organized in focal microenvironments throughout the nucleoplasm and (2) heavy metals as well as nanoparticles induce nuclear protein fibrillation with amyloid characteristics. Here, we describe methods to characterize the landscape of intranuclear amyloid on the global and local level in different systems such as cultures of mammalian cells and the soil nematode Caenorhabditis elegans. Application of discrete mathematics to imaging data is introduced as a tool to develop pattern recognition of intracellular protein fibrillation. Since stepwise fibrillation of otherwise soluble proteins to insoluble amyloid-like protein aggregates is a hallmark of neurodegenerative protein-misfolding disorders including Alzheimer's disease, CAG repeat diseases, and the prion encephalopathies, investigation of intracellular amyloid may likewise aid to a better understanding of the pathomechanisms involved. We consider aggregate profiling as an important experimental approach to determine if nuclear amyloid has toxic or protective roles in various disease processes.

  5. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    Mouse fibroblasts cultured on 7-μm-long vertical nanowires are reported on page 4006 by C. N. Prinz and co-workers. Culturing cells on this kind of substrate interferes greatly with cell function, causing the cells to develop into widely different morphologies. The cells' division is impaired...

  6. How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.

    Science.gov (United States)

    McKean, Heather R.; Gibson, Linda S.

    1989-01-01

    Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)

  7. Tumor-Initiating Label-Retaining Cancer Cells in Human Gastrointestinal Cancers Undergo Asymmetric Cell Division

    Science.gov (United States)

    Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak

    2012-01-01

    Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764

  8. Regulating the balance between symmetric and asymmetric stem cell division in the developing brain.

    Science.gov (United States)

    Egger, Boris; Gold, Katrina S; Brand, Andrea H

    2011-01-01

    Stem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts. The switch from neuroepithelial cells to neuroblasts is triggered by a proneural wave that sweeps across the neuroepithelium. Here we review recent findings showing that the orchestrated action of the Notch, EGFR, Fat-Hippo, and JAK/STAT signalling pathways controls the progression of the proneural wave and the sequential transition from symmetric to asymmetric division. The neuroepithelial to neuroblast transition in the optic lobe bears many similarities to the switch from neuroepithelial cell to radial glial cell in the developing mammalian cerebral cortex. The Notch signalling pathway has a similar role in the transition from proliferating to differentiating stem cell pools in the developing vertebrate retina and in the neural tube. Therefore, findings in the Drosophila optic lobe provide insights into the transitions between proliferative and differentiative division in the stem cell pools of higher organisms.

  9. A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae.

    Science.gov (United States)

    Bergé, Matthieu J; Mercy, Chryslène; Mortier-Barrière, Isabelle; VanNieuwenhze, Michael S; Brun, Yves V; Grangeasse, Christophe; Polard, Patrice; Campo, Nathalie

    2017-11-20

    Competence for genetic transformation is a differentiation program during which exogenous DNA is imported into the cell and integrated into the chromosome. In Streptococcus pneumoniae, competence develops transiently and synchronously in all cells during exponential phase, and is accompanied by a pause in growth. Here, we reveal that this pause is linked to the cell cycle. At least two parallel pathways impair peptidoglycan synthesis in competent cells. Single-cell analyses demonstrate that ComM, a membrane protein induced during competence, inhibits both initiation of cell division and final constriction of the cytokinetic ring. Competence also interferes with the activity of the serine/threonine kinase StkP, the central regulator of pneumococcal cell division. We further present evidence that the ComM-mediated delay in division preserves genomic integrity during transformation. We propose that cell division arrest is programmed in competent pneumococcal cells to ensure that transformation is complete before resumption of cell division, to provide this pathogen with the maximum potential for genetic diversity and adaptation.

  10. Protective effect of cannabidiol on hydrogen peroxide‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells.

    Science.gov (United States)

    Chen, Jie; Hou, Chen; Chen, Xin; Wang, Dong; Yang, Pinglin; He, Xijing; Zhou, Jinsong; Li, Haopeng

    2016-09-01

    Cannabidiol, a major component of marijuana, protects nerves, and exerts antispasmodic, anti-inflammatory and anti‑anxiety effects. In the current study, the protective effect of cannabidiol was observed to prevent hydrogen peroxide (H2O2)‑induced apoptosis, inflammation and oxidative stress in nucleus pulposus cells. Nucleus pulposus cells were isolated from rats and cultured in vitro, and H2O2 was used to construct the nucleus pulposus cell model. Cell viability of the nucleus pulposus cells was assessed using a 3‑(4,5-dimethylthiazol-2-yl)-2,5‑diphenyltetrazolium bromide assay. The ratio of apoptotic cells, and caspase‑3 or cyclooxygenase‑2 (COX‑2) mRNA expression was analyzed by annexin V‑fluorescein isothiocyanate/propidium‑iodide staining and reverse transcription‑quantitative polymerase chain reaction, respectively. The quantities of interleukin (IL)‑1β and interleukin‑6 were measured using a series of assay kits. B-cell lymphoma 2 (Bcl‑2) and inducible nitric oxide synthase (iNOS) protein expression levels were analyzed using western blotting. The present study identified that cannabidiol enhanced cell viability and reduced apoptosis in H2O2‑treated nucleus pulposus cells in vitro using a lumbar disc herniation (LDH) model. In addition, cannabidiol reduced caspase‑3 gene expression and augmented the Bcl‑2 protein expression levels in the nucleus pulposus cells following H2O2 exposure. Pre‑treatment with cannabidiol suppressed the promotion of COX‑2, iNOS, IL‑1β and IL‑6 expression in the nucleus pulposus cells following H2O2 exposure. Taken together, these results suggest that cannabidiol potentially exerts its protective effect on LDH via the suppression of anti‑apoptosis, anti‑inflammation and anti‑oxidative activities in nucleus pulposus cells.

  11. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Science.gov (United States)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  12. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  13. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells.

    Directory of Open Access Journals (Sweden)

    Min Wei

    Full Text Available In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1 virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5' leader and long 3' trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.

  14. Using stochastic cell division and death to probe minimal units of cellular replication

    Science.gov (United States)

    Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund

    2018-03-01

    The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.

  15. Lineage correlations of single cell division time as a probe of cell-cycle dynamics.

    Science.gov (United States)

    Sandler, Oded; Mizrahi, Sivan Pearl; Weiss, Noga; Agam, Oded; Simon, Itamar; Balaban, Nathalie Q

    2015-03-26

    Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment.

  16. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  17. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Directory of Open Access Journals (Sweden)

    Jordi van Gestel

    2015-04-01

    Full Text Available The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles" of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  18. Investigation of roles for LRR-RLKs PNL1 and PNL2 in asymmetric cell division in Arabidopsis thaliana

    OpenAIRE

    Rodriguez, Maiti Celina

    2008-01-01

    Asymmetric cell division is a vital component of plant development. It enables cell differentiation and cell diversity. A key component of asymmetric cell division is cell signaling. Signals are believed to control polarization and orientation of asymmetric divisions during stomatal development. The findings of this report suggest that PNL1 and PNL2, two LRR-RLKs found in Arabidopsis and closely related to maize PAN1 LRR-RLK, are possibly involved in the signaling events occurring during the ...

  19. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation

    DEFF Research Database (Denmark)

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N.; Svahn, Helene Andersson

    2017-01-01

    in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped...

  20. Understanding the role of asymmetric cell division in cancer using C. elegans.

    Science.gov (United States)

    Hyenne, Vincent; Chartier, Nicolas T; Labbé, Jean-Claude

    2010-05-01

    Asymmetric cell division is an important process to generate cell diversity and maintain tissue homeostasis. Recent evidence suggests that this process may also be crucial to prevent tumor formation. In the past 30 years, the embryo of the nematode Caenorhabditis elegans has proven to be a very powerful model to study the molecular and cellular basis of asymmetric cell division. Understanding this process in Caenorhabditis elegans may thus lead to a better understanding of stem cell function and tumorigenesis in humans. Copyright (c) 2010 Wiley-Liss, Inc.

  1. Host actin polymerization tunes the cell division cycle of an intracellular pathogen.

    Science.gov (United States)

    Siegrist, M Sloan; Aditham, Arjun K; Espaillat, Akbar; Cameron, Todd A; Whiteside, Sarah A; Cava, Felipe; Portnoy, Daniel A; Bertozzi, Carolyn R

    2015-04-28

    Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Characterization of harpy/Rca1/emi1 mutants: patterning in the absence of cell division.

    Science.gov (United States)

    Riley, Bruce B; Sweet, Elly M; Heck, Rebecca; Evans, Adrienne; McFarland, Karen N; Warga, Rachel M; Kane, Donald A

    2010-03-01

    We have characterized mutations in the early arrest gene, harpy (hrp), and show that they introduce premature stops in the coding region of early mitotic inhibitor1 (Rca1/emi1). In harpy mutants, cells stop dividing during early gastrulation. Lineage analysis confirms that there is little change in cell number after approximately cycle-14. Gross patterning occurs relatively normally, and many organ primordia are produced on time but with smaller numbers of cells. Despite the lack of cell division, some organ systems continue to increase in cell number, suggesting recruitment from surrounding areas. Analysis of bromodeoxyuridine incorporation shows that endoreduplication continues in many cells well past the first day of development, but cells cease endoreduplication once they begin to differentiate and express cell-type markers. Despite relatively normal gross patterning, harpy mutants show several defects in morphogenesis, cell migration and differentiation resulting directly or indirectly from the arrest of cell division. Copyright (c) 2010 Wiley-Liss, Inc.

  3. Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery.

    Science.gov (United States)

    Caspi, Yaron; Dekker, Cees

    2018-01-01

    Cell division in most prokaryotes is mediated by the well-studied fts genes, with FtsZ as the principal player. In many archaeal species, however, division is orchestrated differently. The Crenarchaeota phylum of archaea features the action of the three proteins, CdvABC. This Cdv system is a unique and less-well-studied division mechanism that merits closer inspection. In vivo , the three Cdv proteins form a composite band that contracts concomitantly with the septum formation. Of the three Cdv proteins, CdvA is the first to be recruited to the division site, while CdvB and CdvC are thought to participate in the active part of the Cdv division machinery. Interestingly, CdvB shares homology with a family of proteins from the eukaryotic ESCRT-III complex, and CdvC is a homolog of the eukaryotic Vps4 complex. These two eukaryotic complexes are key factors in the endosomal sorting complex required for transport (ESCRT) pathway, which is responsible for various budding processes in eukaryotic cells and which participates in the final stages of division in Metazoa. There, ESCRT-III forms a contractile machinery that actively cuts the membrane, whereas Vps4, which is an ATPase, is necessary for the turnover of the ESCRT membrane-abscission polymers. In contrast to CdvB and CdvC, CdvA is unique to the archaeal Crenarchaeota and Thaumarchaeota phyla. The Crenarchaeota division mechanism has often been suggested to represent a simplified version of the ESCRT division machinery thus providing a model system to study the evolution and mechanism of cell division in higher organisms. However, there are still many open questions regarding this parallelism and the division mechanism of Crenarchaeota. Here, we review the existing data on the role of the Cdv proteins in the division process of Crenarchaeota as well as concisely review the ESCRT system in eukaryotes. We survey the similarities and differences between the division and abscission mechanisms in the two cases. We suggest

  4. Daughter-cell-specific modulation of nuclear pore complexes controls cell cycle entry during asymmetric division.

    Science.gov (United States)

    Kumar, Arun; Sharma, Priyanka; Gomar-Alba, Mercè; Shcheprova, Zhanna; Daulny, Anne; Sanmartín, Trinidad; Matucci, Irene; Funaya, Charlotta; Beato, Miguel; Mendoza, Manuel

    2018-04-01

    The acquisition of cellular identity is coupled to changes in the nuclear periphery and nuclear pore complexes (NPCs). Whether and how these changes determine cell fate remain unclear. We have uncovered a mechanism that regulates NPC acetylation to direct cell fate after asymmetric division in budding yeast. The lysine deacetylase Hos3 associates specifically with daughter cell NPCs during mitosis to delay cell cycle entry (Start). Hos3-dependent deacetylation of nuclear basket and central channel nucleoporins establishes daughter-cell-specific nuclear accumulation of the transcriptional repressor Whi5 during anaphase and perinuclear silencing of the G1/S cyclin gene CLN2 in the following G1 phase. Hos3-dependent coordination of both events restrains Start in daughter, but not in mother, cells. We propose that deacetylation modulates transport-dependent and transport-independent functions of NPCs, leading to differential cell cycle progression in mother and daughter cells. Similar mechanisms might regulate NPC functions in specific cell types and/or cell cycle stages in multicellular organisms.

  5. Afadin orients cell division to position the tubule lumen in developing renal tubules.

    Science.gov (United States)

    Gao, Lei; Yang, Zhufeng; Hiremath, Chitkale; Zimmerman, Susan E; Long, Blake; Brakeman, Paul R; Mostov, Keith E; Bryant, David M; Luby-Phelps, Katherine; Marciano, Denise K

    2017-10-01

    In many types of tubules, continuity of the lumen is paramount to tubular function, yet how tubules generate lumen continuity in vivo is not known. We recently found that the F-actin-binding protein afadin is required for lumen continuity in developing renal tubules, though its mechanism of action remains unknown. Here, we demonstrate that afadin is required for lumen continuity by orienting the mitotic spindle during cell division. Using an in vitro 3D cyst model, we find that afadin localizes to the cell cortex adjacent to the spindle poles and orients the mitotic spindle. In tubules, cell division may be oriented relative to two axes: longitudinal and apical-basal. Unexpectedly, in vivo examination of early-stage developing nephron tubules reveals that cell division is not oriented in the longitudinal (or planar-polarized) axis. However, cell division is oriented perpendicular to the apical-basal axis. Absence of afadin in vivo leads to misorientation of apical-basal cell division in nephron tubules. Together, these results support a model whereby afadin determines lumen placement by directing apical-basal spindle orientation, resulting in a continuous lumen and normal tubule morphogenesis. © 2017. Published by The Company of Biologists Ltd.

  6. Direct visualization of cell division using high-resolution imaging of M-phase of the cell cycle.

    Science.gov (United States)

    Hesse, Michael; Raulf, Alexandra; Pilz, Gregor-Alexander; Haberlandt, Christian; Klein, Alexandra M; Jabs, Ronald; Zaehres, Holm; Fügemann, Christopher J; Zimmermann, Katrin; Trebicka, Jonel; Welz, Armin; Pfeifer, Alexander; Röll, Wilhelm; Kotlikoff, Michael I; Steinhäuser, Christian; Götz, Magdalena; Schöler, Hans R; Fleischmann, Bernd K

    2012-01-01

    Current approaches to monitor and quantify cell division in live cells, and reliably distinguish between acytokinesis and endoreduplication, are limited and complicate determination of stem cell pool identities. Here we overcome these limitations by generating an in vivo reporter system using the scaffolding protein anillin fused to enhanced green fluorescent protein, to provide high spatiotemporal resolution of mitotic phase. This approach visualizes cytokinesis and midbody formation as hallmarks of expansion of stem and somatic cells, and enables distinction from cell cycle variations. High-resolution microscopy in embryonic heart and brain tissues of enhanced green fluorescent protein-anillin transgenic mice allows live monitoring of cell division and quantitation of cell cycle kinetics. Analysis of cell division in hearts post injury shows that border zone cardiomyocytes in the infarct respond with increasing ploidy, but not cell division. Thus, the enhanced green fluorescent protein-anillin system enables monitoring and measurement of cell division in vivo and markedly simplifies in vitro analysis in fixed cells.

  7. Mechanical response and buckling of a polymer simulation model of the cell nucleus

    Science.gov (United States)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.

  8. Kleptochloroplast Enlargement, Karyoklepty and the Distribution of the Cryptomonad Nucleus in Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae).

    Science.gov (United States)

    Onuma, Ryo; Horiguchi, Takeo

    2015-05-01

    The unarmoured freshwater dinoflagellate Nusuttodinium (= Gymnodinium) aeruginosum retains a cryptomonad-derived kleptochloroplast and nucleus, the former of which fills the bulk of its cell volume. The paucity of studies following morphological changes to the kleptochloroplast with time make it unclear how the kleptochloroplast enlarges and why the cell ultimately loses the cryptomonad nucleus. We observed, both at the light and electron microscope level, morphological changes to the kleptochloroplast incurred by the enlargement process under culture conditions. The distribution of the cryptomonad nucleus after host cell division was also investigated. The volume of the kleptochloroplast increased more than 20-fold, within 120h of ingestion of the cryptomonad. Host cell division was not preceded by cryptomonad karyokinesis so that only one of the daughter cells inherited a cryptomonad nucleus. The fate of all daughter cells originating from a single cell through five generations was closely monitored, and this observation revealed that the cell that inherited the cryptomonad nucleus consistently possessed the largest kleptochloroplast for that generation. Therefore, this study suggests that some important cryptomonad nucleus division mechanism is lost during ingestion process, and that the cryptomonad nucleus carries important information for the enlargement of the kleptochloroplast. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division.

    Science.gov (United States)

    Dumont, Nicolas A; Wang, Yu Xin; von Maltzahn, Julia; Pasut, Alessandra; Bentzinger, C Florian; Brun, Caroline E; Rudnicki, Michael A

    2015-12-01

    Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.

  10. Influence of recipient cytoplasm cell stage on transcription in bovine nucleus transfer embryos

    DEFF Research Database (Denmark)

    Smith, S. D.; Soloy, E.; Kanka, J.

    1996-01-01

    Nucleus transfer for the production of multiple embryos derived from a donor embryo relies upon the reprogramming of the donor nucleus so that it behaves similar to a zygotic nucleus. One indication of nucleus reprogramming is the RNA synthetic activity. In normal bovine embryogenesis, the embryo...

  11. A Myc-dependent division timer complements a cell-death timer to regulate T cell and B cell responses.

    Science.gov (United States)

    Heinzel, Susanne; Binh Giang, Tran; Kan, Andrey; Marchingo, Julia M; Lye, Bryan K; Corcoran, Lynn M; Hodgkin, Philip D

    2017-01-01

    T lymphocytes and B lymphocytes integrate activating signals to control the size of their proliferative response. Here we report that such control was achieved by timed changes in the production rate of cell-cycle-regulating proto-oncoprotein Myc, with division cessation occurring when Myc levels fell below a critical threshold. The changing pattern of the level of Myc was not affected by cell division, which identified the regulating mechanism as a cell-intrinsic, heritable temporal controller. Overexpression of Myc in stimulated T cells and B cells did not sustain cell proliferation indefinitely, as a separate 'time-to-die' mechanism, also heritable, was programmed after lymphocyte activation and led to eventual cell loss. Together the two competing cell-intrinsic timed fates created the canonical T cell and B cell immune-response pattern of rapid growth followed by loss of most cells. Furthermore, small changes in these timed processes by regulatory signals, or by oncogenic transformation, acted in synergy to greatly enhance cell numbers over time.

  12. A Bistable Circuit Involving SCARECROW-RETINOBLASTOMA Integrates Cues to Inform Asymmetric Stem Cell Division

    Science.gov (United States)

    Cruz-Ramírez, Alfredo; Díaz-Triviño, Sara; Blilou, Ikram; Grieneisen, Verônica A.; Sozzani, Rosangela; Zamioudis, Christos; Miskolczi, Pál; Nieuwland, Jeroen; Benjamins, René; Dhonukshe, Pankaj; Caballero-Pérez, Juan; Horvath, Beatrix; Long, Yuchen; Mähönen, Ari Pekka; Zhang, Hongtao; Xu, Jian; Murray, James A.H.; Benfey, Philip N.; Bako, Laszlo; Marée, Athanasius F.M.; Scheres, Ben

    2012-01-01

    SUMMARY In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a “flip flop” that constrains asymmetric cell division to the stem cell region. PMID:22921914

  13. Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site

    NARCIS (Netherlands)

    Morales Angeles, Danae; Liu, Yun; Hartman, Alwin M; Borisova, Marina; de Sousa Borges, Anabela; de Kok, Niels; Beilharz, Katrin; Veening, Jan-Willem; Mayer, Christoph; Hirsch, Anna K H; Scheffers, Dirk-Jan

    Peptidoglycan (PG), the major component of the bacterial cell wall, is one large macromolecule. To allow for the different curvatures of PG at cell poles and division sites, there must be local differences in PG architecture and eventually also chemistry. Here we report such local differences in the

  14. Is the Cell Nucleus a Necessary Component in Precise Temporal Patterning?

    Directory of Open Access Journals (Sweden)

    Jaroslav Albert

    Full Text Available One of the functions of the cell nucleus is to help regulate gene expression by controlling molecular traffic across the nuclear envelope. Here we investigate, via stochastic simulation, what effects, if any, does segregation of a system into the nuclear and cytoplasmic compartments have on the stochastic properties of a motif with a negative feedback. One of the effects of the nuclear barrier is to delay the nuclear protein concentration, allowing it to behave in a switch-like manner. We found that this delay, defined as the time for the nuclear protein concentration to reach a certain threshold, has an extremely narrow distribution. To show this, we considered two models. In the first one, the proteins could diffuse freely from cytoplasm to nucleus (simple model; and in the second one, the proteins required assistance from a special class of proteins called importins. For each model, we generated fifty parameter sets, chosen such that the temporal profiles they effectuated were very similar, and whose average threshold time was approximately 150 minutes. The standard deviation of the threshold times computed over one hundred realizations were found to be between 1.8 and 7.16 minutes across both models. To see whether a genetic motif in a prokaryotic cell can achieve this degree of precision, we also simulated five variations on the coherent feed-forward motif (CFFM, three of which contained a negative feedback. We found that the performance of these motifs was nowhere near as impressive as the one found in the eukaryotic cell; the best standard deviation was 6.6 minutes. We argue that the significance of these results, the fact and necessity of spatio-temporal precision in the developmental stages of eukaryotes, and the absence of such a precision in prokaryotes, all suggest that the nucleus has evolved, in part, under the selective pressure to achieve highly predictable phenotypes.

  15. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    Science.gov (United States)

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  16. Onuf's nucleus X

    DEFF Research Database (Denmark)

    Schrøder, H D

    1981-01-01

    in the length of the nucleus was observed. Based on the cytoarchitecture the nucleus could be divided in three parts, a cranial, a dorsomedial and a ventrolateral. All parts of the nucleus consisted of chromatin-rich medium-sized neurons, and apparent direct appositions between different cells bodies as well...

  17. Folded genome as a platform for the functional compartmentalization of the eukaryotic cell nucleus

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2014-03-01

    Full Text Available In a number of recent studies a tight interconnection between the spatial organization of the eukaryotic genome and its functioning has been demonstrated. Moreover, it is becoming evident that the folded DNA by itself consti- tutes an important, if not the key, factor supporting the internal nuclear organization. In this review, we will discuss the current state of chromatin research with the special attention focused on chromosome territories, chromatin folding and dynamics, chromatin domains, transcription and replication factories. Based on this analysis we will show how interphase chromosomes define the assembly of different nuclear compartments and underlie the spatial compartmentalization of the cell nucleus.

  18. Evolutionary cell biology of division mode in the bacterial Planctomycetes-Verrucomicrobia-Chlamydiae superphylum

    Directory of Open Access Journals (Sweden)

    Elena Rivas-Marín

    2016-12-01

    Full Text Available Bacteria from the Planctomycetes, Verrucomicrobia and Chlamydiae (PVC superphylum are exceptions to the otherwise dominant mode of division by binary fission, which is based on the interaction between the FtsZ protein and the peptidoglycan (PG biosynthesis machinery. Some PVC bacteria are deprived of the FtsZ protein and were also thought to lack PG. How these bacteria divide is still one of the major mysteries of microbiology. The presence of PG has recently been revealed in Planctomycetes and Chlamydiae, and proteins related to PG synthesis have been shown to be implicated in the division process in Chlamydiae, providing important insights into PVC mechanisms of division. Here, we review the historical lack of observation of PG in PVC bacteria, its recent detection in two phyla and its involvement in chlamydial cell division. Based on the detection of PG-related proteins in PVC proteomes, we consider the possible evolution of the diverse division mechanisms in these bacteria. We conclude by summarizing what is known and what remains to be understood about the evolutionary cell biology of PVC division modes.

  19. Drosophila Sulf1 is required for the termination of intestinal stem cell division during regeneration.

    Science.gov (United States)

    Takemura, Masahiko; Nakato, Hiroshi

    2017-01-15

    Stem cell division is activated to trigger regeneration in response to tissue damage. The molecular mechanisms by which this stem cell mitotic activity is properly repressed at the end of regeneration are poorly understood. Here, we show that a specific modification of heparan sulfate is crucial for regulating Drosophila intestinal stem cell (ISC) division during normal midgut homeostasis and regeneration. Loss of the extracellular heparan sulfate endosulfatase Sulf1 resulted in increased ISC division during normal homeostasis, which was caused by upregulation of mitogenic signaling including the JAK-STAT, EGFR and Hedgehog pathways. Using a regeneration model, we found that ISCs failed to properly halt division at the termination stage in Sulf1 mutants, showing that Sulf1 is required for terminating ISC division at the end of regeneration. We propose that post-transcriptional regulation of mitogen signaling by heparan sulfate structural modifications provides a new regulatory step for precise temporal control of stem cell activity during regeneration. © 2017. Published by The Company of Biologists Ltd.

  20. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  1. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    Science.gov (United States)

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression

    Directory of Open Access Journals (Sweden)

    Zhenyu Wang

    2017-10-01

    Full Text Available Background/Aims: Mechanical load can regulate disc nucleus pulposus (NP biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Methods: Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively. Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. Results: The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II and NP cell markers (glypican-3, CAXII and keratin-19 compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. Conclusion: N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression.

  3. Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo.

    Science.gov (United States)

    Gurevich, David B; Nguyen, Phong Dang; Siegel, Ashley L; Ehrlich, Ophelia V; Sonntag, Carmen; Phan, Jennifer M N; Berger, Silke; Ratnayake, Dhanushika; Hersey, Lucy; Berger, Joachim; Verkade, Heather; Hall, Thomas E; Currie, Peter D

    2016-07-08

    Skeletal muscle is an example of a tissue that deploys a self-renewing stem cell, the satellite cell, to effect regeneration. Recent in vitro studies have highlighted a role for asymmetric divisions in renewing rare "immortal" stem cells and generating a clonal population of differentiation-competent myoblasts. However, this model currently lacks in vivo validation. We define a zebrafish muscle stem cell population analogous to the mammalian satellite cell and image the entire process of muscle regeneration from injury to fiber replacement in vivo. This analysis reveals complex interactions between satellite cells and both injured and uninjured fibers and provides in vivo evidence for the asymmetric division of satellite cells driving both self-renewal and regeneration via a clonally restricted progenitor pool. Copyright © 2016, American Association for the Advancement of Science.

  4. Evolution of the Min Protein Oscillation in E. coli Bacteria During Cell Growth and Division

    Science.gov (United States)

    Baylis, Benjamin; Giuliani, Maximiliano; Dutcher, John

    2014-03-01

    Cell division is a key step in the life of a bacterium. This process is carefully controlled and regulated so that the cellular machinery is equally partitioned into two daughter cells of equal size. In E. coli, this is accomplished, in part, by the Min protein system, in which Min proteins oscillate along the long axis of the rod-shaped cells. We have used high magnification, time-resolved fluorescence microscopy to characterize in detail the oscillation in E. coli cells in which the MinD proteins are tagged with green fluorescent protein (GFP). We have used a microfluidic device to confine the bacteria into microchannels that allows us to track the evolution of the oscillation in cells as they grow and divide in LB growth media. In particular, we have tracked the loss of synchrony between the oscillations in the daughter cells following cell division.

  5. Cell Division, a new open access online forum for and from the cell cycle community

    OpenAIRE

    Kaldis Philipp; Pagano Michele

    2006-01-01

    Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  6. Study of Cell Division Aberrations Induced by Some Silica Dusts in Mammalian Cells in Vitro.

    Science.gov (United States)

    Béna, F; Danière, M C; Terzetti, F; Poirot, O; Elias, Z

    2000-01-01

    Previously we observed that some crystalline and amorphous (diatomaceous earths) silicas (but not pyrogenic amorphous silica) induced morphological transformation of Syrian hamster embryo (SHE) cells. In order to explore the mechanisms of the silica-induced cell transformation, in this study we have examined the possibility that silica may cause genomic changes by interfering with the normal events of mitotic division. The SHE cells were exposed to transforming samples of Min-U-Sil 5 quartz and amorphous diatomite earth (DE) as well as to inactive amorphous synthetic Aerosil 0X50 at concentrations between 9 and 36 μg/cm(2) of culture slide. Effects on the mitotic spindle and on chromosome congression and segregation through the mitotic stages were concurrently examined by differential and indirect immunofluorescence stainings using anti-β-tubulin antibody. Min-U-Sil 5 and DE dusts induced a significant increase in the number of aberrant mitotic cells detected by differential staining. Increased frequencies of monopolar mitoses and scattered chromosomes as well as a small incidence of lagging chromosomes in DE-treated cells were observed. The immunostaining was more efficient in the detection of spindle disturbances. Min-U-Sil induced a significantly concentration-dependent increase of monopolar spindles. At the highest concentration, highly disorganized prophase spindles and prometaphase multipolars were observed. These damages caused a concentration-dependent decrease in metaphase to anaphase transition. DE-induced spindle aberrations did not reach significant levels over control, although increase in monopolar and multipolar spindles were recorded. Exposure to OX50 particles did not disrupt spindle integrity. To determine whether micronuclei (MN) arise from divisional abnormalities induced by the active samples, we performed in SHE and human bronchial epithelial cells kinetochore (K)-specific and centromere (C)-specific staining, respectively. A concentration

  7. Cocaine Exposure Reorganizes Cell-Type and Input-Specific Connectivity in the Nucleus Accumbens

    Science.gov (United States)

    MacAskill, Andrew F.; Cassel, John M.; Carter, Adam G.

    2014-01-01

    Exposure to cocaine alters the structural and functional properties of medium spiny neurons (MSNs) in the Nucleus Accumbens (NAc). These changes suggest a rewiring of the NAc circuit, with an enhancement of excitatory synaptic connections onto MSNs. However, it is unknown how drug exposure alters the balance of long-range afferents onto different cell types in the NAc. Here we use whole-cell recordings, two-photon microscopy, optogenetics and pharmacogenetics to show how repeated cocaine alters connectivity in the mouse NAc medial shell. We first determine that cocaine selectively enhances amygdala innervation of D1-MSNs relative to D2-MSNs. We then show that amygdala activity is required for cocaine-induced changes to behavior and connectivity. Finally, we establish how heightened amygdala innervation can explain the structural and functional changes induced by cocaine. Our findings reveal how exposure to drugs of abuse fundamentally reorganizes cell-type and input-specific connectivity in the NAc. PMID:25108911

  8. Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation

    Directory of Open Access Journals (Sweden)

    K Murai

    2010-01-01

    Full Text Available Although intervertebral disc herniation and associated sciatica is a common disease, its molecular pathogenesis is not well understood. Immune responses are thought to be involved. This study provides direct evidence that even non-degenerated nucleus pulposus (NP cells elicit immune responses. An in vitro colony forming inhibition assay demonstrated the suppressive effects of autologous spleen cells on NP cells and an in vitro cytotoxicity assay showed the positive cytotoxic effects of natural killer (NK cells and macrophages on NP cells. Non-degenerated rat NP tissues transplanted into wild type rats and immune-deficient mice demonstrated a significantly higher NP cell survival rate in immune-deficient mice. Immunohistochemical staining showed the presence of macrophages and NK cells in the transplanted NP tissues. These results suggest that even non-degenerated autologous NP cells are recognized by macrophages and NK cells, which may have an immunological function in the early phase of disc herniation. These findings contribute to understanding resorption and the inflammatory reaction to disc herniation.

  9. Blue Light Delays Commitment to Cell Division in Chlamydomonas Reinhardtii

    Czech Academy of Sciences Publication Activity Database

    Oldenhof, H.; Zachleder, Vilém; van den Ende, H.

    2004-01-01

    Roč. 6, - (2004), s. 689-695 ISSN 1435-8603 Institutional research plan: CEZ:AV0Z5020903 Keywords : Blue light * Cell cycle * Cell volume Subject RIV: EE - Microbiology, Virology Impact factor: 1.582, year: 2004

  10. Therapeutic potential of targeting cell division cycle associated 5 for oral squamous cell carcinoma.

    Science.gov (United States)

    Tokuzen, Norihiko; Nakashiro, Koh-ichi; Tanaka, Hiroshi; Iwamoto, Kazuki; Hamakawa, Hiroyuki

    2016-01-19

    Molecularly targeted drugs are used in the treatment of a variety of malignant tumors, but this approach to developing novel therapies for oral squamous cell carcinoma (OSCC) has lagged behind the progress seen for other cancers. We have attempted to find appropriate molecular targets for OSCC and identified cell division cycle associated 5 (CDCA5) as a cancer-related gene which was overexpressed in all the human OSCC cells tested by microarray analysis. In this study, we investigated the expression and function of CDCA5 in OSCC. First, we confirmed that CDCA5 was overexpressed in 4 human OSCC cell lines by quantitative RT-PCR and Western blotting. We then tested the effect of synthetic small interfering RNAs specific for CDCA5 on the growth and invasion of human OSCC cells. Knockdown of CDCA5 markedly inhibited the growth of OSCC cells in vitro and in vivo. We also examined the expression of CDCA5 protein in 80 cases of OSCC immunohistochemically and found a significant association between CDCA5 expression levels and overall survival. These results suggest that CDCA5 functions as a critical gene supporting OSCC progression and that targeting CDCA5 may be a useful therapeutic strategy for OSCC.

  11. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  12. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bugge

    2006-01-01

    , and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions......Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication...... and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype....

  13. A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus

    Science.gov (United States)

    Beaufay, François; Coppine, Jérôme; Mayard, Aurélie; Laloux, Géraldine; De Bolle, Xavier; Hallez, Régis

    2015-01-01

    Coupling cell cycle with nutrient availability is a crucial process for all living cells. But how bacteria control cell division according to metabolic supplies remains poorly understood. Here, we describe a molecular mechanism that coordinates central metabolism with cell division in the α-proteobacterium Caulobacter crescentus. This mechanism involves the NAD-dependent glutamate dehydrogenase GdhZ and the oxidoreductase-like KidO. While enzymatically active GdhZ directly interferes with FtsZ polymerization by stimulating its GTPase activity, KidO bound to NADH destabilizes lateral interactions between FtsZ protofilaments. Both GdhZ and KidO share the same regulatory network to concomitantly stimulate the rapid disassembly of the Z-ring, necessary for the subsequent release of progeny cells. Thus, this mechanism illustrates how proteins initially dedicated to metabolism coordinate cell cycle progression with nutrient availability. PMID:25953831

  14. Gaussian fluctuation of the diffusion exponent of virus capsid in a living cell nucleus

    Science.gov (United States)

    Itto, Yuichi

    2018-05-01

    In their work [4], Bosse et al. experimentally showed that virus capsid exhibits not only normal diffusion but also anomalous diffusion in nucleus of a living cell. There, it was found that the distribution of fluctuations of the diffusion exponent characterizing them takes the Gaussian form, which is, quite remarkably, the same form for two different types of the virus. This suggests high robustness of such fluctuations. Here, the statistical property of local fluctuations of the diffusion exponent of the virus capsid in the nucleus is studied. A maximum-entropy-principle approach (originally proposed for a different virus in a different cell) is applied for obtaining the fluctuation distribution of the exponent. Largeness of the number of blocks identified with local areas of interchromatin corrals is also examined based on the experimental data. It is shown that the Gaussian distribution of the local fluctuations can be derived, in accordance with the above form. In addition, it is quantified how the fluctuation distribution on a long time scale is different from the Gaussian distribution.

