WorldWideScience

Sample records for cell nuclear reprogramming

  1. Epigenetic reprogramming by somatic cell nuclear transfer in primates.

    Science.gov (United States)

    Sparman, Michelle; Dighe, Vikas; Sritanaudomchai, Hathaitip; Ma, Hong; Ramsey, Cathy; Pedersen, Darlene; Clepper, Lisa; Nighot, Prashant; Wolf, Don; Hennebold, Jon; Mitalipov, Shoukhrat

    2009-06-01

    We recently demonstrated that somatic cells from adult primates could be reprogrammed into a pluripotent state by somatic cell nuclear transfer. However, the low efficiency with donor cells from one monkey necessitated the need for large oocyte numbers. Here, we demonstrate nearly threefold higher blastocyst development and embryonic stem (ES) cell derivation rates with different nuclear donor cells. Two ES cell lines were isolated using adult female rhesus macaque skin fibroblasts as nuclear donors and oocytes retrieved from one female, following a single controlled ovarian stimulation. In addition to routine pluripotency tests involving in vitro and in vivo differentiation into various somatic cell types, primate ES cells derived from reprogrammed somatic cells were also capable of contributing to cells expressing markers of germ cells. Moreover, imprinted gene expression, methylation, telomere length, and X-inactivation analyses were consistent with accurate and extensive epigenetic reprogramming of somatic cells by oocyte-specific factors.

  2. Nuclear reprogramming by interphase cytoplasm of 2-cell mouse embryos

    Science.gov (United States)

    Kang, Enugu; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P.; Schöler, Hans; Mitalipov, Shoukhrat

    2014-01-01

    Summary Successful mammalian cloning employing somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II-arrested (MII) oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing pluripotency in somatic cell nuclei1-3. However, these poorly defined maternal factors presumably decline sharply after fertilization since cytoplasm of pronuclear stage zygotes is reportedly inactive4, 5. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase (M-phase) can also support derivation of embryonic stem cells (ESCs) following SCNT6-8, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in M-phase but not in interphase cytoplasm are “trapped” inside the nucleus during interphase and effectively removed during enucleation9. Here, we investigated the presence of reprogramming activity in the interphase cytoplasm of 2-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated M-phase and interphase zygotes and 2-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Then, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ESC, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ESCs capable of contributing to traditional germline and tetraploid chimeras. In addition, direct transfer of cloned embryos, reconstructed with ESC nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to utilize interphase cytoplasm in SCNT could impact efforts to generate autologous human ESCs for

  3. Nuclear and nuclear reprogramming during the first cell cycle in bovine nuclear transfer embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Petrovicova, Ida; Strejcek, Frantisek

    2009-01-01

    Abstract The immediate events of genomic reprogramming at somatic cell nuclear transfer (SCNT) are to high degree unknown. This study was designed to evaluate the nuclear and nucleolar changes during the first cell cycle. Bovine SCNT embryos were produced from starved bovine fibroblasts and fixed......, somatic cell nuclei introduced into enucleated oocytes displayed chromatin condensation, partial nuclear envelope breakdown, nucleolar desegregation and transcriptional quiescence already at 0.5 hpa. Somatic cell cytoplasm remained temporally attached to introduced nucleus and nucleolus was partially...... restored indicating somatic influence in the early SCNT phases. At 1-3 hpa, chromatin gradually decondensed toward the nucleus periphery and nuclear envelope reformed. From 4 hpa, the somatic cell nucleus gained a PN-like appearance and displayed NPBs suggesting ooplasmic control of development....

  4. Totipotency, pluripotency and nuclear reprogramming.

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don

    2009-01-01

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  5. Totipotency, Pluripotency and Nuclear Reprogramming

    Science.gov (United States)

    Mitalipov, Shoukhrat; Wolf, Don

    Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.

  6. Epigenetic reprogramming by somatic cell nuclear transfer: questions and potential solutions.

    Science.gov (United States)

    Huili, Ji; Haosheng, Lu; Dengke, Pan

    2014-12-01

    Somatic cell nuclear transfer (SCNT) is a technology by which a highly differentiated somatic nucleus is transferred into an enucleated oocyte to generate a reconstructed embryo that subsequently develops to an offspring. However, to date, the efficiency of cloned animal is still low. The major reason is incomplete nuclear reprogramming of donor cells after nuclear transfer, which results in abnormal epigenetic modifications, including DNA methylation, histone acetylation, gene imprinting, X-chromosome inactivation, and telomere length. Most improvements have been made in somatic epigenetic reprogramming with small molecules and manipulating expression of specific genes. It is expected that SCNT will soon have broad applications in both basic research and practical production. In this review, we summarize the recent progress in epigenetic reprogramming by somatic cell nuclear transfer; in particular, we focus on strategies for rescuing the epigenetic errors occurring during SCNT.

  7. Nuclear transfer to study the nuclear reprogramming of human stem cells.

    Science.gov (United States)

    Saito, Shigeo; Sawai, Ken; Murayama, Yoshinobu; Fukuda, Keiichi; Yokoyama, Kazunari

    2008-01-01

    Research of stem cells will enable us to understand the development and function of tissues and organs in mammals. The ability to induce regeneration of new tissues from embryonic stem (ES) cells derived from cloned blastocysts via nuclear transfer can be expected in the not-too-distant future. The fact that there is no way except nuclear cloning for the return of differentiated cells to undifferentiated cells remains an interesting problem to be solved. We describe protocols for the production of cloned calves from bovine ES cells to study nuclear reprogramming ability of stem cells. The frequency of term pregnancies for blastocysts from ES cells is higher than those of early pregnancies and maintained pregnancies after nuclear transfer with bovine somatic cells. We also describe protocols for gene introduction into bovine ES cells in vitro, particularly the human leukocyte antigens (HLA). Bovine ES cells provide a powerful tool for the generation of transgenic clonal offspring. This technique, when perfected for humans, may be critical for neural stem cell transplantation.

  8. Perspective for special Gurdon issue for differentiation: can cell fusion inform nuclear reprogramming?

    Science.gov (United States)

    Burns, David; Blau, Helen M

    2014-07-01

    Nuclear reprogramming was first shown to be possible by Sir John Gurdon over a half century ago. The process has been revolutionized by the production of induced pluripotent cells by overexpression of the four transcription factors discovered by Shinya Yamanaka, which now enables mammalian applications. Yet, reprogramming by a few transcription factors remains incomplete and inefficient, whether to pluripotent or differentiated cells. We propose that a better understanding of mechanistic insights based on developmental principles gained from heterokaryon studies may inform the process of directing cell fate, fundamentally and clinically.

  9. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer.

    Science.gov (United States)

    Eilertsen, K J; Power, R A; Harkins, L L; Misica, P

    2007-03-01

    Successful cloning by somatic cell nuclear transfer (SCNT) is thought to require reprogramming of a somatic nucleus to a state of restored totipotentiality [Dean, W., Santos, F., Reik, W., 2003. Epigenetic programming in early mammalian development and following somatic cell nuclear transfer. Semin. Cell. Dev. Biol. 14, 93-100; Jouneau, A., Renard, J.P., 2003. Reprogramming in nuclear transfer. Curr. Opin. Genet. Dev. 13, 486-491; ]. Though SCNT-induced reprogramming is reminiscent of the reprogramming that occurs after fertilization, reprogramming a differentiated nucleus to an embryonic state is delayed and incomplete in comparison (for review, see ). This is likely due to the existence of an epigenetic-based cellular memory, or program, that serves to regulate global patterns of gene expression, and is the basis of a genome defense mechanism that silences viruses and transposons. The mechanisms of this memory include CpG methylation and modification of histones. Recent evidence by Feng et al. [Feng, Y.-Q., Desprat, R., Fu, H., Olivier, E., Lin, C.M., Lobell, A., Gowda, S.N., Aladjem, M.I., Bouhasira, E.E., 2006. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLOS Genet. 2, 0461-0470], using a transgenic experimental system, indicates that these marks may be acquired in more than one order and thus, silent heterochromatic structure can be initiated by either methylation of CpG dinucleotides or by histone modifications. In this system, however, CpG methylation appears to differ from histone modifications because it bestows a persistent epigenetic, or cellular, memory. In other words, CpG methylation can independently confer cellular memory, whereas histone modifications appear to be limited in this capacity. Therefore, in the context of genomic reprogramming induced by SCNT, efficient demethylation is likely a key (if not the only) rate-limiting step to improving the efficiency and outcomes of SCNT cloning. This review discusses the

  10. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

    Science.gov (United States)

    Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat

    2014-05-01

    Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative

  11. Nuclear reprogramming by nuclear transplantation and defined transcription factors

    Institute of Scientific and Technical Information of China (English)

    WANG YiXuan; LIU Sheng; LAI LiangXue; GAO ShaoRong

    2009-01-01

    In the past ten years,great breakthroughs have been achieved in the nuclear reprogramming area.It has been demonstrated that highly differentiated somatic cell genome could be reprogrammed to a pluripotent state,which indicates that differentiated cell fate is not irreversible.Nuclear transplantation and induced pluripotent stem (iPS) cell generation are the two major approaches to inducing repro-gramming of differentiated somatic cell genome.In the present review,we will summarize the recent progress of nuclear reprogramming and further discuss the potential to generate patient specific pluripotent stem cells from differentiated somatic cells for therapeutic purpose.

  12. Oncometabolic Nuclear Reprogramming of Cancer Stemness

    Science.gov (United States)

    Menendez, Javier A.; Corominas-Faja, Bruna; Cuyàs, Elisabet; García, María G.; Fernández-Arroyo, Salvador; Fernández, Agustín F.; Joven, Jorge; Fraga, Mario F.; Alarcón, Tomás

    2016-01-01

    Summary By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells. PMID:26876667

  13. Oncometabolic Nuclear Reprogramming of Cancer Stemness

    Directory of Open Access Journals (Sweden)

    Javier A. Menendez

    2016-03-01

    Full Text Available By impairing histone demethylation and locking cells into a reprogramming-prone state, oncometabolites can partially mimic the process of induced pluripotent stem cell generation. Using a systems biology approach, combining mathematical modeling, computation, and proof-of-concept studies with live cells, we found that an oncometabolite-driven pathological version of nuclear reprogramming increases the speed and efficiency of dedifferentiating committed epithelial cells into stem-like states with only a minimal core of stemness transcription factors. Our biomathematical model, which introduces nucleosome modification and epigenetic regulation of cell differentiation genes to account for the direct effects of oncometabolites on nuclear reprogramming, demonstrates that oncometabolites markedly lower the “energy barriers” separating non-stem and stem cell attractors, diminishes the average time of nuclear reprogramming, and increases the size of the basin of attraction of the macrostate occupied by stem cells. These findings establish the concept of oncometabolic nuclear reprogramming of stemness as a bona fide metabolo-epigenetic mechanism for generation of cancer stem-like cells.

  14. Epigenetic reprogramming in mammalian nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LI Shijie; DU Weihua; LI Ning

    2004-01-01

    Somatic cloning has been succeeded in some species, but the cloning efficiency is very low, which limits the application of the technique in many areas of research and biotechnology. The cloning of mammals by somatic cell nuclear transfer (NT) requires epigenetic reprogramming of the differentiated state of donor cell to a totipotent, embryonic ground state. Accumulating evidence indicates that incomplete or inappropriate epigenetic reprogramming of donor nuclei is likely to be the primary cause of failures in nuclear transfer. This review summarizes the roles of various epigenetic mechanisms, including DNA methylation, histone acetylation, imprinting, X-chromosome inactivation, telomere maintenance and expressions of development-related genes on somatic nuclear transfer.

  15. Interspecies somatic cell nuclear transfer is dependent on compatible mitochondrial DNA and reprogramming factors.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Interspecies somatic cell nuclear transfer (iSCNT involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%; and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%. Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 µM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38% compared to embryos generated from non-supplemented oocytes (P<0.01. They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They

  16. Nuclear reprogramming: kinetics of cell cycle and metabolic progression as determinants of success.

    Directory of Open Access Journals (Sweden)

    Sebastian Thomas Balbach

    Full Text Available Establishment of totipotency after somatic cell nuclear transfer (NT requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H(2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI. Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development.

  17. Mitochondrial Spare Respiratory Capacity Is Negatively Correlated with Nuclear Reprogramming Efficiency

    DEFF Research Database (Denmark)

    Yan, Zhou; Al-Saaidi, Rasha Abdelkadhem; Fernandez Guerra, Paula;

    2017-01-01

    extracellular energy flux analyzer, we measured oxygen consumption rate (OCR) profiles of the cells, along with their nuclear reprogramming efficiency into iPSCs. Our results showed that fibroblasts with the lowest mitochondrial spare respiratory capacity (SRC) had the highest nuclear reprogramming efficiency...... of the modified fibroblasts and impaired reprogramming efficiency. Our findings indicate a negative correlation between high mitochondrial SRC in somatic cells and low reprogramming efficiencies. This type of analysis potentially allows screening and predicting reprogramming efficiency before reprogramming...

  18. Nuclear Actin in Development and Transcriptional Reprogramming.

    Science.gov (United States)

    Misu, Shinji; Takebayashi, Marina; Miyamoto, Kei

    2017-01-01

    Actin is a highly abundant protein in eukaryotic cells and dynamically changes its polymerized states with the help of actin-binding proteins. Its critical function as a constituent of cytoskeleton has been well-documented. Growing evidence demonstrates that actin is also present in nuclei, referred to as nuclear actin, and is involved in a number of nuclear processes, including transcriptional regulation and chromatin remodeling. The contribution of nuclear actin to transcriptional regulation can be explained by its direct interaction with transcription machineries and chromatin remodeling factors and by controlling the activities of transcription factors. In both cases, polymerized states of nuclear actin affect the transcriptional outcome. Nuclear actin also plays an important role in activating strongly silenced genes in somatic cells for transcriptional reprogramming. When these nuclear functions of actin are considered, it is plausible to speculate that nuclear actin is also implicated in embryonic development, in which numerous genes need to be activated in a well-coordinated manner. In this review, we especially focus on nuclear actin's roles in transcriptional activation, reprogramming and development, including stem cell differentiation and we discuss how nuclear actin can be an important player in development and cell differentiation.

  19. Video: reprogramming cells.

    Science.gov (United States)

    2008-12-19

    This video introduction to Science's year-end special issue features Shinya Yamanaka of Kyoto University, George Daley of Harvard University, and Science's Gretchen Vogel reviewing some of the work that led studies in reprogramming cells to be tagged the top scientific story for 2008.

  20. Nuclear Reprogramming and Mitosis--how does mitosis enhance changes in gene expression?

    Science.gov (United States)

    Halley-Stott, Richard P

    2015-01-01

    Nuclear reprogramming changes the identity of cells by changing gene expression programmes. Two recent pieces of work have highlighted the role that mitosis plays in enhancing the success of nuclear reprogramming. This Point of View article examines this work in the context of nuclear reprogramming.

  1. Diploidized eggs reprogram adult somatic cell nuclei to pluripotency in nuclear transfer in medaka fish (Oryzias latipes).

    Science.gov (United States)

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Motosugi, Nami; Fujimoto, Takafumi; Arai, Katsutoshi; Kinoshita, Masato; Hashimoto, Hisashi; Ozato, Kenjiro; Wakamatsu, Yuko

    2007-12-01

    Reprogramming of adult somatic cell nuclei to pluripotency has been unsuccessful in non-mammalian animals, primarily because of chromosomal aberrations in nuclear transplants, which are considered to be caused by asynchrony between the cell cycles of the recipient egg and donor nucleus. In order to normalize the chromosomal status, we used diploidized eggs by retention of second polar body release, instead of enucleated eggs, as recipients in nuclear transfer of primary culture cells from the caudal fin of adult green fluorescent protein gene (GFP) transgenic medaka fish (Oryzias latipes). We found that 2.7% of the reconstructed embryos grew into adults that expressed GFP in various tissues in the same pattern as in the donor fish. Moreover, these fish were diploid, fertile and capable of passing the marker gene to the next generation in Mendelian fashion. We hesitate to call these fish 'clones' because we used non-enucleated eggs as recipients; in effect, they may be chimeras consisting of cells derived from diploid recipient nuclei and donor nuclei. In either case, fish adult somatic cell nuclei were reprogrammed to pluripotency and differentiated into a variety of cell types including germ cells via the use of diploidized recipient eggs.

  2. Optimal ROS Signaling Is Critical for Nuclear Reprogramming

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-05-01

    Full Text Available Efficient nuclear reprogramming of somatic cells to pluripotency requires activation of innate immunity. Because innate immune activation triggers reactive oxygen species (ROS signaling, we sought to determine whether there was a role of ROS signaling in nuclear reprogramming. We examined ROS production during the reprogramming of doxycycline (dox-inducible mouse embryonic fibroblasts (MEFs carrying the Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc [OSKM] into induced pluripotent stem cells (iPSCs. ROS generation was substantially increased with the onset of reprogramming. Depletion of ROS via antioxidants or Nox inhibitors substantially decreased reprogramming efficiency. Similarly, both knockdown and knockout of p22phox—a critical subunit of the Nox (1–4 complex—decreased reprogramming efficiency. However, excessive ROS generation using genetic and pharmacological approaches also impaired reprogramming. Overall, our data indicate that ROS signaling is activated early with nuclear reprogramming, and optimal levels of ROS signaling are essential to induce pluripotency.

  3. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

    Science.gov (United States)

    Mitani, Yasuyuki; Vagnozzi, Ronald J; Millay, Douglas P

    2017-01-01

    Knowledge regarding cellular fusion and nuclear reprogramming may aid in cell therapy strategies for skeletal muscle diseases. An issue with cell therapy approaches to restore dystrophin expression in muscular dystrophy is obtaining a sufficient quantity of cells that normally fuse with muscle. Here we conferred fusogenic activity without transdifferentiation to multiple non-muscle cell types and tested dystrophin restoration in mouse models of muscular dystrophy. We previously demonstrated that myomaker, a skeletal muscle-specific transmembrane protein necessary for myoblast fusion, is sufficient to fuse 10T 1/2 fibroblasts to myoblasts in vitro. Whether myomaker-mediated heterologous fusion is functional in vivo and whether the newly introduced nonmuscle nuclei undergoes nuclear reprogramming has not been investigated. We showed that mesenchymal stromal cells, cortical bone stem cells, and tail-tip fibroblasts fuse to skeletal muscle when they express myomaker. These cells restored dystrophin expression in a fraction of dystrophin-deficient myotubes after fusion in vitro. However, dystrophin restoration was not detected in vivo although nuclear reprogramming of the muscle-specific myosin light chain promoter did occur. Despite the lack of detectable dystrophin reprogramming by immunostaining, this study indicated that myomaker could be used in nonmuscle cells to induce fusion with muscle in vivo, thereby providing a platform to deliver therapeutic material.-Mitani, Y., Vagnozzi, R. J., Millay, D. P. In vivo myomaker-mediated heterologous fusion and nuclear reprogramming.

  4. Reprogramming cells with synthetic proteins

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  5. The acetyllysine reader BRD3R promotes human nuclear reprogramming and regulates mitosis.

    Science.gov (United States)

    Shao, Zhicheng; Zhang, Ruowen; Khodadadi-Jamayran, Alireza; Chen, Bo; Crowley, Michael R; Festok, Muhamad A; Crossman, David K; Townes, Tim M; Hu, Kejin

    2016-01-01

    It is well known that both recipient cells and donor nuclei demonstrate a mitotic advantage as observed in the traditional reprogramming with somatic cell nuclear transfer (SCNT). However, it is not known whether a specific mitotic factor plays a critical role in reprogramming. Here we identify an isoform of human bromodomain-containing 3 (BRD3), BRD3R (BRD3 with Reprogramming activity), as a reprogramming factor. BRD3R positively regulates mitosis during reprogramming, upregulates a large set of mitotic genes at early stages of reprogramming, and associates with mitotic chromatin. Interestingly, a set of the mitotic genes upregulated by BRD3R constitutes a pluripotent molecular signature. The two BRD3 isoforms display differential binding to acetylated histones. Our results suggest a molecular interpretation for the mitotic advantage in reprogramming and show that mitosis may be a driving force of reprogramming.

  6. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    Directory of Open Access Journals (Sweden)

    Lee Rita SF

    2010-03-01

    Full Text Available Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appropriately established during nuclear reprogramming following SCNT. A panel of imprinted, non-imprinted genes and satellite repeat sequences was examined in tissues collected from viable and failing mid-gestation SCNT foetuses and compared with similar tissues from gestation-matched normal foetuses generated by artificial insemination (AI. Results Most of the genomic regions examined in tissues from viable and failing SCNT foetuses had DNA methylation patterns similar to those in comparable tissues from AI controls. However, statistically significant differences were found between SCNT and AI at specific CpG sites in some regions of the genome, particularly those associated with SNRPN and KCNQ1OT1, which tended to be hypomethylated in SCNT tissues. There was a high degree of variation between individuals in methylation levels at almost every CpG site in these two regions, even in AI controls. In other genomic regions, methylation levels at specific CpG sites were tightly controlled with little variation between individuals. Only one site (HAND1 showed a tissue-specific pattern of DNA methylation. Overall, DNA methylation patterns in tissues of failing foetuses were similar to apparently viable SCNT foetuses, although there were individuals showing extreme deviant patterns. Conclusion These results show that SCNT foetuses that had developed to mid-gestation had largely undergone nuclear reprogramming and that the epigenetic signature at this stage was not a

  7. Analysis of nucleolar morphology and protein localization as an indicator of nuclear reprogramming

    DEFF Research Database (Denmark)

    Østrup, Olga; Pedersen, Hanne Skovsgaard; Holm, Hanne M.;

    2015-01-01

    to cloning by somatic cell nuclear transfer. However, when cells are reprogrammed by less fundamental means, as for example treatment by Xenopus extract or expression of pluripotency genes, more subtle nucleolar modulations can also be noted. The monitoring and understanding of the reprogramming...

  8. The labyrinth of nuclear reprogramming

    Institute of Scientific and Technical Information of China (English)

    Ignacio Sancho-Martinez; Emmanuel Nivet; Juan Carlos Izpisua Belmonte

    2011-01-01

    Human embryonic stem cells (ESCs) have the capability to differentiate into all somatic cell types,a process that recapitulates the early stages of human development.However,the use of ESCs raises several controversies,particularly concerning the ethical dilemma regarding the use of human embryonic material and the need for embryo destruction.

  9. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells.

  10. Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Jin, Long; Zhu, Hai-Ying; Guo, Qing; Li, Xiao-Chen; Zhang, Yu-Chen; Cui, Cheng-Du; Li, Wen-Xue; Cui, Zheng-Yun; Yin, Xi-Jun; Kang, Jin-Dan

    2017-01-01

    Cloning remains as an important technique to enhance the reconstitution and distribution of animal population with high-genetic merit. One of the major detrimental factors of this technique is the abnormal epigenetic modifications. MGCD0103 is known as a histone deacetylase inhibitor. In this study, we investigated the effect of MGCD0103 on the in vitro blastocyst formation rate in porcine somatic cell nuclear transferred (SCNT) embryos and expression in acetylation of the histone H3 lysine 9 and histone H4 lysine 12. We compared the in vitro embryonic development of SCNT embryos treated with different concentrations of MGCD0103 for 24 hours. Our results reported that treating with 0.2-μM MGCD0103 for 24 hours effectively improved the development of SCNT embryos, in comparison to the control group (blastocyst formation rate, 25.5 vs. 10.7%, P transferred into two surrogate sows, one of whom became pregnant and three fetuses developed. These results suggest that MGCD0103 can enhance the nuclear reprogramming and improve in vitro developmental potential of porcine SCNT embryos.

  11. DNA methylation programming and reprogramming in primate embryonic stem cells.

    Science.gov (United States)

    Cohen, Netta Mendelson; Dighe, Vikas; Landan, Gilad; Reynisdóttir, Sigrún; Palsson, Arnar; Mitalipov, Shoukhrat; Tanay, Amos

    2009-12-01

    DNA methylation is an important epigenetic mechanism, affecting normal development and playing a key role in reprogramming epigenomes during stem cell derivation. Here we report on DNA methylation patterns in native monkey embryonic stem cells (ESCs), fibroblasts, and ESCs generated through somatic cell nuclear transfer (SCNT), identifying and comparing epigenome programming and reprogramming. We characterize hundreds of regions that are hyper- or hypomethylated in fibroblasts compared to native ESCs and show that these are conserved in human cells and tissues. Remarkably, the vast majority of these regions are reprogrammed in SCNT ESCs, leading to almost perfect correlation between the epigenomic profiles of the native and reprogrammed lines. At least 58% of these changes are correlated in cis to transcription changes, Polycomb Repressive Complex-2 occupancy, or binding by the CTCF insulator. We also show that while epigenomic reprogramming is extensive and globally accurate, the efficiency of adding and stripping DNA methylation during reprogramming is regionally variable. In several cases, this variability results in regions that remain methylated in a fibroblast-like pattern even after reprogramming.

  12. Dynamic culture improves cell reprogramming efficiency.

    Science.gov (United States)

    Sia, Junren; Sun, Raymond; Chu, Julia; Li, Song

    2016-06-01

    Cell reprogramming to pluripotency is an inefficient process and various approaches have been devised to improve the yield of induced pluripotent stem cells. However, the effect of biophysical factors on cell reprogramming is not well understood. Here we showed that, for the first time, dynamic culture with orbital shaking significantly improved the reprogramming efficiency in adherent cells. Manipulating the viscosity of the culture medium suggested that the improved efficiency is mainly attributed to convective mixing rather than hydrodynamic shear stress. Temporal studies demonstrated that the enhancement of reprogramming efficiency required the dynamic culture in the middle but not early phase. In the early phase, fibroblasts had a high proliferation rate, but as the culture became over-confluent in the middle phase, expression of p57 was upregulated to inhibit cell proliferation and consequently, cell reprogramming. Subjecting the over confluent culture to orbital shaking prevented the upregulation of p57, thus improving reprogramming efficiency. Seeding cells at low densities to avoid over-confluency resulted in a lower efficiency, and optimal reprogramming efficiency was attained at a high seeding density with dynamic culture. Our findings provide insight into the underlying mechanisms of how dynamic culture condition regulate cell reprogramming, and will have broad impact on cell engineering for regenerative medicine and disease modeling.

  13. Effect of the time interval between fusion and activation on epigenetic reprogramming and development of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Liu, Jun; Wang, Yongsheng; Su, Jianmin; Wang, Lijun; Li, Ruizhe; Li, Qian; Wu, Yongyan; Hua, Song; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2013-04-01

    Previous studies have shown that the time interval between fusion and activation (FA interval) play an important role in nuclear remodeling and in vitro development of somatic cell nuclear transfer (SCNT) embryos. However, the effects of FA interval on the epigenetic reprogramming and in vivo developmental competence of SCNT embryos remain unknown. In the present study, the effects of different FA intervals (0 h, 2 h, and 4 h) on the epigenetic reprogramming and developmental competence of bovine SCNT embryos were assessed. The results demonstrated that H3 lysine 9 (H3K9ac) levels decreased rapidly after fusion in all three groups. H3K9ac was practically undetectable 2 h after fusion in the 2-h and 4-h FA interval groups. However, H3K9ac was still evidently detectable in the 0-h FA interval group. The H3K9ac levels increased 10 h after fusion in all three groups, but were higher in the 2-h and 4-h FA interval groups than that in the 0-h FA interval group. The methylation levels of the satellite I region in day-7 blastocysts derived from the 2-h or 4-h FA interval groups was similar to that of in vitro fertilization blastocysts and is significantly lower than that of the 0-h FA interval group. SCNT embryos derived from 2-h FA interval group showed higher developmental competence than those from the 0-h and 4-h FA interval groups in terms of cleavage rate, blastocyst formation rate, apoptosis index, and pregnancy and calving rates. Hence, the FA interval is an important factor influencing the epigenetic reprogramming and developmental competence of bovine SCNT embryos.

