WorldWideScience

Sample records for cell nucleolus

  1. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide. PMID:27576711

  2. Change of nucleolus characteristic of fish embryo cells under the influence of low-level radiation

    International Nuclear Information System (INIS)

    The nucleolus activity of fish embryo cells was stimulated by low-level radiation at a dose rate of 2-13 mGy/h. The size of nucleoli generally increased in embryos of Cyprinus carpio, whereas the number of nucleoli was greater in embryos of Carassius auratus gibelio. The higher the functional activity of nucleolus is, the more pronounced are changes in the characteristics. The size of single nucleolus at gastrulation is the most sensitive characteristic. 16 refs.; 1 tab

  3. Structures of nucleolus and transcription sites of rRNA genes in rat liver cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    We observed the ultrastructure of nucleolus in rat liver cells by conventional electronmicroscopy, and employed cytochemistry NAMA-Ur DNA specific stain method to analyze the distributionand position of nucleolar DNA in situ. The results showed that nucleolar DNA of rat livercells comes from nucleolus-associated chromatin, and continuously extends in the dense fibrillarcomponent (DFC) of nucleolus, localizes at the periphery of fibrillar center (FC) and in DFC. Furthermore,by employing anti-DNA/RNA hybrid antibodies, we directly and selectively labeled transcriptionsites of rRNA genes and testified that localization of transcription sites not only to DFC butalso to the periphery of FC.

  4. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    International Nuclear Information System (INIS)

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  5. High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae.

    Science.gov (United States)

    Wang, Renjie; Normand, Christophe; Gadal, Olivier

    2016-01-01

    Spatial organization of the genome has important impacts on all aspects of chromosome biology, including transcription, replication, and DNA repair. Frequent interactions of some chromosome domains with specific nuclear compartments, such as the nucleolus, are now well documented using genome-scale methods. However, direct measurement of distance and interaction frequency between loci requires microscopic observation of specific genomic domains and the nucleolus, followed by image analysis to allow quantification. The fluorescent repressor operator system (FROS) is an invaluable method to fluorescently tag DNA sequences and investigate chromosome position and dynamics in living cells. This chapter describes a combination of methods to define motion and region of confinement of a locus relative to the nucleolus in cell's nucleus, from fluorescence acquisition to automated image analysis using two dedicated pipelines. PMID:27576709

  6. A nucleolus-predominant piggyBac transposase, NP-mPB, mediates elevated transposition efficiency in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Jin-Bon Hong

    Full Text Available PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB. Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3-4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.

  7. Activation of latent nucleolus organizers induced by experimental polyploidization in cells of hexaploid wheat Triticum aestivum L.

    Science.gov (United States)

    Lazareva, E M; Khoudoleeva, O A; Chentsov YuS; Polyakov VYu

    2000-01-01

    The effect of prolonged colchicine-induced polyploidization on activation of latent nucleolus-organizing regions (NOR) of chromosomes was studied in diploid meristematic cells and polyploid root cells of Triticum aestivum L. It has been shown that control diploid and tetraploid cells have maximal number of nucleoli equal to four, which corresponds to the number of nucleolar chromosomes (NC) with active (visualized by staining with AgNO3) NOR (two pairs of homologous chromosomes 1B and 6B). Treatment of wheat seedlings with colchicine for 30 h results in following changes in polyploid cells: (1) impregnation of NOR with silver is observed on homologues of either chromosomes 1A or 5D in all tetraploid metaphase plates (4n, 2x, 4c), which is indicative of the NOR activation on this chromosome in pre-mitotic polyploid interphase; (2) In tetraploid metaphase, NOR in all four homologues of activated chromosomes or in only two of them may be stained; (3) maximal number of nucleoli in tetraploid nuclei is increased till 12, which confirms activation of transcription of additional rRNA gene clusters in polyploids; (4) activation of the rRNA gene expression is induced by the cell polyploidization rather than by colchicine, since in the colchicine-treated diploid cells both maximal number of nucleoli and the number of metaphase chromosomes with active NOR is not changed as compared with control. The obtained data allow us to suggest that structural "separation" of NC in polyploid nuclei stimulates activation of latent NOR. PMID:11093578

  8. The Nucleolus Takes Control of Protein Trafficking Under Cellular Stress

    OpenAIRE

    Nalabothula, Narasimharao; Indig, Fred E.; Carrier, France

    2010-01-01

    The nucleolus is a highly dynamic nuclear substructure that was originally described as the site of ribosome biogenesis. The advent of proteomic analysis has now allowed the identification of over 4500 nucleolus associated proteins with only about 30% of them associated with ribogenesis (1). The great number of nucleolar proteins not associated with traditionally accepted nucleolar functions indicates a role for the nucleolus in other cellular functions such as mitosis, cell-cycle progression...

  9. Configuration of nucleolarDNA in situ in nucleolus ofAllium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The location and configuration of nucleolar DNA have not beendetermined for a long time. In this paper, we have observed the nucleolar ultrastructure and the character of nucleolar DNA in Allium cepa cells by conventional electron microscopy and the cytochemical NAMA-Ur DNA specific staining method. Furthermore, we have properly improved the NAMA-Ur method so as to analyze the location and configuration of nucleolar DNA in situ. Our results indicated that the nucleolar DNA in Allium cepa cells is mainly located at the border between fibrillar centers and dense fibrillar component, especially distributed in the configuration of encircling the fibrillar centers.

  10. Directed proteomic analysis of the human nucleolus

    DEFF Research Database (Denmark)

    Andersen, Jens S; Lyon, Carol E; Fox, Archa H; Leung, Anthony K L; Lam, Yun Wah; Steen, Hanno; Mann, Matthias; Lamond, Angus I

    2002-01-01

    BACKGROUND: The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects...

  11. Proteomic Analysis of Bovine Nucleolus

    Institute of Scientific and Technical Information of China (English)

    Amrutlal K.Patel; Doug Olson; Suresh K. Tikoo

    2010-01-01

    Nucleolus is the most prominent subnuclear structure, which performs a wide variety of functions in the eu-karyotic cellular processes. In order to understand the structural and functional role of the nucleoli in bovine cells,we analyzed the proteomie composition of the bovine nueleoli. The nucleoli were isolated from Madin Darby bo-vine kidney cells and subjected to proteomie analysis by LC-MS/MS after fractionation by SDS-PAGE and strongcation exchange chromatography. Analysis of the data using the Mascot database search and the GPM databasesearch identified 311 proteins in the bovine nucleoli, which contained 22 proteins previously not identified in theproteomic analysis of human nucleoli. Analysis of the identified proteins using the GoMiner software suggestedthat the bovine nueleoli contained proteins involved in ribosomal biogenesis, cell cycle control, transcriptional,translational and post-translational regulation, transport, and structural organization.

  12. Nucleolus: The ribosome factory

    Czech Academy of Sciences Publication Activity Database

    Cmarko, Dušan; Šmigová, J.; Minichová, L.; Popov, Alexey

    2008-01-01

    Roč. 23, č. 10 (2008), s. 1291-1298. ISSN 0213-3911 R&D Projects: GA ČR(CZ) GA304/06/1691 Grant ostatní: Wellcome Trust(XE) 075834/04/Z; GA MŠk(CZ) LC535; GA ČR(CZ) GA304/06/1662 Institutional research plan: CEZ:AV0Z50110509 Keywords : nucleolus * nucleolar architecture * ribosome biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.194, year: 2008

  13. The topographic organization of repetitive DNA in the human nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, F.S.; Murray, J.; O' Connor, J.P.; Muenke, M.; Emanuel, B.S.; Zasloff, M.A. (Univ. of Pennsylvania School of Medicine, Philadelphia (United States)); Sylvester, J.E.; Gonzalez, I.L. (Hahnemann Univ., Philadelphia, PA (United States)); Doering, J.L. (Loyola Univ., Chicago, IL (United States))

    1993-01-01

    The nucleolus is a highly specialized nuclear domain where ribosomal DNA (rDNA) is transcribed and preribosomes are assembled. We investigated the molecular organization of the human lymphocyte nucleolus by fluorescence in situ hybridization and confocal laser scanning microscopy and found that transcribed rDNA and nontranscribed ribosomal intergenic spacer (IGS) sequences colocalized to discrete regions frequently on the nucleolar periphery of phytohemagglutinin-stimulated cells. The 5S rDNA gene cluster located on the long arm of chromosome I was not regularly associated with the nucleolus. Short interspersed (SINE) Alu elements detected by BLUR 11 were distributed diffusely throughout the nucleus but were severely underrepresented in the nucleolus, whereas an Alu element sub- cloned from the IGS detected sequences enriched in the nucleolus but sparsely represented in the remainder of the nucleus. In contrast, long interspersed (LINE) Kpn elements, which were located at the nucleolus, were not found in RDNA but were identified outside the ribosomal gene complex on the short arm of at least one acrocentric chromosome. A human chromosome 2 1 -derived alphoid sequence that hybridized to the centromere was localized outside but near the nucleolus, and nonribosomal DNA consisting of a tandemly repeated simple sequence cluster derived from the short arm of chromosome 15 was organized in a compact fashion in the nucleolus. Our study provides new insight into the content and structure of the human nucleolus and illustrates that the unique organization of repetitive DNA on the acrocentric chromosome short arms is reflected in the topographic organization of the nucleolus. 85 refs., 6 figs., 1 tab.

  14. Effects of Lead on the Morphology and Structure of the Nucleolus in the Root Tip Meristematic Cells of Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Ze Jiang

    2014-07-01

    Full Text Available To study the toxic mechanisms of lead (Pb in plants, the effects of Pb on the morphology and structure of the nucleolus in root tip meristematic cells of Allium cepa var. agrogarum L. were investigated. Fluorescence labeling, silver-stained indirect immunofluorescent microscopy and western blotting were used. Fluorescence labeling showed that Pb ions were localized in the meristematic cells and the uptake and accumulation of Pb increased with treatment time. At low concentrations of Pb (1–10 μM there were persistent nucleoli in some cells during mitosis, and at high concentration (100 μM many of the nucleolar organizing regions were localized on sticky chromosomes in metaphase and anaphase cells. Pb induced the release of particles containing argyrophilic proteins to be released from the nucleus into the cytoplasm. These proteins contained nucleophosmin and nucleolin. Pb also caused the extrusion of fibrillarin from the nucleus into the cytoplasm. Western blotting demonstrated the increased expression of these three major nucleolar proteins under Pb stress.

  15. Bioinformatic analysis of the nucleolus

    DEFF Research Database (Denmark)

    Leung, Anthony K L; Andersen, Jens S; Mann, Matthias;

    2003-01-01

    The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two r...

  16. The Nucleolus under Stress

    OpenAIRE

    Boulon, Séverine; Westman, Belinda J.; Hutten, Saskia; Boisvert, François-Michel; Lamond, Angus I

    2010-01-01

    Cells typically respond quickly to stress, altering their metabolism to compensate. In mammalian cells, stress signaling usually leads to either cell-cycle arrest or apoptosis, depending on the severity of the insult and the ability of the cell to recover. Stress also often leads to reorganization of nuclear architecture, reflecting the simultaneous inhibition of major nuclear pathways (e.g., replication and transcription) and activation of specific stress responses (e.g., DNA repair). In thi...

  17. Principles of protein targeting to the nucleolus.

    Science.gov (United States)

    Martin, Robert M; Ter-Avetisyan, Gohar; Herce, Henry D; Ludwig, Anne K; Lättig-Tünnemann, Gisela; Cardoso, M Cristina

    2015-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution. PMID:26280391

  18. Interchanges in popcorn (Zea mays L.) involving the nucleolus organizer chromosome

    OpenAIRE

    Maria Suely Pagliarini; Gléia Laverde Ricci; Neide da Silva; Carlos Alberto Scapim

    2006-01-01

    The analysis of microsporogenesis in endogamous plants of popcorn (S5 to S7) showed several and distinctinterchanges which involve the nucleolus organizer (chromosome 6). The detection of cells with interchanges was facilitatedby the presence of two nucleoli of different sizes in contrast to normal ones with a single big nucleolus. Interchange points donot always seem to be at the same place. Whereas in several situations the interchange point clearly involved more than twochromosome pairs, a...

  19. Distribution of DNA and localization of rRNA transcription in G2 phase nucleolus of Physarum polycephalum

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Using electron microscopy, NAMA-Ur DNA selective staining and BrUTP incorporation, the nucleo lus ultrastructure, the distribution of DNA and the rRNA transcription sites in nucleolus of G2 phase Physarum poly cephalum were studied. The nucleolus was found to be different in structure from that of other plant cells. Fibrillar cen tern (FCs) were present in a large amount all over the nucleolus. DNA was distributed both in dense fibrillar components (DFC) and in FC. The DNA in the nucleolus was less condensed than that of the chromosome territory. These changes suggested that the transcription was active within the nucleolus. BrUTP incorporation localized the rRNA transcription in DFC and at the interface of FC and DFC, suggesting that the DNA in FC is in a storage form and only the rDNA in DFC is transcribed.

  20. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Hiroshi [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan); Matsumori, Haruka [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Kalendova, Alzbeta; Hozak, Pavel [Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague (Czech Republic); Goldberg, Ilya G. [Image Informatics and Computational Biology Unit, Laboratory of Genetics, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224 (United States); Nakao, Mitsuyoshi [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Saitoh, Noriko [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811 (Japan); Harata, Masahiko, E-mail: mharata@biochem.tohoku.ac.jp [Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoka-ku, Sendai 981-8555 (Japan)

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.

  1. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    International Nuclear Information System (INIS)

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation

  2. Evidence for the presence of gamma-tubulin in the nucleolus

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Barbora; Marková, Vladimíra; Vinopal, Stanislav; Richterová, Věra; Dráberová, Eduarda; Sulimenko, Vadym; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, C.D.; Dráber, Pavel

    San Francisko : The American Society for Cell Biology, 2008. ---. [The American Society for Cell Biology, Annual Meeting/48/. 13.12.2088-17.12.2008, San Francisko] R&D Projects: GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : gamma-tubulin * nucleolus Subject RIV: EB - Genetics ; Molecular Biology

  3. Interchanges in popcorn (Zea mays L. involving the nucleolus organizer chromosome

    Directory of Open Access Journals (Sweden)

    Maria Suely Pagliarini

    2006-01-01

    Full Text Available The analysis of microsporogenesis in endogamous plants of popcorn (S5 to S7 showed several and distinctinterchanges which involve the nucleolus organizer (chromosome 6. The detection of cells with interchanges was facilitatedby the presence of two nucleoli of different sizes in contrast to normal ones with a single big nucleolus. Interchange points donot always seem to be at the same place. Whereas in several situations the interchange point clearly involved more than twochromosome pairs, a simple terminal translocation seemed to occur in others. During diplotene, a cross-shaped configurationconnected with the nucleoli was observed in some meiocytes. Some heteromorphic bivalents were found during diakinesis,after which meiosis progressed normally to the end and gave rise to apparently normal tetrads with one normal nucleolus ineach microspore. Tests of pollen viability in fixed pollen grains showed 100% stainability in normal and in affected plants.This is the first report on chromosome interchanges in popcorn.

  4. Principles of protein targeting to the nucleolus

    OpenAIRE

    Martin, R M; Ter-Avetisyan, G.; Herce, H.D.; Ludwig, A.K.; Laettig-Tuennemann, G.; Cardoso, M.C.

    2015-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins insid...

  5. Computing the nucleolus of weighted voting games

    CERN Document Server

    Elkind, Edith

    2008-01-01

    Weighted voting games (WVG) are coalitional games in which an agent's contribution to a coalition is given by his it weight, and a coalition wins if its total weight meets or exceeds a given quota. These games model decision-making in political bodies as well as collaboration and surplus division in multiagent domains. The computational complexity of various solution concepts for weighted voting games received a lot of attention in recent years. In particular, Elkind et al.(2007) studied the complexity of stability-related solution concepts in WVGs, namely, of the core, the least core, and the nucleolus. While they have completely characterized the algorithmic complexity of the core and the least core, for the nucleolus they have only provided an NP-hardness result. In this paper, we solve an open problem posed by Elkind et al. by showing that the nucleolus of WVGs, and, more generally, k-vector weighted voting games with fixed k, can be computed in pseudopolynomial time, i.e., there exists an algorithm that ...

  6. The enteropathogenic E. coli effector EspF targets and disrupts the nucleolus by a process regulated by mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Paul Dean

    Full Text Available The nucleolus is a multifunctional structure within the nucleus of eukaryotic cells and is the primary site of ribosome biogenesis. Almost all viruses target and disrupt the nucleolus--a feature exclusive to this pathogen group. Here, using a combination of bio-imaging, genetic and biochemical analyses, we demonstrate that the enteropathogenic E. coli (EPEC effector protein EspF specifically targets the nucleolus and disrupts a subset of nucleolar factors. Driven by a defined N-terminal nucleolar targeting domain, EspF causes the complete loss from the nucleolus of nucleolin, the most abundant nucleolar protein. We also show that other bacterial species disrupt the nucleolus, dependent on their ability to deliver effector proteins into the host cell. Moreover, we uncover a novel regulatory mechanism whereby nucleolar targeting by EspF is strictly controlled by EPEC's manipulation of host mitochondria. Collectively, this work reveals that the nucleolus may be a common feature of bacterial pathogenesis and demonstrates that a bacterial pathogen has evolved a highly sophisticated mechanism to enable spatio-temporal control over its virulence proteins.

  7. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions

    DEFF Research Database (Denmark)

    Pendle, Alison F; Clark, Gillian P; Boon, Reinier;

    2005-01-01

    The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic ...

  8. Strongly Essential Coalitions and the Nucleolus of Peer Group Games

    NARCIS (Netherlands)

    Brânzei, R.; Solymosi, T.; Tijs, S.H.

    2003-01-01

    Most of the known efficient algorithms designed to compute the nucleolus for special classes of balanced games are based on two facts: (i) in any balanced game, the coalitions which actually determine the nucleolus are essential; and (ii) all essential coalitions in any of the games in the class bel

  9. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    Science.gov (United States)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  10. An axiomatization of the nucleolus of the assignment game

    OpenAIRE

    Francesc Llerena; Marina Nunez; Carles Rafels

    2012-01-01

    [cat] En el domini dels jocs bilaterals d’assignació, es presenta una axiomàtica del nucleolus com l´unica solució que compleix les propietats de consistència respecte del joc derivat definit per Owen (1992) i monotonia de les queixes dels sectors respecte de la seva cardinalitat. Com a conseqüència obtenim una caracterització geomètrica del nucleolus mitjançant una propietat de bisecció més forta que la que satisfan els punts del kernel (Maschler et al, 1979).

  11. The transcription factor EGR1 localizes to the nucleolus and is linked to suppression of ribosomal precursor synthesis.

    Directory of Open Access Journals (Sweden)

    Donatella Ponti

    Full Text Available EGR1 is an immediate early gene with a wide range of activities as transcription factor, spanning from regulation of cell growth to differentiation. Numerous studies show that EGR1 either promotes the proliferation of stimulated cells or suppresses the tumorigenic growth of transformed cells. Upon interaction with ARF, EGR1 is sumoylated and acquires the ability to bind to specific targets such as PTEN and in turn to regulate cell growth. ARF is mainly localized to the periphery of nucleolus where is able to negatively regulate ribosome biogenesis. Since EGR1 colocalizes with ARF under IGF-1 stimulation we asked the question of whether EGR1 also relocate to the nucleolus to interact with ARF. Here we show that EGR1 colocalizes with nucleolar markers such as fibrillarin and B23 in the presence of ARF. Western analysis of nucleolar extracts from HeLa cells was used to confirm the presence of EGR1 in the nucleolus mainly as the 100 kDa sumoylated form. We also show that the level of the ribosomal RNA precursor 47S is inversely correlated to the level of EGR1 transcripts. The EGR1 iseffective to regulate the synthesis of the 47S rRNA precursor. Then we demonstrated that EGR1 binds to the Upstream Binding Factor (UBF leading us to hypothesize that the regulating activity of EGR1 is mediated by its interaction within the transcriptional complex of RNA polymerase I. These results confirm the presence of EGR1 in the nucleolus and point to a role for EGR1 in the control of nucleolar metabolism.

  12. THE NUCLEOLUS OF THE BANKRUPTCY PROBLEM BY HYDRAULIC RATIONING

    OpenAIRE

    TAMÁS FLEINER; BALÁZS SZIKLAI

    2012-01-01

    In this note, we give a straightforward and elementary proof of a theorem by Aumann and Maschler stating that in the well-known bankruptcy problem, the so-called CG-consistent solution described by the Talmud represents the nucleolus of the corresponding coalitional game. The proof nicely fits into the hydraulic rationing framework proposed by Kaminski. We point out further interesting properties in connection with this framework.

  13. Quantitative Proteomic Analysis of the Human Nucleolus.

    Science.gov (United States)

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  14. Fluorescence-Activated Nucleolus Sorting in Arabidopsis.

    Science.gov (United States)

    Pontvianne, Frédéric; Boyer-Clavel, Myriam; Sáez-Vásquez, Julio

    2016-01-01

    Nucleolar isolation allows exhaustive characterization of the nucleolar content. Centrifugation-based protocols are not adapted to isolation of nucleoli directly from a plant tissue because of copurification of cellular debris. We describe here a method that allows the purification of nucleoli using fluorescent-activated cell sorting from Arabidopsis thaliana leaves. This approach requires the expression of a specific nucleolar protein such as fibrillarin fused to green fluorescent protein in planta. PMID:27576720

  15. Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus

    International Nuclear Information System (INIS)

    Certain autoimmune sera contain antibodies against a nucleolar ribonucleotprotein particle associated with 7-2-RNA. In this study, the authors showed by immunofluorescence microscopy that antibodies reactive with 7-2-ribonucleoprotein immunolocalized in the granular regions of actinomycin D and 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB)--segregated nucleoli from Vero cells. By electron microscopic immunocytochemistry, antigen-antibody complexes were located in the granular component of transcriptionally active nucleoli from rat liver hepatocytes and HeLa cells. Anti-7-2-RNP antibodies from two autoimmune sera immunoprecipitated a major protein of Mr 40,000 from [35S] methionine-labeled HeLa cell extract. The immunolocalization data suggest that 7-2-ribonucleoprotein may be involved in stages of ribosome biogenesis which take place in the granular component of the nucleolus, i.e., assembly, maturation, and/or transport of preribosomes

  16. Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, G. (Univ. of Erlangen-Nuernberg (West Germany)); Raska, I. (Institute of Experimental Medicine, Prague (Czechoslovakia)); Scheer, U. (Univ. of Wuerzburg (West Germany)); Tan, E.M. (Scripps Clinic and Research Foundation, La Jolla, CA (USA))

    1988-05-01

    Certain autoimmune sera contain antibodies against a nucleolar ribonucleotprotein particle associated with 7-2-RNA. In this study, the authors showed by immunofluorescence microscopy that antibodies reactive with 7-2-ribonucleoprotein immunolocalized in the granular regions of actinomycin D and 5,6-dichloro-1-{beta}-D-ribofuranosylbenzimidazole (DRB)--segregated nucleoli from Vero cells. By electron microscopic immunocytochemistry, antigen-antibody complexes were located in the granular component of transcriptionally active nucleoli from rat liver hepatocytes and HeLa cells. Anti-7-2-RNP antibodies from two autoimmune sera immunoprecipitated a major protein of M{sub r} 40,000 from ({sup 35}S) methionine-labeled HeLa cell extract. The immunolocalization data suggest that 7-2-ribonucleoprotein may be involved in stages of ribosome biogenesis which take place in the granular component of the nucleolus, i.e., assembly, maturation, and/or transport of preribosomes.

  17. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment.

    Directory of Open Access Journals (Sweden)

    Haitong Su

    Full Text Available The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a severe stress and (b drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS and human antigen R protein (HuR are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that

  18. A higher concentration of an antigen within the nucleolus may prevent its proper recognition by specific antibodies

    Directory of Open Access Journals (Sweden)

    EV Sheval

    2009-06-01

    Full Text Available Transient transfection of HeLa cells with a plasmid encoding the full-length human fibrillarin fused to a green fluorescent protein (GFP resulted in two major patterns of intensity of the nucleolar labeling for the chimeric protein: weak and strong. Both patterns were maintained in fibrillarin-GFP expressing cells after fixation with formaldehyde. When the fixed fibrillarin-GFP expressing cells were used for immunolabeling with antibodies to fibrillarin, only the nucleoli with a weak GFP-signal became strongly labeled, whereas those with the heavy signals were only lightly stained, if at all. A similar pattern was observed if the cells were immunolabeled with antibodies to GFP. These observations suggest that an increase in antigen accumulation within the nucleolus, which could take place under various physiological or experimental conditions, could prevent the antigen from being recognized by specific antibodies. These results have implications regarding contradictory data on localization of various nucleolar antigens obtained by conventional immunocytochemistry.

  19. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes

    International Nuclear Information System (INIS)

    The organization of alphoid repeated sequences on human nucleolus-organizing (NOR) chromosomes 13, 21, and 22 has been investigated. Analysis of hybridization of alphoid DNA probes to Southern transfers of restriction enzyme-digested DNA fragments from hybrid cells containing single human chromosomes shows that chromosomes 13 and 21 share one subfamily of alphoid repeats, whereas a different subfamily may be held in common by chromosomes 13 and 22. The sequences of cloned 680-base-pair EcoRI fragments of the alphoid DNA from chromosomes 13 and 21 show that the basic unit of this subfamily is indistinguishable on each chromosome. The sequence of cloned 1020-base-pair Xba I fragments from chromosome 22 is related to, but distinguishable from, that of the 680-base-pair EcoRI alphoid subfamily of chromosomes 13 and 21. These results suggest that, at some point after they originated and were homogenized, different subfamilies of alphoid sequences must have exchanged between chromosomes 13 and 21 and separately between chromosomes 13 and 22

  20. Cytogenetic and identification of the nucleolus organizer region in Heliconia bihai (L. L.

    Directory of Open Access Journals (Sweden)

    Heloisa Rocha do Nascimento

    2014-08-01

    Full Text Available The genus Heliconia is not much studied and the number of existing species in this genus is still uncertain. It is known that this number relies between 150 to 250 species. In Brazil, about 40 species are native and known by many different names. The objective of this paper was to characterize morphometrically and to identify the NOR (active nucleolus organizer regions by Ag-NOR banding of chromosomes of Heliconia bihai (L L. Root meristems were submitted to blocking treatment in an amiprofos-methyl (APM solution, fixed in methanol-acetic acid solution for 24 hours, at least. The meristems were washed in distilled water and submitted to enzymatic digestion with pectinase enzyme. The slides were prepared by dissociation of the root meristem, dried in the air and also on hot plate at 50°C. Subsequently, some slides were submitted to 5% Giemsa stain for karyotype construction and to a solution of silver nitrate (AgNO3 50% for Ag-NOR banding. The species H. bihai has 2n = 22 chromosomes, 4 pairs of submetacentric chromosomes and 7 pairs of metacentric chromosomes, and graded medium to short (3.96 to 0.67 μM, with the presence of active NOR in pairs 1 and 2 and interphase cells with 2 nucleoli. These are the features of a diploid species.

  1. Karyotype characterization, constitutive heterochromatin and nucleolus organizer regions of Paranaita opima (Coleoptera, Chrysomelidae, Alticinae

    Directory of Open Access Journals (Sweden)

    Mara Cristina de Almeida

    2006-01-01

    Full Text Available Species of the subtribe Oedionychina not only have a highly uniform diploid number of 2n = 22 (20+X+y but have the karyotypic peculiarity of possessing extremely large sex chromosomes. We analyzed Paranaita opima embryos and gonadal cells to determine their diploid number, chromosomal morphology, type of sex determination system, constitutive heterochromatin pattern and which chromosomes bear nucleolus organizer regions (NORs. The diploid number of P. opima was 2n = 22 (20+XY/XX with all chromosomes being metacentric. Chromosome pair 6 showed an interstitial secondary constriction on the short arm. The C-banding technique revealed centromeric constitutive heterochromatin in all chromosomes, which, in pair 6, extended up to the secondary constriction of the short arm, additional C-bands also being present on the Y chromosome. Silver nitrate nucleolar organizer region (Ag-NOR staining showed NORs on the secondary constriction of pair 6. Fluorochrome analysis with chromomycin A3 (CMA3, 4'-6-diamidino-2-phenylindole (DAPI and the distamycin A (DA counterstain showed that the short arm of chromosome pair 6 exhibited a GC-rich block extending from the proximal to the median region, including part of the secondary constriction. The same techniques also showed AT-rich blocks at the centromeric region of all chromosomes and at the terminal region of the short arm of pair 6. The basic karyotype characteristics and C band pattern of P. opima are similar to those described for other species in the subtribe Oedionychina. The pattern of autosomal NORs observed in P. opima corresponds to that registered in the majority of the Chrysomelidae species.

  2. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209

  3. Local chromatin structure of heterochromatin regulates repeatedDNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.

    2007-05-05

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  4. Intertissue Control of the Nucleolus via a Myokine-Dependent Longevity Pathway

    Directory of Open Access Journals (Sweden)

    Fabio Demontis

    2014-06-01

    Full Text Available Recent evidence indicates that skeletal muscle influences systemic aging, but little is known about the signaling pathways and muscle-released cytokines (myokines responsible for this intertissue communication. Here, we show that muscle-specific overexpression of the transcription factor Mnt decreases age-related climbing defects and extends lifespan in Drosophila. Mnt overexpression in muscle autonomously decreases the expression of nucleolar components and systemically decreases rRNA levels and the size of the nucleolus in adipocytes. This nonautonomous control of the nucleolus, a regulator of ribosome biogenesis and lifespan, relies on Myoglianin, a myokine induced by Mnt and orthologous to human GDF11 and Myostatin. Myoglianin overexpression in muscle extends lifespan and decreases nucleolar size in adipocytes by activating p38 mitogen-activated protein kinase (MAPK, whereas Myoglianin RNAi in muscle has converse effects. Altogether, these findings highlight a key role for myokine signaling in the integration of signaling events in muscle and distant tissues during aging.

  5. Quantitative Immunofluorescence Analysis of Nucleolus-Associated Chromatin.

    Science.gov (United States)

    Dillinger, Stefan; Németh, Attila

    2016-01-01

    The nuclear distribution of eu- and heterochromatin is nonrandom, heterogeneous, and dynamic, which is mirrored by specific spatiotemporal arrangements of histone posttranslational modifications (PTMs). Here we describe a semiautomated method for the analysis of histone PTM localization patterns within the mammalian nucleus using confocal laser scanning microscope images of fixed, immunofluorescence stained cells as data source. The ImageJ-based process includes the segmentation of the nucleus, furthermore measurements of total fluorescence intensities, the heterogeneity of the staining, and the frequency of the brightest pixels in the region of interest (ROI). In the presented image analysis pipeline, the perinucleolar chromatin is selected as primary ROI, and the nuclear periphery as secondary ROI. PMID:27576710

  6. Occurrence of multiple nucleolus organizer regions and intraspecific karyotype variation in Scaptotrigona xanthotricha Moure (Hymenoptera, Meliponini).

    Science.gov (United States)

    Duarte, O M P; Martins, C C C; Waldschmidt, A M; Costa, M A

    2009-01-01

    Scaptotrigona xanthotricha has a wide geographic distribution in the Brazilian Atlantic rainforest. One population from southeast and two from northeast Brazil were analyzed and were found to have chromosome polymorphisms. Although the chromosome number 2n = 34 is conserved in this species, karyotypic analysis revealed clear differences between the three populations. Congruent and ubiquitous multiple nucleolus organizer regions, heterochromatin and CMA(3)-positive blocks were found. The variations suggest that this species is in a process of genetic differentiation. This differentiation process might have been enhanced by restricted nesting preferences, combined with recent extensive fragmentation of the Atlantic rainforest, which limits gene flow between populations. PMID:19731205

  7. Analyses of nucleolus organizer regions and heterochromatin of Pimelodus maculatus (Pisces, Pimelodidae).

    Science.gov (United States)

    Swarça, A C; Giuliano-Caetano, L; Dias, A L

    2000-01-01

    Eighteen specimens of Pimelodus maculatus collected from Tibagi River (Sertaneja, PR, Brazil) were analyzed cytogenetically. The diploid number of 56 chromosomes was observed and karyotype was 20 M + 20 SM + 10 ST + 6 A with fundamental number (FN) of 106. Results of analyses from the nucleolus organizer regions (NORs), obtained by AgNO3, CMA3 and C-band staining showed marking in a terminal position on the long arm of a pair of subtelocentric chromosomes. The restriction enzyme AluI produced a linear differentiation similar to C-banding. PMID:11519880

  8. Cytogenetic and identification of the nucleolus organizer region in Heliconia bihai (L.) L.

    OpenAIRE

    Heloisa Rocha do Nascimento; Ricardo Gallo; Isane Vera Karsburg; Ademilso Sampaio Oliveira

    2014-01-01

    The genus Heliconia is not much studied and the number of existing species in this genus is still uncertain. It is known that this number relies between 150 to 250 species. In Brazil, about 40 species are native and known by many different names. The objective of this paper was to characterize morphometrically and to identify the NOR (active nucleolus organizer regions) by Ag-NOR banding of chromosomes of Heliconia bihai (L) L. Root meristems were submitted to blocking treatment in an amiprof...