  15. Rules and Self-Organizing Properties of Post-embryonic Plant Organ Cell Division Patterns.

    Science.gov (United States)

    von Wangenheim, Daniel; Fangerau, Jens; Schmitz, Alexander; Smith, Richard S; Leitte, Heike; Stelzer, Ernst H K; Maizel, Alexis

    2016-02-22

    Plants form new organs with patterned tissue organization throughout their lifespan. It is unknown whether this robust post-embryonic organ formation results from stereotypic dynamic processes, in which the arrangement of cells follows rigid rules. Here, we combine modeling with empirical observations of whole-organ development to identify the principles governing lateral root formation in Arabidopsis. Lateral roots derive from a small pool of founder cells in which some take a dominant role as seen by lineage tracing. The first division of the founders is asymmetric, tightly regulated, and determines the formation of a layered structure. Whereas the pattern of subsequent cell divisions is not stereotypic between different samples, it is characterized by a regular switch in division plane orientation. This switch is also necessary for the appearance of patterned layers as a result of the apical growth of the primordium. Our data suggest that lateral root morphogenesis is based on a limited set of rules. They determine cell growth and division orientation. The organ-level coupling of the cell behavior ensures the emergence of the lateral root's characteristic features. We propose that self-organizing, non-deterministic modes of development account for the robustness of plant organ morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Phased cell division, specific division rates and other biological observations of Dinophysis populations in sub-surface layers off the south coast of Ireland

    Science.gov (United States)

    Farrell, Hazel; Velo-Suarez, Lourdes; Reguera, Beatriz; Raine, Robin

    2014-03-01

    The proportions of viable cells of Dinophysis spp. that were paired (dividing) and recently divided during a cell cycle were measured on populations of D. acuta and D. acuminata observed off the south coast of Ireland in July 2007 and July 2009. Both species exhibited phased cell division in 2009 with maximum frequency of division (fmax) 2 h after sunrise. Different patterns of division (timing of fmax) were shown by D. acuta in 2007, when the population aggregated in a thin layer was transported by a coastal jet flow. High resolution (decimetre-scale) profiles within the thin layer showed large differences in the vertical distribution of biological properties (feeding status, mortality). Values of the specific growth rate μ were compared to estimates derived in similar fashion from observations on Dinophysis populations elsewhere. Different patterns exhibited by the same species in different regions may be attributed to adaptations to latitudinal differences (length of photoperiod). The question of whether phased cell division always occurs in Dinophysis populations, and the incorporation of the potential specific division rate into models of Dinophysis growth are discussed. Comprehensive field data sets demonstrate the impact of the results on the coherence of Dinophysis populations during their transport along the Irish coast in jet-like flows towards sites of intensive shellfish culture.

  17. DNA precursor compartmentation in mammalian cells: distribution and rates of equilibration between nucleus and cytoplasm

    International Nuclear Information System (INIS)

    Leeds, J.M.

    1986-01-01

    A rapid nuclear isolation technique was adapted in order to examine the question of DNA precursor compartmentation in mammalian cells. By using this method a reproducible proportion of the cellular nucleotides remained associated with the isolated nuclei. Examination, at several different cell densities, of exponentially growing HeLa cells showed that the nuclei contained a constant but distinct proportion of each dNTP. The nuclear dATP and dTTP concentrations were equal at all densities examined even though the dTTP pool was 150% of the dATP whole-cell pool. The nuclear portion of the whole-cell pools was roughly equal to the volume occupied by the nucleus. The nuclear-cytoplasmic dNTP pool distribution did not change throughout the cell cycle of synchronized Chinese hamster ovary (CHO) cells. The rates at which either radiolabeled cytidine or deoxycytidine equilibrated with the nuclear and whole-cell dCTP pools of G1 and S phase CHO cells were compared. Experiments comparing the labeling kinetics of 3 H-thymidine in G1, S phase, and exponentially growing cells revealed that the S phase dTTP pool equilibrated with exogenously added thymidine faster than the G1 phase pool. The rate of equilibration in exponentially growing cells appeared to be a combination of that seen in G1 and S phases. A linear rate of 3 H-thymidine incorporation into DNA occurred at the same rate in S phase and exponentially growing cells

  18. Control of the meiotic cell division program in plants

    NARCIS (Netherlands)

    Wijnker, T.G.; Schnittger, A.

    2013-01-01

    While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in

  19. PPARα and the regulation of cell division and apoptosis

    International Nuclear Information System (INIS)

    Roberts, R.A.; Chevalier, S.; Hasmall, S.C.; James, N.H.; Cosulich, S.C.; Macdonald, N.

    2002-01-01

    Peroxisome proliferators (PPs) such as the hypolipidaemic drug, nafenopin and the phthalate plasticiser 2-diethylhexylphthalate induce rodent hepatocyte cell proliferation and suppress apoptosis leading to tumours. PPs act via the nuclear hormone receptor peroxisome proliferator activated receptor α (PPARα) which directly regulates genes implicated in the response to PPs such as the peroxisomal gene acyl CoA oxidase. As expected for xenobiotics that perturb proliferation, PPs alter expression of cell cycle regulatory proteins. However, the ability to alter expression of cyclins and cyclin-dependent kinases is shared by physiological hepatic mitogens such as epidermal growth factor and is thus unlikely to be specific to the PP-induced aberrant growth associated with hepatocarcinogenesis. Recent evidence suggests that the response of hepatocytes to PPs is not only dependent upon PPARα but also on the trophic environment provided by nonparenchymal cells and by cytokines such as tumour necrosis factor α. Additionally, the ability of PPs to suppress apoptosis and induce proliferation depends upon survival signalling mediated by p38 mitogen activated protein kinase. The cross talk between PPARα-mediated transcription, survival signalling and cell cycle will be discussed with particular emphasis on relevance to toxicology

  20. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    It has also been shown that although this organism contains sequence homologs of genes which are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equivalent function yet to be demonstrated in amoeba. The available information suggests that surveillance mechanisms ...

  1. Effect of anolyte on growth and division of Chinese hamster cancerous cells

    Directory of Open Access Journals (Sweden)

    saeed Mohammadzadeh

    2009-04-01

    Full Text Available Background: At present, cancer can be controlled by chemotherapy, but unfortunately, this method has strong side effects and scientist try to reduce them using different substances. 2 kinds of activated water called anolyte and catholyte have electrochemical property and antibacterial and oxidative properties respectively. The aim of this research is to study the effect of anolyte on growth and division of cancerous cells. Materials and Methods: In this research, different concentration of anolyte, 1 . 7, 2, 5,8.3 and 10 percent of anolyte and control with 2 and 5 percent of serum physiologic were added on converted cell of Chinese hamster (line b11dii-FAF28 clone 237 in 12 plastic and 15 glass flasks. After adding, converted cell was counted with the help of hoemocytometer and microscope. Data of experiment analyzed and results compared by t test, as well as using Excell software their diagrams were drawn. Results: The results indicated that anolyte had significant effect on cancer cells. In concentration of 1.7% cell division was decreased but in concentration of 8.3 %, division of cancerous cells was blocked and cells were fixed. Conclusion: Considering the low amount of sodium chloride in anolyte, it seems that, this solution (Anolyte hasn’t side effects and advers effect on the cells body.

  2. Building the perfect parasite: cell division in apicomplexa.

    Directory of Open Access Journals (Sweden)

    Boris Striepen

    2007-06-01

    Full Text Available Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.

  3. Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield.

    Science.gov (United States)

    Vivancos, Pedro Diaz; Dong, Yingping; Ziegler, Kerstin; Markovic, Jelena; Pallardó, Federico V; Pellny, Till K; Verrier, Paul J; Foyer, Christine H

    2010-12-01

    Cellular redox homeostasis and signalling are important in progression of the eukaryotic cell cycle. In animals, the low-molecular-weight thiol tripeptide glutathione (GSH) is recruited into the nucleus early in the cell proliferation cycle. To determine whether a similar process occurs in plants, we studied cell proliferation in Arabidopsis thaliana. We show that GSH co-localizes with nuclear DNA during the proliferation of A. thaliana cells in culture. Moreover, GSH localization in the nucleus was observed in dividing pericycle cells of the lateral root meristem. There was pronounced accumulation of GSH in the nucleus at points in the growth cycle at which a high percentage of the cells were in G(1) phase, as identified by flow cytometry and marker transcripts. Recruitment of GSH into the nucleus led to a high abundance of GSH in the nucleus (GSHn) and severe depletion of the cytoplasmic GSH pool (GSHc). Sequestration of GSH in the nucleus was accompanied by significant decreases in transcripts associated with oxidative signalling and stress tolerance, and an increase in the abundance of hydrogen peroxide, an effect that was enhanced when the dividing cells were treated with salicylic acid. Total cellular GSH and the abundance of GSH1 and GSH2 transcripts increased after the initial recruitment of GSH into the nucleus. We conclude that GSH recruitment into the nucleus during cell proliferation has a profound effect on the whole-cell redox state. High GSHn levels trigger redox adjustments in the cytoplasm, favouring decreased oxidative signalling and enhanced GSH synthesis. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  4. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity

    Science.gov (United States)

    Morin, Lawrence P.; Blanchard, Jane H.; Provencio, Ignacio

    2003-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) receives direct retinal input via the retinohypothalamic tract (RHT), and the retinal ganglion cells contributing to this projection may be specialized with respect to direct regulation of the circadian clock. However, some ganglion cells forming the RHT bifurcate, sending axon collaterals to the intergeniculate leaflet (IGL) through which light has secondary access to the circadian clock. The present studies provide a more extensive examination of ganglion cell bifurcation and evaluate whether ganglion cells projecting to several subcortical visual nuclei contain melanopsin, a putative ganglion cell photopigment. The results showed that retinal ganglion cells projecting to the SCN send collaterals to the IGL, olivary pretectal nucleus, and superior colliculus, among other places. Melanopsin-immunoreactive (IR) ganglion cells are present in the hamster retina, and some of these cells project to the SCN, IGL, olivary pretectal nucleus, or superior colliculus. Triple-label analysis showed that melanopsin-IR cells bifurcate and project bilaterally to each SCN, but not to the other visual nuclei evaluated. The melanopsin-IR cells have photoreceptive characteristics optimal for circadian rhythm regulation. However, the presence of moderately widespread bifurcation among ganglion cells projecting to the SCN, and projection by melanopsin-IR cells to locations distinct from the SCN and without known rhythm function, suggest that this ganglion cell type is generalized, rather than specialized, with respect to the conveyance of photic information to the brain. Copyright 2003 Wiley-Liss, Inc.

  5. EphB4 localises to the nucleus of prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mertens-Walker, Inga, E-mail: inga.mertenswalker@qut.edu.au [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia); Lisle, Jessica E. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia); Nyberg, William A. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Stephens, Carson R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia); Burke, Leslie [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Rutkowski, Raphael; Herington, Adrian C.; Stephenson, Sally-Anne [Institute of Health and Biomedical Innovation, Queensland University of Technology, Woolloongabba, QLD (Australia); Australian Prostate Cancer Research Centre—Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD (Australia)

    2015-04-10

    The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor. - Highlights: • The EphB4 protein can be found in the nucleus of prostate cancer cell lines. • EphB4 contains two functional nuclear localisation signals. • Chromatin immunoprecipitation has identified potential genome sequences to which EphB4 binds. • Lef1 is a confirmed target for EphB4-mediated gene regulation.

  6. EphB4 localises to the nucleus of prostate cancer cells

    International Nuclear Information System (INIS)

    Mertens-Walker, Inga; Lisle, Jessica E.; Nyberg, William A.; Stephens, Carson R.; Burke, Leslie; Rutkowski, Raphael; Herington, Adrian C.; Stephenson, Sally-Anne

    2015-01-01

    The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor. - Highlights: • The EphB4 protein can be found in the nucleus of prostate cancer cell lines. • EphB4 contains two functional nuclear localisation signals. • Chromatin immunoprecipitation has identified potential genome sequences to which EphB4 binds. • Lef1 is a confirmed target for EphB4-mediated gene regulation

  7. The Stimulatory Effect of Notochordal Cell-Conditioned Medium in a Nucleus Pulposus Explant Culture.

    Science.gov (United States)

    de Vries, Stefan A H; van Doeselaar, Marina; Meij, Björn P; Tryfonidou, Marianna A; Ito, Keita

    2016-01-01

    Notochordal cell-conditioned medium (NCCM) has previously shown to have a stimulatory effect on nucleus pulposus cells (NPCs) and bone marrow stromal cells (BMSCs) in alginate and pellet cultures. These culture methods provide a different environment than the nucleus pulposus (NP) tissue, in which the NCCM ultimately should exert its effect. The objective of this study is to test whether NCCM stimulates NPCs within their native environment, and whether combined stimulation with NCCM and addition of BMSCs has a synergistic effect on extracellular matrix production. Bovine NP tissue was cultured in an artificial annulus in base medium (BM), porcine NCCM, or BM supplemented with 1 μg/mL Link N. Furthermore, BM and NCCM samples were injected with 10(6) BMSCs per NP sample. Samples were cultured for 4 weeks, and analyzed for biochemical contents (water, glycosaminoglycan [GAG], hydroxyproline, and DNA), gene expression (COL1A1, COL2A1, ACAN, and SOX9), and histology by Safranin O/Fast Green staining. Culture in NCCM resulted in increased proteoglycan content compared to day 0 and BM, similar to Link N. However, only minor differences in gene expression compared to day 0 were observed. Addition of BMSCs did not result in increased GAG content, and surprisingly, DNA content in BMSC-injected groups was not higher than in the other groups after 4 weeks of culture. This study shows that, indeed, NCCM is capable of stimulating NPC matrix production within the NP environment. The lack of increased DNA content in the BMSC-injected groups indicates that BMSCs have died over time. Identification of the bioactive factors in NCCM is crucial for further development of an NCCM-based treatment for intervertebral disc regeneration.

  8. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    Science.gov (United States)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  9. Partitioning and Exocytosis of Secretory Granules during Division of PC12 Cells

    Directory of Open Access Journals (Sweden)

    Nickolay Vassilev Bukoreshtliev

    2012-01-01

    Full Text Available The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.

  10. Timing the start of division in E. coli: a single-cell study

    Science.gov (United States)

    Reshes, G.; Vanounou, S.; Fishov, I.; Feingold, M.

    2008-12-01

    We monitor the shape dynamics of individual E. coli cells using time-lapse microscopy together with accurate image analysis. This allows measuring the dynamics of single-cell parameters throughout the cell cycle. In previous work, we have used this approach to characterize the main features of single-cell morphogenesis between successive divisions. Here, we focus on the behavior of the parameters that are related to cell division and study their variation over a population of 30 cells. In particular, we show that the single-cell data for the constriction width dynamics collapse onto a unique curve following appropriate rescaling of the corresponding variables. This suggests the presence of an underlying time scale that determines the rate at which the cell cycle advances in each individual cell. For the case of cell length dynamics a similar rescaling of variables emphasizes the presence of a breakpoint in the growth rate at the time when division starts, τc. We also find that the τc of individual cells is correlated with their generation time, τg, and inversely correlated with the corresponding length at birth, L0. Moreover, the extent of the T-period, τg - τc, is apparently independent of τg. The relations between τc, τg and L0 indicate possible compensation mechanisms that maintain cell length variability at about 10%. Similar behavior was observed for both fast-growing cells in a rich medium (LB) and for slower growth in a minimal medium (M9-glucose). To reveal the molecular mechanisms that lead to the observed organization of the cell cycle, we should further extend our approach to monitor the formation of the divisome.

  11. Increased expression of stefin B in the nucleus of T98G astrocytoma cells delays caspase activation

    Directory of Open Access Journals (Sweden)

    Tao eSun

    2012-09-01

    Full Text Available Stefin B (cystatin B is an endogenous inhibitor of cysteine proteinases localized in the nucleus and the cytosol. Loss-of-function mutations in the stefin B gene (CSTB gene were reported in patients with Unverricht-Lundborg disease (EPM1. Our previous results showed that thymocytes isolated from stefin B-deficient mice are more sensitive to apoptosis induced by the protein kinase C inhibitor staurosporin (STS than the wild-type control cells. We have also shown that the increased expression of stefin B in the nucleus of T98G astrocytoma cells delayed cell cycle progression through the S phase. In the present study we examined if the nuclear or cytosolic functions of stefin B are responsible for the accelerated induction of apoptosis observed in the cells from stefin B-deficient mice. We have shown that the overexpression of stefin B in the nucleus, but not in the cytosol of astrocytoma T98G cells, delayed caspase-3 and-7 activation. Pretreatment of cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe-fluoromethylketone completely inhibited caspase activation, while treatment with the inhibitor of calpains- and papain-like cathepsins (2S,3S-trans-epoxysuccinyl-leucylamido-3-methyl-butane ethyl ester did not prevent caspase activation. We concluded that the delay of caspase activation in T98G cells overexpressing stefin B in the nucleus is independent of cathepsin inhibition.

  12. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    Directory of Open Access Journals (Sweden)

    Shin-Ya eMiyagishima

    2014-09-01

    Full Text Available The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, nonphotosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG layer, divide without DRP5B. Certain parasitic eukaryotes possess nonphotosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how nonphotosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and nonphotosynthetic plastid

  13. SEPT9_v1 Functions in Breast Cancer Cell Division

    Science.gov (United States)

    2012-01-01

    to the primary cilium. Science 320(5884):1777–1781. Kremer BE, Adang LA , Macara IG. 2007. Septins regulate actin organization and cell-cycle arrest...Chlamydomonas eugametos gametes. Planta 167(4):544–553. Mykytyn K, Sheffield VC. 2004. Establishing a connection between cilia and Bardet-Biedl syndrome...782–793. Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bia- las NJ, Stupay RM, Chen N, Blacque OE., et al. 2011. MKS and NPHP modules

  14. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  15. Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.

    Science.gov (United States)

    Noguchi, Takako; Leise, Tanya L; Kingsbury, Nathaniel J; Diemer, Tanja; Wang, Lexie L; Henson, Michael A; Welsh, David K

    2017-01-01

    Circadian rhythms of mammalian physiology and behavior are coordinated by the suprachiasmatic nucleus (SCN) in the hypothalamus. Within SCN neurons, various aspects of cell physiology exhibit circadian oscillations, including circadian clock gene expression, levels of intracellular Ca 2+ ([Ca 2+ ] i ), and neuronal firing rate. [Ca 2+ ] i oscillates in SCN neurons even in the absence of neuronal firing. To determine the causal relationship between circadian clock gene expression and [Ca 2+ ] i rhythms in the SCN, as well as the SCN neuronal network dependence of [Ca 2+ ] i rhythms, we introduced GCaMP3, a genetically encoded fluorescent Ca 2+ indicator, into SCN neurons from PER2::LUC knock-in reporter mice. Then, PER2 and [Ca 2+ ] i were imaged in SCN dispersed and organotypic slice cultures. In dispersed cells, PER2 and [Ca 2+ ] i both exhibited cell autonomous circadian rhythms, but [Ca 2+ ] i rhythms were typically weaker than PER2 rhythms. This result matches the predictions of a detailed mathematical model in which clock gene rhythms drive [Ca 2+ ] i rhythms. As predicted by the model, PER2 and [Ca 2+ ] i rhythms were both stronger in SCN slices than in dispersed cells and were weakened by blocking neuronal firing in slices but not in dispersed cells. The phase relationship between [Ca 2+ ] i and PER2 rhythms was more variable in cells within slices than in dispersed cells. Both PER2 and [Ca 2+ ] i rhythms were abolished in SCN cells deficient in the essential clock gene Bmal1 . These results suggest that the circadian rhythm of [Ca 2+ ] i in SCN neurons is cell autonomous and dependent on clock gene rhythms, but reinforced and modulated by a synchronized SCN neuronal network.

  16. Adiposity Alters Genes Important in Inflammation and Cell Cycle Division in Human Cumulus Granulosa Cell.

    Science.gov (United States)

    Merhi, Zaher; Polotsky, Alex J; Bradford, Andrew P; Buyuk, Erkan; Chosich, Justin; Phang, Tzu; Jindal, Sangita; Santoro, Nanette

    2015-10-01

    To determine whether obesity alters genes important in cellular growth and inflammation in human cumulus granulosa cells (GCs). Eight reproductive-aged women who underwent controlled ovarian hyperstimulation followed by oocyte retrieval for in vitro fertilization were enrolled. Cumulus GC RNA was extracted and processed for microarray analysis on Affymetrix Human Genome U133 Plus 2.0 chips. Gene expression data were validated on GCs from additional biologically similar samples using quantitative real-time polymerase chain reaction (RT-PCR). Comparison in gene expression was made between women with body mass index (BMI) cell division cycle 20 (CDC20), interleukin 1 receptor-like 1 (IL1RL1), and growth arrest-specific protein 7 (GAS7). FOXM1, CDC20, and GAS7 were downregulated while FGF-12 and PPM1L were upregulated in group 2 when compared to group 1. Validation with RT-PCR confirmed the microarray data except for ZFPM2 and IL1RL. As BMI increased, expression of FOXM1 significantly decreased (r = -.60, P = .048). Adiposity is associated with changes in the expression of genes important in cellular growth, cell cycle progression, and inflammation. The upregulation of the metabolic regulator gene PPM1L suggests that adiposity induces an abnormal metabolic follicular environment, potentially altering folliculogenesis and oocyte quality. © The Author(s) 2015.

  17. Structural dynamics of the cell nucleus: basis for morphology modulation of nuclear calcium signaling and gene transcription.

    Science.gov (United States)

    Queisser, Gillian; Wiegert, Simon; Bading, Hilmar

    2011-01-01

    Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.

  18. DNA synthesis and cell division in the adult primate brain

    International Nuclear Information System (INIS)

    Rakic, P.

    1985-01-01

    It is generally accepted that the adult human brain is incapable of producing new neuron. Even cursory examination of neurologic, neuropathologic, or neurobiological textbooks published during the past 50 years will testify that this belief is deeply entrenched. In his classification of cell populations on the basis of their proliferative behavior, Leblond regarded neurons of the central nervous system as belonging to a category of static, nonrenewing epithelial tissue incapable of expanding or replenishing itself. This belief, however needs to re reexamined for two major reasons: First, as reviewed below, a number of reports have provided evidence of neurogenesis in adult brain of several vertebrate species. Second, the capacity for neurogenesis in the adult primate central nervous system has never been examined by modern methods. In this article the author described recent results from an extensive autoradiographic analysis performed on twelve rhesus monkeys injected with the specific DNA precursor [ 3 H] thymidine at ages ranging from 6 postnatal months to 17 years

  19. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  20. Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs.

    Directory of Open Access Journals (Sweden)

    Stefan Stich

    Full Text Available Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC including changes in their immunogenic properties after 3-dimensional (3D-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS, a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have

  1. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    Science.gov (United States)

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Combination of Synthetic Chemistry and Live-Cell Imaging Identified a Rapid Cell Division Inhibitor in Tobacco and Arabidopsis thaliana.

    Science.gov (United States)

    Nambo, Masakazu; Kurihara, Daisuke; Yamada, Tomomi; Nishiwaki-Ohkawa, Taeko; Kadofusa, Naoya; Kimata, Yusuke; Kuwata, Keiko; Umeda, Masaaki; Ueda, Minako

    2016-11-01

    Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals. By combining organic chemistry to create novel and diverse compounds containing the triarylmethyl moiety and biological screens based on live-cell imaging of a fluorescently labeled tobacco Bright Yellow-2 (BY-2) culture cell line (Nicotiana tabacum), we isolated (3-furyl)diphenylmethane as a strong but partially reversible inhibitor of plant cell division. We also found that this agent had efficient antiproliferative activity in developing organs of Arabidopsis thaliana without causing secondary defects in cell morphology, and induced rapid cell division arrest independent of the cell cycle stage. Given that (3-furyl)diphenylmethane did not affect the growth of a human cell line (HeLa) and a budding yeast (Saccharomyces cerevisiae), it should act specifically on plants. Taking our results together, we propose that the combination of desired chemical synthesis and detailed biological analysis is an effective tool to create novel drugs, and that (3-furyl)diphenylmethane is a specific antiproliferative agent for plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem.

    Science.gov (United States)

    Kinoshita, Atsuko; ten Hove, Colette A; Tabata, Ryo; Yamada, Masashi; Shimizu, Noriko; Ishida, Takashi; Yamaguchi, Katsushi; Shigenobu, Shuji; Takebayashi, Yumiko; Iuchi, Satoshi; Kobayashi, Masatomo; Kurata, Tetsuya; Wada, Takuji; Seo, Mitsunori; Hasebe, Mitsuyasu; Blilou, Ikram; Fukuda, Hiroo; Scheres, Ben; Heidstra, Renze; Kamiya, Yuji; Sawa, Shinichiro

    2015-02-01

    The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture. © 2015. Published by The Company of Biologists Ltd.

  4. Effects of Copaifera duckei Dwyer oleoresin on the cell wall and cell division of Bacillus cereus.

    Science.gov (United States)

    Gomes Dos Santos, Elizabeth Cristina; Donnici, Claudio Luis; Camargos, Elizabeth Ribeiro da Silva; Augusto de Rezende, Adriana; Andrade, Eloisa Helena de Aguiar; Soares, Luiz Alberto Lira; Farias, Luiz de Macêdo; Roque de Carvalho, Maria Auxiliadora; Almeida, Maria das Graças

    2013-07-01

    The aim of this work was to evaluate the antibacterial activity of Copaifera duckei oleoresin and to determine its possible mechanism of action against bacteria of clinical and food interest. The antibacterial activity was determined by agar diffusion and dilution methods; the mechanism of action by transmission electron microscopy and by SDS-PAGE; the bioactive compounds by bioautography; and the chemical analysis by GC/MS. Oleoresin showed activity against nine of the 11 strains of bacteria tested. Bacillus cereus was the most sensitive, with a MIC corresponding to 0.03125 mg ml(-1) and with a bactericidal action. Oleoresin acted on the bacterial cell wall, removing proteins and the S-layer, and interfering with the cell-division process. This activity probably can be attributed to the action of terpenic compounds, among them the bisabolene compound. Gram-negative bacteria tested were not inhibited. C. duckei oleoresin is a potential antibacterial, suggesting that this oil could be used as a therapeutic alternative, mainly against B. cereus.

  5. Cytosolic calcium elevation induced by orexin/hypocretin in granule cell domain cells of the rat cochlear nucleus in vitro.

    Science.gov (United States)

    Nakamura, Yuki; Miura, Shinya; Yoshida, Takashi; Kim, Juhyon; Sasaki, Kazuo

    2010-08-01

    Using rat brain slice preparations, we examined the effect of orexin on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in the granule cell domain (GCD) cells of the cochlear nucleus that carry non-auditory information to the dorsal cochlear nucleus. Application of orexin concentration-dependently increased [Ca(2+)](i), and in two thirds of GCD cells these increases persisted in the presence of tetrodotoxin. There was no significant difference between the dose-response curve for orexin-A and that for orexin-B. Extracellular Ca(2+) removal abolished the [Ca(2+)](i) elevation induced by orexin-B, whereas depletion of intracellular Ca(2+) stores had no effect. The orexin-B-induced elevation of [Ca(2+)](i) was not blocked by inhibitors of reverse-mode Na(+)/Ca(2+) exchanger (NCX) and nonselective cation channel, whereas it was blocked by lowering the extracellular Na(+) or by applying inhibitors of forward-mode NCX and voltage-gated R- and T-type Ca(2+) channels. The ORX-B-induced increase in [Ca(2+)](i) was also blocked by inhibitors of adenylcyclase (AC) and protein kinase A (PKA), but not by inhibitors of phosphatidylcholine-specific and phosphatidylinositol-specific phospholipase C. In electrophysiological experiments using whole-cell patch clamp recordings, half of GCD cells were depolarized by orexin-B, and the depolarization was abolished by a forward-mode NCX inhibitor. These results suggest that orexin increases [Ca(2+)](i) postsynaptically via orexin 2 receptors, and the increase in [Ca(2+)](i) is induced via the AC-PKA-forward-mode NCX-membrane depolarization-mediated activation of voltage-gated R- and T-type Ca(2+) channels. The results further support the hypothesis that the orexin system participates in integrating neural systems that are involved in arousal, sensory processing, energy homeostasis and autonomic function. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Heparan sulfate and control of cell division: adhesion and proliferation of mutant CHO-745 cells lacking xylosyl transferase

    Directory of Open Access Journals (Sweden)

    C.R.C. Franco

    2001-08-01

    Full Text Available We have examined the role of cell surface glycosaminoglycans in cell division: adhesion and proliferation of Chinese hamster ovary (CHO cells. We used both wild-type (CHO-K1 cells and a mutant (CHO-745 which is deficient in the synthesis of proteoglycans due to lack of activity of xylosyl transferase. Using different amounts of wild-type and mutant cells, little adhesion was observed in the presence of laminin and type I collagen. However, when fibronectin or vitronectin was used as substrate, there was an enhancement in the adhesion of wild-type and mutant cells. Only CHO-K1 cells showed a time-dependent adhesion on type IV collagen. These results suggest that the two cell lines present different adhesive profiles. Several lines of experimental evidence suggest that heparan sulfate proteoglycans play a role in cell adhesion as positive modulators of cell proliferation and as key participants in the process of cell division. Proliferation and cell cycle assays clearly demonstrate that a decrease in the amount of glycosaminoglycans does not inhibit the proliferation of mutant CHO-745 cells when compared to the wild type CHO-K1, in agreement with the findings that both CHO-K1 and CHO-745 cells take 8 h to enter the S phase.

  7. DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Yang Yan

    2010-12-01

    Full Text Available Abstract Background Although the cerebellum is considered to be predominantly involved in fine motor control, emerging evidence documents its participation in language, impulsive behavior and higher cognitive functions. While the specific connections of the cerebellar deep nuclei (CDN that are responsible for these functions are still being worked out, their deficiency has been termed "cerebellar cognitive affective syndrome" - a syndrome that bears a striking similarity to many of the symptoms of Alzheimer's disease (AD. Using ectopic cell cycle events and DNA damage markers as indexes of cellular distress, we have explored the neuropathological involvement of the CDN in human AD. Results We examined the human cerebellar dentate nucleus in 22 AD cases and 19 controls for the presence of neuronal cell cycle events and DNA damage using immunohistochemistry and fluorescence in situ hybridization. Both techniques revealed several instances of highly significant correlations. By contrast, neither amyloid plaque nor neurofibrillary tangle pathology was detected in this region, consistent with previous reports of human cerebellar pathology. Five cases of early stage AD were examined and while cell cycle and DNA damage markers were well advanced in the hippocampus of all five, few indicators of either cell cycle events (1 case or a DNA damage response (1 case were found in CDN. This implies that CDN neurons are most likely affected later in the course of AD. Clinical-pathological correlations revealed that cases with moderate to high levels of cell cycle activity in their CDN are highly likely to show deficits in unorthodox cerebellar functions including speech, language and motor planning. Conclusion Our results reveal that the CDN neurons are under cellular stress in AD and suggest that some of the non-motor symptoms found in patients with AD may be partly cerebellar in origin.

  8. Chronic tinnitus and unipolar brush cell alterations in the cerebellum and dorsal cochlear nucleus.

    Science.gov (United States)

    Brozoski, Thomas; Brozoski, Daniel; Wisner, Kurt; Bauer, Carol

    2017-07-01

    Animal model research has shown that the central features of tinnitus, the perception of sound without an acoustic correlate, include elevated spontaneous and stimulus-driven activity, enhanced burst-mode firing, decreased variance of inter-spike intervals, and distortion of tonotopic frequency representation. Less well documented are cell-specific correlates of tinnitus. Unipolar brush cell (UBC) alterations in animals with psychophysical evidence of tinnitus has recently been reported. UBCs are glutamatergic interneurons that appear to function as local-circuit signal amplifiers. UBCs are abundant in the dorsal cochlear nucleus (DCN) and very abundant in the flocculus (FL) and paraflocculus (PFL) of the cerebellum. In the present research, two indicators of UBC structure and function were examined: Doublecortin (DCX) and epidermal growth factor receptor substrate 8 (Eps8). DCX is a protein that binds to microtubules where it can modify their assembly and growth. Eps8 is a cell-surface tyrosine kinase receptor mediating the response to epidermal growth factor; it appears to have a role in actin polymerization as well as cytoskeletal protein interactions. Both functions could contribute to synaptic remodeling. In the present research UBC Eps8 and DCX immunoreactivity (IR) were determined in 4 groups of rats distinguished by their exposure to high-level sound and psychophysical performance: Unexposed, exposed to high-level sound with behavioral evidence of tinnitus, and two exposed groups without behavioral evidence of tinnitus. Compared to unexposed controls, exposed animals with tinnitus had Eps8 IR elevated in their PFL; other structures were not affected, nor was DCX IR affected. This was interpreted as UBC upregulation in animals with tinnitus. Exposure that failed to produce tinnitus did not increase either Eps8 or DCX IR. Rather Eps8 IR was decreased in the FL and DCN of one subgroup (Least-Tinnitus), while DCX IR decreased in the FL of the other subgroup (No

  9. The Nuclear Mitotic Apparatus (NuMA) protein is contributed by the donor cell nucleus in cloned porcine embryos.

    Science.gov (United States)

    Liu, Zhonghua; Schatten, Heide; Hao, Yanhong; Lai, Liangxue; Wax, David; Samuel, Melissa; Zhong, Zhi-Sheng; Sun, Qing-Yuan; Prather, Randall S

    2006-05-01

    The Nuclear Mitotic Apparatus (NuMA) protein is a multifunctional protein that is localized to the nucleus in interphase and to the poles of the mitotic apparatus during mitosis. In unfertilized porcine oocytes, NuMA is localized to the meiotic spindle. NuMA is removed along with the meiotic spindle during the enucleation process before reconstructing the egg by introducing the donor cell nucleus to produce cloned embryos. Questions have been raised regarding the source for NuMA in cloned embryos, as the enucleated oocyte does not contain detectable NuMA in the cytoplasm. To determine the source of NuMA in porcine nuclear transfer (NT) embryos, we conducted an immunofluorescence microscopy study with antibodies against NuMA to investigate the appearance and distribution of NuMA before and after reconstructing NT embryos with porcine skin fibroblasts. We used donor cells from a confluent culture with all cells in interphase. For comparative studies, we also determined the immunofluorescence pattern of NuMA, gamma-tubulin, and alpha-tubulin in porcine fibroblasts, parthenogenetic embryos and in vitro fertilized (IVF) embryos. Results show that NuMA was localized in nuclei of 33.5% (163/456) of the serum-deprived fibroblasts used as donor cells. No NuMA staining was detected in enucleated pig oocytes. Immediately after nuclear transfer, NuMA staining was absent in all donor cell fibroblast nuclei (0 h) but staining was detected by 6 h within the reconstructed eggs, at which time the transferred somatic cell nucleus swelled in most cells (19/27) and became a pronucleus-like structure. NuMA was localized exclusively within the pronucleus-like structures (15/27). At 25 h, NuMA was detected inside the nucleus (16/25) either in one-cell or in 2-cell stage embryos. Interestingly, in parthenogenetic embryos, NuMA staining was not detected in all 42 eggs examined at 1 h, and evident NuMA staining was only detected inside a few (4/51 at 6 h; 6/48 at 25 h) of the nuclei. In IVF

  10. Cell division genes promote asymmetric interaction between Numb and Notch in the Drosophila CNS.

    Science.gov (United States)

    Wai, P; Truong, B; Bhat, K M

    1999-06-01

    Cell intrinsic and cell extrinsic factors mediate asymmetric cell divisions during neurogenesis in the Drosophila embryo. In the NB4-2->GMC-1->RP2/sib lineage, one of the well-studied neuronal lineages in the ventral nerve cord, the Notch (N) signaling interacts with the asymmetrically localized Numb (Nb) to specify sibling neuronal fates to daughter cells of GMC-1. In this current study, we have investigated asymmetric cell fate specifications by N and Nb in the context of cell cycle. We have used loss-of-function mutations in N and nb, cell division mutants cyclinA (cycA), regulator of cyclin A1 (rca1) and string/cdc25 phosphatase (stg), and the microtubule destabilizing agent, nocodazole, to investigate this issue. We report that the loss of cycA, rca1 or stg leads to a block in the division of GMC-1, however, this GMC-1 exclusively adopts an RP2 identity. While the loss of N leads to the specification of RP2 fates to both progeny of GMC-1 and loss of nb results in the specification of sib fates to these daughter cells, the GMC-1 in the double mutant between nb and cycA assumes a sib fate. These epistasis results indicate that both N and nb function downstream of cell division genes and that progression through cell cycle is required for the asymmetric localization of Nb. In the absence of entry to metaphase, the Nb protein prevents the N signaling from specifying sib fate to the RP2/sib precursor. These results are also consistent with our finding that the sib cell is specified as RP2 in N; nb double mutants. Finally, our results show that nocodazole-arrested GMC-1 in wild-type embryos randomly assumes either an RP2 fate or a sib fate. This suggests that microtubules are involved in mediating the antagonistic interaction between Nb and N during RP2 and sib fate specification.