  14. Abnormalities in human pluripotent cells due to reprogramming mechanisms.

    Science.gov (United States)

    Ma, Hong; Morey, Robert; O'Neil, Ryan C; He, Yupeng; Daughtry, Brittany; Schultz, Matthew D; Hariharan, Manoj; Nery, Joseph R; Castanon, Rosa; Sabatini, Karen; Thiagarajan, Rathi D; Tachibana, Masahito; Kang, Eunju; Tippner-Hedges, Rebecca; Ahmed, Riffat; Gutierrez, Nuria Marti; Van Dyken, Crystal; Polat, Alim; Sugawara, Atsushi; Sparman, Michelle; Gokhale, Sumita; Amato, Paula; Wolf, Don P; Ecker, Joseph R; Laurent, Louise C; Mitalipov, Shoukhrat

    2014-07-10

    Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although embryonic stem cells (ES cells) from in vitro fertilized embryos (IVF ES cells) represent the 'gold standard', they are allogeneic to patients. Autologous induced pluripotent stem cells (iPS cells) are prone to epigenetic and transcriptional aberrations. To determine whether such abnormalities are intrinsic to somatic cell reprogramming or secondary to the reprogramming method, genetically matched sets of human IVF ES cells, iPS cells and nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT) were subjected to genome-wide analyses. Both NT ES cells and iPS cells derived from the same somatic cells contained comparable numbers of de novo copy number variations. In contrast, DNA methylation and transcriptome profiles of NT ES cells corresponded closely to those of IVF ES cells, whereas iPS cells differed and retained residual DNA methylation patterns typical of parental somatic cells. Thus, human somatic cells can be faithfully reprogrammed to pluripotency by SCNT and are therefore ideal for cell replacement therapies.

  15. Isolation, Culture, Differentiation, and Nuclear Reprogramming of Mongolian Sheep Fetal Bone Marrow-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Su, Xiaohu; Ling, Yu; Liu, Chunxia; Meng, Fanhua; Cao, Junwei; Zhang, Li; Zhou, Huanmin; Liu, Zongzheng; Zhang, Yanru

    2015-08-01

    We have characterized the differentiation potentiality and the developmental potential of cloned embryos of fetal bone marrow mesenchymal stem cells (BMSCs) isolated from Mongolian sheep. BMSCs were harvested by centrifuging after the explants method and the mononuclear cells obtained were cultured. The isolated BMSCs were uniform, with a fibroblast-like spindle or stellate appearance, and we confirmed expression of OCT4, SOX2, and NANOG genes at passage 3 (P3) by RT-PCR. We measured the growth of the passage 1, 5, and 10 cultures and found exponential growth with a population doubling time of 29.7±0.05 h. We cultured the P3 BMSCs in vitro under inductive environments and were able to induce them to undergo neurogenesis and form cardiomyocytes and adipocytes. Donor cells at passages 3-4 were used for nuclear transfer (NT). We found the BMSCs could be expanded in vitro and used as nuclear donors for somatic cell nuclear transfer (SCNT). Thus, BMSCs are an attractive cell type for large-animal autologous studies and will be valuable material for somatic cell cloning and future transgenic research.

  16. Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection.

    Science.gov (United States)

    Kim, Jong Soo; Choi, Hyun Woo; Hong, Yean Ju; Do, Jeong Tae

    2016-01-01

    Induced pluripotent stem (iPS) cells can be directly generated from somatic cells by overexpression of defined transcription factors. iPS cells can perpetually self-renew and differentiate into all cell types of an organism. iPS cells were first generated through infection with retroviruses that contain reprogramming factors. However, development of an exogene-free iPS cell generation method is crucial for future therapeutic applications, because integrated exogenes result in the formation of tumors in chimeras and regain pluripotency after differentiation in vitro. Here, we describe a method to generate iPS cells by transfection of plasmid vectors and to convert partially reprogrammed cells into fully reprogrammed iPS cells by switching from mouse ESC culture conditions to KOSR-based media with bFGF. We also describe basic methods used to characterize fully reprogrammed iPS cells.

  17. Commentary: "re-programming or selecting adult stem cells?".

    Science.gov (United States)

    Trosko, James E

    2008-01-01

    The recent observations that embryonic stemness-associated genes could assist in the "de-differentiation" of adult skin fibroblast cells to "embryonic-like stem cells", using the "somatic cell nuclear transfer" techniques, have been interpreted as indicating a "re-programming" of genes. These reports have demonstrated a "proof of principle" approach to by-pass many, but not all, of the ethical, scientific and medical limitations of the "therapeutic cloning" of embryonic stem cells from embryos. However, while the interpretation that real "re-programming" of all those somatic fibroblastic differentiation genes might be correct, there does exists an alternative hypothesis of these exciting results. Based on the fact that multipotent adult stem cells exist in most, if not all, adult organs, the possibility exists that all these recent "re-programming" results, using the somatic nuclear transfer techniques, actually were the results of transferred rare nuclear material from the adult stem cells residing in the skin of the mouse, monkey and human samples. An examination of the rationale for this challenging hypothesis has been drawn from the hypothesis of the "stem cell theory of cancer", as well as from the field of human adult stem cells research.

  18. Identification of potential nuclear reprogramming and differentiation factors by a novel selection method for cloning chromatin-binding proteins

    Institute of Scientific and Technical Information of China (English)

    LiuWang; AihuaZheng; LingYi; ChongrenXu; MingxiaoDing; HongkuiDeng

    2005-01-01

    Nuclear reprogramming is critical for animal cloning and stem cell creation through nuclear transfer, which requires extensive remodeling of chromosomal architecture involving dramatic changes in chromatin-binding proteins. To understand the mechanism of nuclear reprogramming, it is critical to identify chromatin-binding factors specify the reprogramming process. In this report, we have developed a high-throughput selection method, based on T7 phage display and chromatin immunoprecipitation, to isolate chromatin-binding factors expressed in mouse embryonic stem cells using primary mouse embryonic fibroblast chromatin. Seven chromatin-binding proteins have been isolated by this method. We have also isolated several chromatin-binding proteins involved in hepatocyte differentiation. Our method provides a powerful tool to rapidly and selectively identify chromatin-binding proteins. The method can be used to study epigenetic modification of chromatin during nuclear reprogramming, cell differentiation, and transdifferentiation.

  19. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway

    Science.gov (United States)

    Corominas-Faja, Bruna; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; López-Bonet, Eugeni; Lupu, Ruth; Alarcón, Tomás; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Vazquez-Martin, Alejandro; Menendez, Javier A

    2013-01-01

    cells. Consistent with the downregulation of AMPK expression, immunoblotting procedures confirmed upregulation of p70S6K and increased phosphorylation of mTOR in Sox2-overexpressing CSC-like cell populations. Using an in vitro model of the de novo generation of CSC-like states through the nuclear reprogramming of an established breast cancer cell line, we reveal that the transcriptional suppression of mTOR repressors is an intrinsic process occurring during the acquisition of CSC-like properties by differentiated populations of luminal-like breast cancer cells. This approach may provide a new path for obtaining information about preventing the appearance of CSCs through the modulation of the AMPK/mTOR pathway. PMID:23974095

  20. Delayed transition to new cell fates during cellular reprogramming.

    Science.gov (United States)

    Cheng, Xianrui; Lyons, Deirdre C; Socolar, Joshua E S; McClay, David R

    2014-07-15

    In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.

  1. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Hu, Kejin

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vect...

  2. Reprogramming stem cells is a microenvironmental task

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Inman, Jamie

    2008-10-14

    That tumor cells for all practical purposes are unstable and plastic could be expected. However, the astonishing ability of the nuclei from cells of normal adult tissues to be reprogrammed - given the right embryonic context - found its final truth even for mammals in the experiments that allowed engineering Dolly (1). The landmark experiments showed that nuclei originating from cells of frozen mammary tissues were capable of being reprogrammed by the embryonic cytoplasm and its microenvironment to produce a normal sheep. The rest is history. However, whether microenvironments other than those of the embryos can also reprogram adult cells of different tissue origins still containing their cytoplasm is of obvious interest. In this issue of PNAS, the laboratory of Gilbert Smith (2) reports on how the mammary gland microenvironment can reprogram both embryonic and adult stem neuronal cells. The work is a follow-up to their previous report on testis stem cells that were reprogrammed by the mammary microenvironment (3). They demonstrated that cells isolated from the seminiferous tubules of the mature testis, mixed with normal mammary epithelial cells, contributed a sizable number of epithelial progeny to normal mammary outgrowths in transplanted mammary fat pads. However, in those experiments they were unable to distinguish which subpopulation of the testis cells contributed progeny to the mammary epithelial tree. The current work adds new, compelling, and provocative information to our understanding of stem cell plasticity. Booth et al. (2) use neuronal stem cells (NSCs) isolated from WAP-cre/R26R mice combined with unlabeled mammary epithelial cells that subsequently are implanted in cleared mammary fat pads. In this new microenvironment, the NSCs that are incorporated into the branching mammary tree make chimeric glands (Fig. 1) that remarkably can also express the milk protein {beta}-casein, progesterone receptor, and estrogen receptor {alpha}. Remarkably, the

  3. Somatic cell reprogramming-free generation of genetically modified pigs

    Science.gov (United States)

    Tanihara, Fuminori; Takemoto, Tatsuya; Kitagawa, Eri; Rao, Shengbin; Do, Lanh Thi Kim; Onishi, Akira; Yamashita, Yukiko; Kosugi, Chisato; Suzuki, Hitomi; Sembon, Shoichiro; Suzuki, Shunichi; Nakai, Michiko; Hashimoto, Masakazu; Yasue, Akihiro; Matsuhisa, Munehide; Noji, Sumihare; Fujimura, Tatsuya; Fuchimoto, Dai-ichiro; Otoi, Takeshige

    2016-01-01

    Genetically modified pigs for biomedical applications have been mainly generated using the somatic cell nuclear transfer technique; however, this approach requires complex micromanipulation techniques and sometimes increases the risks of both prenatal and postnatal death by faulty epigenetic reprogramming of a donor somatic cell nucleus. As a result, the production of genetically modified pigs has not been widely applied. We provide a simple method for CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing in pigs that involves the introduction of Cas9 protein and single-guide RNA into in vitro fertilized zygotes by electroporation. The use of gene editing by electroporation of Cas9 protein (GEEP) resulted in highly efficient targeted gene disruption and was validated by the efficient production of Myostatin mutant pigs. Because GEEP does not require the complex methods associated with micromanipulation for somatic reprogramming, it has the potential for facilitating the genetic modification of pigs. PMID:27652340

  4. [Reprogramming of somatic cells. Problems and solutions].

    Science.gov (United States)

    Schneider, T A; Fishman, V S; Liskovykh, M A; Ponamartsev, S V; Serov, O L; Tomilin, A N; Alenina, N

    2014-01-01

    An adult mammal is composed of more than 200 different types of specialized somatic cells whose differentiated state remains stable over the life of the organism. For a long time it was believed that the differentiation process is irreversible, and the transition between the two types of specialized cells is impossible. The possibility of direct conversion of one differentiated cell type to another was first shown in the 80s of the last century in experiments on the conversion of fibroblasts into myoblasts by ectopic expression of the transcription factor MyoD. Surprisingly, this technology has remained unclaimed in cell biology for a long time. Interest in it revived after 200 thanks to the research of Novel Prize winner Shinya Yamanaka who has shown that a small set of transcription factors (Oct4, Sox2, Klf4 and c-Myc) is capable of restoring pluripotency in somatic cells which they lost in the process of differentiation. In 2010, using a similar strategy and the tissue-specific transcription factors Vierbuchen and coauthors showed the possibility of direct conversion of fibroblasts into neurons, i. e. the possibility of transdifferentiation of one type of somatic cells in the other. The works of these authoras were a breakthrough in the field of cell biology and gave a powerful impulse to the development of cell technologies for the needs of regenerative medicine. The present review discusses the main historical discoveries that preceded this work, evaluates the status of the problem and the progress in the development of methods for reprogramming at the moment, describes the main approaches to solving the problems of reprogramming of somatic cells into neuronal, and briefly discusses the prospect of application of reprogramming and transdifferentiation of cells for such important application areas as regenerative medicine, cell replacement therapy and drug screening.

  5. Metabostemness: Metaboloepigenetic reprogramming of cancer stem-cell functions

    Science.gov (United States)

    Menendez, Javier A.; Corominas-Faja, Bruna; Cuyàs, Elisabet; Alarcón, Tomás

    2014-01-01

    Cancer researchers are currently embarking on one of their field's biggest challenges, namely the understanding of how cellular metabolism or certain classes of elite metabolites (e.g., oncometabolites) can directly influence chromatin structure and the functioning of epi-transcriptional circuits to causally drive tumour formation. We here propose that refining the inherent cell attractor nature of nuclear reprogramming phenomena by adding the under-appreciated capacity of metabolism to naturally reshape the Waddingtonian landscape's topography provides a new integrative metabolo-epigenetic model of the cancer stem cell (CSC) theory. PMID:25621295

  6. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    Directory of Open Access Journals (Sweden)

    Hyun Sik Jang

    Full Text Available Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner.

  7. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks.

    Science.gov (United States)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-12-10

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.

  8. Manipulating Somatic Cells to Remove Barriers in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Chung, Julia

    2013-01-01

    Development leads unidirectionally towards a more restricted cell fate that is usually stable. However, it has been proven that developmental systems are reversible by the success of animal cloning of a differentiated somatic genome through somatic cell nuclear transfer (SCNT). Recently, reprogramming of somatic cells to a pluripotent embryonic stem cell (ESC)-like state by introducing defined transcripton factor has been achieved, resulting in the generation of induced pluripotent stem cells...

  9. Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks

    NARCIS (Netherlands)

    Benevento, Marco; Tonge, Peter D; Puri, Mira C; Hussein, Samer M I; Cloonan, Nicole; Wood, David L; Grimmond, Sean M; Nagy, Andras; Munoz, Javier; Heck, Albert J R

    2014-01-01

    The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quan

  10. Translational research on reprogramming of somatic cells

    Institute of Scientific and Technical Information of China (English)

    Yanhua Li; Jiahui Yin; Bingbing Zhang; Ping Zhou; Bin Feng; Fangyi Zhang; Yongzhong Lin; Zhanhua Liang; Jianling Du; Minghui Lü; Tiezheng Zheng; Jie Lin; Siyu Liu; Hao Hong; Xing Meng; Dandan Xia; Yang Sun; Pan Wei; Nan Cai; Hongye Li; Shuang Wu; Hui Zhao; Changkai Sun; Yuyuan Li; Changyu Gao; Wei Li; Ye Dai; Junde Wang; Hui Zhao; Xiaoxin Tan; Lili Men; Hui Ma; Jun Xu; Xiaohan Yang; Zengchun Hu; Ling Wang; Hong Wang; Pin Sun; Huifang Guo; Guirong Song; Hui Liu1; Baoshuai Shan; Lu Han; Linlang Liang; Min Wang; Xiaochen Wang; Dan Wang; Guihua Chen; Jianting Chen; Xiangyou Sun; Jun Xue; Zhiqi Wang; Jing Wang; Yongqing Zhang; Dongfeng Cai; Mozhen Liu; Guiping Zhang; Guoming Luan; Jianli Wang; Ming Fan; Xuetao Cao; Chao Wan; Qigui Liu; Anchun Yin

    2014-01-01

    Cerebrovascular diseases,dementia,diabetes,malignant tumors and degenerative bone diseases remain high prevalence,incidence,disability and mortality rates.One important reason might be the slow or stagnated progress in translating and applying cytoprotection and cellular repair researches into clinical practice.Based on collaboration among biomedical re-searchers,database experts,computer programmers,statisticians and management engineers,this is the first study to apply quanti-tative comparison on the overall characteristics and partial correlation analysis on the large-scale complex information and data regarding the topic“mature cells can be reprogrammed to become pluripotent”proposed by Sir John B.Gurdon and Shinya Yamanaka who were jointly awarded with 2012 Nobel Prize in Physiology or Medicine,as well as articles that cited publications of the two Nobel Laureates to discuss the prospects of translating somatic cell reprogramming researches into clinical practice and cor-responding implementation strategies.The study found that there was statistically significant difference between the two Nobel Laureates with regard to the number,publication date,subject categories and scientific and technological focuses of their origi-nal researches.The study revealed the importance,objectives,approaches and research trends of translational medicine,especially translational neuroscience.The study also identified the challenges that China should overcome to improve its medical research management scheme.

  11. Signaling involved in stem cell reprogramming and differentiation

    Institute of Scientific and Technical Information of China (English)

    Shihori; Tanabe

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have reve-aled that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell pro-gramming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review,the molecular interactions and signaling pathways related to stem cell differentiation are discussed.

  12. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  13. Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells

    NARCIS (Netherlands)

    Carey, B.W.; Markoulaki, S.; Hanna, J.H.; Faddah, D.A.; Buganim, Y.; Kim, J.; Ganz, K.; Steine, E.J.; Cassady, J.P.; Creyghton, M.P.; Welstead, G.G.; Gao, Q.; Jaenisch, R.

    2011-01-01

    We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pl

  14. Cell reprogramming for the creation of patient-specific pluripotent stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Huiqun YIN; Heng WANG; Hongguo CAO; Yunhai ZHANG; Yong TAO; Xiaorong ZHANG

    2009-01-01

    Pluripotent stem cells (PSCs), characterized by being able to differentiate into various types of cells, are generally regarded as the most promising sources for cell replacement therapies. However, as typical PSCs, embryonic stem cells (ESCs) are still far away from human clinics so far due to ethical issues and immune rejection response. One way to avoid such problems is to use stem cells derived from autologous somatic cells. Up to date, PSCs could be obtained by reprogramming somatic cells to pluripotent state with approaches including somatic cell nuclear transfer (SCNT), fusion with stem cells, coculture with cells' extracts, and induction with defined factors. Among these, through reprogramming somatic cells directly by retroviral transduction of transcription factors, induced pluripotent stem (iPS) cells have been successfully generated in both mouse and human recently. These iPS cells shared similar morphology and growth properties to ESCs, could express ESCs marker genes, and could produce adult or germline-competent chimaeras and differentiate into a variety of cell types, including germ cells. Moreover, with iPS technique, patient specific PSCs could be derived more easily from handful somatic cells in human without immune rejection responses innately connected to ESCs. Consequently, generation of iPS cells would be of great help to further understand disease mechanisms, drug screening, and cell transplantation therapies as well.In summary,the recent progress in the study of cell reprogramming for the creation of patientspecific pluripotent stem cells, some existing problems, and research perspectives were suggested.

  15. Concise review: reprogramming strategies for cardiovascular regenerative medicine: from induced pluripotent stem cells to direct reprogramming.

    Science.gov (United States)

    Budniatzky, Inbar; Gepstein, Lior

    2014-04-01

    Myocardial cell-replacement therapies are emerging as novel therapeutic paradigms for myocardial repair but are hampered by the lack of sources of autologous human cardiomyocytes. The recent advances in stem cell biology and in transcription factor-based reprogramming strategies may provide exciting solutions to this problem. In the current review, we describe the different reprogramming strategies that can give rise to cardiomyocytes for regenerative medicine purposes. Initially, we describe induced pluripotent stem cell technology, a method by which adult somatic cells can be reprogrammed to yield pluripotent stem cells that could later be coaxed ex vivo to differentiate into cardiomyocytes. The generated induced pluripotent stem cell-derived cardiomyocytes could then be used for myocardial cell transplantation and tissue engineering strategies. We also describe the more recent direct reprogramming approaches that aim to directly convert the phenotype of one mature cell type (fibroblast) to another (cardiomyocyte) without going through a pluripotent intermediate cell type. The advantages and shortcomings of each strategy for cardiac regeneration are discussed, along with the hurdles that need to be overcome on the road to clinical translation.

  16. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  17. Lineage development of cell fusion hybrids upon somatic reprogramming

    OpenAIRE

    2011-01-01

    Tese de mestrado. Biologia (Biologia Molecular e Genética). Universidade de Lisboa, Faculdade de Ciências, 2011 Somatic cell reprogramming has been extensively studied over the last years and opened new perspectives in the use of pluripotent cells for regenerative biomedical purposes. Spontaneous cell fusion has been suggested to be involved in regenerative processes in vivo. Strong evidences support the hypothesis that the reprogrammed hybrids resulting from the fusion between a pluripote...

  18. Regulation of L-threonine dehydrogenase in somatic cell reprogramming.

    Science.gov (United States)

    Han, Chuanchun; Gu, Hao; Wang, Jiaxu; Lu, Weiguang; Mei, Yide; Wu, Mian

    2013-05-01

    Increasing evidence suggests that metabolic remodeling plays an important role in the regulation of somatic cell reprogramming. Threonine catabolism mediated by L-threonine dehydrogenase (TDH) has been recognized as a specific metabolic trait of mouse embryonic stem cells. However, it remains unknown whether TDH-mediated threonine catabolism could regulate reprogramming. Here, we report TDH as a novel regulator of somatic cell reprogramming. Knockdown of TDH inhibits, whereas induction of TDH enhances reprogramming efficiency. Moreover, microRNA-9 post-transcriptionally regulates the expression of TDH and thereby inhibits reprogramming efficiency. Furthermore, protein arginine methyltransferase (PRMT5) interacts with TDH and mediates its post-translational arginine methylation. PRMT5 appears to regulate TDH enzyme activity through both methyltransferase-dependent and -independent mechanisms. Functionally, TDH-facilitated reprogramming efficiency is further enhanced by PRMT5. These results suggest that TDH-mediated threonine catabolism controls somatic cell reprogramming and indicate the importance of post-transcriptional and post-translational regulation of TDH.

  19. Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Jiameng Dan; Bingfeng Zuo; Minshu Li; Qian Zhang; Na Liu; Lingyi Chen; Xinghua Pan,; Sarantis Gagos; David L Keefe; Lin Liu; Yu Yin; Xiaoying Ye; Kai Liu; Haiying Zhu; Lingling Wang; Maria Chiourea; Maja Okuka; Guangzhen Ji

    2012-01-01

    Rejuvenation of telomeres with various lengths has been found in induced pluripotent stem cells (iPSCs).Mechanisms of telomere length regulation during induction and proliferation of iPSCs remain elusive.We show that telomere dynamics are variable in mouse iPSCs during reprogramming and passage,and suggest that these differences likely result from multiple potential factors,including the telomerase machinery,teiomerase-independent mechanisms and clonal influences including reexpression of exogenous reprogramming factors.Using a genetic model of telomerase-deficient (Terc-/- and Terc+/-) cells for derivation and passages of iPSCs,we found that telomerase plays a critical role in reprogramming and self-renewal of iPSCs.Further,telomerase maintenance of telomeres is necessary for induction of true pluripotency while the alternative pathway of elongation and maintenance by recombination is also required,but not sufficient.Together,several aspects of telomere biology may account for the variable telomere dynamics in iPSCs.Notably,the mechanisms employed to maintain telomeres during iPSC reprogramming are very similar to those of embryonic stem cells.These findings may also relate to the cloning field where these mechanisms could be responsible for telomere heterogeneity after nuclear reprogramming by somatic cell nuclear transfer.

  20. Reprogramming to pluripotency: from frogs to stem cells.

    Science.gov (United States)

    Rossant, Janet

    2009-09-18

    This year's Albert Lasker Basic Medical Research Award goes to John Gurdon and Shinya Yamanaka for their contributions to our understanding of how to reprogram adult cells back to early embryonic states.

  1. Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering

    Directory of Open Access Journals (Sweden)

    Gaskon Ibarretxe

    2012-01-01

    Full Text Available The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration.

  2. Mouse cloning and somatic cell reprogramming using electrofused blastomeres

    Institute of Scientific and Technical Information of China (English)

    Amjad Riaz; Xiaoyang Zhao; Xiangpeng Dai; Wei Li; Lei Liu; Haifeng Wan; Yang Yu; Liu Wang; Qi Zhou

    2011-01-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem(ES)cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved.Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  3. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  4. The Role of microRNAs in Animal Cell Reprogramming.

    Science.gov (United States)

    Cruz-Santos, María Concepción; Aragón-Raygoza, Alejandro; Espinal-Centeno, Annie; Arteaga-Vázquez, Mario; Cruz-Hernández, Andrés; Bako, Laszlo; Cruz-Ramírez, Alfredo

    2016-07-15

    Our concept of cell reprogramming and cell plasticity has evolved since John Gurdon transferred the nucleus of a completely differentiated cell into an enucleated Xenopus laevis egg, thereby generating embryos that developed into tadpoles. More recently, induced expression of transcription factors, oct4, sox2, klf4, and c-myc has evidenced the plasticity of the genome to change the expression program and cell phenotype by driving differentiated cells to the pluripotent state. Beyond these milestone achievements, research in artificial cell reprogramming has been focused on other molecules that are different than transcription factors. Among the candidate molecules, microRNAs (miRNAs) stand out due to their potential to control the levels of proteins that are involved in cellular processes such as self-renewal, proliferation, and differentiation. Here, we review the role of miRNAs in the maintenance and differentiation of mesenchymal stem cells, epimorphic regeneration, and somatic cell reprogramming to induced pluripotent stem cells.

  5. Reprogramming fibroblasts into induced pluripotent stem cells with Bmi

    Institute of Scientific and Technical Information of China (English)

    Jai-Hee Moon; June Seok Heo; Jun Sung Kim; Eun Kyoung Jun; Jung Han Lee; Aeree Kim; Jonggun Kim

    2011-01-01

    Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by the transcription factors Oct4,Sox2,and Klf4 in combination with c-Myc.Recently,Sox2 plus Oct4 was shown to reprogram fibroblasts and Oct4 alone was able to reprogram mouse and human neural stem cells (NSCs) into iPS cells.Here,we report that Bmi1 leads to the transdifferentiation of mouse fibroblasts into NSC-like cells,and,in combination with Oct4,can replace Sox2,Klf4 and c-Myc during the reprogramming of fibroblasts into iPS cells.Furthermore,activation of sonic hedgehog signaling (by Shh,purmorphamine,or oxysterol) compensates for the effects of Bmil,and,in combination with Oct4,reprograms mouse embryonic and adult fibroblasts into iPS cells.One- and two-factor iPS cells are similar to mouse embryonic stem cells in their global gene expression profile,epigenetic status,and in vitro and in vivo differentiation into all three germ layers,as well as teratoma formation and germline transmission in vivo.These data support that converting fibroblasts with Bmi1 or activation of the sonic hedgehog pathway to an intermediate cell type that expresses Sox2,KIf4,and N-Myc allows iPS generation via the addition of Oct4.