  9. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    Czech Academy of Sciences Publication Activity Database

    Kitamura, H.; Matsumori, H.; Kalendová, Alžběta; Hozák, Pavel; Goldberg, I.G.; Nakao, M.; Saitoh, N.; Harata, M.

    2015-01-01

    Roč. 464, č. 2 (2015), s. 554-560. ISSN 0006-291X R&D Projects: GA MŠk EE2.3.30.0050; GA MŠk(CZ) ED1.1.00/02.0109 Grant ostatní: Human Frontier in Science programe(FR) RGP0017/2013 Institutional support: RVO:68378050 Keywords : Actin-related protein * ARP6 * Histone H2A.Z * Nucleolus * Wndchrm Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.297, year: 2014

  10. A new level set model for cell image segmentation

    Institute of Scientific and Technical Information of China (English)

    Ma Jing-Feng; Hou Kai; Bao Shang-Lian; Chen Chun

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  11. Nucleolus disassembly in mitosis and apoptosis: dynamic redistribution of phosphorylated-c-Myc, fibrillarin and Ki-67

    Directory of Open Access Journals (Sweden)

    C Soldani

    2009-06-01

    Full Text Available The nucleolus may undergo disassembly either reversibly during mitosis, or irreversibly in apoptosis, thus allowing the redistribution of the nucleolar proteins.We investigated here by immunocytochemistry the fate of three representative proteins, namely phosphorylated c-Myc, fibrillarin and Ki-67, and found that they behave independently in both processes: they relocate in distinct compartments during mitosis, whereas during apoptosis they may either be cleaved (Ki-67 or be extruded into the cytoplasm with a different kinetics and following an ordered, non chaotic program. The separation of these nucleolar proteins which occurs in early apoptotic nuclei continues also in the cytoplasm, and culminates in the final formation of apoptotic blebs containing different nucleolar proteins: this evidence confirms that the apoptotic bodies may be variable in size, content and surface reactivity, and include heterogeneous aggregates of nuclear proteins and/or nucleic acids.

  12. Intracellular Localization of the Severe Acute Respiratory Syndrome Coronavirus Nucleocapsid Protein: Absence of Nucleolar Accumulation during Infection and after Expression as a Recombinant Protein in Vero Cells

    OpenAIRE

    Rowland, Raymond R. R.; Chauhan, Vinita; Fang, Ying; Pekosz, Andrew; Kerrigan, Maureen; Burton, Miriam D.

    2005-01-01

    The nucleocapsid (N) protein of several members within the order Nidovirales localizes to the nucleolus during infection and after transfection of cells with N genes. However, confocal microscopy of N protein localization in Vero cells infected with the severe acute respiratory syndrome coronavirus (SARS-CoV) or transfected with the SARS-CoV N gene failed to show the presence of N in the nucleoplasm or nucleolus. Amino acids 369 to 389, which contain putative nuclear localization signal (NLS)...

  13. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    International Nuclear Information System (INIS)

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicated that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus

  14. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  15. Nucleolar localization of influenza A NS1: striking differences between mammalian and avian cells

    Directory of Open Access Journals (Sweden)

    Mazel-Sanchez Beryl

    2010-03-01

    Full Text Available Abstract In mammalian cells, nucleolar localization of influenza A NS1 requires the presence of a C-terminal nucleolar localization signal. This nucleolar localization signal is present only in certain strains of influenza A viruses. Therefore, only certain NS1 accumulate in the nucleolus of mammalian cells. In contrast, we show that all NS1 tested in this study accumulated in the nucleolus of avian cells even in the absence of the above described C-terminal nucleolar localization signal. Thus, nucleolar localization of NS1 in avian cells appears to rely on a different nucleolar localization signal that is more conserved among influenza virus strains.

  16. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain

    Czech Academy of Sciences Publication Activity Database

    Kosi, N.; Alic, I.; Kolacevic, M.; Vrsaljko, N.; Milosevic, N.J.; Sobol, Margaryta; Philimonenko, Anatoly; Hozák, Pavel; Gajovic, S.; Pochet, R.; Mitrecic, D.

    2015-01-01

    Roč. 1597, FEB 9 (2015), s. 65-76. ISSN 1872-6240 R&D Projects: GA TA ČR(CZ) TE01020118; GA MPO FR-TI3/588 Institutional support: RVO:68378050 Keywords : Nop2 * Brain * Stem cells * Stroke * Nucleolus * Cell cycle Subject RIV: EB - Gene tics ; Molecular Biology

  17. Interaction of Protein Phosphatase 1δ with Nucleophosmin in Human Osteoblastic Cells

    International Nuclear Information System (INIS)

    Protein phosphorylation and dephosphorylation has been recognized as an essential mechanism in the regulation of cellular metabolism and function in various tissues. Serine and threonine protein phosphatases (PP) are divided into four categories: PP1, PP2A, PP2B, and PP2C. At least four isoforms of PP1 catalytic subunit in rat, PP1α, PP1γ1, PP1γ2, and PP1δ, were isolated. In the present study, we examined the localization and expression of PP1δ in human osteoblastic Saos-2 cells. Anti-PP1δ antibody recognized a protein present in the nucleolar regions in Saos-2 cells. Cellular fractionation revealed that PP1δ is a 37 kDa protein localized in the nucleolus. Nucleophosmin is a nucleolar phosphoprotein and located mainly in the nucleolus. Staining pattern of nucleophosmin in Saos-2 cells was similar to that of PP1δ. PP1δ and nucleophosmin were specifically stained as dots in the nucleus. Dual fluorescence images revealed that PP1δ and nucleophosmin were localized in the same regions in the nucleolus. Similar distribution patterns of PP1δ and nucleophosmin were observed in osteoblastic MG63 cells. The interaction of PP1δ and nucleophosmin was also shown by immunoprecipitation and Western analysis. These results indicated that PP1δ associate with nucleophosmin directly in the nucleolus and suggested that nucleophosmin is one of the candidate substrate for PP1δ

  18. Alanine zipper-like coiled-coil domains are necessary for homotypic dimerization of plant GAGA-factors in the nucleus and nucleolus.

    Directory of Open Access Journals (Sweden)

    Dierk Wanke

    Full Text Available GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms.

  19. Alanine Zipper-Like Coiled-Coil Domains Are Necessary for Homotypic Dimerization of Plant GAGA-Factors in the Nucleus and Nucleolus

    Science.gov (United States)

    Bloss, Ulrich; Hecker, Andreas; Elgass, Kirstin; Hummel, Sabine; Hahn, Achim; Caesar, Katharina; Schleifenbaum, Frank; Harter, Klaus; Berendzen, Kenneth W.

    2011-01-01

    GAGA-motif binding proteins control transcriptional activation or repression of homeotic genes. Interestingly, there are no sequence similarities between animal and plant proteins. Plant BBR/BPC-proteins can be classified into two distinct groups: Previous studies have elaborated on group I members only and so little is known about group II proteins. Here, we focused on the initial characterization of AtBPC6, a group II protein from Arabidopsis thaliana. Comparison of orthologous BBR/BPC sequences disclosed two conserved signatures besides the DNA binding domain. A first peptide signature is essential and sufficient to target AtBPC6-GFP to the nucleus and nucleolus. A second domain is predicted to form a zipper-like coiled-coil structure. This novel type of domain is similar to Leucine zippers, but contains invariant alanine residues with a heptad spacing of 7 amino acids. By yeast-2-hybrid and BiFC-assays we could show that this Alanine zipper domain is essential for homotypic dimerization of group II proteins in vivo. Interhelical salt bridges and charge-stabilized hydrogen bonds between acidic and basic residues of the two monomers are predicted to form an interaction domain, which does not follow the classical knobs-into-holes zipper model. FRET-FLIM analysis of GFP/RFP-hybrid fusion proteins validates the formation of parallel dimers in planta. Sequence comparison uncovered that this type of domain is not restricted to BBR/BPC proteins, but is found in all kingdoms. PMID:21347358

  20. Effect of calcium on RNA content in meristematic cells of pea (Pisum sativum L.) roots treated with toxic metals.

    Science.gov (United States)

    Lbik-Nowak, A; Gabara, B

    1997-01-01

    RNA content in nucleolus, nucleus and cytoplasm in meristematic cells of pea roots growing for 144 h in the presence of calcium and/or toxic metals (Cd2+, Cr3+, Pb2+) was examined using cytophotometric procedures, after staining with gallocyanine. The effect of treatment with tested metals was twofold: on the one hand, it considerably reduced RNA content in the nucleolus, on the other it enhanced RNA level in the nucleus and most visibly in the cytoplasm, resulting in the increase in total amount of RNA in cells of pea roots. The presence of calcium in metal solutions in different ways affected RNA content in meristematic cells of pea. In roots treated with cadmium, the addition of calcium ions diminished the toxic effect of that metal, as demonstrated by an increase in RNA content in the nucleolus, although reduction of RNA amount in the nucleus, cytoplasm and in whole cell was observed. A clearly stimulative effect of calcium was noted in material grown in the presence of chromium or lead, where a high increase in RNA content in nucleolus, nucleus and cytoplasm took place. PMID:9619424

  1. Ultrastructural Observations of the Vitelline Cells of Metamicrocotyla macracantha (Monogenea, Microcotylidae)

    OpenAIRE

    Maria de Fatima D. Baptista-Farias; Anna Kohn

    1998-01-01

    An electron microscopic study of the vitelline follicles of Metamicrocotyla macracantha (Alexander, 1954) Koratha,1955 showed that they are composed of cells in different stages of development. The immature cells have a large nucleus, nucleolus, cytoplasm with free ribosomes and few mitochondria. The developing vitelline cells present granules which are small in the early stages, increasing with maturity. The mature cells have an extensive granular endoplasmic reticulum and droplets of shell-...

  2. A novel bipartite nuclear localization signal guides BPM1 protein to nucleolus suggesting its Cullin3 independent function.

    Directory of Open Access Journals (Sweden)

    Dunja Leljak Levanić

    Full Text Available BPM1 belongs to the MATH-BTB family of proteins, which act as substrate-binding adaptors for the Cullin3-based E3 ubiquitin ligase. MATH-BTB proteins associate with Cullin3 via the BTB domain and with the substrate protein via the MATH domain. Few BPM1-interacting proteins with different functions are recognized, however, specific roles of BPM1, depending on its cellular localization have not been studied so far. Here, we found a novel bipartite nuclear localization signal at the C-terminus of the BPM1 protein, responsible for its nuclear and nucleolar localization and sufficient to drive the green fluorescent protein and cytoplasmic BPM4 protein into the nucleus. Co-localization analysis in live Nicotiana tabacum BY2 cells indicates a Cullin3 independent function since BPM1 localization is predominantly nucleolar and thus devoid of Cullin3. Treatment of BY2 cells with the proteasome inhibitor MG132 blocks BPM1 and Cullin3 degradation, suggesting turnover of both proteins through the ubiquitin-proteasome pathway. Possible roles of BPM1 in relation to its in vivo localization are discussed.

  3. Deciphering new roles for lipids in the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Hozák, Pavel

    Istanbul : Medical Biology and Genetics Society, 2013. [National Congress of Medical Biology and Genetics /13./. 27.10.2013-20.10.2013, Kusadasi] R&D Projects: GA ČR GAP305/11/2232; GA TA ČR TE01020118; GA MŠk LD12063; GA MŠk LH12143 Institutional support: RVO:68378050 Keywords : cell nucleus * chromatin * nucleolus * nuclear myosin * PIP2 * 3D electron tomography * super-resolution microscopy Subject RIV: EB - Genetics ; Molecular Biology

  4. Electron microscope studies of methotrexate and radiation effects in human squamous cell carcinoma of the mouth

    International Nuclear Information System (INIS)

    Serial biopsy specimens from two squamous cell carcinomas of the mouth were studied by electron microscopy. This report described the ultrastructural changes in the cells produced by treatment with methotrexate followed by irradiation. The main ultrastructural findings after treatment are: numerous autophagic lysosomes and residual bodies are visible in the cytoplasm of the tumor cells; mitochondria are swollen. The mitochondrial cristae are distorted and disrupted, and mitochondrial matrix disappears; the nucleolus shows a series of morphological changes such as development of a compact nucleolus, aggregation of granular elements, atrophy, dissolution and fragmentation of the nucleolar mass; infiltration of lymphocytes, granulocytes and macrophages in the tumor. The significance of these ultrastructural findings is discussed. (U.S.)

  5. Detection of intranuclear forces by the use of laser optics during the recovery process of elongated interphase nuclei in centrifuged protonemal cells of Adiantum capillus-veneris

    International Nuclear Information System (INIS)

    For the direct investigation of intranuclear dynamics in living cells, extremely deformed nuclei of basipetally centrifuged protonemal cells of the fern Adiantum capillusveneris were manipulated by the laser rap and the laser scalpel. Whereas the nucleolus was tightly fixed at the central position inside the non-centrifuged nucleus and proved to be immovable by the optical trap, it could easily be trapped and moved towards three directions inside the bubble-like terminal widening of the basal thread-like extension of centrifuged nuclei. Due to the connection of the nucleolus to the chromatin inside the nuclear thread (NT), moving was not possible against the direction of the nuclear apical main body. Nucleoli in recovered nuclei were again immovable, thus indicating the presence of a dynamic nucleolar anchoring system inside the nucleus. When the nucleolus in the bubble was arrested during the thread shortening process by the optical trap, the acropetal movement of the bubble continued. Probably dye to dragging forces, some nucleoli became stretched, and a thick strand of a still unknown composition stretched between the nucleolus and the insertion site of the shortening NT. To assess whether the shrinking of the nuclear envelop (NE) and the shortening of the chromatin inside the NT were independent processes, the chromatin above the bubble was cut inside the Nt by the laser scalpel. After severance, a gap between the nucleolus and the end of the chromatin strand in the NT indicated the shortening of the chromatin inside the Nt. From these findings it was concluded that a shortening force was existing in the chromatin of the NT and that probably no physical link existed between the chromatin and the NE

  6. Quantitative description of a teleost exocrine pancreas. Ultrastructural morphometric study of nonstimulated acinar cells.

    Science.gov (United States)

    Stipp, A C; Ferri, S; Sesso, A

    1984-01-01

    The quantitative analysis of exocrine pancreas was fulfilled in teleost fish ( Pimelodus maculatus). The volume fraction occupied by acinar cells, blood vessels and ducts has been assessed by point-counting volumetry in 0.25 micron araldite sections. Measurements of the diameters of the transections of acinar cells nuclei and nucleolus allowed the assessment of the mean nuclear and nucleolar volume according to the method of Bach (1963). With these data, the cytoplasm nuclei and nucleolus volume was calculated in cubic micrometers. Morphometric ultrastructural data was obtained by applying over the electronmicrophotographs (X 21,000) a test system of 84 segments regularly spaced one from another (Weibel 1966). The results obtained was analysed and compared to the mammalian. PMID:6721199

  7. Structural components of the nuclear body in nuclei of Allium cepa cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nuclear bodies have long been noted in interphase nuclei of plant cells,but their structural component,origin and function are still unclear by now.The present work showed in onion cells the nuclear bodies appeared as a spherical structure about 0.3 to 0.8 μm in diameter.They possibly were formed in nucleolus and subsequently released,and entered into nucleoplasm.Observation through cytochemical staining method at the ultrastructural level confirmed that nuclear bodies consisted of ribonucleoproteins (RNPs) and silver-stainable proteins.Immunocytochemical results revealed that nuclear bodies contained no DNA and ribosomal gene transcription factor (UBF).Based on these data,we suggested that nuclear bodies are not related to the ribosome or other gene transcription activities,instead they may act as subnuclear structures for RNPs transport from nucleolus to cytoplasm,and may also be involved in splicing of pre-mRNAs.

  8. Changes in nuclear, nucleolar and cytoplasmic RNA content during growth and differentiation of root parenchyma cells in plant species with different dynamics of DNA endoreplication.

    Science.gov (United States)

    Marciniak, K; Bilecka, A

    1985-01-01

    Using cytophotometric method, after staining preparations with gallocyanin RNA content was examined in nucleus, nucleolus and cytoplasm of six species of angiospermal plants in successive (1-7 mm) segments of root representing successive zones of differentiation. During the cell cycle, RNA content duplicates in the nucleus, nucleolus and cytoplasm of meristematic cells. On the other hand, during growth and differentiation of parenchyma cells in species with endoreplication the content of nucleolar RNA does not increase in proportion with DNA content. High level of endoreplication is connected with high nucleolar RNA content and low cytoplasmic RNA content. In species without endoreplication at low nucleolar RNA content, a considerable growth of cytoplasmic RNA content takes place. PMID:2417894

  9. Localized movement and morphology of UBF1-positive nucleolar regions are changed by -irradiation in G2 phase of the cell cycle

    Czech Academy of Sciences Publication Activity Database

    Sorokin, D.V.; Stixová, Lenka; Sehnalová, Petra; Legartová, Soňa; Suchánková, Jana; Šimara, P.; Kozubek, Stanislav; Matula, Pavel; Skalníková, M.; Raška, I.; Bártová, Eva

    2015-01-01

    Roč. 6, č. 4 (2015), s. 301-313. ISSN 1949-1034 R&D Projects: GA ČR GBP302/12/G157; GA ČR GA13-07822S; GA MŠk 7F14369; GA MŠk(CZ) EE2.3.30.0030 Institutional support: RVO:68081707 Keywords : DNA damage * live cells * nucleolus Subject RIV: BO - Biophysics Impact factor: 3.033, year: 2014

  10. Three-dimensional imaging of nucleolin trafficking in normal cells, transfectants, and heterokaryons

    Science.gov (United States)

    Ballou, Byron T.; Fisher, Gregory W.; Deng, Jau-Shyong; Hakala, Thomas R.; Srivastava, Meera; Farkas, Daniel L.

    1996-04-01

    The study of intracellular trafficking using labeled molecules has been aided by the development of the cyanine fluorochromes, which are easily coupled, very soluble, resist photobleaching, and fluoresce at far-red wavelengths where background fluorescence is minimal. We have used Cy3-, Cy5-, and Cy5.5-labeled antibodies, antigen-binding fragments, and specifically binding single-stranded oligonucleotides to follow expression and trafficking of nucleolin, the most abundant protein of the nucleolus. Nucleolin shuttles between the nucleolus and the cytoplasm, and is also expressed on the cell surface, allowing us to test our techniques at all three cellular sites. Differentially cyanine-labeled non-specific antibodies were used to control for non-specific binding. Similarly, the differentially labeled non-binding strand of the cloned oligonucleotide served as a control. The multimode microscope allowed us to follow both rapid and slow redistributions of labeled ligands in the same study. We also performed 3-D reconstructions of nucleolin distribution in cells using rapid acquisition and deconvolution. Microinjection of labeled ligands was used to follow intracellular distribution, while incubation of whole cells with antibody and antigen-binding fragments was used to study uptake. To unambiguously define trafficking, and eliminate the possibility of interference by cross-reactive proteins, we transfected mouse renal cell carcinoma cells that express cell surface nucleolin with human nucleolin. We used microinjection and cell surface staining with Cy3- or Cy5- labeled monoclonal antibody D3 (specific for human nucleolin) to assess the cellular distribution of the human protein. Several clones expressed human nucleolin on their surfaces and showed high levels of transport of the human protein into the mouse nucleus and nucleolus. This distribution roughly parallels that of mouse nucleolin as determined by labeled polyclonal antibody. We have used these engineered

  11. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    Science.gov (United States)

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  12. Nuclear localization of phosphorylated c-Myc protein in human tumor cells.

    Directory of Open Access Journals (Sweden)

    C. Soldani

    2010-05-01

    Full Text Available Using immunocytochemical techniques at light and electron microscopy, we analysed the distribution of phosphorylated c-Myc in actively proliferating human HeLa cells. The distribution pattern of c-Myc was also compared with those of other ribonucleoprotein (RNP-containing components (PANA, hnRNP-core proteins, fibrillarin or RNP-associated nuclear proteins (SC-35 splicing factor. Our results provide the first evidence that phosphorylated c-Myc accumulates in the nucleus of tumor cells, where it colocalizes with fibrillarin, both in the nucleolus and in extranucleolar structures.

  13. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    CERN Document Server

    Heyden, Stefanie

    2015-01-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  14. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    Science.gov (United States)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  15. 普通小麦与非洲黑麦双二倍体中随体、醇溶蛋白%Intergenomic Interaction of Nucleolus, Gliadin and Disease Resistance in a Triticum Aestivum-Secale Africanum Amphiploid

    Institute of Scientific and Technical Information of China (English)

    杨足君; 李光蓉; 蒋华仁; 任正隆

    2001-01-01

    An amphiploid between Triticum aestivum native to Sichuan, China, and Secale africanum was evaluated by cytological observatio n, seed storage protein electrophoresis analysis and diseases resistance surveys . Feulgen staining of somatic metaphases indicates that the nucleolus from S.africanum is partially expressed in the amphiploid. The S.africanum chromosomes can be identified in amphiploid backgrou nd by Giemsa-C banding. APAGE shows that most gliadin of both parents is observ ed in the endosperm of the amphiploid with codominant expression, except the agg regation secalin of S.africanum. By inoculating the stripe rust and powdery mildew isolates, it is found that diseases resistance from S .africanum are not totally expressed in the amphiploid. In addition, the wheat-alien intergenomic interaction and the utilization of the amphiploid to triticale and wheat breeding are discussed in the present paper.%利用细胞学方法、种子储藏蛋白电泳技术和抗病接种鉴定对四川小麦地方品种与非洲黑麦(S.africanum)人工合成双二倍体进行了研究,结果表明: ①根尖细胞的染色体计数发现,来自非洲黑麦的随体在双二倍体中仅得到部分表达;Giemsa-C带分析能准确鉴定双二倍体中的非洲黑麦染色体,发现非洲黑麦与栽培黑麦的染色体C带有较大的区别;②种子醇溶蛋白电泳发现除非洲黑麦的聚集黑麦碱蛋白在双二倍体中不表达外,其余来自普通小麦和非洲黑麦的相应蛋白带能够在双二倍体中正常表达;③双二倍体及其亲本的苗期抗白粉病性和成株期抗条锈性分析表明,非洲黑麦对这两种病害的优良抗性在双二倍体中并不表达,抗性受到普通小麦背景的抑制.另外本文对小麦-外源染色体组的相互作用和该双二倍体在小麦与八倍体小黑麦育种中的应用进行了讨论.

  16. Preliminary research on death pattern in PC12 cell after high-dose of gamma-ray irradiation

    International Nuclear Information System (INIS)

    Objective: To investigate the death pattern of pheochromocyoma cell line (PC12 cell) irradiated with ionizing radiation and to search for a model of radiation-induced neuron injury in vitro. Methods: PC12 cell was irradiated with different doses of 60Co γ-rays. The effect of radiation on cell cycle, development, differentiation and death rate were detected by flow cytometry, light microscope, and transmission electron microscope (TEM). Results: Irradiated PC12 cell showed cell cycle retardation and differentiation, but some cells died due to swelling. Apoptosis was observed in few cells. TEM examination indicated that mitochondrion and endoplasmic reticulum were dilated markedly, chromatin was concentrated and scattered near karyotheca or around the nucleolus, which characterized oncosis. Conclusions: PC12 cell died through oncosis after gamma-ray irradiation of high-dose, and can be used as a radiation-induced neuron injury model. (authors)

  17. Localization and translocation of RhoA protein in the human gastric cancer cell line SGC-7901

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To elucidate the localization of RhoA in gastric SGC-7901 cancer cells and its translocation by lysophosphatidic acid (LPA) and/or 8-chlorophenylthio cAMP (CPT-cAMP). METHODS: Immunofluorescence microscopy was used to determine the localization of RhoA. Western blotting was used to detect both endogenous and exogenous RhoA in different cellular compartments (membrane, cytosol, nucleus) and the translocation of RhoA following treatment with LPA, CPT-cAMP, or CPT-cAMP+LPA. RESULTS: Immunofluorescence staining revealed endogenous RhoA to be localized in the membrane, the cytosol, and the nucleus, and its precise localization within the nucleus to be the nucleolus. Western blotting identified both endogenous and exogenous RhoA within different cellular compartments (membrane, cytosol, nucleus, nucleolus). After stimulation with LPA, the amount of RhoA within membrane and nuclear extracts increased, while it decreased in the cytosol fractions. After treatment with CPT-cAMP the amount of RhoA within the membrane and the nuclear extracts decreased, while it increased within the cytosol fraction. Treatment with a combination of both substances led to a decrease in RhoA in the membrane and the nucleus but to an increase in the cytosol. CONCLUSION: In SGC-7901 cells RhoA was found to be localized within the membrane, the cytosol, and the nucleus. Within the nucleus its precise localization could be demonstrated to be the nucleolus. Stimulation with LPA caused a translocation of RhoA from the cytosol towards the membrane and the nucleus; treatment with CPT-cAMP caused the opposite effect. Furthermore, pre-treatment with CPT-cAMP was found to block the effect of LPA.

  18. Construction of a fusion protein expression vector MK-EGFP and its subcellular localization in different carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Li-Cheng Dai; Di-Yong Xu; Xing Yao; Li-Shan Min; Ning Zhao; Bo-Ying Xu; Zheng-Ping Xu; Yong-Liang Lu

    2006-01-01

    AIM: To construct an expression plasmid encoding human wild-type midkine (MK) and enhanced green fluorescence protein (EGFP) fusion protein (MK-EGFP), and to analyze the subcellular localization of MK in different carcinoma cell lines.METHODS: Two kinds of MK coding sequences with or without signal peptide were cloned into plasmid pEGFP-N2, and the recombinant plasmids constructed were introduced into HepG2, MCF7 and DU145 cells,respectively, by transfection. With the help of laser scanning confocal microscopy, the expression and subcellular localization of MK-GFP fusion protein could be detected.RESULTS: Compared with the GFP control, in which fluorescence was detected diffusely over the entire cell body except in the nucleolus, both kinds of fusion protein MK-GFP were localized exclusively to the nucleus and accumulated in the nucleolus in the three kinds of cancer cell lines.CONCLUSION: This study reveals the specific nucleolar translocation independent of signal peptide, which may be involved in the mechanism that MK works. It provides valuable evidence for further study on the functions of MK in nucleus and its possible mechanisms, in which ribosomal RNA transcription and ribosome assembly are involved.

  19. Cell survival following alpha particle irradiation: critical sites and implications for carcinogenesis

    International Nuclear Information System (INIS)

    In experiments in which mammalian cells were irradiated with 5.6 MeV alpha particles from a Tandem Van de Graaff machine we have confirmed the finding of others that the mean lethal dose (D0) is about 100 rad, but by measurements of the area of the cell nuclei as irradiated we found that this mean lethal dose corresponds not to 1, as expected, but to about 27 alpha particles per cell nucleus. (The exact number appears to change slightly with cell passage number.) This allows for the possibility that the direct action of alpha particles on the nucleus may be the important event in carcinogenesis, a theory which was previously difficult to accept if a single particle hitting the nucleus anywhere was considered to be lethal. Evidence is presented to implicate the nucleolus as a possible critical site for the inhibition of reproductive integrity of the cell

  20. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek;

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  1. Widespread expression of BORIS/CTCFL in normal and cancer cells.

    Directory of Open Access Journals (Sweden)

    Tania A Jones

    Full Text Available BORIS (CTCFL is the paralog of CTCF (CCCTC-binding factor; NM_006565, a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a "cancer-testis" antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function.

  2. Changes in the number and size of nucleoli of Chara vulgaris L. antheridial filament cells during the period preceding light-induced re-initiation of cell divisions following a mitodepressive effect of darkness

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-02-01

    Full Text Available The changes in number and size of nucleoli of Chara vulgaris antheridial filament cells were monitored with the use of Howell and Black's silver staining method. After a 3-day mitodepressive treatment with darkness the cells were exposed to light which reactivated mitotic activity after 18-20 hours. Eight-celled antheridial filaments were observed. In the period preceding light-induced re-initiation of mitoses a gradual reconstruction of the number and size of nucleoli characteristic of control, as well as their total area per nucleus appeared. The obtained results indicate that one of the important conditions for a cell to be able to divide is accumulation of nucleolus components characteristic of a given developmental stage and this controls nucleologenesis of the subsequent cell cycle.

  3. [Studies on changes in nucleolar organizer region of human promyelocytic leukemia cells (HL-60) treated with retinoic acid].

    Science.gov (United States)

    Xie, R L; Wang, Y Q

    1989-12-01

    Changes of nucleolar organizer region in HL-60 cells after treated with retinoic acid (RA) were studied with techniques of silver-staining nucleolar organizer region (Ag-NOR) in metaphase karyotypes, Brachet's reaction and with our improved TEM techniques for studying silver-stained active nucleolar organizer region (Ag-aNOR) in interphase nucleoli. Number of Ag-NOR in HL-60 cells is 4.5/cell on average. The Ag-NOR number of cells treated with RA showed no remarkable difference from that of control group. Ag-aNOR number treated with RA was reduced obviously as compared with that of control group. Meanwhile, the changes of nucleolus number showed by Brachet's reaction were in accordance with those of Ag-aNOR. Therefore, it may be concluded: (1). Though the number of active rRNA genes did not changed after the differentiation of HL-60 cells induced by RA, their expression was clearly inhibited: (2). The relationship between the changes of Brachet-No and Ag-aNOR is in positive correlation (r = 0.98, p less than 0.01). EM examination of Ag-aNOR of HL-60 cells reveals that Ag-protein (RNA polymerase I) only presented in fibrillar centers (FC) and the dense fibrillar components (DFC) of nucleolus. In addition, in control group, large amount of Ag-protein, FC, DFC and granular components (GC) were observed, and there were many large nucleoli in a nucleus, meanwhile, the cells of the treated group tended to be mature, with a decrease in the amount of Ag-protein, FC, DFC and GC accordingly, and the nucleoli reduced both in size and number significantly.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2626898

  4. The leader peptide of MMTV Env precursor localizes to the nucleoli in MMTV-derived T cell lymphomas and interacts with nucleolar protein B23

    International Nuclear Information System (INIS)

    We have previously described two nucleolar proteins, named p14 and p21, in MMTV-induced T cell lymphomas. These proteins were identified by a monoclonal antibody (M-66) generated from a nontumorigenic, immunogenic variant of S49 T cell lymphoma. While p14 was common to several MMTV-derived T cell lymphomas, p21 was found only in highly tumorigenic variants of S49 cells. Here we report that p14 is the leader peptide of the MMTV env precursor. The epitope recognized by M-66 contains a putative nuclear localization signal. Actinomycin D was found to induce redistribution of p14/p21 from the nucleolus to the nucleoplasm. p14 coimmunoprecipitated and colocalized with the cellular protein, B23. Association with B23 has been previously reported for other auxiliary nucleolar retroviral proteins, such as Rev (HIV) and Rex (HTLV)

  5. Nucleostemin Depletion Induces Post-G1 Arrest Apoptosis in Chronic Myelogenous Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Negin Seyed-Gogani

    2013-12-01

    Full Text Available Purpose: Despite significant improvements in treatment of chronic myelogenous leukemia (CML, the emergence of leukemic stem cell (LSC concept questioned efficacy of current therapeutical protocols. Remaining issue on CML includes finding and targeting of the key genes responsible for self-renewal and proliferation of LSCs. Nucleostemin (NS is a new protein localized in the nucleolus of most stem cells and tumor cells which regulates their self-renewal and cell cycle progression. The aim of this study was to investigate effects of NS knocking down in K562 cell line as an in vitro model of CML. Methods: NS gene silencing was performed using a specific small interfering RNA (NS-siRNA. The gene expression level of NS was evaluated by RT-PCR. The viability and growth rate of K562 cells were determined by trypan blue exclusion test. Cell cycle distribution of the cells was analyzed by flow cytometry. Results: Our results showed that NS knocking down inhibited proliferation and viability of K562 cells in a time-dependent manner. Cell cycle studies revealed that NS depletion resulted in G1 cell cycle arrest at short times of transfection (24 h followed with apoptosis at longer times (48 and 72 h, suggest that post-G1 arrest apoptosis is occurred in K562 cells. Conclusion: Overall, these results point to essential role of NS in K562 cells, thus, this gene might be considered as a promising target for treatment of CML.

  6. Characterization of Rat Hair Follicle Stem Cells Selected by Vario Magnetic Activated Cell Sorting System

    International Nuclear Information System (INIS)

    Hair follicle stem cells (HfSCs) play crucial roles in hair follicle morphogenesis and hair cycling. These stem cells are self-renewable and have the multi-lineage potential to generate epidermis, sebaceous glands, and hair follicle. The separation and identification of hair follicle stem cells are important for further research in stem cell biology. In this study, we report on the successful enrichment of rat hair follicle stem cells through vario magnetic activated cell sorting (Vario MACS) and the biological characteristics of the stem cells. We chose the HfSCs positive surface markers CD34, α6-integrin and the negative marker CD71 to design four isolation strategies: positive selection with single marker of CD34, positive selection with single marker of α6-integrin, CD71 depletion followed by CD34 positive selection, and CD71 depletion followed by α6-integrin positive selection. The results of flow cytometry analysis showed that all four strategies had ideal effects. Specifically, we conducted a series of researches on HfSCs characterized by their high level of CD34, termed CD34bri cells, and low to undetectable expression of CD34, termed CD34dim cells. CD34bri cells had greater proliferative potential and higher colony-forming ability than CD34dim cells. Furthermore, CD34bri cells had some typical characteristics as progenitor cells, such as large nucleus, obvious nucleolus, large nuclear:cytoplasmic ratio and few cytoplasmic organelles. Our findings clearly demonstrated that HfSCs with high purity and viability could be successfully enriched with Vario MACS

  7. Long clinostation influence on the localization of free and weakly bound calcium in cell walls of Funaria hygrometrica moss protonema cells

    Science.gov (United States)

    Nedukha, E. M.