  11. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis*

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang

    2016-01-01

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  12. Characterization of substances that restore impaired cell division of UV-irradiated E. coli B

    International Nuclear Information System (INIS)

    Yoshiyama, Y.; Shimoii, H.; Tamura, G.

    1981-01-01

    Substances which restore impaired cell division in UV-irradiated E. coli B were surveyed among various bacteria. The active substance was found only in several genera of Gram-negative bacteria, i.e., Escherichia, Enterobacter, Salmonella and some species of Pseudomonas. The activity in the dialyzed cell extract of E. coli B/r was observed in the presence of β-NAD and was enhanced by Mg 2+ and Mn 2+ . The active substance was very labile, but the activity was protected by 1 mM dithiothreitol in the process of purification. The activity of a fraction recovered through DEAE-cellulose column chromatography was stimulated by the presence of membrane fraction. Upon treatment with lipid-degrading enzymes and proteases, the division-stimulating activity was lost or reduced. It appears that the inactivation by lipase and phospholipase A2 was due to the formation of lysophospholipids and that a proteinous substance participated in the recovery of impaired cell division of UV-irradiated E. coli B

  13. Tracking the oxygen status in the cell nucleus by using a Hoechst-tagged phosphorescent ruthenium complex.

    Science.gov (United States)

    Tanabe, Kazuhito; Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki

    2018-02-21

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here, we report the design of a novel oxygen-sensing probe for use in the cell nucleus. We prepared Ru-Hoechsts, which consist of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows high DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and shows oxygen-dependent signals that could be monitored. Among the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and Hoechst unit were linked by a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are novel probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DGCR8 Localizes to the Nucleus as well as Cytoplasmic Structures in Mammalian Spermatogenic Cells and Epididymal Sperm

    Directory of Open Access Journals (Sweden)

    Akane Nakano

    2013-01-01

    Full Text Available The localization of DGCR8 in spermatogenic cells and sperm from rat and mouse was studied by immunofluorescence and immunoelectron microscopy. Spermatogenic cells from these species yielded similar DGCR8 localization pattern. Immunofluorescence microscopy results showed that DGCR8 localized to both the cytoplasm and nucleus. In the cytoplasm, diffuse cytosolic and discrete granular staining was observed. Dual staining showed that DGCR8 colocalized to the granules with MAEL (a nuage marker. In the nucleus of spermatocytes, both the nucleoli and nucleoplasm were stained, whereas in the nucleus of early spermatids small spots were stained. In late spermatids, DGCR8 localized to the tip of their head and to small granules (neck granules of the neck cytoplasm. The neck granules were also observed in the neck of epididymal sperm. Immunoelectron microscopy results showed that DGCR8 localized to nuage structures. Moreover, DGCR8 localized to nonnuage structures in late spermatids. DGCR8 also localized to the nucleolus and euchromatin in spermatocytes and round spermatids and to small granules in the nucleus of late spermatids. The results suggest that in spermatogenic cells DGCR8 localizes not only to the nuclei but also to the cytoplasmic structures such as nuage and nonnuage structures. Furthermore, DGCR8 seems to be imported into the egg with neck granules in sperm during fertilization.

  15. Differences in cell division rates drive the evolution of terminal differentiation in microbes.

    Directory of Open Access Journals (Sweden)

    João F Matias Rodrigues

    Full Text Available Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types -nitrogen fixing or photosynthetic- that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria.

  16. Effect of Lauric Acid on Cell Division, Macromolecular Synthesis and Membrane Lipid Organization in Escherichia coli

    OpenAIRE

    Hakobu, Nakamura; Atsushi, Hase; Biological Institute, Faculty of Science, Konan University; Biological Institute, Faculty of Science, Konan University:(Present)Osaka City Institute of Public Health and Environmental Sciences

    1984-01-01

    Lauric acid (1mg/ml) sharply suppressed the cell division of an acrA mutant strain of Escherichia coli K12. However, the wild type acrA+ strain was resistant to the fatty acid. Capric acid and myristic acid were not so toxic. Lauric acid inhibited both DNA and protein synthesis of the acrA mutant strain, with the former being more sensitive than the latter. On the other hand, DNA polymerase activity of toluene-treated cells was stimulated rather than inhibited by the presence of 1mg/ml of lau...

  17. Agonist activation of cytosolic Ca2+ in subfornical organ cells projecting to the supraoptic nucleus

    Science.gov (United States)

    Johnson, R. F.; Beltz, T. G.; Sharma, R. V.; Xu, Z.; Bhatty, R. A.; Johnson, A. K.

    2001-01-01

    The subfornical organ (SFO) is sensitive to both ANG II and ACh, and local application of these agents produces dipsogenic responses and vasopressin release. The present study examined the effects of cholinergic drugs, ANG II, and increased extracellular osmolarity on dissociated, cultured cells of the SFO that were retrogradely labeled from the supraoptic nucleus. The effects were measured as changes in cytosolic calcium in fura 2-loaded cells by using a calcium imaging system. Both ACh and carbachol increased intracellular ionic calcium concentration ([Ca2+]i). However, in contrast to the effects of muscarinic receptor agonists on SFO neurons, manipulation of the extracellular osmolality produced no effects, and application of ANG II produced only moderate effects on [Ca2+]i in a few retrogradely labeled cells. The cholinergic effects on [Ca2+]i could be blocked with the muscarinic receptor antagonist atropine and with the more selective muscarinic receptor antagonists pirenzepine and 4-diphenylacetoxy-N-methylpiperdine methiodide (4-DAMP). In addition, the calcium in the extracellular fluid was required for the cholinergic-induced increase in [Ca2+]i. These findings indicate that ACh acts to induce a functional cellular response in SFO neurons through action on a muscarinic receptor, probably of the M1 subtype and that the increase of [Ca2+]i, at least initially, requires the entry of extracellular Ca2+. Also, consistent with a functional role of M1 receptors in the SFO are the results of immunohistochemical preparations demonstrating M1 muscarinic receptor-like protein present within this forebrain circumventricular organ.

  18. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction

    Directory of Open Access Journals (Sweden)

    Schulz Burkhard

    2010-12-01

    Full Text Available Abstract Background Plant growth depends on both cell division and cell expansion. Plant hormones, including brassinosteroids (BRs, are central to the control of these two cellular processes. Despite clear evidence that BRs regulate cell elongation, their roles in cell division have remained elusive. Results Here, we report results emphasizing the importance of BRs in cell division. An Arabidopsis BR biosynthetic mutant, dwarf7-1, displayed various characteristics attributable to slower cell division rates. We found that the DWARF4 gene which encodes for an enzyme catalyzing a rate-determining step in the BR biosynthetic pathways, is highly expressed in the actively dividing callus, suggesting that BR biosynthesis is necessary for dividing cells. Furthermore, dwf7-1 showed noticeably slower rates of callus growth and shoot induction relative to wild-type control. Flow cytometric analyses of the nuclei derived from either calli or intact roots revealed that the cell division index, which was represented as the ratio of cells at the G2/M vs. G1 phases, was smaller in dwf7-1 plants. Finally, we found that the expression levels of the genes involved in cell division and shoot induction, such as PROLIFERATING CELL NUCLEAR ANTIGEN2 (PCNA2 and ENHANCER OF SHOOT REGENERATION2 (ESR2, were also lower in dwf7-1 as compared with wild type. Conclusions Taken together, results of callus induction, shoot regeneration, flow cytometry, and semi-quantitative RT-PCR analysis suggest that BRs play important roles in both cell division and cell differentiation in Arabidopsis.

  19. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  20. Late assembly of the Vibrio cholerae cell division machinery postpones septation to the last 10% of the cell cycle.

    Science.gov (United States)

    Galli, Elisa; Paly, Evelyne; Barre, François-Xavier

    2017-03-16

    Bacterial cell division is a highly regulated process, which involves the formation of a complex apparatus, the divisome, by over a dozen proteins. In the few model bacteria in which the division process was detailed, divisome assembly occurs in two distinct steps: a few proteins, including the FtsZ tubulin-like protein, form a membrane associated contractile ring, the Z-ring, at ~30% of the cell cycle. The Z-ring serves as a scaffold for the recruitment of a second series of proteins, including integral membrane and periplasmic cell wall remodelling enzymes, at ~50% of the cell cycle. Actual septation occupies most of the remaining half of the cell cycle. In contrast, we present evidence suggesting that early pre-divisional Z-rings form between 40 and 50% of the cell cycle and mature into fully assembled divisome at about 80% of the cell cycle in Vibrio cholerae. Thus, actual septation is restricted to a very short amount of time. Our results further suggest that late assembly of the divisome probably helps maintain the asymmetric polar organisation of V. cholerae cells by limiting the accumulation of a cell pole marker, HubP, at the nascent cell poles.

  1. Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division.

    Science.gov (United States)

    Cameron, Todd A; Anderson-Furgeson, James; Zupan, John R; Zik, Justin J; Zambryski, Patricia C

    2014-05-27

    The synthesis of peptidoglycan (PG) in bacteria is a crucial process controlling cell shape and vitality. In contrast to bacteria such as Escherichia coli that grow by dispersed lateral insertion of PG, little is known of the processes that direct polar PG synthesis in other bacteria such as the Rhizobiales. To better understand polar growth in the Rhizobiales Agrobacterium tumefaciens, we first surveyed its genome to identify homologs of (~70) well-known PG synthesis components. Since most of the canonical cell elongation components are absent from A. tumefaciens, we made fluorescent protein fusions to other putative PG synthesis components to assay their subcellular localization patterns. The cell division scaffolds FtsZ and FtsA, PBP1a, and a Rhizobiales- and Rhodobacterales-specific l,d-transpeptidase (LDT) all associate with the elongating cell pole. All four proteins also localize to the septum during cell division. Examination of the dimensions of growing cells revealed that new cell compartments gradually increase in width as they grow in length. This increase in cell width is coincident with an expanded region of LDT-mediated PG synthesis activity, as measured directly through incorporation of exogenous d-amino acids. Thus, unipolar growth in the Rhizobiales is surprisingly dynamic and represents a significant departure from the canonical growth mechanism of E. coli and other well-studied bacilli. Many rod-shaped bacteria, including pathogens such as Brucella and Mycobacteriu, grow by adding new material to their cell poles, and yet the proteins and mechanisms contributing to this process are not yet well defined. The polarly growing plant pathogen Agrobacterium tumefaciens was used as a model bacterium to explore these polar growth mechanisms. The results obtained indicate that polar growth in this organism is facilitated by repurposed cell division components and an otherwise obscure class of alternative peptidoglycan transpeptidases (l

  2. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells

    NARCIS (Netherlands)

    Bach, Frances; Libregts, Sten; Creemers, Laura; Meij, Björn P; Ito, Keita; Wauben, Marca H M; Tryfonidou, Marianna A

    2017-01-01

    During intervertebral disc ageing, chondrocyte-like cells (CLCs) replace notochordal cells (NCs). NCs have been shown to induce regenerative effects in CLCs. Since vesicles released by NCs may be responsible for these effects, we characterized NC-derived extracellular vesicles (EVs) and determined

  3. Judging diatoms by their cover: variability in local elasticity of Lithodesmium undulatum undergoing cell division.

    Directory of Open Access Journals (Sweden)

    Lee Karp-Boss

    Full Text Available Unique features of diatoms are their intricate cell covers (frustules made out of hydrated, amorphous silica. The frustule defines and maintains cell shape and protects cells against grazers and pathogens, yet it must allow for cell expansion during growth and division. Other siliceous structures have also evolved in some chain-forming species as means for holding neighboring cells together. Characterization and quantification of mechanical properties of these structures are crucial for the understanding of the relationship between form and function in diatoms, but thus far only a handful of studies have addressed this issue. We conducted micro-indentation experiments, using atomic force microscopy (AFM, to examine local variations in elastic (Young's moduli of cells and linking structures in the marine, chain-forming diatom Lithodesmium undulatum. Using a fluorescent tracer that is incorporated into new cell wall components we tested the hypothesis that new siliceous structures differ in elastic modulus from their older counterparts. Results show that the local elastic modulus is a highly dynamic property. Elastic modulus of stained regions was significantly lower than that of unstained regions, suggesting that newly formed cell wall components are generally softer than the ones inherited from the parent cells. This study provides the first evidence of differentiation in local elastic properties in the course of the cell cycle. Hardening of newly formed regions may involve incorporation of additional, possibly organic, material but further studies are needed to elucidate the processes that regulate mechanical properties of the frustule during the cell cycle.

  4. NEURON AND GLIAL CELL NUMBERS IN THE MEDIODORSAL THALAMIC NUCLEUS IN BRAINS OF SCHIZOPHRENIC SUBJECTS

    Directory of Open Access Journals (Sweden)

    Rune Damgaard Nielsen

    2011-05-01

    Full Text Available Several stereological studies of schizophrenic subjects have shown reduction in both the total number of neurons and in the total volume of the mediodorsal thalamic nucleus (MD. This is in contrast to other studies in that no differences have been found. Using systematic random sampling and an optical fractionator design, the total number of neuron and glial cells in the MD subdivisions: parvocellular (MDPC, magnocellular (MDMC, and densocellular (MDDC were counted in brains from 9 schizophrenic and 8 control subjects. The control subjects were age, height and body-weight matched to the schizophrenic subjects. We found the neuronal numbers in the schizophrenic subjects to range more than a factor of two, from 3.68 to 9.22 x 106. This is in contrast to the control subjects, who ranged from 5.24 to 7.10 x 106 in neuronal cell numbers. Within our inhomogeneous sample, some schizophrenic subjects thus exhibited relative high total neuron numbers in MD, while others exhibited relative low neuron numbers. The result is in line with the heterogeneity of this severe mental disease and may help to explain why different research groups get different results. The major limitation in this study is the small number of brains of schizophrenic subjects with a high degree of inhomogeneity in length of disease and age of onset. The debates of the comparison of the neurons in the MD in brains of schizophrenic subjects and control subjects and the possible impact of this variance on the disease are still not complete.

  5. Alpha-smooth muscle actin in pathological human disc nucleus pulposus cells in vivo and in vitro.

    Science.gov (United States)

    Hastreiter, Dawn; Chao, Jeannie; Wang, Qi; Ozuna, Richard M; Spector, Myron

    2004-01-01

    That a contractile actin isoform has been found in cells of other cartilage tissues in healing and disease states prompted this investigation of the presence of alpha-smooth muscle actin (alpha-SMA) in pathological human intervertebral disc tissue. The presence of this isoform has been reported in human intervertebral disc specimens obtained at autopsy from subjects for whom there were no reported symptoms. An objective of this study was to evaluate the cell density and percentage of alpha-SMA-containing cells in pathological nucleus pulposus tissue obtained from lumbar disc surgery from 17 patients. Additionally, explants of nucleus pulposus material were cultured to determine how alpha-SMA expression changed with time in vitro. Seventy-six 5-mm diameter explants (approximately 2 mm thick) pooled from six lumbar surgeries were cultured for 1, 2, 4, or 6 weeks. Microtomed sections of paraffin-embedded specimens were stained with hematoxylin and eosin or a monoclonal antibody to alpha-SMA. Histologically, cells were categorized as to alpha-SMA phenotype (positive or negative), and the areal cell density was determined. The evaluation of the cultured nucleus pulposus explants also included documentation of the percentage of cells that were round or elongated and the percentage of the cells that were part of a group (group: >/= 2 cells). Every nucleus pulposus section exhibited the presence of alpha-SMA-containing cells, which accounted for approximately 24 percent of the cells in vivo. In vivo, the cell density was significantly higher in older individuals (p = 0.02). The average time for cell outgrowth from the explants was 8.6 days. Approximately 10-15 percent of the cells in the explants stained positive for alpha-SMA. The time in culture had no significant effect on any of the outcome measures except the percentage of alpha-SMA-containing cells that were round (p = 0.008), with values decreasing through 4 weeks and then slightly rising at 6 weeks. The role of

  6. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  7. CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion.

    Science.gov (United States)

    Kan, Ming-Chung; Oruganty-Das, Aparna; Cooper-Morgan, Amalene; Jin, Guang; Swanger, Sharon A; Bassell, Gary J; Florman, Harvey; van Leyen, Klaus; Richter, Joel D

    2010-12-01

    The RNA binding protein CPEB (cytoplasmic polyadenylation element binding) regulates cytoplasmic polyadenylation and translation in germ cells and the brain. In neurons, CPEB is detected at postsynaptic sites, as well as in the cell body. The related CPEB3 protein also regulates translation in neurons, albeit probably not through polyadenylation; it, as well as CPEB4, is present in dendrites and the cell body. Here, we show that treatment of neurons with ionotropic glutamate receptor agonists causes CPEB4 to accumulate in the nucleus. All CPEB proteins are nucleus-cytoplasm shuttling proteins that are retained in the nucleus in response to calcium-mediated signaling and alpha-calcium/calmodulin-dependent kinase protein II (CaMKII) activity. CPEB2, -3, and -4 have conserved nuclear export signals that are not present in CPEB. CPEB4 is necessary for cell survival and becomes nuclear in response to focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose. Further analysis indicates that nuclear accumulation of CPEB4 is controlled by the depletion of calcium from the ER, specifically, through the inositol-1,4,5-triphosphate (IP3) receptor, indicating a communication between these organelles in redistributing proteins between subcellular compartments.

  8. CPEB4 Is a Cell Survival Protein Retained in the Nucleus upon Ischemia or Endoplasmic Reticulum Calcium Depletion ▿ †

    Science.gov (United States)

    Kan, Ming-Chung; Oruganty-Das, Aparna; Cooper-Morgan, Amalene; Jin, Guang; Swanger, Sharon A.; Bassell, Gary J.; Florman, Harvey; van Leyen, Klaus; Richter, Joel D.

    2010-01-01

    The RNA binding protein CPEB (cytoplasmic polyadenylation element binding) regulates cytoplasmic polyadenylation and translation in germ cells and the brain. In neurons, CPEB is detected at postsynaptic sites, as well as in the cell body. The related CPEB3 protein also regulates translation in neurons, albeit probably not through polyadenylation; it, as well as CPEB4, is present in dendrites and the cell body. Here, we show that treatment of neurons with ionotropic glutamate receptor agonists causes CPEB4 to accumulate in the nucleus. All CPEB proteins are nucleus-cytoplasm shuttling proteins that are retained in the nucleus in response to calcium-mediated signaling and alpha-calcium/calmodulin-dependent kinase protein II (CaMKII) activity. CPEB2, -3, and -4 have conserved nuclear export signals that are not present in CPEB. CPEB4 is necessary for cell survival and becomes nuclear in response to focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose. Further analysis indicates that nuclear accumulation of CPEB4 is controlled by the depletion of calcium from the ER, specifically, through the inositol-1,4,5-triphosphate (IP3) receptor, indicating a communication between these organelles in redistributing proteins between subcellular compartments. PMID:20937770

  9. Neurons of the rat suprachiasmatic nucleus show a circadian rhythm in membrane properties that is lost during prolonged whole-cell recording

    NARCIS (Netherlands)

    Schaap, J.; Bos, N. P.; de Jeu, M. T.; Geurtsen, A. M.; Meijer, J. H.; Pennartz, C. M.

    1999-01-01

    The suprachiasmatic nucleus is commonly considered to contain the main pacemaker of behavioral and hormonal circadian rhythms. Using whole-cell patch-clamp recordings, the membrane properties of suprachiasmatic nucleus neurons were investigated in order to get more insight in membrane physiological

  10. EzrA: a spectrin-like scaffold in the bacterial cell division machinery

    Directory of Open Access Journals (Sweden)

    Robert M Cleverley

    2015-01-01

    Full Text Available Much progress has been made in identifying the components of the divisome, the assembly of proteins that undertakes the vital process of cell division in bacteria. However, how the highly interdependent processes on either side of the membrane are coordinated during division is a major unresolved question. How is the degradation and synthesis of the cell wall on the outside of the cell coordinated with cytokinesis and membrane fission, which are driven from the inside of the cell by the tubulin homologue FtsZ? A possible key mediator of such coordination is the membrane protein EzrA, as it interacts both with FtsZ and the penicillin binding proteins (PBPs that synthesize peptidoglycan. Cleverley et al. [Nature Communications (2014 5, 5421] have recently solved the crystal structure of the cytoplasmic domain of B. subtilis EzrA, which points to an important scaffolding role for EzrA in the divisome. The structure resembles the eukaryotic, cytoskeletal spectrin proteins, which link actin filaments in the cytoskeleton and also connect the actin cytoskeleton to membrane-bound integrin proteins.

  11. Egf Signaling Directs Neoblast Repopulation by Regulating Asymmetric Cell Division in Planarians.

    Science.gov (United States)

    Lei, Kai; Thi-Kim Vu, Hanh; Mohan, Ryan D; McKinney, Sean A; Seidel, Chris W; Alexander, Richard; Gotting, Kirsten; Workman, Jerry L; Sánchez Alvarado, Alejandro

    2016-08-22

    A large population of proliferative stem cells (neoblasts) is required for physiological tissue homeostasis and post-injury regeneration in planarians. Recent studies indicate that survival of a few neoblasts after sublethal irradiation results in the clonal expansion of the surviving stem cells and the eventual restoration of tissue homeostasis and regenerative capacity. However, the precise mechanisms regulating the population dynamics of neoblasts remain largely unknown. Here, we uncovered a central role for epidermal growth factor (EGF) signaling during in vivo neoblast expansion mediated by Smed-egfr-3 (egfr-3) and its putative ligand Smed-neuregulin-7 (nrg-7). Furthermore, the EGF receptor-3 protein localizes asymmetrically on the cytoplasmic membrane of neoblasts, and the ratio of asymmetric to symmetric cell divisions decreases significantly in egfr-3(RNAi) worms. Our results not only provide the first molecular evidence of asymmetric stem cell divisions in planarians, but also demonstrate that EGF signaling likely functions as an essential regulator of neoblast clonal expansion. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Novel DNA damage checkpoint in mitosis: Mitotic DNA damage induces re-replication without cell division in various cancer cells.

    Science.gov (United States)

    Hyun, Sun-Yi; Rosen, Eliot M; Jang, Young-Joo

    2012-07-06

    DNA damage induces multiple checkpoint pathways to arrest cell cycle progression until damage is repaired. In our previous reports, when DNA damage occurred in prometaphase, cells were accumulated in 4 N-DNA G1 phase, and mitosis-specific kinases were inactivated in dependent on ATM/Chk1 after a short incubation for repair. We investigated whether or not mitotic DNA damage causes cells to skip-over late mitotic periods under prolonged incubation in a time-lapse study. 4 N-DNA-damaged cells re-replicated without cell division and accumulated in 8 N-DNA content, and the activities of apoptotic factors were increased. The inhibition of DNA replication reduced the 8 N-DNA cell population dramatically. Induction of replication without cell division was not observed upon depletion of Chk1 or ATM. Finally, mitotic DNA damage induces mitotic slippage and that cells enter G1 phase with 4 N-DNA content and then DNA replication is occurred to 8 N-DNA content before completion of mitosis in the ATM/Chk1-dependent manner, followed by caspase-dependent apoptosis during long-term repair. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  14. Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health.

    Science.gov (United States)

    Kotiadis, Vassilios N; Duchen, Michael R; Osellame, Laura D

    2014-04-01

    The maintenance of cell metabolism and homeostasis is a fundamental characteristic of living organisms. In eukaryotes, mitochondria are the cornerstone of these life supporting processes, playing leading roles in a host of core cellular functions, including energy transduction, metabolic and calcium signalling, and supporting roles in a number of biosynthetic pathways. The possession of a discrete mitochondrial genome dictates that the maintenance of mitochondrial 'fitness' requires quality control mechanisms which involve close communication with the nucleus. This review explores the synergistic mechanisms that control mitochondrial quality and function and ensure cellular bioenergetic homeostasis. These include antioxidant defence mechanisms that protect against oxidative damage caused by reactive oxygen species, while regulating signals transduced through such free radicals. Protein homeostasis controls import, folding, and degradation of proteins underpinned by mechanisms that regulate bioenergetic capacity through the mitochondrial unfolded protein response. Autophagic machinery is recruited for mitochondrial turnover through the process of mitophagy. Mitochondria also communicate with the nucleus to exact specific transcriptional responses through retrograde signalling pathways. The outcome of mitochondrial quality control is not only reliant on the efficient operation of the core homeostatic mechanisms but also in the effective interaction of mitochondria with other cellular components, namely the nucleus. Understanding mitochondrial quality control and the interactions between the organelle and the nucleus will be crucial in developing therapies for the plethora of diseases in which the pathophysiology is determined by mitochondrial dysfunction. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. © 2013. Published by Elsevier B.V. All rights reserved.

  15. Effect of a low-frequency pulsed electromagnetic field on expression and secretion of IL-1β and TNF-α in nucleus pulposus cells

    Science.gov (United States)

    Chen, Yufeng; Qian, Jiale; Yang, Huilin

    2017-01-01

    Objective To investigate changes in nucleus pulposus cell expression and secretion of interleukin (IL)-1β and tumour necrosis factor (TNF)-α following stimulation with a low-frequency (LF) pulsed electromagnetic field (PEMF). Methods Primary rat nucleus pulposus cells were isolated and cultured in vitro, followed by stimulation with LF-PEMFs at a frequency of 2 Hz and different intensities, ranging from 0.5–3.0 A/m. Cells were observed for morphological changes, and proliferation rates were measured by cell viability counts. Expression of IL-1β and TNF-α within the nucleus pulposus cells was measured using western blotting, and levels of IL-1β and TNF-α secreted in the culture media were measured using enzyme-linked immunosorbent assay. Results Stimulation of nucleus pulposus cells with LF-PEMFs did not appear to affect cell morphology or nucleus pulposus cell IL-1β and TNF-α expression levels. LF-PEMFs did not significantly affect cell proliferation, however, levels of IL-1β and TNF-α secreted into the culture media were found to be significantly reduced in an intensity-dependent manner. Conclusion Low-frequency PEMF stimulation may inhibit secretion of IL-1β and TNF-α in cultured nucleus pulposus cells. PMID:28173722

  16. Nucleus pulposus cells derived IGF-1 and MCP-1 enhance osteoclastogenesis and vertebrae disruption in lumbar disc herniation.

    Science.gov (United States)

    Zhu, Zhongjiao; Huang, Peng; Chong, Yanxue; George, Suraj K; Wen, Bingtao; Han, Na; Liu, Zhiqiang; Kang, Lixin; Lin, Nie

    2014-01-01

    Chronic strained lumbar disc herniation (LDH) cases were classified into bulging LDH, herniated LDH and prolapse LDH types according to imaging examination, and vertebrae disruptions were evaluated. Cytokines derived from the nucleus pulposus cells were detected, and their effects on osteoclastogenesis, as well as the mechanisms involved, were studied via an in vitro osteoclast differentiation system. To clarify the mechanisms of lumbar vertebrae resorption induced by lumbar herniation. Chronic strained lumbar disc herniation induced vertebrae erosion exacerbates quality of patients' life and clinical outcome. Although nucleus pulposus cells derived cytokines were reported to play an important role in this pathogenesis, the fundamental mechanisms underlying this process are still unclear. Chronic strained lumbar disc herniation patients were diagnosed with CT scan and T2-weighted magnetic resonance imaging. RNA was extracted from 192 surgical specimens of the herniated lumbar disc and 29 surgical excisions of the lumbar disc from spinal injury patients. The expressions of osteoclastogenesis related cytokines and chemokines were examined using real time PCR. Monocytes were induced into osteoclast with M-CSF and RANKL in vitro, while the IGF-1 and MCP-1 were added into the differentiation procedure in order to evaluate the effects and explore the molecular mechanisms. Vertebrae erosion had a positive relationship with lumbar disc herniation severity types. In all of the osteoclastogenesis related cytokines, the IGF-1 and MCP-1 were the most highly expressed in the nucleus pulposus cells. IGF-1 enhances activation of NF-kB signaling directly, but MCP-1 upregulated the expression of RANK, so that enhanced cellular sensitivity to RANKL resulted in increasing osteoclastogenesis and activity. Lumbar herniation induced overexpression of IGF-1 and MCP-1 in nucleus pulposus cells aggravated vertebral erosions. Hence, this study suggests that targeting osteoclastogenesis

  17. Nucleus pulposus cells derived IGF-1 and MCP-1 enhance osteoclastogenesis and vertebrae disruption in lumbar disc herniation

    Science.gov (United States)

    Zhu, Zhongjiao; Huang, Peng; Chong, Yanxue; George, Suraj K; Wen, Bingtao; Han, Na; Liu, Zhiqiang; Kang, Lixin; Lin, Nie

    2014-01-01

    Study design: Chronic strained lumbar disc herniation (LDH) cases were classified into bulging LDH, herniated LDH and prolapse LDH types according to imaging examination, and vertebrae disruptions were evaluated. Cytokines derived from the nucleus pulposus cells were detected, and their effects on osteoclastogenesis, as well as the mechanisms involved, were studied via an in vitro osteoclast differentiation system. Objective: To clarify the mechanisms of lumbar vertebrae resorption induced by lumbar herniation. Summary and background data: Chronic strained lumbar disc herniation induced vertebrae erosion exacerbates quality of patients’ life and clinical outcome. Although nucleus pulposus cells derived cytokines were reported to play an important role in this pathogenesis, the fundamental mechanisms underlying this process are still unclear. Methods: Chronic strained lumbar disc herniation patients were diagnosed with CT scan and T2-weighted magnetic resonance imaging. RNA was extracted from 192 surgical specimens of the herniated lumbar disc and 29 surgical excisions of the lumbar disc from spinal injury patients. The expressions of osteoclastogenesis related cytokines and chemokines were examined using real time PCR. Monocytes were induced into osteoclast with M-CSF and RANKL in vitro, while the IGF-1 and MCP-1 were added into the differentiation procedure in order to evaluate the effects and explore the molecular mechanisms. Results: Vertebrae erosion had a positive relationship with lumbar disc herniation severity types. In all of the osteoclastogenesis related cytokines, the IGF-1 and MCP-1 were the most highly expressed in the nucleus pulposus cells. IGF-1 enhances activation of NF-kB signaling directly, but MCP-1 upregulated the expression of RANK, so that enhanced cellular sensitivity to RANKL resulted in increasing osteoclastogenesis and activity. Conclusion: Lumbar herniation induced overexpression of IGF-1 and MCP-1 in nucleus pulposus cells aggravated

  18. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    The constant self renewal and differentiation of adult intestinal stem cells maintains a functional intestinal mucosa for a lifetime. However, the molecular mechanisms that regulate intestinal stem cell division and epithelial homeostasis are largely undefined. We report here that the small GTPases...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells...... activity in the intestinal epithelium, where continued cell division takes place. Furthermore, mice haploinsufficient for both Cdc42 and Rab8a in the intestine demonstrated abnormal crypt morphogenesis and epithelial transporter physiology, further supporting their functional interaction. These data...

  19. Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo

    International Nuclear Information System (INIS)

    Rubin, N.A.

    1980-01-01

    All mitotically active normal tissues in mammals investigated to date demonstrate a circadian rhythm in cell division. The murine corneal epithelium is a practical and advantageous tissue model for studying this phenomenon. In animals synchronized to a light-dark (LD) schedule, one sees predictably reproducible occurrences of peaks and troughs in the mitotic index (MI) within each 24-hour (h) period. One of the harmful effects of ionizing radiation on dividing cells is mitotic delay, reported to be a G 2 block in cells approaching mitosis. Affected cells are not killed but are inhibited from entering mitosis and are delayed for a span of time reported to be dose and cell cycle dependent. In the classical description of mitotic delay, MI of irradiated cells begins to drop in relation to the control, which is plotted as a straight line, uniform throughout the experiment. After the damage is repaired, delayed cells can enter mitosis along with other cells in the pool unaffected by the radiation, resulting in a MI higher than control levels. The span of delay and the occurrence of recovery are assumed to be constant for a given dose and tissue under similar experimental conditions. First described in asynchronously-dividing tissue culture cells, this concept is also extrapolated to the in vivo situation

  20. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  1. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Directory of Open Access Journals (Sweden)

    Elena Beltrán-Heredia

    2017-05-01

    Full Text Available Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force. We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive

  2. Effect of ZnO Nanostructured Thin Films on Pseudomonas Putida Cell Division

    Science.gov (United States)

    Ivanova, I.; Lukanov, A.; Angelov, O.; Popova, R.; Nichev, H.; Mikli, V.; Dimova-Malinovska, Doriana; Dushkin, C.

    In this report we study the interaction between the bacteria Pseudomonas putida and nanostructured ZnO and ZnO:H thin films prepared by magnetron sputtering of a ZnO target. The nanostructured ZnO and ZnO:H thin films possess some biological-active properties when in contact with bacteria. Our experimental data show that these films have no destructive effect on the cell division of Pseudomonas putida in poor liquid medium and can be applied in biosensor devices.

  3. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana).

    Science.gov (United States)

    Jones, A Maxwell P; Chattopadhyay, Abhishek; Shukla, Mukund; Zoń, Jerzy; Saxena, Praveen K

    2012-05-30

    Protoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L.) was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall re-synthesis and cell division. This study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L.) leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 μM), an inhibitor of phenylalanine ammonia lyase (PAL), reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (±3.27) in controls to 65.3% (±4.60). Protoplasts isolated from callus grown in 100 μM AIP developed cell walls by day 2, had a division rate of 28.5% (±3.59) by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose. This study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated protoplasts survived electrofusion and viable heterokaryons were produced. Together

  4. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 → S transition

    International Nuclear Information System (INIS)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P.; Nath, Utpal

    2011-01-01

    Highlights: → TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. → TCP4 expression in yeast retards cell division by blocking G1 → S transition. → Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 → S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 → S arrest is discussed.

  6. Visualizing Stable Features in Live Cell Nucleus for Evaluation of the Cell Global Motion Compensation

    Czech Academy of Sciences Publication Activity Database

    Sorokin, D.V.; Suchánková, Jana; Bártová, Eva; Matula, P.

    2014-01-01

    Roč. 60, č. 1 (2014), s. 45-49 ISSN 0015-5500 R&D Projects: GA ČR GBP302/12/G157; GA MŠk(CZ) EE2.3.30.0030 Institutional support: RVO:68081707 Keywords : cell global motion compensation * UV laser bleaching * image registration Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  7. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  8. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2008-07-01

    Full Text Available Abstract Background The origin of the nucleus is a central problem about the origin of eukaryotes. The common ancestry of nuclear pore complexes (NPC and vesicle coating complexes indicates that the nucleus evolved via the modification of a pre-existing endomembrane system. Such an autogenous scenario is cell biologically feasible, but it is not clear what were the selective or neutral mechanisms that had led to the origin of the nuclear compartment. Results A key selective force during the autogenous origin of the nucleus could have been the need to segregate ribosome factories from the cytoplasm where ribosomal proteins (RPs of the protomitochondrium were synthesized. After its uptake by an anuclear cell the protomitochondrium transferred several of its RP genes to the host genome. Alphaproteobacterial RPs and archaebacterial-type host ribosomes were consequently synthesized in the same cytoplasm. This could have led to the formation of chimeric ribosomes. I propose that the nucleus evolved when the host cell compartmentalised its ribosome factories and the tightly linked genome to reduce ribosome chimerism. This was achieved in successive stages by first evolving karyopherin and RanGTP dependent chaperoning of RPs, followed by the evolution of a membrane network to serve as a diffusion barrier, and finally a hydrogel sieve to ensure selective permeability at nuclear pores. Computer simulations show that a gradual segregation of cytoplasm and nucleoplasm via these steps can progressively reduce ribosome chimerism. Conclusion Ribosome chimerism can provide a direct link between the selective forces for and the mechanisms of evolving nuclear transport and compartmentalisation. The detailed molecular scenario presented here provides a solution to the gradual evolution of nuclear compartmentalization from an anuclear stage. Reviewers This article was reviewed by Eugene V Koonin, Martijn Huynen, Anthony M. Poole and Patrick Forterre.