  6. Epigenetic reprogramming of breast cancer cells with oocyte extracts

    Directory of Open Access Journals (Sweden)

    Kumari Rajendra

    2011-01-01

    Full Text Available Abstract Background Breast cancer is a disease characterised by both genetic and epigenetic alterations. Epigenetic silencing of tumour suppressor genes is an early event in breast carcinogenesis and reversion of gene silencing by epigenetic reprogramming can provide clues to the mechanisms responsible for tumour initiation and progression. In this study we apply the reprogramming capacity of oocytes to cancer cells in order to study breast oncogenesis. Results We show that breast cancer cells can be directly reprogrammed by amphibian oocyte extracts. The reprogramming effect, after six hours of treatment, in the absence of DNA replication, includes DNA demethylation and removal of repressive histone marks at the promoters of tumour suppressor genes; also, expression of the silenced genes is re-activated in response to treatment. This activity is specific to oocytes as it is not elicited by extracts from ovulated eggs, and is present at very limited levels in extracts from mouse embryonic stem cells. Epigenetic reprogramming in oocyte extracts results in reduction of cancer cell growth under anchorage independent conditions and a reduction in tumour growth in mouse xenografts. Conclusions This study presents a new method to investigate tumour reversion by epigenetic reprogramming. After testing extracts from different sources, we found that axolotl oocyte extracts possess superior reprogramming ability, which reverses epigenetic silencing of tumour suppressor genes and tumorigenicity of breast cancer cells in a mouse xenograft model. Therefore this system can be extremely valuable for dissecting the mechanisms involved in tumour suppressor gene silencing and identifying molecular activities capable of arresting tumour growth. These applications can ultimately shed light on the contribution of epigenetic alterations in breast cancer and advance the development of epigenetic therapies.

  7. Mitochondrial physiology and gene expression analyses reveal metabolic and translational dysregulation in oocyte-induced somatic nuclear reprogramming.

    Directory of Open Access Journals (Sweden)

    Telma C Esteves

    Full Text Available While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT, the enucleated oocyte (ooplasm must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene. We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.

  8. Telomere reprogramming and maintenance in porcine iPS cells.

    Science.gov (United States)

    Ji, Guangzhen; Ruan, Weimin; Liu, Kai; Wang, Fang; Sakellariou, Despoina; Chen, Jijun; Yang, Yang; Okuka, Maja; Han, Jianyong; Liu, Zhonghua; Lai, Liangxue; Gagos, Sarantis; Xiao, Lei; Deng, Hongkui; Li, Ning; Liu, Lin

    2013-01-01

    Telomere reprogramming and silencing of exogenous genes have been demonstrated in mouse and human induced pluripotent stem cells (iPS cells). Pigs have the potential to provide xenotransplant for humans, and to model and test human diseases. We investigated the telomere length and maintenance in porcine iPS cells generated and cultured under various conditions. Telomere lengths vary among different porcine iPS cell lines, some with telomere elongation and maintenance, and others telomere shortening. Porcine iPS cells with sufficient telomere length maintenance show the ability to differentiate in vivo by teratoma formation test. IPS cells with short or dysfunctional telomeres exhibit reduced ability to form teratomas. Moreover, insufficient telomerase and incomplete telomere reprogramming and/or maintenance link to sustained activation of exogenous genes in porcine iPS cells. In contrast, porcine iPS cells with reduced expression of exogenous genes or partial exogene silencing exhibit insufficient activation of endogenous pluripotent genes and telomerase genes, accompanied by telomere shortening with increasing passages. Moreover, telomere doublets, telomere sister chromatid exchanges and t-circles that presumably are involved in telomere lengthening by recombination also are found in porcine iPS cells. These data suggest that both telomerase-dependent and telomerase-independent mechanisms are involved in telomere reprogramming during induction and passages of porcine iPS cells, but these are insufficient, resulting in increased telomere damage and shortening, and chromosomal instability. Active exogenes might compensate for insufficient activation of endogenous genes and incomplete telomere reprogramming and maintenance of porcine iPS cells. Further understanding of telomere reprogramming and maintenance may help improve the quality of porcine iPS cells.

  9. Renal stem cell reprogramming: Prospects in regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Elvin; E; Morales; Rebecca; A; Wingert

    2014-01-01

    Stem cell therapy is a promising future enterprise for renal replacement in patients with acute and chronic kidney disease, conditions which affect millions worldwide and currently require patients to undergo lifelong medical treatments through dialysis and/or organ transplant. Reprogramming differentiated renal cells harvested from the patient back into a pluripotent state would decrease the risk of tissue rejection and provide a virtually unlimited supply of cells for regenerative medicine treatments, making it an exciting area of current research in nephrology. Among the major hurdles that need to be overcome before stem cell therapy for the kidney can be applied in a clinical setting are ensuring the fidelity and relative safety of the reprogrammed cells, as well as achieving feasible efficiency in the reprogramming processes that are utilized. Further, improved knowledge about the genetic control of renal lineage development is vital to identifying predictable and efficient reprogramming approaches, such as the expression of key modulators or the regulation of geneactivity through small molecule mimetics. Here, we discuss several recent advances in induced pluripotent stem cell technologies. We also explore strategies that have been successful in renal progenitor generation, and explore what these methods might mean for the development of cell-based regenerative therapies for kidney disease.

  10. Global Splicing Pattern Reversion during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Sho Ohta

    2013-10-01

    Full Text Available Alternative splicing generates multiple transcripts from a single gene, and cell-type-specific splicing profiles are important for the properties and functions of the cells. Recently, somatic cells have been shown to undergo dedifferentiation after the forced expression of transcription factors. However, it remains unclear whether somatic cell splicing is reorganized during reprogramming. Here, by combining deep sequencing with high-throughput absolute qRT-PCR, we show that somatic splicing profiles revert to pluripotent ones during reprogramming. Remarkably, the splicing pattern in pluripotent stem cells resembles that in testes, and the regulatory regions have specific characteristics in length and sequence. Furthermore, our siRNA screen has identified RNA-binding proteins that regulate splicing events in iPSCs. We have then demonstrated that two of the RNA-binding proteins, U2af1 and Srsf3, play a role in somatic cell reprogramming. Our results indicate that the drastic alteration in splicing represents part of the molecular network involved in the reprogramming process.

  11. Reprogramming T cell Lymphocytes to Induced Pluripotent Stem Cells

    Science.gov (United States)

    Bared, Kalia

    The discovery of induced pluripotent stem cells (iPSC) provided a novel technology for the study of development and pharmacology and complement embryonic stem cells (ES) for cell therapy applications. Though iPSC are derived from adult tissue they are comparable to ES cells in their behavior; multi-lineage differentiation and self-renewal. This makes iPSC research appealing because they can be studied in great detail and expanded in culture broadly. Fibroblasts were the first cell type reprogrammed to an iPSC using a retrovirus vector, since then alternative cell types including lymphocytes have been used to generate iPSC. Different types of vectors have also been developed to enhance iPSC formation and quality. However, specific T lymphocyte subsets have not been shown to reprogram to a pluripotent state to date. Here, we proposed to derive iPSC from peripheral blood effector and central memory T cells, reasoning that the resultant iPSC will maintain the epigenetic memory of a T lymphocyte, including the T cell receptor (TCR) gene rearrangement. This epigenetic memory will enable the differentiation and expansion of T cell iPSC into professional T cells containing a specific TCR. These could then be used for cell therapy to target specific antigens, as well as to improve culture techniques to expand T cells in vitro. We studied different gene delivery methods to derive iPSC from different types of T lymphocytes. We assessed the viability of viral transduction using flow cytometry to detect green fluorescent marker contained in the viral construct and quantitative real time polymerase chain reaction (qRT-PCR) to detect Oct4, Klf4, Sox2, and c-Myc gene expression. Our results demonstrate that the Sendai virus construct is the most feasible platform to reprogram T lymphocytes. We anticipate that this platform will provide an efficient and safe approach to derive iPSC from different T cell subsets, including memory T cells.

  12. Epigenetic memory and cell fate reprogramming in plants.

    Science.gov (United States)

    Birnbaum, Kenneth D; Roudier, François

    2017-02-01

    Plants have a high intrinsic capacity to regenerate from adult tissues, with the ability to reprogram adult cell fates. In contrast, epigenetic mechanisms have the potential to stabilize cell identity and maintain tissue organization. The question is whether epigenetic memory creates a barrier to reprogramming that needs to be erased or circumvented in plant regeneration. Early evidence suggests that, while chromatin dynamics impact gene expression in the meristem, a lasting constraint on cell fate is not established until late stages of plant cell differentiation. It is not yet clear whether the plasticity of plant cells arises from the ability of cells to erase identity memory or to deploy cells that may exhibit cellular specialization but still lack an epigenetic restriction on cell fate alteration.

  13. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  14. NANOG priming before full reprogramming may generate germ cell tumours

    Directory of Open Access Journals (Sweden)

    I Grad

    2011-11-01

    Full Text Available Reprogramming somatic cells into a pluripotent state brings patient-tailored, ethical controversy-free cellular therapy closer to reality. However, stem cells and cancer cells share many common characteristics; therefore, it is crucial to be able to discriminate between them. We generated two induced pluripotent stem cell (iPSC lines, with NANOG pre-transduction followed by OCT3/4, SOX2, and LIN28 overexpression. One of the cell lines, CHiPS W, showed normal pluripotent stem cell characteristics, while the other, CHiPS A, though expressing pluripotency markers, failed to differentiate and gave rise to germ cell-like tumours in vivo. Comparative genomic hybridisation analysis of the generated iPS lines revealed that they were genetically more stable than human embryonic stem cell counterparts. This analysis proved to be predictive for the differentiation potential of analysed cells. Moreover, the CHiPS A line expressed a lower ratio of p53/p21 when compared to CHiPS W. NANOG pre-induction followed by OCT3/4, SOX2, MYC, and KLF4 induction resulted in the same tumour-inducing phenotype. These results underline the importance of a re-examination of the role of NANOG during reprogramming. Moreover, this reprogramming method may provide insights into primordial cell tumour formation and cancer stem cell transformation.

  15. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated doma

  16. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  17. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes.

    Science.gov (United States)

    Bui, Hong-Thuy; Kwon, Deug-Nam; Kang, Min-Hui; Oh, Mi-Hye; Park, Mi-Ryung; Park, Woo-Jin; Paik, Seung-Sam; Van Thuan, Nguyen; Kim, Jin-Hoi

    2012-12-01

    Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.

  18. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  19. Telomere dynamics in human cells reprogrammed to pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: Human induced pluripotent stem cells (IPSCs have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell "rejuvenation." METHODOLOGY/PRINCIPAL FINDINGS: We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5, telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs. In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres. CONCLUSIONS/SIGNIFICANCE: While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age.

  20. Self-Renewal and Pluripotency Acquired through Somatic Reprogramming to Human Cancer Stem Cells.

    OpenAIRE

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by...

  1. Privileged Communication Embryonic Development Following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation

    OpenAIRE

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A.; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-01-01

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major epigenetic barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed n...

  2. A Lin28 homologue reprograms differentiated cells to stem cells in the moss Physcomitrella patens

    Science.gov (United States)

    Li, Chen; Sako, Yusuke; Imai, Akihiro; Nishiyama, Tomoaki; Thompson, Kari; Kubo, Minoru; Hiwatashi, Yuji; Kabeya, Yukiko; Karlson, Dale; Wu, Shu-Hsing; Ishikawa, Masaki; Murata, Takashi; Benfey, Philip N.; Sato, Yoshikatsu; Tamada, Yosuke; Hasebe, Mitsuyasu

    2017-01-01

    Both land plants and metazoa have the capacity to reprogram differentiated cells to stem cells. Here we show that the moss Physcomitrella patens Cold-Shock Domain Protein 1 (PpCSP1) regulates reprogramming of differentiated leaf cells to chloronema apical stem cells and shares conserved domains with the induced pluripotent stem cell factor Lin28 in mammals. PpCSP1 accumulates in the reprogramming cells and is maintained throughout the reprogramming process and in the resultant stem cells. Expression of PpCSP1 is negatively regulated by its 3′-untranslated region (3′-UTR). Removal of the 3′-UTR stabilizes PpCSP1 transcripts, results in accumulation of PpCSP1 protein and enhances reprogramming. A quadruple deletion mutant of PpCSP1 and three closely related PpCSP genes exhibits attenuated reprogramming indicating that the PpCSP genes function redundantly in cellular reprogramming. Taken together, these data demonstrate a positive role of PpCSP1 in reprogramming, which is similar to the function of mammalian Lin28. PMID:28128346

  3. Reprogramming chromatin

    DEFF Research Database (Denmark)

    Ehrensberger, Andreas Hasso; Svejstrup, Jesper Qualmann

    2012-01-01

    attributed to high kinetic barriers that affect all cells equally and can only be overcome by rare stochastic events. The barriers to reprogramming are likely to involve transformations of chromatin state because (i) inhibitors of chromatin-modifying enzymes can enhance the efficiency of reprogramming...... and (ii) knockdown or knock-out of chromatin-modifying enzymes can lower the efficiency of reprogramming. Here, we review the relationship between chromatin state transformations (chromatin reprogramming) and cellular reprogramming, with an emphasis on transcription factors, chromatin remodeling factors...

  4. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  5. Autophagy regulates cytoplasmic remodeling during cell reprogramming in a zebrafish model of muscle regeneration.

    Science.gov (United States)

    Saera-Vila, Alfonso; Kish, Phillip E; Louie, Ke'ale W; Grzegorski, Steven J; Klionsky, Daniel J; Kahana, Alon

    2016-10-02

    Cell identity involves both selective gene activity and specialization of cytoplasmic architecture and protein machinery. Similarly, reprogramming differentiated cells requires both genetic program alterations and remodeling of the cellular architecture. While changes in genetic and epigenetic programs have been well documented in dedifferentiating cells, the pathways responsible for remodeling the cellular architecture and eliminating specialized protein complexes are not as well understood. Here, we utilize a zebrafish model of adult muscle regeneration to study cytoplasmic remodeling during cell dedifferentiation. We describe activation of autophagy early in the regenerative response to muscle injury, while blocking autophagy using chloroquine or Atg5 and Becn1 knockdown reduced the rate of regeneration with accumulation of sarcomeric and nuclear debris. We further identify Casp3/caspase 3 as a candidate mediator of cellular reprogramming and Fgf signaling as an important activator of autophagy in dedifferentiating myocytes. We conclude that autophagy plays a critical role in cell reprogramming by regulating cytoplasmic remodeling, facilitating the transition to a less differentiated cell identity.

  6. Stress-mediated p38 activation promotes somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xinxiu Xu; Quan Wang; Yuan Long; Ru Zhang; Xiaoyuan Wei; Mingzhe Xing; Haifeng Gu

    2013-01-01

    Environmental stress-mediated adaptation plays essential roles in the evolution of life.Cellular adaptation mechanisms usually involve the regulation of chromatin structure,transcription,mRNA stability and translation,which eventually lead to efficient changes in gene expression.Global epigenetic change is also involved in the reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined factors.Here we report that environmental stress such as hyperosmosis not only facilitates four factor-mediated reprogramming,but also enhances two or one factor-induced iPS cell generation.Hyperosmosis-induced p38 activation plays a critical role in this process.Constitutive active p38 mimics the positive effect of hyperosmosis,while dominant negative p38 and p38 inhibitor block the effect of hyperosmosis.Further study indicates stress-mediated p38 activation may promote reprogramming by reducing the global DNA methylation level and enhancing the expression of pluripotency genes.Our results demonstrate how simple environmental stress like hyperosmosis helps to alter the fate of cells via intracellular signaling and epigenetic modulation.

  7. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Yakubov, Eduard [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Rechavi, Gidi [Cancer Research Center, Chaim Sheba Medical Center, Tel-Hashomer and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rozenblatt, Shmuel [Department of Molecular Microbiology and Biotechnology, Tel-Aviv University, Tel-Aviv (Israel); Givol, David, E-mail: david.givol@weizmann.ac.il [Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  8. Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells*

    Science.gov (United States)

    Ruiz, Sergio; Panopoulos, Athanasia D.; Montserrat, Nuria; Multon, Marie-Christine; Daury, Aurélie; Rocher, Corinne; Spanakis, Emmanuel; Batchelder, Erika M.; Orsini, Cécile; Deleuze, Jean-François; Izpisua Belmonte, Juan Carlos

    2012-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years, reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene, driven by the reactivation of endogenous stem cell specific promoters, was used as a reprogramming reporter signal. However, similar reporter systems in human cells have not been generated. Here, we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system, we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency. PMID:23019325

  9. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.

  10. Lineage-specific reprogramming as a strategy for cell therapy.

    Science.gov (United States)

    Darabi, Radbod; Perlingeiro, Rita C R

    2008-06-15

    Embryonic stem (ES) cells are endowed with extensive ability for self renewal and differentiation. These features make them a promising candidate for cell therapy. However, despite the enthusiasm and hype surrounding the potential therapeutic use of human ES cells and more recently induced pluripotent stem (iPS) cells, to date few reports have documented successful therapeutic outcome with ES-derived cell populations. This is probably due to two main caveats associated with ES cells, their capacity to form teratomas and the challenge of isolating the appropriate therapeutic cell population from differentiating ES cells. We have focused our efforts on the derivation of skeletal muscle progenitors from ES cells and here we will discuss the strategy of reprogramming lineage choices by overexpression of a master regulator, which has proven successful for the generation of the skeletal myogenic lineage from mouse ES cells.

  11. Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling?

    Science.gov (United States)

    Yilmazer, Açelya; de Lázaro, Irene; Taheri, Hadiseh

    2015-12-01

    Chromatin dynamics have been the major focus of many physiological and pathological processes over the past 20 years. Epigenetic mechanisms have been shown to be reshaped during both cellular reprogramming and tumorigenesis. For this reason, cancer cell reprogramming can provide a powerful tool to better understand both regenerative and cancer-fate processes, with a potential to develop novel therapeutic approaches. Recent studies showed that cancer cells can be reprogrammed to a pluripotent state by the overexpression of reprogramming transcription factors. Activation of transcription factors and modification of chromatin regulators may result in the remodeling of epigenetic status and refueling of tumorigenicity in these reprogrammed cancer cells. However, studies focusing on cancer cell reprogramming are contradictory; some studies reported increased tumor progression whereas others showed that cellular reprogramming has a treatment potential for cancer. In this review, first, the current knowledge on the epigenetic mechanisms involved during cancer development and cellular reprogramming will be presented. Later, different reports and key factors about pluripotency-based reprogramming of cancer cells will be reviewed in detail. New insights will be provided on cancer biology and therapy in the light of cellular reprogramming.

  12. Roles of small molecules in somatic cell reprogramming.

    Science.gov (United States)

    Su, Jian-bin; Pei, Duan-qing; Qin, Bao-ming

    2013-06-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent. This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine. Indeed, reprogramming technology has developed at a dazzling speed within the past 6 years, yet we are still at the early stages of understanding the mechanisms of cell fate identity. This is particularly true in the case of human induced pluripotent stem cells (iPSCs), which lack reliable standards in the evaluation of their fidelity and safety prior to their application. Along with the genetic approaches, small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes, including the mesenchymal-to-epithelial transition, metabolism, signal transduction and epigenetics. Moreover, small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells. With increasing availability of such chemicals, we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  13. The evolving biology of cell reprogramming

    OpenAIRE

    Wilmut, Ian; Sullivan, Gareth; Chambers, Ian

    2011-01-01

    Modern stem cell biology has achieved a transformation that was thought by many to be every bit as unattainable as the ancient alchemists' dream of transforming base metals into gold. Exciting opportunities arise from the process known as ‘cellular reprogramming’ in which cells can be reliably changed from one tissue type to another. This is enabling novel approaches to more deeply investigate the fundamental basis of cell identity. In addition, new opportunities have also been created to stu...

  14. Roles of small molecules in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Jian-bin SU; Duan-qing PEI; Bao-ming QIN

    2013-01-01

    The Nobel Prize in Physiology and Medicine 2012 was awarded to Sir John B GURDON and Shinya YAMANAKA for their discovery that mature cells can be reprogrammed to become pluripotent.This event reaffirms the importance of research on cell fate plasticity and the technology progress in the stem cell field and regenerative medicine.Indeed,reprogramming technology has developed at a dazzling speed within the past 6 years,yet we are still at the early stages of understanding the mechanisms of cell fate identity.This is particularly true in the case of human induced pluripotent stem ceils (iPSCs),which lack reliable standards in the evaluation of their fidelity and safety prior to their application.Along with the genetic approaches,small molecules nowadays become convenient tools for modulating endogenous protein functions and regulating key cellular processes,including the mesenchymal-to-epithelial transition,metabolism,signal transduction and epigenetics.Moreover,small molecules may affect not only the efficiency of clone formation but also the quality of the resulting cells.With increasing availability of such chemicals,we can better understand the biology of stems cells and further improve the technology of generation of stem cells.

  15. Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle.

    Directory of Open Access Journals (Sweden)

    Jianmin Su

    Full Text Available The selection of good quality oocytes is crucial for in vitro fertilization and somatic cloning. Brilliant cresyl blue (BCB staining has been used for selection of oocytes from several mammalian species. However, the effects of differential oocyte selection by BCB staining on nuclear reprogramming and in vivo development of SCNT embryos are not well understood. Immature compact cumulus-oocyte complexes (COCs were divided into control (not exposed to BCB, BCB+ (blue cytoplasm and BCB- (colorless cytoplasm groups. We found that BCB+ oocytes yielded a significantly higher somatic cell nuclear transfer (SCNT blastocyst rate and full term development rate of bovine SCNT embryos than the BCB- and control oocytes. BCB+ embryos (embryos developed from BCB+ oocytes showed increased acetylation levels of histone H3 at K9 and K18 (AcH3K9, AcH3K18, and methylation levels of histone H3 at K4 (H3K4me2 than BCB- embryos (embryos developed from BCB- oocytes at the two-cell stage. Furthermore, BCB+ embryos generated more total cells, trophectoderm (TE cells, and inner cell mass (ICM cells, and fewer apoptotic cells than BCB- embryos. The expression of SOX2, CDX2, and anti-apoptotic microRNA-21 were up-regulated in the BCB+ blastocysts compared with BCB- blastocysts, whereas the expression of pro-apoptotic gene Bax was down-regulated in BCB+ blastocysts. These results strongly suggest that BCB+ oocytes have a higher nuclear reprogramming capacity, and that BCB staining can be used to select developmentally competent oocytes for nuclear transfer.

  16. Concise review: Human cell engineering: cellular reprogramming and genome editing.

    Science.gov (United States)

    Mali, Prashant; Cheng, Linzhao

    2012-01-01

    Cell engineering is defined here as the collective ability to both reset and edit the genome of a mammalian cell. Until recently, this had been extremely challenging to achieve as nontransformed human cells are significantly refractory to both these processes. The recent success in reprogramming somatic cells into induced pluripotent stem cells that are self-renewable in culture, coupled with our increasing ability to effect precise and predesigned genomic editing, now readily permits cellular changes at both the genetic and epigenetic levels. These dual capabilities also make possible the generation of genetically matched, disease-free stem cells from patients for regenerative medicine. The objective of this review is to summarize the key enabling developments on these two rapidly evolving research fronts in human cell engineering, highlight unresolved issues, and outline potential future research directions.

  17. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells.

    Science.gov (United States)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-12-20

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.

  18. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells.

    Science.gov (United States)

    Utikal, Jochen; Maherali, Nimet; Kulalert, Warakorn; Hochedlinger, Konrad

    2009-10-01

    Induced pluripotent stem cells (iPSCs) have been derived at low frequencies from different cell types through ectopic expression of the transcription factors Oct4 and Sox2, combined with either Klf4 and c-Myc or Lin28 and Nanog. In order to generate iPSCs more effectively, it will be crucial to identify somatic cells that are easily accessible and possibly require fewer factors for conversion into iPSCs. Here, we show that both human and mouse melanocytes give rise to iPSCs at higher efficiencies than fibroblasts. Moreover, we demonstrate that a mouse malignant melanoma cell line, which has previously been reprogrammed into embryonic stem cells by nuclear transfer, remains equally amenable to reprogramming into iPSCs by these transcription factors. In contrast to skin fibroblasts, melanocytes and melanoma cells did not require ectopic Sox2 expression for conversion into iPSCs. iPSC lines from melanocytic cells expressed pluripotency markers, formed teratomas and contributed to viable chimeric mice with germ line transmission. Our results identify skin melanocytes as an alternative source for deriving patient-specific iPSCs at increased efficiency and with fewer genetic elements. In addition, our results suggest that cancer cells remain susceptible to transcription factor-mediated reprogramming, which should facilitate the study of epigenetic changes in human cancer.

  19. Epigenetic memory in somatic cell nuclear transfer and induced pluripotency: evidence and implications.

    Science.gov (United States)

    Firas, Jaber; Liu, Xiaodong; Polo, Jose M

    2014-07-01

    Six decades ago, seminal work conducted by John Gurdon on genome conservation resulted in major advancements towards nuclear reprogramming technologies such as somatic cell nuclear transfer (SCNT), cell fusion and transcription factor mediated reprogramming. This revolutionized our views regarding cell fate conversion and development. These technologies also shed light on the role of the epigenome in cellular identity, and how the memory of the cell of origin affects the reprogrammed cell. This review will discuss recent work on epigenetic memory retained in pluripotent cells derived by SCNT and transcription factor mediated reprogramming, and the challenges attached to it.

  20. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  1. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming

    DEFF Research Database (Denmark)

    Swales, Nathalie; Martens, Geert A; Bonné, Stefan

    2012-01-01

    Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3). In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it....

  2. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  3. Reprogramming in vivo produces teratomas and iPS cells with totipotency features.

    Science.gov (United States)

    Abad, María; Mosteiro, Lluc; Pantoja, Cristina; Cañamero, Marta; Rayon, Teresa; Ors, Inmaculada; Graña, Osvaldo; Megías, Diego; Domínguez, Orlando; Martínez, Dolores; Manzanares, Miguel; Ortega, Sagrario; Serrano, Manuel

    2013-10-17

    Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming. By bone marrow transplantation, we demonstrate that haematopoietic cells can also be reprogrammed in vivo. Notably, reprogrammable mice present circulating iPS cells in the blood and, at the transcriptome level, these in vivo generated iPS cells are closer to embryonic stem cells (ES cells) than standard in vitro generated iPS cells. Moreover, in vivo iPS cells efficiently contribute to the trophectoderm lineage, suggesting that they achieve a more plastic or primitive state than ES cells. Finally, intraperitoneal injection of in vivo iPS cells generates embryo-like structures that express embryonic and extraembryonic markers. We conclude that reprogramming in vivo is feasible and confers totipotency features absent in standard iPS or ES cells. These discoveries could be relevant for future applications of reprogramming in regenerative medicine.