    The pyroantimonate method was used to study the localization of free and weakly bound calcium in cells of moss protonema of Funaria hygrometrica Hedw. cultivated on a clinostat (2 rev/min). Electroncytochemical study of control cells cultivated at 1 g revealed that granular precipitate marked chloroplasts, mitochondria, Golgi apparatus, lipid drops, nucleoplasma, nucleolus, nucleus membranes, cell walls and endoplasmic reticulum. In mitochondria the precipitate was revealed in stroma, in chloroplast it was found on thylakoids and envelope membranes. The cultivation of protonema on clinostat led to the intensification in cytochemical reaction product deposit. A considerable intensification of the reaction was noted in endomembranes, vacuoles, periplasmic space and cell walls. At the same time analysis of pectinase localization was made using the electroncytochemical method. A high reaction intensity in walls in comparison to that in control was found out to be a distinctive pecularity of the cells cultivated on clinostat. It testifies to the fact that increasing of freee calcium concentrations under conditions of clinostation is connected with pectinic substances hydrolysis and breaking of methoxy groups of pectins. Data obtained are discussed in relation to problems of possible mechanisms of disturbance in calcium balance of plant cells and the role of cell walls in gomeostasis of cell grown under conditions of simulated weighlessness.

  8. A geometric chracterization of the nucleolus of the assignment game

    OpenAIRE

    Francesc Llerena; Marina Nunez; Carles Rafels

    2011-01-01

    Maschler et al. (1979) provide a geometrical characterization for the intersection of the kernel and the core of a coalitional game, showing that those allocations that lie in both sets are always the midpoint of certain bargaining range between each pair of players. In the case of the assignment game, this means that the kernel can be determined as those core allocations where the maximum amount, that can be transferred without getting outside the core, from one agent to his/her optimally ma...

  9. A geometric characterization of the nucleolus of the assignment game

    OpenAIRE

    Francesc Llerena; Marina Nunez

    2011-01-01

    Maschler et al. (1979) provide a geometrical characterization for the intersection of the kernel and the core of a coalitional game, showing that those allocations that lie in both sets are always the midpoint of certain bargaining range between each pair of players. In the case of the assignment game, this means that the kernel can be determined as those core allocations where the maximum amount, that can be transferred without getting outside the core, from one agent to his/her optimally ma...

  10. Identification of nuclear τ isoforms in human neuroblastoma cells

    International Nuclear Information System (INIS)

    The τ proteins have been reported only in association with microtubules and with ribosomes in situ, in the normal central nervous system. In addition, τ has been shown to be an integral component of paired helical filaments, the principal constituent of the neurofibrillary tangles found in brains of patients with Alzheimer's disease and of most aged individuals with Down syndrome (trisomy 21). The authors report here the localization of the well-characterized Tau-1 monoclonal antibody to the nucleolar organizer regions of the acrocentric chromosomes and to their interphase counterpart, the fibrillar component of the nucleolus, in human neuroblastoma cells. Similar localization to the nucleolar organizer regions was also observed in other human cell lines and in one monkey kidney cell line but was not seen in non-primate species. Immunochemically, they further demonstrated the existence of the entire τ molecule in the isolated nuclei of neuroblastoma cells. Nuclear τ proteins, like the τ proteins of the paired helical filaments, cannot be extracted in standard SDS-containing electrophoresis sample buffer but require pretreatment with formic acid prior to immunoblot analysis. This work indicates that τ may function in processes not directly associated with microtubules and that highly insoluble complexes of τ may also play a role in normal cellular physiology

  11. RRP12 is a crucial nucleolar protein that regulates p53 activity in osteosarcoma cells.

    Science.gov (United States)

    Choi, Young Joon; Lee, Hye Won; Lee, Yun Sun; Shim, Da Mi; Seo, Sung Wook

    2016-04-01

    RRP12 (ribosomal RNA processing 12 homolog), a nucleolar protein, plays important roles in cell cycle progression and the response to deoxyribonucleic acid (DNA) damage in yeast cells. However, its role has not been investigated in mammalian cells that possess p53, which has close functional association to nucleolus. We explored the role of RRP12 in nucleolar stress condition using an osteosarcoma cell line, U2OS. To induce DNA damage and nucleolar disruption, two cytotoxic drugs, doxorubicin and actinomycin D were used. Cytotoxic stress resulted nucleolar disruption induced cell cycle arrest and apoptosis in U2OS cells. However, RRP12 overexpression promoted resistance to cytotoxic stress. In contrast, RRP12 silencing enhanced susceptibility to cytotoxic stress. During drug treatment, p53 activity and cell death were suppressed by RRP12 overexpression but promoted by RRP12 silencing. This study demonstrated that RRP12 was crucial for cell survival during cytotoxic stress via the repression of p53 stability. Thus, targeting RRP12 may enhance chemotherapeutic effect in cancers. PMID:26499779

  12. Inactivation of nucleolin leads to nucleolar disruption, cell cycle arrest and defects in centrosome duplication

    Directory of Open Access Journals (Sweden)

    Thiry Marc

    2007-08-01

    Full Text Available Abstract Background Nucleolin is a major component of the nucleolus, but is also found in other cell compartments. This protein is involved in various aspects of ribosome biogenesis from transcription regulation to the assembly of pre-ribosomal particles; however, many reports suggest that it could also play an important role in non nucleolar functions. To explore nucleolin function in cell proliferation and cell cycle regulation we used siRNA to down regulate the expression of nucleolin. Results We found that, in addition to the expected effects on pre-ribosomal RNA accumulation and nucleolar structure, the absence of nucleolin results in a cell growth arrest, accumulation in G2, and an increase of apoptosis. Numerous nuclear alterations, including the presence of micronuclei, multiple nuclei or large nuclei are also observed. In addition, a large number of mitotic cells showed a defect in the control of centrosome duplication, as indicated by the presence of more than 2 centrosomes per cell associated with a multipolar spindle structure in the absence of nucleolin. This phenotype is very similar to that obtained with the inactivation of another nucleolar protein, B23. Conclusion Our findings uncovered a new role for nucleolin in cell division, and highlight the importance of nucleolar proteins for centrosome duplication.

  13. ELECTRON MICROSCOPIC AUTORADIOGRAPHIC STUDY ON SUBCELLULAR LOCALIZATION OF FISSION PRODUCT 147Pm IN TISSUE CELLS

    Institute of Scientific and Technical Information of China (English)

    朱寿彭; 汪源长

    1994-01-01

    The early risk of internal contaminated accumualtion of 147Pm is in blood cells and endothelial cells,especially in red blood cells.Then 147Pm is selectively deposited in ultrastructure of liver cells,such as in nucleus,nucleolus,rough endoplasmic reticulum,mitochondria and microbodies,Dense tracks also appear in mitochondria and lysosome of pedal cells within renal corpuscle,and so dose in nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule.With the prolongation of observing time,147Pm is selectively and steadily depostied in subcellular level of organic ocmponent for bone.Substantial amount of 147Pm is taken up into the nuclear fraction of osteoclasts and osteoblasts.Particularly,in organelles 147Pm is mainly accumulated in rough endoplasmic reticulum and in mitochondria.Autoradiographic tracks especially localize in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum.In addition,numerous 147Pm deposited in collagenous fibre within interstitial of bone cells is hardly excreted.

  14. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Benavente, Javier, E-mail: franciscojavier.benavente@usc.es [Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, y Centro Singular de Investigacion en Quimica Biologica y Materiales Moleculares (CIQUS), Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.

  15. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells

    International Nuclear Information System (INIS)

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of [35S]methionine-labelled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation

  16. Cucurbitacin B inhibits human breast cancer cell proliferation through disruption of microtubule polymerization and nucleophosmin/B23 translocation

    Directory of Open Access Journals (Sweden)

    Duangmano Suwit

    2012-10-01

    Full Text Available Abstract Background Cucurbitacin B, an oxygenated tetracyclic triterpenoid compound extracted from the Thai medicinal plant Trichosanthes cucumerina L., has been reported to have several biological activities including anti-inflammatory, antimicrobial and anticancer. Cucurbitacin B is great of interest because of its biological activity. This agent inhibits growth of various types of human cancer cells lines. Methods In this study, we explored the novel molecular response of cucurbitacin B in human breast cancer cells, MCF-7 and MDA-MB-231. The growth inhibitory effect of cucurbitacin B on breast cancer cells was assessed by MTT assay. The effects of cucurbitacin B on microtubules morphological structure and tubulin polymerization were analyzed using immunofluorescence technique and tubulin polymerization assay kit, respectively. Proteomic analysis was used to identify the target-specific proteins that involved in cucurbitacin B treatment. Some of the differentially expressed genes and protein products were validated by real-time RT-PCR and western blot analysis. Cell cycle distributions and apoptosis were investigated using flow cytometry. Results Cucurbitacin B exhibited strong antiproliferative effects against breast cancer cells in a dose-dependent manner. We show that cucurbitacin B prominently alters the cytoskeletal network of breast cancer cells, inducing rapid morphologic changes and improper polymerization of the microtubule network. Moreover, the results of 2D-PAGE, real-time RT-PCR, and western blot analysis revealed that the expression of nucleophosmin/B23 and c-Myc decreased markedly after cucurbitacin B treatment. Immunofluorescence microscopy showed that cucurbitacin B induced translocation of nucleophosmin/B23 from the nucleolus to nucleoplasm. Treatment with cucurbitacin B resulted in cell cycle arrest at G2/M phase and the enhancement of apoptosis. Conclusions Our findings suggest that cucurbitacin B may inhibit the

  17. Calcium effect on the content of DNA and NYS-stained nuclear, nucleolar and cytoplasmic proteins in cortex cells of pea (Pisum sativum L. roots treated with heavy metals

    Directory of Open Access Journals (Sweden)

    E. Stecka

    2014-02-01

    Full Text Available Using cytophotometric procedures, following Feulgen-NYS staining, the measurements of DNA and nuclear, nucleolar and cytoplasmic protein contents in cortex cells of pea roots growing for 144 h in calcium and/or heavy metals (Cd2+, Cr3+, Pb2+ presence were made. All tested metals treatment reduced the number of nuclei in 4C DNA class and induced appearance of nuclei with DNA amount below 2C, that was expressed in diminished DNA content. The level of NYS proteins in cells underwent also reduction. In lead presence protein content diminished in nucleus. On the other hand, increased amount of nuclear, nucleolar and cytoplasmic proteins was observed in material treated with cadmium while only of nucleolar protein content in chromium presence. In root cells treated with tested metals protein content in nucleus was related with ploidy level, disturbances in this relation appeared in nucleolus and mostly in cytoplasm. Calcium added to chromium and mostly to lead solutions diminished the toxic effect of these metals that was demonstrated by an increase in DNA content, although calcium alone reduced DNA amount in nucleus due to lower number of 4C nuclei accompanied by appearance of 1C and 1-2C DNA classes. Calcium in different ways affected protein content changed by metal treatment. Present in cadmium solution it caused a further reduction in protein content in nucleus, nucleolus and cytoplasm but increased nuclear and cytoplasmic protein when added to lead, and nucleolar proteins - in chromium solution. Moreover, calcium ions presence in metal solutions did not restore the relationship between ploidy level and nucleolar and cytoplasmic NYS stained proteins and it did not disturbe the relation existing in nucleus.

  18. Differentiations of transplanted mouse spermatogonial stem cells in the adult mouse renal parenchyma in vivo

    Institute of Scientific and Technical Information of China (English)

    Da-peng WU; Da-lin HE; Xiang LI; Zhao-hui LIU

    2008-01-01

    Aim:Spermatogonial stem cells can initiate the process of cellular differentia-tion to generate mature spermatozoa, but whether it possess the characteristic of pluripotency and plasticity, similar to embryonic stem cells, has not been elucidated. This study was designed to evaluate the differentiation potential of spermatogonial stem cells into renal cells in vivo. Methods: Neonatal mouse spermatogonial stem cells were transplanted into mature male mice lacking en-dogenous spermatogenesis. The restoration of fertility in recipient males was observed. Spermatogonial stem cells were then injected into renal parenchyma of mature female mice to make a new extracellular environment for differentia-tion. Fluorescence in situ hybridization technology (FISH) was used to detect the expression of chromosome Y in recipient renal tissues. To determine the type of cells differentiated from spermatogonial stem cells, the expression of ricinus communis agglutinin, vimentin, CD45, and F4/80 proteins were examined in the renal tissues by immunohistochemistry. Results: The proliferation of seminiferous epithelial cells was distinctly observed in seminiferous tubules of transplanted testes, whereas no regeneration of spermatogenesis was observed in non-transplanted control testes. In transplanted female renal tissues, FISH showed a much stronger immuno-fluorescence signal of chromosome Y in the nucleolus of epithelial cells of the renal tubule and podocytes of the glomerulus. Conclusion: The spermatogonial stem cells were successfully purified from mouse testicles. This finding demonstrated that spermatogonial stem cells could not only restore damaged spermatogenesis, but were also capable of differentiat-ing into mature renal parenchyma cells in vivo.

  19. Infected and apoptotic cells in the IBDV-infected bursa of Fabricius, studied by double-labelling techniques.

    Science.gov (United States)

    Nieper, H; Teifke, J P; Jungmann, A; Lohr, C V; Muller, H

    1999-06-01

    Infections of young chickens with infectious bursal disease virus (IBDV) result in depletion of lymphoid cells of the bursa of Fabricius (BF) due to necrosis and apoptotic processes. Interactions between IBDV and lymphoid cells were investigated by labelling paraffin-embedded tissue sections of infected BF with combinations of either immunohistochemistry (IHC), in situ hybridization (ISH) or in situ TUNEL reaction (IST). With regard to specificity and sensitivity, results of ISH were comparable to those of IHC. By double-labelling it was shown, for the first time, that viral antigen was present in most of the apoptotic cells. This suggests that IBDV may be directly involved in the induction of the apoptotic process. However, some cells also showed either viral antigen or DNA fragmentation, especially at the early stages of infection. It should be taken into account, therefore, that the apoptotic processes might also be induced by IBDV through indirect interaction between cells. Remarkably, in some of the infected lymphoid cells ISH signals were observed in the nucleolus. PMID:26915384

  20. A novel single cell method to identify the genetic composition at a single nuclear body

    Science.gov (United States)

    Anchel, David; Ching, Reagan W.; Cotton, Rachel; Li, Ren; Bazett-Jones, David P.

    2016-01-01

    Gene loci make specific associations with compartments of the nucleus (e.g. the nuclear envelope, nucleolus, and transcription factories) and this association may determine or reflect a mechanism of genetic control. With current methods, it is not possible to identify sets of genes that converge to form a “gene hub” as there is a reliance on loci-specific probes, or immunoprecipitation of a particular protein from bulk cells. We introduce a method that will allow for the identification of loci contained within the vicinity of a single nuclear body in a single cell. For the first time, we demonstrate that the DNA sequences originating from a single sub-nuclear structure in a single cell targeted by two-photon irradiation can be determined, and mapped to a particular locus. Its application to single PML nuclear bodies reveals ontologically related loci that frequently associate with each other and with PML bodies in a population of cells, and a possible nuclear body targeting role for specific transcription factor binding sites. PMID:27389808

  1. The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamada

    Full Text Available Bone marrow hematopoietic stem cells (HSCs balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G(0/G(1 switch gene 2 (G0S2 are enriched in lineage(- Sca-1(+ c-kit(+ (LSK CD150(+ CD48(- CD41(- cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150(+ CD48(- cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150(+ CD48(- and progenitor cells (LS(-K. Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150(+ CD48(- cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus.

  2. Ultrastructure of human neural stem/progenitor cells and neurospheres

    Institute of Scientific and Technical Information of China (English)

    Yaodong Zhao; Tianyi Zhang; Qiang Huang; Aidong Wang; Jun Dong; Qing Lan; Zhenghong Qin

    2009-01-01

    BACKGROUND: Biological and morphological characteristics of neural stern/progenitor cells (NSPCs) have been widely investigated.OBJECTIVE: To explore the ultrastructure of human embryo-derived NSPCs and neurospheres cultivated in vitro using electron microscopy.DESIGN, TIME AND SETTING: A cell biology experiment was performed at the Brain Tumor Laboratory of Soochow University, and Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University between August 2007 and April 2008.MATERIALS: Human fetal brain tissue was obtained from an 8-week-old aborted fetus; serum-free Dulbecco's modified Eagle's medium/F12 culture medium was provided by Gibco, USA; scanning electron microscope was provided by Hitachi instruments, Japan; transmission electron microscope was provided by JEOL, Japan.METHODS: NSPCs were isolated from human fetal brain tissue and cultivated in serum-free Dulbecco's modified Eagle's medium/F12 culture medium. Cells were passaged every 5-7 days. After three passages, NSPCs were harvested and used for ultrastructural examination.MAIN OUTCOME MEASURES: Ultrastructural examination of human NSPCs and adjacent cells in neurospheres.RESULTS: Individual NSPCs were visible as spherical morphologies with rough surfaces under scanning electron microscope. Generally, they had large nuclei and little cytoplasm. Nuclei were frequently globular with large amounts of euchromatin and a small quantity of heterochromatin, and most NSPCs had only one nucleolus. The Golgi apparatus and endoplasmic reticulum were underdeveloped; however, autophagosomes were clearly visible. The neurospheres were made up of NSPCs and non-fixiform material inside. Between adjacent cells and at the cytoplasmic surface of apposed plasma membranes, there were vesicle-like structures. Some membrane boundaries with high permeabilities were observed between some contiguous NSPCs in neurospheres, possibly attributable to plasmalemmal fusion between adjacent cells.CONCLUSION: A large number

  3. Distinct Patterns of Colocalization of the CCND1 and CMYC Genes With Their Potential Translocation Partner IGH at Successive Stages of B-Cell Differentiation.

    Science.gov (United States)

    Sklyar, Ilya; Iarovaia, Olga V; Gavrilov, Alexey A; Pichugin, Andrey; Germini, Diego; Tsfasman, Tatiana; Caron, Gersende; Fest, Thierry; Lipinski, Marc; Razin, Sergey V; Vassetzky, Yegor S

    2016-07-01

    The immunoglobulin heavy chain (IGH) locus is submitted to intra-chromosomal DNA breakages and rearrangements during normal B cell differentiation that create a risk for illegitimate inter-chromosomal translocations leading to a variety of B-cell malignancies. In most Burkitt's and Mantle Cell lymphomas, specific chromosomal translocations juxtapose the IGH locus with a CMYC or Cyclin D1 (CCND1) gene, respectively. 3D-fluorescence in situ hybridization was performed on normal peripheral B lymphocytes induced to mature in vitro from a naive state to the stage where they undergo somatic hypermutation (SHM) and class switch recombination (CSR). The CCND1 genes were found very close to the IGH locus in naive B cells and further away after maturation. In contrast, the CMYC alleles became localized closer to an IGH locus at the stage of SHM/CSR. The colocalization observed between the two oncogenes and the IGH locus at successive stages of B-cell differentiation occurred in the immediate vicinity of the nucleolus, consistent with the known localization of the RAGs and AID enzymes whose function has been demonstrated in IGH physiological rearrangements. We propose that the chromosomal events leading to Mantle Cell lymphoma and Burkitt's lymphoma are favored by the colocalization of CCND1 and CMYC with IGH at the time the concerned B cells undergo VDJ recombination or SHM/CSR, respectively. J. Cell. Biochem. 117: 1506-1510, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873538

  4. Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells.

    Science.gov (United States)

    Caperta, A D; Delgado, M; Ressurreição, F; Meister, A; Jones, R N; Viegas, W; Houben, A

    2006-05-01

    The microtubule cytoskeleton plays a crucial role in the cell cycle and in mitosis. Colchicine is a microtubule-depolymerizing agent that has long been used to induce chromosome individualization in cells arrested at metaphase and also in the induction of polyploid plants. Although attempts have been made to explain the processes and mechanisms underlying polyploidy induction, the role of the cytoskeleton still remains largely unknown. Through immunodetection of alpha-tubulin, different concentrations (0.5 or 5 mM) of colchicine were found to produce opposite effects in the organization of the cytoskeleton in rye (Secale cereale L.). A low concentration (0.5 mM) induced depolymerization of the microtubular cytoskeleton in all phases of the cell cycle. In contrast, a high concentration (5 mM) was found to induce the polymerization of new tubulin-containing structures in c-metaphase cells. Furthermore, both treatments also showed contrasting effects in the induction of polyploid cells. Flow cytometric analysis and quantitative assessments of nucleolus-organizing regions revealed that only the high-concentration colchicine treatment was effective in the formation of polyploid cells. Our studies indicate that spindle disruption alone is insufficient for the induction of polyploid cells. The absence of any tubulin structures in plants treated with colchicine at the low concentration induced cell anomalies, such as the occurrence of nuclei with irregular shape and/or (additional) micronuclei, 12 h after recovery, pointing to a direct effect on cell viability. In contrast, the almost insignificant level of cell anomalies in the high-concentration treatment suggests that the presence of new tubulin-containing structures allows the reconstitution of 4C nuclei and their progression into the cell cycle. PMID:16520877

  5. Stimulation by cadmium of myohemerythrin-like cells in the gut of the annelid Nereis diversicolor.

    Science.gov (United States)

    Demuynck, Sylvain; Bocquet-Muchembled, Beatrice; Deloffre, Laurence; Grumiaux, Fabien; Leprêtre, Alain

    2004-03-01

    Isolated guts of Nereis diversicolor revealed the existence of a cadmium-binding protein, the MPII, belonging to the group of hemerythrins and myohemerythrins. The presence of MPII in the cells of the intestine was demonstrated by immunocytochemistry, using anti-MPII, a monoclonal antibody. In addition, using in situ hybridization and northern blotting, it was shown that MPII-cells are the site of synthesis of this molecule. Exposure of the worms to cadmium led to the cellular activation process of MPII-cells (i.e. transformation of the nucleolus, development of the endoplasmic reticulum and the Golgi apparatus), although MPII mRNA transcript levels were unchanged. Enzyme-linked immunosorbent assay (ELISA) of gut extracts revealed that MPII levels were increased after exposure to Cd, so it appears that this protein is synthesized as a response to Cd exposure without any new synthesis of mRNA. This mechanism of regulation is quite similar to that reported in the case of mammalian ferritin and may be involved in the regulation of Cd levels in this worm. PMID:14978053

  6. Quantitative autoradiography at electronic microscopy level of tobacco cells (Nicotiana tabacum L.) infected by pepper ringspot virus

    International Nuclear Information System (INIS)

    RNA replication of the pepper ringspot virus, its translocation and its association with mitochondria are studied. Some basic aspects of the research are first examined: actinomycin D (AMD) effects on parts of the nucleolus, nucleus and cytoplasm of healthy - and infected cells; comparative study between the circle method and the planimetry method to determine the cell areas; determination of the proportion between the silver grain densities of nucleulus, nucleus and cytoplasm of the cells treated with AMD; determination of the HD (Half-Distance) for the working conditions. Use of the mathemathical model proposed by NADLER gives basic information with respect to the translocation and association of the virus with the mitochondria in the host cells: in the mitochondria associated system the silver grains covering the two components are predominantly constituted by the RNA of the radioactive virus (78%); the time necessary for the RNA synthesis, the virus maturity and its translocation to the mitochondria, (checked by U-5-3H treatment) can be shorter than 5 hours. (M.A.)

  7. Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures

    Science.gov (United States)

    Kamal, Khaled Y.; Hemmersbach, Ruth; Medina, F. Javier; Herranz, Raúl

    2015-04-01

    Understanding the physical and biological effects of the absence of gravity is necessary to conduct operations on space environments. It has been previously shown that the microgravity environment induces the dissociation of cell proliferation from cell growth in young seedling root meristems, but this source material is limited to few cells in each row of meristematic layers. Plant cell cultures, composed by a large and homogeneous population of proliferating cells, are an ideal model to study the effects of altered gravity on cellular mechanisms regulating cell proliferation and associated cell growth. Cell suspension cultures of Arabidopsis thaliana cell line (MM2d) were exposed to 2D-clinorotation in a pipette clinostat for 3.5 or 14 h, respectively, and were then processed either by quick freezing, to be used in flow cytometry, or by chemical fixation, for microscopy techniques. After long-term clinorotation, the proportion of cells in G1 phase was increased and the nucleolus area, as revealed by immunofluorescence staining with anti-nucleolin, was decreased. Despite the compatibility of these results with those obtained in real microgravity on seedling meristems, we provide a technical discussion in the context of clinorotation and proper 1 g controls with respect to suspension cultures. Standard 1 g procedure of sustaining the cell suspension is achieved by continuously shaking. Thus, we compare the mechanical forces acting on cells in clinorotated samples, in a control static sample and in the standard 1 g conditions of suspension cultures in order to define the conditions of a complete and reliable experiment in simulated microgravity with corresponding 1 g controls.

  8. Ultrastructural and cytochemical aspects of the basophilic cells in the hepatopancreas ofAplysia depilans(Mollusca, Opisthobranchia).

    Science.gov (United States)

    Lobo-da-Cunha, A

    1999-02-01

    The basophilic cells ofAplysia depilanshave a pyramidal shape and a large nucleus usually located near the center or in the basal half of the cell. The nucleus possesses several clumps of condensed chromatin and a prominent nucleolus. The great profusion of rough endoplasmic reticulum cisterns in a major feature of these cells. Secretion granules are accumulated in the apical zone, and arylsulphatase was detected in some of them. In some basophilic cells a very substantial part of the cell volume was occupied by clear vacuoles, some of them reaching 9 mum. However, in other cells only a few vacuoles were observed. Probably the cells with just a few vacuoles are still young, and after a progressive accumulation, the vacuoles become abundant in old cells. The presence of a dark nucleus in the cells with a large number of vacuoles suggests that they are in a final stage of their life. Arylsulphatase was detected in the vacuoles and also in small secondary lysosomes containing substances in digestion. Bundles of tubules with 50 nm in diameter were found within some cisterns of rough endoplasmic reticulum. A cell fraction enriched in mannitol oxidase, extracted from the hepatopancreas of a terrestrial slug, consisted in very similar tubular structures. Using a histochemical method, mannitol oxidase was detected in the basophilic cells ofA. depilans, and it may be associated with the tubular structures of the endoplasmic reticulum. This is the first report of mannitol oxidase in opisthobranch molluscs. Almost spherical peroxisomes with a small nucleoid were abundant in these cells. The nucleoids presented a rectangular section, but a crystalline structure was not evident. The peroxisomes were stained after the cytochemical detection of catalase activity. PMID:18627851

  9. Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization.

    Directory of Open Access Journals (Sweden)

    Ara G Hovanessian

    Full Text Available BACKGROUND: Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in tumorigenesis and angiogenesis. Emerging evidence suggests that the cell-surface expressed nucleolin is a strategic target for an effective and nontoxic cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS: By monitoring the expression of nucleolin mRNA, and by measuring the level of nucleolin protein recovered from the surface and nucleus of cells, here we show that the presence of nucleolin at the cell surface is dependent on the constant induction of nucleolin mRNA. Indeed, inhibitors of RNA transcription or translation block expression of surface nucleolin while no apparent effect is observed on the level of nucleolin in the nucleus. The estimated half-life of surface nucleolin is less than one hour, whereas that of nuclear nucleolin is more than 8 hours. Nucleolin mRNA induction is reduced markedly in normal fibroblasts that reach confluence, while it occurs continuously even in post-confluent epithelial tumor cells consistent with their capacity to proliferate without contact inhibition. Interestingly, cold and heat shock induce nucleolin mRNA concomitantly to enhanced mRNA expression of the heat shock protein 70, thus suggesting that surface nucleolin induction also occurs in response to an environmental insult. At the cell surface, one of the main functions of nucleolin is to shuttle specific extracellular ligands by an active transport mechanism, which we show here to be calcium dependent. CONCLUSION/SIGNIFICANCE: Our results demonstrate that the expression of surface nucleolin is an early metabolic event coupled with tumor cell proliferation and stress response. The fact that surface nucleolin is constantly and abundantly expressed on the surface of tumor cells, makes them a preferential target for the inhibitory action of anticancer agents that target

  10. Inhibition of the oligosaccharides extracted from Morinda officinalis, a Chinese traditional herbal medicine, on the corticosterone induced apoptosis in PC12 cells.

    Science.gov (United States)

    Li, Yun Feng; Gong, Zheng Hua; Yang, Ming; Zhao, Yi Min; Luo, Zhi Pu

    2003-01-10

    The mechanisms of the antidepressant action of the oligosaccharides (P(6)) extracted from Morinda Officinalis were studied. By flow cytometry analysis, treatment of PC12 cells with corticosterone (Cort) induced apoptosis in a concentration and time dependent manner. The highest percentage of apoptotic cells accumulated to 27.85 +/- 9.2% following pretreatment with Cort 10 microM for 5 d. In agarose gel electrophoresis of DNA, the sample obtained from PC12 cells pretreated with Cort 10 microM for 5 d showed a typical ladder pattern suggesting that Cort increased the DNA fragmentation significantly. Furthermore, the ultrastructure of Cort-treated cells displayed typical apoptosis-like morphological changes including fragmented chromatin accumulation to the inside of nucleolus membrane with a shape like crescent moon or ring, nuclear fragmentation or apoptotic body. In the presence of P(6), or tricyclic antidepressant desipramine (DIM), the apoptosis induced by Cort in the three measurements above was significantly inhibited. These results indicate that DIM or P(6) antagonize the apoptosis induced by Cort in PC12 cells, which may be one of the cellular mechanisms of their antidepressant effects. PMID:12493574

  11. The Change of Microtubule Cytoskeleton in the Stem-Tip Cells of Sugarcane during Mitosis%甘蔗茎尖细胞有丝分裂过程中微管骨架的变化

    Institute of Scientific and Technical Information of China (English)

    李志刚; 赵洪波; 李素丽; 杨丽涛; 李杨瑞

    2008-01-01

    In order to understand the microtubule change of monoeotyls stem-tip during mitosis,the arrangement,transformation of microtubule array and its relation with chromosome movement during mitosis were studied with freezing microtome,indirect immunofluorescence,DAPI staining and fluorescence microscopy.The results showed that nueleolus was intact when the cortical miemtubules formed;cortical mierotubulos were changed into phramoplast microtubule bands at mitosis prophase.When phramoplast microtubule came into being,nuclear membrane was ruptured and chromosome was arranged at the position of cell plate;subsequently,phramoplast microtubules were changed into phragmoplast mierotubules,phramoplast mierotubules were shortening and microtubules on the sides of cell plate were increasing gradually,during this course sister chromatid was separated by microtubules at cell plate and tract to the two poles,forming phragmoplast microtubules.Then the nucleolus of two daughter cells formed and separated in the end with the increase of cells numbers.Therefore,cell division orientation could be judged from the arrangement of cell microtubules in different periods in order to understand its growth status.

  12. Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin.

    Directory of Open Access Journals (Sweden)

    Damien Destouches

    Full Text Available BACKGROUND: Emerging evidences suggest that nucleolin expressed on the cell surface is implicated in growth of tumor cells and angiogenesis. Nucleolin is one of the major proteins of the nucleolus, but it is also expressed on the cell surface where is serves as a binding protein for variety of ligands implicated in cell proliferation, differentiation, adhesion, mitogenesis and angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, here we show that the growth of tumor cells and angiogenesis are suppressed in various in vitro and in vivo experimental models. HB-19 inhibited colony formation in soft agar of tumor cell lines, impaired migration of endothelial cells and formation of capillary-like structures in collagen gel, and reduced blood vessel branching in the chick embryo chorioallantoic membrane. In athymic nude mice, HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in nude mice, and in some cases eliminated measurable tumors while displaying no toxicity to normal tissue. This potent antitumoral effect is attributed to the direct inhibitory action of HB-19 on both tumor and endothelial cells by blocking and down regulating surface nucleolin, but without any apparent effect on nucleolar nucleolin. CONCLUSION/SIGNIFICANCE: Our results illustrate the dual inhibitory action of HB-19 on the tumor development and the neovascularization process, thus validating the cell-surface expressed nucleolin as a strategic target for an effective cancer drug. Consequently, the HB-19 pseudopeptide provides a unique candidate to consider for innovative cancer therapy.