  9. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Directory of Open Access Journals (Sweden)

    Xiangyi Kong

    Full Text Available Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI treatment cycles, n = 799 were classified as follows: less than 5 cells (10C; n = 42. Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively. In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas 10C. In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  10. ATP-binding cassette G-subfamily transporter 2 regulates cell cycle progression and asymmetric division in mouse cardiac side population progenitor cells.

    Science.gov (United States)

    Sereti, Konstantina-Ioanna; Oikonomopoulos, Angelos; Unno, Kazumasa; Cao, Xin; Qiu, Yiling; Liao, Ronglih

    2013-01-04

    After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously have found that the cell surface ATP-binding cassette G-subfamily transporter 2 (Abcg2) influences the proliferation of cardiac side population (CSP) progenitor cells, but through unclear mechanisms. To determine the role of Abcg2 on cell cycle progression and mode of division in mouse CSP cells. Herein, using CSP cells isolated from wild-type and Abcg2 knockout mice, we found that Abcg2 regulates G1-S cell cycle transition by fluorescence ubiquitination cell cycle indicators, cell cycle-focused gene expression arrays, and confocal live-cell fluorescent microscopy. Moreover, we found that modulation of cell cycle results in transition from symmetric to asymmetric cellular division in CSP cells lacking Abcg2. Abcg2 modulates CSP cell cycle progression and asymmetric cell division, establishing a mechanistic link between this surface transporter and cardiac progenitor cell function. Greater understanding of progenitor cell biology and, in particular, the regulation of resident progenitor cell homeostasis is vital for guiding the future development of cell-based therapies for cardiac regeneration.

  11. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    International Nuclear Information System (INIS)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-01

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  12. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Gongming [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Shen, Nan [Department of Clinical Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Jiang, Xuefeng; Sun, Huiqing [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Xu, Nanwei; Zhou, Dong [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Nong, Luming, E-mail: lumingnong@hotmail.com [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Ren, Kewei, E-mail: keweiren@hotmail.com [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China)

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  13. Notochordal-cell derived extracellular vesicles exert regenerative effects on canine and human nucleus pulposus cells.

    Science.gov (United States)

    Bach, Frances; Libregts, Sten; Creemers, Laura; Meij, Björn; Ito, Keita; Wauben, Marca; Tryfonidou, Marianna

    2017-10-24

    During intervertebral disc ageing, chondrocyte-like cells (CLCs) replace notochordal cells (NCs). NCs have been shown to induce regenerative effects in CLCs. Since vesicles released by NCs may be responsible for these effects, we characterized NC-derived extracellular vesicles (EVs) and determined their effect on CLCs. EVs were purified from porcine NC-conditioned medium (NCCM) through size exclusion chromatography, ultracentrifugation or density gradient centrifugation. Additionally, the EVs were quantitatively analyzed by high-resolution flow cytometry. The effect of NCCM-derived EVs was studied on canine and human CLC micro-aggregates in vitro and compared with NCCM-derived proteins and unfractionated NCCM. Porcine NCCM contained a considerable amount of EVs. NCCM-derived EVs induced GAG deposition in canine CLCs to a comparable level as NCCM-derived proteins and unfractionated NCCM, and increased the DNA and glycosaminoglycan (GAG) content of human micro-aggregates, although to a lesser extent than unfractionated NCCM. The biological EV effects were not considerably influenced by ultracentrifugation compared with size exclusion-based purification. Upon ultracentrifugation, interfering GAGs, but not collagens, were lost. Nonetheless, collagen type I or II supplemented to CLCs in a concentration as present in NCCM induced no anabolic effects. Porcine NCCM-derived EVs exerted anabolic effects comparable to NCCM-derived proteins, while unfractionated NCCM was more potent in human CLCs. GAGs and collagens appeared not to mediate the regenerative EV effects. Thus, NC-derived EVs have regenerative potential, and their effects may be influenced by the proteins present in NCCM. The optimal combination of NC-secreted factors needs to be determined to fully exploit the regenerative potential of NC-based technology.

  14. Al toxicity leads to enhanced cell division and changed photosynthesis in Oryza rufipogon L.

    Science.gov (United States)

    Cao, Yingping; Lou, Yuxia; Han, Yingying; Shi, Jinlei; Wang, Yaofeng; Wang, Wei; Ming, Feng

    2011-11-01

    Oryza rufipogon L. (O. rufipogon) or a common wild rice, showed considerable aluminum (Al) tolerance. In this study, we examined the physiologic and genetic response of wild rice short term and long term to Al toxicity, respectively. In the short term study, morin staining, DAPI staining and aniline blue staining were used to detect Al distribution, cell division and callose production in the roots of O. rufipogon. The results indicated cell division could be enhanced by Al within low concentration range. In the long term study, we chose Oryza sativa L (O. sativa) (the close sib of O. rufipogon) as a reference. It showed that O. rufipogon grew better than O. sativa when treated with Al of 1.4 mmol/l concentration and also experienced a short period of root growth stimulation. This study gave some basic data to explain the mechanisms Oryza rufipogon L. developed to deal with Al and lay a good foundation to further study. SSH (suppression subtractive hybridization) proved that transcripts of the small subunit of Rubisco and a Photosystem I P700 apoprotein were enhanced under long term Al treatment in wild rice. Further investigation via the assessment of the content of chlorophyll a, b indicated that the content of chlorophyll a, b in the leaves of O. rufipogon generally rose after Al treatment for 15 days. This indicated that intake of Al can affect photosynthesis of plant.

  15. A complex cell division machinery was present in the last common ancestor of eukaryotes.

    Directory of Open Access Journals (Sweden)

    Laura Eme

    Full Text Available BACKGROUND: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure or analogous (have distinct evolutionary origins. Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. METHODOLOGY/PRINCIPAL FINDINGS: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95% are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins were already present in the last common ancestor of all eukaryotes (LECA and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a complex ancestor for all contemporary eukaryotes.

  16. Thalamocortical projection from the parafascicular nucleus to layer V pyramidal cells in frontal and cingulate areas of the rat.

    Science.gov (United States)

    Marini, G; Pianca, L; Tredici, G

    1996-01-19

    Thalamocortical projections originating from the parafascicular nucleus were reinvestigated using biocytin or biotylinated dextran amine as anterograde tracers in the rat. After stereotaxic injection of the marker in the lateral part of the parafascicular nucleus, labelled ascending fibres were observed running ipsilaterally to the frontal motor and anterior cingulate areas. Labelled fibres gave rise in layer VI to a plexus of thin ramifications ending in layer V, where sparse boutons en passant and terminaux were seen in close apposition to pyramidal cells. Few retrogradely labelled pyramidal somata, contacted by labelled varicosities, were also observed. Electron microscopy demonstrated the synaptic nature of the labelled contacts, displaying asymmetrical junctions and a round vesicular content. The direct loop parafascicular-motor cortex-parafascicular may be of great functional significance in motor control.

  17. Effect of capric, lauric and alpha-linolenic acids on the division time distributions of single cells of Staphylococcus aureus.

    Science.gov (United States)

    Sado Kamdem, S; Guerzoni, M E; Baranyi, J; Pin, C

    2008-11-30

    The effect of non-inhibitory concentrations of capric, lauric and alpha-linolenic acids (C10:0, C12:0 and C18:3 respectively) on the division time distribution of single cells of Staphylococcus aureus was evaluated at pH 7 and pH 5. The effect of the initial cell concentration on the lag time of growing cell populations was also assessed. The statistical properties of the division times (defined as the time interval from birth to next binary fission for a single cell) were studied using the method of Elfwing et al. [Elfwing, A., Le Marc, Y., Baranyi, J., Ballagi, A., 2004. Observing the growth and division of large number of individual bacteria using image analysis. Applied and Environmental Microbiology 70, 675-678]. The division times were significantly longer in the presence of free fatty acids than in the control. Shorter division intervals were detected at pH 7 than at pH 5 in the control experiment and in the presence of C10:0. However, both C12:0 and C18:3 slowed down the growth, regardless of the pH. The observed division time distributions were used to simulate growth curves from different inoculum sizes using the stochastic birth process described by Pin and Baranyi [Pin, C., Baranyi, J., 2006. Kinetics of single cells: observation and modelling of a stochastic process. Applied and Environmental Microbiology 72, 2163-2169]. The output of the simulation results were compared with observed data. The lag times fitted to simulated growth curves were in good agreement with those fitted to growth curves measured by plate counts. The averaged out effect of the population masked the effect of the free fatty acids and pH on the division times of single cells.

  18. The Evolution of Cell Division: From Streptophyte Algae to Land Plants.

    Science.gov (United States)

    Buschmann, Henrik; Zachgo, Sabine

    2016-10-01

    The mechanism of cell division has undergone significant alterations during the evolution from aquatic streptophyte algae to land plants. Two new structures evolved, the cytokinetic phragmoplast and the preprophase band (PPB) of microtubules, whereas the ancestral mechanism of cleavage and the centrosomes disappeared. We map cell biological data onto the recently emerged phylogenetic tree of streptophytes. The tree suggests that, after the establishment of the phragmoplast mechanism, several groups independently lost their centrosomes. Surprisingly, the phragmoplast shows reductions in the Zygnematophyceae (the sister to land plants), many of which returned to cleavage. The PPB by contrast evolved stepwise and, most likely, originated in the algae. The phragmoplast/PPB mechanism established in this way served as a basis for the 3D development of land plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. PTEN regulates PLK1 and controls chromosomal stability during cell division

    Science.gov (United States)

    Zhang, Zhong; Hou, Sheng-Qi; He, Jinxue; Gu, Tingting; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    ABSTRACT PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division. PMID:27398835

  20. Behavioral detectability of single-cell stimulation in the ventral posterior medial nucleus of the thalamus

    NARCIS (Netherlands)

    B.C. Voigt (Birgit); M. Brecht (Michael); A.R. Houweling (Arthur)

    2008-01-01

    textabstractIn mammals, most sensory information passes through the thalamus before reaching cortex. In the rat whisker system, each macrovibrissa is represented by ∼250 neurons in the ventral posterior medial nucleus (VPM) of the thalamus and ∼10,000 neurons in a cortical barrel column. Here we

  1. Grafted fetal suprachiasmatic nucleus cells survive much better in tissue pieces than in suspension

    NARCIS (Netherlands)

    Boer, G. J.; Griffioen, H. A.; Saeed, P.

    1992-01-01

    A comparison was made between the survival of fetal suprachiasmatic nucleus (SCN) grafted either in tissue pieces or as tissue suspension. Donor tissue was obtained from day 15, 16 or 17 Wistar fetuses, and stereotaxically placed in the dorsal thalamus of the brain of vasopressin(VP)-deficient

  2. Ouabain affects cell migration via Na,K-ATPase-p130cas and via nucleus-centrosome association.

    Directory of Open Access Journals (Sweden)

    Young Ou

    Full Text Available Na,K-ATPase is a membrane protein that catalyzes ATP to maintain transmembrane sodium and potassium gradients. In addition, Na,K-ATPase also acts as a signal-transducing receptor for cardiotonic steroids such as ouabain and activates a number of signalling pathways. Several studies report that ouabain affects cell migration. Here we used ouabain at concentrations far below those required to block Na,K-ATPase pump activity and show that it significantly reduced RPE cell migration through two mechanisms. It causes dephosphorylation of a 130 kD protein, which we identify as p130cas. Src is involved, because Src inhibitors, but not inhibitors of other kinases tested, caused a similar reduction in p130cas phosphorylation and ouabain increased the association of Na,K-ATPase and Src. Knockdown of p130cas by siRNA reduced cell migration. Unexpectedly, ouabain induced separation of nucleus and centrosome, also leading to a block in cell migration. Inhibitor and siRNA experiments show that this effect is mediated by ERK1,2. This is the first report showing that ouabain can regulate cell migration by affecting nucleus-centrosome association.

  3. Toxoplasma exports dense granule proteins beyond the vacuole to the host cell nucleus and rewires the host genome expression.

    Science.gov (United States)

    Bougdour, Alexandre; Tardieux, Isabelle; Hakimi, Mohamed-Ali

    2014-03-01

    Toxoplasma gondii is the most widespread apicomplexan parasite and occupies a large spectrum of niches by infecting virtually any warm-blooded animals. As an obligate intracellular parasite, Toxoplasma has evolved a repertoire of strategies to fine-tune the cellular environment in an optimal way to promote growth and persistence in host tissues hence increasing the chance to be transmitted to new hosts. Short and long-term intracellular survival is associated with Toxoplasma ability to both evade the host deleterious immune defences and to stimulate a beneficial immune balance by governing host cell gene expression. It is only recently that parasite proteins responsible for driving these transcriptional changes have been identified. While proteins contained in the apical secretory Rhoptry organelle have already been identified as bona fide secreted effectors that divert host signalling pathways, recent findings revealed that dense granule proteins should be added to the growing list of effectors as they reach the host cell cytoplasm and nucleus and target various host cell pathways in the course of cell infection. Herein, we emphasize on a novel subfamily of dense granule residentproteins, exemplified with the GRA16 and GRA24 members we recently discovered as both are exported beyond the vacuole-containing parasites and reach the host cell nucleus to reshape the host genome expression. © 2013 John Wiley & Sons Ltd.

  4. Let's get fISSical: fast in silico synchronization as a new tool for cell division cycle analysis.

    Science.gov (United States)

    Morriswood, Brooke; Engstler, Markus

    2018-02-01

    Cell cycle progression is a question of fundamental biological interest. The coordinated duplication and segregation of all cellular structures and organelles is however an extremely complex process, and one which remains only partially understood even in the most intensively researched model organisms. Trypanosomes are in an unusual position in this respect - they are both outstanding model systems for fundamental questions in eukaryotic cell biology, and pathogens that are the causative agents of three of the neglected tropical diseases. As a failure to successfully complete cell division will be deleterious or lethal, analysis of the cell division cycle is of relevance both to basic biology and drug design efforts. Cell division cycle analysis is however experimentally challenging, as the analysis of phenotypes associated with it remains hypothesis-driven and therefore biased. Current methods of analysis are extremely labour-intensive, and cell synchronization remains difficult and unreliable. Consequently, there exists a need - both in basic and applied trypanosome biology - for a global, unbiased, standardized and high-throughput analysis of cell division cycle progression. In this review, the requirements - both practical and computational - for such a system are considered and compared with existing techniques for cell cycle analysis.

  5. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes

    NARCIS (Netherlands)

    Lazaro-Dieguez, Francisco; Cohen, David; Fernandez, Dawn; Hodgson, Louis; van IJzendoorn, Sven C. D.; Muesch, Anne

    2013-01-01

    Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal

  6. Role of cell division and self-propulsion in self-organization of 2D cell co-cultures

    Science.gov (United States)

    Das, Moumita; Dey, Supravat; Wu, Mingming; Ma, Minglin

    Self-organization of cells is a key process in developmental and cancer biology. The differential adhesion hypothesis (DAH), which assumes cells as equilibrium liquid droplets and relates the self-assembly of cells to differences in inter-cellular adhesiveness, has been very successful in explaining cellular organization during morphogenesis where neighboring cells have the same non-equilibrium properties (motility, proliferation rate). However, recently it has been experimentally shown that for a co-culture of two different cell types proliferating at different rates, the resulting spatial morphologies cannot be explained using the DAH alone. Motivated by this, we develop and study a two-dimensional model of a cell co-culture that includes cell division and self-propulsion in addition to cell-cell adhesion, and systemically study how cells with significantly different adhesion, motility, and proliferation rate dynamically organize themselves in a spatiotemporal and context-dependent manner. Our results may help to understand how differential equilibrium and non-equilibrium properties cooperate and compete leading to different morphologies during tumor development, with important consequences for invasion and metastasis

  7. Downregulation of cell division cycle 25 homolog C reduces the radiosensitivity and proliferation activity of esophageal squamous cell carcinoma.

    Science.gov (United States)

    Yin, Yachao; Dou, Xiaoyan; Duan, Shimiao; Zhang, Lei; Xu, Quanjing; Li, Hongwei; Li, Duojie

    2016-09-30

    Radiation therapy is one of the most important methods of contemporary cancer treatment. Cells in the G2 and M phases are more sensitive to radiation therapy, and cell division cycle 25 homolog C (CDC25C) is essential in shifting the cell cycle between these two phases. In this study, the knockdown of CDC25C in human esophageal squamous carcinoma EC9706 cells was mediated by transfecting shRNA against human CDC25C-subcloning into pGV248. The levels of CDC25C mRNA and protein expression were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting, respectively. Moreover, cell proliferation and radiosensitivity were measured. Stable CDC25C-knockdown EC9706 cell lines were successfully established. Furthermore, the proliferation of both control and CDC25C-shRNA-EC9706 cells was inhibited after the cells were treated with increasing X-ray doses, and the proliferation of the control cells was affected more significantly (pcell colony formation assays allowed us to reach the same conclusion. Taken together, our experiments demonstrated that the knockdown of CDC25C can reduce both the radiotherapy sensitivity and the proliferation activity of EC9706 cells. Thus, CDC25C might be a potential biomarker for radiotherapy treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism.

    Science.gov (United States)

    Steinhauser, Matthew L; Bailey, Andrew P; Senyo, Samuel E; Guillermier, Christelle; Perlstein, Todd S; Gould, Alex P; Lee, Richard T; Lechene, Claude P

    2012-01-15

    Mass spectrometry with stable isotope labels has been seminal in discovering the dynamic state of living matter, but is limited to bulk tissues or cells. We developed multi-isotope imaging mass spectrometry (MIMS) that allowed us to view and measure stable isotope incorporation with submicrometre resolution. Here we apply MIMS to diverse organisms, including Drosophila, mice and humans. We test the 'immortal strand hypothesis', which predicts that during asymmetric stem cell division chromosomes containing older template DNA are segregated to the daughter destined to remain a stem cell, thus insuring lifetime genetic stability. After labelling mice with (15)N-thymidine from gestation until post-natal week 8, we find no (15)N label retention by dividing small intestinal crypt cells after a four-week chase. In adult mice administered (15)N-thymidine pulse-chase, we find that proliferating crypt cells dilute the (15)N label, consistent with random strand segregation. We demonstrate the broad utility of MIMS with proof-of-principle studies of lipid turnover in Drosophila and translation to the human haematopoietic system. These studies show that MIMS provides high-resolution quantification of stable isotope labels that cannot be obtained using other techniques and that is broadly applicable to biological and medical research.

  9. The Drosophila NuMA Homolog Mud regulates spindle orientation in asymmetric cell division.

    Science.gov (United States)

    Bowman, Sarah K; Neumüller, Ralph A; Novatchkova, Maria; Du, Quansheng; Knoblich, Juergen A

    2006-06-01

    During asymmetric cell division, the mitotic spindle must be properly oriented to ensure the asymmetric segregation of cell fate determinants into only one of the two daughter cells. In Drosophila neuroblasts, spindle orientation requires heterotrimeric G proteins and the G alpha binding partner Pins, but how the Pins-G alphai complex interacts with the mitotic spindle is unclear. Here, we show that Pins binds directly to the microtubule binding protein Mud, the Drosophila homolog of NuMA. Like NuMA, Mud can bind to microtubules and enhance microtubule polymerization. In the absence of Mud, mitotic spindles in Drosophila neuroblasts fail to align with the polarity axis. This can lead to symmetric segregation of the cell fate determinants Brat and Prospero, resulting in the mis-specification of daughter cell fates and tumor-like over proliferation in the Drosophila nervous system. Our data suggest a model in which asymmetrically localized Pins-G alphai complexes regulate spindle orientation by directly binding to Mud.

  10. Subcellular localization of adenosine kinase in mammalian cells: The long isoform of AdK is localized in the nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xianying Amy; Singh, Bhag; Park, Jae [Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ont., Canada L8N3Z5 (Canada); Gupta, Radhey S., E-mail: gupta@mcmaster.ca [Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ont., Canada L8N3Z5 (Canada)

    2009-10-09

    Two isoforms of adenosine kinase (AdK) have been identified in mammalian organisms with the long isoform (AdK-long) containing extra 20-21 amino acids at the N-terminus (NTS). The subcellular localizations of these isoforms are not known and they contain no identifiable targeting sequence. Immunofluorescence labeling of mammalian cells expressing either only AdK-long or both isoforms with AdK-specific antibody showed only nuclear labeling or both nucleus and cytoplasmic labeling, respectively. The AdK-long and -short isoforms fused at the C-terminus with c-myc epitope also localized in the nucleus and cytoplasm, respectively. Fusion of the AdK-long NTS to green fluorescent protein also resulted in its nuclear localization. AdK-long NTS contains a cluster of conserved amino acids (PKPKKLKVE). Replacement of KK in this sequence with either AA or AD abolished its nuclear localization capability, indicating that this cluster likely serves as a nuclear localization signal. AdK in nucleus is likely required for sustaining methylation reactions.

  11. Assessment of the Nucleus-to-Cytoplasmic Ratio in MCF-7 Cells Using Ultra-high Frequency Ultrasound and Photoacoustics

    Science.gov (United States)

    Moore, M. J.; Strohm, E. M.; Kolios, M. C.

    2016-12-01

    The nucleus-to-cytoplasmic (N:C) ratio of a cell is often used when assessing histology for the presence of malignant disease. In this proof of concept study, we present a new, non-optical method for determination of the N:C ratio using ultra-high Frequency ultrasound (US) and photoacoustics (PA). When using transducers in the 100 MHz-500 MHz range, backscattered US pulses and emitted PA waves are encoded with information pertaining to the dimension and morphology of micron-sized objects. If biological cells are interrogated, the diameter of the scattering or absorbing structure can be assessed by fitting the power spectra of the measured US or PA signals to theoretical models for US backscatter and PA emission from a fluid sphere. In this study, the cell and nucleus diameters of 9 MCF-7 breast cancer cells were determined using a new simplified model that calculates the theoretical values of the location of the power spectra minima for both US and PA signals. These diameters were then used to calculate the N:C ratio of the measured cells. The average cell diameter determined by US pulses from a transducer with a central frequency of 375 MHz was found to be 15.5 μ m± 1.8 μ m. The PA waves emitted by the cell nuclei were used to determine an average nuclear diameter of 12.0 μ m± 1.3 μ m. The N:C ratio for these cells was calculated to be 1.9± 1.0, which agrees well with previously reported N:C values for this cell type.

  12. Changes in the expression of human cell division autoantigen-1 influence Toxoplasma gondii growth and development.

    Directory of Open Access Journals (Sweden)

    Jay R Radke

    2006-10-01

    Full Text Available Toxoplasma is a significant opportunistic pathogen in AIDS, and bradyzoite differentiation is the critical step in the pathogenesis of chronic infection. Bradyzoite development has an apparent tropism for cells and tissues of the central nervous system, suggesting the need for a specific molecular environment in the host cell, but it is unknown whether this environment is parasite directed or the result of molecular features specific to the host cell itself. We have determined that a trisubstituted pyrrole acts directly on human and murine host cells to slow tachyzoite replication and induce bradyzoite-specific gene expression in type II and III strain parasites but not type I strains. New mRNA synthesis in the host cell was required and indicates that novel host transcripts encode signals that were able to induce parasite development. We have applied multivariate microarray analyses to identify and correlate host gene expression with specific parasite phenotypes. Human cell division autoantigen-1 (CDA1 was identified in this analysis, and small interfering RNA knockdown of this gene demonstrated that CDA1 expression causes the inhibition of parasite replication that leads subsequently to the induction of bradyzoite differentiation. Overexpression of CDA1 alone was able to slow parasite growth and induce the expression of bradyzoite-specific proteins, and thus these results demonstrate that changes in host cell transcription can directly influence the molecular environment to enable bradyzoite development. Investigation of host biochemical pathways with respect to variation in strain type response will help provide an understanding of the link(s between the molecular environment in the host cell and parasite development.

  13. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin

    2004-01-01

    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  14. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  15. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo.

    Directory of Open Access Journals (Sweden)

    Åsmund H Eikenes

    2015-01-01

    Full Text Available Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.

  16. Cell division cycle-associated protein 1 as a new melanoma-associated antigen.

    Science.gov (United States)

    Tokuzumi, Aki; Fukushima, Satoshi; Miyashita, Azusa; Nakahara, Satoshi; Kubo, Yosuke; Yamashita, Junji; Harada, Miho; Nakamura, Kayo; Kajihara, Ikko; Jinnin, Masatoshi; Ihn, Hironobu

    2016-12-01

    Immune checkpoint inhibitors have increased the median survival of melanoma patients. To improve their effects, antigen-specific therapies utilizing melanoma-associated antigens should be developed. Cell division cycle-associated protein 1 (CDCA1), which has a specific function at the kinetochores for stabilizing microtubule attachment, is overexpressed in various cancers. CDCA1, which is a member of cancer-testis antigens, does not show detectable expression levels in normal tissues. Quantitative reverse transcription polymerase chain reaction and immunoblotting analyses revealed that CDCA1 was expressed in all of the tested melanoma cell lines, 74% of primary melanomas, 64% of metastatic melanomas and 25% of nevi. An immunohistochemical analysis and a Cox proportional hazards model showed that CDCA1 could be a prognostic marker in malignant melanoma (MM) patients. CDCA1-specific siRNA inhibited the cell proliferation of SKMEL2 and WM115 cells, but did not reduce the migration or invasion activity. These results suggest that CDCA1 may be a new therapeutic target of melanoma. © 2016 Japanese Dermatological Association.

  17. Three-dimensional reconstruction of Trypanosoma cruzi epimastigotes and organelle distribution along the cell division cycle.

    Science.gov (United States)

    Ramos, Thiago Cesar Prata; Freymüller-Haapalainen, Edna; Schenkman, Sergio

    2011-07-01

    Trypanosoma cruzi is the protozoan that causes Chagas disease. It divides in the insect vector gut or in the cytosol of an infected mammalian cell. T. cruzi has one mitochondrion, one Golgi complex, one flagellum, and one cytostome. Here, we provide three-dimensional (3D) models of this protozoan based on images obtained from serial sections on electron microscopy at different stages of the cell cycle. Ultrathin serial sections were obtained from Epon™ embedded parasites, photographed in a transmission electron microscope, and 3D models were generated using Reconstruct and Blender 3D modeling softwares. The localization and distribution of organelles was evaluated and attributed to specific morphological patterns and deduced by distribution of specific markers by immunofluorescence analysis. The new features found in the 3D reconstructions are (1) the electron-dense chromatin is interconnected leaving an internal space for a centrally located nucleolus; (2) The kinetoplast is accommodated within a separated branch of the tubular and single mitochondrion; (3) The disk shaped kinetoplast, which is the mitochondrial DNA, duplicates from the interior in G2 phase; (4) The mitochondrion faces the external membrane and shrinks to accommodate an enlarged number of cytosolic vesicles from G1 to G2; (5) The cytostome progress from the parasite surface toward the posterior end contouring the kinetoplast and nucleus and retracts during cell cycle. These new observations might help understanding how organelles are formed and distributed in early divergent eukaryotic cells and provides a useful method to understand the organelle distribution in small eukaryotic cells. Copyright © 2011 International Society for Advancement of Cytometry.

  18. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    Science.gov (United States)

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  19. Radiation effects on cultured mouse embryos in relation to cell division cycle

    International Nuclear Information System (INIS)

    Domon, M.

    1982-01-01

    The authors have worked with mouse embryos in vitro asking first, what are the suitable parameters to define the radiation sensitivity of embryos, and second what is a major factor determining it. The LD 50 was adopted as a parameter of the radiation sensitivity of a population in a mouse embryo system in culture. The fertilized ova were collected into Whitten's medium at various times during the pronuclear and 2-cell stages of development. They were irradiated in chambers with X-rays at doses of 0 to 800 rads. After the embryos were cultured, a set of the lethal fractions for various X-ray doses were obtained. Regarding the radiation sensitivity variation of the embryos, the LD 50 varied from 100 to 200 rads during the pronuclear stage and from 100 to 600 rads during the 2-cell stage. The embryos during the pronuclear stage were most radioresistant at early G 2 phase, followed by an increase in the sensitivity. The embryos during the 2-cell stage were also most radioresistant at early G 2 phase and were more sensitive when they got close to either the first or the second cleavage division. Furthermore, it seems that the factor 6 of the large variation was due to the extremely long G 2 period, 14 hrs for the 2-cell embryos. That is, the pooled 2-cell embryos were in a relative sense well synchronized with G 2 phase. In contrast, the synchrony was poor during the pronuclear stage, which led to less variation of the LD 50 for the pronuclear embryos. It is concluded that during the early cleavage stages of mice, radiosensitivity is mainly governed by the content of cells of various cell cycle ages in the embryo. (Namekawa, K.)

  20. SU-E-T-494: Influence of Proton Track-Cell Nucleus Incidence Angle On Relative Biological Effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Pater, P; Backstrom, G; Enger, S; Seuntjens, J; El Naqa, I [McGill University, Montreal, Quebec (Canada); Villegas, F; Ahnesjo, A [Uppsala University, Uppsala (Sweden)

    2015-06-15

    Purpose: To explain a Monte Carlo (MC) simulation artifact whereby differences in relative biological effectiveness (RBE) in the induction of initial double strand breaks are observed as a function of the proton track incidence angles in a geometric cell nucleus model. Secondly, to offer an alternative isotropic irradiation procedure to mitigate this effect. Methods: MC tracks of 1 MeV protons were generated in an event-by-event mode. They were overlaid on a cylindrical model of a cell nucleus containing 6×109 nucleotide base pairs. The tracks incidence angle θ with respect to the cell nucleus’s axis was varied in 10 degrees intervals, each time generating one hundred fractions of ∼2 Gy. Strand breaks were scored in the modeled DNA sugar-phosphate groups and further sub-classified into single or double strand breaks (ssbs or dsbs). For each angle, an RBE for the induction of initial dsbs with reference to Co-60 was calculated. Results: Our results show significant angular dependencies of RBE, with maximum values for incidence angles parallel to the nucleus central axis. Further examination shows that the higher cross-sections for the creation of dsbs is due to the preferential alignment of tracks with geometrical sub-parts of the cell nucleus model, especially the nucleosomes containing the sugar-phosphate groups. To alleviate the impact of this simulation artifact, an average RBE was calculated with a procedure based on a weighted sampling of the angular data. Conclusion: This work demonstrates a possible numerical artifact in estimated RBE if the influence of the particle incidence angle is not correctly taken into account. A correction procedure is presented to better conform the simulations to real-life experimental conditions. We would like to acknowledge support from the Fonds de recherche du Quebec Sante (FRQS), from the CREATE Medical Physics Research Training Network grant (number 432290) of NSERC, support from NSERC under grants RGPIN 397711-11 and

  1. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, V.; Rülicke, T.; Rathkolb, B.; Hans, W.; Bohla, A.; Eickelberg, O.; Stoeger, T.; Wolf, E.; Yildirim, A.Ö.; Gailus-Durner, V.; Fuchs, H.; de Angelis, M.H.; Hozák, Pavel

    2013-01-01

    Roč. 8, č. 4 (2013), e61406 E-ISSN 1932-6203 R&D Projects: GA ČR GAP305/11/2232; GA TA ČR TE01020022; GA MŠk LH12143; GA ČR(CZ) GD204/09/H084 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : nuclear myosin * myosin isoforms * cell nucleus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  2. A Vivens Ex Vivo Study on the Synergistic Effect of Electrolysis and Freezing on the Cell Nucleus.

    Science.gov (United States)

    Lugnani, Franco; Zanconati, Fabrizio; Marcuzzo, Thomas; Bottin, Cristina; Mikus, Paul; Guenther, Enric; Klein, Nina; Rubinsky, Liel; Stehling, Michael K; Rubinsky, Boris

    2015-01-01

    Freezing-cryosurgery, and electrolysis-electrochemical therapy (EChT), are two important minimally invasive surgery tissue ablation technologies. Despite major advantages they also have some disadvantages. Cryosurgery cannot induce cell death at high subzero freezing temperatures and requires multiple freeze thaw cycles, while EChT requires high concentrations of electrolytic products-which makes it a lengthy procedure. Based on the observation that freezing increases the concentration of solutes (including products of electrolysis) in the frozen region and permeabilizes the cell membrane to these products, this study examines the hypothesis that there could be a synergistic effect between freezing and electrolysis in their use together for tissue ablation. Using an animal model we refer to as vivens ex vivo, which may be of value in reducing the use of animals for experiments, combined with a Hematoxylin stain of the nucleus, we show that there are clinically relevant protocols in which the cell nucleus appears intact when electrolysis and freezing are used separately but is affected by certain combinations of electrolysis and freezing.

  3. Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe.

    Science.gov (United States)

    Egger, Boris; Gold, Katrina S; Brand, Andrea H

    2010-09-01

    The proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashion. This cell fate transition is highly reminiscent of the switch from neuroepithelial cells to radial glial cells in the developing mammalian cerebral cortex. To identify the molecules that mediate the transition, we microdissected neuroepithelial cells and compared their transcriptional profile with similarly obtained optic lobe neuroblasts. We find genes encoding members of the Notch pathway expressed in neuroepithelial cells. We show that Notch mutant clones are extruded from the neuroepithelium and undergo premature neurogenesis. A wave of proneural gene expression is thought to regulate the timing of the transition from neuroepithelium to neuroblast. We show that the proneural wave transiently suppresses Notch activity in neuroepithelial cells, and that inhibition of Notch triggers the switch from symmetric, proliferative division, to asymmetric, differentiative division.

  4. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  5. Correlative analysis on the relationship between PMI and DNA degradation of cell nucleus in human different tissues.

    Science.gov (United States)

    Shu, Xiji; Liu, Yaling; Ren, Liang; He, Fanggang; Zhou, Hongyan; Liu, Lijiang; Liu, Liang

    2005-01-01

    To determining the postmortem interval (PMI) through quantitative analysis of the DNA degradation of cell nucleus in human brain and spleen by using image analysis technique (IAT). The brain and spleen tissues from 32 cadavers with known PMI were collected, subjected to cell smear every 1 h within the first 5-36 h after death, stained by Feulgen-Van's staining, Three indices reflecting DNA in brain cells (astrocytes) and splenic lymphocytes, including integral optical density (IOD), average optical density (AOD), average gray (AG) were measured by employing the mage analysis instrument. The results showed that IOD and AOD declined and AG increased with the prolongation of dead time within 5-36 h. A correlation between the PMI and gray parameters (IOD, AOD and AG) was identified and the corresponding regression equation was obtained. The parameters (IOD, AOD and AG) were proved to be effective quantitative indicators for accurate estimation of PMI within 5-36 h after death.

  6. New perspective for GdNCT. Gd-DTPA reaches the nucleus of glioblastoma cells in culture and in vivo

    International Nuclear Information System (INIS)

    Stasio, G. de; Gilbert, B.; Frazer, B.H.

    2000-01-01

    We investigated the prospects of gadolinium as a neutron capture therapy agent by combining three independent techniques to study the uptake of Gd-DTPA in vitro, in cultured glioblastoma cells, and in vivo, in the glioblastoma tissue sections after injection of Gd-DTPA and tumor extraction. We show that gadolinium not only penetrates the plasma membrane of glioblastoma cells grown in culture, but we also observe a statistically significant higher concentration of Gd in the nucleus relative to the cytoplasm. For the in vivo experiments, Gd-DTPA was administered to 6 glioblastoma patients before neurosurgery. The extracted bioptic tissue was then analyzed with spectromictroscopy, showing Gd localized in the nuclei of glioblastoma cells in 5 patients out of the 6 analyzed. (author)

  7. Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens.

    Science.gov (United States)

    Howell, Matthew; Aliashkevich, Alena; Salisbury, Anne K; Cava, Felipe; Bowman, Grant R; Brown, Pamela J B

    2017-09-01

    Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division. IMPORTANCE A. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies. Copyright © 2017 American Society for Microbiology.

  8. Effect of gamma-irradiation and colchicine on cell division and differentiation of xylem elements in citrus limon juice vesicle cultures

    International Nuclear Information System (INIS)

    Khan, Aysha; Chauhan, Y.S.