  4. Nuclear bodies domain changes with microspore reprogramming to embryogenesis

    Directory of Open Access Journals (Sweden)

    JM Seguí-Simarro

    2009-06-01

    Full Text Available We analysed the presence of nuclear bodies and particularly Cajal bodies during representative stages of gametophytic and haploid embryogenic development in isolated microspore and anther cultures of a model system (Brassica napus cv. Topas and a recalcitrant species (Capsicum annuum L. var. Yolo Wonder B. The nuclear bodies domain is involved on several important roles on nuclear metabolism, and Cajal bodies are specifically involved on the storage and maturation of both snRNPs and snoRNPs, as well as other splicing factors, necessary for mRNA and pre-rRNA processing, but not directly on the transcription. In this study, immunofluorescence and immunogold labelling with anti-trimethylguanosine antibodies against the specific cap of snRNAs, ultrastructural and cytochemical analysis were performed on cryoprocessed samples at confocal and electron microscopy respectively. Results showed that Cajal bodies increase during the early stages of microspore embryogenic development (young pro-embryos, compared to microspore and pollen development. Our results suggest that Cajal bodies may have a role in the transcriptionally active, proliferative stages that characterise early microspore embryogenic development.

  5. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression.

    Science.gov (United States)

    Sangan, Caroline B; Jover, Ramiro; Heimberg, Harry; Tosh, David

    2015-01-05

    There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.

  6. Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors.

    Science.gov (United States)

    Quintana-Bustamante, Oscar; Segovia, Jose C

    2016-01-01

    Induced pluripotent stem cells (iPSC) technology has changed preclinical research since their generation was described by Shinya Yamanaka in 2006. iPSCs are derived from somatic cells after being reprogrammed back to an embryonic state by specific combination of reprogramming factors. These reprogrammed cells resemble all the characteristic of embryonic stem cells (ESC). The reprogramming technology is even more valuable to research diseases biology and treatment by opening gene and cell therapies in own patient's iPSC. Patient-specific iPSC can be generated from a large variety of patient cells by any of the myriad of reprogramming platforms described. Here, we describe the generation of patient-specific iPSC from patient peripheral blood mononuclear cells by Sendai Reprogramming vectors.

  7. Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPα.

    Science.gov (United States)

    Bueno, C; Sardina, J L; Di Stefano, B; Romero-Moya, D; Muñoz-López, A; Ariza, L; Chillón, M C; Balanzategui, A; Castaño, J; Herreros, A; Fraga, M F; Fernández, A; Granada, I; Quintana-Bustamante, O; Segovia, J C; Nishimura, K; Ohtaka, M; Nakanishi, M; Graf, T; Menendez, P

    2016-03-01

    B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB- and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes. Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed, suggesting that their differentiation does not seem influenced by 'epigenetic memory'. Our data reflect the actual cell-autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and modeling B-cell malignancies.

  8. Global epigenetic changes during somatic cell reprogramming to iPS cells

    Institute of Scientific and Technical Information of China (English)

    Anna Mattout; Alva Biran; Eran Meshorer

    2011-01-01

    Embryonic stem cells (ESCs) exhibit unique chromatin features,including a permissive transcriptional program and an open,decondensed chromatin state.Induced pluripotent stem cells (iPSCs),which are very similar to ESCs,hold great promise for therapy and basic research.However,the mechanisms by which reprogramming occurs and the chromatin organization that underlies the reprogramming process are largely unknown.Here we characterize and compare the epigenetic landscapes of partially and fully reprogrammed iPSCs to mouse embryonic fibroblasts (MEFs) and ESCs,which serves as a standard for pluripotency.Using immunofluorescence and biochemical fractionations,we analyzed the levels and distribution of a battery of histone modifications (H3ac,H4ac,H4KSac,H3Kgac,H3K27ac,H3K4me3,H3K36me2,H3K9me3,H3K27me3,and yH2AX),as well as HP1α and lamin A.We find that fully reprogrammed iPSCs are epigenetically identical to ESCs,and that partially reprogrammed iPSCs are closer to MEFs.Intriguingly,combining both time-course reprogramming experiments and data from the partially reprogrammed iPSCs,we find that heterochromatin reorganization precedes Nanog expression and active histone marking.Together,these data delineate the global epigenetic state of iPSCs in conjunction with their pluripotent state,and demonstrate that heterochromatin precedes euchromatin in reorganization during reprogramming.

  9. Plasticity of adult human pancreatic duct cells by neurogenin3-mediated reprogramming.

    Directory of Open Access Journals (Sweden)

    Nathalie Swales

    Full Text Available AIMS/HYPOTHESIS: Duct cells isolated from adult human pancreas can be reprogrammed to express islet beta cell genes by adenoviral transduction of the developmental transcription factor neurogenin3 (Ngn3. In this study we aimed to fully characterize the extent of this reprogramming and intended to improve it. METHODS: The extent of the Ngn3-mediated duct-to-endocrine cell reprogramming was measured employing genome wide mRNA profiling. By modulation of the Delta-Notch signaling or addition of pancreatic endocrine transcription factors Myt1, MafA and Pdx1 we intended to improve the reprogramming. RESULTS: Ngn3 stimulates duct cells to express a focused set of genes that are characteristic for islet endocrine cells and/or neural tissues. This neuro-endocrine shift however, is incomplete with less than 10% of full duct-to-endocrine reprogramming achieved. Transduction of exogenous Ngn3 activates endogenous Ngn3 suggesting auto-activation of this gene. Furthermore, pancreatic endocrine reprogramming of human duct cells can be moderately enhanced by inhibition of Delta-Notch signaling as well as by co-expressing the transcription factor Myt1, but not MafA and Pdx1. CONCLUSIONS/INTERPRETATION: The results provide further insight into the plasticity of adult human duct cells and suggest measurable routes to enhance Ngn3-mediated in vitro reprogramming protocols for regenerative beta cell therapy in diabetes.

  10. The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming

    Directory of Open Access Journals (Sweden)

    Juli J. Unternaehrer

    2014-11-01

    Full Text Available Reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs entails a mesenchymal to epithelial transition (MET. While attempting to dissect the mechanism of MET during reprogramming, we observed that knockdown (KD of the epithelial-to-mesenchymal transition (EMT factor SNAI1 (SNAIL paradoxically reduced, while overexpression enhanced, reprogramming efficiency in human cells and in mouse cells, depending on strain. We observed nuclear localization of SNAI1 at an early stage of fibroblast reprogramming and using mouse fibroblasts expressing a knockin SNAI1-YFP reporter found cells expressing SNAI1 reprogrammed at higher efficiency. We further demonstrated that SNAI1 binds the let-7 promoter, which may play a role in reduced expression of let-7 microRNAs, enforced expression of which, early in the reprogramming process, compromises efficiency. Our data reveal an unexpected role for the EMT factor SNAI1 in reprogramming somatic cells to pluripotency.

  11. Single cell transcriptome analysis reveals dynamic changes in lncRNA expression during reprogramming

    Science.gov (United States)

    Kim, Daniel H.; Marinov, Georgi K.; Pepke, Shirley; Singer, Zakary S.; He, Peng; Williams, Brian; Schroth, Gary P.; Elowitz, Michael B.; Wold, Barbara J.

    2014-01-01

    SUMMARY Cellular reprogramming highlights the epigenetic plasticity of the somatic cell state. Long noncoding RNAs (lncRNAs) have emerging roles in epigenetic regulation, but their potential functions in reprogramming cell fate have been largely unexplored. We used single-cell RNA sequencing to characterize the expression patterns of over 16,000 genes, including 437 lncRNAs, during defined stages of reprogramming to pluripotency. Self-organizing maps (SOMs) were used as an intuitive way to structure and interrogate transcriptome data at the single-cell level. Early molecular events during reprogramming involved the activation of Ras signaling pathways, along with hundreds of lncRNAs. Loss-of-function studies showed that activated lncRNAs can repress lineage-specific genes, while lncRNAs activated in multiple reprogramming cell types can regulate metabolic gene expression. Our findings demonstrate that reprogramming cells activate defined sets of functionally relevant lncRNAs and provide a resource to further investigate how dynamic changes in the transcriptome reprogram cell state. PMID:25575081

  12. Dedifferentiation-reprogrammed mesenchymal stem cells with improved therapeutic potential.

    Science.gov (United States)

    Liu, Yang; Jiang, Xiaohua; Zhang, Xiaohu; Chen, Rui; Sun, Tingting; Fok, Kin Lam; Dong, Jianda; Tsang, Lai Ling; Yi, Shaoqiong; Ruan, Yechun; Guo, Jinghui; Yu, Mei Kuen; Tian, Yuemin; Chung, Yiu Wa; Yang, Mo; Xu, Wenming; Chung, Chin Man; Li, Tingyu; Chan, Hsiao Chang

    2011-12-01

    Stem cell transplantation has been shown to improve functional outcome in degenerative and ischemic disorders. However, low in vivo survival and differentiation potential of the transplanted cells limits their overall effectiveness and thus clinical usage. Here we show that, after in vitro induction of neuronal differentiation and dedifferentiation, on withdrawal of extrinsic factors, mesenchymal stem cells (MSCs) derived from bone marrow, which have already committed to neuronal lineage, revert to a primitive cell population (dedifferentiated MSCs) retaining stem cell characteristics but exhibiting a reprogrammed phenotype distinct from their original counterparts. Of therapeutic interest, the dedifferentiated MSCs exhibited enhanced cell survival and higher efficacy in neuronal differentiation compared to unmanipulated MSCs both in vitro and in vivo, with significantly improved cognition function in a neonatal hypoxic-ischemic brain damage rat model. Increased expression of bcl-2 family proteins and microRNA-34a appears to be the important mechanism giving rise to this previously undefined stem cell population that may provide a novel treatment strategy with improved therapeutic efficacy.

  13. Study of mitochondrial respiratory defects on reprogramming to human induced pluripotent stem cells

    Science.gov (United States)

    Hung, Sandy S.C.; Van Bergen, Nicole J.; Jackson, Stacey; Liang, Helena; Mackey, David A.; Hernández, Damián; Lim, Shiang Y.; Hewitt, Alex W.; Trounce, Ian; Pébay, Alice; Wong, Raymond C.B.

    2016-01-01

    Reprogramming of somatic cells into a pluripotent state is known to be accompanied by extensive restructuring of mitochondria and switch in metabolic requirements. Here we utilized Leber's hereditary optic neuropathy (LHON) as a mitochondrial disease model to study the effects of homoplasmic mtDNA mutations and subsequent oxidative phosphorylation (OXPHOS) defects in reprogramming. We obtained fibroblasts from a total of 6 LHON patients and control subjects, and showed a significant defect in complex I respiration in LHON fibroblasts by high-resolution respiratory analysis. Using episomal vector reprogramming, our results indicated that human induced pluripotent stem cell (hiPSC) generation is feasible in LHON fibroblasts. In particular, LHON-specific OXPHOS defects in fibroblasts only caused a mild reduction and did not significantly affect reprogramming efficiency, suggesting that hiPSC reprogramming can tolerate a certain degree of OXPHOS defects. Our results highlighted the induction of genes involved in mitochondrial biogenesis (TFAM, NRF1), mitochondrial fusion (MFN1, MFN2) and glycine production (GCAT) during reprogramming. However, LHON-associated OXPHOS defects did not alter the kinetics or expression levels of these genes during reprogramming. Together, our study provides new insights into the effects of mtDNA mutation and OXPHOS defects in reprogramming and genes associated with various aspects of mitochondrial biology. PMID:27127184

  14. Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-11-1-0673 TITLE: Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse PRINCIPAL...CONTRACT NUMBER Transplantation of Reprogrammed Autologous Stem Cells for Chronic Pain and Drug Abuse 5b. GRANT NUMBER: W81XWH-11-1-0673 5c. PROGRAM...Tolerance, Drug abuse , Cell cultures, Spinal transplantation of autologous stem cells, Animal behavioral tests 16. SECURITY CLASSIFICATION OF: 17

  15. Genome-wide reprogramming in hybrids of somatic cells and embryonic stem cells.

    Science.gov (United States)

    Ambrosi, Dominic J; Tanasijevic, Borko; Kaur, Anupinder; Obergfell, Craig; O'Neill, Rachel J; Krueger, Winfried; Rasmussen, Theodore P

    2007-05-01

    Recent experiments demonstrate that somatic nuclei can be reprogrammed to a pluripotent state when fused to ESCs. The resulting hybrids are pluripotent as judged by developmental assays, but detailed analyses of the underlying molecular-genetic control of reprogrammed transcription in such hybrids are required to better understand fusion-mediated reprogramming. We produced hybrids of mouse ESCs and fibroblasts that, although nearly tetraploid, exhibit characteristics of normal ESCs, including apparent immortality in culture, ESC-like colony morphology, and pluripotency. Comprehensive analysis of the mouse embryonic fibroblast/ESC hybrid transcriptome revealed global patterns of gene expression reminiscent of ESCs. However, combined analysis of variance and hierarchical clustering analyses revealed at least seven distinct classes of differentially regulated genes in comparisons of hybrids, ESCs, and somatic cells. The largest class includes somatic genes that are silenced in hybrids and ESCs, but a smaller class includes genes that are expressed at nearly equivalent levels in hybrids and ESCs that contain many genes implicated in pluripotency and chromatin function. Reprogrammed genes are distributed throughout the genome. Reprogramming events include both transcriptional silencing and activation of genes residing on chromosomes of somatic origin. Somatic/ESC hybrid cell lines resemble their pre-fusion ESC partners in terms of behavior in culture and pluripotency. However, they contain unique expression profiles that are similar but not identical to normal ESCs. ESC fusion-mediated reprogramming provides a tractable system for the investigation of mechanisms of reprogramming. Disclosure of potential conflicts of interest is found at the end of this article.

  16. A predictive computational framework for direct reprogramming between human cell types.

    Science.gov (United States)

    Rackham, Owen J L; Firas, Jaber; Fang, Hai; Oates, Matt E; Holmes, Melissa L; Knaupp, Anja S; Suzuki, Harukazu; Nefzger, Christian M; Daub, Carsten O; Shin, Jay W; Petretto, Enrico; Forrest, Alistair R R; Hayashizaki, Yoshihide; Polo, Jose M; Gough, Julian

    2016-03-01

    Transdifferentiation, the process of converting from one cell type to another without going through a pluripotent state, has great promise for regenerative medicine. The identification of key transcription factors for reprogramming is currently limited by the cost of exhaustive experimental testing of plausible sets of factors, an approach that is inefficient and unscalable. Here we present a predictive system (Mogrify) that combines gene expression data with regulatory network information to predict the reprogramming factors necessary to induce cell conversion. We have applied Mogrify to 173 human cell types and 134 tissues, defining an atlas of cellular reprogramming. Mogrify correctly predicts the transcription factors used in known transdifferentiations. Furthermore, we validated two new transdifferentiations predicted by Mogrify. We provide a practical and efficient mechanism for systematically implementing novel cell conversions, facilitating the generalization of reprogramming of human cells. Predictions are made available to help rapidly further the field of cell conversion.

  17. [Progress in early pancreas development and reprogramming of terminally differentiated cells into β cells].

    Science.gov (United States)

    Mingjun, Cao; Huansheng, Dong; Qingjie, Pan; Hongjun, Wang; Xiao, Dong

    2014-06-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which the immune system attacks insulin-secreting β cells, thus leading to an absolute deficiency of insulin. Patients must rely on exogenous insulin, which cannot effectively prevent diabetes complications. Generation of insulin-secreting cells by reprogramming of pluripotent stem cells or somatic cells is a potential approach for the treatment of T1DM. These cells can be used for cell therapy and drug screening, and may eventually provide a cure for the disease. Significant progress has been made in generating insulin-secreting cells through the expression of β cell specific transcription factors in stem cells or somatic cells. In this review, we summarize recent research progress in early pancreas development, β cell specific transcription factors and reprogramming of terminally differentiated cells into β cells.

  18. PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jun-Xue; Kang, Jin-Dan; Li, Suo; Jin, Long; Zhu, Hai-Ying; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2015-01-02

    Highlights: • First explored that the effects of PXD101 on the development of SCNT embryos in vitro. • 0.5 μM PXD101 treated for 24 h improved the development of porcine SCNT embryos. • Level of AcH3K9 was significantly higher than control group at early stages. - Abstract: In this study, we investigated the effects of the histone deacetylase inhibitor PXD101 (belinostat) on the preimplantation development of porcine somatic cell nuclear transfer (SCNT) embryos and their expression of the epigenetic markers histone H3 acetylated at lysine 9 (AcH3K9). We compared the in vitro developmental competence of SCNT embryos treated with various concentrations of PXD101 for 24 h. Treatment with 0.5 μM PXD101 significantly increased the proportion of SCNT embryos that reached the blastocyst stage, in comparison to the control group (23.3% vs. 11.5%, P < 0.05). We tested the in vitro developmental competence of SCNT embryos treated with 0.5 μM PXD101 for various amounts of times following activation. Treatment for 24 h significantly improved the development of porcine SCNT embryos, with a significantly higher proportion of embryos reaching the blastocyst stage in comparison to the control group (25.7% vs. 10.6%, P < 0.05). PXD101-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and four fetuses developed. PXD101 treatment significantly increased the fluorescence intensity of immunostaining for AcH3K9 in embryos at the pseudo-pronuclear and 2-cell stages. At these stages, the fluorescence intensities of immunostaining for AcH3K9 were significantly higher in PXD101-treated embryos than in control untreated embryos. In conclusion, this study demonstrates that PXD101 can significantly improve the in vitro and in vivo developmental competence of porcine SCNT embryos and can enhance their nuclear reprogramming.

  19. The Power and the Promise of Cell Reprogramming: Personalized Autologous Body Organ and Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Ana Belen Alvarez Palomo

    2014-04-01

    Full Text Available Reprogramming somatic cells to induced pluripotent stem cells (iPSCs or direct reprogramming to desired cell types are powerful and new in vitro methods for the study of human disease, cell replacement therapy, and drug development. Both methods to reprogram cells are unconstrained by the ethical and social questions raised by embryonic stem cells. iPSC technology promises to enable personalized autologous cell therapy and has the potential to revolutionize cell replacement therapy and regenerative medicine. Potential applications of iPSC technology are rapidly increasing in ambition from discrete cell replacement applications to the iPSC assisted bioengineering of body organs for personalized autologous body organ transplant. Recent work has demonstrated that the generation of organs from iPSCs is a future possibility. The development of embryonic-like organ structures bioengineered from iPSCs has been achieved, such as an early brain structure (cerebral organoids, bone, optic vesicle-like structures (eye, cardiac muscle tissue (heart, primitive pancreas islet cells, a tooth-like structure (teeth, and functional liver buds (liver. Thus, iPSC technology offers, in the future, the powerful and unique possibility to make body organs for transplantation removing the need for organ donation and immune suppressing drugs. Whilst it is clear that iPSCs are rapidly becoming the lead cell type for research into cell replacement therapy and body organ transplantation strategies in humans, it is not known whether (1 such transplants will stimulate host immune responses; and (2 whether this technology will be capable of the bioengineering of a complete and fully functional human organ. This review will not focus on reprogramming to iPSCs, of which a plethora of reviews can be found, but instead focus on the latest developments in direct reprogramming of cells, the bioengineering of body organs from iPSCs, and an analysis of the immune response induced by i

  20. Genomic imprinting is variably lost during reprogramming of mouse iPS cells

    OpenAIRE

    2013-01-01

    Derivation of induced pluripotent stem (iPS) cells is mainly an epigenetic reprogramming process. It is still quite controversial how genomic imprinting is reprogrammed in iPS cells. Thus, we derived multiple iPS clones from genetically identical mouse somatic cells. We found that parentally inherited imprint was variably lost among these iPS clones. Concurrent with the loss of DNA methylation imprint at the corresponding Snrpn and Peg3 imprinted regions, parental origin-specific expression o...

  1. Reprogramming somatic cells to pluripotency: a fresh look at Yamanaka's model.

    Science.gov (United States)

    Li, Yangxin; Shen, Zhenya; Shelat, Harnath; Geng, Yong-Jian

    2013-12-01

    In 2006, Dr Shinya Yamanaka succeeded to reprogram somatic cells into pluripotent stem cells (iPSC) by delivering the genes encoding Oct4, Sox2, Klf4, and c-Myc. This achievement represents a fundamental breakthrough in stem cell biology and opens up a new era in regenerative medicine. However, the molecular processes by which somatic cells are reprogrammed into iPSC remain poorly understood. In 2009, Yamanaka proposed the elite and stochastic models for reprogramming mechanisms. To date, many investigators in the field of iPSC research support the concept of stochastic model, i.e., somatic cell reprogramming is an event of epigenetic transformation. A mathematical model, f (Cd, k), has also been proposed to predict the stochastic process. Here we wish to revisit the Yamanaka model and summarize the recent advances in this research field.

  2. Two-factor reprogramming of somatic cells to pluripotent stem cells reveals partial functional redundancy of Sox2 and Klf4

    OpenAIRE

    Nemajerova, A; Kim, S. Y.; Petrenko, O.; Moll, U.M.

    2012-01-01

    Ectopic expression of defined sets of transcription factors in somatic cells enables them to adopt the qualities of pluripotency. Mouse embryonic fibroblasts (MEFs) are the classic target cell used to elucidate the core principles of nuclear reprogramming. However, their phenotypic and functional heterogeneity represents a major hurdle for mechanistic studies aimed at defining the molecular nature of cellular plasticity. We show that reducing the complexity of MEFs by flow cytometry allows th...

  3. Mammalian stem cells reprogramming in response to terahertz radiation.

    Directory of Open Access Journals (Sweden)

    Jonathan Bock

    Full Text Available We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG. Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.

  4. Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration.

    Science.gov (United States)

    Anastasia, L; Piccoli, M; Garatti, A; Conforti, E; Scaringi, R; Bergante, S; Castelvecchio, S; Venerando, B; Menicanti, L; Tettamanti, G

    2011-02-01

    Generation of pluripotent stem cells (iPSCs) from adult fibroblasts starts a "new era" in stem cell biology, as it overcomes several key issues associated with previous approaches, including the ethical concerns associated with human embryonic stem cells. However, as the genetic approach for cell reprogramming has already shown potential safety issues, a chemical approach may be a safer and easier alternative. Moreover, a chemical approach could be advantageous not only for the de-differentiation phase, but also for inducing reprogrammed cells into the desired cell type with higher efficiency than current methodologies. Finally, a chemical approach may be envisioned to activate resident adult stem cells to proliferate and regenerate damaged tissues in situ, without the need for exogenous cell injections.

  5. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  6. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders

    Institute of Scientific and Technical Information of China (English)

    Shaoping Hou; Paul Lu

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important fron-tier ifelds in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cellsin vitro andin vivo and their potential treatments of neurological disorders.

  7. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    Alvaro Muñoz-López

    2016-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.

  8. Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.

    Directory of Open Access Journals (Sweden)

    Kyung-Min Chung

    Full Text Available Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs. Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to

  9. Single cell analysis reveals the stochastic phase of reprogramming to pluripotency is an ordered probabilistic process.

    Science.gov (United States)

    Chung, Kyung-Min; Kolling, Frederick W; Gajdosik, Matthew D; Burger, Steven; Russell, Alexander C; Nelson, Craig E

    2014-01-01

    Despite years of research, the reprogramming of human somatic cells to pluripotency remains a slow, inefficient process, and a detailed mechanistic understanding of reprogramming remains elusive. Current models suggest reprogramming to pluripotency occurs in two-phases: a prolonged stochastic phase followed by a rapid deterministic phase. In this paradigm, the early stochastic phase is marked by the random and gradual expression of pluripotency genes and is thought to be a major rate-limiting step in the successful generation of induced Pluripotent Stem Cells (iPSCs). Recent evidence suggests that the epigenetic landscape of the somatic cell is gradually reset during a period known as the stochastic phase, but it is known neither how this occurs nor what rate-limiting steps control progress through the stochastic phase. A precise understanding of gene expression dynamics in the stochastic phase is required in order to answer these questions. Moreover, a precise model of this complex process will enable the measurement and mechanistic dissection of treatments that enhance the rate or efficiency of reprogramming to pluripotency. Here we use single-cell transcript profiling, FACS and mathematical modeling to show that the stochastic phase is an ordered probabilistic process with independent gene-specific dynamics. We also show that partially reprogrammed cells infected with OSKM follow two trajectories: a productive trajectory toward increasingly ESC-like expression profiles or an alternative trajectory leading away from both the fibroblast and ESC state. These two pathways are distinguished by the coordinated expression of a small group of chromatin modifiers in the productive trajectory, supporting the notion that chromatin remodeling is essential for successful reprogramming. These are the first results to show that the stochastic phase of reprogramming in human fibroblasts is an ordered, probabilistic process with gene-specific dynamics and to provide a precise

  10. Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-09-01

    Full Text Available Human fibroblasts can be differentiated into endothelial progenitor cells by direct reprogramming via ETV-2 transfection. Previously, we have shown that the efficacy of direct reprogramming can be enhanced by hypoxia treatment. In this study, we aim to investigate whether the efficacy of direct reprogramming of fibroblasts into EPCs via Ets variant gene 2 (ETV2 transfection can be increased with hepatocyte growth factor (HGF treatment. Foreskin-derived fibroblasts were cultured in standard medium (DMEM/F12 supplemented with fetal bovine serum. They were then transduced with a viral vector expressing ETV2 in culture medium supplemented with HGF. The transduced fibroblasts were cultured in endothelial cell medium supplemented with HGF for 28 days. The efficacy of direct reprogramming was evaluated based on expression of CD31 and VEGFR2 markers by transduced cells. Phenotypic and functional characterization of induced EPCs were also confirmed by expression of particular genes and in vitro angiogenesis assays. Our results showed that HGF significantly increased the efficacy of direct reprogramming of fibroblasts towards EPCs via ETV2 transcription factors; efficiency increased from 5.41+/-1.51% for ETV2 transduction alone to 12.31+/-2.15% for ETV2 transduction combined with HGF treatment. These findings suggest the rationale for combined use of ETV2 and HGF in direct in vitro reprogramming of fibroblasts into EPCs. [Biomed Res Ther 2016; 3(9.000: 836-843

  11. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells.

    Science.gov (United States)

    Ruiz, Sergio; Diep, Dinh; Gore, Athurva; Panopoulos, Athanasia D; Montserrat, Nuria; Plongthongkum, Nongluk; Kumar, Sachin; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M; Zaehres, Holm; Kan, Natalia G; Schöler, Hans Robert; Mercola, Mark; Zhang, Kun; Izpisua Belmonte, Juan Carlos

    2012-10-02

    Generation of human induced pluripotent stem cells (hiPSCs) by the expression of specific transcription factors depends on successful epigenetic reprogramming to a pluripotent state. Although hiPSCs and human embryonic stem cells (hESCs) display a similar epigenome, recent reports demonstrated the persistence of specific epigenetic marks from the somatic cell type of origin and aberrant methylation patterns in hiPSCs. However, it remains unknown whether the use of different somatic cell sources, encompassing variable levels of selection pressure during reprogramming, influences the level of epigenetic aberrations in hiPSCs. In this work, we characterized the epigenomic integrity of 17 hiPSC lines derived from six different cell types with varied reprogramming efficiencies. We demonstrate that epigenetic aberrations are a general feature of the hiPSC state and are independent of the somatic cell source. Interestingly, we observe that the reprogramming efficiency of somatic cell lines inversely correlates with the amount of methylation change needed to acquire pluripotency. Additionally, we determine that both shared and line-specific epigenetic aberrations in hiPSCs can directly translate into changes in gene expression in both the pluripotent and differentiated states. Significantly, our analysis of different hiPSC lines from multiple cell types of origin allow us to identify a reprogramming-specific epigenetic signature comprised of nine aberrantly methylated genes that is able to segregate hESC and hiPSC lines regardless of the somatic cell source or differentiation state.