  13. An extracellular DNA mediated bystander effect produced from low dose irradiated endothelial cells

    International Nuclear Information System (INIS)

    The human umbilical vein endothelial cells culture was exposed to X-ray radiation in a low dose of 10 cGy. The fragments of extracellular genomic DNA (ecDNAR) were isolated from the culture medium after the short-term incubation. A culture medium of unirradiated endothelial cells was then supplemented with ecDNAR, followed by analysing the cells along the series of parameters (bystander effect). The exposed cells and bystander endotheliocytes showed similar response to low doses: approximation of the 1q12 loci of chromosome 1 and their transposition into the cellular nucleus, change in shape of the endotheliocytic nucleus, activation of the nucleolus organizing regions (NORs), actin polymerization, and an elevated level of DNA double-stranded breaks. Following blockade of TLR9 receptors with oligonucleotide-inhibitor or chloroquine in the bystander cells these effects - except of activation of NORs - on exposure to ecDNAR disappeared, with no bystander response thus observed. The presence of the radiation-induced apoptosis in the bystander effect being studied suggests a possibility for radiation-modified ecDNA fragments (i.e., stress signaling factors) to be released into the culture medium, whereas inhibition of TLR9 suggests the binding these ligands to the recipient cells. A similar DNA-signaling pathway in the bystander effect we previously described for human lymphocytes. Integrity of data makes it possible to suppose that a similar signaling mechanism which we demonstrated for lymphocytes (humoral system) might also be mediated in a monolayer culture of cells (cellular tissue) after the development of the bystander effect in them and transfer of stress signaling factors (ecDNAR) through the culture medium.

  14. Radiation effect of 239PuO2 on human cells in vitro

    International Nuclear Information System (INIS)

    In this paper, the in vitro short and long term effects of 239PuO2 on human embryo lung fibroblast are reported. The short term effect observed is the changes in proliferation and survival of the cell line which were exposed to 239PuO2 with concentration of 0.0006 μCi/mL for a week. On 7th day, the proliferation was only 4.88 PDN (population doubling number), while the control was 10.5 PDN. On the 6th day the surviving fraction of the treated cells was 56.3% and that of the control was 96%. For the long term effect studies, the follow-up observation for 12 groups of cell culture exposed to 239PuO2 of 0.0015 and 0.003 μCi/mL was made. In the cultures exposed to 239PuO2 of 0.003 μCi/mL, the shape of the cells became shorter and their life-span shortened with a higher mortality and death appears early. In 7 cultures exposed to 239PuO2 of 0.0015 μCi/mL, the change in cell morphology was the same as above and their life span was shortened by 58.7% averagely in comparison with control. On other two cultures of them not only was no life-span shortening found, but it was longer than that in the control and their inherent characteristics of regionol arrangment disappeared. At last epithelium-like shape of transformed cells were appeared. In the electron microscope siking of the nuclear membranes into nucleus and hypertrophy of the nucleolus with netted structure can be observed. The nuclear volume increased largely and the ratio between nucleus and cytoplasm increased

  15. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  16. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation.

    Directory of Open Access Journals (Sweden)

    Mikael S Lindström

    Full Text Available BACKGROUND: Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9. METHODOLOGY/PRINCIPAL FINDINGS: Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis. CONCLUSIONS: p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.

  17. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    Directory of Open Access Journals (Sweden)

    Erin J Walker

    Full Text Available Human Rhinovirus (HRV infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis.

  18. The Cell Nucleus in Physiological and Experimentally Induced Hypometabolism

    Science.gov (United States)

    Malatesta, M.

    The main problem for manned space mission is, at present, represented by the mass penalty associated to the human presence. An efficient approach could be the induction of a hypometabolic stasis in the astronauts, thus drastically reducing the physical and psychological requirements of the crew. On the other hand, in the wild, a reduction in resource consumptions physiologi- cally occurs in certain animals which periodically enter hibernation, a hypometabolic state in which both the energy need and energy offer are kept at a minimum. During the last twelve years, we have been studying different tissues of hibernating dormice, with the aim of analyzing their features during the euthermia -hibernation-arousal cycle as well as getting insight into the mechanisms allowing adaptation to hypometabolism. We paid particular attention to the cell nucleus, as it is the site of chief metabolic functions, such as DNA replication and RNA transcription. Our observations revealed no significant modification in the basic features of cell nuclei during hibernation; however, the cell nuclei of hibernating dormice showed unusual nuclear bodies containing molecules involved in RNA pathways. Therefore, we supposed that they could represent storage/assembly sites of several factors for processing some RNA which could be slowly synthesised during hibernation and rapidly and abundantly released in early arousal in order to meet the increased metabolic needs of the cell. The nucleolus also underwent structural and molecular modifications during hibernation, maybe to continue important nucleolar functions, or, alternatively, permit a most efficient reactivation upon arousal. On the basis of the observations made in vivo , we recently tried to experimentally induce a reversible hypometabolic state in in vitro models, using cell lines derived from hibernating and non-hibernating species. By administering the synthetic opioid DADLE, we could significantly reduce both RNA transcrip- tion and

  19. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  20. Mass spectrometry based proteomics in cell biology and signaling research

    International Nuclear Information System (INIS)

    Full text: Proteomics is one of the most powerful post-genomics technologies. Recently accomplishments include large scale protein-protein interaction mapping, large scale mapping of phosphorylation sites and the cloning of key signaling molecules. In this talk, current state of the art of the technology will be reviewed. Applications of proteomics to the mapping of multiprotein complexes will be illustrated with recent work on the spliceosome and the nucleolus. More than 300 proteins have been mapped to each of these complexes. Quantitative techniques are becoming more and more essential in proteomics. They are usually performed by the incorporation of stable isotopes - a light form in cell state 'A' and a heavy form in cell state 'E' - and subsequent comparison of mass spectrometric peak heights. A new technique called, SILAC for Stable isotope Incorporation by Amino acids in Cell culture, has been applied to studying cell differentiation and mapping secreted proteins from adipocytes. A number of known and novel proteins important in adipocyte differentiation have been identified by this technique. Some of these proved to be upregulated at the 1 mRNA level, too, whereas others appear to be regulated post-translationally. We have also applied the SILAC method to protein-protein interaction mapping. For example, we compared immunoprecipitates from stimulated and non-stimulated cells to find binding partners recruited to the bait due to the stimulus. Several novel substrates in the EGF pathway were found in this way. An important application of proteomics in the signaling field is the mapping of post-translational modifications. In particular, there are a number of techniques for phosphotyrosine phosphorylation mapping which have proven very useful. Making use of the mass deficiency of the phosphogroup, 'parent ion scans' con be performed, which selectively reveal phosphotyrosine peptides from complex peptides mixtures. This technique has been used to clone several

  1. Clinical analysis of the therapy for recurrent and intractable non-small cell lung cancer with combination of cryoablation and intervention

    International Nuclear Information System (INIS)

    Objective: To explore the re-treatment approach for nonsmall-cell lung cancer (NSCLC )in clinic with therapeutic alliance of cryotherapy and interventional chemotherapy. Methods: Sixty two patients with uncontrolled NSCLC after common radiotherapy and (or)chemotherapy were re-treated with therapeutic alliance of cryotherapy and interventional chemotherapy, and their serum tumor markers of NSE, CEA, CY21- 1 and the value (I.S%,I.O.D%)of correlative protein in nucleolus region-Ag-NORs were tested before and after the re-treatment. Meanwhile, patients one year survival and therapeutic effect to NSCLC were recorded during the follow up. Results: After the re-treatment, distinguished decline of the serum tumor markers was observed (P<0.01)and values of Ag-NORs(I.S% and I.O.D%)were obviously lowered down. The therapeutic effect and one year survival were 79.03%(49/62)and 80.63%(50/62)respectively. Conclusion: Therapeutic alliance of cryotherapy and interventional chemotherapy is a kind of effective re-treatment for NSCLC and also as a new approach for the refractory NSCLC. (authors)

  2. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    Science.gov (United States)

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. PMID:26967976

  3. Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states

    Science.gov (United States)

    Pontvianne, Frederic; Blevins, Todd; Chandrasekhara, Chinmayi; Mozgová, Iva; Hassel, Christiane; Pontes, Olga M.F.; Tucker, Sarah; Mokroš, Petr; Muchová, Veronika; Fajkus, Jiří; Pikaard, Craig S.

    2013-01-01

    Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic–nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state. PMID:23873938

  4. Inter-tissue Control of the Nucleolus via a Myokine-dependent Longevity Pathway

    OpenAIRE

    Demontis, Fabio; Patel, Vishal K.; Swindell, William R.; Perrimon, Norbert

    2014-01-01

    Recent evidence indicates that skeletal muscle influences systemic aging but little is known on the signaling pathways and muscle-released cytokines (myokines) responsible for this inter-tissue communication. Here, we show that muscle-specific overexpression of the transcription factor Mnt decreases age-related climbing defects and extends lifespan in Drosophila. Mnt overexpression in muscle autonomously decreases the expression of nucleolar components and systemically decreases rRNA levels a...

  5. Intertissue Control of the Nucleolus via a Myokine-Dependent Longevity Pathway

    OpenAIRE

    Fabio Demontis; Vishal K. Patel; William R. Swindell; Norbert Perrimon

    2014-01-01

    Recent evidence indicates that skeletal muscle influences systemic aging, but little is known about the signaling pathways and muscle-released cytokines (myokines) responsible for this intertissue communication. Here, we show that muscle-specific overexpression of the transcription factor Mnt decreases age-related climbing defects and extends lifespan in Drosophila. Mnt overexpression in muscle autonomously decreases the expression of nucleolar components and systemically decreases rRNA level...

  6. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  7. Nuclear organization of DNA replication in primary mammalian cells

    OpenAIRE

    Kennedy, Brian K.; Barbie, David A; Classon, Marie; Dyson, Nicholas; Harlow, Ed

    2000-01-01

    Using methods that conserve nuclear architecture, we have reanalyzed the spatial organization of the initiation of mammalian DNA synthesis. Contrary to the commonly held view that replication begins at hundreds of dispersed nuclear sites, primary fibroblasts initiate synthesis in a limited number of foci that contain replication proteins, surround the nucleolus, and overlap with previously identified internal lamin A/C structures. These foci are established in early G1-phase and also contain ...

  8. 南瓜花粉母细胞减数分裂及雄配子体发育研究%Pollen Mother Cell Miosis and Male Gametophvte Development of Pumpkin

    Institute of Scientific and Technical Information of China (English)

    崔群香; 刘卫东; 王倩; 肖木珠

    2012-01-01

    [Objective] Pollen mother cell miosis and male gametophyte development of pumpkin were observed in this study, to provide some cytological basis for pumpkin anther or microspore culture. [Method] Ehrlich's hematoxylin staining-methyl salicylate clearing technique was used for observation and research of the variation of cell structure and chromosomal behavior during pollen mother cell miosis and male gametophyte development of ' Tianhong' pumpkin. [ Result ] We found that the meiosis in pollen mother cells of pumpkin was simultaneous cytokinesis. In the process of nuclear division, nuclear membrane and nucleolus of pumpkin pollen mother cells gradually disappeared in the metaphase I and reappeared in telophase I , phragmoplast formed between the two generated crescent-shaped nuclei without cell wall, the phragmoplast gradually disappeared in the metaphase II and reappeared in telophase II . Phragmoplast spread outward from the center of spindle during the second division was connected with that formed on the central interface of two nuclei during the first division, cell wall of microspores generated from periphery to center. Most of the tetrads contained four sub-cells while a few contained extra small cells. During the period of uniuclete microspore at periphery, the single nucleolus split into 2 - 3 or more small nucleoli, mature pollen grain was two-celled. Mononucleate pollen cells were mostly appeared in the flower buds with length of 1.0 -2.0 cm, which could be used as an important indicator to collect materials for anther or microspore culture. [Conclusion] This study had laid the foundation for research of the cytogenetics of pumpkin.%[目的]研究南瓜花粉母细胞的减数分裂及其雄配子体发育过程,以期为南瓜花药培养等方面研究提供一定细胞学依据.[方法]采用爱氏苏木精染色-冬青油透明技术对南瓜“天虹”的花粉母细胞减数分裂及其雄配子体发育过程中细胞结构变化和染色体行

  9. Prestress mediates force propagation into the nucleus

    International Nuclear Information System (INIS)

    Several reports show that the nucleus is 10 times stiffer than the cytoplasm. Hence, it is not clear if intra-nuclear structures can be directly deformed by a load of physiologic magnitudes. If a physiologic load could not directly deform intra-nuclear structures, then signaling inside the nucleus would occur only via the mechanisms of diffusion or translocation. Using a synchronous detection approach, we quantified displacements of nucleolar structures in cultured airway smooth muscle cells in response to a localized physiologic load (∼0.4 μm surface deformation) via integrin receptors. The nucleolus exhibited significant displacements. Nucleolar structures also exhibited significant deformation, with the dominant strain being the bulk strain. Increasing the pre-existing tensile stress (prestress) in the cytoskeleton significantly increased the stress propagation efficiency to the nucleolus (defined as nucleolus displacement per surface deformation) whereas decreasing the prestress significantly lowered the stress propagation efficiency to the nucleolus. Abolishing the stress fibers/actin bundles by plating the cells on poly-L-lysine-coated dishes dramatically inhibited stress propagation to the nucleolus. These results demonstrate that the prestress in the cytoskeleton is crucial in mediating stress propagation to the nucleolus, with implications for direct mechanical regulation of nuclear activities and functions

  10. T Cells

    Science.gov (United States)

    T Cells - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign ... Is MS? Definition of MS T Cells T Cells Share Smaller Text Larger Text Print In this ...

  11. Cell counting.

    Science.gov (United States)

    Phelan, M C; Lawler, G

    2001-05-01

    This unit presents protocols for counting cells using either a hemacytometer or electronically using a Coulter counter. Cell counting with a hemacytometer permits effective discrimination of live from dead cells using trypan blue exclusion. In addition, the procedure is less subject to errors arising from cell clumping or size heterogeneity. Counting cells is more quickly and easily performed using an electronic counter, but live-dead discrimination is unreliable. Cell populations containing large numbers of dead cells and/or cell clumps are difficult to count accurately. In addition, electronic counting requires resetting of the instrument for cell populations of different sizes; heterogeneous populations can give rise to inaccurate counts, and resting and activated cells may require counting at separate settings. In general, electronic cell counting is best performed on fresh peripheral blood cells. PMID:18770655

  12. Vero细胞nucleolin和fibrillarin基因的克隆及序列分析%Cloning and sequence analysis of nucleolin and fibrillarin gene from Vero E6 cells

    Institute of Scientific and Technical Information of China (English)

    石达; 冯力; 陈建飞; 时红艳; 王洪峰; 张鑫; 刘孝珍; 张莎; 刘随心; 王璐

    2012-01-01

    为克隆及分析Vero细胞的nucleolin和fibrillarin基因,本研究根据人类的相关基因设计两对引物,从Vero E6细胞中扩增nucleolin和fibrillarin基因.测序结果显示nucleolin基因序列长度为2 139 bp,编码712个氨基酸;fibrillarin基因序列长度为969 bp,编码322个氨基酸.与GenBank中登录的人类相应序列相似性高达97%,处于同一进化分支,表明该基因具有种属特异性并且保守性很高;同时利用软件对nucleolin和fibrillarin预测蛋白进行了生物信息学分析,从而为研究冠状病毒核蛋白与核仁蛋白相互作用奠定了基础.%To clone and analysis the genes of nucleolin and fibrillarin of Vero cells, the two genes was amplified by PCR with specific primers desigened according to human nucleolin and fibrillarin gene sequences in GenBank. The results showed that the nucleolin contained a 2,136 bp ORF encoded 712 amino acids (aa), the fibrillarin gene contained a 969 bp ORF encoded 322aa. Nucleotide sequence analysis showed that nucleolin and fibrillarin shared more than 97% homology and classified into the same evolutionary clade with that of human genes. The coloned genes would be facilitated for study on. Interaction of coronavirus N protein and nucleolus protein.

  13. Galvanic Cells

    Science.gov (United States)

    Young, I. G.

    1973-01-01

    Many standard physical chemistry textbooks contain ambiguities which lead to confusion about standard electrode potentials, calculating cell voltages, and writing reactions for galvanic cells. This article shows how standard electrode potentials can be used to calculate cell voltages and deduce cell reactions. (Author/RH)

  14. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  15. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    International Nuclear Information System (INIS)

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  16. Stem Cells

    OpenAIRE

    Madhukar Thakur

    2009-01-01

    Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in ...

  17. Cell Wall

    OpenAIRE

    Jamet, Elisabeth; Canut, Hervé; Boudart, Georges; Albenne, Cécile; Pont-Lezica, Rafael F

    2008-01-01

    This chapter covers our present knowledge of cell wall proteomics highlighting the distinctive features of cell walls and cell wall proteins in relation to problems encountered for protein extraction, separation and identification. It provides clues to design strategies for efficient cell wall proteomic studies. It gives an overview of the kinds of proteins that have yet been identified: the expected proteins vs the identified proteins. Finally, the new vision of the cell wall proteome, and t...

  18. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  19. Solar cells

    Science.gov (United States)

    Cuquel, A.; Roussel, M.

    The physical and electronic characteristics of solar cells are discussed in terms of space applications. The principles underlying the photovoltaic effect are reviewed, including an analytic model for predicting the performance of individual cells and arrays of cells. Attention is given to the effects of electromagnetic and ionizing radiation, micrometeors, thermal and mechanical stresses, pollution and degassing encountered in space. The responses of different types of solar cells to the various performance-degrading agents are examined, with emphasis on techniques for quality assurance in the manufacture and mounting of Si cells.

  20. Histopathological Observation of Dog Basal Cell Carcinoma%犬基底细胞癌的病理组织学观察

    Institute of Scientific and Technical Information of China (English)

    潘俊斌; 刘博奇; 林凯; 于博

    2012-01-01

    Basal cell carcinoma(BCC) is a common low-degree skin malignant tumor,which is also named erosion ulcers.This paper discusses the main points of clinical pathology diagnosis and differential diagnosis of this carcinoma,in order to provide the basis to improve the level of diagnosis and treatment of basal cell carcinoma.The pathological change includes skin ulcer,hemorrage,massive proliferation of tumor tissues which is divided into irregular lobules.And the cells of tumor reveal spindle and polygons and nearly round,the nucleuses are round and had an obvious karyotheca.There is always one distinct nucleolus which may manifest atypia,and mitotic figure can be discovered sometimes.To sum up,all these characters can be used as the main basis of the BCC,and this diagnosis may provide the help to the future therapy.%基底细胞癌(basal cell carcinoma,BCC)是一种常见的低度皮肤恶性肿瘤,又名基底细胞上皮癌、基底细胞癌和侵蚀性溃疡。本文主要探讨皮肤基底细胞癌的临床病理诊断和鉴别诊断要点,为提高基底细胞癌的诊治水平提供依据。通过病理组织学观察,皮肤破溃、出血,肿瘤细胞成团块状增生,由结缔组织分割为不规则小叶状。细胞呈梭形、多边形及近圆形;细胞核圆形,核膜清晰,有一明显核仁,有一定异形性,偶见分裂相,作为确诊基底细胞肉瘤的主要依据,并对疾病的处理和治疗方法进行了归纳和总结。

  1. The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus

    Czech Academy of Sciences Publication Activity Database

    Andrysík, Zdeněk; Bernstein, W.Z.; Deng, L.; Myer, D.L.; Li, Y.-Q.; Tischfield, J.A.; Stambrook, P.J.; Bahassi, E.M.

    2010-01-01

    Roč. 38, č. 9 (2010), s. 2931-2943. ISSN 0305-1048 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : Polo * DNA damage * Plk5 Subject RIV: BO - Biophysics Impact factor: 7.836, year: 2010

  2. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  3. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  4. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 cells and lithium-alloy cells....

  5. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  6. Cell suicide

    International Nuclear Information System (INIS)

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  7. Reprogrammed Pluripotent Stem Cells from Somatic Cells

    OpenAIRE

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-01-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-li...

  8. Clear Cell Basal Cell Carcinoma

    OpenAIRE

    Bo Wang; Tracey Harbert; Jennifer Olivella; Daniel Olson; Sarma, Deba P; Stephanie Ortman

    2011-01-01

    Introduction. Clear cell basal cell carcinoma (BCC) is an uncommon and unusual variant of BCC, which is characterized by a variable component of clear cells. The pathogenesis of this histological variant and its clinical significance has not been clarified. Differentiation of this uncommon variant of BCC from other clear cell tumors is important for the treatment. Case Presentation. A 65-year-old male presented with a 0.9 cm dome-shaped lesion on his upper chest. A shave biopsy revealed a der...

  9. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  10. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  11. Cell sorting by deterministic cell rolling

    OpenAIRE

    Choi, Sungyoung; Karp, Jeffrey M.; Karnik, Rohit

    2011-01-01

    This communication presents the concept of “deterministic cell rolling”, which leverages transient cell-surface molecular interactions that mediate cell rolling to sort cells with high purity and efficiency in a single step.

  12. Solar cells

    Science.gov (United States)

    Treble, F. C.

    1980-11-01

    The history, state of the art, and future prospects of solar cells are reviewed. Solar cells are already competitive in a wide range of low-power applications, and during the 1980's they are expected to become cheaper to run than diesel or gasoline generators, the present mainstay of isolated communities. At this stage they will become attractive for water pumping, irrigation, and rural electrification, particularly in developing countries. With further cost reduction, they may be used to augment grid supplies in domestic, commercial, institutional, and industrial premises. Cost reduction to the stage where photovoltaics becomes economic for large-scale power generation in central stations depends on a technological breakthrough in the development of thin-film cells. DOE aims to reach this goal by 1990, so that by the end of the century about 20% of the estimated annual additions to their electrical generating capacity will be photovoltaic.

  13. Cell Libraries

    Science.gov (United States)

    1994-01-01

    A NASA contract led to the development of faster and more energy efficient semiconductor materials for digital integrated circuits. Gallium arsenide (GaAs) conducts electrons 4-6 times faster than silicon and uses less power at frequencies above 100-150 megahertz. However, the material is expensive, brittle, fragile and has lacked computer automated engineering tools to solve this problem. Systems & Processes Engineering Corporation (SPEC) developed a series of GaAs cell libraries for cell layout, design rule checking, logic synthesis, placement and routing, simulation and chip assembly. The system is marketed by Compare Design Automation.

  14. Solar cells

    International Nuclear Information System (INIS)

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  15. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  16. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are shaped like ... normal, round red blood cells. This leads to anemia. The sickle cells also get stuck in blood ...

  17. Stem Cell Basics

    Science.gov (United States)

    ... Information Stem Cell Basics Stem Cell Basics: Introduction Stem Cell Information General Information Clinical Trials Funding Information Current Research Policy Glossary Site Map Stem Cell Basics Introduction: What are stem cells, and why ...

  18. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Neurons Oligodendrocyte Parthenogenesis Passage Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) Somatic (adult) stem cell Stem cells Stromal cells Subculturing Surface markers ...

  19. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  20. Ultrastructural changes in goat interspecies and intraspecies reconstructed early embryos

    DEFF Research Database (Denmark)

    Tao, Yong; Gheng, Lizi; Zhang, Meiling;

    2008-01-01

    dispered gradually from the 4-cell period. The nucleolus of GC and GG embryos changed from electron dense to a fibrillo-granular meshwork at the 16-cell stage, showing that nucleus function in the reconstructed embryos was activated. The broken nuclear envelope and multiple nucleoli in one blastomere...

  1. Pollen Mother Cell Miosis and Male Gametophyte Development of Pumpkin%南瓜花粉母细胞减数分裂及雄配子体发育

    Institute of Scientific and Technical Information of China (English)

    崔群香; 刘卫东; 王倩; 肖木珠

    2012-01-01

    [目的]研究南瓜花粉母细胞的减数分裂及其雄配子体发育过程,以期为南瓜花药培养等方面研究提供一定细胞学依据。[方法]采用爱氏苏木精染色-冬青油透明技术对南瓜”天虹”的花粉母细胞减数分裂及其雄配子体发育过程中细胞结构变化和染色体行为进行了观察研究。[结果]南瓜花粉母细胞在细胞核分裂过程中,核膜核仁于中期I消失,末期I重新出现,此时形成2个新月形的细胞核,两核之间出现成膜体,但未出现细胞壁,该成膜体在中期Ⅱ又逐渐消失,末期Ⅱ重新出现。第2次分裂纺锤体中央离心扩散的成膜体与第1次分裂两核相对的中央界面形成的成膜体相连,小孢子细胞壁向心产生。多数四分体中包含四个子细胞,少数还含有额外的小细胞。单核靠边期核仁由1个分解成2~3个或多个,进入有丝分裂前期,成熟花粉为二细胞型。1.0-2.0cm长花蕾中多数花粉细胞处于单核期,可以将其作为花药或小孢子培养的取材依据。[结论]该研究结果为南瓜细胞遗传学方面的研究奠定了基础。%[Objective] Pollen mother cell miosis and male gametophyte development of pumpkin were observed in this study, to provide some cytological basis for pumpkin anther or microspore culture. [Method] Ehrlich's hematoxylin staining-methyl salicylate clearing technique was used for observation and research of the variation of cell structure and chromosomal behavior during pollen mother cell miosis and male gametophyte development of ‘Tianhong' pumpkin. [Result] The meiosis in pollen moth- er cells of pumpkin was simultaneous cytokinesis. In the process of nuclear division, nuclear membrane and nucleolus of pumpkin pollen mother cells gradually disappeared in the metaphase I and reappeared in telophase I , phragmoplast formed between the two generated crescent-shaped nuclei without cell wall, the phragmoplast

  2. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  3. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and...... nuclear fuel-based energy technologies....

  4. Cell Docking, Movement and Cell-Cell Interactions of Heterogeneous Cell Suspensions in a Cell Manipulation Microdevice

    OpenAIRE

    Long-Sun Huang; Yu-Hung Wang; Yu-Wei Chung; Fei-Lung Lai; Shiaw-Min Hwang

    2011-01-01

    This study demonstrates a novel cell manipulation microdevice for cell docking, culturing, cell-cell contact and interaction by microfluidic manipulation of heterogeneous cell suspensions. Heterogeneous cell suspensions include disparate blood cells of natural killer cells and leukemia cancer cells for immune cell transplantation therapy. However, NK cell alloreactivity from different healthy donors present various recovery response levels. Little is still known about the interactions and cyt...

  5. Morfologia de células neurológicas e imunológicas da medula espinhal de cães (Canis familiaris, Linnaeus, 1758 - DOI: 10.4025/actascianimsci.v27i3.1215 Morphology of neurological and immunologic cells of canine spinal cord - DOI: 10.4025/actascianimsci.v27i3.1215

    Directory of Open Access Journals (Sweden)

    Maria Rita Pacheco

    2005-03-01

    Full Text Available Analisou-se a morfologia de neurônios, de neuróglia e de células de defesa da pia-máter das regiões cervical, torácica e lombar da medula espinhal de cães. Utilizaram-se as técnicas da hematoxilina-eosina (HE, do tricrômico de Masson (TM, da impregnação pela prata e da peroxidase anti-peroxidase (PAP. Pela coloração com TM, evidenciaram-se neurônios com núcleo acidófilo e citoplasma basófilo e com HE, o núcleo mostrou-se basófilo e o citoplasma acidófilo. Observou-se irregularidade nos prolongamentos citoplasmáticos (núcleo grande, esférico ou oval, pouco corado, com cromatina frouxa e um ou mais nucléolos evidentes. Pela PAP, visualizou-se astrócitos com citoplasma marrom e núcleo roxo-azulado, possuindo os fibrosos prolongamentos longos e menos ramificados e os protoplasmáticos, prolongamentos curtos e abundantes. Pela prata, evidenciou-se oligodendróglia com corpo celular arredondado e micróglia com corpo celular alongado e pequeno, tanto nas substâncias brancas quanto nas cinzentas. As células ependimárias apresentaram epitélio cilíndrico simples ciliado e as células de defesa apresentaram neutrófilos segmentados e eosinófilosThis study analyzed neurons and neuroglia morphology, and pia mater defensive cells from canine spinal cord cervical, thoracic, and lumbar regions. Hematoxylin-eosin (HE, Masson’s trichrome (MT, silver and anti-peroxydase peroxydase (APP stains were used. By MT, neurons with acidophilic nucleus and basophilic cytoplasm were observed. HE showed neurons with basophilic nucleus and acidophilic cytoplasm. Irregularity of cytoplasmatic processes, large, round or oval nucleus, pale-stained, and one or more nucleolus was also noted. By APP, astrocytes were visualized with brown cytoplasm and blue-purple nucleus, showing fibrous astrocytes with long and less ramified processes, and protoplasmic astrocytes with short and ramified processes. Silver stain showed oligodendrocytes with round

  6. Reprogrammed pluripotent stem cells from somatic cells.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Choi, Sol; Do, Jeong Tae

    2011-06-01

    Pluripotent stem cells, such as embryonic stem (ES) cells, can differentiate into all cell types. So, these cells can be a biological resource for regenerative medicine. However, ES cells known as standard pluripotent cells have problem to be used for cell therapy because of ethical issue of the origin and immune response on the graft. Hence, recently reprogrammed pluripotent cells have been suggested as an alternative source for regenerative medicine. Somatic cells can acquire the ES cell-like pluripotency by transferring somatic cell nuclei into oocytes, by cell fusion with pluripotent cells. Retroviral-mediated introduction of four factors, Oct4, Sox2, Klf4 and c-Myc can successfully reprogram somatic cells into ES cell-like pluripotent stem cells, known as induced pluripotent stem (iPS) cells. These cells closely resemble ES cells in gene expression pattern, cell biologic and phenotypic characteristics. However, to reach the eventual goal of clinical application, it is necessary to overcome the major drawbacks such as low reprogramming efficiency and genomic alterations due to viral integration. In this review, we discuss the current reprogramming techniques and mechanisms of nuclear reprogramming induced by transcription factor transduction. PMID:24298328

  7. Red blood cells, sickle cell (image)

    Science.gov (United States)

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  8. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Rebollo, Marta; Mateo, Francesca; Franke, Kristin [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Huen, Michael S.Y. [Department of Anatomy, Centre for Cancer Research, The University of Hong Kong, L1, Laboratory Block, 21 Sassoon Road, Hong Kong Special Administrative Region (Hong Kong); Lopitz-Otsoa, Fernando; Rodriguez, Manuel S. [Proteomics Unit, CIC bioGUNE CIBERehd, ProteoRed, Technology Park of Bizkaia, Building 801A, 48160 Derio (Spain); Plans, Vanessa [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain); Thomson, Timothy M., E-mail: titbmc@ibmb.csic.es [Department of Cell Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona (Spain)

    2012-11-01

    The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to {gamma}-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did {gamma}-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage. -- Highlights: Black-Right-Pointing-Pointer RNF8 and BRCA1 are associated with the nucleolus of undamaged cells. Black-Right-Pointing-Pointer Upon {gamma}-radiation, RNF8 and BRCA1 are translocated from the nucleolus to damage foci. Black-Right-Pointing-Pointer The ribosomal protein RPSA anchors RNF8 to the nucleolus. Black-Right-Pointing-Pointer RNF8 may play previously unsuspected roles in protein synthesis.

  9. Nucleolar exit of RNF8 and BRCA1 in response to DNA damage

    International Nuclear Information System (INIS)

    The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to γ-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did γ-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage. -- Highlights: ► RNF8 and BRCA1 are associated with the nucleolus of undamaged cells. ► Upon γ-radiation, RNF8 and BRCA1 are translocated from the nucleolus to damage foci. ► The ribosomal protein RPSA anchors RNF8 to the nucleolus. ► RNF8 may play previously unsuspected roles in protein synthesis.

  10. Stem cell glycolipids.

    Science.gov (United States)

    Yanagisawa, Makoto

    2011-09-01

    Glycolipids are compounds containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety. Because of their expression patterns and the intracellular localization patterns, glycolipids, including stage-specific embryonic antigens (SSEA-3, SSEA-4, and possibly SSEA-1) and gangliosides (e.g., GD3, GD2, and A2B5 antigens), have been used as marker molecules of stem cells. In this review, I will introduce glycolipids expressed in pluripotent stem cells (embryonic stem cells, induced pluripotent stem cells, very small embryonic-like stem cells, amniotic stem cells, and multilineage-differentiating stress enduring cells), multipotent stem cells (neural stem cells, mesenchymal stem cells, fetal liver multipotent progenitor cells, and hematopoietic stem cells), and cancer stem cells (brain cancer stem cells and breast cancer stem cells), and discuss their availability as biomarkers for identifying and isolating stem cells. PMID:21161592

  11. Murine Mueller cells are progenitor cells for neuronal cells and fibrous tissue cells

    International Nuclear Information System (INIS)

    Mammalian Mueller cells have been reported to possess retinal progenitor cell properties and generate new neurons after injury. This study investigates murine Mueller cells under in vitro conditions for their capability of dedifferentiation into retinal progenitor cells. Mueller cells were isolated from mouse retina, and proliferating cells were expanded in serum-containing medium. For dedifferentiation, the cultured cells were transferred to serum-replacement medium (SRM) at different points in time after their isolation. Interestingly, early cell passages produced fibrous tissue in which extracellular matrix proteins and connective tissue markers were differentially expressed. In contrast, aged Mueller cell cultures formed neurospheres in SRM that are characteristic for neuronal progenitor cells. These neurospheres differentiated into neuron-like cells after cultivation on laminin/ornithine cell culture substrate. Here, we report for the first time that murine Mueller cells can be progenitors for both, fibrous tissue cells and neuronal cells, depending on the age of the cell culture

  12. Sickle Cell Anemia

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are ... pain and organ damage. A genetic problem causes sickle cell anemia. People with the disease are born with two ...

  13. Sickle cell test

    Science.gov (United States)

    The sickle cell test looks for the abnormal hemoglobin in the blood that causes the disease sickle cell anemia . ... if a person has abnormal hemoglobin that causes sickle cell disease and sickle cell trait. Hemoglobin is a ...