    1999-01-01

    The effects of varying doses of gamma irradiation on cell division and cytodifferentiation of tracheary elements in cultured juice vesicles of Citrus limon (L) Burmann var. Assam lemon were investigated. Low radiation doses stimulated cell division and differentiation of xylem fibres, sclereids and tracheids in explants given up to 10 Gy of gamma rays. Although cell division and cytodifferentiation of fibers and sclereids occurred in explants exposed to 150 dose of Gy radiation, the intensity of differentiation was much less than that induced by 10 Gy radiation dose. Amongst the differential elements, tracheids were more sensitive to radiation than fibres and sclereids. The requirement of cell division for differentiation of xylem cells was also studied by using different concentrations of colchicine in Citrus limon juice vesicle cultures. It was found that the low concentrations of colchicine permitted normal cell division and also resulted in normal differentiation of xylem cells; higher colchicine concentration, however, inhibited cell division as well as differentiation and resulted in an abnormal differentiation of tracheary element. A positive correlation between intensity of nucleic acid staining and cell division in both the above-mentioned experiments was qualitatively confirmed by Azur B staining test of nucleic acid. Thus, it was concluded that juice vesicle parenchyma cells go through nucleic acid synthesis, followed by cell division before differentiation. (author)

  9. PDK1 Is a Regulator of Epidermal Differentiation that Activates and Organizes Asymmetric Cell Division

    Directory of Open Access Journals (Sweden)

    Teruki Dainichi

    2016-05-01

    Full Text Available Asymmetric cell division (ACD in a perpendicular orientation promotes cell differentiation and organizes the stratified epithelium. However, the upstream cues regulating ACD have not been identified. Here, we report that phosphoinositide-dependent kinase 1 (PDK1 plays a critical role in establishing ACD in the epithelium. Production of phosphatidyl inositol triphosphate (PIP3 is localized to the apical side of basal cells. Asymmetric recruitment of atypical protein kinase C (aPKC and partitioning defective (PAR 3 is impaired in PDK1 conditional knockout (CKO epidermis. PDK1CKO keratinocytes do not undergo calcium-induced activation of aPKC or IGF1-induced activation of AKT and fail to differentiate. PDK1CKO epidermis shows decreased expression of Notch, a downstream effector of ACD, and restoration of Notch rescues defective expression of differentiation-induced Notch targets in vitro. We therefore propose that PDK1 signaling regulates the basal-to-suprabasal switch in developing epidermis by acting as both an activator and organizer of ACD and the Notch-dependent differentiation program.

  10. Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement

    Science.gov (United States)

    Kalish, Brian T.; Cheadle, Lucas; Hrvatin, Sinisa; Nagy, M. Aurel; Rivera, Samuel; Crow, Megan; Gillis, Jesse; Kirchner, Rory

    2018-01-01

    Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain. PMID:29343640

  11. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.

    Science.gov (United States)

    Anderson-Furgeson, James C; Zupan, John R; Grangeon, Romain; Zambryski, Patricia C

    2016-07-01

    Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several

  13. Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle.

    Science.gov (United States)

    Jackson, Catherine L

    2018-01-01

    When eukaryotic cells divide, they must faithfully segregate not only the genetic material but also their membrane-bound organelles into each daughter cell. To assure correct partitioning of cellular contents, cells use regulatory mechanisms to verify that each stage of cell division has been correctly accomplished before proceeding to the next step. A great deal is known about mechanisms that regulate chromosome segregation during cell division, but we know much less about the mechanisms by which cellular organelles are partitioned, and how these processes are coordinated. The Golgi apparatus, the central sorting and modification station of the secretory pathway, disassembles during mitosis, a process that depends on Arf1 and its regulators and effectors. Prior to total disassembly, the Golgi ribbon in mammalian cells, composed of alternating cisternal stacks and tubular networks, undergoes fission of the tubular networks to produce individual stacks. Failure to carry out this unlinking leads to cell division arrest at late G2 prior to entering mitosis, an arrest that can be relieved by inhibition of Arf1 activation. The level of active Arf1-GTP drops during mitosis, due to inactivation of the major Arf1 guanine nucleotide exchange factor at the Golgi, GBF1. Expression of constitutively active Arf1 prevents Golgi disassembly, and leads to defects in chromosome segregation and cytokinesis. In this review, we describe recent advances in understanding the functions of Arf1 regulators and effectors in the crosstalk between Golgi structure and cell cycle regulation.

  14. Activators and Effectors of the Small G Protein Arf1 in Regulation of Golgi Dynamics During the Cell Division Cycle

    Directory of Open Access Journals (Sweden)

    Catherine L. Jackson

    2018-03-01

    Full Text Available When eukaryotic cells divide, they must faithfully segregate not only the genetic material but also their membrane-bound organelles into each daughter cell. To assure correct partitioning of cellular contents, cells use regulatory mechanisms to verify that each stage of cell division has been correctly accomplished before proceeding to the next step. A great deal is known about mechanisms that regulate chromosome segregation during cell division, but we know much less about the mechanisms by which cellular organelles are partitioned, and how these processes are coordinated. The Golgi apparatus, the central sorting and modification station of the secretory pathway, disassembles during mitosis, a process that depends on Arf1 and its regulators and effectors. Prior to total disassembly, the Golgi ribbon in mammalian cells, composed of alternating cisternal stacks and tubular networks, undergoes fission of the tubular networks to produce individual stacks. Failure to carry out this unlinking leads to cell division arrest at late G2 prior to entering mitosis, an arrest that can be relieved by inhibition of Arf1 activation. The level of active Arf1-GTP drops during mitosis, due to inactivation of the major Arf1 guanine nucleotide exchange factor at the Golgi, GBF1. Expression of constitutively active Arf1 prevents Golgi disassembly, and leads to defects in chromosome segregation and cytokinesis. In this review, we describe recent advances in understanding the functions of Arf1 regulators and effectors in the crosstalk between Golgi structure and cell cycle regulation.

  15. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    Science.gov (United States)

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  16. Evolutionary transition towards permanent chloroplasts? - Division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Pernille Møller Rusterholz

    Full Text Available Species within the marine toxic dinoflagellate genus Dinophysis are phagotrophic organisms that exploit chloroplasts (kleptochloroplasts from other protists to perform photosynthesis. Dinophysis spp. acquire the kleptochloroplasts from the ciliate Mesodinium rubrum, which in turn acquires the chloroplasts from a unique clade of cryptophytes. Dinophysis spp. digest the prey nuclei and all other cell organelles upon ingestion (except the kleptochloroplasts and they are therefore believed to constantly acquire new chloroplasts as the populations grow. Previous studies have, however, indicated that Dinophysis can keep the kleptochloroplasts active during long term starvation and are able to produce photosynthetic pigments when exposed to prey starvation. This indicates a considerable control over the kleptochloroplasts and the ability of Dinophysis to replicate its kleptochloroplasts was therefore re-investigated in detail in this study. The kleptochloroplasts of Dinophysis acuta and Dinophysis acuminata were analyzed using confocal microscopy and 3D bioimaging software during long term starvation experiments. The cell concentrations were monitored to confirm cell divisions and samples were withdrawn each time a doubling had occurred. The results show direct evidence of kleptochloroplastidic division and that the decreases in total kleptochloroplast volume, number of kleptochloroplasts and number of kleptochloroplast centers were not caused by dilution due to cell divisions. This is the first report of division of kleptochloroplasts in any protist without the associated prey nuclei. This indicates that Dinophysis spp. may be in a transitional phase towards possessing permanent chloroplasts, which thereby potentially makes it a key organism to understand the evolution of phototrophic protists.

  17. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae

    Czech Academy of Sciences Publication Activity Database

    Holečková, Nela; Doubravová, Linda; Massidda, Orietta; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2015-01-01

    Roč. 6, č. 1 (2015), s. 1-13 ISSN 2150-7511 R&D Projects: GA ČR GAP207/12/1568; GA ČR GAP302/12/0256 Institutional support: RVO:61388971 Keywords : cell division * septum placement * Streptococcus pneumoniae Subject RIV: EE - Microbiology, Virology Impact factor: 6.975, year: 2015

  18. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens.

    Directory of Open Access Journals (Sweden)

    Beate Hoffmann

    Full Text Available In vascular plants, strigolactones (SLs are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investigated the effect of exogenously added molecules (SLs or analogs in moss growth media. We used the previously characterized Ppccd8 mutant that is deficient in SL synthesis and showed that SLs affect moss protonema extension by reducing caulonema cell elongation and mainly cell division rate, both in light and dark conditions. Based on this effect, we set up bioassays to examine chemical structure requirements for SL activity in moss. The results suggest that compounds GR24, GR5, and 5-deoxystrigol are active in moss (as in pea, while other analogs that are highly active in the control of pea branching show little activity in moss. Interestingly, the karrikinolide KAR1, which shares molecular features with SLs, did not have any effect on filament growth, even though the moss genome contains several genes homologous to KAI2 (encoding the KAR1 receptor and no canonical homologue to D14 (encoding the SL receptor. Further studies should investigate whether SL signaling pathways have been conserved during land plant evolution.

  19. Role of neural stem cell activity in postweaning development of the sexually dimorphic nucleus of the preoptic area in rats.

    Science.gov (United States)

    He, Zhen; Ferguson, Sherry A; Cui, Li; Greenfield, L John; Paule, Merle G

    2013-01-01

    The sexually dimorphic nucleus of the preoptic area (SDN-POA) has received increased attention due to its apparent sensitivity to estrogen-like compounds found in food and food containers. The mechanisms that regulate SDN-POA volume remain unclear as is the extent of postweaning development of the SDN-POA. Here we demonstrate that the female Sprague-Dawley SDN-POA volume increased from weaning to adulthood, although this increase was not statistically significant as it was in males. The number of cells positive for Ki67, a marker of cell proliferation, in both the SDN-POA and the hypothalamus was significantly higher at weaning than at adulthood in male rats. In contrast, the number of Ki67-positive cells was significantly higher in the hypothalamus but not in the SDN-POA (p>0.05) at weaning than at adulthood in female rats. A subset of the Ki67-positive cells in the SDN-POA displayed the morphology of dividing cells. Nestin-immunoreactivity delineated a potential macroscopic neural stem cell niche in the rostral end of the 3rd ventricle. In conclusion, stem cells may partially account for the sexually dimorphic postweaning development of the SDN-POA.

  20. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    Energy Technology Data Exchange (ETDEWEB)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  1. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Erica S Martins-Duarte

    Full Text Available Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM. When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment. Light microscopy examination early (6 and 24h post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results

  2. Properties of Fiber Cell Plasma Membranes Isolated from the Cortex and Nucleus of the Porcine Eye Lens

    Science.gov (United States)

    Mainali, Laxman; Raguz, Marija; O’Brien, William J.; Subczynski, Witold K.

    2012-01-01

    The organization and physical properties of the lipid bilayer portion of intact cortical and nuclear fiber cell plasma membranes isolated from the eyes lenses of two-year-old pigs were studied using electron paramagnetic resonance (EPR) spin-labeling. Membrane fluidity, hydrophobicity, and the oxygen transport parameter (OTP) were assessed from the EPR spectra of precisely positioned spin labels. Intact cortical and nuclear membranes, which include membrane proteins, were found to contain three distinct lipid environments. These lipid environments were termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain (lipids in protein aggregates). The amount of boundary and trapped lipids was greater in intact nuclear membranes than in cortical membranes. The properties of intact membranes were compared with the organization and properties of lens lipid membranes made of the total lipid extracts from the lens cortex or nucleus. In cortical lens lipid membranes, only one homogenous environment was detected, which was designated as a bulk lipid domain (phospholipid bilayer saturated with cholesterol). Lens lipid membranes prepared from the lens nucleus possessed two domains, assigned as a bulk lipid domain and a cholesterol bilayer domain (CBD). In intact nuclear membranes, it was difficult to discriminate the CBD, which was clearly detected in nuclear lens lipid membranes because the OTP measured in the CBD is the same as in the domain formed by trapped lipids. The two domains unique to intact membranes—namely, the domain formed by boundary lipids and the domain formed by trapped lipids—were most likely formed due to the presence of membrane proteins. It is concluded that formation of rigid and practically impermeable domains is enhanced in the lens nucleus, indicating changes in membrane composition that may help to maintain low oxygen concentration in this lens region. PMID:22326289

  3. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  4. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells.

    Science.gov (United States)

    Hwang, Wei-Lun; Jiang, Jeng-Kae; Yang, Shung-Haur; Huang, Tse-Shun; Lan, Hsin-Yi; Teng, Hao-Wei; Yang, Chih-Yung; Tsai, Ya-Ping; Lin, Chi-Hung; Wang, Hsei-Wei; Yang, Muh-Hwa

    2014-03-01

    Asymmetrical cell division (ACD) maintains the proper number of stem cells to ensure self-renewal. In cancer cells, the deregulation of ACD disrupts the homeostasis of the stem cell pool and promotes tumour growth. However, this mechanism is unclear. Here, we show a reduction of ACD in spheroid-derived colorectal cancer stem cells (CRCSCs) compared with differentiated cancer cells. The epithelial-mesenchymal transition (EMT) inducer Snail is responsible for the ACD-to-symmetrical cell division (SCD) switch in CRCSCs. Mechanistically, Snail induces the expression of microRNA-146a (miR-146a) through the β-catenin-TCF4 complex. miR-146a targets Numb to stabilize β-catenin, which forms a feedback circuit to maintain Wnt activity and directs SCD. Interference with the Snail-miR-146a–β-catenin loop by inhibiting the MEK or Wnt activity reduces the symmetrical division of CRCSCs and attenuates tumorigenicity. In colorectal cancer patients, the Snail(High)Numb(Low) profile is correlated with cetuximab resistance and a poorer prognosis. This study elucidates a unique mechanism of EMT-induced CRCSC expansion.

  5. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    Science.gov (United States)

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Asymmetric cell division and its role in cell fate determination in the green alga Tetraselmis indica

    Digital Repository Service at National Institute of Oceanography (India)

    Arora, M.; Anil, A.C.; Burgess, K.; Delany, J.E.; Mesbahi, E.

    The prasinophytes (early diverging Chlorophyta), consisting of simple unicellular green algae, occupy a critical position at the base of the green algal tree of life, with some of its representatives viewed as the cell form most similar to the first...

  7. Hypoxic regulation of β-1,3-glucuronyltransferase 1 expression in nucleus pulposus cells of the rat intervertebral disc: role of hypoxia-inducible factor proteins.

    Science.gov (United States)

    Gogate, Shilpa S; Nasser, Rena; Shapiro, Irving M; Risbud, Makarand V

    2011-07-01

    To determine whether hypoxia and hypoxia-inducible factor (HIF) proteins regulate expression of β-1,3-glucuronyltransferase 1 (GlcAT-1), a key enzyme in glycosaminoglycan synthesis in nucleus pulposus cells. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to measure GlcAT-1 expression. Transfections were performed to determine the effect of HIF-1α and HIF-2α on GlcAT-1 promoter activity. Under hypoxic conditions there was an increase in GlcAT-1 expression; a significant increase in promoter activity was seen both in nucleus pulposus cells and in N1511 chondrocytes. We investigated whether HIF controlled GlcAT-1 expression. Suppression of HIF-1α and HIF-2α induced GlcAT-1 promoter activity and expression only in nucleus pulposus cells. Transfection with CA-HIF-1α as well as with CA-HIF-2α suppressed GlcAT-1 promoter activity only in nucleus pulposus cells, suggesting a cell type-specific regulation. Site-directed mutagenesis and deletion constructs were used to further confirm the suppressive effect of HIFs on GlcAT-1 promoter function in nucleus pulposus cells. Although it was evident that interaction of HIF with hypoxia-responsive elements resulted in suppression of basal promoter activity, it was not necessary for transcriptional suppression. This result suggested both a direct and an indirect mode of regulation, possibly through recruitment of a HIF-dependent repressor. Finally, we showed that hypoxic expression of GlcAT-1 was also partially dependent on MAPK signaling. These studies demonstrate that hypoxia regulates GlcAT-1 expression through a signaling network comprising both activator and suppressor molecules, and that this regulation is unique to nucleus pulposus cells. Copyright © 2011 by the American College of Rheumatology.

  8. Molecular Therapy for Degenerative Disc Disease: Clues from Secretome Analysis of the Notochordal Cell-Rich Nucleus Pulposus

    Science.gov (United States)

    Matta, Ajay; Karim, M. Zia; Isenman, David E.; Erwin, W. Mark

    2017-01-01

    Degenerative disc disease (DDD) is associated with spinal pain often leading to long-term disability. However, the non-chondrodystrophic canine intervertebral disc is protected from the development of DDD, ostensibly due to its retention of notochordal cells (NC) in the nucleus pulposus (NP). In this study, we hypothesized that secretome analysis of the NC-rich NP will lead to the identification of key proteins that delay the onset of DDD. Using mass-spectrometry, we identified 303 proteins including components of TGFβ- and Wnt-signaling, anti-angiogeneic factors and proteins that inhibit axonal ingrowth in the bioactive fractions of serum free, notochordal cell derived conditioned medium (NCCM). Ingenuity Pathway Analysis revealed TGFβ1 and CTGF as major hubs in protein interaction networks. In vitro treatment with TGFβ1 and CTGF promoted the synthesis of healthy extra-cellular matrix proteins, increased cell proliferation and reduced cell death in human degenerative disc NP cells. A single intra-discal injection of recombinant TGFβ1 and CTGF proteins in a pre-clinical rat-tail disc injury model restored the NC and stem cell rich NP. In conclusion, we demonstrate the potential of TGFβ1 and CTGF to mitigate the progression of disc degeneration and the potential use of these molecules in a molecular therapy to treat the degenerative disc. PMID:28358123

  9. Nuclear and cell division in Bacillus subtilis. Antibiotic-induced morphological changes

    NARCIS (Netherlands)

    van Iterson, W.; Aten, J. A.

    1976-01-01

    Incubation of Bacillus subtilis after outgrowth from spores in the presence of four different antibiotics in two different concentrations, showed that septation can occur without termination of nuclear division. Septation is then only partially uncoupled from the normal division cycle. Observations

  10. Intervertebral disc repair with activated nucleus pulposus cell transplantation: a three-year, prospective clinical study of its safety

    Directory of Open Access Journals (Sweden)

    J Mochida

    2015-03-01

    Full Text Available Degeneration of the lumbar intervertebral discs is irreversible, with no treatment currently available. Building upon experimental studies that demonstrated the importance of the nucleus pulposus (NP in preserving disc structure, we demonstrated that reinsertion of NP cells slowed further disc degeneration and that direct cell-to-cell contact co-culture with mesenchymal stromal cells (MSCs significantly upregulated the viability of NP cells in basic and pre-clinical studies in vitro and in vivo using animal models and human cells. Here, we report a 3-year result of a prospective clinical study, aimed to assess the safety and efficacy of activated NP cell transplantation in the degenerate lumbar intervertebral disc. Candidates were 9 patients aged 20-29 years who had Pfirrmann’s grade III disc degeneration at the level adjacent to the level scheduled for posterior lumbar intervertebral fusion. Viable NP cells from the fused disc were co-cultured in direct contact with autologous bone marrow-derived MSCs. One million activated NP cells were transplanted into the degenerated disc adjacent to the fused level at 7 d after the first fusion surgery. No adverse effects were observed during the 3-year follow-up period. Magnetic resonance imaging did not show any detrimental effects to the transplanted discs and revealed a mild improvement in 1 case. No cases reported any low back pain. Our clinical study confirmed the safety of activated NP cell transplantation, and the findings suggest the minimal efficacy of this treatment to slow the further degeneration of human intervertebral discs.

  11. Robust interactions between the effects of auditory and cutaneous electrical stimulations on cell activities in the thalamic reticular nucleus.

    Science.gov (United States)

    Kimura, Akihisa

    2017-04-15

    The thalamic reticular nucleus (TRN), a cluster of GABAergic cells, is thought to regulate bottom-up and top-down streams of sensory processing in the loop circuitry between the thalamus and cortex. Provided that sensory inputs of different modalities interact in the TRN, the TRN could contribute to fast and flexible cross-modal modulation of attention and perception that incessantly takes place in our everyday life. Indeed, diverse subthreshold interactions of auditory and visual inputs have been revealed in TRN cells (Kimura, 2014). To determine whether such sensory interaction could extend across modalities as a universal neural mechanism, the present study examined TRN cell activities elicited by auditory and cutaneous electrical stimulations in anesthetized rats. Juxta-cellular recording and labeling techniques were used. Recordings were obtained from 129 cells. Auditory or somatosensory responses were modulated by subthreshold electrical stimulation or sound (noise burst) in the majority of recordings (77 of 85 auditory and 13 of 15 somatosensory cells). Additionally, 22 bimodal cells and seven cells that responded only to combined stimulation were recognized. Suppression was predominant in modulation that was observed in both early and repeatedly evoked late responses. Combined stimulation also induced de novo cell activities. Further, response latency and burst spiking were modulated. Axonal projections of cells showing modulation terminated in first- or higher-order thalamic nuclei. Nine auditory cells projected to somatosensory thalamic nuclei. These results suggest that the TRN could regulate sensory processing in the loop circuitry between the thalamus and cortex through the sensory interaction pervasive across modalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging

    Science.gov (United States)

    Yang, Lei; Jiang, Weihua; Qiu, Lipeng; Jiang, Xuewei; Zuo, Daiying; Wang, Dongkai; Yang, Li

    2015-03-01

    Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes.Strong blue fluorescent polyethylene glycol (PEG) anchored carbon nitride dots (CDs@PEG) with a high quantum yield (QY) of 75.8% have been synthesized by a one step hydrothermal treatment. CDs with a diameter of ca. 6 nm are well dispersed in water and present a graphite-like structure. Photoluminescence (PL) studies reveal that CDs display excitation-dependent behavior and are stable under various test conditions. Based on the as-prepared CDs, we designed novel cell nucleus targeting imaging carbon dots functionalized with a nuclear localization signal (NLS) peptide. The favourable biocompatibilities of CDs and NLS modified CDs (NLS-CDs) are confirmed by in vitro cytotoxicity assays. Importantly, intracellular localization experiments in MCF7 and A549 cells demonstrate that NLS-CDs could be internalized in the nucleus and show blue light, which indicates that CDs may serve as cell nucleus imaging probes. Electronic supplementary information (ESI) available: The formulation of PEGylation CD optimization procedure, Table S1 and Fig. S1-S7. See DOI: 10.1039/c5nr01080

  13. High amplitude and low frequency cyclic mechanical strain promotes degeneration of human nucleus pulposus cells via the NF-κB p65 pathway.

    Science.gov (United States)

    Wang, Shengjie; Li, Jie; Tian, Jiwei; Yu, Zhenghong; Gao, Kun; Shao, Jia; Li, Ang; Xing, Shuai; Dong, Yonghui; Li, Zhiyong; Gao, Yanzheng; Wang, Liping; Xian, Cory J

    2018-03-25

    Disc degeneration alters the structure and function of intervertebral discs and is the basis of spinal degenerative diseases. To establish the molecular mechanism of intervertebral disc degeneration caused by mechanical strain, this study examined the effects of different amplitude (3%, 9%, 19%) cyclic mechanical strain (CMS) at a low frequency (0.01 Hz) on the secretion of cartilage extracellular matrix, expression of inflammatory cytokines and catabolic proteases, and activation of NF-κB signaling pathway in human nucleus pulposus cells. We also investigated effects of low frequency and high amplitude (19%) CMS on degeneration of human nucleus pulposus cells in the presence or absence of p65 inhibitor, p65 silencing shRNA, or p65 overexpression. While 3% CMS did not significantly decrease aggrecan or type II collagen expression, or increase TNF-α, IL-1β, IL-6 expression, 9% and 19% CMS showed the significant effects. Low frequency and high amplitude (19%) CMS was found to promote p65 activation in human nucleus pulposus cells, and IL-1β was found to promote p65 nuclear translocation though IκB kinase phosphorylation. Furthermore, degeneration process of nucleus pulposus cells was found attenuated in the presence of p65 inhibitor or p65 silencing shRNA, but promoted with p65 overexpression. These data suggest that high amplitude and low frequency CMS could promote degeneration of human nucleus pulposus cells significantly via the NF-κB p65 pathway. Our findings have uncovered the effect of CMS on human nucleus pulposus cell degeneration and have identified a previously unknown intrinsic underlying mechanism. © 2018 Wiley Periodicals, Inc.

  14. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  15. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    2015-12-04

    Dec 4, 2015 ... different fates and plays an important role in producing diverse cell types and for maintaining stem ... The culture is deposited with National. Facility for Marine Cyanobacteria, Bharathidasan Universi- .... these pigments are also known to provide a reserve for nitrogen and are classed as protective pigments.

  16. Asymmetric cell division and Notch signaling specify dopaminergic neurons in Drosophila.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available In Drosophila, dopaminergic (DA neurons can be found from mid embryonic stages of development till adulthood. Despite their functional involvement in learning and memory, not much is known about the developmental as well as molecular mechanisms involved in the events of DA neuronal specification, differentiation and maturation. In this report we demonstrate that most larval DA neurons are generated during embryonic development. Furthermore, we show that loss of function (l-o-f mutations of genes of the apical complex proteins in the asymmetric cell division (ACD machinery, such as inscuteable and bazooka result in supernumerary DA neurons, whereas l-o-f mutations of genes of the basal complex proteins such as numb result in loss or reduction of DA neurons. In addition, when Notch signaling is reduced or abolished, additional DA neurons are formed and conversely, when Notch signaling is activated, less DA neurons are generated. Our data demonstrate that both ACD and Notch signaling are crucial mechanisms for DA neuronal specification. We propose a model in which ACD results in differential Notch activation in direct siblings and in this context Notch acts as a repressor for DA neuronal specification in the sibling that receives active Notch signaling. Our study provides the first link of ACD and Notch signaling in the specification of a neurotransmitter phenotype in Drosophila. Given the high degree of conservation between Drosophila and vertebrate systems, this study could be of significance to mechanisms of DA neuronal differentiation not limited to flies.

  17. Hydrogen sulfide is expressed in the human and the rat cultured nucleus pulposus cells and suppresses apoptosis induced by hypoxia.

    Directory of Open Access Journals (Sweden)

    Haolin Sun

    Full Text Available Apoptosis plays pivotal role in the pathogenesis of degenerative disc diseases, which is the primary contributor to low back pain. Although the role of hydrogen sulfide (H2S in cell apoptosis is well appreciated, the effects and mechanism that H2S regulates the program death of intervertebral disc cell are not yet elucidated. In this study, we utilized the nucleus pulposus (NP from patients with lumbar disc herniation to investigate the relationship between endogenous H2S and NP cells apoptosis in human. Furthermore, we analyzed primary rat NP cells to study the effects of exogenous H2S on hypoxia induced cell apoptosis. Human NP samples were obtained from patients with lumbar disc herniation and were divided into uncontained and contained herniation groups. Using immunohistochemistry staining and sulphur-sensitive electrode, we detected the expression of cystathionine-β-synthase (CBS and cystathionine γ-lyase (CSE, as well as the production of endogenous H2S in human NP. Tunel staining showed increased apoptosis in NP from herniated disc; and there was significant correlation between H2S generation and apoptosis in human NP. CoCl2 was then used to induce hypoxia in cultured primary rat NP cells. Annexin V staining indicated that exogenous NaHS attenuated hypoxia induced apoptosis in rat NP cells. Furthermore, hypoxia significantly increased the levels of multiple apoptosis associated proteins (Fas, Cytochromes C, Caspase 9 and cleaved-Caspase-3 in cells, which were eliminated by NaHS. Our study demonstrates the presence of endogenous H2S in human intervertebral disc; and the endogenous H2S generation rate is associated with NP apoptosis in herniated disc. In vitro study showes exogenous H2S donor attenuates hypoxia induced apoptosis in primary rat NP cells. Thus, our work provides insights that H2S may have beneficial effects in treating degenerative disc diseases.

  18. HBx-induced MiR-1269b in NF-κB dependent manner upregulates cell division cycle 40 homolog (CDC40) to promote proliferation and migration in hepatoma cells.

    Science.gov (United States)

    Kong, Xiao-Xiao; Lv, Yan-Ru; Shao, Li-Ping; Nong, Xiang-Yang; Zhang, Guang-Ling; Zhang, Yi; Fan, Hong-Xia; Liu, Min; Li, Xin; Tang, Hua

    2016-06-27

    Occurrence and progression of hepatocellular carcinoma (HCC) are associated with hepatitis B virus (HBV) infection. miR-1269b is up-regulated in HCC cells and tissues. However, the regulation of miR-1269b expression by HBV and the mechanism underlying the oncogenic activity of miR-1269b in HCC are unclear. Reverse transcription quantitative PCR (RT-qPCR) was used to measure the expression of miR-1269b and target genes in HCC tissues and cell lines. Western blot analysis was used to assess the expression of miR-1269b target genes and related proteins. Using luciferase reporter assays and EMSA, we identified the factors regulating the transcriptional level of miR-1269b. Colony formation, flow cytometry and cell migration assays were performed to evaluate the phenotypic changes caused by miR-1269b and its target in HCC cells. We demonstrated that the expression levels of pre-miR-1269b and miR-1269b in HBV-positive HepG2.2.15 cells were dramatically increased compared with HBV-negative HepG2 cells. HBx was shown to facilitate translocation of NF-κB from the cytoplasm to the nucleus, and NF-κB binds to the promoter of miR-1269b to enhance its transcription. miR-1269b targets and up-regulates CDC40, a cell division cycle 40 homolog. CDC40 increases cell cycle progression, cell proliferation and migration. Rescue experiment indicated that CDC40 promotes malignancy induced by miR-1269b in HCC cells. We found that HBx activates NF-κB to promote the expression of miR1269b, which augments CDC40 expression, contributing to malignancy in HCC. Our findings provide insights into the mechanisms underlying HBV-induced hepatocarcinogenesis.

  19. Occurrence of amitotic division of trophoblast cell nuclei in blastocysts of the western spotted skunk (Spilogale putorius latifrons).

    Science.gov (United States)

    Isakova, Galina K; Mead, Rodney A

    2004-01-01

    A cytogenetic examination of spreaded cells of diapausing and early activated blastocysts obtained from 7 female western spotted skunks was performed. Mitosis was not observed in 1626 cells obtained from 9 diapausing blastocysts; however, 12 (1.5%) figures of diploid mitosis were seen in 851 cells from 5 early activated embryos. Diameter of the cell nuclei varied from 4 to 29 microm during diapause, and from 5 to 40 microm in activated blastocyst, and the heterogeneity in nuclear size was significantly different between diapausing and activated embryos (Pskunk and suggests the polytene organization of chromosomes in enlarged nuclei. About 10% of large interphase nuclei were observed to undergo amitosis, i.e. direct division by constriction. The resulting nuclear fragments in diapausing blastocysts usually had normal morphology and active nucleoli. In activated embryos, nearly 15% of amitotically divided nuclei appeared to be dividing into fragments of unequal size, one of which had normal cell nuclear morphology and extremely large silver positive nucleoli, and the other fragment exhibited signs of cell death. We interpret these data as indicating that 1) amitotic division of trophoblast endopolyploid cell nuclei in the skunk blastocysts may generate new trophoblast cells which contribute to increased cell number during both diapause and activation stages, and 2) activation of blastocysts after diapause is related to the production of trophoblast cells with enhanced synthetic capabilities.

  20. Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture

    International Nuclear Information System (INIS)

    Chou, F.I.; Tan, S.T.

    1990-01-01

    Addition of Mn(II) at 2.5 microM or higher to stationary-phase cultures of Deinococcus radiodurans IR was found to trigger at least three rounds of cell division. This Mn(II)-induced cell division (Mn-CD) did not occur when the culture was in the exponential or death phase. The Mn-CD effect produced daughter cells proportionally reduced in size, pigmentation, and radioresistance but proportionally increased in activity and amount of the oxygen toxicity defense enzymes superoxide dismutase and catalase. In addition, the concentration of an Mn-CD-induced protein was found to remain high throughout the entire Mn-CD phase. It was also found that an untreated culture exhibited a growth curve characterized by a very rapid exponential-stationary transition and that cells which had just reached the early stationary phase were synchronous. Our results suggest the presence of an Mn(II)-sensitive mechanism for controlling cell division. The Mn-CD effect appears to be specific to the cation Mn(II) and the radioresistant bacteria, deinococci

  1. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  2. Auxin efflux carrier activity and auxin accumulation regulate cell division and polarity in tobacco cells

    Czech Academy of Sciences Publication Activity Database

    Petrášek, Jan; Elčkner, Miroslav; Morris, David; Zažímalová, Eva

    2002-01-01

    Roč. 216, - (2002), s. 302-308 ISSN 0032-0935 R&D Projects: GA ČR GA206/98/1510 Grant - others:INCO Copernicus(BE) IC15-CT98-0118 Institutional research plan: CEZ:AV0Z5038910 Keywords : Auxin carrier * 1,N,Naphthylphthalamic acid * Nicotiana ( cell culture) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.960, year: 2002

  3. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  4. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    Science.gov (United States)

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  5. The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture.

    Science.gov (United States)

    Shi, Jianmin; Pang, Lianglong; Jiao, Shouguo

    2018-04-27

    Mechanical stimuli obviously affect disc nucleus pulposus (NP) biology. Previous studies have indicated that static compression exhibits detrimental effects on disc biology compared with dynamic compression. To study disc NP cell senescence under static compression and dynamic compression in a disc organ culture, porcine discs were cultured and subjected to compression (static compression: 0.4 MPa for 4 h once per day; dynamic compression: 0.4 MPa at a frequency of 1.0 Hz for 4 h once per day) for 7 days using a self-developed mechanically active bioreactor. The non-compressed discs were used as controls. Compared with the dynamic compression, static compression significantly promoted disc NP cell senescence, reflected by the increased senescence-associated β-galactosidase (SA-β-Gal) activity, senescence-associated heterochromatic foci (SAHF) formation and senescence markers expression, and the decreased telomerase (TE) activity and NP matrix biosynthesis. Static compression accelerates disc NP cell senescence compared with the dynamic compression in a disc organ culture. The present study provides that acceleration of NP cell senescence may be involved in previously reported static compression-mediated disc NP degenerative changes. © 2018 The Author(s).

  6. Variations in gene and protein expression in canine chondrodystrophic nucleus pulposus cells following long-term three-dimensional culture.

    Directory of Open Access Journals (Sweden)

    Munetaka Iwata

    Full Text Available Intervertebral disc (IVD degeneration greatly affects quality of life. The nucleus pulposus (NP of chondrodystrophic dog breeds (CDBs is similar to the human NP, because the cells disappear with age and are replaced by fibrochondrocyte-like cells. However, because IVD develops as early as within the first year of life, we used canines as a model to investigate in vitro the mechanisms underlying IVD degeneration. Specifically, we evaluated the potential of a three-dimensional (3D culture of healthy NP as an in vitro model system to investigate the mechanisms of IVD degeneration. Agarose hydrogels were populated with healthy NP cells from beagles after performing magnetic resonance imaging, and mRNA expression profiles and pericellular extracellular matrix (ECM protein distribution were determined. After 25 days of 3D culture, there was a tendency for redifferentiation into the native NP phenotype, and mRNA levels of Col2A1, COMP, and CK18 were not significantly different from those of freshly isolated cells. Our findings suggest that long-term 3D culture promoted chondrodystrophic NP redifferentiation through reconstruction of the pericellular microenvironment. Further, lipopolysaccharide (LPS induced expression of TNF-α, MMP3, MMP13, VEGF, and PGES mRNA in the 3D cultures, creating a molecular milieu that mimics that of degenerated NP. These results suggest that this in vitro model represents a reliable and cost-effective tool for evaluating new therapies for disc degeneration.

  7. Generation of high-producing cell lines by overexpression of cell division cycle 25 homolog A in Chinese hamster ovary cells.