  12. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  13. Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming.

    Science.gov (United States)

    Hickey, Raymond D; Galivo, Feorillo; Schug, Jonathan; Brehm, Michael A; Haft, Annelise; Wang, Yuhan; Benedetti, Eric; Gu, Guoqiang; Magnuson, Mark A; Shultz, Leonard D; Lagasse, Eric; Greiner, Dale L; Kaestner, Klaus H; Grompe, Markus

    2013-07-01

    Cell replacement is an emerging therapy for type 1 diabetes. Pluripotent stem cells have received a lot of attention as a potential source of transplantable β-cells, but their ability to form teratomas poses significant risks. Here, we evaluated the potential of primary mouse gall bladder epithelial cells (GBCs) as targets for ex vivo genetic reprogramming to the β-cell fate. Conditions for robust expansion and genetic transduction of primary GBCs by adenoviral vectors were developed. Using a GFP reporter for insulin, conditions for reprogramming were then optimized. Global expression analysis by RNA-sequencing was used to quantitatively compare reprogrammed GBCs (rGBCs) to true β-cells, revealing both similarities and differences. Adenoviral-mediated expression of NEUROG3, Pdx1, and MafA in GBCs resulted in robust induction of pancreatic endocrine genes, including Ins1, Ins2, Neurod1, Nkx2-2 and Isl1. Furthermore, expression of GBC-specific genes was repressed, including Sox17 and Hes1. Reprogramming was also enhanced by addition of retinoic acid and inhibition of Notch signaling. Importantly, rGBCs were able to engraft long term in vivo and remained insulin-positive for 15weeks. We conclude that GBCs are a viable source for autologous cell replacement in diabetes, but that complete reprogramming will require further manipulations.

  14. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  15. The role of fatty acid oxidation in the metabolic reprogramming of activated T cells

    Directory of Open Access Journals (Sweden)

    Craig Alan Byersdorfer

    2014-12-01

    Full Text Available Activation represents a significant bioenergetic challenge for T cells, which must undergo metabolic reprogramming to keep pace with increased energetic demands. This review focuses on the role of fatty acid metabolism, both in vitro and in vivo, following T cell activation. Based upon previous studies in the literature, as well as accumulating evidence in allogeneic cells, I propose a multi-step model of in vivo metabolic reprogramming. In this model, a primary determinant of metabolic phenotype is the ubiquity and duration of antigen exposure. The implications of this model, as well as the future challenges and opportunities in studying T cell metabolism, will be discussed.

  16. Interpretation of reprogramming to predict the success of somatic cell cloning.

    Science.gov (United States)

    Eckardt, Sigrid; McLaughlin, K John

    2004-07-01

    In the context of mammalian somatic cell cloning, the term reprogramming refers to the processes that enable a somatic cell nucleus to adopt the role of a zygotic nucleus. Gene re-expression is one measure of reprogramming if correlated with subsequent developmental potential. This paper describes several experiments utilizing pre-implantation gene expression to evaluate reprogramming and clone viability. We have established a direct correlation between Oct4 expression in mouse clones at the blastocyst stage and their potential to maintain pluripotent embryonic cells essential for post-implantation development. Furthermore, the quality of gene expression in clones dramatically improves when genetically identical clones are combined in clone-clone aggregate chimeras. Clone--clone aggregates exhibit a higher developmental potential than single clones both in vitro and in vivo. This could be mediated by complementation between blastomeres from epigenetically different clones within the aggregate rather than by the increase in cell number resulting from aggregation. We also discuss the use of tetraploid embryos as a model to evaluate reprogramming using gene expression and demonstrate that somatic cell nuclei can be reprogrammed by blastomeres to re-express embryonic specific genes but not to contribute to post-implantation development.

  17. Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Marta Trevisan

    2017-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs are pluripotent cells derived from adult somatic cells. After the pioneering work by Yamanaka, who first generated iPSCs by retroviral transduction of four reprogramming factors, several alternative methods to obtain iPSCs have been developed in order to increase the yield and safety of the process. However, the question remains open on whether the different reprogramming methods can influence the pluripotency features of the derived lines. In this study, three different strategies, based on retroviral vectors, episomal vectors, and Sendai virus vectors, were applied to derive iPSCs from human fibroblasts. The reprogramming efficiency of the methods based on episomal and Sendai virus vectors was higher than that of the retroviral vector-based approach. All human iPSC clones derived with the different methods showed the typical features of pluripotent stem cells, including the expression of alkaline phosphatase and stemness maker genes, and could give rise to the three germ layer derivatives upon embryoid bodies assay. Microarray analysis confirmed the presence of typical stem cell gene expression profiles in all iPSC clones and did not identify any significant difference among reprogramming methods. In conclusion, the use of different reprogramming methods is equivalent and does not affect gene expression profile of the derived human iPSCs.

  18. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Xinjian Liu; Dabing Zhang; Timothy A Benke; John R Sladek; Nancy R Zahniser; Chuan-Yuan Li; Fang Li; Elizabeth A Stubblefield; Barbara Blanchard; Toni L Richards; Gaynor A Larson; Yujun He; Qian Huang; Aik-Choon Tan

    2012-01-01

    Transplantation of exogenous dopaminergic neuron (DA neurons) is a promising approach for treating Parkinson's disease (PD).However,a major stumbling block has been the lack of a reliable source of donor DA neurons.Here we show that a combination of five transcriptional factors Mash1,Ngn2,Sox2,Nurr1,and Pitx3 can directly and effectively reprogram human fibroblasts into DA neuron-like cells.The reprogrammed cells stained positive for various markers for DA neurons.They also showed characteristic DA uptake and production properties.Moreover,they exhibited DA neuron-specific electrophysiological profiles.Finally,they provided symptomatic relief in a rat PD model.Therefore,our directly reprogrammed DA neuron-like cells are a promising source of cell-replacement therapy for PD.

  19. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation

    Institute of Scientific and Technical Information of China (English)

    Jing Jiang; Wenjian Lv; Xiaoying Ye; Lingbo Wang; Man Zhang; Hui Yang; Maja Okuka

    2013-01-01

    Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy.However,genomic abnormalities exist in human iPS cells,and most mouse iPS cells are not fully pluripotent,as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors.In contrast,nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA.We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming,and improve the quality of the resultant iPS cells.To test this hypothesis,we screened for factors that could decrease DDR signals during iPS cell induction.We determined that Zscan4,in combination with the Yamanaka factors,not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation.The inclusion of Zscan4 stabilized the genomic DNA,resulting in p53 downregulation.Furthermore,Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism.As a result,iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells.Strikingly,more than 50%of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA,compared to 1/12 for lines produced using the classical Yamanaka factors.Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.

  20. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation.

    Science.gov (United States)

    Jiang, Jing; Lv, Wenjian; Ye, Xiaoying; Wang, Lingbo; Zhang, Man; Yang, Hui; Okuka, Maja; Zhou, Chikai; Zhang, Xuan; Liu, Lin; Li, Jinsong

    2013-01-01

    Induced pluripotent stem (iPS) cells generated using Yamanaka factors have great potential for use in autologous cell therapy. However, genomic abnormalities exist in human iPS cells, and most mouse iPS cells are not fully pluripotent, as evaluated by the tetraploid complementation assay (TCA); this is most likely associated with the DNA damage response (DDR) occurred in early reprogramming induced by Yamanaka factors. In contrast, nuclear transfer can faithfully reprogram somatic cells into embryonic stem (ES) cells that satisfy the TCA. We thus hypothesized that factors involved in oocyte-induced reprogramming may stabilize the somatic genome during reprogramming, and improve the quality of the resultant iPS cells. To test this hypothesis, we screened for factors that could decrease DDR signals during iPS cell induction. We determined that Zscan4, in combination with the Yamanaka factors, not only remarkably reduced the DDR but also markedly promoted the efficiency of iPS cell generation. The inclusion of Zscan4 stabilized the genomic DNA, resulting in p53 downregulation. Furthermore, Zscan4 also enhanced telomere lengthening as early as 3 days post-infection through a telomere recombination-based mechanism. As a result, iPS cells generated with addition of Zscan4 exhibited longer telomeres than classical iPS cells. Strikingly, more than 50% of iPS cell lines (11/19) produced via this "Zscan4 protocol" gave rise to live-borne all-iPS cell mice as determined by TCA, compared to 1/12 for lines produced using the classical Yamanaka factors. Our findings provide the first demonstration that maintaining genomic stability during reprogramming promotes the generation of high quality iPS cells.

  1. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells.

    Science.gov (United States)

    Bermejo-Álvarez, P; Ramos-Ibeas, P; Park, K E; Powell, A P; Vansandt, L; Derek, Bickhart; Ramirez, M A; Gutiérrez-Adán, A; Telugu, B P

    2015-09-02

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. Currently, it is unclear whether artificial reprogramming induced by the expression of Yamanaka factors disrupts these marks and whether cell type of origin affects the dynamics of reprogramming. In this study, spermatogonial stem cells (SSC) that harbor paternalized imprinting marks, and fibroblasts were reprogrammed to iPSC (SSCiPSC and fiPSC). The SSCiPSC were able to form teratomas and generated chimeras with a higher skin chimerism than those derived from fiPSC. RNA-seq revealed extensive reprogramming at the transcriptional level with 8124 genes differentially expressed between SSC and SSCiPSC and only 490 between SSCiPSC and fiPSC. Likewise, reprogramming of SSC affected 26 of 41 imprinting gene clusters known in the mouse genome. A closer look at H19 ICR revealed complete erasure in SSCiPSC in contrast to fiPSC. Imprinting erasure in SSCiPSC was maintained even after in vivo differentiation into teratomas. Reprogramming of SSC from Tet1 and Tet2 double knockout mice however lacked demethylation of H19 ICR. These results suggest that imprinting erasure during reprogramming depends on the epigenetic landscape of the precursor cell and is mediated by TETs at the H19 locus.

  2. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    Science.gov (United States)

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  3. Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Beauty Transposon-Based Stable Gene Delivery.

    Science.gov (United States)

    Sebe, Attila; Ivics, Zoltán

    2016-01-01

    Human induced pluripotent stem (iPS) cells are a source of patient-specific pluripotent stem cells and resemble human embryonic stem (ES) cells in gene expression profiles, morphology, pluripotency, and in vitro differentiation potential. iPS cells are applied in disease modeling, drug screenings, toxicology screenings, and autologous cell therapy. In this protocol, we describe how to derive human iPS cells from fibroblasts by Sleeping Beauty (SB) transposon-mediated gene transfer of reprogramming factors. First, the components of the non-viral Sleeping Beauty transposon system, namely a transposon vector encoding reprogramming transcription factors and a helper plasmid expressing the SB transposase, are electroporated into human fibroblasts. The reprogramming cassette undergoes transposition from the transfected plasmids into the fibroblast genome, thereby resulting in stable delivery of the reprogramming factors. Reprogramming by using this protocol takes ~4 weeks, after which the iPS cells are isolated and clonally propagated.

  4. Effects of Collective Histone State Dynamics on Epigenetic Landscape and Kinetics of Cell Reprogramming

    Science.gov (United States)

    Ashwin, S. S.; Sasai, Masaki

    2015-11-01

    Cell reprogramming is a process of transitions from differentiated to pluripotent cell states via transient intermediate states. Within the epigenetic landscape framework, such a process is regarded as a sequence of transitions among basins on the landscape; therefore, theoretical construction of a model landscape which exhibits experimentally consistent dynamics can provide clues to understanding epigenetic mechanism of reprogramming. We propose a minimal gene-network model of the landscape, in which each gene is regulated by an integrated mechanism of transcription-factor binding/unbinding and the collective chemical modification of histones. We show that the slow collective variation of many histones around each gene locus alters topology of the landscape and significantly affects transition dynamics between basins. Differentiation and reprogramming follow different transition pathways on the calculated landscape, which should be verified experimentally via single-cell pursuit of the reprogramming process. Effects of modulation in collective histone state kinetics on transition dynamics and pathway are examined in search for an efficient protocol of reprogramming.

  5. MicroRNAs Induce Epigenetic Reprogramming and Suppress Malignant Phenotypes of Human Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Hisataka Ogawa

    Full Text Available Although cancer is a genetic disease, epigenetic alterations are involved in its initiation and progression. Previous studies have shown that reprogramming of colon cancer cells using Oct3/4, Sox2, Klf4, and cMyc reduces cancer malignancy. Therefore, cancer reprogramming may be a useful treatment for chemo- or radiotherapy-resistant cancer cells. It was also reported that the introduction of endogenous small-sized, non-coding ribonucleotides such as microRNA (miR 302s and miR-369-3p or -5p resulted in the induction of cellular reprogramming. miRs are smaller than the genes of transcription factors, making them possibly suitable for use in clinical strategies. Therefore, we reprogrammed colon cancer cells using miR-302s and miR-369-3p or -5p. This resulted in inhibition of cell proliferation and invasion and the stimulation of the mesenchymal-to-epithelial transition phenotype in colon cancer cells. Importantly, the introduction of the ribonucleotides resulted in epigenetic reprogramming of DNA demethylation and histone modification events. Furthermore, in vivo administration of the ribonucleotides in mice elicited the induction of cancer cell apoptosis, which involves the mitochondrial Bcl2 protein family. The present study shows that the introduction of miR-302s and miR-369s could induce cellular reprogramming and modulate malignant phenotypes of human colorectal cancer, suggesting that the appropriate delivery of functional small-sized ribonucleotides may open a new avenue for therapy against human malignant tumors.

  6. Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation.

    Science.gov (United States)

    Hu, Qirui; Friedrich, Amy M; Johnson, Lincoln V; Clegg, Dennis O

    2010-11-01

    Induced pluripotent stem (iPS) cells have been generated from a variety of somatic cell types via introduction of transcription factors that mediate pluripotency. However, it is unknown that all cell types can be reprogrammed and whether the origin of the parental cell ultimately determines the behavior of the resultant iPS cell line. We sought to determine whether human retinal-pigmented epithelial (RPE) cells could be reprogrammed, and to test the hypothesis that reprogrammed cells retain a "memory" of their origin in terms of propensity for differentiation. We reprogrammed primary fetal RPE cells via lentiviral expression of OCT4, SOX2, LIN28, and Nanog. The iPS cell lines derived from RPE exhibited morphologies similar to human embryonic stem cells and other iPS cell lines, expressed stem cell markers, and formed teratomas-containing derivatives of all three germ layers. To test whether these iPS cells retained epigenetic imprints from the parental RPE cells, we analyzed their propensity for spontaneous differentiation back into RPE after removal of FGF2. We found that some, but not all, iPS lines exhibited a marked preference for redifferentiation into RPE. Our results show that RPE cells can be reprogrammed to pluripotency, and suggest that they often retain a memory of their previous state of differentiation.

  7. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation.

    Science.gov (United States)

    Gaber, Naila; Gagliardi, Mark; Patel, Pranali; Kinnear, Caroline; Zhang, Cindy; Chitayat, David; Shannon, Patrick; Jaeggi, Edgar; Tabori, Uri; Keller, Gordon; Mital, Seema

    2013-09-01

    Hypoplastic left heart syndrome (HLHS) is a severe cardiac malformation characterized by left ventricle (LV) hypoplasia and abnormal LV perfusion and oxygenation. We studied hypoxia-associated injury in fetal HLHS and human pluripotent stem cells during cardiac differentiation to assess the effect of microenvironmental perturbations on fetal cardiac reprogramming. We studied LV myocardial samples from 32 HLHS and 17 structurally normal midgestation fetuses. Compared with controls, the LV in fetal HLHS samples had higher nuclear expression of hypoxia-inducible factor-1α but lower angiogenic growth factor expression, higher expression of oncogenes and transforming growth factor (TGF)-β1, more DNA damage and senescence with cell cycle arrest, fewer cardiac progenitors, myocytes and endothelial lineages, and increased myofibroblast population (P cells (SMCs) had less DNA damage compared with endothelial cells and myocytes. We recapitulated the fetal phenotype by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation. DNA damage was prevented by treatment with a TGF-β1 inhibitor (P cells). The hypoplastic LV in fetal HLHS samples demonstrates hypoxia-inducible factor-1α up-regulation, oncogene-associated cellular senescence, TGF-β1-associated fibrosis and impaired vasculogenesis. The phenotype is recapitulated by subjecting human pluripotent stem cells to hypoxia during cardiac differentiation and rescued by inhibition of TGF-β1. This finding suggests that hypoxia may reprogram the immature heart and affect differentiation and development.

  8. Genomic imprinting is variably lost during reprogramming of mouse iPS cells.

    Science.gov (United States)

    Takikawa, Sachiko; Ray, Chelsea; Wang, Xin; Shamis, Yulia; Wu, Tien-Yuan; Li, Xiajun

    2013-09-01

    Derivation of induced pluripotent stem (iPS) cells is mainly an epigenetic reprogramming process. It is still quite controversial how genomic imprinting is reprogrammed in iPS cells. Thus, we derived multiple iPS clones from genetically identical mouse somatic cells. We found that parentally inherited imprint was variably lost among these iPS clones. Concurrent with the loss of DNA methylation imprint at the corresponding Snrpn and Peg3 imprinted regions, parental origin-specific expression of the Snrpn and Zim1 imprinted genes was also lost in these iPS clones. This loss of parental genomic imprinting in iPS cells was likely caused by the reprogramming process during iPS cell derivation because extended culture of iPS cells did not lead to significant increase in the loss of genomic imprinting. Intriguingly, one to several paternal chromosomes appeared to have acquired de novo methylation at the Snrpn and Zac1 imprinted regions in a high percentage of iPS clones. These results might have some implications for future therapeutic applications of iPS cells. Since DNA methylation imprint can be completely erased in some iPS clones at multiple imprinted regions, iPS cell reprogramming may also be employed to dissect the underlying mechanisms of erasure, reacquisition and maintenance of genomic imprinting in mammals.

  9. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    NARCIS (Netherlands)

    Á. Muñoz-López (Álvaro); D. Romero-Moya (Damià); C. Prieto (Cristina); Ramos-Mejía, V. (Verónica); Agraz-Doblas, A. (Antonio); I. Varela (Ignacio); Buschbeck, M. (Marcus); Palau, A. (Anna); Carvajal-Vergara, X. (Xonia); Giorgetti, A. (Alessandra); Ford, A. (Anthony); M. Lako (Majlinda); Granada, I. (Isabel); Ruiz-Xivillé, N. (Neus); Rodríguez-Perales, S. (Sandra); Torres-Ruíz, R. (Raul); R.W. Stam (Ronald); Fuster, J.L. (Jose Luis); M.F. Fraga (Mario F.); Nakanishi, M. (Mahito); G. Cazzaniga (Gianni); Bardini, M. (Michela); Cobo, I. (Isabel); Bayon, G.F. (Gustavo F.); A.F. Fernández (Agustin F.); C. Bueno (C.); P. Menéndez (Pablo)

    2016-01-01

    textabstractInduced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies gen

  10. Futile attempts to differentiate provide molecular evidence for individual differences within a population of cells during cellular reprogramming.

    Science.gov (United States)

    Hoffmann, Xenia-Katharina; Tesmer, Jens; Souquet, Manfred; Marwan, Wolfgang

    2012-04-01

    The heterogeneity of cell populations and the influence of stochastic noise might be important issues for the molecular analysis of cellular reprogramming at the system level. Here, we show that in Physarum polycephalum, the expression patterns of marker genes correlate with the fate decision of individual multinucleate plasmodial cells that had been exposed to a differentiation-inducing photostimulus. For several hours after stimulation, the expression kinetics of PI-3-kinase, piwi, and pumilio orthologs and other marker genes were qualitatively similar in all stimulated cells but quantitatively different in those cells that subsequently maintained their proliferative potential and failed to differentiate accordingly. The results suggest that the population of nuclei in an individual plasmodium behaves synchronously in terms of gene regulation to an extent that the plasmodium provides a source for macroscopic amounts of homogeneous single-cell material for analysing the dynamic processes of cellular reprogramming. Based on the experimental findings, we predict that circuits with switch-like behaviour that control the cell fate decision of a multinucleate plasmodium operate through continuous changes in the concentration of cellular regulators because the nuclear population suspended in a large cytoplasmic volume damps stochastic noise.

  11. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells.

    Science.gov (United States)

    Kinoshita, Taisuke; Nagamatsu, Go; Kosaka, Takeo; Takubo, Keiyo; Hotta, Akitsu; Ellis, James; Suda, Toshio

    2011-04-08

    During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  12. Temporal Perturbation of the Wnt Signaling Pathway in the Control of Cell Reprogramming Is Modulated by TCF1

    Directory of Open Access Journals (Sweden)

    Francesco Aulicino

    2014-05-01

    Full Text Available Cyclic activation of the Wnt/β-catenin signaling pathway controls cell fusion-mediated somatic cell reprogramming. TCFs belong to a family of transcription factors that, in complex with β-catenin, bind and transcriptionally regulate Wnt target genes. Here, we show that Wnt/β-catenin signaling needs to be off during the early reprogramming phases of mouse embryonic fibroblasts (MEFs into iPSCs. In MEFs undergoing reprogramming, senescence genes are repressed and mesenchymal-to-epithelial transition is favored. This is correlated with a repressive activity of TCF1, which contributes to the silencing of Wnt/β-catenin signaling at the onset of reprogramming. In contrast, the Wnt pathway needs to be active in the late reprogramming phases to achieve successful reprogramming. In conclusion, continued activation or inhibition of the Wnt/β-catenin signaling pathway is detrimental to the reprogramming of MEFs; instead, temporal perturbation of the pathway is essential for efficient reprogramming, and the “Wnt-off” state can be considered an early reprogramming marker.

  13. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Directory of Open Access Journals (Sweden)

    Evangelia Papadimou

    2015-04-01

    Full Text Available The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs, also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy.

  14. Direct Reprogramming of Human Bone Marrow Stromal Cells into Functional Renal Cells Using Cell-free Extracts

    Science.gov (United States)

    Papadimou, Evangelia; Morigi, Marina; Iatropoulos, Paraskevas; Xinaris, Christodoulos; Tomasoni, Susanna; Benedetti, Valentina; Longaretti, Lorena; Rota, Cinzia; Todeschini, Marta; Rizzo, Paola; Introna, Martino; Grazia de Simoni, Maria; Remuzzi, Giuseppe; Goligorsky, Michael S.; Benigni, Ariela

    2015-01-01

    Summary The application of cell-based therapies in regenerative medicine is gaining recognition. Here, we show that human bone marrow stromal cells (BMSCs), also known as bone-marrow-derived mesenchymal cells, can be reprogrammed into renal proximal tubular-like epithelial cells using cell-free extracts. Streptolysin-O-permeabilized BMSCs exposed to HK2-cell extracts underwent morphological changes—formation of “domes” and tubule-like structures—and acquired epithelial functional properties such as transepithelial-resistance, albumin-binding, and uptake and specific markers E-cadherin and aquaporin-1. Transmission electron microscopy revealed the presence of brush border microvilli and tight intercellular contacts. RNA sequencing showed tubular epithelial transcript abundance and revealed the upregulation of components of the EGFR pathway. Reprogrammed BMSCs integrated into self-forming kidney tissue and formed tubular structures. Reprogrammed BMSCs infused in immunodeficient mice with cisplatin-induced acute kidney injury engrafted into proximal tubuli, reduced renal injury and improved function. Thus, reprogrammed BMSCs are a promising cell resource for future cell therapy. PMID:25754206

  15. In vitro reprogramming of rat bmMSCs into pancreatic endocrine-like cells.

    Science.gov (United States)

    Li, Hong-Tu; Jiang, Fang-Xu; Shi, Ping; Zhang, Tao; Liu, Xiao-Yu; Lin, Xue-Wen; San, Zhong-Yan; Pang, Xi-Ning

    2017-02-01

    Islet transplantation provides curative treatments to patients with type 1 diabetes, but donor shortage restricts the broad use of this therapy. Thus, generation of alternative transplantable cell sources is intensively investigated worldwide. We previously showed that bone marrow-derived mesenchymal stem cells (bmMSCs) can be reprogrammed to pancreatic-like cells through simultaneously forced suppression of Rest/Nrsf (repressor element-1 silencing transcription factor/neuronal restrictive silencing factor) and Shh (sonic hedgehog) and activation of Pdx1 (pancreas and duodenal transcription factor 1). We here aimed to reprogram bmMSCs further along the developmental pathway towards the islet lineages by improving our previous strategy and by overexpression of Ngn3 (neurogenin 3) and NeuroD1 (neurogenic differentiation 1), critical regulators of the development of endocrine pancreas. We showed that compared to the previous protocol, the overexpression of only Pdx1 and Ngn3 reprogrammed bmMSCs into cells with more characteristics of islet endocrine lineages verified with bioinformatic analyses of our RNA-Seq datasets. These analyses indicated 2325 differentially expressed genes including those involved in the pancreas and islet development. We validated with qRT-PCR analysis selective genes identified from the RNA-Seq datasets. Thus, we reprogrammed bmMSCs into islet endocrine-like cells and advanced the endeavor to generate surrogate functional insulin-secreting cells.

  16. Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Cell fate reprogramming, such as the generation of insulin-producing β cells from other pancreas cells, can be achieved by external modulation of key transcription factors. However, the known gene regulatory interactions that form a complex network with multiple feedback loops make it increasingly difficult to design the cell reprogramming scheme because the linear regulatory pathways as schemes of causal influences upon cell lineages are inadequate for predicting the effect of transcriptional perturbation. However, sufficient information on regulatory networks is usually not available for detailed formal models. Here we demonstrate that by using the qualitatively described regulatory interactions as the basis for a coarse-grained dynamical ODE (ordinary differential equation based model, it is possible to recapitulate the observed attractors of the exocrine and β, δ, α endocrine cells and to predict which gene perturbation can result in desired lineage reprogramming. Our model indicates that the constraints imposed by the incompletely elucidated regulatory network architecture suffice to build a predictive model for making informed decisions in choosing the set of transcription factors that need to be modulated for fate reprogramming.

  17. Inducing pluripotency in vitro: recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming.

    Science.gov (United States)

    Rony, I K; Baten, A; Bloomfield, J A; Islam, M E; Billah, M M; Islam, K D

    2015-04-01

    Induced pluripotent stem cells (iPSCs) are considered patient-specific counterparts of embryonic stem cells as they originate from somatic cells after forced expression of pluripotency reprogramming factors Oct4, Sox2, Klf4 and c-Myc. iPSCs offer unprecedented opportunity for personalized cell therapies in regenerative medicine. In recent years, iPSC technology has undergone substantial improvement to overcome slow and inefficient reprogramming protocols, and to ensure clinical-grade iPSCs and their functional derivatives. Recent developments in iPSC technology include better reprogramming methods employing novel delivery systems such as non-integrating viral and non-viral vectors, and characterization of alternative reprogramming factors. Concurrently, small chemical molecules (inhibitors of specific signalling or epigenetic regulators) have become crucial to iPSC reprogramming; they have the ability to replace putative reprogramming factors and boost reprogramming processes. Moreover, common dietary supplements, such as vitamin C and antioxidants, when introduced into reprogramming media, have been found to improve genomic and epigenomic profiles of iPSCs. In this article, we review the most recent advances in the iPSC field and potent application of iPSCs, in terms of cell therapy and tissue engineering.