  14. What are Stem Cells?

    OpenAIRE

    Ahmadshah Farhat; Ashraf Mohammadzadeh; Rezaie, M.

    2014-01-01

      Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem ...

  15. Pluripotent stem cell lines

    OpenAIRE

    Yu, Junying; Thomson, James A.

    2008-01-01

    The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while ma...

  16. DNA-cell conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  17. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  18. 丹参酮IIA对肾癌786-O细胞生长抑制作用及其分子机制%Inhibitive Effect and Molecular Mechanism of Tanshinone IIA on Growth of Renal Carcinoma Cell 786-O

    Institute of Scientific and Technical Information of China (English)

    肖建勇; 谭宇蕙; 张广献

    2012-01-01

    Objective To explore the inhibitive effect and molecular mechanism of Tanshinone IIA (Tan IIA) on the growth of renal carcinoma cell 786-0. Methods MTT assay was used to detect the vitality of 786-0 cells after treatment with Tan IIA. Flow Cytometry was employed to examine the cell cycle distribution in 786-0 cells induced by Tan IIA. Immunoblotting method was utilized to determine the expression level of target proteins related to cell cycle arrest. The translocation of Nucleophosmin (NPM )/B23 after Tan IIA treatment was observed by confocal microscopy. Results Tan IIA remarkably inhibited 786-0 cells vitality in dose-dependent manner(p< 0.05). The results of cell cycle analysis indicated that 786-0 cells were arrested in S phase after Tan IIA treatment. Furthermore, the upregulation of cyclin A, p53 and its downstream gene p21 in 786-0 cells was shown by Immunoblotting. Translocation of NPM from nucleolus to nucleoplasm was found under confocal microscopy. Conclusion Treatment with Tan IIA can induce 786-0 cell cycle S arrest, and the underlying mechanism might relate to the translocation of NPM and to the upregulation of p53 and p21.%目的 研究丹参酮IIA对肾癌细胞生长抑制作用及其分子机制.方法 MTT法检测丹参酮IIA对肾癌细胞活力影响;流式细胞分析检测丹参酮IIA对肾癌细胞周期阻滞;免疫印迹检测细胞周期阻滞相关靶蛋白蛋白表达水平;激光共聚焦观察核仁蛋白Nucleophosmin (NPM)/B23定位的变化.结果 丹参酮能够呈浓度依赖方式显著抑制肾癌细胞生长活力(P<0.05);细胞周期分析表明丹参酮IIA处理的肾癌细胞阻滞在S期;免疫印迹结果证明丹参酮IIA处理肾癌细胞,cyclin A,p53及其下游基因p21显著上调;激光共聚焦结果表明在丹参酮IIA作用下,NPM蛋白定位从核仁移位到核浆.结论 丹参酮IIA作用786-O细胞导致细胞周期S阻滞,其机制可能与NPM移位促使其相互作用靶蛋白p53和p21蛋白水平上调有关.

  19. Integrated circuit cell library

    Science.gov (United States)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)

    2005-01-01

    According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.

  20. Direct action of the X-ray on the submandibular and sublingual glands. Histologic and histochemical study in rats

    International Nuclear Information System (INIS)

    The submandibular and sublingual glands of rats are surgically exposed and irradiated by X-ray. A simulated group with surgical exposition of the glands is performed. In the irradiated submandibular glands occurred atrophy, architectural disorder and degenerative processes. RNA reduction in the nucleus, nucleolus and cytoplasm of the acini cells and a decrease of protein synthesis are described. (M.A.C.)

  1. Subcellular localization of casein kinase I

    DEFF Research Database (Denmark)

    Grankowski, N; Issinger, O G

    1990-01-01

    An anti-yeast CKI antiserum was shown to cross-react with CKI isolated from Krebs II mouse ascites tumour cells. The mammalian CKI showed virtually the same molecular mass (app. 45 kDa) as the yeast enzyme. By immunofluorescence it could be shown that CKI is preferably located in the nucleolus....

  2. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Y Wang; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  3. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  4. Monitoring cell growth.

    Science.gov (United States)

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  5. Chromophobe Renal Cell Carcinoma

    OpenAIRE

    Jyotsna Vijaykumar Wader; Sujata S Kumbhar; Huddedar AD; Wasim GM Khatib

    2013-01-01

    Renal cell carcinoma is the most common neoplasm of the kidney comprised of different histological variants. Chromophobe renal cell carcinoma (ChRCC) is a rare subtype of renal cell carcinoma (RCC) mainly diagnosed in the sixth decade of life. It is important to identify this entity because it has significantly better prognosis than the clear cell (conventional) and papillary renal cell carcinomas. The chromophobe renal cell carcinoma should be differentiated from oncocytoma and clear cell ca...

  6. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  7. Mantle Cell Lymphoma

    Science.gov (United States)

    Getting the Facts Mantle Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are Hodgkin lymphoma ... lymphocytes (B-cells) and T-lymphocytes (T-cells). Mantle cell lymphoma (MCL) is a rare, B-cell ...

  8. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  9. Cell culture purity issues and DFAT cells

    International Nuclear Information System (INIS)

    Highlights: •DFAT cells are progeny cells derived from dedifferentiated mature adipocytes. •Common problems in this research is potential cell contamination of initial cultures. •The initial cell culture purity is crucial in DFAT cell research field. -- Abstract: Dedifferentiation of mature adipocytes, in vitro, has been pursued/documented for over forty years. The subsequent progeny cells are named dedifferentiated adipocyte-derived progeny cells (DFAT cells). DFAT cells are proliferative and likely to possess mutilineage potential. As a consequence, DFAT cells and their progeny/daughter cells may be useful as a potential tool for various aspects of tissue engineering and as potential vectors for the alleviation of several disease states. Publications in this area have been increasing annually, but the purity of the initial culture of mature adipocytes has seldom been documented. Consequently, it is not always clear whether DFAT cells are derived from dedifferentiated mature (lipid filled) adipocytes or from contaminating cells that reside in an impure culture

  10. CELL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    REVIEWSInducible resistance to Fas-mediated apoptosis in B cells…………………………………ROTHSTEIN Thomas L (245)Executionary pathway for apoptosis: lessons from mutant mice………………………………………WOO Minna, Razqallah Hakem, Tak W Mak (267)The SHP-2 tyrosine phosphatase: Signaling mechanisms and biological functions…………………………………QU Cheng Kui (279)REGULAR ARTICLESTemperature dependent expression of cdc2 and cyclin B1 in spermatogenic cells during spermatogenesis…………………………KONG Wei Hua, Zheng GU, Jining LU, Jiake TSO (289)Transgenic mice overexpressing γ-aminobutyric acid transporter subtype I develop obesity…………………………………MA Ying Hua, Jia Hua HU, Xiao Gang ZHOU, Ruo Wang ZENG, Zhen Tong MEI, Jian FEI, Li He GUO (303)Genetic aberration in primary hepatocellular carcinoma: correlation between p53 gene mutation and loss-of-heterozygosity on chromosome 16q21-q23 and 9p21-p23………………………………………WANG Gang, Chang Hui HUANG, Yan ZHAO, Ling CAI, Ying WANG, Shi Jin XIU, Zheng Wen JIANG, Shuang YANG, Xin Tai ZHAO, Wei HUANG, Jian Ren GU (311)Identification and genetic mapping of four novel genes that regulate leaf deve- lopment in Arabidopsis………………………………………………SUN Yue, Wei ZHANG, Feng Ling LI, Ying Li GUO, Tian Lei LIU, Hai HUANG (325)NOTICE FOR CONTRIBUTORS…………………………………(337)CONTENTS of Vol. 10, 2000…………………………………………………(338)

  11. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  12. Mammary stem cells have myoepithelial cell properties.

    Science.gov (United States)

    Prater, Michael D; Petit, Valérie; Alasdair Russell, I; Giraddi, Rajshekhar R; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F; Metzger, Daniel; Faraldo, Marisa M; Deugnier, Marie-Ange; Glukhova, Marina A; Stingl, John

    2014-10-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  13. Galvanic cells: setting up the Daniell cell.

    OpenAIRE

    2008-01-01

    With the reagents (0.05M copper nitrate solution, 0.05M zinc nitrate solution) and material (glassware, potentiometer, electric wire) availabe in the laboratory, the user must set up the Daniell cell. Different configurations can be possible if the half cells are filled with either electrolyte solution. The cell connections to the measuring device can also be changed. In all instances, an explanation of the set up cell is obtained as well as of the measured potential difference.

  14. Mammary stem cells have myoepithelial cell properties

    OpenAIRE

    Prater, Michael D.; Petit, Val?rie; Russell, I Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepi...

  15. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC ...

  16. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  17. Squamous cell skin cancer

    Science.gov (United States)

    ... earliest form of squamous cell cancer is called Bowen disease (or squamous cell carcinoma in situ). This type ... cancer; Squamous cell carcinoma of the skin Images Bowen's disease on the hand Keratoacanthoma Keratoacanthoma Skin cancer, squamous ...

  18. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  19. Cell sheet engineering

    Directory of Open Access Journals (Sweden)

    Masayuki Yamato

    2004-05-01

    Full Text Available We have developed ‘cell sheet engineering’ in order to avoid the limitations of tissue reconstruction using biodegradable scaffolds or single cell suspension injection. Our concept is tissue reconstruction, not from single cells, but from cell sheets. Cell sheets are prepared using temperature-responsive culture dishes. Temperature-responsive polymers are covalently grafted onto the dishes, allowing various types of cells to adhere and proliferate at 37°C. The cells spontaneously detach when the temperature is reduced below 32°C without the need for proteolytic enzymes. The confluent cells are noninvasively harvested as single, contiguous cell sheets with intact cell-cell junctions and deposited extracellular matrix (ECM. We have used these harvested cell sheets for various tissue reconstructions, including ocular surfaces, periodontal ligaments, cardiac patches, and bladder augmentation.

  20. Sickle Cell Disease (SCD)

    Science.gov (United States)

    ... disease (SCD) Email this page Print this page Sickle cell disease (SCD) Sickle cell disease (SCD) is a disease of the hemoglobin. ... and form a sickle or a cresent. Tweet Sickle cell disease (SCD) Symptoms of SCD How transplant can ...

  1. Sickle Cell Disease

    Science.gov (United States)

    ... in Sickle Cell Disease New supplement from the American Journal of Preventive Medicine describes the state of sickle cell disease related care in the United States. Read Supplement » ... are affected by sickle cell disease. More WEBINAR ...

  2. Sickle Cell Disease

    Science.gov (United States)

    ... from the NHLBI on Twitter. What Is Sickle Cell Disease? Español The term sickle cell disease (SCD) ... common forms of SCD. Some Forms of Sickle Cell Disease Hemoglobin SS Hemoglobin SC Hemoglobin Sβ 0 thalassemia ...

  3. Basal Cell Carcinoma (BCC)

    Science.gov (United States)

    ... epithelioma, is the most common form of skin cancer. Basal cell carcinoma usually occurs on sun-damaged skin, especially ... other health issues. Infiltrating or morpheaform basal cell carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive ...

  4. Snail modulates cell metabolism in MDCK cells

    International Nuclear Information System (INIS)

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O2 consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of key enzymes

  5. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  6. Artificial Stem Cell Niches

    OpenAIRE

    Lutolf, Matthias P.; Blau, Helen M.

    2009-01-01

    Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-...

  7. Fish Stem Cell Cultures

    OpenAIRE

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is th...

  8. Stem Cell Separation Technologies

    OpenAIRE

    Zhu, Beili; Murthy, Shashi K

    2013-01-01

    Stem cell therapy and translational stem cell research require large-scale supply of stem cells at high purity and viability, thus leading to the development of stem cell separation technologies. This review covers key technologies being applied to stem cell separation, and also highlights exciting new approaches in this field. First, we will cover conventional separation methods that are commercially available and have been widely adapted. These methods include Fluorescence-activated cell so...

  9. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  10. Dental mesenchymal stem cells

    OpenAIRE

    Kaukua, Nina

    2014-01-01

    Mesenchymal stem cells have been found in various tissues and act as source for renewal and repair. The mouse incisor tooth continuously grows throughout life, implicating that there are stem cell niches constantly contributing with cells. The composition of these stem cell niches is not fully understood. Here, we show that Schwann cells on the peripheral nerves in the close proximity to the incisor tooth constitute a stem cell niche. Transgenic mouse models were used to label ...

  11. Sickle Cell Information Center

    Science.gov (United States)

    ... Word Visual Art Historical Perspectives General Information Research Articles Books Primary Documents Images Sickle Cell on Instagram Sickle Cell Organizations State National International Newsletter NIH Report on Evidence- ...

  12. Cell-cell interactions promote mammary epithelial cell differentiation

    OpenAIRE

    1985-01-01

    Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interac...

  13. Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells

    OpenAIRE

    Wang, Ran; Chen, Shuxun; Li, Changxian; Ng, Kevin Tak Pan; Kong, Chi-Wing; Cheng, Jinping; Cheng, Shuk Han; Li, Ronald A.; Lo, Chung Mau; Man, Kwan; Sun, Dong

    2016-01-01

    Background Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus, tumor-initiating cell-like cells are generated. Methods We employed laser-induced single-cell fusion technique to fuse the hepatocellular carci...

  14. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  15. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  16. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  17. SMOOTH MUSCLE STEM CELLS

    Science.gov (United States)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  18. CELL VOLUME CONFERENCES

    OpenAIRE

    V. Štrbák

    2016-01-01

    This mini-review describes the history of cell volume conferences with the emphasis on the research of cell volume sensitive peptide exocytosis initiated by Prof. Monte A. Greer as well as the recent achievements on the study of the mechanisms of cell volume adjustment and their implications in the regulation of metabolism, gene expression, cell proliferation and death.

  19. Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease? Sickle cell disease, also called sickle cell anemia, is a hereditary condition (which means it runs ... or blocks blood and oxygen reaching nearby tissues. Sickle cell disease ... the whites of the eyes) Anemia (the decreased ability of the blood to carry ...

  20. Fluorescence activated cell sorting.

    Science.gov (United States)

    Bonner, W. A.; Hulett, H. R.; Sweet, R. G.; Herzenberg, L. A.

    1972-01-01

    An instrument has been developed for sorting biological cells. The cells are rendered differentially fluorescent and incorporated into a small liquid stream illuminated by a laser beam. The cells pass sequentially through the beam, and fluorescent light from the cells gives rise to electrical signals. The stream is broken into a series of uniform size drops downstream of the laser. The cell signals are used to give appropriate electrostatic charges to drops containing the cells. The drops then pass between two charged plates and are deflected to appropriate containers. The system has proved capable of providing fractions containing large numbers of viable cells highly enriched in a particular functional type.

  1. When Blood Cells Bend: Understanding Sickle Cell Disease

    Science.gov (United States)

    ... please review our exit disclaimer . Subscribe When Blood Cells Bend Understanding Sickle Cell Disease For people who don’t suspect they ... Cells Bend Wise Choices Links Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...

  2. The cell cycle as a brake for β-cell regeneration from embryonic stem cells

    OpenAIRE

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-01

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle ...

  3. Cancer Stem Cells

    OpenAIRE

    Katarzyna Wieczorek; Jolanta Niewiarowska

    2008-01-01

    Cancer stem cell theory gains increasingly greater significance in the world of medicine. Numerous findings of scientific research in vivo and in vitro indicate that it is the population of undifferentiated, self-renewing cells which is responsible for recurrence of cancer and metastasis. Similarly to normal stem cells, cancer stem cells (CSC) function in the environment of the other cells of the organism, called the niche, where they receive signals for differentiation and proliferation proc...

  4. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells

    OpenAIRE

    Bonde, Sabrina; Pedram, Mehrdad; Stultz, Ryan; Zavazava, Nicholas

    2010-01-01

    Bone marrow transplantation is a curative treatment for many diseases, including leukemia, autoimmune diseases, and a number of immunodeficiencies. Recently, it was claimed that bone marrow cells transdifferentiate, a much desired property as bone marrow cells are abundant and therefore could be used in regenerative medicine to treat incurable chronic diseases. Using a Cre/loxP system, we studied cell fusion after bone marrow transplantation. Fused cells were chiefly Gr-1+, a myeloid cell mar...

  5. Hepatic stem cell niches

    OpenAIRE

    Kordes, Claus; Häussinger, Dieter

    2013-01-01

    Stem cell niches are special microenvironments that maintain stem cells and control their behavior to ensure tissue homeostasis and regeneration throughout life. The liver has a high regenerative capacity that involves stem/progenitor cells when the proliferation of hepatocytes is impaired. In recent years progress has been made in the identification of potential hepatic stem cell niches. There is evidence that hepatic progenitor cells can originate from niches in the canals...

  6. Stem Cell Networks

    OpenAIRE

    Werner, Eric

    2016-01-01

    We present a general computational theory of stem cell networks and their developmental dynamics. Stem cell networks are special cases of developmental control networks. Our theory generates a natural classification of all possible stem cell networks based on their network architecture. Each stem cell network has a unique topology and semantics and developmental dynamics that result in distinct phenotypes. We show that the ideal growth dynamics of multicellular systems generated by stem cell ...

  7. Stem cell mechanobiology

    OpenAIRE

    David A. Lee; Knight, Martin M.; Jonathan J Campbell; Bader, Dan L.

    2010-01-01

    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the c...

  8. Embryonic Stem Cell Markers

    OpenAIRE

    Lan Ma; Liang Li; Wenxiu Zhao; Xiang Ji; Fangfang Zhang

    2012-01-01

    Embryonic stem cell (ESC) markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other type...

  9. Limbal stem cell transplantation

    OpenAIRE

    Fernandes Merle; Sangwan Virender; Rao Srinivas; Basti Surendra; Sridhar Mittanamalli; Bansal Aashish; Dua Harminder

    2004-01-01

    The past two decades have witnessed remarkable progress in limbal stem cell transplantation. In addition to harvesting stem cells from a cadaver or a live related donor, it is now possible to cultivate limbal stem cells in vitro and then transplant them onto the recipient bed. A clear understanding of the basic disease pathology and a correct assessment of the extent of stem cell deficiency are essential. A holistic approach towards management of limbal stem cell deficiency is needed. This ...

  10. Intraoperative Stem Cell Therapy

    OpenAIRE

    Coelho, Mónica Beato; Cabral, Joaquim M. S.; Karp, Jeffrey M.

    2012-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the poten...

  11. The leukemic stem cell

    OpenAIRE

    Jordan, Craig T.

    2007-01-01

    Malignant stem cells have recently been described as the source of several types of human cancer. These unique cell types are typically rare and possess properties that are distinct from most other tumor cells. The properties of leukemic stem cells indicate that current chemotherapy drugs will not be effective. The use of current cytotoxic agents is not effective in leukemia because the agents target both the leukemic and normal stem cell populations. Consequently, new strategies are required...

  12. Stem cell biobanks.

    Science.gov (United States)

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment. PMID:20560026

  13. Mechanically facilitated cell-cell electrofusion.

    OpenAIRE

    Jaroszeski, M. J.; Gilbert, R.; Fallon, P.G.; Heller, R

    1994-01-01

    Apparatus and methods were developed to enable mechanically facilitated cell-cell electrofusion to be performed. The apparatus and methods mechanically place cells in contact before fusion. The key component of this fusion system was a newly developed fusion chamber. The chamber was composed of two functionally identical electrodes that were housed in a multi-layer structure. The layers functioned as support for the electrodes. They also allowed adjustment of the distance between opposing ele...

  14. Optimizing stem cell culture.

    Science.gov (United States)

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  15. The roles of nucleolin subcellular localization in cancer.

    Science.gov (United States)

    Berger, Caroline Madeleine; Gaume, Xavier; Bouvet, Philippe

    2015-06-01

    Nucleolin (NCL) is one of the most abundant non ribosomal protein of the nucleolus where it plays a central role in polymerase I transcription. NCL is also found outside of the nucleolus, in the nucleoplasm, cytoplasm as well as on the cell membrane. It acts in all cell compartments to control cellular homeostasis and therefore each cellular pool of NCL can play a different role in cancer development. NCL overexpression and its increased localization at the cell membrane is a common feature of several tumor cells. In cancer cells, NCL overexpression influences cell survival, proliferation and invasion through its action on different cellular pathways. In this review, we describe how the multiple functions of NCL that are associated to its multiple cellular localization can participate to the development of cancer. PMID:25866190

  16. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    Science.gov (United States)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  17. Living with Sickle Cell Disease

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  18. What Causes Sickle Cell Disease?

    Science.gov (United States)

    ... sickle cell disease, go to the Health Topics Sickle Cell Anemia article. Living With and Managing Sickle Cell Disease ( ... the most severe form of sickle cell disease, sickle cell anemia, Tiffany has lived with the symptoms and complications ...

  19. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  20. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  1. Molecular determinants of nucleolar translocation of RNA helicase A

    International Nuclear Information System (INIS)

    RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role

  2. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitu

  3. Assessment of pancreas cells

    Science.gov (United States)

    Vanoss, C. J.

    1978-01-01

    Pancreatic islets were obtained from guinea pig pancreas by the collagenase method and kept alive in tissue culture prior to further studies. Pancreas cell morphology was studied by standard histochemical techniques using light microscopy. Preparative vertical electrophoresis-levitation of dispersed fetal guinea pig pancreas cells was conducted in phosphate buffer containing a heavy water (D20) gradient which does not cause clumping of cells or alter the osmolarity of the buffers. The faster migrating fractions tended to be enriched in beta-cell content. Alpha and delta cells were found to some degree in most fractions. A histogram showing the cell count distribution is included.

  4. Resident Peritoneal NK cells

    OpenAIRE

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that ...

  5. Load Cell Optimization

    OpenAIRE

    Garðar Páll Gíslason 1979

    2011-01-01

    A load cell is a small object which has only one goal and that is to measure load. This is an old invention from the mid-eighteenth century and remains very popular today. Load cells are only one portion of a bigger totality. That is why the shape of the load cell changes between objects. Optimization of a load cell is an effective way to get the highest signal from the cell. The main object of this thesis is optimization of a load cell which is a part of the Rheo Knee® from Össur. This kn...

  6. Analysis of nucleolar morphology and protein localization as an indicator of nuclear reprogramming

    DEFF Research Database (Denmark)

    Østrup, Olga; Pedersen, Hanne Skovsgaard; Holm, Hanne M.;

    2015-01-01

    the nucleolus are summarized in this developmental context, but also as they occur in assisted reproductive technologies such as in vitro fertilization and somatic cell nuclear transfer. Moreover, detailed protocols for monitoring the nucleolar changes by transmission electron microscopy and...... cloning by somatic cell nuclear transfer. However, when cells are reprogrammed by less fundamental means, as for example treatment by Xenopus extract or expression of pluripotency genes, more subtle nucleolar modulations can also be noted. The monitoring and understanding of the reprogramming...

  7. Multipotent adult progenitor cell and stem cell plasticity

    OpenAIRE

    Jahagirdar, Balkrishna N; Verfaillie, Catherine

    2005-01-01

    Stem cells are defined by their biological function. A stem cell is an undifferentiated cell that self-renews to maintain the stem cell pool and at the single-cell level differentiates into more than one mature, functional cell. In addition, when transplanted, a stem cell should be capable of replacing a damaged organ or tissue for the lifetime of the recipient. Some would argue that stem cells should also be capable of functionally integrating into nondamaged tissues. Stem cells are critical...

  8. Epidermal Stem Cells

    Directory of Open Access Journals (Sweden)

    Osman Köse

    2015-03-01

    Full Text Available The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and hair regeneration, but also contribute to repair of the epidermis after injury. In recent years, human induced pluripotent skin stem cells are produced from the epidermal cells such as keratinocytes, fibroblasts and melanocytes. These cells can be transdifferentiated to embriyonic stem cells. Human induced pluripotent stem cells have potential applications in cell replacement therapy and regenerative medicine. These cells provide a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. In this review, we aimed an overview of epidermal stem cells for better understanding their functions in the skin. Skin will be main organ for using the epidermal cells for regenerative medicine in near future.

  9. Nucleolar ultrastructure in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Kaňka, Jiří; Smith, Steven Dale; Soloy, Eva;

    1999-01-01

    (nonactivated) or S phase (activated) cytoplasts. Control embryos were fixed at the two-, four-, early eight- and late eight-cell stages; nuclear transfer embryos were fixed at 1 and 3 hr post fusion and at the two-, four-, and eight-cell stages. Control embryos possessed a nucleolar precursor body throughout...... at 1 hr after fusion and, by 3 hr after fusion, it was restored again. At this time, the reticulated fibrillo-granular nucleolus had an almost round shape. The nucleolar precursor body seen in the two-cell stage nuclear transfer embryos consisted of intermingled filamentous components and secondary...... time intervals after fusion. In the two-cell stage nuclear transfer embryo, the originally reticulated nucleolus of the donor blastomere had changed into a typical nucleolar precursor body consisting of a homogeneous fibrillar structure. A primary vacuole appeared in the four-cell stage nuclear...

  10. Regulatory T cells and B cells: implication on autoimmune diseases

    OpenAIRE

    Wang, Ping; Zheng, Song Guo

    2013-01-01

    The regulatory T (Treg) cells play an important role in the maintenance of homeostasis and the prevention of autoimmune diseases. Although most studies are focusing on the role of Treg cells in T cells and T cells-mediated diseases, these cells also directly affect B cells and other non-T cells. This manuscript updates the role of Treg cells on the B cells and B cell-mediated diseases. In addition, the mechanisms whereby Treg cells suppress B cell responses have been discussed.

  11. Giant Cell Arteritis

    Science.gov (United States)

    Giant cell arteritis is a disorder that causes inflammation of your arteries, usually in the scalp, neck, and arms. ... arteries, which keeps blood from flowing well. Giant cell arteritis often occurs with another disorder called polymyalgia ...

  12. Sickle Cell Trait

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Trait Language: English Español (Spanish) Recommend on Facebook ... the trait on to their children. How Sickle Cell Trait is Inherited If both parents have SCT, ...

  13. Sickle Cell Disease Quiz

    Science.gov (United States)

    ... About Us Information For... Media Policy Makers Sickle Cell Disease Quiz Language: English Español (Spanish) Recommend on ... True or False: Only African Americans get sickle cell disease. A True B False 2. True or ...

  14. Toward 'SMART' stem cells.

    Science.gov (United States)

    Cheng, T

    2008-01-01

    Stem cell research is at the heart of regenerative medicine, which holds great promise for the treatment of many devastating disorders. However, in addition to hurdles posed by well-publicized ethical issues, this emerging field presents many biological challenges. What is a stem cell? How are embryonic stem cells different from adult stem cells? What are the physiological bases for therapeutically acceptable stem cells? In this editorial review, I will briefly discuss these superficially simple but actually rather complex issues that surround this fascinating cell type. The goal of this special issue on stem cells in Gene Therapy is to review some fundamental and critical aspects of current stem cell research that have translational potential. PMID:18046429

  15. Anaplastic Large Cell Lymphoma

    Science.gov (United States)

    Anaplastic Large Cell Lymphoma Overview Lymphoma is the most common blood cancer. The two main forms of lymphoma are ... organs, and can accumulate to form tumors. Anaplastic large cell lymphoma (ALCL) is arare type of NHL, ...

  16. NIA Aging Cell Repository

    Data.gov (United States)

    Federal Laboratory Consortium — To facilitate aging research on cells in culture, the NIA provides support for the NIA Aging Cell Repository, located at the Coriell Institute for Medical Research...

  17. Mammalian cell biology

    International Nuclear Information System (INIS)

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  18. What Are Islet Cells?

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ...

  19. Sickle cell anemia.

    OpenAIRE

    ŘÍHOVÁ, Tereza

    2013-01-01

    This thesis is about the disease called sickle cell anemia, or drepanocytosis. In this thesis is described the history of the disease, pathophysiology, laboratory features, various clinical features, diferencial diagnosis, quality of life in sickle cell anemia and therapy.

  20. Cell signaling review series

    Institute of Scientific and Technical Information of China (English)

    Aiming Lin; Zhenggang Liu

    2008-01-01

    @@ Signal transduction is pivotal for many, if not all, fundamental cellular functions including proliferation, differentiation, transformation and programmed cell death. Deregulation of cell signaling may result in certain types of cancers and other human diseases.

  1. Renal cell carcinoma

    Science.gov (United States)

    Renal cell carcinoma is a type of kidney cancer that starts in the lining of very small tubes (tubules) in the kidney. ... cancer; Kidney cancer; Hypernephroma; Adenocarcinoma of renal cells; Cancer - kidney

  2. Sickle Cell Tests

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Sickle Cell Tests Share this page: Was this page helpful? ... else I should know? How is it used? Sickle cell tests are used to identify the presence of ...

  3. Sickle cell anemia

    Science.gov (United States)

    ... for avascular necrosis of the hip Surgery for eye problems Treatment for overuse or abuse of narcotic pain medicines Wound care for leg ulcers Bone marrow or stem cell transplants can cure sickle cell anemia, but this treatment ...

  4. Prostate cancer stem cells

    OpenAIRE

    Tu, Shi-Ming; Lin, Sue-Hwa

    2011-01-01

    Stem cells have long been implicated in prostate glandular formation. The prostate undergoes regression after androgen deprivation and regeneration after testosterone replacement. Regenerative studies suggest that these cells are found in the proximal ducts and basal layer of the prostate. Many characteristics of prostate cancer indicate that it originates from stem cells. For example, the putative AR− status of prostate stem cells renders them inherently insensitive to androgen blockade ther...

  5. Lung Cancer Stem Cells

    OpenAIRE

    Pine, Sharon R.; Blair Marshall; Lyuba Varticovski

    2008-01-01

    Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation p...

  6. Nanoelectrochemistry of mammalian cells

    OpenAIRE

    Sun, Peng; Laforge, François O.; Abeyweera, Thushara P.; Rotenberg, Susan A.; Carpino, James; Mirkin, Michael V.

    2008-01-01

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius ≈1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and tra...

  7. Optimizing stem cell culture.

    OpenAIRE

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-01-01

    International audience Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such a...

  8. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  9. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  10. Editorial: Stem Cell Engineering.

    Science.gov (United States)

    Cabral, Joaquim M S; Palecek, Sean P

    2015-10-01

    In recent years, the promise of stem cells as tools for basic research, in vitro diagnostics, and in vivo therapeutics is increasingly being realized. This Special issue of Biotechnology Journal explores recent advances in the emerging field of stem cell engineering, with a focus on applying engineering approaches to understanding stem cell biology and enabling translation of stem cells to commercial and clinical products. PMID:26447639

  11. Aneuploidy in stem cells

    OpenAIRE

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect bluepri...

  12. Blood cell labelling

    International Nuclear Information System (INIS)

    The labelling of blood cells in vitro for subsequent in vivo studies was one of the earliest applications of radioactive tracers in clinical medicine and laid the foundations for many important contributions to the advancement of knowledge of human blood cell pathophysiology. The characteristics required for satisfactory clinical studies, the mechanisms of cell labelling, the problems of radiation or chemical damage to the labelled cells and some examples of modern clinical applications are described and discussed. (Author)

  13. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid;

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  14. Diagram of Cell to Cell Communication

    Science.gov (United States)

    2002-01-01

    Diagram depicts the importance of cell-cell communication as central to the understanding of cancer growth and progression, the focus of the NASA bioreactor demonstration system (BDS-05) investigation. Microgravity studies will allow us to unravel the signaling and communication between these cells with the host and potential development of therapies for the treatment of cancer metastasis. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  15. Antitumor Immunity Produced by the Liver Kupffer Cells, NK Cells, NKT Cells, and CD8+ CD122+ T Cells

    OpenAIRE

    Shuhji Seki; Hiroyuki Nakashima; Masahiro Nakashima; Manabu Kinoshita

    2011-01-01

    Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand ( α -galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN- γ , which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a p...

  16. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission

    Directory of Open Access Journals (Sweden)

    Christine Gross

    2016-03-01

    Full Text Available The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1, a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4+ T-cells, and to a lesser extent, CD8+ T-cells, dendritic cells, and monocytes. Efficient infection of CD4+ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1 polarized budding of HTLV-1 into synaptic clefts; and (2 cell surface transfer of viral biofilms at virological synapses. In contrast to CD4+ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation.

  17. Cell Culture Made Easy.

    Science.gov (United States)

    Dye, Frank J.

    1985-01-01

    Outlines steps to generate cell samples for observation and experimentation. The procedures (which use ordinary laboratory equipment) will establish a short-term primary culture of normal mammalian cells. Information on culture vessels and cell division and a list of questions to generate student interest and involvement in the topics are…

  18. Mammalian Cell Culture Simplified.

    Science.gov (United States)

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A tissue culture experiment that does not require elaborate equipment and that can be used to teach sterile technique, the principles of animal cell line maintenance, and the concept of cell growth curves is described. The differences between cancerous and normal cells can be highlighted. The procedure is included. (KR)

  19. SYNOVIAL CELL SARCOMA

    OpenAIRE

    Farzan, M

    1997-01-01

    Ten cases of synovial cell sarcoma are reported. The youngest patient was a 2'A years old boy with synovial cell sarcoma of the knee and the oldest one was a man with synovial cell sarcoma of the elbow.

  20. SYNOVIAL CELL SARCOMA

    Directory of Open Access Journals (Sweden)

    M. Farzan

    1997-06-01

    Full Text Available Ten cases of synovial cell sarcoma are reported. The youngest patient was a 2'A years old boy with synovial cell sarcoma of the knee and the oldest one was a man with synovial cell sarcoma of the elbow.