    Science.gov (United States)

    Lee, Kyoung Ho; Tsutsui, Tomomi; Honda, Kohsuke; Asano, Ryutaro; Kumagai, Izumi; Ohtake, Hisao; Omasa, Takeshi

    2013-12-01

    To improve the efficiency of conventional gene amplification systems, the effect of cell cycle modification during the gene amplification process on IgG production was investigated in Chinese hamster ovary (CHO) cells. The full-length cDNA of CHO cell division cycle 25 homolog A (Cdc25A) was introduced into CHO DG44 cells and the effects of CDC25A overexpression on the cell cycle, transgene copy number and IgG productivity were examined. Both wild-type and mutated CDC25A-overexpressing CHO cells showed a rapid increase in transgene copy number compared with mock cells during the gene amplification process, in both cell pools and individual clones. High-producing clones were obtained with high frequency in CDC25A-overexpressing cell pools. The specific production rate of the isolated clone CHO SD-S23 was up to 2.9-fold higher than that of mock cells in the presence of 250 nM methotrexate (MTX). Cell cycle analysis revealed that the G2 to M phase transition rate was increased ∼1.5-fold in CDC25A-overexpressing CHO cells under MTX treatment. Our results show the improvement of conventional gene amplification systems via cell cycle engineering at an early stage of cell line development. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Application of Mesenchymal Stem Cell Intended to Investigate the Reward Response of Nucleus Accumbens in a Local Demyelination Model of Rat

    Directory of Open Access Journals (Sweden)

    M. Goodarzvand

    2014-05-01

    Full Text Available Introduction: Demyelination is the most common complication of multiple sclerosis in that the myelin sheaths around the axons and cerebral nucleus are damaged. The accumbens nucleus is a part of the striatum of the CNS that has role in reward response. Recently, stem cell therapy has been considered by many researchers. Therefore, the aim of this study was application of mesenchymal stem cells to assess demyelination (apoptosis, remyelination (neuronal differentiation and reward response of accumbens nucleus in a local demyelination model. Method and Materials: Male Wistar rats weighting 250-300 gr were anesthetized with chloral hydrate. Ethidium bromide was directly injected into the nucleus accumbens. A thin canola was mounted into the ventricle coordination, simultaneously. Animals were divided into 4 groups: Control (received saline as solvent of EB, sham, PBS 14 and 28 (received PBS as vehicle of stem cell and experiments 14 and 28 (received mesenchymal 5* 100000 of stem cells. Conditioned Place Preference (CPP was done in days zero, 14 and 28 post surgery and morphine was subcutaneously injected to assess reward response. Results: This study showed CCP increment in experiment groups compared to PBS ones, significantly. Discussion: The results of the present study suggesting stem cell therapy as an effective factor to swift the healing processes of the CNS and to improve reward response should be considered.

  9. The nucleus of differentiated root plant cells: modifications induced by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    G Lingua

    2009-12-01

    Full Text Available The nuclei of plant cells show marked differences in chromatin organisation, related to their DNA content, which ranges from the type with large strands of condensed chromatin (reticulate or chromonematic nuclei to one with mostly decondensed chromatin (chromocentric or diffuse nuclei. A loosening of the chromatin structure generally occurs in actively metabolising cells, such as differentiating and secretory cells, in relation to their high transcriptional activity. Endoreduplication may occur, especially in plants with a small genome, which increases the availability of nuclear templates, the synthesis of DNA, and probably regulates gene expression. Here we describe structural and quantitative changes of the chromatin and their relationship with transcription that occur in differentiated cells following an increase of their metabolism. The nuclei of root cortical cells of three plants with different 2C DNA content (Allium porrum, Pisum sativum and Lycopersicon esculentm and their modifications induced by arbuscular mycorrhization, which strongly increase the metabolic activity of colonised cells, are taken as examples.

  10. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes.

    Science.gov (United States)

    Lázaro-Diéguez, Francisco; Cohen, David; Fernandez, Dawn; Hodgson, Louis; van Ijzendoorn, Sven C D; Müsch, Anne

    2013-10-28

    Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal domains and their cleavage furrow rarely bifurcates the luminal domains. We determine that the serine/threonine kinase Par1b defines lumen position in concert with the position of the astral microtubule anchoring complex LGN-NuMA to yield the distinct epithelial division phenotypes. Par1b signaling via the extracellular matrix (ECM) in polarizing cells determined RhoA/Rho-kinase activity at cell-cell contact sites. Columnar MDCK and Par1b-depleted hepatocytic HepG2 cells featured high RhoA activity that correlated with robust LGN-NuMA recruitment to the metaphase cortex, spindle alignment with the substratum, and columnar organization. Reduced RhoA activity at the metaphase cortex in HepG2 cells and Par1b-overexpressing MDCK cells correlated with a single or no LGN-NuMA crescent, tilted spindles, and the development of lateral lumen polarity.

  11. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C.

    Science.gov (United States)

    Ji, Zhejian; Gao, Haishan; Yu, Hongtao

    2015-06-12

    The spindle checkpoint of the cell division cycle senses kinetochores that are not attached to microtubules and prevents precocious onset of anaphase, which can lead to aneuploidy. The nuclear division cycle 80 complex (Ndc80C) is a major microtubule receptor at the kinetochore. Ndc80C also mediates the kinetochore recruitment of checkpoint proteins. We found that the checkpoint protein kinase monopolar spindle 1 (Mps1) directly bound to Ndc80C through two independent interactions. Both interactions involved the microtubule-binding surfaces of Ndc80C and were directly inhibited in the presence of microtubules. Elimination of one such interaction in human cells caused checkpoint defects expected from a failure to detect unattached kinetochores. Competition between Mps1 and microtubules for Ndc80C binding thus constitutes a direct mechanism for the detection of unattached kinetochores. Copyright © 2015, American Association for the Advancement of Science.

  12. Experimental risk assessment of bovine viral diarrhea virus transmission via in vitro embryo production using somatic cell nucleus transfer.

    Science.gov (United States)

    Gregg, K; Chen, S H; Sadeghieh, S; Guerra, T; Xiang, T; Meredith, J; Polejaeva, I

    2009-07-01

    The objective of this study was to perform a comprehensive risk assessment on infectious disease transmission in the system of in vitro embryo production via somatic cell nucleus transfer (SCNT) technology using bovine viral diarrhea virus (BVDV) as a model. The risks of BVDV transmission in each step of the SCNT embryo production procedure, from donor cells to preimplantation SCNT embryo culture, were carefully examined using a sensitive real-time polymerase chain reaction assay. The identified primary source of BVDV transmission in SCNT embryo production was donor cell infection, most likely caused by contaminated fetal bovine serum in the culture medium. The risk of disease transmission through contaminated oocytes from an abattoir was relatively low, and it can be greatly minimized by cumulus cell removal and adequate oocyte washing procedures. Of the 200 cumulus-oocyte complexes (COCs) and more than 1500 cumulus cell-free oocyte (CFO) samples collected from multiple sources over a course of 7 months, only 2.5% of the COCs were BVDV positive, and all of the CFOs (100%) were BVDV negative. To evaluate the risk of BVDV introduction during in vitro SCNT embryo culture, 324 SCNT embryos were produced from 18 different cell lines using oocytes from 26 different batches collected over a course of 9 months. The embryos were cultured in vitro for 7 days and then tested for BVDV. All of the 324 SCNT embryos (100%) were negative, indicating that the embryo culture system is virtually risk-free for BVDV transmission. Based on these results, a standard operational protocol (SOP) for SCNT embryo production was proposed to greatly minimize the risk of BVDV transmission through the SCNT embryo production system. This SOP could be a starting point to produce a SCNT system that is virtually risk-free for disease transmission in general.

  13. Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates.

    Science.gov (United States)

    Shin, Jae-Won; Swift, Joe; Ivanovska, Irena; Spinler, Kyle R; Buxboim, Amnon; Discher, Dennis E

    2013-10-01

    Adult stem cells and progenitors are of great interest for their clinical application as well as their potential to reveal deep sensitivities to microenvironmental factors. The bone marrow is a niche for at least two types of stem cells, and the prototype is the hematopoietic stem cell/progenitors (HSC/Ps), which have saved many thousands of patients for several decades now. In bone marrow, HSC/Ps interact functionally with marrow stromal cells that are often referred to as mesenchymal stem cells (MSCs) or derivatives thereof. Myosin and matrix elasticity greatly affect MSC function, and these mechanobiological factors are now being explored with HSC/Ps both in vitro and in vivo. Also emerging is a role for the nucleus as a mechanically sensitive organelle that is semi-permeable to transcription factors which are modified for nuclear entry by cytoplasmic mechanobiological pathways. Since therapies envisioned with induced pluripotent stem cells and embryonic stem cells generally involve in vitro commitment to an adult stem cell or progenitor, a very deep understanding of stem cell mechanobiology is essential to progress with these multi-potent cells. © 2013 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  14. Morphometry and morphology of nucleus of the Sertoli and interstitial cells of the tambaqui Colossoma macropomum (Cuvier, 1881) (Pisces: Characidae) during the reproductive cycle.

    Science.gov (United States)

    Nakaghi, L S O; Mitsuiki, D; Santos, H S L; Pacheco, M R; Ganeco, L N

    2003-02-01

    This study allowed the characterization of the tambaqui Colossoma macropomum testes structural organization, emphasizing Sertoli and interstitial cells and analyzing morphometrically the Sertoli cell nucleus diameter and the interstitial tissue area during the reproductive cycle. Fragments of tambaqui testes were collected in the following reproductive cycle stages: immature, resting, maturation I and II, mature, and regression, and were histologically processed. The Sertoli cells were found at the periphery of the cysts of germinative lineage cells and the nuclei were shown to be smaller as these cells developed. The interstitial cells were better observed between the seminiferous lobules next to vessels in the interstitial tissue of maturing testes.

  15. SGT, a Hsp90β binding partner, is accumulated in the nucleus during cell apoptosis

    International Nuclear Information System (INIS)

    Yin Hongyan; Wang Hanzhou; Zong Hongliang; Chen Xiaoning; Wang Yanlin; Yun Xiaojing; Wu Yihong; Wang Jiadong; Gu Jianxin

    2006-01-01

    In this study, we reported that small glutamine-rich TPR-containing protein (SGT) interacted with not only Hsp90α but also Hsp90β. Confocal analysis showed that treatment of cells with Hsp90-specific inhibitor geldanamycin (GA) disrupted the interaction of SGT with Hsp90β and this contributed to the increase of nuclear localization of SGT in HeLa cells. The increased nuclear localization of SGT was further confirmed by the Western blotting in GA-treated HeLa cells and H1299 cells. In our previous study, SGT was found to be a new pro-apoptotic factor, so we wondered whether the sub-cellular localization of SGT was related with cell apoptosis. By confocal analysis we found that the nuclear import of SGT was significantly increased in STS-induced apoptotic HeLa cells, which implied that the sub-cellular localization of SGT was closely associated with Hsp90β and apoptosis

  16. Cell-Poor Septa Separate Representations of Digits in the Ventroposterior Nucleus of the Thalamus in Monkeys and Prosimian Galagos

    Science.gov (United States)

    Qi, Hui-Xin; Gharbawie, Omar A.; Wong, Peiyan; Kaas, Jon H.

    2013-01-01

    The architectonic features of the ventroposterior nucleus (VP) were visualized in coronal brain sections from two macaque monkeys, two owl monkeys, two squirrel monkeys, and three galagos that were processed for cytochrome oxidase, Nissl bodies, or the vesicular glutamate transporter 2 (vGluT2). The traditional ventroposterior medial (VPM) and ventroposterior lateral (VPL) subnuclei were easily identified, as well as the forelimb and hindlimb compartments of VPL, as they were separated by poorly staining, cell-poor septa. Septa also separated other cell groups within VPM and VPL, specifically in the medial compartment of VPL representing the hand (hand VPL). In one squirrel monkey and one galago we demonstrated that these five groups of cells represent digits 1–5 in a mediolateral sequence by injecting tracers into the cortical representation of single digits, defined by microelectrode recordings, and relating concentrations of labeled neurons to specific cell groups in hand VPL. The results establish the existence of septa that isolate the representation of the five digits in VPL of primates and demonstrate that the isolated cell groups represent digits 1–5 in a mediolateral sequence. The present results show that the septa are especially prominent in brain sections processed for vGluT2, which is expressed in the synaptic terminals of excitatory neurons in most nuclei of the brainstem and thalamus. As vGluT2 is expressed in the synaptic terminations from dorsal columns and trigeminal brainstem nuclei, the effectiveness of vGluT2 preparations in revealing septa in VP likely reflects a lack of synapses using glutamate in the septa. J. Comp. Neurol. 519:738–758, 2011. PMID:21246552

  17. Potential of Human Nucleus Pulposus-Like Cells Derived From Umbilical Cord to Treat Degenerative Disc Disease.

    Science.gov (United States)

    Perez-Cruet, Mick; Beeravolu, Naimisha; McKee, Christina; Brougham, Jared; Khan, Irfan; Bakshi, Shreeya; Chaudhry, G Rasul

    2018-02-26

    Degenerative disc disease (DDD) is a common spinal disorder that manifests with neck and lower back pain caused by the degeneration of intervertebral discs (IVDs). Currently, there is no treatment to cure this debilitating ailment. To investigate the potential of nucleus pulposus (NP)-like cells (NPCs) derived from human umbilical cord mesenchymal stem cells (MSCs) to restore degenerated IVDs using a rabbit DDD model. NPCs differentiated from MSCs were characterized using quantitative real-time reverse transcription polymerase chain reaction and immunocytochemical analysis. MSCs and NPCs were labeled with fluorescent dye, PKH26, and transplanted into degenerated IVDs of a rabbit model of DDD (n = 9 each). Magnetic resonance imaging of the IVDs was performed before and after IVD degeneration, and following cell transplantation. IVDs were extracted 8 wk post-transplantation and analyzed by various biochemical, immunohistological, and molecular techniques. NPC derivatives of MSCs expressed known NP-specific genes, SOX9, ACAN, COL2, FOXF1, and KRT19. Transplanted cells survived, dispersed, and integrated into the degenerated IVDs. IVDs augmented with NPCs showed significant improvement in the histology, cellularity, sulfated glycosaminoglycan and water contents of the NP. In addition, expression of human genes, SOX9, ACAN, COL2, FOXF1, KRT19, PAX6, CA12, and COMP, as well as proteins, SOX9, ACAN, COL2, and FOXF1, suggest NP biosynthesis due to transplantation of NPCs. Based on these results, a molecular mechanism for NP regeneration was proposed. The findings of this study demonstrating feasibility and efficacy of NPCs to regenerate NP should spur interest for clinical studies to treat DDD using cell therapy.

  18. Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells.

    Science.gov (United States)

    Kuriyama, Kentaro; Shintaku, Hirofumi; Santiago, Juan G

    2015-07-01

    There is a substantial need for simultaneous analyses of RNA and DNA from individual single cells. Such analysis provides unique evidence of cell-to-cell differences and the correlation between gene expression and genomic mutation in highly heterogeneous cell populations. We present a novel microfluidic system that leverages isotachophoresis to fractionate and isolate cytoplasmic RNA and genomic DNA (gDNA) from single cells. The system uniquely enables independent, sequence-specific analyses of these critical markers. Our system uses a microfluidic chip with a simple geometry and four end-channel electrodes, and completes the entire process in RNA output reservoirs, each containing high quality and purity aliquots with no measurable cross-contamination of cytoplasmic RNA versus gDNA. We demonstrate our system with simultaneous, sequence-specific quantitation using off-chip RT-qPCR and qPCR for simultaneous cytoplasmic RNA and gDNA analyses, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Live Imaging Reveals that the First Division of Differentiating Human Embryonic Stem Cells Often Yields Asymmetric Fates.

    Science.gov (United States)

    Brown, Katharine; Loh, Kyle M; Nusse, Roel

    2017-10-10

    How do stem cells respond to signals to initiate differentiation? Here, we show that, despite uniform exposure to differentiation-inducing extracellular signals, individual human embryonic stem cells (hESCs) respond heterogeneously. To track how hESCs incipiently exit pluripotency, we established a system to differentiate hESCs as single cells and conducted live imaging to track their very first cell division. We followed the fate of their earliest daughters as they remained undifferentiated or differentiated toward the primitive streak (the earliest descendants of pluripotent cells). About 30%-50% of the time, hESCs divided to yield one primitive streak and one undifferentiated daughter. The undifferentiated daughter cell was innately resistant to WNT signaling and could not respond to this primitive-streak-specifying differentiation signal. Hence, the first division of differentiating hESCs sometimes yields daughters with diverging fates, with implications for the efficiency of directed differentiation protocols and the underlying rules of lineage commitment. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  1. Composition and dynamics of the nucleolinus, a link between the nucleolus and cell division apparatus in surf clam (Spisula) oocytes.

    Science.gov (United States)

    Alliegro, Mark C; Hartson, Steven; Alliegro, Mary Anne

    2012-02-24

    The nucleolinus is a little-known cellular structure, discovered over 150 years ago (Agassiz, L. (1857) Contributions to the Natural History of the United States of America, First Monograph, Part IIL, Little, Brown and Co., Boston) and thought by some investigators in the late 19th to mid-20th century to function in the formation of the centrosomes or spindle. A role for the nucleolinus in formation of the cell division apparatus has recently been confirmed in oocytes of the surf clam, Spisula solidissima (Alliegro, M. A., Henry, J. J., and Alliegro, M. C. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 13718-13723). However, we know so little about the composition and dynamics of this compartment, it is difficult to construct mechanistic hypotheses or even to be sure that prior reports were describing analogous structures in the cells of mammals, amphibians, plants, and other organisms where it was observed. Surf clam oocytes are an attractive model to approach this problem because the nucleolinus is easily visible by light microscopy, making it accessible by laser microsurgery as well as isolation by common cell fractionation techniques. In this report, we analyze the macromolecular composition of isolated Spisula nucleolini and examine the relationship of this structure to the nucleolus and cell division apparatus. Analysis of nucleolinar RNA and protein revealed a set of molecules that overlaps with but is nevertheless distinct from the nucleolus. The proteins identified were primarily ones involved in nucleic acid metabolism and cell cycle regulation. Monoclonal antibodies generated against isolated nucleolini revealed centrosomal forerunners in the oocyte cytoplasm. Finally, induction of damage to the nucleolinus by laser microsurgery altered the trafficking of α- and γ-tubulin after fertilization. These observations strongly support a role for the nucleolinus in cell division and represent our first clues regarding mechanism.

  2. Cell-type specific oxytocin gene expression from AAV delivered promoter deletion constructs into the rat supraoptic nucleus in vivo.

    Directory of Open Access Journals (Sweden)

    Raymond L Fields

    Full Text Available The magnocellular neurons (MCNs in the hypothalamus selectively express either oxytocin (OXT or vasopressin (AVP neuropeptide genes, a property that defines their phenotypes. Here we examine the molecular basis of this selectivity in the OXT MCNs by stereotaxic microinjections of adeno-associated virus (AAV vectors that contain various OXT gene promoter deletion constructs using EGFP as the reporter into the rat supraoptic nucleus (SON. Two weeks following injection of the AAVs, immunohistochemical assays of EGFP expression from these constructs were done to determine whether the EGFP reporter co-localizes with either the OXT- or AVP-immunoreactivity in the MCNs. The results show that the key elements in the OT gene promoter that regulate the cell-type specific expression the SON are located -216 to -100 bp upstream of the transcription start site. We hypothesize that within this 116 bp domain a repressor exists that inhibits expression specifically in AVP MCNs, thereby leading to the cell-type specific expression of the OXT gene only in the OXT MCNs.

  3. A fraction of neurofibromin interacts with PML bodies in the nucleus of the CCF astrocytoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Godin, Fabienne; Villette, Sandrine; Vallee, Beatrice; Doudeau, Michel; Morisset-Lopez, Severine [Centre de Biophysique Moleculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Universite d' Orleans et INSERM, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Ardourel, Maryvonne; Hevor, Tobias [Laboratoire de Neurobiologie, Universite d' Orleans, BP 6759, 45067 Orleans Cedex 2 (France); Pichon, Chantal [Centre de Biophysique Moleculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Universite d' Orleans et INSERM, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Benedetti, Helene, E-mail: helene.benedetti@cnrs-orleans.fr [Centre de Biophysique Moleculaire, Centre National de la Recherche Scientifique (CNRS), UPR 4301, Universite d' Orleans et INSERM, rue Charles Sadron, 45071 Orleans Cedex 2 (France)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer We validate the use of specific anti-Nf1 antibodies for immunofluorescence studies. Black-Right-Pointing-Pointer We detect Nf1 in the cytoplasm and nucleus of CCF cells. Black-Right-Pointing-Pointer We demonstrate that Nf1 partially colocalizes with PML nuclear bodies. Black-Right-Pointing-Pointer We demonstrate that there is a direct interaction between a fraction of Nf1 and the PML bodies. -- Abstract: Neurofibromatosis type 1 is a common genetic disease that causes nervous system tumors, and cognitive deficits. It is due to mutations within the NF1 gene, which encodes the Nf1 protein. Nf1 has been shown to be involved in the regulation of Ras, cAMP and actin cytoskeleton dynamics. In this study, using immunofluorescence experiments, we have shown a partial nuclear localization of Nf1 in the astrocytoma cell line: CCF and we have demonstrated that Nf1 partially colocalizes with PML (promyelocytic leukemia) nuclear bodies. A direct interaction between Nf1 and the multiprotein complex has further been demonstrated using 'in situ' proximity ligation assay (PLA).

  4. Accumulation of transcription factors and cell signaling-related proteins in the nucleus during citrus-Xanthomonas interaction.

    Science.gov (United States)

    Rani, T Swaroopa; Durgeshwar, P; Podile, Appa Rao

    2015-07-20

    The nucleus is the maestro of the cell and is involved in the modulation of cell signaling during stress. We performed a comprehensive nuclear proteome analysis of Citrus sinensis during interaction with host (Xanthomonas citri pv. citri-Xcc) and non-host (Xanthomonas oryzae pv. oryzae-Xoo) pathogens. The nuclear proteome was obtained using a sequential method of organelle enrichment and determined by nano-LC-MS/MS analysis. A total of 243 proteins accumulated differentially during citrus-Xanthomonas interaction, belonging to 11 functional groups, with signaling and transcription-related proteins dominating. MADS-box transcription factors, DEAD-box RNA helicase and leucine aminopeptidase, mainly involved in jasmonic acid (JA) responses, were in high abundance during non-host interaction (Xoo). Signaling-related proteins like serine/threonine kinase, histones (H3.2, H2A), phosphoglycerate kinase, dynamin, actin and aldolase showed increased accumulation early during Xoo interaction. Our results suggest that there is a possible involvement of JA-triggered defense responses during non-host resistance, with early recognition of the non-host pathogen. Copyright © 2015. Published by Elsevier GmbH.

  5. Extrahypothalamic vasopressin and oxytocin in the human brain; presence of vasopressin cells in the bed nucleus of the stria terminalis

    NARCIS (Netherlands)

    Fliers, E.; Guldenaar, S. E.; van de Wal, N.; Swaab, D. F.

    1986-01-01

    In the present study, the distribution of extrahypothalamic vasopressin (VP) and oxytocin (OXT) in the human brain was investigated by means of immunocytochemistry. In the septum verum, few VP fibers were found in the nucleus septalis lateralis and medialis (NSL and NSM), and in the bed nucleus of

  6. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    Science.gov (United States)

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  7. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    Energy Technology Data Exchange (ETDEWEB)

    Adnalizawati, A. Siti Noor; Nazlina, I. [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yaacob, W. A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  8. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    International Nuclear Information System (INIS)

    Adnalizawati, A. Siti Noor; Nazlina, I.; Yaacob, W. A.

    2013-01-01

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division

  9. Three-dimensional organization of chromosome territories in the human interphase cell nucleus.

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); C. Münkel (Christian); J. Langowski (Jörg)

    1998-01-01

    markdownabstractThe synthesis of proteins, maintenance of structure and duplication of the eukaryotic cell itself are all fine-tuned biochemical processes that depend on the precise structural arrangement of the cellular components. The regulation of genes – their transcription and replication -

  10. Induction of chromosome aberrations in unirradiated chromatin after partial irradiation of a cell nucleus

    NARCIS (Netherlands)

    Ludwików, G.; Xiao, Yun; Hoebe, R. A.; Franken, N. A. P.; Darroudi, F.; Stap, J.; van Oven, C. H.; van Noorden, C. J. F.; Aten, J. A.

    2002-01-01

    Purpose: It is generally accepted that chromosome exchanges in irradiated cells the formed through interactions between separate DNA doable-strand breaks (DSB). Here we tested whether non-irradiated DNA participate; in the formation of chromosome aberrations wen complex DNA DSB are induced elsewhere

  11. Dynamic imaging demonstrates that pulsed electromagnetic fields (PEMF) suppress IL‐6 transcription in bovine nucleus pulposus cells

    Science.gov (United States)

    Tang, Xinyan; Alliston, Tamara; Coughlin, Dezba; Miller, Stephanie; Zhang, Nianli; Waldorff, Erik I.; Ryaby, James T.

    2017-01-01

    ABSTRACT Inflammatory cytokines play a dominant role in the pathogenesis of disc degeneration. Pulsed electromagnetic fields (PEMF) are noninvasive biophysical stimulus that has been used extensively in the orthopaedic field for many years. However, the specific cellular responses and mechanisms involved are still unclear. The objective of this study was to assess the time‐dependent PEMF effects on pro‐inflammatory factor IL‐6 expression in disc nucleus pulposus cells using a novel green fluorescence protein (GFP) reporter system. An MS2‐tagged GFP reporter system driven by IL‐6 promoter was constructed to visualize PEMF treatment effect on IL‐6 transcription in single living cells. IL‐6‐MS2 reporter‐labeled cells were treated with IL‐1α to mimic the in situ inflammatory environment of degenerative disc while simultaneously exposed to PEMF continuously for 4 h. Time‐lapse imaging was recorded using a confocal microscope to track dynamic IL‐6 transcription activity that was demonstrated by GFP. Finally, real‐time RT‐PCR was performed to confirm the imaging data. Live cell imaging demonstrated that pro‐inflammatory factor IL‐1α significantly promoted IL‐6 transcription over time as compared with DMEM basal medium condition. Imaging and PCR data demonstrated that the inductive effect of IL‐1α on IL‐6 expression could be significantly inhibited by PEMF treatment in a time‐dependent manner (early as 2 h of stimulus initiation). Our data suggest that PEMF may have a role in the clinical management of patients with chronic low back pain. Furthermore, this study shows that the MS2‐tagged GFP reporter system is a useful tool for visualizing the dynamic events of mechanobiology in musculoskeletal research. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:778–787, 2018. PMID:28851112

  12. Effects of age, replicative lifespan and growth rate of human nucleus pulposus cells on selecting age range for cell-based biological therapies for degenerative disc diseases.

    Science.gov (United States)

    Lee, J S; Lee, S M; Jeong, S W; Sung, Y G; Lee, J H; Kim, K W

    2016-07-01

    Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.

  13. The Role of Auxin, pH, and Stress in the Activation of Embryogenic Cell Division in Leaf Protoplast-Derived Cells of Alfalfa1

    Science.gov (United States)

    Pasternak, Taras P.; Prinsen, Els; Ayaydin, Ferhan; Miskolczi, Pál; Potters, Geert; Asard, Han; Van Onckelen, Harry A.; Dudits, Dénes; Fehér, Attila

    2002-01-01

    Culturing leaf protoplast-derived cells of the embryogenic alfalfa (Medicago sativa subsp. varia A2) genotype in the presence of low (1 μm) or high (10 μm) 2, 4-dichlorophenoxyacetic acid (2,4-D) concentrations results in different cell types. Cells exposed to high 2,4-D concentration remain small with dense cytoplasm and can develop into proembryogenic cell clusters, whereas protoplasts cultured at low auxin concentration elongate and subsequently die or form undifferentiated cell colonies. Fe stress applied at nonlethal concentrations (1 mm) in the presence of 1 μm 2,4-D also resulted in the development of the embryogenic cell type. Although cytoplasmic alkalinization was detected during cell activation of both types, embryogenic cells could be characterized by earlier cell division, a more alkalic vacuolar pH, and nonfunctional chloroplasts as compared with the elongated, nonembryogenic cells. Buffering of the 10 μm 2,4-D-containing culture medium by 10 mm 2-(N-morpholino)ethanesulfonic acid delayed cell division and resulted in nonembryogenic cell-type formation. The level of endogenous indoleacetic acid (IAA) increased transiently in all protoplast cultures during the first 4 to 5 d, but an earlier peak of IAA accumulation correlated with the earlier activation of the division cycle in embryogenic-type cells. However, this IAA peak could also be delayed by buffering of the medium pH by 2-(N-morpholino)ethanesulfonic acid. Based on the above data, we propose the involvement of stress responses, endogenous auxin synthesis, and the establishment of cellular pH gradients in the formation of the embryogenic cell type. PMID:12177494

  14. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  15. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    Science.gov (United States)

    2014-08-01

    called cytokinesis. For eukaryotic cells , cell division is a much more complicated process than the division of prokaryotic cells . Despite of extensive...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells ...stage of the mitotic cycle of eukaryotic cells , cytokinesis ensues where a parent cell replicates its nucleus with the necessary genetical substances

  16. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells.

    Science.gov (United States)

    Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng

    2017-02-04

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  17. Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes.

    Science.gov (United States)

    Zhao, Jingyao; Chen, Xufeng; Song, Guangrong; Zhang, Jiali; Liu, Haifeng; Liu, Xiaolong

    2017-01-10

    Hematopoietic stem cells (HSCs) are able to both self-renew and differentiate. However, how individual HSC makes the decision between self-renewal and differentiation remains largely unknown. Here we report that ablation of the key epigenetic regulator Uhrf1 in the hematopoietic system depletes the HSC pool, leading to hematopoietic failure and lethality. Uhrf1-deficient HSCs display normal survival and proliferation, yet undergo erythroid-biased differentiation at the expense of self-renewal capacity. Notably, Uhrf1 is required for the establishment of DNA methylation patterns of erythroid-specific genes during HSC division. The expression of these genes is enhanced in the absence of Uhrf1, which disrupts the HSC-division modes by promoting the symmetric differentiation and suppressing the symmetric self-renewal. Moreover, overexpression of one of the up-regulated genes, Gata1, in HSCs is sufficient to phenocopy Uhrf1-deficient HSCs, which show impaired HSC symmetric self-renewal and increased differentiation commitment. Taken together, our findings suggest that Uhrf1 controls the self-renewal versus differentiation of HSC through epigenetically regulating the cell-division modes, thus providing unique insights into the relationship among Uhrf1-mediated DNA methylation, cell-division mode, and HSC fate decision.

  18. Use of Limiting Dilution Method for Isolation of Nucleus Pulposus Mesenchymal Stem/Progenitor Cells and Effects of Plating Density on Biological Characteristics and Plasticity

    Directory of Open Access Journals (Sweden)

    Linghan Lin

    2017-01-01

    Full Text Available Objectives. To evaluate the effects of the limiting dilution method and plating density in rat nucleus pulposus mesenchymal stem/progenitor cells (NPMSCs. Materials and Methods. Nucleus pulposus tissues were isolated from 12-week-old male Sprague-Dawley rats and NPMSCs were isolated using limiting dilution method. Cells were then classified into 3 groups according to plating density. Cell morphologies were observed, and colony-forming units, migration abilities, proliferative capacities, cell cycle percentages, multilineage differentiation capacities, stem cell biomarker expression levels, and immunophenotyping were also examined in each group. Results. Low density group (LD had higher morphological homogeneity, stronger colony-forming ability, higher cell proliferation capacity, and enhanced cell migration ability relative to the other two groups (p<0.05. Moreover, LD had more cells entering S phase, with fewer cells arrested in G0/G1 phase (p<0.05. While all three density groups showed a multilineage differentiation potential, LD showed a higher degree of observed and semiquantified lineage specific staining (p<0.05. Furthermore, LD displayed higher expression levels of stem cell biomarkers (Nanog, Oct4, and Sox2 and showed higher percentages of CD29+, CD44+, and CD90+ cells (p<0.05 following flow cytometry analysis. Conclusions. Limiting dilution method is suggested when isolating NPMSCs as a means of improving cell activity and plasticity.

  19. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    Directory of Open Access Journals (Sweden)

    Jigna G. Tank

    2014-01-01

    Full Text Available Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  20. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    Science.gov (United States)

    Tank, Jigna G.; Thaker, Vrinda S.

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed. PMID:24955358

  1. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella.

    Directory of Open Access Journals (Sweden)

    Maria E Francia

    Full Text Available Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC. Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures.

  2. Reduced noradrenergic innervation of ventral midbrain dopaminergic cell groups and the subthalamic nucleus in MPTP-treated parkinsonian monkeys.

    Science.gov (United States)

    Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland

    2017-04-01

    There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.

    Science.gov (United States)

    Pazos, Manuel; Natale, Paolo; Vicente, Miguel

    2013-02-01

    In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.

  4. Dissecting Cell-Type Composition and Activity-Dependent Transcriptional State in Mammalian Brains by Massively Parallel Single-Nucleus RNA-Seq.

    Science.gov (United States)

    Hu, Peng; Fabyanic, Emily; Kwon, Deborah Y; Tang, Sheng; Zhou, Zhaolan; Wu, Hao

    2017-12-07

    Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues such as adult mammalian brains is challenging. Here, we integrate sucrose-gradient-assisted purification of nuclei with droplet microfluidics to develop a highly scalable single-nucleus RNA-seq approach (sNucDrop-seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ∼18,000 nuclei isolated from cortical tissues of adult mice, we demonstrate that sNucDrop-seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity but also enables in-depth analysis of transient transcriptional states driven by neuronal activity, at single-cell resolution, in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4

    Directory of Open Access Journals (Sweden)

    B. Chen

    2016-01-01

    Full Text Available This study aims to explore the effect of microRNA-21 (miR-21 on the proliferation of human degenerated nucleus pulposus (NP by targeting programmed cell death 4 (PDCD4 tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences, miR-21 inhibitor group (transfected with miR-21 inhibitors, miR-21 mimics group (transfected with miR-21 mimics and PDCD4 siRNA group (transfected with PDCD4 siRNAs. Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05. The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001. In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05. These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05. MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD.

  6. The ClpP protease homologue is required for the transmission traits and cell division of the pathogen Legionella pneumophila

    Directory of Open Access Journals (Sweden)

    Zhang Qin-fen

    2010-02-01

    Full Text Available Abstract Background Legionella pneumophila, the intracellular bacterial pathogen that causes Legionnaires' disease, exhibit characteristic transmission traits such as elevated stress tolerance, shortened length and virulence during the transition from the replication phase to the transmission phase. ClpP, the catalytic core of the Clp proteolytic complex, is widely involved in many cellular processes via the regulation of intracellular protein quality. Results In this study, we showed that ClpP was required for optimal growth of L. pneumophila at high temperatures and under several other stress conditions. We also observed that cells devoid of clpP exhibited cell elongation, incomplete cell division and compromised colony formation. Furthermore, we found that the clpP-deleted mutant was more resistant to sodium stress and failed to proliferate in the amoebae host Acanthamoeba castellanii. Conclusions The data present in this study illustrate that the ClpP protease homologue plays an important role in the expression of transmission traits and cell division of L. pneumophila, and further suggest a putative role of ClpP in virulence regulation.

  7. SecA is required for membrane targeting of the cell division protein DivIVA in vivo

    Directory of Open Access Journals (Sweden)

    Sven eHalbedel

    2014-02-01

    Full Text Available The conserved protein DivIVA is involved in different morphogenetic processes in Gram-positive bacteria. In Bacillus subtilis, the protein localises to the cell division site and cell poles, and functions as a scaffold for proteins that regulate division site selection, and for proteins that are required for sporulation. To identify other proteins that bind to DivIVA, we performed an in vivo cross-linking experiment. A possible candidate that emerged was the secretion motor ATPase SecA. SecA mutants have been described that inhibit sporulation, and since DivIVA is necessary for sporulation, we examined the localisation of DivIVA in these mutants. Surprisingly, DivIVA was delocalised, suggesting that SecA is required for DivIVA targeting. To further corroborate this, we performed SecA depletion and inhibition experiments, which provided further indications that DivIVA localisation depends on SecA. Cell fractionation experiments showed that SecA is important for binding of DivIVA to the cell membrane. This was unexpected since DivIVA does not contain a signal sequence, and is able to bind to artificial lipid membranes in vitro without support of other proteins. SecA is required for protein secretion and membrane insertion, and therefore its role in DivIVA localisation is likely indirect. Possible alternative roles of SecA in DivIVA folding and/or targeting are discussed.