  18. A hit and run approach to inducible direct reprogramming of astrocytes to neural stem cells

    Directory of Open Access Journals (Sweden)

    Maria ePoulou

    2016-04-01

    Full Text Available Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel hit and run inducible direct reprogramming approach. In a single step, two days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2 triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine.

  19. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  20. Reprogramming of mouse neural stem cells to induced pluripotent stem cells using Oct4 combined with microRNA

    Institute of Scientific and Technical Information of China (English)

    Qiuyue Yan; Jie Xu; Yanqiang Zhan; Zhouping Tang; Suming Zhang

    2011-01-01

    microRNA is important for maintaining characteristics of embryonic stem cells,and microRNA302a (MiR-302a) has been shown to exert important effects on cell reprogramming.Therefore,the present study used miR294 and miR302a,in combination with Oct4,to induce mouse neural stem cells (NSCs) into induced pluripotent stem (iPS) cells.Following identification of iPS cells,the effects of microRNA on cell reprogramming were analyzed.Results suggested that reprogramming efficiency with Oct4 + miR-294 + miR-302a was 7-fold greater than Oct4 alone (0.1% vs.0.014%).The iPS cells were undifferentiated and positive for alkaline phosphatase,SSEA-1,and Oct4.These findings demonstrated that microRNAs play an important role in cell reprogramming and provide a safe and efficient induction system for cellular reprogramming.

  1. Experimental Advances Towards Neural Regeneration from Induced Stem Cells to Direct In Vivo Reprogramming.

    Science.gov (United States)

    Dametti, Sara; Faravelli, Irene; Ruggieri, Margherita; Ramirez, Agnese; Nizzardo, Monica; Corti, Stefania

    2016-05-01

    Neuronal loss is a common substrate of many neurological diseases that still lack effective treatments and highly burden lives of affected individuals. The discovery of self-renewing stem cells within the central nervous system (CNS) has opened the doors to the possibility of using the plasticity of CNS as a potential strategy for the development of regenerative therapies after injuries. The role of neural progenitor cells appears to be crucial, but insufficient in reparative processes after damage. In addition, the mechanisms that regulate these events are still largely unknown. Stem cell-based therapeutic approaches have primarily focused on the use of either induced pluripotent stem cells or induced neural stem cells as sources for cell transplantation. More recently, in vivo direct reprogramming of endogenous CNS cells into multipotent neural stem/progenitor cells has been proposed as an alternative strategy that could overcome the limits connected with both the invasiveness of exogenous cell transplantation and the technical issues of in vitro reprogramming (i.e., the time requested and the limited available amount of directly induced neuronal cells). In this review, we aim to highlight the recent studies on in vivo direct reprogramming, focusing on astrocytes conversion to neurons or to neural stem/precursors cells, in the perspective of future therapeutic purposes for neurological disorders.

  2. Vitamin A Impairs the Reprogramming of Tregs into IL-17-Producing Cells during Intestinal Inflammation

    Science.gov (United States)

    Tejón, Gabriela; Manríquez, Valeria; De Calisto, Jaime; Flores-Santibáñez, Felipe; Hidalgo, Yessia; Crisóstomo, Natalia; Fernández, Dominique; Sauma, Daniela; Mora, J. Rodrigo; Bono, María R.; Rosemblatt, Mario

    2015-01-01

    Maintaining the identity of Foxp3+ regulatory T cells (Tregs) is critical for controlling immune responses in the gut, where an imbalance between Tregs and T effector cells has been linked to inflammatory bowel disease. Accumulating evidence suggests that Tregs can convert into Th17 cells and acquire an inflammatory phenotype. In this study, we used an adoptive transfer model of Ag-specific T cells to study the contribution of different factors to the reprogramming of in vitro-generated Treg cells (iTreg) into IL-17-producing cells in a mouse model of gut inflammation in vivo. Our results show that intestinal inflammation induces the reprogramming of iTreg cells into IL-17-producing cells and that vitamin A restrains reprogramming in the gut. We also demonstrate that the presence of IL-2 during the in vitro generation of iTreg cells confers resistance to Th17 conversion but that IL-2 and retinoic acid (RA) cooperate to maintain Foxp3 expression following stimulation under Th17-polarizing conditions. Additionally, although IL-2 and RA differentially regulate the expression of different Treg cell suppressive markers, Treg cells generated under different polarizing conditions present similar suppressive capacity. PMID:26583087

  3. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum.

    Directory of Open Access Journals (Sweden)

    Catherine D McCusker

    Full Text Available The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP, to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  4. Positional information is reprogrammed in blastema cells of the regenerating limb of the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    McCusker, Catherine D; Gardiner, David M

    2013-01-01

    The regenerating region of an amputated salamander limb, known as the blastema, has the amazing capacity to replace exactly the missing structures. By grafting cells from different stages and regions of blastemas induced to form on donor animals expressing Green Fluorescent Protein (GFP), to non-GFP host animals, we have determined that the cells from early stage blastemas, as well as cells at the tip of late stage blastemas are developmentally labile such that their positional identity is reprogrammed by interactions with more proximal cells with stable positional information. In contrast, cells from the adjacent, more proximal stump tissues as well as the basal region of late bud blastemas are positionally stable, and thus form ectopic limb structures when grafted. Finally, we have found that a nerve is required to maintain the blastema cells in a positionally labile state, thus indicating a role for reprogramming cues in the blastema microenvironment.

  5. Ataxia-telangiectasia mutated (ATM) deficiency decreases reprogramming efficiency and leads to genomic instability in iPS cells

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Taisuke [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Nagamatsu, Go, E-mail: gonag@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kosaka, Takeo [Department of Urology, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Takubo, Keiyo [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan); Hotta, Akitsu [Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Department of Reprogramming Science, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto (Japan); Ellis, James [Ontario Human iPS Cell Facility, Molecular Genetics, University of Toronto, Developmental and Stem Cell Biology, SickKids, Toronto, Canada MG1L7 (Canada); Suda, Toshio, E-mail: sudato@sc.itc.keio.ac.jp [Department of Cell Differentiation, The Sakaguchi Laboratory, School of Medicine, Keio University, Tokyo 160-8582 (Japan)

    2011-04-08

    Highlights: {yields} iPS cells were induced with a fluorescence monitoring system. {yields} ATM-deficient tail-tip fibroblasts exhibited quite a low reprogramming efficiency. {yields} iPS cells obtained from ATM-deficient cells had pluripotent cell characteristics. {yields} ATM-deficient iPS cells had abnormal chromosomes, which were accumulated in culture. -- Abstract: During cell division, one of the major features of somatic cell reprogramming by defined factors, cells are potentially exposed to DNA damage. Inactivation of the tumor suppressor gene p53 raised reprogramming efficiency but resulted in an increased number of abnormal chromosomes in established iPS cells. Ataxia-telangiectasia mutated (ATM), which is critical in the cellular response to DNA double-strand breaks, may also play an important role during reprogramming. To clarify the function of ATM in somatic cell reprogramming, we investigated reprogramming in ATM-deficient (ATM-KO) tail-tip fibroblasts (TTFs). Although reprogramming efficiency was greatly reduced in ATM-KO TTFs, ATM-KO iPS cells were successfully generated and showed the same proliferation activity as WT iPS cells. ATM-KO iPS cells had a gene expression profile similar to ES cells and WT iPS cells, and had the capacity to differentiate into all three germ layers. On the other hand, ATM-KO iPS cells accumulated abnormal genome structures upon continuous passages. Even with the abnormal karyotype, ATM-KO iPS cells retained pluripotent cell characteristics for at least 20 passages. These data indicate that ATM does participate in the reprogramming process, although its role is not essential.

  6. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  7. A blueprint for engineering cell fate: current technologies to reprogram cell identity

    Institute of Scientific and Technical Information of China (English)

    Samantha A Morris; George Q Daley

    2013-01-01

    Human diseases such as heart failure,diabetes,neurodegenerative disorders,and many others result from the deficiency or dysfunction of critical cell types.Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types.In addition to transplantation therapy,the generation of otherwise inaccessible cells also permits disease modeling,toxicology testing and drug discovery in vitro.In this review,we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states.We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching,and discuss the mechanisms underlying the engineering of cell fate.Finally,we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.

  8. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  9. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

    Science.gov (United States)

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  10. MicroRNA-Mediated Reprogramming of Somatic Cells into Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Sandmaier, Shelley E S; Telugu, Bhanu Prakash V L

    2015-01-01

    MicroRNAs or miRNAs belong to a class of small noncoding RNAs that play a crucial role in posttranscriptional regulation of gene expression. Nascent miRNAs are expressed as a longer transcript, which are then processed into a smaller 18-23-nucleotide mature miRNAs that bind to the target transcripts and induce cleavage or inhibit translation. MiRNAs therefore represent another key regulator of gene expression in establishing and maintaining unique cellular fate. Several classes of miRNAs have been identified to be uniquely expressed in embryonic stem cells (ESC) and regulated by the core transcription factors Oct4, Sox2, and Klf4. One such class of miRNAs is the mir-302/367 cluster that is enriched in pluripotent cells in vivo and in vitro. Using the mir-302/367 either by themselves or in combination with the Yamanaka reprogramming factors (Oct4, Sox2, c-Myc, and Klf4) has resulted in the establishment of induced pluripotent stem cells (iPSC) with high efficiencies. In this chapter, we outline the methodologies for establishing and utilizing the miRNA-based tools for reprogramming somatic cells into iPSC.

  11. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming

    Science.gov (United States)

    Kazantseva, Jekaterina; Sadam, Helle; Neuman, Toomas; Palm, Kaia

    2016-01-01

    Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression. PMID:27499390

  12. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Shogo Nagata

    Full Text Available Human induced pluripotent stem cells (iPSCs are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  13. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells.

    Science.gov (United States)

    Nagata, Shogo; Hirano, Kunio; Kanemori, Michele; Sun, Liang-Tso; Tada, Takashi

    2012-01-01

    Human induced pluripotent stem cells (iPSCs) are reprogrammed by transient expression of transcription factors in somatic cells. Approximately 1% of somatic cells can be reprogrammed into iPSCs, while the remaining somatic cells are differentially reprogrammed. Here, we established induced pluripotent cancer stem-like cells (iCSCs) as self-renewing pluripotent cell clones. Stable iCSC lines were established from unstable induced epithelial stem cell (iESC) lines through re-plating followed by embryoid body formation and serial transplantation. iCSCs shared the expression of pluripotent marker genes with iPSCs, except for REX1 and LIN28, while exhibited the expression of somatic marker genes EMP1 and PPARγ. iESCs and iCSCs could generate teratomas with high efficiency by implantation into immunodeficient mice. The second iCSCs isolated from dissociated cells of teratoma from the first iCSCs were stably maintained, showing a gene expression profile similar to the first iCSCs. In the first and second iCSCs, transgene-derived Oct4, Sox2, Klf4, and c-Myc were expressed. Comparative global gene expression analyses demonstrated that the first iCSCs were similar to iESCs, and clearly different from human iPSCs and somatic cells. In iCSCs, gene expression kinetics of the core pluripotency factor and the Myc-related factor were pluripotent type, whereas the polycomb complex factor was somatic type. These findings indicate that pluripotent tumorigenicity can be conferred on somatic cells through up-regulation of the core pluripotency and Myc-related factors, prior to establishment of the iPSC molecular network by full reprogramming through down-regulation of the polycomb complex factor.

  14. Producing primate embryonic stem cells by somatic cell nuclear transfer.

    Science.gov (United States)

    Byrne, J A; Pedersen, D A; Clepper, L L; Nelson, M; Sanger, W G; Gokhale, S; Wolf, D P; Mitalipov, S M

    2007-11-22

    Derivation of embryonic stem (ES) cells genetically identical to a patient by somatic cell nuclear transfer (SCNT) holds the potential to cure or alleviate the symptoms of many degenerative diseases while circumventing concerns regarding rejection by the host immune system. However, the concept has only been achieved in the mouse, whereas inefficient reprogramming and poor embryonic development characterizes the results obtained in primates. Here, we used a modified SCNT approach to produce rhesus macaque blastocysts from adult skin fibroblasts, and successfully isolated two ES cell lines from these embryos. DNA analysis confirmed that nuclear DNA was identical to donor somatic cells and that mitochondrial DNA originated from oocytes. Both cell lines exhibited normal ES cell morphology, expressed key stem-cell markers, were transcriptionally similar to control ES cells and differentiated into multiple cell types in vitro and in vivo. Our results represent successful nuclear reprogramming of adult somatic cells into pluripotent ES cells and demonstrate proof-of-concept for therapeutic cloning in primates.

  15. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells.

    Directory of Open Access Journals (Sweden)

    Kyra Oswald-Richter

    2004-07-01

    Full Text Available A T-cell subset, defined as CD4(+CD25(hi (regulatory T-cells [Treg cells], was recently shown to suppress T-cell activation. We demonstrate that human Treg cells isolated from healthy donors express the HIV-coreceptor CCR5 and are highly susceptible to HIV infection and replication. Because Treg cells are present in very few numbers and are difficult to expand in vitro, we genetically modified conventional human T-cells to generate Treg cells in vitro by ectopic expression of FoxP3, a transcription factor associated with reprogramming T-cells into a Treg subset. Overexpression of FoxP3 in naïve human CD4(+ T-cells recapitulated the hyporesponsiveness and suppressive function of naturally occurring Treg cells. However, FoxP3 was less efficient in reprogramming memory T-cell subset into regulatory cells. In addition, FoxP3-transduced T-cells also became more susceptible to HIV infection. Remarkably, a portion of HIV-positive individuals with a low percentage of CD4(+ and higher levels of activated T-cells have greatly reduced levels of FoxP3(+CD4(+CD25(hi T-cells, suggesting disruption of the Treg cells during HIV infection. Targeting and disruption of the T-cell regulatory system by HIV may contribute to hyperactivation of conventional T-cells, a characteristic of HIV disease progression. Moreover, the ability to reprogram human T-cells into Treg cells in vitro will greatly aid in decoding their mechanism of suppression, their enhanced susceptibility to HIV infection, and the unique markers expressed by this subset.

  16. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells.

    Science.gov (United States)

    Oswald-Richter, Kyra; Grill, Stacy M; Shariat, Nikki; Leelawong, Mindy; Sundrud, Mark S; Haas, David W; Unutmaz, Derya

    2004-07-01

    A T-cell subset, defined as CD4(+)CD25(hi) (regulatory T-cells [Treg cells]), was recently shown to suppress T-cell activation. We demonstrate that human Treg cells isolated from healthy donors express the HIV-coreceptor CCR5 and are highly susceptible to HIV infection and replication. Because Treg cells are present in very few numbers and are difficult to expand in vitro, we genetically modified conventional human T-cells to generate Treg cells in vitro by ectopic expression of FoxP3, a transcription factor associated with reprogramming T-cells into a Treg subset. Overexpression of FoxP3 in naïve human CD4(+) T-cells recapitulated the hyporesponsiveness and suppressive function of naturally occurring Treg cells. However, FoxP3 was less efficient in reprogramming memory T-cell subset into regulatory cells. In addition, FoxP3-transduced T-cells also became more susceptible to HIV infection. Remarkably, a portion of HIV-positive individuals with a low percentage of CD4(+) and higher levels of activated T-cells have greatly reduced levels of FoxP3(+)CD4(+)CD25(hi) T-cells, suggesting disruption of the Treg cells during HIV infection. Targeting and disruption of the T-cell regulatory system by HIV may contribute to hyperactivation of conventional T-cells, a characteristic of HIV disease progression. Moreover, the ability to reprogram human T-cells into Treg cells in vitro will greatly aid in decoding their mechanism of suppression, their enhanced susceptibility to HIV infection, and the unique markers expressed by this subset.

  17. microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Xudong Guo; Qidong Liu; Guiying Wang; Songcheng Zhu; Longfei Gao; Wujun Hong; Yafang Chen

    2013-01-01

    Fibroblasts can be reprogrammed into induced pluripotent stem cells (iPSCs) by the application of Yamanaka factors (OSKM),but the mechanisms underlying this reprogramming remain poorly understood.Here,we report that Sox2 directly regulates endogenous microRNA-29b (miR-29b) expression during iPSC generation and that miR-29b expression is required for OSKM-and OSK-mediated reprogramming.Mechanistic studies show that Dnmt3a and Dnmt3b are in vivo targets of miR-29b and that Dnmt3a and Dnmt3b expression is inversely correlated with miR-29b expression during reprogramming.Moreover,the effect of miR-29b on reprogramming can be blocked by Dnmt3a or Dnmt3b overexpression.Further experiments indicate that miR-29b-DNMT signaling is significantly involved in the regulation of DNA methylation-related reprogramming events,such as mesenchymal-to-epithelial transition (MET)and Dlk1-Dio3 region transcription.Thus,our studies not only reveal that miR-29b is a novel mediator of reprogramming factor Sox2 but also provide evidence for a muitistep mechanism in which Sox2 drives a miR-29b-DNMT signaling axis that regulates DNA methylation-related events during reprogramming.

  18. Epigenetically reprogramming of human embryonic stem cells by 3-Deazaneplanocin A and sodium butyrate

    Directory of Open Access Journals (Sweden)

    Soheila Azghadi

    2011-01-01

    Full Text Available Objectives: Infertility affects about 6.1 million women aged 15-44 in the United States. The leading cause of infertility in women is quantitative and qualitative defects in human germ-cell development (these sentences are not mentioned in introduction so it is not correct to mention in abstract, you can omit. Human embryonic stem cell (hESC lines are derived from the inner cell mass (ICM of developing blastocysts and have a broad clinical potential. hESCs have been classified into three classes based on their epigenetic state. The goal of this study was to epigenetically reprogram Class II and Class III cell lines to Class I (naïve state, and to in vitro differentiation of potent hESCs to primordial germ cells (PGCs. Methods: Recent evidence suggests that 3-deazaneplanocin A (DZNep is a global histone methylation inhibitor which selectively inhibits trimethylation of lysine 27 on histone H3K27, and it is an epigenetic therapeutic for cancer. The characteristics of DZNep lead us to hypothesize that it is a good candidate to epigenetically reprogram hESCs to the Class I. Additionally, we used sodium butyrate (NaBu shown in previous studies to up-regulate the expression of germ cell specific markers (these sentences should be come in introduction. Results: We used these two drugs to produce epigenetically stable hESC lines. hESC lines are an appropriate system for disease modeling and understanding developmental stages, therefore producing stable stem cell lines may have an outstanding impact in different research fields such as preventive medicine. Conclusions: X-Chromosome inactivation has been used as a tool to follow the reprogramming process. We have used immunostaining and western blot as methods to follow this reprogramming qualitatively and quantitatively.

  19. [From Gurdon to Yamanaka--a brief history of cell reprogramming].

    Science.gov (United States)

    Kubiak, Jacek Zbigniew; Ciemerych, Maria Anna

    2013-01-01

    This paper describes the genesis of discoveries that have allowed cell reprogramming and derivation of induced pluripotent stem cells. This achievement has been distinguished by the 2012 Nobel Prize in Physiology or Medicine awarded to John B. Gurdon and Shinya Yamanaka. The verdict of the Nobel Committee was as follows: "for the discovery that mature cells can be reprogrammed to become pluripotent". The basis for the discovery was done by Gurdon in the 60s of the twentieth century, although he was not a pioneer in his field of research. The last word was pronounced, however, by Yamanaka at the beginning of the twenty-first century. The Japanese was born fifty years ago, that is exactly the year when Gurdon made his most important discoveries. Despite such a large difference in age of the two scientists their studies complement each other perfectly and promise numerous applications in regenerative medicine.

  20. Reprogramming of adult human neural stem cells into induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    XIE Li-qian; SUN Hua-ping; WANG Tian; TANG Hai-liang; WANG Pu; ZHU Jian-hong; YAO Zheng-wei

    2013-01-01

    Background Since an effective method for generating induced pluripotent stem cells (iPSCs) from human neural stem cells (hNSCs) can offer us a promising tool for studying brain diseases,here we reported direct reprogramming of adult hNSCs into iPSCs by retroviral transduction of four defined factors.Methods NSCs were successfully isolated and cultured from the hippocampus tissue of epilepsy patients.When combined with four factors (OCT3/4,SOX2,KLF4,and c-MYC),iPSCs colonies were successfully obtained.Results Morphological characterization and specific genetic expression confirmed that these hNSCs-derived iPSCs showed embryonic stem cells-like properties,which include the ability to differentiate into all three germ layers both in vitro and in vivo.Conclusion Our method would be useful for generating human iPSCs from NSCs and provide an important tool for studying neurological diseases.

  1. MicroRNA regulating metabolic reprogramming in tumor cells: New tumor markers

    Directory of Open Access Journals (Sweden)

    Daniel Otero-Albiol

    2016-01-01

    Full Text Available Metabolic reprogramming is a feature of cancer cells that provides fast energy production and the abundance of precursors required to fuel uncontrolled proliferation. The Warburg effect, increase in glucose uptake and preference for glycolysis over oxidative phosphorylation (OXPHOS as major source of energy even in the presence of oxygen, is the main metabolic adaptation of cancer cells but not the only one. Increased glutaminolysis is also observed in cancer cells, being another source of adenosine triphosphate production and supply of intermediates for macromolecule biosynthesis. The ability to shift from OXPHOS to glycolysis and vice versa, known as metabolic plasticity, allows cancer cells to adapt to continuous changes in the tumor microenvironment. Metabolic reprogramming is linked to the deregulation of pathways controlled by hypoxia-inducible factor 1 alpha, MYC, or p53, and microRNAs (miRNAs have emerged as key regulators of these signaling pathways. miRNAs target metabolic enzymes, oncogenes, and tumor suppressors involved in metabolic reprogramming, becoming crucial elements in the cross talk of molecular pathways that promotes survival, proliferation, migration, and consequently, tumor progression and metastasis. Moreover, several miRNAs have been found downregulated in different human cancers. Due to this fact and their central role in metabolism regulation, miRNAs may be considered as biomarkers for cancer therapy.

  2. Emerging landscape of cell penetrating peptide in reprogramming and gene editing.

    Science.gov (United States)

    Liu, Huiting; Zeng, Fanhui; Zhang, Ming; Huang, Fajun; Wang, Jiajun; Guo, Jingjing; Liu, Changbai; Wang, Hu

    2016-03-28

    The plasma membrane remains a major barrier for intracellular drug delivery, to overcome this issue, a variety of approaches have been developed and used to deliver therapeutic cargos. Among these approaches, cell penetrating peptide (CPP) is promising and affords widely used vector for efficient intracellular delivery of cargos. Moreover, the latter findings including iPS reprogramming and direct transdifferentiation as well as gene editing have gradually become hot research topic; because their application in tissue engineering and disease modeling have great potential to advance innovation in precision medicine. Since the beginning, research on these approaches is mainly based on virus transduction system, while, under the consideration for obviating the risk of mutagenic insertion and enables more accurate controlling, CPP-based efficient virus-free delivery strategy has been used recently. In this review, we summarize the existing CPP-based delivery system, emerging landscape of CPP application in stem cell manipulation and reprogramming, along with CPP contributions to gene editing techniques.

  3. A CRISPR/Cas9-Based System for Reprogramming Cell Lineage Specification

    Directory of Open Access Journals (Sweden)

    Syandan Chakraborty

    2014-12-01

    Full Text Available Gene activation by the CRISPR/Cas9 system has the potential to enable new approaches to science and medicine, but the technology must be enhanced to robustly control cell behavior. We show that the fusion of two transactivation domains to Cas9 dramatically enhances gene activation to a level that is necessary to reprogram cell phenotype. Targeted activation of the endogenous Myod1 gene locus with this system led to stable and sustained reprogramming of mouse embryonic fibroblasts into skeletal myocytes. The levels of myogenic marker expression obtained by the activation of endogenous Myod1 gene were comparable to that achieved by overexpression of lentivirally delivered MYOD1 transcription factor.

  4. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy.

    Science.gov (United States)

    Vicente-Dueñas, Carolina; Hauer, Julia; Ruiz-Roca, Lucía; Ingenhag, Deborah; Rodríguez-Meira, Alba; Auer, Franziska; Borkhardt, Arndt; Sánchez-García, Isidro

    2015-06-01

    Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.

  5. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos.

    Science.gov (United States)

    Popken, Jens; Brero, Alessandro; Koehler, Daniela; Schmid, Volker J; Strauss, Axel; Wuensch, Annegret; Guengoer, Tuna; Graf, Alexander; Krebs, Stefan; Blum, Helmut; Zakhartchenko, Valeri; Wolf, Eckhard; Cremer, Thomas

    2014-01-01

    Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.

  6. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer.

    Science.gov (United States)

    Long, Charles R; Westhusin, Mark E; Golding, Michael C

    2014-02-01

    Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.

  7. Ultrastructural visualization of the Mesenchymal-to-Epithelial Transition during reprogramming of human fibroblasts to induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    M.K. Høffding

    2015-01-01

    Here, we integrate a panel of morphological approaches with gene expression analyses to visualize the dynamics of episomal reprogramming of human fibroblasts to iPSCs. We provide the first ultrastructural analysis of human fibroblasts at various stages of episomal iPSC reprogramming, as well as the first real-time live cell visualization of a MET occurring during reprogramming. The results indicate that the MET manifests itself approximately 6–12 days after electroporation, in synchrony with the upregulation of early pluripotency markers, and resembles a reversal of the Epithelial-to-Mesenchymal Transition (EMT which takes place during mammalian gastrulation.

  8. Single-Cell XIST Expression in Human Preimplantation Embryos and Newly Reprogrammed Female Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Briggs, Sharon F; Dominguez, Antonia A; Chavez, Shawn L; Reijo Pera, Renee A

    2015-06-01

    The process of X chromosome inactivation (XCI) during reprogramming to produce human induced pluripotent stem cells (iPSCs), as well as during the extensive programming that occurs in human preimplantation development, is not well-understood. Indeed, studies of XCI during reprogramming to iPSCs report cells with two active X chromosomes and/or cells with one inactive X chromosome. Here, we examine expression of the long noncoding RNA, XIST, in single cells of human embryos through the oocyte-to-embryo transition and in new mRNA reprogrammed iPSCs. We show that XIST is first expressed beginning at the 4-cell stage, coincident with the onset of embryonic genome activation in an asynchronous manner. Additionally, we report that mRNA reprogramming produces iPSCs that initially express XIST transcript; however, expression is rapidly lost with culture. Loss of XIST and H3K27me3 enrichment at the inactive X chromosome at late passage results in X chromosome expression changes. Our data may contribute to applications in disease modeling and potential translational applications of female stem cells.

  9. NRF2 Orchestrates the Metabolic Shift during Induced Pluripotent Stem Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Kate E. Hawkins

    2016-03-01

    Full Text Available The potential of induced pluripotent stem cells (iPSCs in disease modeling and regenerative medicine is vast, but current methodologies remain inefficient. Understanding the cellular mechanisms underlying iPSC reprogramming, such as the metabolic shift from oxidative to glycolytic energy production, is key to improving its efficiency. We have developed a lentiviral reporter system to assay longitudinal changes in cell signaling and transcription factor activity in living cells throughout iPSC reprogramming of human dermal fibroblasts. We reveal early NF-κB, AP-1, and NRF2 transcription factor activation prior to a temporal peak in hypoxia inducible factor α (HIFα activity. Mechanistically, we show that an early burst in oxidative phosphorylation and elevated reactive oxygen species generation mediates increased NRF2 activity, which in turn initiates the HIFα-mediated glycolytic shift and may modulate glucose redistribution to the pentose phosphate pathway. Critically, inhibition of NRF2 by KEAP1 overexpression compromises metabolic reprogramming and results in reduced efficiency of iPSC colony formation.