  1. Mast cells and inflammation.

    Science.gov (United States)

    Theoharides, Theoharis C; Alysandratos, Konstantinos-Dionysios; Angelidou, Asimenia; Delivanis, Danae-Anastasia; Sismanopoulos, Nikolaos; Zhang, Bodi; Asadi, Shahrzad; Vasiadi, Magdalini; Weng, Zuyi; Miniati, Alexandra; Kalogeromitros, Dimitrios

    2012-01-01

    Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation. PMID:21185371

  2. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  3. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  4. Cell phones and cancer

    Science.gov (United States)

    Cancer and cell phones; Do cell phones cause cancer? ... Several major studies show no link between cell phones and cancer at this time. However, since the information available is based on short-term studies, the impact of many years of ...

  5. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  6. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  7. astrocyte and astrocytoma cells

    DEFF Research Database (Denmark)

    Tfelt-Hansen, J.

    2008-01-01

    -transforming gene (PTTG), was found to be upregulated by the CaR in the H-500 cells, whereas calcium had no effect on PTTG expression in the U-87 astrocytoma cell line, but other proproliferative agents did upregulate PTTG in the U-87 cells. This makes PTTG a potential marker of malignancy and a therapeutic target...

  8. Adventures with Cell Phones

    Science.gov (United States)

    Kolb, Liz

    2011-01-01

    Teachers are finding creative ways to turn the basic cell phone from a digital distraction into a versatile learning tool. In this article, the author explains why cell phones are important in learning and suggests rather than banning them that they be integrated into learning. She presents activities that can be done on a basic cell phone with a…

  9. The Significance of Studying the Origin of the Cell Nucleus and the Way for Studying%细胞核起源研究的意义和研究途径的探讨

    Institute of Scientific and Technical Information of China (English)

    李靖炎

    2001-01-01

    nucleus.Then,combined the model with the present knowledge on archaea,protists and eukaryotic cells we could establish an all-sided hypothesis on the origin and early evolution of the cell nucleus for further examinations.Further along this way we would closer and closer approach the real evolutionary process.   This is a realistic way.Along this way we have already negated the dinoflagellate nucleus model and the related hypothesis and established the diplomonad nucleus model for the primitive cell nucleus and proposed a rather complete theory on the origin and early revolution of the cell nucleus,including the origins of nuclear envelope,eukaryotic chromosomes and nucleolus (Li,1999).%细胞核的起源是真核细胞进化形成的关键。回顾了过去几十年国内外对细胞核起源问题的探索历程。通过多年的摸索找到了一条切实可行的探索细胞核起源问题的途径。其要点是:在一系列的进化环节中首先抓住原始性的细胞核这一重要环节,探明原始性细胞核的特性,解决了从原始核到典型细胞核的进化问题,原始性细胞核自身的起源问题也就有了基础。为探察原始性细胞核的特性,需要在现存的原生生物中间寻找最原始的类群,然后对它们的细胞核进行尽可能深入地和多方面地研究,对所得结果作进化地分析,以期提出一个原始性细胞核的模型。依据这个模型也就可以对典型细胞核的进化形成和原始核自身的起源作出推论。而这些推论是可以设法加以检验的。不仅可以检验这些推论的正确性,而且对原始核模型的建立也是重要的,可以据之加以发展,修正,甚至否定。沿此途径已经否定了原始性细胞核的涡鞭毛虫核模型,进而提出了双滴虫核模型。

  10. Introduction to solar cell production

    International Nuclear Information System (INIS)

    This book introduces solar cell production. It is made up eight chapters, which are summary of solar cell with structure and prospect of the business, special variable of solar cell on light of the sun and factor causing variable of solar cell, production of solar cell with surface texturing, diffusion, metal printing dry and firing and edge isolation, process of solar cell on silicone wafer for solar cell, forming of electrodes, introduction of thin film solar cell on operating of solar cell, process of production and high efficiency of thin film solar cell, sorting of solar cell and production with background of silicone solar cell and thin film solar cell, structure and production of thin film solar cell and compound solar cell, introduction of solar cell module and the Industrial condition and prospect of solar cell.

  11. STEM CELLS: Differentiated cells in a back-up role

    OpenAIRE

    Desai, Tushar J.; Krasnow, Mark A.

    2013-01-01

    Two independent studies show that, if push comes to shove, differentiated cells of the stomach and lung can act as adult stem cells generating various cell types of the tissue, including a pool of stem cells.

  12. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    OpenAIRE

    Quanwen Liu; Yi Shen; Jiarong Chen; Jie Ding; Zihua Tang; Cui Zhang; Jianling Chen; Liang Li; Ping Chen; Jinfu Wang

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bund...

  13. Mimicking the inflammatory cell adhesion cascade by nucleic acid aptamer programmed cell-cell interactions

    OpenAIRE

    Zhao, Weian; Loh, Weili; Droujinine, Ilia A.; Teo, Weisuong; Kumar, Namit; Schafer, Sebastian; Cui, Cheryl H.; Zhang, Liang; Sarkar, Debanjan; Karnik, Rohit; Karp, Jeffrey M.

    2011-01-01

    Nature has evolved effective cell adhesion mechanisms to deliver inflammatory cells to inflamed tissue; however, many culture-expanded therapeutic cells are incapable of targeting diseased tissues following systemic infusion, which represents a great challenge in cell therapy. Our aim was to develop simple approaches to program cell-cell interactions that would otherwise not exist toward cell targeting and understanding the complex biology of cell-cell interactions. We employed a chemistry ap...

  14. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells

    OpenAIRE

    Margadant, Coert; Cremers, Lobke; Sonnenberg, Arnoud; Boonstra, Johannes

    2012-01-01

    Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell sprea...

  15. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future. PMID:26872163

  16. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  17. Cell adhesion in regulation of asymmetric stem cell division

    OpenAIRE

    Yamashita, Yukiko M

    2010-01-01

    Adult stem cells inevitably communicate with their cellular neighbors within the tissues they sustain. Indeed, such communication, particularly with components of the stem cell niche, is essential for many aspects of stem cell behavior, including the maintenance of stem cell identity and asymmetric cell division. Cell adhesion mediates this communication by placing stem cells in close proximity to the signaling source and by providing a polarity cue that orients stem cells. Here, I review the...

  18. T cell subpopulations.

    Science.gov (United States)

    Romagnani, Sergio

    2014-01-01

    The role of allergen-specific CD4+ effector type 2 helper (Th2) cells in the pathogenesis of allergic disorders is an established fact. Th2 cells produce interleukin (IL)-4 and IL-13, which induce immunoglobulin E production by B cells, and IL-5 that allows recruitment of eosinophils. Two main mechanisms control the Th2-mediated allergic inflammation: immune deviation (or Th1 redirection) and immune regulation. Regulatory T (Treg) cells exhibit a CD4+ phenotype and include Foxp3-positive thymic and induced Tregs, as well as Foxp3-negative IL-10-producing cells. Both immune deviation and immune regulation evoked by the maternal and newborn microbial environment probably operate in preventing allergen-specific Th2 responses. However, microbe-related protection from allergy seems to mainly depend on epigenetically controlled acetylation of the IFNG promoter of CD4+ T cells. Even Th17 and Th9 cells, as well as invariant NKT cells, have been implicated in the pathogenesis of allergic disorders, but their role is certainly more limited. Recently, innate lymphoid type 2 cells (ILC2) have been found to be able to produce high amounts of IL-5 and IL-13 in response to stimulation with IL-25 and IL-33 produced by non-immune cells. Together with Th2 cells, ILC2 may contribute to the induction and maintenance of allergic inflammation. PMID:24925396

  19. Follicular Helper T Cells.

    Science.gov (United States)

    Vinuesa, Carola G; Linterman, Michelle A; Yu, Di; MacLennan, Ian C M

    2016-05-20

    Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination. PMID:26907215

  20. Parameterization of solar cells

    Science.gov (United States)

    Appelbaum, J.; Chait, A.; Thompson, D.

    1992-10-01

    The aggregation (sorting) of the individual solar cells into an array is commonly based on a single operating point on the current-voltage (I-V) characteristic curve. An alternative approach for cell performance prediction and cell screening is provided by modeling the cell using an equivalent electrical circuit, in which the parameters involved are related to the physical phenomena in the device. These analytical models may be represented by a double exponential I-V characteristic with seven parameters, by a double exponential model with five parameters, or by a single exponential equation with four or five parameters. In this article we address issues concerning methodologies for the determination of solar cell parameters based on measured data points of the I-V characteristic, and introduce a procedure for screening of solar cells for arrays. We show that common curve fitting techniques, e.g., least squares, may produce many combinations of parameter values while maintaining a good fit between the fitted and measured I-V characteristics of the cell. Therefore, techniques relying on curve fitting criteria alone cannot be directly used for cell parameterization. We propose a consistent procedure which takes into account the entire set of parameter values for a batch of cells. This procedure is based on a definition of a mean cell representing the batch, and takes into account the relative contribution of each parameter to the overall goodness of fit. The procedure is demonstrated on a batch of 50 silicon cells for Space Station Freedom.

  1. Cell and Tissue Engineering

    CERN Document Server

    2012-01-01

    Cell and Tissue Engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field. The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of ...

  2. T Cells Going Innate.

    Science.gov (United States)

    Seyda, Midas; Elkhal, Abdallah; Quante, Markus; Falk, Christine S; Tullius, Stefan G

    2016-08-01

    Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants. PMID:27402226

  3. Cell sorting apparatus

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1980-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  4. Enteroendocrine cell types revisited

    DEFF Research Database (Denmark)

    Engelstoft, Maja S; Egerod, Kristoffer Lihme; Lund, Mari L;

    2013-01-01

    The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell...... biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type and...... number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa....

  5. Reprogramming of round spermatids by the germinal vesicle cytoplasm in mice.

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Kong

    Full Text Available The birthrate following round spermatid injection (ROSI remains low in current and evidence suggests that factors in the germinal vesicle (GV cytoplasm and certain substances in the GV such as the nucleolus might be responsible for genomic reprogramming and embryonic development. However, little is known whether the reprogramming factors in GV oocyte cytoplasm and/or nucleolus in GV are beneficial to the reprogramming of round spermatids and development of ROSI embryos. Here, round spermatids were treated with GV cytolysates and injected this round spermatid alone or co-injected with GV oocyte nucleolus into mature metaphase II oocytes. Subsequent embryonic development was assessed morphologically and by Oct4 expression in blastocysts. There was no significant difference between experimental groups at the zygote to four-cell development stages. Blastocysts derived from oocytes which were injected with cytolysate treated-round spermatid alone or co-injected with nucleoli injection yielded 63.6% and 70.3% high quality embryos, respectively; comparable to blastocysts derived by intracytoplasmic sperm injection (ICSI, but higher than these oocytes which were co-injected with lysis buffer-treated round spermatids and nucleoli or injected with the lysis buffer-treated round spermatids alone. Furthermore, the proportion of live offspring resulting from oocytes which were co-injected with cytolysate treated-round spermatids and nucleoli or injected with cytolysate treated-round spermatids alone was higher than those were injected with lysis buffer treated-round spermaids, but comparable with the ICSI group. Our results demonstrate that factors from the GV cytoplasm improve round spermatid reprogramming, and while injection of the extra nucleolus does not obviously improve reprogramming its potential contribution, although which cannot be definitively excluded. Thus, some reprogramming factors are evidently present in GV oocyte cytoplasm and could

  6. Information on Stem Cell Research

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS Information on Stem Cell Research Research @ NINDS Stem Cell Highlights Submit a hESC ... found here: Human Induced Pluripotent Stem Cells NINDS Stem Cell Research on Campus The Intramural Research Program of NINDS ...

  7. What Is Giant Cell Arteritis?

    Science.gov (United States)

    ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics ... What Is Giant Cell Arteritis? Giant Cell Arteritis Symptoms Who Is At Risk for Giant Cell Arteritis? Giant Cell Arteritis Diagnosis ...

  8. Stages of Renal Cell Cancer

    Science.gov (United States)

    ... cell cancer is a disease in which malignant (cancer) cells form in tubules of the kidney. Renal cell ... diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other ...

  9. Sickle Cell Crisis (Pain Crisis)

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Sickle Cell Crisis (Pain Crisis) KidsHealth > For Teens > Sickle Cell ... A A A Text Size What Is a Sickle Cell Crisis? Sickle cell disease changes the shape of ...

  10. Nevoid Basal Cell Carcinoma Syndrome

    Science.gov (United States)

    ... Nevoid Basal Cell Carcinoma Syndrome Request Permissions Nevoid Basal Cell Carcinoma Syndrome Approved by the Cancer.Net Editorial Board , 04/2016 What is Nevoid Basal Cell Carcinoma Syndrome? Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is ...

  11. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    Science.gov (United States)

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  12. Introduction to Stem Cell Therapy

    OpenAIRE

    Biehl, Jesse K.; Russell, Brenda

    2009-01-01

    Stem cells have the ability to differentiate into specific cell types. The two defining characteristics of a stem cell are perpetual self-renewal and the ability to differentiate into a specialized adult cell type. There are two major classes of stem cells: pluripotent that can become any cell in the adult body, and multipotent that are restricted to becoming a more limited population of cells. Cell sources, characteristics, differentiation and therapeutic applications are discussed. Stem cel...

  13. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  14. Adult retinal stem cells revisited.

    OpenAIRE

    Bhatia, B; Singhal, S; Jayaram, H.; Khaw, P T; Limb, G A

    2010-01-01

    Recent advances in retinal stem cell research have raised the possibility that these cells have the potential to be used to repair or regenerate diseased retina. Various cell sources for replacement of retinal neurons have been identified, including embryonic stem cells, the adult ciliary epithelium, adult Müller stem cells and induced pluripotent stem cells (iPS). However, the true stem cell nature of the ciliary epithelium and its possible application in cell therapies has now been question...

  15. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  16. T follicular regulatory cells.

    Science.gov (United States)

    Sage, Peter T; Sharpe, Arlene H

    2016-05-01

    Pathogen exposure elicits production of high-affinity antibodies stimulated by T follicular helper (Tfh) cells in the germinal center reaction. Tfh cells provide both costimulation and stimulatory cytokines to B cells to facilitate affinity maturation, class switch recombination, and plasma cell differentiation within the germinal center. Under normal circumstances, the germinal center reaction results in antibodies that precisely target foreign pathogens while limiting autoimmunity and excessive inflammation. In order to have this degree of control, the immune system ensures Tfh-mediated B-cell help is regulated locally in the germinal center. The recently identified T follicular regulatory (Tfr) cell subset can migrate to the germinal center and inhibit Tfh-mediated B-cell activation and antibody production. Although many aspects of Tfr cell biology are still unclear, recent data have begun to delineate the specialized roles of Tfr cells in controlling the germinal center reaction. Here we discuss the current understanding of Tfr-cell differentiation and function and how this knowledge is providing new insights into the dynamic regulation of germinal centers, and suggesting more efficacious vaccine strategies and ways to treat antibody-mediated diseases. PMID:27088919

  17. Brain tumor stem cells.

    Science.gov (United States)

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies. PMID:20370314

  18. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  19. B cells help alloreactive T cells differentiate into memory T cells1

    OpenAIRE

    Ng, Yue-Harn; Oberbarnscheidt, Martin H.; Chandramoorthy, Harish Chinna Konda; Hoffman, Rosemary; Chalasani, Geetha

    2010-01-01

    B cells are recognized as effector cells in allograft rejection that are dependent upon T cell help to produce alloantibodies causing graft injury. It is not known if B cells can also help T cells differentiate into memory cells in the alloimmune response. We found that in B cell-deficient hosts, differentiation of alloreactive T cells into effectors was intact whereas their development into memory T cells was impaired. To test if B cell help for T cells was required for their continued diffe...

  20. Determining Cell Number During Cell Culture using the Scepter Cell Counter

    OpenAIRE

    Ongena, Kathleen; Das, Chandreyee; Smith, Janet L.; Gil, Sónia; Johnston, Grace

    2010-01-01

    Counting cells is often a necessary but tedious step for in vitro cell culture. Consistent cell concentrations ensure experimental reproducibility and accuracy. Cell counts are important for monitoring cell health and proliferation rate, assessing immortalization or transformation, seeding cells for subsequent experiments, transfection or infection, and preparing for cell-based assays. It is important that cell counts be accurate, consistent, and fast, particularly for quantitative measuremen...

  1. Basal cell carcinoma of the skin with areas of squamous cell carcinoma: a basosquamous cell carcinoma?

    OpenAIRE

    Faria, J.

    1985-01-01

    The diagnosis of basosquamous cell carcinoma is controversial. A review of cases of basal cell carcinoma showed 23 cases that had conspicuous areas of squamous cell carcinoma. This was distinguished from squamous differentiation and keratotic basal cell carcinoma by a comparative study of 40 cases of compact lobular and 40 cases of keratotic basal cell carcinoma. Areas of intermediate tumour differentiation between basal cell and squamous cell carcinoma were found. Basal cell carcinomas with ...

  2. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  3. Cytoskeleton and Cell Motility

    CERN Document Server

    Risler, Thomas

    2011-01-01

    The present article is an invited contribution to the Encyclopedia of Complexity and System Science, Robert A. Meyers Ed., Springer New York (2009). It is a review of the biophysical mechanisms that underly cell motility. It mainly focuses on the eukaryotic cytoskeleton and cell-motility mechanisms. Bacterial motility as well as the composition of the prokaryotic cytoskeleton is only briefly mentioned. The article is organized as follows. In Section III, I first present an overview of the diversity of cellular motility mechanisms, which might at first glance be categorized into two different types of behaviors, namely "swimming" and "crawling". Intracellular transport, mitosis - or cell division - as well as other extensions of cell motility that rely on the same essential machinery are briefly sketched. In Section IV, I introduce the molecular machinery that underlies cell motility - the cytoskeleton - as well as its interactions with the external environment of the cell and its main regulatory pathways. Sec...

  4. Cell transformation and mutagenesis

    International Nuclear Information System (INIS)

    This chapter summarizes the studies of the dose-effect relationships of cell transformation and of mutation for heavy ions with various charges, velocities and LET values. In cell transformation studies, carbon particles consistently gave a higher frequency of transformation per viable cell than x rays. For the same cell line, the RBE is about the same for both cell killings and oncogenic transformation for a given quality of ionizing radiation. In cocarcinogenesis studies, neon irradiation showed an enhancement effect on the viral transformation of cells. To explain the enhanced transformation, it has been suggested that radiation produces strand breaks in cellular DNA that promote the attachment of viral genomes during DNA repair synthesis. In mutagenesis studies, high-LET heavy ions could not effectively induce ouabain resistant mutations

  5. Mammalian cell biology

    International Nuclear Information System (INIS)

    Studies of the action of N-ethylmaleimide (NEM), as an inhibitor of repair of x radioinduced injuries were extended from synchronous Chinese hamster cells to synchronous human HeLa cells. These studies showed a similar mode of action in both cell types lending support to the notion that conclusions may be extracted from such observations that are of fairly general applicability to mammalian cells. Radiation studies with NEM are being extended to hypoxic cells to inquire if NEM is effective relative to oxygen-independent damage. Observations relative to survival, DNA synthesis, and DNA strand elongation resulting from the addition products to DNA when cells were exposed to near uv in the presence of psoralen were extended. (U.S.)

  6. Concentrator silicon cell research

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.; Wenham, S.R.; Zhang, F.; Zhao, J.; Wang, A. [New South Wales Univ., Kensington (Australia). Solar Photovoltaic Lab.

    1992-04-01

    This project continued the developments of high-efficiency silicon concentrator solar cells with the goal of achieving a cell efficiency in the 26 to 27 percent range at a concentration level of 150 suns of greater. The target efficiency was achieved with the new PERL (passivated emitter, rear locally diffused) cell structure, but only at low concentration levels around 20 suns. The PERL structure combines oxide passivation of both top and rear surfaces of the cells with small area contact to heavily doped regions on the top and rear surfaces. Efficiency in the 22 to 23 percent range was also demonstrated for large-area concentrator cells fabricated with the buried contact solar cell processing sequence, either when combined with prismatic covers or with other innovative approaches to reduce top contact shadowing. 19 refs.

  7. Fish germ cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fish, like many other animals, have two major cell lineages, namely the germline and soma. The germ-soma separation is one of the earliest events of embryonic development. Germ cells can be specifically labeled and isolated for culture and transplan-tation, providing tools for reproduction of endangered species in close relatives, such as surrogate production of trout in salmon. Haploid cell cultures, such as medaka haploid embryonic stem cells have recently been obtained, which are capable of mimicking sperm to produce fertile offspring, upon nuclear being directly transferred into normal eggs. Such fish originated from a mosaic oocyte that had a haploid meiotic nucleus and a transplanted haploid mitotic cell culture nucleus. The first semi-cloned fish is Holly. Here we review the current status and future directions of understanding and manipulating fish germ cells in basic research and reproductive technology.

  8. NCAM regulates cell motility

    DEFF Research Database (Denmark)

    Prag, Søren; Lepekhin, Eugene A; Kolkova, Kateryna;

    2002-01-01

    Cell migration is required during development of the nervous system. The regulatory mechanisms for this process, however, are poorly elucidated. We show here that expression of or exposure to the neural cell adhesion molecule (NCAM) strongly affected the motile behaviour of glioma cells...... independently of homophilic NCAM interactions. Expression of the transmembrane 140 kDa isoform of NCAM (NCAM-140) caused a significant reduction in cellular motility, probably through interference with factors regulating cellular attachment, as NCAM-140-expressing cells exhibited a decreased attachment to a...... fibronectin substratum compared with NCAM-negative cells. Ectopic expression of the cytoplasmic part of NCAM-140 also inhibited cell motility, presumably via the non-receptor tyrosine kinase p59(fyn) with which NCAM-140 interacts. Furthermore, we showed that the extracellular part of NCAM acted as a paracrine...

  9. Traction in smooth muscle cells varies with cell spreading

    Science.gov (United States)

    Tolic-Norrelykke, Iva Marija; Wang, Ning

    2005-01-01

    Changes in cell shape regulate cell growth, differentiation, and apoptosis. It has been suggested that the regulation of cell function by the cell shape is a result of the tension in the cytoskeleton and the distortion of the cell. Here we explore the association between cell-generated mechanical forces and the cell morphology. We hypothesized that the cell contractile force is associated with the degree of cell spreading, in particular with the cell length. We measured traction fields of single human airway smooth muscle cells plated on a polyacrylamide gel, in which fluorescent microbeads were embedded to serve as markers of gel deformation. The traction exerted by the cells at the cell-substrate interface was determined from the measured deformation of the gel. The traction was measured before and after treatment with the contractile agonist histamine, or the relaxing agonist isoproterenol. The relative increase in traction induced by histamine was negatively correlated with the baseline traction. On the contrary, the relative decrease in traction due to isoproterenol was independent of the baseline traction, but it was associated with cell shape: traction decreased more in elongated than in round cells. Maximum cell width, mean cell width, and projected area of the cell were the parameters most tightly coupled to both baseline and histamine-induced traction in this study. Wide and well-spread cells exerted larger traction than slim cells. These results suggest that cell contractility is controlled by cell spreading.

  10. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  11. Microbial fuel cells

    International Nuclear Information System (INIS)

    Microbial fuel cells (MFC) are a promising technology for sustainable production of alternative energy and waste treatment. A microbial fuel cell transformation chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. Key words: microbial fuel cells (MFC), biosensor, wastewater treatment

  12. Cancer Stem Cells

    OpenAIRE

    Aurelio Lorico; Eric Deutsch; Bo Lu; Shih-Hwa Chiou

    2011-01-01

    Cancer Stem Cells (CSCs) are a small subpopulation of cells within tumors with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. A number of cell surface markers such as CD44, CD24, and CD133 are often used to identify and enrich CSCs. A regulatory network consisting of microRNAs and Wnt/β-catenin, Notch, and Hedgehog signaling pathways controls the CSC properties. The clinical relevance of CSCs has been strengthened by emerging evidence,...

  13. Gastric Cancer Stem Cells

    OpenAIRE

    Takaishi, Shigeo; Okumura, Tomoyuki; Timothy C Wang

    2008-01-01

    Cancer stem cells are defined as the unique subpopulation in the tumors that possess the ability to initiate tumor growth and sustain self-renewal as well as metastatic potential. Accumulating evidence in recent years strongly indicate the existence of cancer stem cells in solid tumors of a wide variety of organs. In this review, we will discuss the possible existence of a gastric cancer stem cell. Our recent data suggest that a subpopulation with a defined marker shows spheroid colony format...

  14. Turing Patterns Inside Cells

    OpenAIRE

    Strier, Damián E.; Ponce Dawson, Silvina

    2007-01-01

    Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK), a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and...

  15. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah;

    2007-01-01

    mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... organization, and promote cell invasion and survival. In this review, we discuss the role of stromal-epithelial interactions in normal and malignant mammary epithelial cell behavior. We specifically focus on how dynamic modulation of the biochemical and biophysical properties of the extracellular matrix elicit...

  16. Chiaroscuro hematopoietic stem cell.

    OpenAIRE

    Quesenberry, P.; Habibian, M. (PhD); Dooner, M; Zhong, S.; Reilly, J; Peters, S.; De Becker, P; Grimaldi, C.; Carlson, J; REDDY, P; Nilsson, S.; Stewart, F. M.

    1998-01-01

    These observations suggest several immediate clinical strategies. In gene therapy, approaches could be targeted to obtain cycling of hematopoietic stem cells and gene-carrying retrovirus vector integration followed by engraftment at an appropriate time interval which favors engraftment. The same type of approach can be utilized for stem cell expansion approaches. Alternatively marrow or peripheral stem cell engraftment can be obtained with minimal to no toxicity in allochimeric strategies in ...

  17. Stem cell myths

    OpenAIRE

    Magnus, Tim; Liu, Ying; Parker, Graham C.; Rao, Mahendra S.

    2007-01-01

    Stem cells, although difficult to define, hold great promise as tools for understanding development and as therapeutic agents. However, as with any new field, uncritical enthusiasm can outstrip reality. In this review, we have listed nine common myths that we believe affect our approach to evaluating stem cells for therapy. We suggest that careful consideration needs to be given to each of these issues when evaluating a particular cell for its use in therapy. Data need to be collected and rep...

  18. Cancer stem cell metabolism

    OpenAIRE

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P

    2016-01-01

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Deter...

  19. Lung Stem cell biology

    OpenAIRE

    Ardhanareeswaran, Karthikeyan; Mirotsou, Maria

    2013-01-01

    Over the past few years new insights have been added to the study of stem cells in the adult lung. The exploration of the endogenous lung progenitors as well as the study of exogenously delivered stem cell populations holds promise for advancing our understanding of the biology of lung repair mechanisms. Moreover, it opens new possibilities for the use of stem cell therapy for the development of regenerative medicine approaches for the treatment of lung disease. Here, we discuss the main type...

  20. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells. Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids. Whereas studies about the design of fuel ...

  1. Control of Fuel Cells

    OpenAIRE

    ZENITH, Federico

    2007-01-01

    This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells.Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids.Whereas studies about the design of fuel ce...

  2. Epidermal Stem Cells

    OpenAIRE

    Osman Köse

    2015-01-01

    The epidermis is the outermost layer of the human skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. There are many origins of stem cells in the skin and skin appendages. These stem cells are localized in different part of the pilosebaseous units and also express many different genes. Epidermal stem cells in the pilosebaseous units not only ensure the maintenance of epidermal homeostasis and ...

  3. Liver Cancer Stem Cells

    OpenAIRE

    Sameh Mikhail; Aiwu Ruth He

    2011-01-01

    Hepatocellular carcinoma is the most common primary malignancy of the liver in adults. It is also the fifth most common solid cancer worldwide and the third leading cause of cancer-related death. Recent research supports that liver cancer is a disease of adult stem cells. From the models of experimental hepatocarcinogenesis, there may be at least three distinct cell lineages with progenitor properties susceptible to neoplastic transformation. Identification of specific cell surface markers fo...

  4. Cell therapy of pseudarthrosis

    OpenAIRE

    Bastos Filho, Ricardo; Lermontov, Simone; Borojevic, Radovan; Schott, Paulo Cezar; Gameiro, Vinicius Schott; José Mauro GRANJEIRO

    2012-01-01

    Objective To assess the safety and efficiency of cell therapy for pseudarthrosis. Implant of the bone marrow aspirate was compared to mononuclear cells purified extemporaneously using the Sepax® equipment. Methods Six patients with nonunion of the tibia or femur were treated. Four received a percutaneous infusion of autologous bone marrow aspirated from the iliac crest, and two received autologous bone marrow mononuclear cells separated from the aspirate with the Sepax®. The primary fixation ...

  5. Hair cell ribbon synapses

    OpenAIRE

    Moser, Tobias; Brandt, Andreas; Lysakowski, Anna

    2006-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the ...

  6. Plasma cell gingivitis

    OpenAIRE

    Chandershekhar Joshi; Pradeep Shukla

    2015-01-01

    The aim of the article is to present a report on the clinical presentation of plasma cell gingivitis with the use of herbal toothpowder. Plasma cell gingivitis [PCG] is a rare benign condition of the gingiva characterized by sharply demarcated erythematous and edematous gingivitis often extending to the mucogingival junction. As the name suggests it is diffuse and massive infiltration of plasma cells into the sub-epithelial gingival tissue. It is a hypersensitivity reaction to some antigen, o...

  7. APUD cells in teratomas.

    OpenAIRE

    Bosman, F. T.; Louwerens, J. W.

    1981-01-01

    The origin of the endocrine cells in the respiratory tract and the gastrointestinal tract is still a matter of debate. In the original concept of the amine precursor uptake and decarboxylation (APUD) system, all APUD cells were considered to be derived from the neural crest. More recently it has been proposed that the APUD cell types of the gastrointestinal and respiratory tracts originate from neuroendocrine-programmed ectoblast. Still other investigators have reported observations that favo...

  8. Mesenchymal stem cells.

    Science.gov (United States)

    Ding, Dah-Ching; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2011-01-01

    Stem cells have two features: the ability to differentiate along different lineages and the ability of self-renewal. Two major types of stem cells have been described, namely, embryonic stem cells and adult stem cells. Embryonic stem cells (ESC) are obtained from the inner cell mass of the blastocyst and are associated with tumorigenesis, and the use of human ESCs involves ethical and legal considerations. The use of adult mesenchymal stem cells is less problematic with regard to these issues. Mesenchymal stem cells (MSCs) are stromal cells that have the ability to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as umbilical cord, endometrial polyps, menses blood, bone marrow, adipose tissue, etc. This is because the ease of harvest and quantity obtained make these sources most practical for experimental and possible clinical applications. Recently, MSCs have been found in new sources, such as menstrual blood and endometrium. There are likely more sources of MSCs waiting to be discovered, and MSCs may be a good candidate for future experimental or clinical applications. One of the major challenges is to elucidate the mechanisms of differentiation, mobilization, and homing of MSCs, which are highly complex. The multipotent properties of MSCs make them an attractive choice for possible development of clinical applications. Future studies should explore the role of MSCs in differentiation, transplantation, and immune response in various diseases. PMID:21396235

  9. Littoral Cells 2005

    Data.gov (United States)

    California Department of Resources — Littoral cells along the California Coast. Originally digitized by Melanie Coyne from the Assessment and Atlas of Shoreline Erosion Along the California Coast...

  10. Sarcomatoid renal cell carcinoma

    OpenAIRE

    Kafil Akhtar; Ahmad Shamshad; Zaheer Sufian; Mansoor Tariq

    2011-01-01

    Sarcomatoid renal cell carcinoma (SRCC) is an aggressive tumor variant thought to arise predominantly from differentiation of clear cell carcinoma. A few reports of SRCC asso-ciated with non-clear cell tumors led to the presumption that SRCC may arise from any renal cell carcinoma, although direct evidence of this is lacking. We report a case of a 70-year-old male patient, who presented with acute left upper quadrant abdominal pain and was diagnosed to have SRCC after pathological examination...

  11. Adenoviral Producer Cells

    Directory of Open Access Journals (Sweden)

    Imre Kovesdi

    2010-08-01

    Full Text Available Adenovirus (Ad vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue. Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.

  12. Radioresistance of dendritic cells

    International Nuclear Information System (INIS)

    To evaluate radiation sensitivity of dendritic cells in comparison with lymphocytes. T lymphocytes captured from peripheral blood were irradiated by 0 Gy, 10 Gy, 30 Gy. Apoptosis was measured by flowcytometry for staining of annexin V 4 hours after irradiation. Immature and mature dendritic cells processed from blood hematopoietic stem cell were irradiated by 0 Gy, 10 Gy, 30 Gy, 100 Gy respectively and apoptosis was measured by flowcytometry with time differences as 4h, 24h and 48h after irradiation. Morphometric analysis by percent nucleus was measured in three cell groups, also. Lymphocytes showed radiation sensitivity by increasing apoptotic fraction according to radiation dose. However, both mature and immature dendritic cells showed consistent fraction of apoptosis in spite of increasing radiation dose. Percent nucleus ratio is significantly higher in lymphocytes than that of mature or immature dendritic cells. Stimulation of T-cell by dendritic cells was not changed after irradiation. Dendritic cells showed radioresistance which was associated with small size of nucleus in comparison with lymphocytes and this result would be used as a basal data of radio-labelling for the cellular trafficking studies in nuclear medicine fields

  13. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  14. T-cell costimulation

    DEFF Research Database (Denmark)

    Owens, T

    1996-01-01

    The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses.......The CD40L molecule expressed by CD4+ regulatory T lymphocytes is known to deliver signals that activate B cells and macrophages. It now appears that CD40L regulates T cells themselves, during both their development and their participation in adaptive immune responses....