  8. Mechanosensing of matrix by stem cells: From matrix heterogeneity, contractility, and the nucleus in pore-migration to cardiogenesis and muscle stem cells in vivo.

    Science.gov (United States)

    Smith, Lucas; Cho, Sangkyun; Discher, Dennis E

    2017-11-01

    Stem cells are particularly 'plastic' cell types that are induced by various cues to become specialized, tissue-functional lineages by switching on the expression of specific gene programs. Matrix stiffness is among the cues that multiple stem cell types can sense and respond to. This seminar-style review focuses on mechanosensing of matrix elasticity in the differentiation or early maturation of a few illustrative stem cell types, with an intended audience of biologists and physical scientists. Contractile forces applied by a cell's acto-myosin cytoskeleton are often resisted by the extracellular matrix and transduced through adhesions and the cytoskeleton ultimately into the nucleus to modulate gene expression. Complexity is added by matrix heterogeneity, and careful scrutiny of the evident stiffness heterogeneity in some model systems resolves some controversies concerning matrix mechanosensing. Importantly, local stiffness tends to dominate, and 'durotaxis' of stem cells toward stiff matrix reveals a dependence of persistent migration on myosin-II force generation and also rigid microtubules that confer directionality. Stem and progenitor cell migration in 3D can be further affected by matrix porosity as well as stiffness, with nuclear size and rigidity influencing niche retention and fate choices. Cell squeezing through rigid pores can even cause DNA damage and genomic changes that contribute to de-differentiation toward stem cell-like states. Contraction of acto-myosin is the essential function of striated muscle, which also exhibit mechanosensitive differentiation and maturation as illustrated in vivo by beating heart cells and by the regenerative mobilization of skeletal muscle stem cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells.

    Science.gov (United States)

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-08-16

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum.

  10. Autophagy is activated in compression-induced cell degeneration and is mediated by reactive oxygen species in nucleus pulposus cells exposed to compression.

    Science.gov (United States)

    Ma, K-G; Shao, Z-W; Yang, S-H; Wang, J; Wang, B-C; Xiong, L-M; Wu, Q; Chen, S-F

    2013-12-01

    To determine whether autophagy contributes to the pathogenesis of degenerative disc disease (DDD) or retards the intervertebral disc (IVD) degeneration, and investigate the possible relationship between compression-induced autophagy and intracellular reactive oxygen species (ROS) in nucleus pulposus (NP) cells in vitro. The autophagosome and autophagy-related markers were used to explore the role of autophagy in rat NP cells under compressive stress, which were measured directly by electronic microscopy, monodansylcadaverine (MDC) staining, immunofluorescence, western blot, and indirectly by analyzing the impact of pharmacological inhibitors of autophagy such as 3-methyladenine (3-MA) and chloroquine (CQ). And the relationship between autophagy and apoptosis was investigated by Annexin-V/propidium iodide (PI)-fluorescein staining. In addition, ROS were measured to determine whether these factors are responsible for the development of compression-induced autophagy. Our results indicated that rat NP cells activated autophagy in response to the same strong apoptotic stimuli that triggered apoptosis by compression. Autophagy and apoptosis were interconnected and coordinated in rat NP cells exposed to compression stimuli. Compression-induced autophagy was closely related to intracellular ROS production. Enhanced degradation of damaged components of NP cells by autophagy may be a crucial survival response against mechanical overload, and extensive autophagy may trigger autophagic cell death. Regulating autophagy and reducing the generation of intracellular ROS may retard IVD degeneration. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Automated morphological analysis of bone marrow cells in microscopic images for diagnosis of leukemia: nucleus-plasma separation and cell classification using a hierarchical tree model of hematopoesis

    Science.gov (United States)

    Krappe, Sebastian; Wittenberg, Thomas; Haferlach, Torsten; Münzenmayer, Christian

    2016-03-01

    The morphological differentiation of bone marrow is fundamental for the diagnosis of leukemia. Currently, the counting and classification of the different types of bone marrow cells is done manually under the use of bright field microscopy. This is a time-consuming, subjective, tedious and error-prone process. Furthermore, repeated examinations of a slide may yield intra- and inter-observer variances. For that reason a computer assisted diagnosis system for bone marrow differentiation is pursued. In this work we focus (a) on a new method for the separation of nucleus and plasma parts and (b) on a knowledge-based hierarchical tree classifier for the differentiation of bone marrow cells in 16 different classes. Classification trees are easily interpretable and understandable and provide a classification together with an explanation. Using classification trees, expert knowledge (i.e. knowledge about similar classes and cell lines in the tree model of hematopoiesis) is integrated in the structure of the tree. The proposed segmentation method is evaluated with more than 10,000 manually segmented cells. For the evaluation of the proposed hierarchical classifier more than 140,000 automatically segmented bone marrow cells are used. Future automated solutions for the morphological analysis of bone marrow smears could potentially apply such an approach for the pre-classification of bone marrow cells and thereby shortening the examination time.

  12. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  13. The Hippo component YAP localizes in the nucleus of human papilloma virus positive oropharyngeal squamous cell carcinoma.

    Science.gov (United States)

    Alzahrani, Faisal; Clattenburg, Leanne; Muruganandan, Shanmugam; Bullock, Martin; MacIsaac, Kaitlyn; Wigerius, Michael; Williams, Blair A; Graham, M Elise R; Rigby, Matthew H; Trites, Jonathan R B; Taylor, S Mark; Sinal, Christopher J; Fawcett, James P; Hart, Robert D

    2017-02-22

    HPV infection causes cervical cancer, mediated in part by the degradation of Scribble via the HPV E6 oncoprotein. Recently, Scribble has been shown to be an important regulator of the Hippo signaling cascade. Deregulation of the Hippo pathway induces an abnormal cellular transformation, epithelial to mesenchymal transition, which promotes oncogenic progression. Given the recent rise in oropharyngeal HPV squamous cell carcinoma we sought to determine if Hippo signaling components are implicated in oropharyngeal squamous cell carcinoma. Molecular and cellular techniques including immunoprecipiations, Western blotting and immunocytochemistry were used to identify the key Hippo pathway effector Yes-Associated Protein (YAP)1. Oropharyngeal tissue was collected from CO 2 laser resections, and probed with YAP1 antibody in tumor and pre-malignant regions of HPV positive OPSCC tissue. This study reveals that the Scribble binding protein Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP) forms a complex with YAP. Further, the NOS1APa and NOS1APc isoforms show differential association with activated and non-activated YAP, and impact cellular proliferation. Consistent with deregulated Hippo signaling in OPSCC HPV tumors, we see a delocalization of Scribble and increased nuclear accumulation of YAP1 in an HPV-positive OPSCC. Our preliminary data indicates that NOS1AP isoforms differentially associate with YAP1, which, together with our previous findings, predicts that loss of YAP1 enhances cellular transformation. Moreover, YAP1 is highly accumulated in the nucleus of HPV-positive OPSCC, implying that Hippo signaling and possibly NOS1AP expression are de-regulated in OPSCC. Further studies will help determine if NOS1AP isoforms, Scribble and Hippo components will be useful biomarkers in OPSCC tumor biology.

  14. Tetracycline hypersensitivity of an ezrA mutant links GalE and TseB (YpmB to cell division

    Directory of Open Access Journals (Sweden)

    Pamela eGamba

    2015-04-01

    Full Text Available Cell division in bacteria is initiated by the polymerization of FtsZ into a ring-like structure at midcell that functions as a scaffold for the other cell division proteins. In Bacillus subtilis, the conserved cell division protein EzrA is involved in modulation of Z-ring formation and coordination of septal peptidoglycan synthesis. Here, we show that an ezrA mutant is hypersensitive to tetracycline, even when the tetracycline efflux pump TetA is present. This effect is not related to the protein translation inhibiting activity of tetracycline. Overexpression of FtsL suppresses this phenotype, which appears to be related to the intrinsic low FtsL levels in an ezrA mutant background. A transposon screen indicated that the tetracycline effect can also be suppressed by overproduction of the cell division protein ZapA. In addition, tetracycline sensitivity could be suppressed by transposon insertions in galE and the unknown gene ypmB, which was renamed tseB (tetracycline sensitivity suppressor of ezrA. GalE is an epimerase using UDP-glucose and UDP-N-acetylglucosamine as substrate. Deletion of this protein bypasses the synthetic lethality of zapA ezrA and sepF ezrA double mutations, indicating that GalE influences cell division. The transmembrane protein TseB contains an extracytoplasmic peptidase domain, and a GFP fusion shows that the protein is enriched at cell division sites. A tseB deletion causes a shorter cell phenotype, indicating that TseB plays a role in cell division. Why a deletion of ezrA renders B. subtilis cells hypersensitive for tetracycline remains unclear. We speculate that this phenomenon is related to the tendency of tetracycline analogues to accumulate into the lipid bilayer, which may destabilize certain membrane proteins.

  15. Dose dependency of the frequency of micronucleated binucleated clone cells and of division related median clone sizes difference. Pt. 2

    International Nuclear Information System (INIS)

    Hagemann, G,; Kreczik, A.; Treichel, M.

    1996-01-01

    Following irradiation of the progenitor cells the clone growth of CHO cells decreases as a result of cell losses. Lethally acting expressions of micronuclei are produced by heritable lethal mutations. The dependency of the frequency of micronucleated binucleated clone cells and of the median clone sizes difference on the radiation dose was measured and compared to non-irradiated controls. Using the cytokinesis-block-micronucleus-method binucleated cells with micronuclei were counted as ratio of all binucleated cells within a clone size distribution. This ratio (shortened: micronucleus yield) was determined for all clone size distributions, which had been exposed to different irradiation doses and incubation times. The micronucleus yields were compared to the corresponding median clone sizes differences. The micronucleus yield is linearly dependent on the dose and is independent of the incubation time. The same holds true for the division related median clone sizes difference, which as a result is also linearly dependent on the micronucleus yield. Due to the inevitably errors of the cell count of micronucleated binucleated cells, an automatic measurement of the median clone sizes differences is the preferred method for evaluation of cellular radiation sensitivity for heritable lethal mutations. This value should always be determined in addition, if clone survival fractions are used as predictive test because it allows for an estimation of the remission probability of surviving cells. (orig.) [de

  16. Long-term load duration induces N-cadherin down-regulation and loss of cell phenotype of nucleus pulposus cells in a disc bioreactor culture.

    Science.gov (United States)

    Li, Pei; Zhang, Ruijie; Wang, Liyuan; Gan, Yibo; Xu, Yuan; Song, Lei; Luo, Lei; Zhao, Chen; Zhang, Chengmin; Ouyang, Bin; Tu, Bing; Zhou, Qiang

    2017-04-30

    Long-term exposure to a mechanical load causes degenerative changes in the disc nucleus pulposus (NP) tissue. A previous study demonstrated that N-cadherin (N-CDH)-mediated signalling can preserve the NP cell phenotype. However, N-CDH expression and the resulting phenotype alteration in NP cells under mechanical compression remain unclear. The present study investigated the effects of the compressive duration on N-CDH expression and on the phenotype of NP cells in an ex vivo disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days. The discs were subjected to different dynamic compression durations (1 and 8 h at a magnitude of 0.4 MPa and frequency of 1.0 Hz) once per day. Discs that were not compressed were used as controls. The results showed that long-term compression duration (8 h) significantly down-regulated the expression of N-CDH and NP-specific molecule markers (Brachyury, Laminin, Glypican-3 and Keratin 19), attenuated Alcian Blue staining intensity, decreased glycosaminoglycan (GAG) and hydroxyproline (HYP) contents and decreased matrix macromolecule (aggrecan and collagen II) expression compared with the short-term compression duration (1 h). Taken together, these findings demonstrate that long-term load duration can induce N-CDH down-regulation, loss of normal cell phenotype and result in attenuation of NP-related matrix synthesis in NP cells. © 2017 The Author(s).

  17. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Directory of Open Access Journals (Sweden)

    George Liechti

    2016-05-01

    Full Text Available The peptidoglycan (PG cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  18. Dynamic imaging demonstrates that pulsed electromagnetic fields (PEMF) suppress IL-6 transcription in bovine nucleus pulposus cells.

    Science.gov (United States)

    Tang, Xinyan; Alliston, Tamara; Coughlin, Dezba; Miller, Stephanie; Zhang, Nianli; Waldorff, Erik I; Ryaby, James T; Lotz, Jeffrey C

    2018-02-01

    Inflammatory cytokines play a dominant role in the pathogenesis of disc degeneration. Pulsed electromagnetic fields (PEMF) are noninvasive biophysical stimulus that has been used extensively in the orthopaedic field for many years. However, the specific cellular responses and mechanisms involved are still unclear. The objective of this study was to assess the time-dependent PEMF effects on pro-inflammatory factor IL-6 expression in disc nucleus pulposus cells using a novel green fluorescence protein (GFP) reporter system. An MS2-tagged GFP reporter system driven by IL-6 promoter was constructed to visualize PEMF treatment effect on IL-6 transcription in single living cells. IL-6-MS2 reporter-labeled cells were treated with IL-1α to mimic the in situ inflammatory environment of degenerative disc while simultaneously exposed to PEMF continuously for 4 h. Time-lapse imaging was recorded using a confocal microscope to track dynamic IL-6 transcription activity that was demonstrated by GFP. Finally, real-time RT-PCR was performed to confirm the imaging data. Live cell imaging demonstrated that pro-inflammatory factor IL-1α significantly promoted IL-6 transcription over time as compared with DMEM basal medium condition. Imaging and PCR data demonstrated that the inductive effect of IL-1α on IL-6 expression could be significantly inhibited by PEMF treatment in a time-dependent manner (early as 2 h of stimulus initiation). Our data suggest that PEMF may have a role in the clinical management of patients with chronic low back pain. Furthermore, this study shows that the MS2-tagged GFP reporter system is a useful tool for visualizing the dynamic events of mechanobiology in musculoskeletal research. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:778-787, 2018. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of

  19. Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells

    Directory of Open Access Journals (Sweden)

    JV Stoyanov

    2011-06-01

    Full Text Available There is evidence that mesenchymal stem cells (MSCs can differentiate towards an intervertebral disc (IVD-like phenotype. We compared the standard chondrogenic protocol using transforming growth factor beta-1 (TGFß to the effects of hypoxia, growth and differentiation factor-5 (GDF5, and coculture with bovine nucleus pulposus cells (bNPC. The efficacy of molecules recently discovered as possible nucleus pulposus (NP markers to differentiate between chondrogenic and IVD-like differentiation was evaluated. MSCs were isolated from human bone marrow and encapsulated in alginate beads. Beads were cultured in DMEM (control supplemented with TGFß or GDF5 or under indirect coculture with bNPC. All groups were incubated at low (2 % or normal (20 % oxygen tension for 28 days. Hypoxia increased aggrecan and collagen II gene expression in all groups. The hypoxic GDF5 and TGFß groups demonstrated most increased aggrecan and collagen II mRNA levels and glycosaminoglycan accumulation. Collagen I and X were most up-regulated in the TGFß groups. From the NP markers, cytokeratin-19 was expressed to highest extent in the hypoxic GDF5 groups; lowest expression was observed in the TGFß group. Levels of forkhead box F1 were down-regulated by TGFß and up-regulated by coculture with bNPC. Carbonic anhydrase 12 was also down-regulated in the TGFß group and showed highest expression in the GDF5 group cocultured with bNPC under hypoxia. Trends in gene expression regulation were confirmed on the protein level using immunohistochemistry. We conclude that hypoxia and GDF5 may be suitable for directing MSCs towards the IVD-like phenotype.

  20. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  1. Dynamic instability--a common denominator in prokaryotic and eukaryotic DNA segregation and cell division.

    Science.gov (United States)

    Fuesler, John A; Li, Hsin-Jung Sophia

    2012-12-01

    Dynamic instability is an essential phenomenon in eukaryotic nuclear division and prokaryotic plasmid R1 segregation. Although the molecular machines used in both systems differ greatly in composition, strong similarities and requisite nuances in dynamics and segregation mechanisms are observed. This brief examination of the current literature provides a functional comparison between prokaryotic and eukaryotic dynamically unstable filaments, specifically ParM and microtubules. Additionally, this mini-review should support the notion that any dynamically unstable filament could serve as the molecular machine driving DNA segregation, but these machines possess auxiliary features to adapt to temporal and spatial disparities in either system.

  2. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis.

    Science.gov (United States)

    Chen, Junming; Lian, Xiuli; Du, Juan; Xu, Songhua; Wei, Jianen; Pang, Lili; Song, Chanchan; He, Lin; Wang, Shie

    2016-04-01

    Phosphorylated Ser473-Akt (p-Ser473-Akt) is extensively studied as a correlate for the activity of Akt, which plays an important role in mouse oogenesis and preimplantation embryogenesis. However, little progress has been made about its effect on the mouse zygotic genome activation (ZGA) of 2-cell stage in mouse preimplantation embryos. In this study, we confirmed its localization in the pronuclei of 1-cell embryos and found that p-Ser473-Akt acquired prominent nucleus localization in 2-cell embryos physiologically. Akt specific inhibitors API-2 and MK2206 could inhibit the development of mouse preimplantation embryos in vitro, and induce 2-cell arrest at certain concentrations. 2-cell embryos exposed to 2.0 μmol/L API-2 or 30 μmol/L MK2206 displayed attenuated immunofluorescence intensity of p-Ser473-Akt in the nucleus. Simultaneously, qRT-PCR results revealed that 2.0 μmol/L API-2 treatment significantly downregulated the mRNA pattern of MuERV-L and eIF-1A, two marker genes of ZGA, suggesting a defect in ZGA compared with that of control group. Collectively, our work demonstrated the nuclear localization of p-Ser473-Akt during major ZGA, and Akt specific inhibitors API-2 and MK2206 which led to 2-cell arrest inhibited p-Ser473-Akt from translocating into the nucleus of 2-cell embryos with defective ZGA as well, implying p-Ser473-Akt may be a potential player in the major ZGA of 2-cell mouse embryos. © 2016 Japanese Society of Developmental Biologists.

  3. A Genetic Screen for Mutations Affecting Cell Division in the Arabidopsis thaliana Embryo Identifies Seven Loci Required for Cytokinesis.

    Directory of Open Access Journals (Sweden)

    C Stewart Gillmor

    Full Text Available Cytokinesis in plants involves the formation of unique cellular structures such as the phragmoplast and the cell plate, both of which are required to divide the cell after nuclear division. In order to isolate genes that are involved in de novo cell wall formation, we performed a large-scale, microscope-based screen for Arabidopsis mutants that severely impair cytokinesis in the embryo. We recovered 35 mutations that form abnormally enlarged cells with multiple, often polyploid nuclei and incomplete cell walls. These mutants represent seven genes, four of which have previously been implicated in phragmoplast or cell plate function. Mutations in two loci show strongly reduced transmission through the haploid gametophytic generation. Molecular cloning of both corresponding genes reveals that one is represented by hypomorphic alleles of the kinesin-5 gene RADIALLY SWOLLEN 7 (homologous to tobacco kinesin-related protein TKRP125, and that the other gene corresponds to the Arabidopsis FUSED ortholog TWO-IN-ONE (originally identified based on its function in pollen development. No mutations that completely abolish the formation of cross walls in diploid cells were found. Our results support the idea that cytokinesis in the diploid and haploid generations involve similar mechanisms.

  4. Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingping; Traag, Bjørn A.; Willemse, Joost; McMullan, Daniel; Miller, Mitchell D.; Elsliger, Marc-André; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chruszcz, Maksymilian; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Grzechnik, Slawomir K.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; Minor, Wladek; Mommaas, A. Mieke; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; van den Bedem, Henry; Wang, Shuren; Weekes, Dana; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.; van Wezel, Gilles P.; (Leiden-MC); (SLAC); (Scripps); (UV); (UCSD); (Burnham)

    2010-01-20

    SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 {angstrom} resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic 'whirly' single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.

  5. Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures.

    Science.gov (United States)

    Otvös, Krisztina; Pasternak, Taras P; Miskolczi, Pál; Domoki, Mónika; Dorjgotov, Dulguun; Szucs, Attila; Bottka, Sándor; Dudits, Dénes; Fehér, Attila

    2005-09-01

    It is now well established that nitric oxide (NO) serves as a signaling molecule in plant cells. In this paper experimental data are presented which indicate that NO can stimulate the activation of cell division and embryogenic cell formation in leaf protoplast-derived cells of alfalfa in the presence of auxin. It was found that various NO-releasing compounds promoted auxin-dependent division (as shown by incorporation of bromodeoxyuridine) of leaf protoplast-derived alfalfa cells. In contrast, application of NO scavenger or NO synthesis inhibitor inhibited the same process. Both the promotion and the inhibition of cell cycle activation correlated with the amount and activity of the cognate alfalfa p34cdc2 protein Medsa;CDKA;1,2. The effect of l-NG-monomethyl-L-arginine (L-NMMA) was transient, and protoplast-derived cells spending more than 3 days in culture become insensitive to the inhibitor as far as cell cycle progression was concerned. L-NMMA had no effect on the cell cycle parameters of cycling suspension-cultured cells, but had a moderate transient inhibitory effect on cells re-entering the cell cycle following phosphate starvation. Cycling cultured cells, however, could respond to NO, as indicated by the sodium nitroprusside (SNP)- and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)-dependent accumulation of the ferritin protein. Based on these observations, it is hypothesized that L-NMMA-sensitive generation of NO is involved in the activation, but not the progression of the plant cell division cycle. In addition, SNP promoted and L-NMMA delayed the exogenous auxin [2,4-dichlorophenoxyacetic acid (2,4-D)] concentration-dependent formation of embryogenic cell clusters expressing the MsSERK1 gene; this further supports a link between auxin- and NO-dependent signaling pathways in plant cells.

  6. Human umbilical cord mesenchymal stromal cells exhibit immature nucleus pulposus cell phenotype in a laminin-rich pseudo-three-dimensional culture system

    Science.gov (United States)

    2013-01-01

    Introduction Cell supplementation to the herniated or degenerated intervertebral disc (IVD) is a potential strategy to promote tissue regeneration and slow disc pathology. Human umbilical cord mesenchymal stromal cells (HUCMSCs) – originating from the Wharton’s jelly – remain an attractive candidate for such endeavors with their ability to differentiate into multiple lineages. Previously, mesenchymal stem cells (MSCs) have been studied as a potential source for disc tissue regeneration. However, no studies have demonstrated that MSCs can regenerate matrix with unique characteristics matching that of immature nucleus pulposus (NP) tissues of the IVD. In our prior work, immature NP cells were found to express specific laminin isoforms and laminin-binding receptors that may serve as phenotypic markers for evaluating MSC differentiation to NP-like cells. The goal of this study is to evaluate these markers and matrix synthesis for HUCMSCs cultured in a laminin-rich pseudo-three-dimensional culture system. Methods HUCMSCs were seeded on top of Transwell inserts pre-coated with Matrigel™, which contained mainly laminin-111. Cells were cultured under hypoxia environment with three differentiation conditions: NP differentiation media (containing 2.5% Matrigel™ solution to provide for a pseudo-three-dimensional laminin culture system) with no serum, or the same media supplemented with either insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1). Cell clustering behavior, matrix production and the expression of NP-specific laminin and laminin-receptors were evaluated at days 1, 7, 13 and 21 of culture. Results Data show that a pseudo-three-dimensional culture condition (laminin-1 rich) promoted HUCMSC differentiation under no serum conditions. Starting at day 1, HUCMSCs demonstrated a cell clustering morphology similar to that of immature NP cells in situ and that observed for primary immature NP cells within the similar laminin

  7. Changes in the oligomerization potential of the division inhibitor UgtP co-ordinate Bacillus subtilis cell size with nutrient availability.

    Science.gov (United States)

    Chien, An-Chun; Zareh, Shannon Kian Gharabiklou; Wang, Yan Mei; Levin, Petra Anne

    2012-11-01

    How cells co-ordinate size with growth and development is a major, unresolved question in cell biology. In previous work we identified the glucosyltransferase UgtP as a division inhibitor responsible for increasing the size of Bacillus subtilis cells under nutrient-rich conditions. In nutrient-rich medium, UgtP is distributed more or less uniformly throughout the cytoplasm and concentrated at the cell poles and/or the cytokinetic ring. Under these conditions, UgtP interacts directly with FtsZ to inhibit division and increase cell size. Conversely, under nutrient-poor conditions, UgtP is sequestered away from FtsZ in punctate foci, and division proceeds unimpeded resulting in a reduction in average cell size. Here we report that nutrient-dependent changes in UgtP's oligomerization potential serve as a molecular rheostat to precisely co-ordinate B. subtilis cell size with nutrient availability. Our data indicate UgtP interacts with itself and the essential cell division protein FtsZ in a high-affinity manner influenced in part by UDP glucose, an intracellular proxy for nutrient availability. These findings support a model in which UDP-glc-dependent changes in UgtP's oligomerization potential shift the equilibrium between UgtP•UgtP and UgtP•FtsZ, fine-tuning the amount of FtsZ available for assembly into the cytokinetic ring and with it cell size. © 2012 Blackwell Publishing Ltd.

  8. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus.

    Science.gov (United States)

    Pollatzek, Eric; Hitzel, Norma; Ott, Daniela; Raisl, Katrin; Reuter, Bärbel; Gerstberger, Rüdiger

    2016-07-07

    The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the

  9. Akt is transferred to the nucleus of cells treated with apoptin, and it participates in apoptin-induced cell death

    DEFF Research Database (Denmark)

    Maddika, S; Bay, GH; Kroczak, TJ

    2007-01-01

    -selective inducer of apoptosis. RESULTS: We show for the first time that apoptin interacts with the p85 regulatory subunit, leading to constitutive activation of PI3-K. The inhibition of PI3-K activation either by chemical inhibitors or by genetic approaches severely impairs cell death induced by apoptin...

  10. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Aneesh Panoli

    Full Text Available The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2 are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.

  11. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  12. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development.

    Science.gov (United States)

    Bury, L; Coelho, P A; Glover, D M

    2016-01-01

    The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression. © 2016 Elsevier Inc. All rights reserved.

  13. Reactive Oxygen is a Major Factor Regulating Cell Division and Angiogenesis in Breast Cancer

    National Research Council Canada - National Science Library

    Arnold, Rebecca

    2001-01-01

    .... We investigated the generation of the H2O2 and O2%. While O2 levels appeared to remain unchanged, 11202 levels increased significantly over control cell lines in several of the tumor cell lines...

  14. Algorithm development and simulation outcomes for hypoxic head and neck cancer radiotherapy using a Monte Carlo cell division model

    International Nuclear Information System (INIS)

    Harriss, W.M.; Bezak, E.; Yeoh, E.

    2010-01-01

    Full text: A temporal Monte Carlo tumour model, 'Hyp-RT'. sim ulating hypoxic head and neck cancer has been updated and extended to model radiothcrapy. The aim is to providc a convenient radiobio logical tool for clinicians to evaluate radiotherapy treatment schedules based on many individual tumour properties including oxygenation. FORTRAN95 and JA YA havc been utilised to develop the efficient algorithm, which can propagate 108 cells. Epithelial cell kill is affected by dose, oxygenation and proliferativc status. Accelerated repopulation (AR) has been modelled by increasing the symmetrical stem cell division probability, and reoxygenation (ROx) has been modelled using random incremental boosts of oxygen to the cell po ulation throughout therapy. Results The stem cell percentage and the degree of hypoxia dominate tumour growth rate. For conventional radiotherapy. 15-25% more dose was required for a hypox ic versus oxic tumours, depending on the time of AR onset (0-3 weeks after thc start of treatment). ROx of hypoxic tumours resulted in tumoUJ: sensitisation and therefore a dose reduction, of up to 35%, varying with the time of onset. Fig. I shows results for all combinations of AR and ROx onset times for the moderate hypoxia case. Conclusions In hypoxic tumours, accelerated repopulation and reoxy genation affect ccll kill in the same manner as when the effects are modelled individually. however the degree of the effect is altered and therefore the combined result is difficult to predict. providing evidence for the usefulness of computer models. Simulations have quantitatively

  15. Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome.

    Directory of Open Access Journals (Sweden)

    Lisa M Nigro

    2016-08-01

    Full Text Available Deep-sea hypersaline anoxic basins (DHABs and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that has been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome (SAG of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source.

  16. The Garlic Allelochemical Diallyl Disulfide Affects Tomato Root Growth by Influencing Cell Division, Phytohormone Balance and Expansin Gene Expression.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui; Meng, Huanwen; Tang, Xiangwei

    2016-01-01

    Diallyl disulfide (DADS) is a volatile organosulfur compound derived from garlic (Allium sativum L.), and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L.) seed germination, root growth, mitotic index, and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs), auxin transport genes (SlPINs), and expansin genes (EXPs) in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM) of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM) showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM). This result suggests that tomato root growth may be

  17. Icariin Prevents H2O2-Induced Apoptosis via the PI3K/Akt Pathway in Rat Nucleus Pulposus Intervertebral Disc Cells.

    Science.gov (United States)

    Deng, Xiangyu; Chen, Sheng; Zheng, Dong; Shao, Zengwu; Liang, Hang; Hu, Hongzhi

    2017-01-01

    Icariin is a prenylated flavonol glycoside derived from the Chinese herb Epimedium sagittatum. This study investigated the mechanism by which icariin prevents H 2 O 2 -induced apoptosis in rat nucleus pulposus (NP) cells. NP cells were isolated from the rat intervertebral disc and they were divided into five groups after 3 passages: (A) blank control; (B) 200  μ M H 2 O 2 ; (C) 200  μ M H 2 O 2 + 20  μ M icariin; (D) 20  μ M icariin + 200  μ M H 2 O 2 + 25  μ M LY294002; (E) 200  μ M H 2 O 2 + 25  μ M LY294002. LY294002 is a selective inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. NP cell viability, apoptosis rate, intracellular reactive oxygen species levels, and the expression of AKT, p-AKT, p53, Bcl-2, Bax, caspase-3 were estimated. The results show that, compared with the control group, H 2 O 2 significantly increased NP cell apoptosis and the level of intracellular ROS. Icariin pretreatment significantly decreased H 2 O 2 -induced apoptosis and intracellular ROS and upregulated p-Akt and BCL-2 and downregulated caspase-3 and Bax. LY294002 abolished the protective effects of icariin. Our results show that icariin can attenuate H2O2-induced apoptosis in rat nucleus pulposus cells and PI3K/AKT pathway is at least partly included in this protection effect.

  18. A possible role of transglutaminase 2 in the nucleus of INS-1E and of cells of human pancreatic islets.

    Science.gov (United States)

    Sileno, Sara; D'Oria, Valentina; Stucchi, Riccardo; Alessio, Massimo; Petrini, Stefania; Bonetto, Valentina; Maechler, Pierre; Bertuzzi, Federico; Grasso, Valeria; Paolella, Katia; Barbetti, Fabrizio; Massa, Ornella

    2014-01-16

    Transglutaminase 2 (TG2) is a multifunctional protein with Ca(2+)-dependent transamidating and G protein activity. Previously we reported that the role of TG2 in insulin secretion may involve cytoplasmic actin remodeling and a regulative action on other proteins during granule movement. The aim of this study was to gain a better insight into the role of TG2 transamidating activity in mitochondria and in the nucleus of INS-1E rat insulinoma cell line (INS-1E) during insulin secretion. To this end we labeled INS-1E with an artificial donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8min. Biotinylated proteins of the nuclear/mitochondrial-enriched fraction were analyzed using two-dimensional electrophoresis and mass spectrometry. Many mitochondrial proteins involved in Ca(2+) homeostasis (e.g. voltage-dependent anion-selective channel protein, prohibitin and different ATP synthase subunits) and many nuclear proteins involved in gene regulation (e.g. histone H3, barrier to autointegration factor and various heterogeneous nuclear ribonucleoprotein) were identified among a number of transamidating substrates of TG2 in INS-1E. The combined results provide evidence that a temporal link exists between glucose-stimulation, first phase insulin secretion and the action of TG on histone H3 both in INS-1E and human pancreatic islets. Research into the role of transglutaminase 2 during insulin secretion in INS-1E rat insulinoma cellular model is depicting a complex role for this enzyme. Transglutaminase 2 acts in the different INS-1E compartments in the same way: catalyzing a post-translational modification event of its substrates. In this work we identify some mitochondrial and nuclear substrates of INS-1E during first phase insulin secretion. The finding that TG2 interacts with nuclear proteins that include BAF and histone H3 immediately after (2-5min) glucose stimulus of INS-1E suggests that TG2 may be involved not only in insulin

  19. IMPACT OF BEP OR CARBOPLATIN CHEMOTHERAPY ON TESTICULAR FUNCTION AND SPERM NUCLEUS OF SUBJECTS WITH TESTICULAR GERM CELL TUMOR

    Directory of Open Access Journals (Sweden)

    Marco eGhezzi

    2016-05-01

    Full Text Available Young males have testicular germ cells tumours (TGCT as the most common malignancy and its incidence is increasing in several countries. Besides unilateral orchiectomy (UO, the treatment of TGCT may include surveillance, radiotherapy or chemotherapy (CT, basing on tumour histology and stage of disease. It is well known that both radio and CT may have negative effects on testicular function, affecting spermatogenesis and sex hormones. Many reports investigated these aspects in patients treated with bleomycin, etoposide and cisplatin (BEP, after UO. In contrast no data are available on the side effects of carboplatin treatment in these patients. We included in this study 212 consecutive subjects who undergone to sperm banking at our Andrology and Human Reproduction Unit after UO for TGCT. Hundred subjects were further treated with one or more BEP cycles (BEP-group, 54 with carboplatin (Carb group and 58 were just surveilled (S-group. All patients were evaluated for seminal parameters, sperm aneuploidy, sperm DNA, sex hormones, volume of the residual testis at baseline (T0 and after 12 (T1 and 24 months (T2 from UO or end of CT. Seminal parameters, sperm aneuploidies, DNA status, gonadic hormones and testicular volume at baseline were not different between groups. At T1 we observed a significant reduction of sperm concentration and sperm count in the BEP group versus baseline and versus both Carb and S- group. A significant increase of sperm aneuploidies was present at T1 in the BEP group. Similarly, the same group at 1 had altered sperm DNA integrity and fragmentation compared with baseline, S group and Carb group. These alterations were persistent after two years from the end of BEP treatment. Despite a slight improvement at T2, the BEP group had still higher percentages of sperm aneuploidies than other groups. No impairment of sperm aneuploidies and DNA status were observed in the Carb group both after one and two years from the end of treatment

  20. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc.

    Science.gov (United States)

    Horner, H A; Urban, J P

    2001-12-01

    Disc cell viability was analyzed in relation to nutrient supply and cellular demand in vitro in a diffusion chamber. To determine relations among nutrient supply, nutrient concentrations. and cell viability. Although a fall in nutrient supply has long been thought the cause of disc degeneration in vivo, little information exists about the effects of nutrient levels or supply on cell viability and metabolism. Isolated bovine nucleus cells were cultured in agarose gels in a diffusion chamber up to 13 days. Nutrients were supplied to the open sides of the chamber and diffused through the gel to the center, 12.5 mm away from the nutrient supply, in a configuration analogous to that of the disc in vivo. Profiles of cell viability and concentration of glycosaminoglycans across the chamber were measured in relation to cell density and medium composition. Cells remained viable across the chamber at low cell densities. However, at higher densities, cells in the center of the chamber died. The viable distance from the nutrient supply fell with an increase in cell density. Glucose was a critical nutrient. Survival was also poor at acidic pH (6.0). At 0% oxygen, disc cells survived up to 13 days with no loss of viability, but produced very little proteoglycan. The results support the idea that maximum cell density in the disc is regulated by nutritional constraints, and that a fall in nutrient supply reduces the number of viable cells in the disc and thus leads to degeneration.

  1. Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division

    KAUST Repository

    An, Xiaomeng

    2017-06-21

    Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.

  2. Exposure to Sub-lethal 2,4-Dichlorophenoxyacetic Acid Arrests Cell Division and Alters Cell Surface Properties in Escherichia coli

    Science.gov (United States)

    Bhat, Supriya V.; Kamencic, Belma; Körnig, André; Shahina, Zinnat; Dahms, Tanya E. S.