  10. Mesenchymal to Epithelial Transition Mediated by CDH1 Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency

    Directory of Open Access Journals (Sweden)

    Junhui An

    2017-02-01

    Full Text Available Cultured spermatogonial stem cells (GSCs can spontaneously form pluripotent cells in certain culture conditions. However, GSC reprogramming is a rare event that is largely unexplained. We show GSCs have high expression of mesenchymal to epithelial transition (MET suppressors resulting in a developmental barrier inhibiting GSC reprogramming. Either increasing OCT4 or repressing transforming growth factor β (TGF-β signaling promotes GSC reprogramming by upregulating CDH1 and boosting MET. Reducing ZEB1 also enhances GSC reprogramming through its direct effect on CDH1. RNA sequencing shows that rare GSCs, identified as CDH1+ after trypsin digestion, are epithelial-like cells. CDH1+ GSCs exhibit enhanced reprogramming and become more prevalent during the course of reprogramming. Our results provide a mechanistic explanation for the spontaneous emergence of pluripotent cells from GSC cultures; namely, rare GSCs upregulate CDH1 and initiate MET, processes normally kept in check by ZEB1 and TGF-β signaling, thereby ensuring germ cells are protected from aberrant acquisition of pluripotency.

  11. Epigenetic reprogramming and re-differentiation of a Ewing sarcoma cell line

    Directory of Open Access Journals (Sweden)

    Joseph Brady Moore IV

    2015-03-01

    Full Text Available Developmental reprogramming techniques have been used to generate induced pluripotent stem (iPS cells from both normal and malignant cells. The derivation of iPS cells from cancer has the potential to provide a unique scientific tool to overcome challenges associated with the establishment of cell lines from primary patient samples and a readily expandable source of cells that may be used to model the initial disease. In the current study we developmentally reprogrammed a metastatic Ewing sarcoma (EWS cell line to a meta-stable embryonic stem (ES-like state sharing molecular and phenotypic features with previously established ES and iPS cell lines. EWS-iPS cells exhibited a pronounced drug resistant phenotype despite persistent expression of the oncogenic EWS-FLI1 fusion transcript. This included resistance to compounds that specifically target downstream effector pathways of EWS-FLI1, such as MAPK/ERK and PI3K/AKT, which play an important role in EWS pathogenesis. EWS-iPS cells displayed tumor initiation abilities in vivo and formed tumors exhibiting characteristic Ewing histopathology. In parallel, EWS-iPS cells re-differentiated in vitro recovered sensitivity to molecularly targeted chemotherapeutic agents, which reiterated pathophysiological features of the cells from which they were derived. These data suggest that EWS-iPS cells may provide an expandable disease model that could be used to investigate processes modulating oncogenesis, metastasis, and chemotherapeutic resistance in EWS.

  12. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Ras Trokovic

    2015-07-01

    Full Text Available Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  13. Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells.

    Science.gov (United States)

    Trokovic, Ras; Weltner, Jere; Noisa, Parinya; Raivio, Taneli; Otonkoski, Timo

    2015-07-01

    Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSC) by the forced expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Pluripotent reprogramming appears as a slow and inefficient process because of genetic and epigenetic barriers of somatic cells. In this report, we have extended previous observations concerning donor age and passage number of human fibroblasts as critical determinants of the efficiency of iPSC induction. Human fibroblasts from 11 different donors of variable age were reprogrammed by ectopic expression of reprogramming factors. Although all fibroblasts gave rise to iPSC colonies, the reprogramming efficiency correlated negatively and declined rapidly with increasing donor age. In addition, the late passage fibroblasts gave less reprogrammed colonies than the early passage cell counterparts, a finding associated with the cellular senescence-induced upregulation of p21. Knockdown of p21 restored iPSC generation even in long-term passaged fibroblasts of an old donor, highlighting the central role of the p53/p21 pathway in cellular senescence induced by both donor age and culture time.

  14. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells.

    Directory of Open Access Journals (Sweden)

    Ying Dai

    Full Text Available Cell fate and function can be regulated and reprogrammed by intrinsic genetic program, extrinsic factors and niche microenvironment. Direct reprogramming has shown many advantages in the field of cellular reprogramming. Here we tried the possibility to generate corneal endothelia (CE -like cells from human adipose-derived stem cells (ADSCs by the non-genetic direct reprogramming of recombinant cell-penetrating proteins Oct4/Klf4/Sox2 (PTD-OKS and small molecules (purmorphamine, RG108 and other reprogramming chemical reagents, as well as biomimetic platforms of simulate microgravity (SMG bioreactor. Co-cultured with corneal cells and decellularized corneal ECM, Reprogrammed ADSCs revealed spherical growth and positively expressing Nanog for RT-PCR analysis and CD34 for immunofluorescence staining after 7 days-treatment of both purmorphamine and PTD-OKS (P-OKS and in SMG culture. ADSCs changed to CEC polygonal morphology from spindle shape after the sequential non-genetic direct reprogramming and biomimetic platforms. At the same time, induced cells converted to weakly express CD31, AQP-1 and ZO-1. These findings demonstrated that the treatments were able to promote the stem-cell reprogramming for human ADSCs. Our study also indicates for the first time that SMG rotary cell culture system can be used as a non-genetic means to promote direct reprogramming. Our methods of reprogramming provide an alternative strategy for engineering patient-specific multipotent cells for cellular plasticity research and future autologous CEC replacement therapy that avoids complications associated with the use of human pluripotent stem cells.

  15. Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

    OpenAIRE

    Maximina H. Yun; Phillip B. Gates; Jeremy P. Brockes

    2014-01-01

    Summary In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signa...

  16. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors

    Institute of Scientific and Technical Information of China (English)

    Chao Sheng; Ziwei Wang; Changlong Guo; Hua-Jun Wu; Zhonghua Liu; Liu Wang; Shigang He; Xiu-Jie Wang; Zhiguo Chen; Qi Zhou; Qinyuan Zheng; Jianyu Wu; Zhen Xu; Libin Wang; Wei Li; Haijiang Zhang; Xiao-YangZhao; Lei Liu

    2012-01-01

    Multipotent neural stem/progenitor cells hold great promise for cell therapy.The reprogramming of fibroblasts to induced pluripotent stem cells as well as mature neurons suggests a possibility to convert a terminally differentiated somatic cell into a muitipotent state without first establishing pluripotency.Here,we demonstrate that sertoli cells derived from mesoderm can be directly converted into a multipotent state that possesses neural stem/progenitor cell properties.The induced neural stem/progenitor cells (iNSCs) express multiple NSC-specific markers,exhibit a global gene-expression profile similar to normal NSCs,and are capable of self-renewal and differentiating into glia and electrophysiologically functional neurons,iNSC-derived neurons stain positive for tyrosine hydroxylase (TH),γ-aminobutyric acid,and choline acetyltransferase.In addition,iNSCs can survive and generate synapses following transplantation into the dentate gyrus.Generation of iNSCs may have important implications for disease modeling and regenerative medicine.

  17. Integration-free reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) without viral vectors, recombinant DNA, and genetic modification.

    Science.gov (United States)

    Heng, Boon Chin; Fussenegger, Martin

    2014-01-01

    Stem cells are envisaged to be integral components of multicellular systems engineered for therapeutic applications. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) via recombinant expression of a limited number of transcription factors, which was first achieved by Yamanaka and colleagues in 2007, heralded a major breakthrough in the stem cell field. Since then, there has been rapid progress in the field of iPSC generation, including the identification of various small molecules that can enhance reprogramming efficiency and reduce the number of different transcription factors required for reprogramming. Nevertheless, the major obstacles facing clinical applications of iPSCs are safety concerns associated with the use of viral vectors and recombinant DNA for expressing the appropriate transcription factors during reprogramming. In particular, permanent genetic modifications to newly reprogrammed iPSCs have to be avoided in order to meet stringent safety requirements for clinical therapy. These safety challenges can be overcome by new technology platforms that enable cellular reprogramming to iPSCs without the need to utilize either recombinant DNA or viral vectors. The use of recombinant cell-penetrating peptides and direct transfection of synthetic mRNA encoding appropriate transcription factors have both been shown to successfully reprogram somatic cells to iPSCs. It has also been shown more recently that the direct transfection of certain miRNA species can reprogram somatic cells to pluripotency without the need for any of the transcription factors commonly utilized for iPSC generation. This chapter describes protocols for iPSC generation with these new techniques, which would obviate the use of recombinant DNA and viral vectors in cellular reprogramming, thus avoiding permanent genetic modification to the reprogrammed cells.

  18. Chromatin roadblocks to reprogramming 50 years on.

    Science.gov (United States)

    Skene, Peter J; Henikoff, Steven

    2012-10-29

    A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon.

  19. The role of p53 in limiting somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Yan Liu; Ruben Hoya-Arias; Stephen D Nimer

    2009-01-01

    @@ The first successful generation of induced pluripotent stem(iPS)cells from somatic cells was accomplished by introducing four genes into the cell,0ct3/4,Sox2,Klf4,and c-myc [1].While a tour-de-force,this approach to iPS cell generation is inefficient,and unlikely to be directly translated into therapeutic use since it involves the use of retroviruses to introduce these genes into the cell.Subsequent studies have used non-integrating genetic elements,chemical compounds,or proteins rather than DNA to bypass concerns about retroviral insertional mutagenesis [2-5].

  20. The effect of immunosuppressive molecules on T-cell metabolic reprogramming.

    Science.gov (United States)

    Fernández-Ramos, Ana A; Poindessous, Virginie; Marchetti-Laurent, Catherine; Pallet, Nicolas; Loriot, Marie-Anne

    2016-08-01

    T lymphocytes undergo metabolic reprogramming to adapt to extracellular and intracellular cues. Specifically, T-cell metabolism results into ATP production, anabolism and catabolism pathways that not only support rapid cell growth and proliferation, but also differentiation and effector functions, recently referred as "immunometabolism". Quiescent naïve T cells rely on oxidative phosphorylation whereas aerobic glycolysis (Warburg effect) occurs in activated T cells (effector CD4(+) and CD8(+)). The molecular mechanisms that sense metabolic status and influence T-cell function require metabolic checkpoints including sensors of metabolic signals and transducers (Myc, HIF-1α, AMPK and mTOR). These metabolic checkpoints represent a novel therapeutic strategy for immune modulation. Interestingly, many immunosuppressive drugs including mTOR inhibitors (rapamycin), calcineurin inhibitors (tacrolimus, cyclosporine A) and inhibitors of de novo purine synthesis (6-mercaptopurine, mycophenolic acid and methotrexate) provide examples into how modulating these metabolic checkpoints can regulate T-cell activation, differentiation and function. In this Review we highlight emerging concepts about metabolic reprogramming in T-cell responses and we discuss the potential therapeutic interventions to influence T-cell fate and effector function.

  1. Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine

    Science.gov (United States)

    Bhutia, Yangzom D.; Babu, Ellappan; Ganapathy, Vadivel

    2016-01-01

    Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H+-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function. PMID:27234586

  2. Re-programming tumour cell metabolism to treat cancer: no lone target for lonidamine.

    Science.gov (United States)

    Bhutia, Yangzom D; Babu, Ellappan; Ganapathy, Vadivel

    2016-06-01

    Tumour cell metabolism is very different from normal cell metabolism; cancer cells re-programme the metabolic pathways that occur in normal cells in such a manner that it optimizes their proliferation, growth and survival. Although this metabolic re-programming obviously operates to the advantage of the tumour, it also offers unique opportunities for effective cancer therapy. Molecules that target the tumour cell-specific metabolic pathways have potential as novel anti-cancer drugs. Lonidamine belongs to this group of molecules and is already in use in some countries for cancer treatment. It has been known for a long time that lonidamine interferes with energy production in tumour cells by inhibiting hexokinase II (HKII), a glycolytic enzyme. However, subsequent studies have uncovered additional pharmacological targets for the drug, which include the electron transport chain and the mitochondrial permeability transition pore, thus expanding the pharmacological effects of the drug on tumour cell metabolism. A study by Nancolas et al. in a recent issue of the Biochemical Journal identifies two additional new targets for lonidamine: the pyruvate transporter in the mitochondria and the H(+)-coupled monocarboxylate transporters in the plasma membrane (PM). It is thus becoming increasingly apparent that the anti-cancer effects of lonidamine do not occur through a single target; the drug works at multiple sites. Irrespective of the molecular targets, what lonidamine does in the end is to undo what the tumour cells have done in terms of re-programming cellular metabolism and mitochondrial function.

  3. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming.

    Science.gov (United States)

    Ji, Pengfei; Manupipatpong, Sasicha; Xie, Nina; Li, Yujing

    2016-01-01

    Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.

  4. Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming

    Directory of Open Access Journals (Sweden)

    Pengfei Ji

    2016-01-01

    Full Text Available Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC, have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (dedifferentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs, generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.

  5. Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in Breast Cancer Patients

    Science.gov (United States)

    2008-09-01

    Therapy for Lymphedema inBreast Cancer Patients PRINCIPAL INVESTIGATOR: Young Kwon Hong, Ph.D. CONTRACTING ORGANIZATION...5a. CONTRACT NUMBER 4. TITLE AND SUBTITLE Lymphatic Reprogramming of Adult Endothelial Stem Cells for a Cell-Based Therapy for Lymphedema in... lymphedema patients. The key significance of our proposal is to utilize the elusive circulating adult stem cells to avoid the ethical and immunological

  6. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    NARCIS (Netherlands)

    Hamada, M.; Malureanu, L.A.; Wijshake, T.; Zhou, W.; Deursen, J.M.A. van

    2012-01-01

    The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem

  7. Ustilago maydis reprograms cell proliferation in maize anthers.

    Science.gov (United States)

    Gao, Li; Kelliher, Timothy; Nguyen, Linda; Walbot, Virginia

    2013-09-01

    The basidiomycete Ustilago maydis is a ubiquitous pathogen of maize (Zea mays), one of the world's most important cereal crops. Infection by this smut fungus triggers tumor formation in aerial plant parts within which the fungus sporulates. Using confocal microscopy to track U. maydis infection on corn anthers for 7 days post-injection, we found that U. maydis is located on the epidermis during the first 2 days, and has reached all anther lobe cell types by 3 days post-injection. Fungal infection alters cell-fate specification events, cell division patterns, host cell expansion and host cell senescence, depending on the developmental stage and cell type. Fungal effects on tassel and plant growth were also quantified. Transcriptome profiling using a dual organism microarray identified thousands of anther genes affected by fungal infection at 3 days post-injection during the cell-fate specification and rapid cell proliferation phases of anther development. In total, 4147 (17%) of anther-expressed genes were altered by infection, 2018 fungal genes were expressed in anthers, and 206 fungal secretome genes may be anther-specific. The results confirm that U. maydis deploys distinct genes to cause disease in specific maize organs, and suggest mechanisms by which the host plant is manipulated to generate a tumor.

  8. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Induced pluripotent stem cells (iPSCs are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs. They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs, using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4. Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i, naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.

  9. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  10. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Marianne; Rasmussen, Mikkel Aabech;

    2012-01-01

    transgenes on the expression of the porcine endogenous pluripotency machinery. Endogenous and exogenous gene expression of OCT4, NANOG, SOX2, KLF4, and cMYC was determined at passages 5, 10, 15, and 20, both in cells cultured at 1¿µg/mL doxycycline or 4¿µg/mL doxycycline. Our results revealed that endogenous....... Despite the ability for some endogenous genes to be expressed in these lines, the piPSC-like cells still cannot be maintained without doxycycline, indicating that the culture system of piPSCs may not be optimal or that the reprogramming factor combination used may not currently be optimal for maintaining...

  11. Enhancing the efficiency of direct reprogramming of human mesenchymal stem cells into mature neuronal-like cells with the combination of small molecule modulators of chromatin modifying enzymes, SMAD signaling and cyclic adenosine monophosphate levels.

    Science.gov (United States)

    Alexanian, Arshak R; Liu, Qing-song; Zhang, Zhiying

    2013-08-01

    Advances in cell reprogramming technologies to generate patient-specific cells of a desired type will revolutionize the field of regenerative medicine. While several cell reprogramming methods have been developed over the last decades, the majority of these technologies require the exposure of cell nuclei to reprogramming large molecules via transfection, transduction, cell fusion or nuclear transfer. This raises several technical, safety and ethical issues. Chemical genetics is an alternative approach for cell reprogramming that uses small, cell membrane penetrable substances to regulate multiple cellular processes including cell plasticity. Recently, using the combination of small molecules that are involved in the regulation chromatin structure and function and agents that favor neural differentiation we have been able to generate neural-like cells from human mesenchymal stem cells. In this study, to improve the efficiency of neuronal differentiation and maturation, two specific inhibitors of SMAD signaling (SMAD1/3 and SMAD3/5/8) that play an important role in neuronal differentiation of embryonic stem cells, were added to our previous neural induction recipe. Results demonstrated that human mesenchymal stem cells grown in this culture conditions exhibited higher expression of several mature neuronal genes, formed synapse-like structures and exerted electrophysiological properties of differentiating neural stem cells. Thus, an efficient method for production of mature neuronal-like cells from human adult bone marrow derived mesenchymal stem cells has been developed. We concluded that specific combinations of small molecules that target specific cell signaling pathways and chromatin modifying enzymes could be a promising approach for manipulation of adult stem cell plasticity.

  12. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.

    Science.gov (United States)

    Borges, Gisely T; Vêncio, Eneida F; Quek, Sue-Ing; Chen, Adeline; Salvanha, Diego M; Vêncio, Ricardo Z N; Nguyen, Holly M; Vessella, Robert L; Cavanaugh, Christopher; Ware, Carol B; Troisch, Pamela; Liu, Alvin Y

    2016-09-01

    The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc.

  13. Metabolic reprogramming in mutant IDH1 glioma cells.

    Directory of Open Access Journals (Sweden)

    Jose L Izquierdo-Garcia

    Full Text Available Mutations in isocitrate dehydrogenase (IDH 1 have been reported in over 70% of low-grade gliomas and secondary glioblastomas. IDH1 is the enzyme that catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate while mutant IDH1 catalyzes the conversion of α-ketoglutarate into 2-hydroxyglutarate. These mutations are associated with the accumulation of 2-hydroxyglutarate within the tumor and are believed to be one of the earliest events in the development of low-grade gliomas. The goal of this work was to determine whether the IDH1 mutation leads to additional magnetic resonance spectroscopy (MRS-detectable changes in the cellular metabolome.Two genetically engineered cell models were investigated, a U87-based model and an E6/E7/hTERT immortalized normal human astrocyte (NHA-based model. For both models, wild-type IDH1 cells were generated by transduction with a lentiviral vector coding for the wild-type IDH1 gene while mutant IDH1 cells were generated by transduction with a lentiviral vector coding for the R132H IDH1 mutant gene. Metabolites were extracted from the cells using the dual-phase extraction method and analyzed by 1H-MRS. Principal Component Analysis was used to analyze the MRS data.Principal Component Analysis clearly discriminated between wild-type and mutant IDH1 cells. Analysis of the loading plots revealed significant metabolic changes associated with the IDH1 mutation. Specifically, a significant drop in the concentration of glutamate, lactate and phosphocholine as well as the expected elevation in 2-hydroxyglutarate were observed in mutant IDH1 cells when compared to their wild-type counterparts.The IDH1 mutation leads to several, potentially translatable MRS-detectable metabolic changes beyond the production of 2-hydroxyglutarate.

  14. Microspore embryogenesis: reprogramming cell fate from pollen to embryo development

    NARCIS (Netherlands)

    Hui Li,

    2014-01-01

    Microspore embryogenesis is an expression of plant cell totipotency that leads to the production of haploid embryos. Besides being a widely exploited plant breeding tool, microspore embryogenesis is also a fascinating system that can be used to obtain a deeper mechanistic understanding of plant toti

  15. Tolerogenic dendritic cells for reprogramming of lymphocyte responses in autoimmune diseases.

    Science.gov (United States)

    García-González, Paulina; Ubilla-Olguín, Gabriela; Catalán, Diego; Schinnerling, Katina; Aguillón, Juan Carlos

    2016-11-01

    Dendritic cells (DCs) control immune responses by driving potent inflammatory actions against external and internal threats while generating tolerance to self and harmless components. This duality and their potential to reprogram immune responses in an antigen-specific fashion have made them an interesting target for immunotherapeutic strategies to control autoimmune diseases. Several protocols have been described for in vitro generation of tolerogenic DCs (tolDCs) capable of modulating adaptive immune responses and restoring tolerance through different mechanisms that involve anergy, generation of regulatory lymphocyte populations, or deletion of potentially harmful inflammatory T cell subsets. Recently, the capacity of tolDCs to induce interleukin (IL-10)-secreting regulatory B cells has been demonstrated. In vitro assays and rodent models of autoimmune diseases provide insights to the molecular regulators and pathways enabling tolDCs to control immune responses. Here we review mechanisms through which tolDCs modulate adaptive immune responses, particularly focusing on their suitability for reprogramming autoreactive CD4(+) effector T cells. Furthermore, we discuss recent findings establishing that tolDCs also modulate B cell populations and discuss clinical trials applying tolDCs to patients with autoimmune diseases.

  16. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Directory of Open Access Journals (Sweden)

    Michael K Skinner

    Full Text Available A number of environmental factors (e.g. toxicants have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation progeny in regards to the primordial germ cell (PGC epigenetic reprogramming of the F3 generation (i.e. great-grandchildren. The F3 generation germline transcriptome and epigenome (DNA methylation were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13 and after cord formation in the testis at embryonic day 16 (E16. A larger number of DNA methylation abnormalities (epimutations and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  17. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    Science.gov (United States)

    Skinner, Michael K; Guerrero-Bosagna, Carlos; Haque, M; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  18. Melatonin improves reprogramming efficiency and proliferation of bovine-induced pluripotent stem cells.

    Science.gov (United States)

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Yuan, Ziao; Hu, Pengfei; Wang, Hui; Liu, Changqing; Guan, Weijun; Ma, Yuehui

    2016-09-01

    Melatonin can modulate neural stem cell (NSC) functions such as proliferation and differentiation into NSC-derived pluripotent stem cells (N-iPS) in brain tissue, but the effect and mechanism underlying this are unclear. Thus, we studied how primary cultured bovine NSCs isolated from the retinal neural layer could transform into N-iPS cell. NSCs were exposed to 0.01, 0.1, 1, 10, or 100 μm melatonin, and cell viability studies indicated that 10 μm melatonin can significantly increase cell viability and promote cell proliferation in NSCs in vitro. Thus, 10 μm melatonin was used to study miR-302/367-mediated cell reprogramming of NSCs. We noted that this concentration of melatonin increased reprogramming efficiency of N-iPS cell generation from primary cultured bovine NSCs and that this was mediated by downregulation of apoptosis-related genes p53 and p21. Then, N-iPS cells were treated with 1, 10, 100, or 500 μm melatonin, and N-iPS (M-N-iPS) cell proliferation was measured. We noted that 100 μm melatonin increased proliferation of N-iPS cells via increased phosphorylation of intracellular ERK1/2 via activation of its pathway in M-N-iPS via melatonin receptors 1 (MT1). Finally, we verified that N-iPS cells and M-N-iPS cells are similar to typical embryonic stem cells including the expression of pluripotency markers (Oct4 and Nanog), the ability to form teratomas in vivo, and the capacity to differentiate into all three embryonic germ layers.

  19. Induced pluripotent stem cells (iPSCs)--a new era of reprogramming.

    Science.gov (United States)

    Kang, Lan; Kou, Zhaohui; Zhang, Yu; Gao, Shaorong

    2010-07-01

    Embryonic stem cells (ESCs) derived from the early embryos possess two important characteristics: self-renewal and pluripotency, which make ESCs ideal seed cells that could be potentially utilized for curing a number of degenerative and genetic diseases clinically. However, ethical concerns and immune rejection after cell transplantation limited the clinical application of ESCs. Fortunately, the recent advances in induced pluripotent stem cell (iPSC) research have clearly shown that differentiated somatic cells from various species could be reprogrammed into pluripotent state by ectopically expressing a combination of several transcription factors, which are highly enriched in ESCs. This ground-breaking achievement could circumvent most of the limitations that ESCs faced. However, it remains challenging if the iPS cell lines, especially the human iPSCs lines, available are fully pluripotent. Therefore, it is prerequisite to establish a molecular standard to distinguish the better quality iPSCs from the inferior ones.

  20. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  1. Hallmarks of progeroid syndromes: lessons from mice and reprogrammed cells

    Directory of Open Access Journals (Sweden)

    Dido Carrero

    2016-07-01

    Full Text Available Ageing is a process that inevitably affects most living organisms and involves the accumulation of macromolecular damage, genomic instability and loss of heterochromatin. Together, these alterations lead to a decline in stem cell function and to a reduced capability to regenerate tissue. In recent years, several genetic pathways and biochemical mechanisms that contribute to physiological ageing have been described, but further research is needed to better characterize this complex biological process. Because premature ageing (progeroid syndromes, including progeria, mimic many of the characteristics of human ageing, research into these conditions has proven to be very useful not only to identify the underlying causal mechanisms and identify treatments for these pathologies, but also for the study of physiological ageing. In this Review, we summarize the main cellular and animal models used in progeria research, with an emphasis on patient-derived induced pluripotent stem cell models, and define a series of molecular and cellular hallmarks that characterize progeroid syndromes and parallel physiological ageing. Finally, we describe the therapeutic strategies being investigated for the treatment of progeroid syndromes, and their main limitations.

  2. Somatic Cell Nuclear Transfer in the Mouse

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  3. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence.