  15. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  16. Stem cells - biological update and cell therapy progress

    OpenAIRE

    GIRLOVANU, MIHAI; Susman, Sergiu; Soritau, Olga; RUS-CIUCA, DAN; MELINCOVICI, CARMEN; CONSTANTIN, ANNE-MARIE; Carmen Mihaela MIHU

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods t...

  17. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  18. Liver epithelial cells inhibit proliferation and invasiveness of hepatoma cells.

    Science.gov (United States)

    Jeng, Kuo-Shyang; Jeng, Chi-Juei; Jeng, Wen-Juei; Sheen, I-Shyan; Li, Shih-Yun; Hung, Zih-Hang; Hsiau, Hsin-I; Yu, Ming-Che; Chang, Chiung-Fang

    2016-03-01

    Hepatocellular carcinoma (HCC) is a worldwide malignancy with poor prognosis. Liver progenitors or stem cells could be a potential therapy for HCC treatment since they migrate toward tumors. Rat liver epithelial (RLE) cells have both progenitor and stem cell-like properties. Therefore, our study elucidated the therapeutic effect of RLE cells in rat hepatoma cells. RLE cells were isolated from 10-day old rats and characterized for stem cell marker expression. RLE cells and rat hepatoma cells (H4-IIE-C3 cells) were co-cultured and divided into four groups with different ratios of RLE and hepatoma cells. Group A had only rat hepatoma cells as a control group. The ratios of rat hepatoma and RLE cells in group B, C and D were 5:1, 1:1 and 1:5, respectively. Effective inhibition of cell proliferation and migration was found in group D when compared to group A. There was a significant decrease in Bcl2 expression and increase in late apoptosis of rat hepatoma cells when adding more RLE cells. RLE cells reduced cell proliferation and migration of rat hepatoma cells. These results suggested that RLE cells could be used as a potential cell therapy. PMID:26647726

  19. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways. PMID:27590152

  20. The new stem cell biology.

    OpenAIRE

    Quesenberry, Peter J.; Colvin, Gerald A; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem ce...

  1. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    Science.gov (United States)

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  2. Small cell glioblastoma or small cell carcinoma

    DEFF Research Database (Denmark)

    Hilbrandt, Christine; Sathyadas, Sathya; Dahlrot, Rikke H;

    2013-01-01

    was admitted to the hospital with left-sided loss of motor function. A MRI revealed a 6 cm tumor in the right temporoparietal area. The histology was consistent with both glioblastoma multiforme (GBM) and small cell lung carcinoma (SCLC) but IHC was suggestive of a SCLC metastasis. PET-CT revealed...

  3. Tracking Down Mutations Cell by Cell.

    Science.gov (United States)

    Kosik, Kenneth S

    2016-03-16

    Using somatic cell nuclear transfer, Hazen et al. (2016) examined clonally expanded single neurons for mutations and found ∼100 mutations from a variety of classes. Post-mitotic mutations in individual neurons represent an exploratory direction for finding fundamental origins of neurodegeneration. PMID:26985720

  4. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  5. Retinal stem cells and potential cell transplantation treatments.

    Science.gov (United States)

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed. PMID:25238708

  6. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  7. Molecular Mechanisms of HTLV-1 Cell-to-Cell Transmission.

    Science.gov (United States)

    Gross, Christine; Thoma-Kress, Andrea K

    2016-01-01

    The tumorvirus human T-cell lymphotropic virus type 1 (HTLV-1), a member of the delta-retrovirus family, is transmitted via cell-containing body fluids such as blood products, semen, and breast milk. In vivo, HTLV-1 preferentially infects CD4⁺ T-cells, and to a lesser extent, CD8⁺ T-cells, dendritic cells, and monocytes. Efficient infection of CD4⁺ T-cells requires cell-cell contacts while cell-free virus transmission is inefficient. Two types of cell-cell contacts have been described to be critical for HTLV-1 transmission, tight junctions and cellular conduits. Further, two non-exclusive mechanisms of virus transmission at cell-cell contacts have been proposed: (1) polarized budding of HTLV-1 into synaptic clefts; and (2) cell surface transfer of viral biofilms at virological synapses. In contrast to CD4⁺ T-cells, dendritic cells can be infected cell-free and, to a greater extent, via viral biofilms in vitro. Cell-to-cell transmission of HTLV-1 requires a coordinated action of steps in the virus infectious cycle with events in the cell-cell adhesion process; therefore, virus propagation from cell-to-cell depends on specific interactions between cellular and viral proteins. Here, we review the molecular mechanisms of HTLV-1 transmission with a focus on the HTLV-1-encoded proteins Tax and p8, their impact on host cell factors mediating cell-cell contacts, cytoskeletal remodeling, and thus, virus propagation. PMID:27005656

  8. Cell Proliferation in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Laura L. Stafman

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.

  9. The Constitution by Cell

    Science.gov (United States)

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to participate…

  10. Trapped vortex memory cells

    International Nuclear Information System (INIS)

    A memory cell is proposed which uses vortices in type-II superconductor thin film as information bits. In the memory cell, vortices are generated by coincident current in two superconductor lines and are read out by a Josephson junction. Preliminary experimental results on vortex generation and detection are also reported

  11. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  12. Patterning Stem Cell Differentiation

    OpenAIRE

    Vunjak-Novakovic, Gordana

    2008-01-01

    Regulation of cell differentiation and assembly remains a fundamental question in developmental biology. Now, a report from the Chen laboratory (Ruiz and Chen, 2008) describes an approach that represents a major step toward a more profound understanding of the geometric-force control of stem cell differentiation.

  13. Printed paper photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Huebler, Arved; Trnovec, Bystrik; Zillger, Tino; Ali, Moazzam; Wetzold, Nora [Inistitute for Print and Media Technology, Chemnitz University of Technology, Chemnitz (Germany); Mingebach, Markus; Wagenpfahl, Alexander; Deibel, Carsten [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Dyakonov, Vladimir [Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany); Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany)

    2011-11-15

    Polymer/fullerene solar cells are printed on paper using a combination of gravure and flexographic printing techniques. The printed paper photovoltaic cells are free from expensive electrodes made with indium-tin oxide, silver, or gold. Oxidized zinc film is used as the electron-collecting layer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Solar cell concentrating system

    International Nuclear Information System (INIS)

    This study reviews fabrication techniques and testing facilities for different solar cells under concentration which have been developed and tested. It is also aimed to examine solar energy concentrators which are prospective candidates for photovoltaic concentrator systems. This may provide an impetus to the scientists working in the area of solar cell technology

  15. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  16. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  17. Mast cell stabilisers.

    Science.gov (United States)

    Zhang, Tao; Finn, Deirdre Frances; Barlow, James William; Walsh, John Jarlath

    2016-05-01

    Mast cells play a critical role in type 1 hypersensitivity reactions. Indeed, mast cell mediators are implicated in many different conditions including allergic rhinitis, conjunctivitis, asthma, psoriasis, mastocytosis and the progression of many different cancers. Thus, there is intense interest in the development of agents which prevent mast cell mediator release or which inhibit the actions of such mediators once released into the environment of the cell. Much progress into the design of new agents has been made since the initial discovery of the mast cell stabilising properties of khellin from Ammi visnaga and the clinical approval of cromolyn sodium. This review critically examines the progress that has been made in the intervening years from the design of new agents that target a specific signalling event in the mast cell degranulation pathway to those agents which have been developed where the precise mechanism of action remains elusive. Particular emphasis is also placed on clinically used drugs for other indications that stabilise mast cells and how this additional action may be harnessed for their clinical use in disease processes where mast cells are implicated. PMID:26130122

  18. Sliver solar cells

    Science.gov (United States)

    Franklin, Evan; Blakers, Andrew; Everett, Vernie; Weber, Klaus

    2007-12-01

    Sliver solar cells are thin, mono-crystalline silicon solar cells, fabricated using micro-machining techniques combined with standard solar cell fabrication technology. Sliver solar modules can be efficient, low cost, bifacial, transparent, flexible, shadow-tolerant, and lightweight. Sliver modules require only 5 to 10% of the pure silicon and less than 5% of the wafer starts per MW p of factory output when compared with conventional photovoltaic modules. At ANU, we have produced 20% efficient Sliver solar cells using a robust, optimised cell fabrication process described in this paper. We have devised a rapid, reliable and simple method for extracting Sliver cells from a Sliver wafer, and methods for assembling modularised Sliver cell sub-modules. The method for forming these Sliver sub-modules, along with a low-cost method for rapidly forming reliable electrical interconnections, are presented. Using the sub-module approach, we describe low-cost methods for assembling and encapsulating Sliver cells into a range of module designs.

  19. Programmed cell death

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  20. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  1. Cell Maintenance Systems

    Science.gov (United States)

    Morrison, D. R.

    1985-01-01

    Living human cells require attachment to a suitable surface and special culture conditions in order to grow. These requirements are modified and amplified when cells are taken into a weightless environment. Special handling and maintenance systems are required for routine laboratory procedures conducted in the Orbiter and in the Spacelab. Methods were developed to maintain cells in special incubators designed for the Orbiter middeck, however, electrophoresis and other experiments require cells to be harvested off of the culture substrate before they can be processed or used. The cell transport assembly (CTA) was flown on STS-8, and results show that improvements are required to maintain adequate numbers of cells in this device longer than 48 hours. The life sciences middeck centrifuge probably can be used, but modifications will be required to transfer cells from the CTA and keep the cells sterile. Automated systems such as the Skylab SO-15 flight hardware and crew operated systems are being evaluated for use on the Space Shuttle, Spacelab, and Space Station research modules.

  2. Cell Phones for Education

    Science.gov (United States)

    Roberson, James H.; Hagevik, Rita A.

    2008-01-01

    Cell phones are fast becoming an integral part of students' everyday lives. They are regarded as important companions and tools for personal expression. School-age children are integrating the cell phone as such, and thus placing a high value on them. Educators endeavor to instill in students a high value for education, but often meet with…

  3. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  4. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  5. PEM regenerative fuel cells

    Science.gov (United States)

    Swette, Larry L.; Laconti, Anthony B.; McCatty, Stephen A.

    1993-11-01

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 sq cm electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80 C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt, Ir, Ru, Rh, and Na(x)Pt3O4 catalysts as well as for electrode structure variations.

  6. Nanoelectrochemistry of mammalian cells.

    Science.gov (United States)

    Sun, Peng; Laforge, François O; Abeyweera, Thushara P; Rotenberg, Susan A; Carpino, James; Mirkin, Michael V

    2008-01-15

    There is a significant current interest in development of new techniques for direct characterization of the intracellular redox state and high-resolution imaging of living cells. We used nanometer-sized amperometric probes in combination with the scanning electrochemical microscope (SECM) to carry out spatially resolved electrochemical experiments in cultured human breast cells. With the tip radius approximately 1,000 times smaller than that of a cell, an electrochemical probe can penetrate a cell and travel inside it without apparent damage to the membrane. The data demonstrate the possibility of measuring the rate of transmembrane charge transport and membrane potential and probing redox properties at the subcellular level. The same experimental setup was used for nanoscale electrochemical imaging of the cell surface. PMID:18178616

  7. Digital Microfluidic Cell Culture.

    Science.gov (United States)

    Ng, Alphonsus H C; Li, Bingyu Betty; Chamberlain, M Dean; Wheeler, Aaron R

    2015-01-01

    Digital microfluidics (DMF) is a droplet-based liquid-handling technology that has recently become popular for cell culture and analysis. In DMF, picoliter- to microliter-sized droplets are manipulated on a planar surface using electric fields, thus enabling software-reconfigurable operations on individual droplets, such as move, merge, split, and dispense from reservoirs. Using this technique, multistep cell-based processes can be carried out using simple and compact instrumentation, making DMF an attractive platform for eventual integration into routine biology workflows. In this review, we summarize the state-of-the-art in DMF cell culture, and describe design considerations, types of DMF cell culture, and cell-based applications of DMF. PMID:26643019

  8. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  9. Fuel cells : emerging markets

    International Nuclear Information System (INIS)

    This presentation highlighted the findings of the 2009 review of the fuel cell industry and emerging markets as they appeared in Fuel Cell Today (FCT), a benchmark document on global fuel cell activity. Since 2008, the industry has seen a 50 per cent increase in fuel cell systems shipped, from 12,000 units to 18,000 units. Applications have increased for backup power for datacentres, telecoms and light duty vehicles. The 2009 review focused on emerging markets which include non-traditional regions that may experience considerable diffusion of fuel cells within the next 5 year forecast period. The 2009 review included an analysis on the United Arab Emirates, Mexico, Brazil and India and reviewed primary drivers, likely applications for near-term adoption, and government and private sector activity in these regions. The presentation provided a forecast of the global state of the industry in terms of shipments as well as a forecast of countries with emerging markets

  10. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  11. Phalange Tactile Load Cell

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert (Inventor); Griffith, Bryan Kristian (Inventor)

    2010-01-01

    A tactile load cell that has particular application for measuring the load on a phalange in a dexterous robot system. The load cell includes a flexible strain element having first and second end portions that can be used to mount the load cell to the phalange and a center portion that can be used to mount a suitable contact surface to the load cell. The strain element also includes a first S-shaped member including at least three sections connected to the first end portion and the center portion and a second S-shaped member including at least three sections coupled to the second end portion and the center portion. The load cell also includes eight strain gauge pairs where each strain gauge pair is mounted to opposing surfaces of one of the sections of the S-shaped members where the strain gauge pairs provide strain measurements in six-degrees of freedom.

  12. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process....... It facilitates the understanding of the task and structure of cell controllers and uses this knowledge directly in the implementation of the system. By applying generic models CCE facilitates reuse of software components and maintenance of applications. In many enterprises, software makes up an...

  13. Cell fusions in mammals

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Bjerregaard, Bolette; Talts, Jan Fredrik

    2008-01-01

    Cell fusions are important to fertilization, placentation, development of skeletal muscle and bone, calcium homeostasis and the immune defense system. Additionally, cell fusions participate in tissue repair and may be important to cancer development and progression. A large number of factors appear...... to regulate cell fusions, including receptors and ligands, membrane domain organizing proteins, proteases, signaling molecules and fusogenic proteins forming alpha-helical bundles that bring membranes close together. The syncytin family of proteins represent true fusogens and the founding member......, syncytin-1, has been documented to be involved in fusions between placental trophoblasts, between cancer cells and between cancer cells and host ells. We review the literature with emphasis on the syncytin family and propose that syncytins may represent universal fusogens in primates and rodents, which...

  14. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  15. Advances in stem cell research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@In 1998, biologists Thomson and Gearhart successfully derived stem cells from human embryos. One year later, several researchers discovered that adult stem cells still retain the ability to be differentiated into unrelated types of cells. Advances in stem cell research open a promising direction for applied medical science. Moreover, it may also force scientists to reconsider the fundamental theory about how cells grow up. Stem cell research was considered by Science as the top of the ten breakthroughs of science of the year[1]. This paper gives a survey of recent advances in stem cell research. 1 Overview In the 1980s, embryonic stem cell and/or embryonic germ cell line (ES cell line, EG cell line) of multifarious mammalian animals, especially those of non-human pri-mates, had been established. In 1998, Thomson and Shamblott obtained ES, EG cell lines from human blasto-cysts and gonad ridges of early human embryos, respec-tively. Their research brought up an ethical debate about whether human embryos can be used as experimental materials. It was not appeased until 1999 when research-ers discovered that stem cells from adults still retain the ability to become different kinds of tissue cells. For in-stance, brain cells can become blood cells[2], and cells from bone marrow can become cells in liver. Scientists believe, for a long time, that cells can only be developed from early pluripotent embryo cells; the differentiation potential of stem cells from mature tissues is restricted to only one of the cell types of the tissue where stem cells are obtained. Recent stem cell researches, however, sub-verted the traditional view of stem cells. These discoveries made scientists speed ahead with the work on adult stem cells, hoping to discover whether their promise will rival that of ES cells.

  16. Langerhans' cells, veiled cells, and interdigitating cells in the mouse recognized by a monoclonal antibody

    OpenAIRE

    1986-01-01

    An mAb, NLDC-145, is described that specifically reacts with a group of nonlymphoid dendritic cells including Langerhans cells (LC), veiled cells (VC), and interdigitating cells (IDC). The antibody does not react with precursor cells in bone marrow and blood. Macrophages are not stained by the antibody, but a subpopulation of Ia+ peritoneal exudate cells is recognized. Possible relationships of the various nonlymphoid dendritic cell (NLDC) types are discussed.

  17. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    OpenAIRE

    Stefania Bruno; Cristina Grange; Marta Tapparo; Chiara Pasquino; Renato Romagnoli; Ennia Dametto; Antonio Amoroso; Ciro Tetta; Giovanni Camussi

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell co...

  18. From Adult Bone Marrow Cells to Other Cell Lineages:Transdifferentiation or Cells Fusion

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Recent studies have demonstrated that intravenous transplantation or local injection of bone marrow cells can induce unexpected changes of their fate. The results of these experiments showed that after transplantation or injecton, some of tissue specific somatic cells such as hepatocytes, skeleton, cardiac muscle cells and brain cells expressed the donor cell-specific genes, such as Y chromosome. There are two hypotheses that can explain this phenomenon. One is bone marrow stem cell transdifferentiation and the other is spontaneous cell fusion.

  19. Cell-to-Cell Transmission Can Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free HIV

    OpenAIRE

    Zhong, Peng; Agosto, Luis M.; Ilinskaya, Anna; Dorjbal, Batsukh; Truong, Rosaline; Derse, David; Uchil, Pradeep D; Heidecker, Gisela; Mothes, Walther

    2013-01-01

    Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV). We demonstrate that HIV can spread by a cell-free pathway if all the steps of the viral replication...

  20. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  1. Oscillating Cell Culture Bioreactor

    Science.gov (United States)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  2. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  3. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  4. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    International Nuclear Information System (INIS)

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, a cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25

  5. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2013-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  6. Dedifferentiation of committed epithelial cells into stem cells in vivo

    OpenAIRE

    Tata, Purushothama Rao; Mou, Hongmei; Pardo-Saganta, Ana; Zhao, Rui; Prabhu, Mythili; Law, Brandon M.; Vinarsky, Vladimir; Josalyn L Cho; Breton, Sylvie; Sahay, Amar; Medoff, Benjamin D.; Rajagopal, Jayaraj

    2014-01-01

    Summary Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes, and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. We now present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. Following the ablation of airway stem cells, we observed a surprising increase in the proliferation of c...

  7. Clear Cell Basal Cell Carcinoma with Sialomucin Deposition

    OpenAIRE

    Kim, Do Young; Cho, Sung Bin; Chung, Kee Yang; Kim, You Chan

    2006-01-01

    Clear cell basal cell carcinoma (BCC) is a variant of BCC with a characteristic clear cell component that may occupy all or part of the tumor islands. Periodic acid-Schiff (PAS) staining for glycogen is variably positive, and mild deposition of sulfated mucin has been noted. However, to our knowledge, clear cell BCC with sialomucin deposition has not been reported. Here we report a case of clear cell BCC showing sialomucin deposition. The clear tumor cells stained with PAS and showed incomple...

  8. Differentiation of human embryonic stem cells into insulin- secreting cells

    OpenAIRE

    S Mollamohammadi; Massumi, M.; H Jafary; Baharvand, H.

    2006-01-01

    Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated selection of nestin positive cells. In final stage, these cells were expanded in the presence of bFGF, ...

  9. Defective alloantigen-presenting capacity of 'Langerhans cell histiocytosis cells'.

    OpenAIRE

    Yu, R C; Morris, J F; Pritchard, J.; Chu, T C

    1992-01-01

    The functional activity of skin cells derived from an infant who died of multisystem Langerhans cell histiocytosis (LCH) was examined. Involved and non-involved skin was obtained at postmortem examination within three hours of death; normal epidermal Langerhans cells and 'LCH cells' were separated by means of dispase digestion. The functional activity of different populations of CD1a positive cells was assessed using the conventional six day allogeneic mixed cell reaction. Compared with Lange...

  10. Cell Shape and Cell Division in Fission Yeast Minireview

    OpenAIRE

    Piel, Matthieu; Tran, Phong T.

    2009-01-01

    The fission yeast Schizosaccharomyces pombe has served as an important model organism for investigating cellular morphogenesis. This unicellular rod-shaped fission yeast grows by tip extension and divides by medial fission. In particular, microtubules appear to define sites of polarized cell growth by delivering cell polarity factors to the cell tips. Microtubules also position the cell nucleus at the cell middle, marking sites of cell division. Here, we review the microtubule-dependent mecha...

  11. A novel cell subset: Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    WANG JiongKun; XING FeiYue

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells (IKDCs). IKDCs not only secret type Ⅰ and type Ⅱ interferons to recognize and kill tumor cells effectively, but also express MHC-Ⅱ molecules to present antigens. Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  12. A novel cell subset:Interferon-producing killer dendritic cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Recent reports introduce a novel cell subset of DCs with antigenic phenotypes shared by both NK cells and B cells, but without surface markers of pDCs and T cells, appearing to be a chimera of NK cells and DCs, namely interferon-producing killer dendritic cells(IKDCs).IKDCs not only secret type I and type II interferons to recognize and kill tumor cells effectively, but also express MHC-II molecules to present antigens.Thus, IKDCs are considered as important immunosurveilance cells for tumors, providing a link between innate and adaptive immunity.

  13. Plant Cell Lines in Cell Morphogenesis Research

    Czech Academy of Sciences Publication Activity Database

    Seifertová, Daniela; Klíma, Petr; Pařezová, Markéta; Petrášek, Jan; Zažímalová, Eva; Opatrný, Z.

    Vol. 1080. New York: Humana Press, 2014 - (Žárský, V.; Cvrčková, F.), s. 215-229. (Methods in Molecular Biology). ISBN 978-1-62703-643-6 R&D Projects: GA ČR(CZ) GAP305/11/0797; GA ČR(CZ) GAP305/11/2476 Institutional support: RVO:61389030 Keywords : BY-2 * VBI-0 * Suspension-cultured cells Subject RIV: EB - Genetics ; Molecular Biology

  14. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M;

    2013-01-01

    -pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds for......Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic...

  15. Stem Cells and Cancer

    International Nuclear Information System (INIS)

    Stem cell research has thrived over the last years due to their therapeutic and regenerative potential. Scientific breakthroughs in the field are immediately translated from the scientific journals to the mass media, which is not surprising as the characterisation of the molecular mechanisms that regulate the biology of stem cells is crucial for the treatment of degenerative and cardiovascular diseases, as well as cancer. In the Molecular Oncology Unit at Ciemat we work to unravel the role of cancer stem cells in tumour development, and to find new antitumor therapies. (Author)

  16. Fuel cells; Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, K. Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    2012-07-01

    In Germany, the fuel cell technology is characterized by projects and demonstration activities within the National Innovation Programme. Above all, the field tests for fuel cell vehicles under the Clean Energy Partnership, and the field tests for domestic power systems within the project Callux stand out in public. The subsidized market launch of home energy systems in Japan received a great encouragement. Technologically further progresses in the field of reliability and durability were achieved. This is confirmed by the successful and highly publicized trip of three B-Class F-Cell vehicles around the world. In the next few years, the hydrogen infrastructure increasingly becomes important.

  17. Limbal Stem Cell Therapy

    OpenAIRE

    Kringlegarden, Hilde Grane

    2013-01-01

    It is widely accepted today that stem cells in the adult corneal epithelium is located to the limbus. No specific marker of limbal epithelial cells (LESCs) has been identified, yet many have been suggested, including ΔNp63α, ABCG2, vimentin and notch 1. Negative markers include amongst others the differentiation markers Ck3 and Ck12. The lack of an identified specific marker elucidates the need for establishment of more exact molecular markers of LESCs. Limbal stem cell deficiency (LSCD) may ...

  18. Fuel cell systems

    International Nuclear Information System (INIS)

    Fuel cell systems are an entirely different approach to the production of electricity than traditional technologies. They are similar to the batteries in that both produce direct current through electrochemical process. There are six types of fuel cells each with a different type of electrolyte, but they all share certain important characteristics: high electrical efficiency, low environmental impact and fuel flexibility. Fuel cells serve a variety of applications: stationary power plants, transport vehicles and portable power. That is why world wide efforts are addressed to improvement of this technology. (Original)

  19. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  20. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  1. Cell-Assisted Lipotransfer

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sørensen, Jens Ahm

    2016-01-01

    -derived stromal cells (ASCs) to enrich the fat graft, a procedure termed cell-assisted lipotransfer (CAL). The aim of this review was to systematically review the current preclinical and clinical evidence for the efficacy of CAL compared with conventional lipotransfer. MATERIALS AND METHODS: A systematic search....... CONCLUSIONS: The present evidence suggests that there is a big potential for CAL in reconstructive surgery; however, the present studies are so far still of low quality with inherent weaknesses. Several aspects regarding CAL still remain unknown such as the optimal degree of cell enrichment and also its...

  2. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive wh

  3. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  4. Fuel cells: Problems and prospects

    OpenAIRE

    Shukla, AK; Ramesh, KV; Kannan, AM

    1986-01-01

    n recent years, fuel cell technology has advanced significantly. Field trials on certain types of fuel cells have shown promise for electrical use. This article reviews the electrochemistry, problems and prospects of fuel cell systems.

  5. Donating Peripheral Blood Stem Cells

    Science.gov (United States)

    ... this page Print this page Donating peripheral blood stem cells Peripheral blood stem cell (PBSC) donation is a nonsurgical procedure to collect ... Donating bone marrow Donor experiences videos Peripheral blood stem cell (PBSC) donation is one of two methods of ...

  6. Learning about Sickle Cell Disease

    Science.gov (United States)

    ... genetic terms used on this page Learning About Sickle Cell Disease What do we know about heredity and ... Information What do we know about heredity and sickle cell disease? Sickle cell disease is the most common ...

  7. Nucleolar targeting of proteins by the tandem array of basic amino acid stretches identified in the RNA polymerase I-associated factor PAF49

    International Nuclear Information System (INIS)

    There is accumulating evidence to indicate that the regulation of subnuclear compartmentalization plays important roles in cellular processes. The RNA polymerase I-associated factor PAF49 has been shown to accumulate in the nucleolus in growing cells, but disperse into the nucleoplasm in growth-arrested cells. Serial deletion analysis revealed that amino acids 199-338 were necessary for the nucleolar localization of PAF49. Combinatorial point mutation analysis indicated that the individual basic amino acid stretches (BS) within the central (BS1-4) and the C-terminal (BS5 and 6) regions may cooperatively confer the nucleolar localization of PAF49. Addition of the basic stretches in tandem to a heterologous protein, such as the interferon regulatory factor-3, translocated the tagged protein into the nucleolus, even in the presence of an intrinsic nuclear export sequence. Thus, tandem array of the basic amino acid stretches identified here functions as a dominant nucleolar targeting sequence

  8. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  9. Kinetics of adrenal medullary cells.

    OpenAIRE

    Verhofstad, A A

    1993-01-01

    The adrenal medulla of mammals has a heterogeneous population of cells. In adults most are epithelial cells containing a particular type of cytoplasmic granule. Based on a variety of cytochemical and ultrastructural studies it is now accepted that 2 different adrenal medullary chromaffin cell types can be distinguished, i.e. noradrenaline (NA) and adrenaline (A) synthesising and storing cells. Other cell types present in the adrenal medulla include neuronal elements comprising either cell bod...

  10. Pancreatic Stem Cells Remain Unresolved

    OpenAIRE

    Jiang, Fang-Xu; Morahan, Grant

    2014-01-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripo...

  11. Mycoplasmas detection in cells cultures

    OpenAIRE

    Rivera-Tapia José Antonio; Castillo-Viveros Linda Valeria; Sánchez-Hernández José Antonio

    2010-01-01

    INTRODUCTION. Cells cultures are widely used in both biomedical and biotechnological research centers and industry, as well as for diagnostic test in hospitals. Contaminations of cells cultures with microbial organisms as well as with virus or other eukaryotic cell lines are a major problem in cell culture related research.OBJECTIVE. Mycoplasmas detection in cells cultures came from biomedical laboratories.MATERIAL AND METHODS. The cells cultures screened for mycoplasmas by using of microbiol...

  12. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  13. FUEL CELLS IN ENERGY PRODUCTION

    OpenAIRE

    Huang, Xiaoyu

    2011-01-01

    The purpose of this thesis is to study fuel cells. They convert chemical energy directly into electrical energy with high efficiency and low emmission of pollutants. This thesis provides an overview of fuel cell technology.The basic working principle of fuel cells and the basic fuel cell system components are introduced in this thesis. The properties, advantages, disadvantages and applications of six different kinds of fuel cells are introduced. Then the efficiency of each fuel cell is p...

  14. Mice cloned from skin cells

    OpenAIRE

    Li, Jinsong; Greco, Valentina; Guasch, Géraldine; Fuchs, Elaine; Mombaerts, Peter

    2007-01-01

    Adult stem cells represent unique populations of undifferentiated cells with self-renewal capacity. In many tissues, stem cells divide less often than their progeny. It has been widely speculated, but largely untested, that their undifferentiated and quiescent state may make stem cells more efficient as donors for cloning by nuclear transfer (NT). Here, we report the use of nuclei from hair follicle stem cells and other skin keratinocytes as NT donors. When keratinocyte stem cells (KSCs) were...

  15. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  16. DNA repair in murine embryonic stem cells and differentiated cells

    International Nuclear Information System (INIS)

    Embryonic stem (ES) cells are rapidly proliferating, self-renewing cells that have the capacity to differentiate into all three germ layers to form the embryo proper. Since these cells are critical for embryo formation, they must have robust prophylactic mechanisms to ensure that their genomic integrity is preserved. Indeed, several studies have suggested that ES cells are hypersensitive to DNA damaging agents and readily undergo apoptosis to eliminate damaged cells from the population. Other evidence suggests that DNA damage can cause premature differentiation in these cells. Several laboratories have also begun to investigate the role of DNA repair in the maintenance of ES cell genomic integrity. It does appear that ES cells differ in their capacity to repair damaged DNA compared to differentiated cells. This minireview focuses on repair mechanisms ES cells may use to help preserve genomic integrity and compares available data regarding these mechanisms with those utilized by differentiated cells

  17. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  18. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  19. Merkel Cell Carcinoma

    Science.gov (United States)

    ... of the Year Award Arnold P. Gold Foundation Humanism in Medicine Award Diversity Mentorship Program Eugene Van ... 300 PUVA treatments. What causes Merkel cell carcinoma? Scientists are still studying what causes this skin cancer. ...

  20. RSW Cell Centered Grids

    Data.gov (United States)

    National Aeronautics and Space Administration — New cell centered grids are generated to complement the node-centered ones uploaded. Six tarballs containing the coarse, medium, and fine mixed-element and pure...

  1. CAM and NK Cells

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Takeda

    2004-01-01

    Full Text Available It is believed that tumor development, outgrowth and metastasis are under the surveillance of the immune system. Although both innate and acquired immune systems play roles, innate immunity is the spearhead against tumors. Recent studies have revealed the critical role of natural killer (NK cells in immune surveillance and that NK cell activity is considerably influenced by various agents, such as environmental factors, stress, foods and drugs. Some of these NK cell stimulants have been used in complementary and alternative medicine (CAM since ancient times. Therefore, the value of CAM should be re-evaluated from this point of view. In this review, we overview the intimate correlation between NK cell functions and CAM agents, and discuss possible underlying mechanisms mediating this. In particular, neuro-immune crosstalk and receptors for CAM agents are the most important and interesting candidates for such mechanisms.

  2. Sickle cell test

    Science.gov (United States)

    Sickledex; Hgb S test ... This test is done to tell if a person has abnormal hemoglobin that causes sickle cell disease and sickle ... and no symptoms, or only mild ones. This test does not tell the difference between these two ...

  3. Renal Medullary Interstitial Cells

    Science.gov (United States)

    Rao, Reena; Hao, Chuan-Ming; Breyer, Matthew D.

    2007-04-01

    Renal medullary interstitial cells (RMICs) are specialized fibroblast-like cells that reside in the renal medulla among the vasa recta, the thin limbs of Henle's loop, and medullary collecting ducts. These cells are characterized by abundant lipid droplets in the cytoplasm. The lipid droplets are composed of triglycerides, cholesterol esters and free long-chain fatty acids, including arachidonic acid. RMICs are also a major site of cyclooxygenase2 (COX-2) expression, and thus a major site of COX-2 derived prostanoid biosynthesis. RMICs are also a potential target of hormones such as angiotensin II and endothelin. The RMIC COX-2 expression and the abundance of lipid droplets change with salt and water intake. These properties of RMICs are consistent with an important role of these cells in modulating physiologic and pathologic processes of the kidney.

  4. Langerhans cell histiocytosis

    OpenAIRE

    Xiao-ling YAN

    2014-01-01

    A case report and literature review. We present a boy with a multisystemic presentation of Langerhans cell histiocytosis and severe pulmonary lesion.Skin lesion helped to suspect and confirm diagnosis by scalpbiopsy. Chemotherapy was important for favorable result.