    2018-01-01

    Escherichia coli is a robust, easily adaptable and culturable bacterium in vitro, and a model bacterium for studying the impact of xenobiotics in the environment. We have used correlative atomic force – laser scanning confocal microscopy (AFM-LSCM) to characterize the mechanisms of cellular response to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). One of the most extensively used herbicides world-wide, 2,4-D is known to cause hazardous effects in diverse non-target organisms. Sub-lethal concentrations of 2,4-D caused DNA damage in E. coli WM1074 during short exposure periods which increased significantly over time. In response to 2,4-D, FtsZ and FtsA relocalized within seconds, coinciding with the complete inhibition of cell septation and cell elongation. Exposure to 2,4-D also resulted in increased activation of the SOS response. Changes to cell division were accompanied by concomitant changes to surface roughness, elasticity and adhesion in a time-dependent manner. This is the first study describing the mechanistic details of 2,4-D at sub-lethal levels in bacteria. Our study suggests that 2,4-D arrests E. coli cell division within seconds after exposure by disrupting the divisome complex, facilitated by dissipation of membrane potential. Over longer exposures, 2,4-D causes filamentation as a result of an SOS response to oxidative stress induced DNA damage. PMID:29472899

  3. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities

    NARCIS (Netherlands)

    Hut, HMJ; Kampinga, HH; Sibon, OCM

    The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress

  4. The nucleus basalis (Ch4) in the alcoholic Wernicke-Korsakoff syndrome: reduced cell number in both amnesic and non-amnesic patients.

    Science.gov (United States)

    Cullen, K M; Halliday, G M; Caine, D; Kril, J J

    1997-09-01

    The cholinergic nucleus basalis (Ch4) is an exclusive site of neurofibrillary degeneration in alcoholic patients with Wernicke's encephalopathy. To test the hypothesis that the loss of Ch4 neurons contributes to the memory disorder, Korsakoff's psychosis, commonly seen in Wernicke's encephalopathy. Magnocellular basal forebrain neurons were quantified in alcoholic patients with Wernicke's encephalopathy, both with and without Korsakoff's psychosis, and neurologically asymptomatic alcoholic and non-alcoholic controls. Because amnesic and non-amnesic patients with Wernicke's encephalopathy share common periventricular lesions, both thiamine deficient groups as well as alcoholic patients with no neurological complications were included to determine the lesion specific to memory impairment. Ch4 cell number did not differ significantly between alcoholic and non-alcoholic controls and there was no correlation between cell number and lifetime alcohol intake. However, Ch4 cell number in all groups was significantly correlated with the volume of its major projection target, the cerebral cortex. Ch4 cell number in the non-amnesic Wernicke's encephalopathy group was significantly below controls (24%), with cell number in patients with Korsakoff's psychosis 21% below controls. There was considerable overlap in cell number between groups. On discriminant analysis, there was significantly greater cell loss in three non-amnesic patients with Wernicke's encephalopathy than in some patients with Korsakoff's psychosis. The nonamnesic patient with the greatest cell loss was impaired on attentional tasks. Whereas neurons in the nucleus basalis are at risk in thiamine deficient alcoholic patients, cell loss is minor and does not account for the profound memory disorder.

  5. Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice.

    Directory of Open Access Journals (Sweden)

    Nichole Goodsmith

    2015-02-01

    Full Text Available The identification of Mycobacterium tuberculosis genes necessary for persistence in vivo provides insight into bacterial biology as well as host defense strategies. We show that disruption of M. tuberculosis membrane protein PerM (Rv0955 resulted in an IFN-γ-dependent persistence defect in chronic mouse infection despite the mutant's near normal growth during acute infection. The perM mutant required increased magnesium for replication and survival; incubation in low magnesium media resulted in cell elongation and lysis. Transcriptome analysis of the perM mutant grown in reduced magnesium revealed upregulation of cell division and cell wall biosynthesis genes, and live cell imaging showed PerM accumulation at the division septa in M. smegmatis. The mutant was acutely sensitive to β-lactam antibiotics, including specific inhibitors of cell division-associated peptidoglycan transpeptidase FtsI. Together, these data implicate PerM as a novel player in mycobacterial cell division and pathogenesis, and are consistent with the hypothesis that immune activation deprives M. tuberculosis of magnesium.

  6. The cellular prion protein: a new partner of the lectin CBP70 in the nucleus of NB4 human promyelocytic leukemia cells.

    Science.gov (United States)

    Rybner, C; Finel-Szermanski, S; Felin, M; Sahraoui, T; Rousseau, C; Fournier, J G; Sève, A P; Botti, J

    2002-01-01

    Prion diseases are characterized by the presence of an abnormal isoform of the cellular prion protein (PrPc) whose physiological role still remains elusive. To better understand the function of PrPc, it is important to identify the different subcellular localization(s) of the protein and the different partners with which it might be associated. In this context, the PrPc-lectins interactions are investigated because PrPc is a sialoglycoprotein which can react with lectins which are carbohydrate-binding proteins. We have previously characterized a nuclear lectin CBP70 able to recognize N-acetyl-beta-D-glucosamine residues in HL60 cells. Using confocal immunofluorescence, flow-cytofluorometry, and Western-blotting, we have found that PrPc is expressed in the nucleus of the NB4 human promyelocytic leukemia cell line. It was also found that the lectin CBP70 is localized in NB4 cell nuclei. Moreover, several approaches revealed that PrPc and CBP70 are colocalized in the nucleus. Immunoprecipitation experiments showed that these proteins are coprecipitated and interact via a sugar-dependent binding moiety. In conclusion, PrPc and CBP70 are colocalized in the nuclear compartment of NB4 cells and this interaction may be important to better understand the biological function and possibly the conversion process of PrPc into its pathological form (PrPsc). Copyright 2001 Wiley-Liss, Inc.

  7. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Lu, Kang; Li, Hai-Yin; Yang, Kuang; Wu, Jun-Long; Cai, Xiao-Wei; Zhou, Yue; Li, Chang-Qing

    2017-05-10

    The stem cell-based therapies for intervertebral disc degeneration have been widely studied. However, the mechanisms of mesenchymal stem cells interacting with intervertebral disc cells, such as nucleus pulposus cells (NPCs), remain unknown. Exosomes as a vital paracrine mechanism in cell-cell communication have been highly focused on. The purpose of this study was to detect the role of exosomes derived from bone marrow mesenchymal stem cells (BM-MSCs) and NPCs in their interaction with corresponding cells. The exosomes secreted by BM-MSCs and NPCs were purified by differential centrifugation and identified by transmission electron microscope and immunoblot analysis of exosomal marker proteins. Fluorescence confocal microscopy was used to examine the uptake of exosomes by recipient cells. The effects of NPC exosomes on the migration and differentiation of BM-MSCs were determined by transwell migration assays and quantitative RT-PCR analysis of NPC phenotypic genes. Western blot analysis was performed to examine proteins such as aggrecan, sox-9, collagen II and hif-1α in the induced BM-MSCs. Proliferation and the gene expression profile of NPCs induced by BM-MSC exosomes were measured by Cell Counting Kit-8 and qRT-PCR analysis, respectively. Both the NPCs and BM-MSCs secreted exosomes, and these exosomes underwent uptake by the corresponding cells. NPC-derived exosomes promoted BM-MSC migration and induced BM-MSC differentiation to a nucleus pulposus-like phenotype. BM-MSC-derived exosomes promoted NPC proliferation and healthier extracellular matrix production in the degenerate NPCs. Our study indicates that the exosomes act as an important vehicle in information exchange between BM-MSCs and NPCs. Given a variety of functions and multiple advantages, exosomes alone or loaded with specific genes and drugs would be an appropriate option in a cell-free therapy strategy for intervertebral disc degeneration.

  8. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids.

    Science.gov (United States)

    Tran, Truc T; Panesso, Diana; Mishra, Nagendra N; Mileykovskaya, Eugenia; Guan, Ziqianq; Munita, Jose M; Reyes, Jinnethe; Diaz, Lorena; Weinstock, George M; Murray, Barbara E; Shamoo, Yousif; Dowhan, William; Bayer, Arnold S; Arias, Cesar A

    2013-07-23

    Treatment of multidrug-resistant enterococci has become a challenging clinical problem in hospitals around the world due to the lack of reliable therapeutic options. Daptomycin (DAP), a cell membrane-targeting cationic antimicrobial lipopeptide, is the only antibiotic with in vitro bactericidal activity against vancomycin-resistant enterococci (VRE). However, the clinical use of DAP against VRE is threatened by emergence of resistance during therapy, but the mechanisms leading to DAP resistance are not fully understood. The mechanism of action of DAP involves interactions with the cell membrane in a calcium-dependent manner, mainly at the level of the bacterial septum. Previously, we demonstrated that development of DAP resistance in vancomycin-resistant Enterococcus faecalis is associated with mutations in genes encoding proteins with two main functions, (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase). In this work, we show that these VRE can resist DAP-elicited cell membrane damage by diverting the antibiotic away from its principal target (division septum) to other distinct cell membrane regions. DAP septal diversion by DAP-resistant E. faecalis is mediated by initial redistribution of cell membrane cardiolipin-rich microdomains associated with a single amino acid deletion within the transmembrane protein LiaF (a member of a three-component regulatory system [LiaFSR] involved in cell envelope homeostasis). Full expression of DAP resistance requires additional mutations in enzymes (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase) that alter cell membrane phospholipid content. Our findings describe a novel mechanism of bacterial resistance to cationic antimicrobial peptides. The emergence of antibiotic resistance in bacterial pathogens is a threat to public health

  9. The asymmetric cell division machinery in the spiral-cleaving egg and embryo of the marine annelid Platynereis dumerilii.

    Science.gov (United States)

    Nakama, Aron B; Chou, Hsien-Chao; Schneider, Stephan Q

    2017-12-11

    Over one third of all animal phyla utilize a mode of early embryogenesis called 'spiral cleavage' to divide the fertilized egg into embryonic cells with different cell fates. This mode is characterized by a series of invariant, stereotypic, asymmetric cell divisions (ACDs) that generates cells of different size and defined position within the early embryo. Astonishingly, very little is known about the underlying molecular machinery to orchestrate these ACDs in spiral-cleaving embryos. Here we identify, for the first time, cohorts of factors that may contribute to early embryonic ACDs in a spiralian embryo. To do so we analyzed stage-specific transcriptome data in eggs and early embryos of the spiralian annelid Platynereis dumerilii for the expression of over 50 candidate genes that are involved in (1) establishing cortical domains such as the partitioning defective (par) genes, (2) directing spindle orientation, (3) conveying polarity cues including crumbs and scribble, and (4) maintaining cell-cell adhesion between embryonic cells. In general, each of these cohorts of genes are co-expressed exhibiting high levels of transcripts in the oocyte and fertilized single-celled embryo, with progressively lower levels at later stages. Interestingly, a small number of key factors within each ACD module show different expression profiles with increased early zygotic expression suggesting distinct regulatory functions. In addition, our analysis discovered several highly co-expressed genes that have been associated with specialized neural cell-cell recognition functions in the nervous system. The high maternal contribution of these 'neural' adhesion complexes indicates novel general adhesion functions during early embryogenesis. Spiralian embryos are champions of ACD generating embryonic cells of different size with astonishing accuracy. Our results suggest that the molecular machinery for ACD is already stored as maternal transcripts in the oocyte. Thus, the spiralian egg can

  10. Cytoskeleton, endoplasmic reticulum and nucleus alterations in CHO-K1 cell line after Crotalus durissus terrificus (South American rattlesnake venom treatment

    Directory of Open Access Journals (Sweden)

    B. P. Tamieti

    2007-01-01

    Full Text Available Snake venoms are toxic to a variety of cell types. However, the intracellular damages and the cell death fate induced by venom are unclear. In the present work, the action of the South American rattlesnake Crotalus durissus terrificus venom on CHO-K1 cell line was analyzed. The cells CHO-K1 were incubated with C. d. terrificus venom (10, 50 and 100g/ml for 1 and 24 hours, and structural alterations of actin filaments, endoplasmic reticulum and nucleus were assessed using specific fluorescent probes and agarose gel electrophoresis for DNA fragmentation. Significant structural changes were observed in all analyzed structures. DNA fragmentation was detected suggesting that, at the concentrations used, the venom induced apoptosis.

  11. C. elegans nucleostemin is required for larval growth and germline stem cell division.

    Directory of Open Access Journals (Sweden)

    Michelle M Kudron

    2008-08-01

    Full Text Available The nucleolus has shown to be integral for many processes related to cell growth and proliferation. Stem cells in particular are likely to depend upon nucleolus-based processes to remain in a proliferative state. A highly conserved nucleolar factor named nucleostemin is proposed to be a critical link between nucleolar function and stem-cell-specific processes. Currently, it is unclear whether nucleostemin modulates proliferation by affecting ribosome biogenesis or by another nucleolus-based activity that is specific to stem cells and/or highly proliferating cells. Here, we investigate nucleostemin (nst-1 in the nematode C. elegans, which enables us to examine nst-1 function during both proliferation and differentiation in vivo. Like mammalian nucleostemin, the NST-1 protein is localized to the nucleolus and the nucleoplasm; however, its expression is found in both differentiated and proliferating cells. Global loss of C. elegans nucleostemin (nst-1 leads to a larval arrest phenotype due to a growth defect in the soma, while loss of nst-1 specifically in the germ line causes germline stem cells to undergo a cell cycle arrest. nst-1 mutants exhibit reduced levels of rRNAs, suggesting defects in ribosome biogenesis. However, NST-1 is generally not present in regions of the nucleolus where rRNA transcription and processing occurs, so this reduction is likely secondary to a different defect in ribosome biogenesis. Transgenic studies indicate that NST-1 requires its N-terminal domain for stable expression and both its G1 GTPase and intermediate domains for proper germ line function. Our data support a role for C. elegans nucleostemin in cell growth and proliferation by promoting ribosome biogenesis.

  12. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem.

    Science.gov (United States)

    Franken, Tom P; Smith, Philip H; Joris, Philip X

    2016-01-01

    The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar

  13. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  14. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain...... beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA...

  15. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells.

    Science.gov (United States)

    Zwergel, Clemens; Czepukojc, Brigitte; Evain-Bana, Emilie; Xu, Zhanjie; Stazi, Giulia; Mori, Mattia; Patsilinakos, Alexandros; Mai, Antonello; Botta, Bruno; Ragno, Rino; Bagrel, Denise; Kirsch, Gilbert; Meiser, Peter; Jacob, Claus; Montenarh, Mathias; Valente, Sergio

    2017-07-07

    Cell division cycle phosphatases CDC25 A, B and C are involved in modulating cell cycle processes and are found overexpressed in a large panel of cancer typology. Here, we describe the development of two novel quinone-polycycle series of CDC25A and C inhibitors on the one hand 1a-k, coumarin-based, and on the other 2a-g, quinolinone-based, which inhibit either enzymes up to a sub-micro molar level and at single-digit micro molar concentrations, respectively. When tested in six different cancer cell lines, compound 2c displayed the highest efficacy to arrest cell viability, showing in almost all cell lines sub-micro molar IC 50 values, a profile even better than the reference compound NCS95397. To investigate the putative binding mode of the inhibitors and to develop quantitative structure-activity relationships, molecular docking and 3-D QSAR studies were also carried out. Four selected inhibitors, 1a, 1d, 2a and 2c have been also tested in A431 cancer cells; among them, compound 2c was the most potent one leading to cell proliferation arrest and decreased CDC25C protein levels together with its splicing variant. Compound 2c displayed increased phosphorylation levels of histone H3, induction of PARP and caspase 3 cleavage, highlighting its contribution to cell death through pro-apoptotic effects. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella

    Czech Academy of Sciences Publication Activity Database

    Buntrock, L.; Marec, František; Krueger, S.; Traut, W.

    2012-01-01

    Roč. 55, č. 11 (2012), s. 755-763 ISSN 0831-2796 R&D Projects: GA AV ČR IAA600960925 Institutional support: RVO:60077344 Keywords : genome size * C-value * cell size Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.668, year: 2012

  17. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  18. Effect of salt on a thermosensitive mutant of Bacillus subtilis deficient in uracil and cell division

    International Nuclear Information System (INIS)

    Miyazaki, Nobuyoshi; Nagai, Kazuo; Tamura, Gakuzo

    1976-01-01

    A thermosensitive mutant ts 42, of Bacillus subtilis Marburg 168 thy trp2 which requires uracil, was examined as to the colony-forming ability at the permissive and nonpermissive temperatures. The viability of the mutant cells decreased rapidly at the restrictive temperature in modified woese's medium. However, the cells retained the viability when sodium succinate or potassium chloride was added to the medium at that temperature, although uranil deficiency was unchanged. A little but significant incorporation of adenine-8- 14 C into RNA still continued even after the incorporation of N-acetyl- 3 H-D-glucosamine into the acid-insoluble fraction of the cells terminated in the modified Woese's medium at 48 0 C. Both incorporations as well as the increase of absorbance were slowed down in the presence of sodium succinate at 48 0 C. This mutant, ts42, was more sensitive to deoxycholate than the parent wild strain. The resoration of the colony-forming ability after the temperature shifted back from 48 0 to 37 0 C was suppressed by the addition of deoxycholate to the medium. However, the cells became resistant to deoxycholate when uracil had been added to the medium prior to the temperature shift. (Kobatake, H.)

  19. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Peng, L.; Skylar, A.; Chang, P.L.; Bišová, Kateřina; Wu, X.

    2014-01-01

    Roč. 393, č. 2 (2014), s. 160-170 ISSN 0012-1606 R&D Projects: GA AV ČR M200201205 Grant - others:NSF(US) MCB-1122213 Institutional support: RVO:61388971 Keywords : cell cycle * arabidopsis * meristem Subject RIV: EE - Microbiology, Virology Impact factor: 3.547, year: 2014

  20. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration

    Czech Academy of Sciences Publication Activity Database

    Sun, X.; Cahill, J.; Van Hautegem, T.; Feys, K.; Whipple, C.; Novák, Ondřej; Delbare, S.; Versteele, C.; Demuynck, C.; De Block, J.; Storme, V.; Claeys, H.; Van Lijsebettens, M.; Coussens, G.; Ljung, K.; De Vliegher, A.; Muszynski, M.; Inzé, D.; Nelissen, H.

    2017-01-01

    Roč. 8, MAR 16 (2017), č. článku 14752. ISSN 2041-1723 Institutional support: RVO:61389030 Keywords : organ size * arabidopsis-thaliana * gene-expression * leaf size * growth * cytochrome-p450 * protein * plants * inference * mechanism Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 12.124, year: 2016

  1. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    Science.gov (United States)

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  2. Effects of the Scientific Argumentation Based Learning Process on Teaching the Unit of Cell Division and Inheritance to Eighth Grade Students

    Science.gov (United States)

    Balci, Ceyda; Yenice, Nilgun

    2016-01-01

    The aim of this study is to analyse the effects of scientific argumentation based learning process on the eighth grade students' achievement in the unit of "cell division and inheritance". It also deals with the effects of this process on their comprehension about the nature of scientific knowledge, their willingness to take part in…

  3. Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation

    Czech Academy of Sciences Publication Activity Database

    Smékalová, V.; Luptovčiak, I.; Komis, G.; Šamajová, O.; Ovečka, M.; Doskočilová, A.; Takáč, T.; Vadovič, P.; Novák, Ondřej; Pechan, T.; Ziemann, A.; Košútová, P.; Šamaj, J.

    2014-01-01

    Roč. 203, č. 4 (2014), s. 1175-1193 ISSN 0028-646X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis * cell division plane * MAP65-1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.672, year: 2014

  4. Fine-mapping the contact sites of the Escherichia coli cell division proteins FtsB and FtsL on the FtsQ protein

    NARCIS (Netherlands)

    van den Berg van Saparoea, H.B.; Glas, M.; Vernooij, I.G.; Bitter, W.; den Blaauwen, T.; Luirink, S.

    2013-01-01

    Background: Interactions between the components of the divisome are crucial for cell division, but detailed knowledge is lacking. Results: In vivo photo cross-linking revealed two main contact sites of FtsB and FtsL on FtsQ. Conclusion: FtsQ contains an FtsB interaction hot spot. Significance: Our

  5. Culturally relevant inquiry-based laboratory module implementations in upper-division genetics and cell biology teaching laboratories.

    Science.gov (United States)

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students' professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate.

  6. Bacteriocin protein BacL1 of Enterococcus faecalis targets cell division loci and specifically recognizes L-Ala2-cross-bridged peptidoglycan.

    Science.gov (United States)

    Kurushima, Jun; Nakane, Daisuke; Nishizaka, Takayuki; Tomita, Haruyoshi

    2015-01-01

    Bacteriocin 41 (Bac41) is produced from clinical isolates of Enterococcus faecalis and consists of two extracellular proteins, BacL1 and BacA. We previously reported that BacL1 protein (595 amino acids, 64.5 kDa) is a bacteriolytic peptidoglycan D-isoglutamyl-L-lysine endopeptidase that induces cell lysis of E. faecalis when an accessory factor, BacA, is copresent. However, the target of BacL1 remains unknown. In this study, we investigated the targeting specificity of BacL1. Fluorescence microscopy analysis using fluorescent dye-conjugated recombinant protein demonstrated that BacL1 specifically localized at the cell division-associated site, including the equatorial ring, division septum, and nascent cell wall, on the cell surface of target E. faecalis cells. This specific targeting was dependent on the triple repeat of the SH3 domain located in the region from amino acid 329 to 590 of BacL1. Repression of cell growth due to the stationary state of the growth phase or to treatment with bacteriostatic antibiotics rescued bacteria from the bacteriolytic activity of BacL1 and BacA. The static growth state also abolished the binding and targeting of BacL1 to the cell division-associated site. Furthermore, the targeting of BacL1 was detectable among Gram-positive bacteria with an L-Ala-L-Ala-cross-bridging peptidoglycan, including E. faecalis, Streptococcus pyogenes, or Streptococcus pneumoniae, but not among bacteria with alternate peptidoglycan structures, such as Enterococcus faecium, Enterococcus hirae, Staphylococcus aureus, or Listeria monocytogenes. These data suggest that BacL1 specifically targets the L-Ala-L-Ala-cross-bridged peptidoglycan and potentially lyses the E. faecalis cells during cell division. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-10-01

    The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Effects of radiation on the cell division cycle. Using yeasts as models

    International Nuclear Information System (INIS)

    Mann, C.; Marsolier, M.C.

    2000-01-01

    The living organisms, since the appearance on earth of the simplest of them, are submitted to numerous attacks having different origin. They use response systems to the DNA damages coming from these attacks and especially radiations. The cell knows how to take stock of the situation, at different moment of its life, to slow down, eventually to stop its cycle before continuing, after repairing of its DNA and divided itself. These mechanisms have kept a remarkable similarity during the evolution. The study of these systems among yeasts is a precious help to understand the corresponding systems for man and to evaluate the limits but also the possibilities, particularly, in oncology. (N.C.)

  9. Revealing the micromechanics driving cellular division: optical manipulation of force-bearing substructure in mitotic cells

    Science.gov (United States)

    Ono, Matthew; Preece, Daryl; Duquette, Michelle; Forer, Arthur; Berns, Michael

    2017-08-01

    During the anaphase stage of mitosis, a motility force transports genetic material in the form of chromosomes to the poles of the cell. Chromosome deformations during anaphase transport have largely been attributed to viscous drag force, however LaFountain et. al. found that a physical tether connects separating chromosome ends in crane-fly spermatocytes such that a backwards tethering force elongates the separating chromosomes. In the presented study laser microsurgery was used to deduce the mechanistic basis of chromosome elongation in rat-kangaroo cells. In half of tested chromosome pairs, laser microsurgery between separating chromosome ends reduced elongation by 7+/-3% suggesting a source of chromosome strain independent of viscous drag. When microsurgery was used to sever chromosomes during transport, kinetochore attached fragments continued poleward travel while half of end fragments traveled towards the opposite pole and the remaining fragments either did not move or segregated to the proper pole. Microsurgery directed between chromosome ends always ceased cross-polar fragment travel suggesting the laser severed a physical tether transferring force to the fragment. Optical trapping of fragments moving towards the opposite pole estimates an upper boundary on the tethering force of 1.5 pN.

  10. Aqueous humor from traumatized eyes triggers cell division in the epithelia of cultured lenses

    International Nuclear Information System (INIS)

    Reddan, J.R.; Weinsieder, A.; Wilson, D.

    1979-01-01

    Experiments were designed to gain a better understanding of the relationship between ocular inflammation and cell proliferation in the lens epithelium. Aqueous humor (AH) was collected from rabbit eyes that had been subjected to a variety of traumata, including paracentesis, needle injury, X-irradiation and the intravitreal administration of an antigen. In all cases the protein content of the AH increased, reflecting a breakdown in the blood aqueous barrier. Rabbit lenses from non-traumatized eyes were isolated and cultured in medium KEI-4 containing samples of the various aqueous humors noted above. Control lenses were cultured in medium KEI-4 alone or in KEI-4 containing rabbit serum albumen at a protein concentration equivalent to that used in the AH studies. In contrast to controls, the epithelial cells of lenses exposed to AH from injured or inflamed eyes exhibited mitosis throughout the normally amitotic regions of epithelium. Moreover, the specific activity of AH collected 15 min after initial paracentesis, relative to both DNA synthesis and mitosis, exceeded that of rabbit serum. An identification of the mitogenic factor(s) in the AH may help in understanding the environmental conditions that regulate the mitotic response which normally precedes wound healing in the lens in situ, and may help in elucidating the mechanism which controls mitosis and differentiation in the lens in vivo. (author)

  11. Overproduction of individual gas vesicle proteins perturbs flotation, antibiotic production and cell division in the enterobacterium Serratia sp. ATCC 39006.

    Science.gov (United States)

    Monson, Rita E; Tashiro, Yosuke; Salmond, George P C

    2016-09-01

    Gas vesicles are intracellular proteinaceous organelles that facilitate bacterial colonization of static water columns. In the enterobacterium Serratia sp. ATCC 39006, gas vesicle formation requires the proteins GvpA1, GvpF1, GvpG, GvpA2, GvpK, GvpA3, GvpF2 and GvpF3 and the three gas vesicle regulatory proteins GvrA, GvrB and GvrC. Deletion of gvpC alters gas vesicle robustness and deletion of gvpN or gvpV results in small bicone vesicles. In this work, we assessed the impacts on gas vesicle formation when each of these 14 essential proteins was overexpressed. Overproduction of GvpF1, GvpF2, GvrA, GvrB or GvrC all resulted in significantly reduced gas vesicle synthesis. Perturbations in gas vesicle formation were also observed when GvpV and GvpA3 were in excess. In addition to impacts on gas vesicle formation, overproduction of GvrA or GvrB led to elevated biosynthesis of the tripyrrole pigment, prodigiosin, a secondary metabolite of increasing medical interest due to its antimalarial and anticancer properties. Finally, when GvpG was overexpressed, gas vesicles were still produced, but the cells exhibited a growth defect. Further analysis showed that induction of GvpG arrested cell growth and caused a drop in viable count, suggesting a possible physiological role for this protein linking gas vesicle biogenesis and binary fission. These combined results demonstrate that the stoichiometry of individual gas vesicle proteins is crucially important for controlled organelle morphogenesis and flotation and provides evidence for the first link between gas vesicle assembly and cell division, to our knowledge.

  12. Synaptic activity induces dramatic changes in the geometry of the cell nucleus: interplay between nuclear structure, histone H3 phosphorylation, and nuclear calcium signaling.

    Science.gov (United States)

    Wittmann, Malte; Queisser, Gillian; Eder, Anja; Wiegert, J Simon; Bengtson, C Peter; Hellwig, Andrea; Wittum, Gabriel; Bading, Hilmar

    2009-11-25

    Synaptic activity initiates many adaptive responses in neurons. Here we report a novel form of structural plasticity in dissociated hippocampal cultures and slice preparations. Using a recently developed algorithm for three-dimensional image reconstruction and quantitative measurements of cell organelles, we found that many nuclei from hippocampal neurons are highly infolded and form unequally sized nuclear compartments. Nuclear infoldings are dynamic structures, which can radically transform the geometry of the nucleus in response to neuronal activity. Action potential bursting causing synaptic NMDA receptor activation dramatically increases the number of infolded nuclei via a process that requires the ERK-MAP kinase pathway and new protein synthesis. In contrast, death-signaling pathways triggered by extrasynaptic NMDA receptors cause a rapid loss of nuclear infoldings. Compared with near-spherical nuclei, infolded nuclei have a larger surface and increased nuclear pore complex immunoreactivity. Nuclear calcium signals evoked by cytosolic calcium transients are larger in small nuclear compartments than in the large compartments of the same nucleus; moreover, small compartments are more efficient in temporally resolving calcium signals induced by trains of action potentials in the theta frequency range (5 Hz). Synaptic activity-induced phosphorylation of histone H3 on serine 10 was more robust in neurons with infolded nuclei compared with neurons with near-spherical nuclei, suggesting a functional link between nuclear geometry and transcriptional regulation. The translation of synaptic activity-induced signaling events into changes in nuclear geometry facilitates the relay of calcium signals to the nucleus, may lead to the formation of nuclear signaling microdomains, and could enhance signal-regulated transcription.

  13. High Expression of Cell Division Cycle 42 Promotes Pancreatic Cancer Growth and Predicts Poor Outcome of Pancreatic Cancer Patients.

    Science.gov (United States)

    Yang, Dejun; Zhang, Yu; Cheng, Yajun; Hong, Liang; Wang, Changming; Wei, Ziran; Cai, Qingping; Yan, Ronglin

    2017-04-01

    Cell division cycle 42 (CDC42), an important member of the Rho family, is overexpressed in various human cancers. However, its expression and role in pancreatic cancer (PC) are not well understood. The present study was designed to investigate the expression patterns and underlying cellular mechanisms of CDC42 in PC. First, immunohistochemical analysis, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were performed to detect CDC42 expression in clinical pancreatic carcinoma and adjacent tissues. Second, differential expression of CDC42 between PC cells and normal cells was evaluated by qRT-PCR and Western blotting. Third, the correlation between CDC42 expression as well as clinicopathological characteristics and patient survival was analyzed. Finally, CDC42 was knocked down to examine its role both in vivo and in vitro. The results showed significantly increased CDC42 expression in pancreatic tumor tissues compared with adjacent normal tissues, as revealed by qRT-PCR, Western blotting and immunostaining. Compared to PanC-1 cells, CDC42 expression was downregulated in HPDE6-C7 cells as shown by qRT-PCR and Western blotting. High CDC42 expression was observed in 69.2% (83/120) of pancreatic adenocarcinoma patients and was significantly associated with tumor differentiation (p = 0.013), median tumor size (p = 0.005), tumor infiltration (pT stage, p = 0.04), lymph nodal status (pN stage, p = 0.044) and TNM staging (p = 0.003). Multivariate Cox regression analysis revealed CDC42 expression to be an independent predictor of survival of PC patients (HR 3.0, 95% CI 1.60-5.61, p = 0.001). Finally, we found that CDC42 promoted the proliferation of PanC-1 cells both in vivo and in vitro. Our findings reveal that CDC42 might play an important role in promoting PC development, and the findings suggest that CDC42 might serve as a potential prognostic indicator of PC.

  14. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Comparison of radiation sensitivity for three cell lines as measured by the cloning assay and the micro-nucleus test

    NARCIS (Netherlands)

    Stap, J.; Aten, J. A.

    1990-01-01

    The correlation between cell killing and the induction of micro-nuclei was studied for three cell lines after treatment with gamma radiation to investigate whether the frequency of micro-nucleated cells can be used to determine the radiation sensitivity of a cell type. R1 rat rhabdomyosarcoma cells

  16. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle

    NARCIS (Netherlands)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-01-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox

  17. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  18. Bupropion-induced inhibition of α7 nicotinic acetylcholine receptors expressed in heterologous cells and neurons from dorsal raphe nucleus and hippocampus.

    Science.gov (United States)

    Vázquez-Gómez, Elizabeth; Arias, Hugo R; Feuerbach, Dominik; Miranda-Morales, Marcela; Mihailescu, Stefan; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof; García-Colunga, Jesús

    2014-10-05

    The pharmacological activity of bupropion was compared between α7 nicotinic acetylcholine receptors expressed in heterologous cells and hippocampal and dorsal raphe nucleus neurons. The inhibitory activity of bupropion was studied on GH3-α7 cells by Ca2+ influx, as well as on neurons from the dorsal raphe nucleus and interneurons from the stratum radiatum of the hippocampal CA1 region by using a whole-cell voltage-clamp technique. In addition, the interaction of bupropion with the α7 nicotinic acetylcholine receptor was determined by [3H]imipramine competition binding assays and molecular docking. The fast component of acetylcholine- and choline-induced currents from both brain regions was inhibited by methyllycaconitine, indicating the participation of α7-containing nicotinic acetylcholine receptors. Choline-induced currents in hippocampal interneurons were partially inhibited by 10 µM bupropion, a concentration that could be reached in the brain during clinical administration. Additionally, both agonist-induced currents were reversibly inhibited by bupropion at concentrations that coincide with its inhibitory potency (IC50=54 µM) and binding affinity (Ki=63 µM) for α7 nicotinic acetylcholine receptors from heterologous cells. The [3H]imipramine competition binding and molecular docking results support a luminal location for the bupropion binding site(s). This study may help to understand the mechanisms of actions of bupropion at neuronal and molecular levels related with its therapeutic actions on depression and for smoking cessation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  20. A trisubstituted benzimidazole cell division inhibitor with efficacy against Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Susan E Knudson

    Full Text Available Trisubstituted benzimidazoles have demonstrated potency against Gram-positive and Gram-negative bacterial pathogens. Previously, a library of novel trisubstituted benzimidazoles was constructed for high throughput screening, and compounds were identified that exhibited potency against M. tuberculosis H37Rv and clinical isolates, and were not toxic to Vero cells. A new series of 2-cyclohexyl-5-acylamino-6-N, N-dimethylaminobenzimidazoles derivatives has been developed based on SAR studies. Screening identified compounds with potency against M. tuberculosis. A lead compound from this series, SB-P17G-A20, was discovered to have an MIC of 0.16 µg/mL and demonstrated efficacy in the TB murine acute model of infection based on the reduction of bacterial load in the lungs and spleen by 1.73 ± 0.24 Log10 CFU and 2.68 ± Log10 CFU, respectively, when delivered at 50 mg/kg by intraperitoneal injection (IP twice daily (bid. The activity of SB-P17G-A20 was determined to be concentration dependent and to have excellent stability in mouse and human plasma, and liver microsomes. Together, these studies demonstrate that SB-P17G-A20 has potency against M. tuberculosis clinical strains with varying susceptibility and efficacy in animal models of infection, and that trisubstituted benzimidazoles continue to be a platform for the development of novel inhibitors with efficacy.

  1. An extract of Uncaria tomentosa inhibiting cell division and NF-kappa B activity without inducing cell death.

    Science.gov (United States)

    Akesson, Christina; Lindgren, Hanna; Pero, Ronald W; Leanderson, Tomas; Ivars, Fredrik

    2003-12-01

    Previous reports have demonstrated that extracts of the plant Uncaria tomentosa inhibit tumor cell proliferation and inflammatory responses. We have confirmed that C-Med 100, a hot water extract of this plant, inhibits tumor cell proliferation albeit with variable efficiency. We extend these findings by showing that this extract also inhibits proliferation of normal mouse T and B lymphocytes and that the inhibition is not caused by toxicity or by induction of apoptosis. Further, the extract did not interfere with IL-2 production nor IL-2 receptor signaling. Since there was no discrete cell cycle block in C-Med 100-treated cells, we propose that retarded cell cycle progression caused the inhibition of proliferation. Collectively, these data suggested interference with a common pathway controlling cell growth and cell cycle progression. Indeed, we provide direct evidence that C-Med 100 inhibits nuclear factor kappa B (NF-kappa B) activity and propose that this at least partially causes the inhibition of proliferation.

  2. Comparison of radiation sensitivity for three cell lines as measured by the cloning assay and the micro-nucleus test

    International Nuclear Information System (INIS)

    Stap, J.; Aten, J.A.

    1990-01-01

    The correlation between cell killing and the induction of micro-nucl