  5. [Pulmonary Langerhans cell histiocytosis].

    Science.gov (United States)

    Popper, H H

    2015-09-01

    Pulmonary Langerhans cell histiocytosis is regarded as a reactive proliferation of the dendritic Langerhans cell population stimulated by chronic tobacco-derived plant proteins due to incomplete combustion but can also occur in childhood as a tumor-like systemic disease. Currently, both these forms cannot be morphologically distinguished. In the lungs a nodular proliferation of Langerhans cells occurs in the bronchial mucosa and also peripherally in the alveolar septa with an accompanying infiltration by eosinophilic granulocytes and destruction of the bronchial wall. Langerhans cells can be selectively detected with antibodies against CD1a and langerin. In the reactive isolated pulmonary form, abstinence from tobacco smoking in most patients leads to regression of infiltration and improvement of symptoms. In high-resolution computed tomography (HRCT) the small star-like scars can still be detected even after complete cessation of tobacco smoking. PMID:26289803

  6. Hypoxic cell radiosensitizers

    International Nuclear Information System (INIS)

    Hyperbaric oxygen results have demonstrated that there is a problem of hypoxid cells in some types of tumour, and that even small daily fractions with HBO can give improved results. Reasons are given for expecting radiosensitizing drugs to penetrate better than HBO to the hypoxic cells, which exist in tumours exceeding 1 or 2 mm diameter. Preliminary clinical studies have demonstrated significant effects on human tumours of misonidazole and metronidazole. Concentrations of misonidazole have been measured in human tumours which were 40-110% of those in plasma, usually 70-90%. A number of clinical trials are being initiated using misonidazole. Future clinical results of hypoxic cell radiosentizers will clarify further the role of hypoxic cells in causing resistance to radiotherapy. (orig./MG) 891 MG/orig.- 892 RDG

  7. Lipocytes (fat cells) (image)

    Science.gov (United States)

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  8. Fibronectin-cell interactions

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, M R; Woods, A

    1990-01-01

    in vivo. Much data suggests that fibronectins may promote extracellular matrix assembly, and cell adhesion to those matrices. However, one outstanding enigma is that fibronectins may, under different circumstances, promote both cell migration and anchorage. An analysis of the interaction of fibroblasts...... with proteolytically derived and purified domains of plasma fibronectin revealed that the type of adhesion and the correlated cytoskeletal organization depended on multiple interactions of fibronectin domains with the cell surface. Human dermal fibroblasts were capable of interacting with the integrin-binding domain...... and both heparin-binding domains of the plasma fibronectin molecule and their interactions determined the type of adhesion. The same principle was seen in a study of the ability of plasma fibronectin to promote basement membrane assembly in an endodermal cell line, PF-HR9. There also, interactions of both...

  9. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The...

  10. Familial germ cell tumor

    Directory of Open Access Journals (Sweden)

    Sanju Cyriac

    2012-01-01

    Full Text Available Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presence of germ cell malignancies in the siblings of different sex in the same family points toward a genetic susceptibility. Literature review revealed only six similar cases. A discussion regarding the rare occurrence of familial germ cell malignancies with the affected family members may be worthwhile.

  11. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author)

  12. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  13. Endothelial cells derived from human embryonic stem cells

    Science.gov (United States)

    Levenberg, Shulamit; Golub, Justin S.; Amit, Michal; Itskovitz-Eldor, Joseph; Langer, Robert

    2002-04-01

    Human embryonic stem cells have the potential to differentiate into various cell types and, thus, may be useful as a source of cells for transplantation or tissue engineering. We describe here the differentiation steps of human embryonic stem cells into endothelial cells forming vascular-like structures. The human embryonic-derived endothelial cells were isolated by using platelet endothelial cell-adhesion molecule-1 (PECAM1) antibodies, their behavior was characterized in vitro and in vivo, and their potential in tissue engineering was examined. We show that the isolated embryonic PECAM1+ cells, grown in culture, display characteristics similar to vessel endothelium. The cells express endothelial cell markers in a pattern similar to human umbilical vein endothelial cells, their junctions are correctly organized, and they have high metabolism of acetylated low-density lipoprotein. In addition, the cells are able to differentiate and form tube-like structures when cultured on matrigel. In vivo, when transplanted into SCID mice, the cells appeared to form microvessels containing mouse blood cells. With further studies, these cells could provide a source of human endothelial cells that could be beneficial for potential applications such as engineering new blood vessels, endothelial cell transplantation into the heart for myocardial regeneration, and induction of angiogenesis for treatment of regional ischemia.

  14. Nanodiamond internalization in cells and the cell uptake mechanism

    International Nuclear Information System (INIS)

    Cell type-dependent penetration of nanodiamond in living cells is one of the important factors for using nanodiamond as cellular markers/labels, for drug delivery as well as for other biomedical applications. In this work, internalization of 100 nm nanodiamonds by A549 lung human adenocarcinoma cell, Beas-2b non-tumorigenic human bronchial epithelial cell, and HFL-1 fibroblast-like human fetal lung cell is studied and compared. The penetration of nanodiamond into the cells was observed using confocal fluorescence imaging and Raman imaging methods. Visualization of the nanodiamond in cells allows comparison of the internalization for diamond nanoparticles in cancer A549 cell, non-cancer HFL-1, and Beas-2b cells. The dose-dependent and time-dependent behavior of nanodiamond uptake is observed in both cancer as well as non-cancer cells. The mechanism of nanodiamond uptake by cancer and non-cancer cells is analyzed by blocking different pathways. The uptake of nanodiamond in both cancer and non-cancer cells was found predominantly via clathrin-dependent endocytosis. In spite of observed similarity in the uptake mechanism for cancer and non-cancer cells, the nanodiamond uptake for cancer cell quantitatively exceeds the uptake for non-cancer cells, for the studied cell lines. The observed difference in internalization of nanodiamond by cancer and non-cancer cells is discussed

  15. Transgelin-2 in B-Cells Controls T-Cell Activation by Stabilizing T Cell - B Cell Conjugates

    Science.gov (United States)

    Chae, Myoung-Won; Kim, Hye-Ran; Kim, Chang-Hyun; Jun, Chang-Duk; Park, Zee-Yong

    2016-01-01

    The immunological synapse (IS), a dynamic and organized junction between T-cells and antigen presenting cells (APCs), is critical for initiating adaptive immunity. The actin cytoskeleton plays a major role in T-cell reorganization during IS formation, and we previously reported that transgelin-2, an actin-binding protein expressed in T-cells, stabilizes cortical F-actin, promoting T-cell activation in response to antigen stimulation. Transgelin-2 is also highly expressed in B-cells, although no specific function has been reported. In this study, we found that deficiency in transgelin-2 (TAGLN2-/-) in B-cells had little effect on B-cell development and activation, as measured by the expression of CD69, MHC class II molecules, and CD80/86. Nevertheless, in B-cells, transgelin-2 accumulated in the IS during the interaction with T-cells. These results led us to hypothesize that transgelin-2 may also be involved in IS stability in B-cells, thereby influencing T-cell function. Notably, we found that transgelin-2 deficiency in B-cells reduced T-cell activation, as determined by the release of IL-2 and interferon-γ and the expression of CD69. Furthermore, the reduced T-cell activation was correlated with reduced B-cell–T-cell conjugate formation. Collectively, these results suggest that actin stability in B-cells during IS formation is critical for the initiation of adaptive T-cell immunity. PMID:27232882

  16. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Directory of Open Access Journals (Sweden)

    Zhou Fang Li

    Full Text Available Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  17. Fibrillarin redistributes to the spindle poles and partially colocalizes with NuMA during mitosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Fibrillarin, a major protein in the nucleolus, is known to redistribute during mitosis from the nucleolus to the cytosol, and is related to the dynamics of post-mitotic reassembly of the nucleolus. To better understand the dynamic behavior and the relationship with other cytoplasmic structures, we have now expressed fibrillarin-pDsRed1 fusion protein in HeLa cells. The results showed that a part of fibrillarin was associated with mitotic spindle poles in the mitotic cells. Nocodazole-induced microtubule depolymerization resulted in fibrillarin redistribution throughout the cytoplasm, and removal of nocodazole resulted in relocalization of fibrillarin at the polar region during the mitotic spindles reassembly. In a mitotic cell free system, fibrillarin was found in the center of taxol-induced microtubule asters. Moreover, fibrillarin was found to colocalize with the nuclear mitotic apparatus protein (NuMA) at the poles of mitotic cells. Therefore, it is postulated that the polar redistribution of fibrillarin is mediated by microtubules.

  18. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing.

    Science.gov (United States)

    Takagi, Mutsumi

    2016-01-01

    The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell. PMID:25373455

  19. NK Cells and Trophoblasts

    OpenAIRE

    Parham, Peter

    2004-01-01

    In placental mammals, viviparity—the production of living young within the mother's body—evolved under the auspices of the immune system. Elements of immunity were incorporated, giving pregnancy a mildly inflammatory character. Formation of the placenta, the organ that feeds the fetus, involves a cooperation between maternal natural killer (NK) cells and fetal trophoblast cells that remodels the blood supply. Recent research reveals that this process and human reproductive success are influen...

  20. The intestinal stem cell

    OpenAIRE

    Barker, Nick; van de Wetering, Marc; Clevers, Hans

    2008-01-01

    The epithelium of the adult mammalian intestine is in a constant dialog with its underlying mesenchyme to direct progenitor proliferation, lineage commitment, terminal differentiation, and, ultimately, cell death. The epithelium is shaped into spatially distinct compartments that are dedicated to each of these events. While the intestinal epithelium represents the most vigorously renewing adult tissue in mammals, the stem cells that fuel this self-renewal process have been identified only rec...

  1. Plasma cell leukemia

    OpenAIRE

    Gertz, Moria A.; Buadi, Francis K.

    2010-01-01

    Plasma cell leukemia (PCL) is a rare, yet aggressive plasma cell (PC) neoplasm, variant of multiple myeloma (MM), characterized by high levels of PCs circulating in the peripheral blood. PCL can either originate de novo (primary PCL) or as a secondary leukemic transformation of MM (secondary PCL). Presenting signs and symptoms are similar to those seen in MM such as renal insufficiency, hypercalcemia, lytic bone lesions, anemia, and thrombocytopenia, but can also include hepatomegaly and sple...

  2. The Cell Processor

    OpenAIRE

    Hoefler, Torsten

    2006-01-01

    Mainstream processor development is mostly targeted at compatibility and continuity. Thus, the processor market is dominated by x86 compatible CPUs since more than two decades now. Several new concepts tried to gain some market share, but it was not possible to overtake the old compatibility driven concepts. A group of three corporates tries another way to come into the market with a new idea, the cell design. The cell processor is a new try to leverage the increasing amount...

  3. Langerhans cell histiocytosis

    OpenAIRE

    Aruna, D. R.; G Pushpalatha; Sushma Galgali; Prashanthy,

    2011-01-01

    Langerhans cell histiocytosis (LCH) is a group of rare disorders histologically characterized by the proliferation of Langerhans cells. Multiple organs and systems may be involved by the disease. Typically, there is bone involvement and, less frequently, lesions may be found in the lungs, liver, lymph nodes, skin, and mucosa. Oral soft tissue lesions without bone involvement are rare. We present a case of oral lesions associated with LCH in a young woman.

  4. Pulmonary langerhans cell histiocytosis

    OpenAIRE

    Suri Harpreet S; Yi Eunhee S; Nowakowski Gregorz S; Vassallo Robert

    2012-01-01

    Abstract Pulmonary Langerhans Cell Histiocytosis (PLCH) is a relatively uncommon lung disease that generally, but not invariably, occurs in cigarette smokers. The pathologic hallmark of PLCH is the accumulation of Langerhans and other inflammatory cells in small airways, resulting in the formation of nodular inflammatory lesions. While the overwhelming majority of patients are smokers, mechanisms by which smoking induces this disease are not known, but likely involve a combination of events r...

  5. Thin silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M. [Astro Power Inc., Solar Park, Newark, DE (United States)

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  6. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    understood. The mouse is a widely used model of mammary gland development, both directly by studying the mouse mammary epithelial cells themselves and indirectly, by studying development, morphogenesis, differentiation and carcinogenesis of xenotransplanted human breast epithelium in vivo. While in early...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  7. Intracranial germ cell tumor

    OpenAIRE

    Kreutz, J; Rausin, L.; Weerts, E; Tebache, M; Born, J; Hoyoux, C

    2010-01-01

    Germ cell tumours represent about 3 to 8% of pediatric brain tumours. Occurrence of diabetes insipidus is common in the case of suprasellar germ cell tumors. The diagnosis may be advanced by MRI owing to the location and relatively univocal characteristics of the lesion signal. The existence of a bifocal mass developed in both suprasellar region and pineal zone is highly suggestive of a germinoma. The most important notion is to recognize that at the time of diabetes insipidus diagnosis in a ...

  8. Myeloid Cells and Lymphangiogenesis

    OpenAIRE

    Zumsteg, A; Christofori, G

    2012-01-01

    The lymphatic vascular system and the hematopoietic system are intimately connected in ontogeny and in physiology. During embryonic development, mammalian species derive a first lymphatic vascular plexus from the previously formed anterior cardinal vein, whereas birds and amphibians have a lymphatic vascular system of dual origin, composed of lymphatic endothelial cells (LECs) of venous origin combined with LECs derived from mesenchymal lymphangioblasts. The contribution of hematopoietic cell...

  9. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  10. Syndecans and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Chen, L; Woods, A

    2001-01-01

    Now that transmembrane signaling through primary cell-matrix receptors, integrins, is being elucidated, attention is turning to how integrin-ligand interactions can be modulated. Syndecans are transmembrane proteoglycans implicated as coreceptors in a variety of physiological processes, including...... cell adhesion, migration, response to growth factors, development, and tumorigenesis. This review will describe this family of proteoglycans in terms of their structures and functions and their signaling in conjunction with integrins, and indicate areas for future research....

  11. Nonislet Cell Tumor Hypoglycemia

    OpenAIRE

    Johnson Thomas; Salini C. Kumar

    2013-01-01

    Nonislet cell tumor hypoglycemia (NICTH) is a rare cause of hypoglycemia. It is characterized by increased glucose utilization by tissues mediated by a tumor resulting in hypoglycemia. NICTH is usually seen in large mesenchymal tumors including tumors involving the GI tract. Here we will discuss a case, its pathophysiology, and recent advances in the management of NICTH. Our patient was diagnosed with poorly differentiated squamous cell carcinoma of esophagus. He continued to be hypoglycemic ...

  12. Familial germ cell tumor

    OpenAIRE

    Sanju Cyriac; Rejeev Rajendranath; A. Robert Louis; Sagar, T. G.

    2012-01-01

    Familial testicular germ cell tumors are well known in literature. Only few cases are reported where both brother and sister of the same family suffered from germ cell malignancies. We present a family where the proband is a survivor of ovarian dysgerminoma stage IA. Her elder male sibling became acutely ill and was detected to have disseminated testicular malignancy with grossly elevated markers and vegetations in the mitral valve leaflets. Despite all measures he could not be saved. Presenc...

  13. Fuel cell; Nenryo denchi

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1999-07-20

    More than 100 sets of phosphoric acid fuel cells (PAFC) have been installed by now, and accumulated operation performance exceeding 40 thousand hours, which is regarded as a development target, has been achieved. Further, there are also PAFCs that have achieved continuous operation performance exceeding 9,000 hours, thus being most approachable to practical use. On the other hand, developments of the solid oxide fuel cells (SOFC) and the molten carbonate fuel cells (MCFC), which operate at high temperatures, have high power generation efficiencies due to the capability of operating associatively with gas turbines or vapor turbines, and may use coal gasified gases as fuels, are carried out for an aim of realizing the practical use at the begging of the 21st century. Further, in recent years, researches and developments of the polymer electrolyte fuel cells (PEFC) have been accelerated mainly in vehicle business for the purpose of using PEFC as power sources for movable bodies, and researches and development for accelerative development of cell stacks and power generation systems are executed. In this paper, situations of the researches and developments in respect to the above-mentioned four kinds of fuel cells are summarily introduced. (NEDO)

  14. Optoacoustic cell permeation

    Science.gov (United States)

    Visuri, Steven R.; Heredia, Nicholas J.

    2000-06-01

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode- pumped frequency-doubled Nd:YAG laser operating a kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to culture and plated cells. The cell media contained a selection of normally-impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  15. Mast cells and COPD.

    Science.gov (United States)

    Mortaz, Esmaeil; Folkerts, Gert; Redegeld, Frank

    2011-08-01

    The pathogenesis of chronic obstructive pulmonary disease (COPD) is based on the innate and adaptive inflammatory immune response to the inhalation of toxic particles and gases. Although tobacco smoking is the primary cause of this inhalation injury, many other environmental and occupational exposures contribute to the pathology of COPD. The immune inflammatory changes associated with COPD are linked to a tissue-repair and -remodeling process that increases mucus production and causes emphysematous destruction of the gas-exchanging surface of the lung. The common form of emphysema observed in smokers begins in the respiratory bronchioles near the thickened and narrowed small bronchioles that become the major site of obstruction in COPD. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages, T lymphocytes, and dendritic cells. The relative contribution of mast cells to airway injury and remodeling is not well documented. In this review, an overview is given on the possible role of mast cells and their mediators in the pathogenesis of COPD. Activation of mast cells and mast cell signaling in response to exposure to cigarette smoke is further discussed. PMID:21463700

  16. Fuel cell generator

    International Nuclear Information System (INIS)

    A high temperature solid electrolyte fuel cell generator comprising a housing means defining a plurality of chambers including a generator chamber and a combustion products chamber, a porous barrier separating the generator and combustion product chambers, a plurality of elongated annular fuel cells each having a closed end and an open end with the open ends disposed within the combustion product chamber, the cells extending from the open end through the porous barrier and into the generator chamber, a conduit for each cell, each conduit extending into a portion of each cell disposed within the generator chamber, each conduit having means for discharging a first gaseous reactant within each fuel cell, exhaust means for exhausting the combustion product chamber, manifolding means for supplying the first gaseous reactant to the conduits with the manifolding means disposed within the combustion product chamber between the porous barrier and the exhaust means and the manifolding means further comprising support and bypass means for providing support of the manifolding means within the housing while allowing combustion products from the first and a second gaseous reactant to flow past the manifolding means to the exhaust means, and means for flowing the second gaseous reactant into the generator chamber

  17. Turing patterns inside cells.

    Directory of Open Access Journals (Sweden)

    Damián E Strier

    Full Text Available Concentration gradients inside cells are involved in key processes such as cell division and morphogenesis. Here we show that a model of the enzymatic step catalized by phosphofructokinase (PFK, a step which is responsible for the appearance of homogeneous oscillations in the glycolytic pathway, displays Turing patterns with an intrinsic length-scale that is smaller than a typical cell size. All the parameter values are fully consistent with classic experiments on glycolytic oscillations and equal diffusion coefficients are assumed for ATP and ADP. We identify the enzyme concentration and the glycolytic flux as the possible regulators of the pattern. To the best of our knowledge, this is the first closed example of Turing pattern formation in a model of a vital step of the cell metabolism, with a built-in mechanism for changing the diffusion length of the reactants, and with parameter values that are compatible with experiments. Turing patterns inside cells could provide a check-point that combines mechanical and biochemical information to trigger events during the cell division process.

  18. Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation.

    Science.gov (United States)

    Mao, Angelo S; Shin, Jae-Won; Mooney, David J

    2016-08-01

    The mechanical properties of the microenvironment and direct contact-mediated cell-cell interactions are two variables known to be important in the determination of stem cell differentiation fate, but little is known about the interplay of these cues. Here, we use a micropatterning approach on polyacrylamide gels of tunable stiffnesses to study how homotypic cell-cell contacts and mechanical stiffness affect different stages of osteogenesis of mesenchymal stem cells (MSCs). Nuclear localization of transcription factors associated with osteogenesis depended on substrate stiffness and was independent of the degree of cell-cell contact. However, expression of alkaline phosphatase, an early protein marker for osteogenesis, increased only in cells with both direct contact with neighboring cells and adhesion to stiffer substrates. Finally, mature osteogenesis, as assessed by calcium deposition, was low in micropatterned cells, even on stiff substrates and in multicellular clusters. These results indicate that substrate stiffness and the presence of neighboring cells regulate osteogenesis in MSCs. PMID:27203745

  19. >Effect of progesterone hormon on cell viability and stem cell activation in dental pulp cells

    OpenAIRE

    Segah Altuntaş; Muhammed Ali Kara; Deniz Selin Aksoy; Zehra Dilşad Çoban; Şefik Güran

    2016-01-01

    Objective: The dental pulp is the part in the center of a tooth made up of living connective tissue and cells called odontoblasts. The vitality of the dentin structure, both during health and after injury, depends on pulp cell activity and the signaling processes that regulate the cell’s behavior. Dental pulp tissue has condensed stem cell activity. Dental pulp stem cells are multipotent stem cells that have the potential to differentiate into a variety of cell types. Several publications hav...

  20. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation

    OpenAIRE

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to pro...

  1. Immunolocalization and partial characterization of a nucleolar autoantigen (PM-Scl) associated with polymyositis / scleroderma overlap syndromes.

    OpenAIRE

    Reimer, Georg; Scheer, Ulrich; Peters, Jan-Michael; Tan, Eng M.

    2009-01-01

    Precipitating anti-PM-Sel antibodies are present in sera from patients with polymyositis. scleroderma. and polymyositis/scleroderma overlap syndromes. By indirect immunofluorescence microscopy. anti-PM-Scl antibodies stained the nucleolus in cells of different tissues and species. suggesting that the antigen is highly conserved. By electron microscopy, anti-PM-Scl antibodies reacted primarily with the granular component of the nuc1eolus. Drugs that inhibit rRNA synthesis had a marked effect o...

  2. Asymmetrical Distribution of the Transcriptionally Competent NORs in Mitosis

    Czech Academy of Sciences Publication Activity Database

    Smirnov, Evgeny; Popov, Alexey; Mašata, Martin; Kalmárová, Markéta; Raška, Ivan

    San Diego : ACSB, 2006. L74-L74. [Annual Meeting of The American Society for Cell Biology /46./. 09.12.2006-13.12.2006, San Diego] R&D Projects: GA ČR(CZ) GA304/04/0692; GA MŠk(CZ) LC535 Institutional research plan: CEZ:AV0Z50110509 Keywords : nucleolus * ribosomal genes Subject RIV: EB - Genetics ; Molecular Biology

  3. Ultrastructural changes in the rat pineal gland after sympathetic denervation. Quantitative study

    OpenAIRE

    Calvo, J.L.; Boya, J; García-Mauriño, J.E.

    1990-01-01

    Ultrastructural changes in the rat pineal gland were studied quantitatively 7 and 60 days after the sympathetic denervation by bilateral excission or decentralization of superior cervical ganglia. The surface occupied by pineal parenchymal cells decreased in rats of experimental groups with respect to the control group. Furthermore, profile areas of the cytoplasm, nucleus and nucleolus of the pinealocytes were also diminished. Cytoplasmic lipid droplets in the ...

  4. Nucleolar Organization, Ribosomal DNA Array Stability, and Acrocentric Chromosome Integrity Are Linked to Telomere Function

    OpenAIRE

    Stimpson, Kaitlin M.; Sullivan, Lori L; Kuo, Molly E.; Sullivan, Beth A.

    2014-01-01

    The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional tel...

  5. The Drosophila melanogaster Cajal body

    OpenAIRE

    Liu, Ji-Long; Murphy, Christine; Buszczak, Michael; Clatterbuck, Sarah; Goodman, Robyn; Gall, Joseph G.

    2006-01-01

    Cajal bodies (CBs) are nuclear organelles that are usually identified by the marker protein p80-coilin. Because no orthologue of coilin is known in Drosophila melanogaster, we identified D. melanogaster CBs using probes for other components that are relatively diagnostic for CBs in vertebrate cells. U85 small CB–specific RNA, U2 small nuclear RNA, the survival of motor neurons protein, and fibrillarin occur together in a nuclear body that is closely associated with the nucleolus. Based on its...

  6. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Directory of Open Access Journals (Sweden)

    Melén Krister

    2012-08-01

    Full Text Available Abstract Background Influenza A virus non-structural protein 1 (NS1 is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS that also functions as a nucleolar localization signal (NoLS and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin.

  7. Karyotype, NORs, and C-banding analysis of Pseudophoxinus firati Bogutskaya, Küçük & Atalay, 2007 (Actinopterygii, Cyprinidae) in the Euphrates River, Turkey

    OpenAIRE

    KARASU, Muradiye; YÜKSEL, Eşref; Muhammet GAFFAROĞLU

    2011-01-01

    Pseudophoxinus firati Bogutskaya, Küçük & Atalay, 2007 (Actinopterygii, Cyprinidae) living in the Euphrates River system were analyzed in terms of their karyotype, C-banding, and nucleolus organizer region properties. Metaphase chromosome spreads were obtained from kidney cells. The diploid chromosome number was found to be 2n = 50, of which 19 pairs were meta-submetacentric and 6 pairs were subtelocentric, and the fundamental number was found to be 88. No sex chromosome differentiation w...

  8. Hilar mossy cell circuitry controlling dentate granule cell excitability

    Directory of Open Access Journals (Sweden)

    Seiichiro Jinde

    2013-02-01

    Full Text Available Glutamatergic hilar mossy cells of the dentate gyrus can either excite or inhibit distant granule cells, depending on whether their direct excitatory projections to granule cells or their projections to local inhibitory interneurons dominate. However, it remains controversial whether the net effect of mossy cell loss is granule cell excitation or inhibition. Clarifying this controversy has particular relevance to temporal lobe epilepsy, which is marked by dentate granule cell hyperexcitability and extensive loss of dentate hilar mossy cells. Two diametrically opposed hypotheses have been advanced to explain this granule cell hyperexcitability – the “dormant basket cell” and the “irritable mossy cell” hypotheses. The “dormant basket cell” hypothesis proposes that mossy cells normally exert a net inhibitory effect on granule cells and therefore their loss causes dentate granule cell hyperexcitability. The “irritable mossy cell” hypothesis takes the opposite view that mossy cells normally excite granule cells and that the surviving mossy cells in epilepsy increase their activity, causing granule cell excitation. The inability to eliminate mossy cells selectively has made it difficult to test these two opposing hypotheses. To this end, we developed a transgenic toxin-mediated, mossy cell-ablation mouse line. Using these mutants, we demonstrated that the extensive elimination of hilar mossy cells causes granule cell hyperexcitability, although the mossy cell loss observed appeared insufficient to cause clinical epilepsy. In this review, we focus on this topic and also suggest that different interneuron populations may mediate mossy cell-induced translamellar lateral inhibition and intralamellar recurrent inhibition. These unique local circuits in the dentate hilar region may be centrally involved in the functional organization of the dentate gyrus.

  9. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    Science.gov (United States)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  10. Breast metastasis from clear cell renal cell carcinoma

    OpenAIRE

    Botticelli, A.; De Francesco, G. P.; D. Di Stefano

    2013-01-01

    In Western countries, breast cancer is the most common cancer in women, whereas metastases to the breast from extramammary malignancies are extremely rare. We present the case of a 60-year-old woman, who underwent surgery in 2007 for clear cell renal cell carcinoma and who 4 years later presented with a breast metastasis from clear cell renal cell carcinoma.

  11. Cell culture models for study of differentiated adipose cells

    OpenAIRE

    Clynes, Martin

    2014-01-01

    Adipose cells are an important source of mesenchymal stem cells and are important for direct use in research on lipid metabolism and obesity. In addition to use of primary cultures, there is increasing interest in other sources of larger numbers of cells, using approaches including induced pluripotent stem cell differentiation and viral immortalisation.

  12. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHui; JIANG Wei; SHI Yan; DENG HongKui

    2009-01-01

    Efficiently obtaining functional pancreaUc islet cells derived from human embryonic stem (hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology. In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro. Since then, many strategies (such as overexpression of key transcription factors,delivery of key proteins for pancreatic development, co-transplantation of differentiated hES cells along with fetal pancreas, stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells. Moreover, patient-specific induced pluripotent stem (iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection. In this review, we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  13. Cell supermarket: Adipose tissue as a source of stem cells

    Science.gov (United States)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  14. Recognition and Regulation of T Cells by NK Cells

    Science.gov (United States)

    Pallmer, Katharina; Oxenius, Annette

    2016-01-01

    Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating “altered self” and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism. PMID:27446081

  15. Generation of pancreatic islet cells from human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Efficiently obtaining functional pancreatic islet cells derived from human embryonic stem(hES) cells not only provides great potential to solve the shortage of islets sources for type I diabetes cell therapy,but also benefits the study of the development of the human pancreas and diabetes pathology.In 2001,hES cells were reported to have the capacity to generate insulin-producing cells by spontaneous differentiation in vitro.Since then,many strategies(such as overexpression of key transcription factors,delivery of key proteins for pancreatic development,co-transplantation of differentiated hES cells along with fetal pancreas,stepwise differentiation by mimicking in vivo pancreatic development) have been employed in order to induce the differentiation of pancreatic islet cells from hES cells.Moreover,patient-specific induced pluripotent stem(iPS) cells can be generated by reprogramming somatic cells.iPS cells have characteristics similar to those of ES cells and offer a new cell source for type I diabetes cell therapy that reduces the risk of immunologic rejection.In this review,we summarize the recent progress made in the differentiation of hES and iPS cells into functional pancreatic islet cells and discuss the challenges for their future study.

  16. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    Science.gov (United States)

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. PMID:27063097

  17. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas.

    Science.gov (United States)

    Kim, Hyo-Sup; Lee, Moon-Kyu

    2016-05-01

    Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β-cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β-cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin-producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β-cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β-cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin-producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin-producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin-producing cells, especially duct and acinar cells. PMID:27330712

  18. [Th9 cells: a new population of helper T cells].

    Science.gov (United States)

    Vegran, Frédérique; Martin, François; Apetoh, Lionel; Ghiringhelli, François

    2016-04-01

    Th9 cells are CD4 T helper cells characterized by their ability to produce IL-9 and IL-21. These cells are obtained from naive CD4(+) T cells cultured in the presence of TGF-β and IL-4. Thus their differentiation results from the balance between the signaling pathways induced by IL-4 in one hand and the one induced by TGF-β in the other hand. These cells are inflammatory cells and were first described in the context of atopic and autoimmune diseases in which they have a pathogenic role. They are also involved in the defense against parasite infections. Recently, some reports defined Th9 anticancer properties through their cytokine secretion. Indeed, their high secretion of IL-9 and IL-21 in the tumor bed contributes to their anticancer functions. These cytokines trigger the activation of dendritic cells, mast cells, natural killer cells, and CD8 T cells to mount an antitumor immune response. PMID:27137696

  19. Cell cycle and cell signal transduction in marine phytoplankton

    Institute of Scientific and Technical Information of China (English)

    LIU Jingwen; JIAO Nianzhi; CAI Huinong

    2006-01-01

    As unicellular phytoplankton, the growth of a marine phytoplankton population results directly from the completion of a cell cycle, therefore, cell-environment communication is an important way which involves signal transduction pathways to regulate cell cycle progression and contribute to growth, metabolism and primary production and respond to their surrounding environment in marine phytoplankton. Cyclin-CDK and CaM/Ca2+ are essentially key regulators in control of cell cycle and signal transduction pathway, which has important values on both basic research and applied biotechnology. This paper reviews progress made in this research field, which involves the identification and characterization of cyclins and cell signal transduction system, cell cycle control mechanisms in marine phytoplankton cells, cell cycle proteins as a marker of a terminal event to estimate the growth rate of phytoplankton at the species level, cell cycle-dependent toxin production of toxic algae and cell cycle progression regulated by environmental factors.

  20. Single Cell Oncogenesis

    Science.gov (United States)

    Lu, Xin

    It is believed that cancer originates from a single cell that has gone through generations of evolution of genetic and epigenetic changes that associate with the hallmarks of cancer. In some cancers such as various types of leukemia, cancer is clonal. Yet in other cancers like glioblastoma (GBM), there is tremendous tumor heterogeneity that is likely to be caused by simultaneous evolution of multiple subclones within the same tissue. It is obvious that understanding how a single cell develops into a clonal tumor upon genetic alterations, at molecular and cellular levels, holds the key to the real appreciation of tumor etiology and ultimate solution for therapeutics. Surprisingly very little is known about the process of spontaneous tumorigenesis from single cells in human or vertebrate animal models. The main reason is the lack of technology to track the natural process of single cell changes from a homeostatic state to a progressively cancerous state. Recently, we developed a patented compound, photoactivatable (''caged'') tamoxifen analogue 4-OHC and associated technique called optochemogenetic switch (OCG switch), which we believe opens the opportunity to address this urgent biological as well as clinical question about cancer. We propose to combine OCG switch with genetically engineered mouse models of head and neck squamous cell carcinoma and high grade astrocytoma (including GBM) to study how single cells, when transformed through acute loss of tumor suppressor genes PTEN and TP53 and gain of oncogenic KRAS, can develop into tumor colonies with cellular and molecular heterogeneity in these tissues. The abstract is for my invited talk in session ``Beyond Darwin: Evolution in Single Cells'' 3/18/2016 11:15 AM.