    Directory of Open Access Journals (Sweden)

    Marta Winiecka-Klimek

    Full Text Available Tumorigenic potential of induced pluripotent stem cells (iPSCs infiltrating population of induced neural stem cells (iNSCs generated from iPSCs may limit their medical applications. To overcome such a difficulty, direct reprogramming of adult somatic cells into iNSCs was proposed. The aim of this study was the systematic comparison of induced neural cells (iNc obtained with different methods-direct reprogramming of human adult fibroblasts with either SOX2 (SiNSc-like or SOX2 and c-MYC (SMiNSc-like and induced pluripotent stem cells differentiation to ebiNSc-in terms of gene expression profile, differentiation potential as well as proliferation properties. Immunocytochemistry and real-time PCR analyses were used to evaluate gene expression profile and differentiation potential of various iNc types. Bromodeoxyuridine (BrdU incorporation and senescence-associated beta-galactosidase (SA-β-gal assays were used to estimate proliferation potential. All three types of iNc were capable of neuronal differentiation; however, astrocytic differentiation was possible only in case of ebiNSc. Contrary to ebiNSc generation, the direct reprogramming was rarely a propitious process, despite 100% transduction efficiency. The potency of direct iNSCs-like cells generation was lower as compared to iNSCs obtained by iPSCs differentiation, and only slightly improved when c-MYC was added. Directly reprogrammed iNSCs-like cells were lacking the ability to differentiate into astrocytic cells and characterized by poor efficiency of neuronal cells formation. Such features indicated that these cells could not be fully reprogrammed, as confirmed mainly with senescence detection. Importantly, SiNSc-like and SMiNSc-like cells were unable to achieve the long-term survival and became senescent, which limits their possible therapeutic applicability. Our results suggest that iNSCs-like cells, generated in the direct reprogramming attempts, were either not fully reprogrammed or

  4. Human lymphoblastoid B-cell lines reprogrammed to EBV-free induced pluripotent stem cells.

    Science.gov (United States)

    Rajesh, Deepika; Dickerson, Sarah J; Yu, Junying; Brown, Matthew E; Thomson, James A; Seay, Nicholas J

    2011-08-18

    Generation of patient-specific induced pluripotent cells (iPSCs) holds great promise for regenerative medicine. Epstein-Barr virus immortalized lymphoblastoid B-cell lines (LCLs) can be generated from a minimal amount of blood and are banked worldwide as cellular reference material for immunologic or genetic analysis of pedigreed study populations. We report the generation of iPSCs from 2 LCLs (LCL-iPSCs) via a feeder-free episomal method using a cocktail of transcription factors and small molecules. LCL-derived iPSCs exhibited normal karyotype, expressed pluripotency markers, lost oriP/EBNA-1 episomal vectors, generated teratomas, retained donor identity, and differentiated in vitro into hematopoietic, cardiac, neural, and hepatocyte-like lineages. Significantly, although the parental LCLs express viral EBNA-1 and other Epstein-Barr virus latency-related elements for their survival, their presence was not detectable in LCL-iPSCs. Thus, reprogramming LCLs could offer an unlimited source for patient-specific iPSCs.

  5. Glimpse into Hox and tale regulation of cell differentiation and reprogramming.

    Science.gov (United States)

    Cerdá-Esteban, Nuria; Spagnoli, Francesca M

    2014-01-01

    During embryonic development, cells become gradually restricted in their developmental potential and start elaborating lineage-specific transcriptional networks to ultimately acquire a unique differentiated state. Hox genes play a central role in specifying regional identities, thereby providing the cell with critical information on positional value along its differentiation path. The exquisite DNA-binding specificity of the Hox proteins is frequently dependent upon their interaction with members of the TALE family of homeodomain proteins. In addition to their function as Hox-cofactors, TALE homeoproteins control multiple crucial developmental processes through Hox-independent mechanisms. Here, we will review recent findings on the function of both Hox and TALE proteins in cell differentiation, referring mostly to vertebrate species. In addition, we will discuss the direct implications of this knowledge on cell plasticity and cell reprogramming.

  6. Evaluating the potential of poly(beta-amino ester nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bhise NS

    2013-12-01

    Full Text Available Nupura S Bhise,1,* Karl J Wahlin,2,* Donald J Zack,2–4 Jordan J Green1,21Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, 2Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 3Solomon H Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, and Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 4Institut de la Vision, Paris, France*These authors contributed equally to this workBackground: Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs from human fibroblasts.Methods: A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling.Results: 1-(3-aminopropyl-4-methylpiperazine end-terminated poly(1,4-butanediol diacrylate-co-4-amino-1-butanol polymer (B4S4E7 self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available

  7. Messenger RNA- versus retrovirus-based induced pluripotent stem cell reprogramming strategies: analysis of genomic integrity.

    Science.gov (United States)

    Steichen, Clara; Luce, Eléanor; Maluenda, Jérôme; Tosca, Lucie; Moreno-Gimeno, Inmaculada; Desterke, Christophe; Dianat, Noushin; Goulinet-Mainot, Sylvie; Awan-Toor, Sarah; Burks, Deborah; Marie, Joëlle; Weber, Anne; Tachdjian, Gérard; Melki, Judith; Dubart-Kupperschmitt, Anne

    2014-06-01

    The use of synthetic messenger RNAs to generate human induced pluripotent stem cells (iPSCs) is particularly appealing for potential regenerative medicine applications, because it overcomes the common drawbacks of DNA-based or virus-based reprogramming strategies, including transgene integration in particular. We compared the genomic integrity of mRNA-derived iPSCs with that of retrovirus-derived iPSCs generated in strictly comparable conditions, by single-nucleotide polymorphism (SNP) and copy number variation (CNV) analyses. We showed that mRNA-derived iPSCs do not differ significantly from the parental fibroblasts in SNP analysis, whereas retrovirus-derived iPSCs do. We found that the number of CNVs seemed independent of the reprogramming method, instead appearing to be clone-dependent. Furthermore, differentiation studies indicated that mRNA-derived iPSCs differentiated efficiently into hepatoblasts and that these cells did not load additional CNVs during differentiation. The integration-free hepatoblasts that were generated constitute a new tool for the study of diseased hepatocytes derived from patients' iPSCs and their use in the context of stem cell-derived hepatocyte transplantation. Our findings also highlight the need to conduct careful studies on genome integrity for the selection of iPSC lines before using them for further applications.

  8. Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection.

    Science.gov (United States)

    Cubas, Rafael; van Grevenynghe, Julien; Wills, Saintedym; Kardava, Lela; Santich, Brian H; Buckner, Clarisa M; Muir, Roshell; Tardif, Virginie; Nichols, Carmen; Procopio, Francesco; He, Zhong; Metcalf, Talibah; Ghneim, Khader; Locci, Michela; Ancuta, Petronella; Routy, Jean-Pierre; Trautmann, Lydie; Li, Yuxing; McDermott, Adrian B; Koup, Rick A; Petrovas, Constantinos; Migueles, Steven A; Connors, Mark; Tomaras, Georgia D; Moir, Susan; Crotty, Shane; Haddad, Elias K

    2015-12-15

    Despite the overwhelming benefits of antiretroviral therapy (ART) in curtailing viral load in HIV-infected individuals, ART does not fully restore cellular and humoral immunity. HIV-infected individuals under ART show reduced responses to vaccination and infections and are unable to mount an effective antiviral immune response upon ART cessation. Many factors contribute to these defects, including persistent inflammation, especially in lymphoid tissues, where T follicular helper (Tfh) cells instruct and help B cells launch an effective humoral immune response. In this study we investigated the phenotype and function of circulating memory Tfh cells as a surrogate of Tfh cells in lymph nodes and found significant impairment of this cell population in chronically HIV-infected individuals, leading to reduced B cell responses. We further show that these aberrant memory Tfh cells exhibit an IL-2-responsive gene signature and are more polarized toward a Th1 phenotype. Treatment of functional memory Tfh cells with IL-2 was able to recapitulate the detrimental reprogramming. Importantly, this defect was reversible, as interfering with the IL-2 signaling pathway helped reverse the abnormal differentiation and improved Ab responses. Thus, reversible reprogramming of memory Tfh cells in HIV-infected individuals could be used to enhance Ab responses. Altered microenvironmental conditions in lymphoid tissues leading to altered Tfh cell differentiation could provide one explanation for the poor responsiveness of HIV-infected individuals to new Ags. This explanation has important implications for the development of therapeutic interventions to enhance HIV- and vaccine-mediated Ab responses in patients under ART.

  9. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  10. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang, E-mail: wolfgang.marwan@ovgu.de

    2013-05-24

    Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  11. Reversibility of cellular aging by reprogramming through an embryonic-like state : a new paradigm for human cell rejuvenation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Lemaitre

    2014-01-01

    Full Text Available Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs provides a unique opportunity to derive patient-specific stem cells with potential application in autologous tissue replacement therapies and without the ethical concerns of Embryonic Stem Cells (hESC. However, this strategy still suffers from several hurdles that need to be overcome before clinical applications. Among them, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. This suggests that aging might be an important limitation for therapeutic purposes for elderly individuals. Senescence is characterized by an irreversible cell cycle arrest in response to various forms of stress, including activation of oncogenes, shortened telomeres, DNA damage, oxidative stress, and mitochondrial dysfunction. To overcome this barrier, we developed an optimized 6-factor-based reprogramming protocol that is able to cause efficient reversing of cellular senescence and reprogramming into iPSCs. We demonstrated that iPSCs derived from senescent and centenarian fibroblasts have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESC. Finally, we demonstrate that re-differentiation led to rejuvenated cells with a reset cellular physiology, defining a new paradigm for human cell rejuvenation. We discuss the molecular mechanisms involved in cell reprogramming of senescent cells

  12. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development.

  13. Application of Induced Pluripotent Stem Cells Reprogrammed from Dental Pulp Cells: a Novel Approach for Tooth Regeneration

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zhou

    2011-03-01

    Full Text Available Introduction: Candidate human dental stem/progenitor cells have been isolated and charac-terized from dental tissues and shown to hold the capability to differentiate into tooth-generating cells. However, ad-vances in engineering a whole tooth by these stem cells are hindered by various factors, such as the poor availability of human primitive tooth bud stem cells, difficulties in isolating and purifying dental mesenchymal stem cells and ethical controversies when using embryonic oral epithelium. As a result it is meaningful to find other autologous dental cells for the purpose of reconstructing a tooth.The hypothesis: Previous studies demonstrated that somatic cells can be reprogrammed into induced pluripotent stem cells by ex-ogenous expression Oct-4 and Sox-2. On the basis of these findings we can reasonably hypothesize that when transfected with specific transcription factors Oct-4 and Sox-2, dental pulp cells, the main cell in pulp, could also be reprogrammed into induced pluripotent stem cells, which are considered to be of best potential to regenerate a whole tooth. Evaluation of the hypothesis: After transfection with Oct-4 and Sox-2 into human dental pulp cells, the positive colonies are isolated and then identified according to the characteristics of iPS cells. These cells are further investigated the capability in differentiating into ameloblasts and odontoblasts and finally seeded onto the sur-face of a tooth-shaped biodegradable polymer scaffold to detect the ability of constructing a bioengineered tooth.

  14. Production of Induced Pluripotent Stem Cells by Reprogramming of Blood Cells

    Directory of Open Access Journals (Sweden)

    Sadia Zia

    2011-06-01

    Full Text Available Blood cells are the simple, efficient and economical source for the production of induced pluripotent cells. The discovery of induced pluripotent cells was not novel; it was pedestal on the scientific principals and technologies which have been developed over last six decades. These are nuclear transfer and the cloning of Animals, Pluripotent cell lines and fusion hybrids and Transcription Factors and lineage switching. The use of human embryonic stem cells in regenerative medicines was a breakthrough but make use of these cells arise ethical issues as they are obtained from human embryos. An alternative advancement using induced pluripotent stem cells, which mimics the embryonic stem cells has the significant gain that they replaced the embryonic stem cells. The pluripotent cells can be induced from terminally differentiated somatic cells by the Induction of only four defined factors including c-Myc, klf4, Oct4 and Sox2 which are enough to alter the fate of cell.

  15. Reprogramming of non-genomic estrogen signaling by the stemness factor SOX2 enhances the tumor-initiating capacity of breast cancer cells

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Cufí, Sílvia; López-Bonet, Eugeni; Corominas-Faja, Bruna; Cuyàs, Elisabet; Vellon, Luciano; Iglesias, Juan Manuel; Leis, Olatz; Martín, Ángel G; Menendez, Javier A

    2013-01-01

    The restoration of pluripotency circuits by the reactivation of endogenous stemness factors, such as SOX2, may provide a new paradigm in cancer development. The tumoral stem cell reprogramming hypothesis, i.e., the ability of stemness factors to redirect normal and differentiated tumor cells toward a less-differentiated and stem-like state, adds new layers of complexity to cancer biology, because the effects of such reprogramming may remain dormant until engaged later in response to (epi)genetic and/or (micro)environmental events. To test this hypothesis, we utilized an in vitro model of a SOX2-overexpressing cancer stem cell (CSC)-like cellular state that was recently developed in our laboratory by employing Yamanaka’s nuclear reprogramming technology in the estrogen receptor α (ERα)-positive MCF-7 breast cancer cell line. Despite the acquisition of distinct molecular features that were compatible with a breast CSC-like cellular state, such as strong aldehyde dehydrogenase activity, as detected by ALDEFLUOR, and overexpression of the SSEA-4 and CD44 breast CSC markers, the tumor growth-initiating ability of SOX2-overexpressing CSC-like MCF-7 cells solely occurred in female nude mice supplemented with estradiol when compared with MCF-7 parental cells. Ser118 phosphorylation of estrogen receptor α (ERα), which is a pivotal integrator of the genomic and nongenomic E2/ERα signaling pathways, drastically accumulated in nuclear speckles in the interphase nuclei of SOX2-driven CSC-like cell populations. Moreover, SOX2-positive CSC-like cells accumulated significantly higher numbers of actively dividing cells, and the highest levels of phospho-Ser118-ERα occurred when chromosomes lined up on a metaphase plate. The previously unrecognized link between E2/ERα signaling and SOX2-driven stem cell circuitry may significantly impact our current understanding of breast cancer initiation and progression, i.e., SOX2 can promote non-genomic E2 signaling that leads to

  16. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    Science.gov (United States)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  17. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Hidehito Saito

    2016-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs that express programmed cell death protein-1 (PD-1 are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy.

  18. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential.

    Directory of Open Access Journals (Sweden)

    Stéphane Bellafiore

    2008-10-01

    Full Text Available The root knot nematode, Meloidogyne incognita, is an obligate parasite that causes significant damage to a broad range of host plants. Infection is associated with secretion of proteins surrounded by proliferating cells. Many parasites are known to secrete effectors that interfere with plant innate immunity, enabling infection to occur; they can also release pathogen-associated molecular patterns (PAMPs, e.g., flagellin that trigger basal immunity through the nematode stylet into the plant cell. This leads to suppression of innate immunity and reprogramming of plant cells to form a feeding structure containing multinucleate giant cells. Effectors have generally been discovered using genetics or bioinformatics, but M. incognita is non-sexual and its genome sequence has not yet been reported. To partially overcome these limitations, we have used mass spectrometry to directly identify 486 proteins secreted by M. incognita. These proteins contain at least segmental sequence identity to those found in our 3 reference databases (published nematode proteins; unpublished M. incognita ESTs; published plant proteins. Several secreted proteins are homologous to plant proteins, which they may mimic, and they contain domains that suggest known effector functions (e.g., regulating the plant cell cycle or growth. Others have regulatory domains that could reprogram cells. Using in situ hybridization we observed that most secreted proteins were produced by the subventral glands, but we found that phasmids also secreted proteins. We annotated the functions of the secreted proteins and classified them according to roles they may play in the development of root knot disease. Our results show that parasite secretomes can be partially characterized without cognate genomic DNA sequence. We observed that the M. incognita secretome overlaps the reported secretome of mammalian parasitic nematodes (e.g., Brugia malayi, suggesting a common parasitic behavior and a possible

  19. Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells.

    Science.gov (United States)

    Singbrant, Sofie; van Galen, Peter; Lucas, Daniel; Challen, Grant; Rossi, Derrick J; Daley, George Q

    2015-09-01

    Transplantation of hematopoietic stem cells (HSCs) to treat hematologic disorders is routinely used in the clinic. However, HSC therapy is hindered by the requirements of finding human leukocyte antigen (HLA)-matched donors and attaining sufficient numbers of long-term HSCs in the graft. Therefore, ex vivo expansion of transplantable HSCs remains one of the "holy grails" of hematology. Without the ability to maintain and expand human HSCs in vitro, two complementary approaches involving cellular reprogramming to generate transplantable HSCs have emerged. Reprogrammed HSCs represent a potentially inexhaustible supply of autologous tissue. On March 18th, 2015, Dr. George Q. Daley and Dr. Derrick J. Rossi, two pioneers in the field, presented and discussed their most recent research on these topics in a webinar organized by the International Society for Experimental Hematology (ISEH). Here, we summarize these seminars and discuss the possibilities and challenges in the field of hematopoietic specification.

  20. Cell fusion through a microslit between adhered cells and observation of their nuclear behavior.

    Science.gov (United States)

    Wada, Ken-Ichi; Hosokawa, Kazuo; Kondo, Eitaro; Ito, Yoshihiro; Maeda, Mizuo

    2014-07-01

    This paper describes a novel cell fusion method which induces cell fusion between adhered cells through a microslit for preventing nuclear mixing. For this purpose, a microfluidic device which had ∼ 100 cell pairing structures (CPSs) making cell pairs through microslits with 2.1 ± 0.3 µm width was fabricated. After trapping NIH3T3 cells with hydrodynamic forces at the CPSs, the cells were fused through the microslit by the Sendai virus envelope method. With following timelapse observation, we discovered that the spread cells were much less susceptible to nuclear migration passing through the microslit compared with round cells, and that cytoplasmic fraction containing mitochondria was transferred through the microslit without nuclear mixing. These findings will provide an effective method for cell fusion without nuclear mixing, and will lead to an efficient method for reprograming and transdifferentiation of target cells toward regenerative medicine.

  1. Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells.

    Science.gov (United States)

    Bazley, Faith A; Liu, Cyndi F; Yuan, Xuan; Hao, Haiping; All, Angelo H; De Los Angeles, Alejandro; Zambidis, Elias T; Gearhart, John D; Kerr, Candace L

    2015-11-15

    Primordial germ cells (PGCs) share many properties with embryonic stem cells (ESCs) and innately express several key pluripotency-controlling factors, including OCT4, NANOG, and LIN28. Therefore, PGCs may provide a simple and efficient model for studying somatic cell reprogramming to induced pluripotent stem cells (iPSCs), especially in determining the regulatory mechanisms that fundamentally define pluripotency. Here, we report a novel model of PGC reprogramming to generate iPSCs via transfection with SOX2 and OCT4 using integrative lentiviral. We also show the feasibility of using nonintegrative approaches for generating iPSC from PGCs using only these two factors. We show that human PGCs express endogenous levels of KLF4 and C-MYC protein at levels similar to embryonic germ cells (EGCs) but lower levels of SOX2 and OCT4. Transfection with both SOX2 and OCT4 together was required to induce PGCs to a pluripotent state at an efficiency of 1.71%, and the further addition of C-MYC increased the efficiency to 2.33%. Immunohistochemical analyses of the SO-derived PGC-iPSCs revealed that these cells were more similar to ESCs than EGCs regarding both colony morphology and molecular characterization. Although leukemia inhibitory factor (LIF) was not required for the generation of PGC-iPSCs like EGCs, the presence of LIF combined with ectopic exposure to C-MYC yielded higher efficiencies. Additionally, the SO-derived PGC-iPSCs exhibited differentiation into representative cell types from all three germ layers in vitro and successfully formed teratomas in vivo. Several lines were generated that were karyotypically stable for up to 24 subcultures. Their derivation efficiency and survival in culture significantly supersedes that of EGCs, demonstrating their utility as a powerful model for studying factors regulating pluripotency in future studies.

  2. A “Hit and Run” Approach to Inducible Direct Reprogramming of Astrocytes to Neural Stem Cells

    Science.gov (United States)

    Poulou, Maria; Mandalos, Nikolaos P.; Karnavas, Theodoros; Saridaki, Marannia; McKay, Ronald D. G.; Remboutsika, Eumorphia

    2016-01-01

    Temporal and spatial control of gene expression can be achieved using an inducible system as a fundamental tool for regulated transcription in basic, applied and eventually in clinical research. We describe a novel “hit and run” inducible direct reprogramming approach. In a single step, 2 days post-transfection, transiently transfected Sox2FLAG under the Leu3p-αIPM inducible control (iSox2) triggers the activation of endogenous Sox2, redirecting primary astrocytes into abundant distinct nestin-positive radial glia cells. This technique introduces a unique novel tool for safe, rapid and efficient reprogramming amendable to regenerative medicine. PMID:27148066

  3. Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming.

    Science.gov (United States)

    Ruiz, Sergio; Gore, Athurva; Li, Zhe; Panopoulos, Athanasia D; Montserrat, Nuria; Fung, Ho-Lim; Giorgetti, Alessandra; Bilic, Josipa; Batchelder, Erika M; Zaehres, Holm; Schöler, Hans R; Zhang, Kun; Izpisua Belmonte, Juan Carlos

    2013-01-01

    Recent studies indicate that human-induced pluripotent stem cells contain genomic structural variations and point mutations in coding regions. However, these studies have focused on fibroblast-derived human induced pluripotent stem cells, and it is currently unknown whether the use of alternative somatic cell sources with varying reprogramming efficiencies would result in different levels of genetic alterations. Here we characterize the genomic integrity of eight human induced pluripotent stem cell lines derived from five different non-fibroblast somatic cell types. We show that protein-coding mutations are a general feature of the human induced pluripotent stem cell state and are independent of somatic cell source. Furthermore, we analyse a total of 17 point mutations found in human induced pluripotent stem cells and demonstrate that they do not generally facilitate the acquisition of pluripotency and thus are not likely to provide a selective advantage for reprogramming.

  4. Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells.

    Science.gov (United States)

    Nissenbaum, Jonathan; Bar-Nur, Ori; Ben-David, Eyal; Benvenisty, Nissim

    2013-01-01

    Molecular reprogramming of somatic cells into human induced pluripotent stem cells (iPSCs) is accompanied by extensive changes in gene expression patterns and epigenetic marks. To better understand the link between gene expression and DNA methylation, we have profiled human somatic cells from different embryonic cell types (endoderm, mesoderm, and parthenogenetic germ cells) and the iPSCs generated from them. We show that reprogramming is accompanied by extensive DNA methylation in CpG-poor promoters, sparing CpG-rich promoters. Intriguingly, methylation in CpG-poor promoters occurred not only in downregulated genes, but also in genes that are not expressed in the parental somatic cells or their respective iPSCs. These genes are predominantly tissue-specific genes of other cell types from different lineages. Our results suggest a role of DNA methylation in the silencing of the somatic cell identity by global nonspecific methylation of tissue-specific genes from all lineages, regardless of their expression in the parental somatic cells.

  5. Macrohistone Variants Preserve Cell Identity by Preventing the Gain of H3K4me2 during Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    María J. Barrero

    2013-04-01

    Full Text Available Transcription-factor-induced reprogramming of somatic cells to pluripotency is a very inefficient process, probably due to the existence of important epigenetic barriers that are imposed during differentiation and that contribute to preserving cell identity. In an effort to decipher the molecular nature of these barriers, we followed a genome-wide approach, in which we identified macrohistone variants (macroH2A as highly expressed in human somatic cells but downregulated after reprogramming to pluripotency, as well as strongly induced during differentiation. Knockdown of macrohistone variants in human keratinocytes increased the efficiency of reprogramming to pluripotency, whereas overexpression had opposite effects. Genome-wide occupancy profiles show that in human keratinocytes, macroH2A.1 preferentially occupies genes that are expressed at low levels and are marked with H3K27me3, including pluripotency-related genes and bivalent developmental regulators. The presence of macroH2A.1 at these genes prevents the regain of H3K4me2 during reprogramming, imposing an additional layer of repression that preserves cell identity.

  6. Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells.

    Science.gov (United States)

    Cioce, Mario; Valerio, MariaCristina; Casadei, Luca; Pulito, Claudio; Sacconi, Andrea; Mori, Federica; Biagioni, Francesca; Manetti, Cesare; Muti, Paola; Strano, Sabrina; Blandino, Giovanni

    2014-06-30

    Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by 1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance.

  7. Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells

    Science.gov (United States)

    Casadei, Luca; Pulito, Claudio; Sacconi, Andrea; Mori, Federica; Biagioni, Francesca; Manetti, Cesare; Muti, Paola; Strano, Sabrina; Blandino, Giovanni

    2014-01-01

    Metabolic remodeling is a hallmark of cancer progression and may affect tumor chemoresistance. Here we investigated by 1H-NMR/PCA analysis the metabolic profile of chemoresistant breast cancer cell subpopulations (ALDHbright cells) and their response to metformin, a promising anticancer metabolic modulator. The purified ALDHbright cells exhibited a different metabolic profile as compared to their chemosensitive ALDHlow counterparts. Metformin treatment strongly affected the metabolism of the ALDHbright cells thereby affecting, among the others, the glutathione metabolism, whose upregulation is a feature of progenitor-like, chemoresistant cell subpopulations. Globally, metformin treatment reduced the differences between ALDHbright and ALDHlow cells, making the former more similar to the latter. Metformin broadly modulated microRNAs in the ALDHbright cells, with a large fraction of them predicted to target the same metabolic pathways experimentally identified by 1H-NMR. Additionally, metformin modulated the levels of c-MYC and IRS-2, and this correlated with changes of the microRNA-33a levels. In summary, we observed, both by 1H-NMR and microRNA expression studies, that metformin treatment reduced the differences between the chemoresistant ALDHbright cells and the chemosensitive ALDHlow cells. This works adds on the potential therapeutic relevance of metformin and shows the potential for metabolic reprogramming to modulate cancer chemoresistance. PMID:24980829

  8. Regulation of the DNA Methylation Landscape in Human Somatic Cell Reprogramming by the miR-29 Family

    Directory of Open Access Journals (Sweden)

    Eriona Hysolli

    2016-07-01

    Full Text Available Reprogramming to pluripotency after overexpression of OCT4, SOX2, KLF4, and MYC is accompanied by global genomic and epigenomic changes. Histone modification and DNA methylation states in induced pluripotent stem cells (iPSCs have been shown to be highly similar to embryonic stem cells (ESCs. However, epigenetic differences still exist between iPSCs and ESCs. In particular, aberrant DNA methylation states found in iPSCs are a major concern when using iPSCs in a clinical setting. Thus, it is critical to find factors that regulate DNA methylation states in reprogramming. Here, we found that the miR-29 family is an important epigenetic regulator during human somatic cell reprogramming. Our global DNA methylation and hydroxymethylation analysis shows that DNA demethylation is a major event mediated by miR-29a depletion during early reprogramming, and that iPSCs derived from miR-29a depletion are epigenetically closer to ESCs. Our findings uncover an important miRNA-based approach to generate clinically robust iPSCs.

  9. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation.

  10. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    Science.gov (United States)

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming.

  11. Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules

    Directory of Open Access Journals (Sweden)

    Yan-Chuang Han

    2016-01-01

    Full Text Available Although it is possible to generate neural stem cells (NSC from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine.

  12. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells.

    Science.gov (United States)

    Ezashi, Toshihiko; Matsuyama, Haruyo; Telugu, Bhanu Prakash V L; Roberts, R Michael

    2011-10-01

    During reprogramming of porcine mesenchymal cells with a four-factor (POU5F1/SOX2/KLF4/MYC) mixture of vectors, a fraction of the colonies had an atypical phenotype and arose earlier than the recognizable porcine induced pluripotent stem (iPS) cell colonies. Within days after each passage, patches of cells with an epithelial phenotype formed raised domes, particularly under 20% O(2) conditions. Relative to gene expression of the iPS cells, there was up-regulation of genes for transcription factors associated with trophoblast (TR) lineage emergence, e.g., GATA2, PPARG, MSX2, DLX3, HAND1, GCM1, CDX2, ID2, ELF5, TCFAP2C, and TEAD4 and for genes required for synthesis of products more typical of differentiated TR, such as steroids (HSD17B1, CYP11A1, and STAR), pregnancy-associated glycoproteins (PAG6), and select cytokines (IFND, IFNG, and IL1B). Although POU5F1 was down-regulated relative to that in iPS cells, it was not silenced in the induced TR (iTR) cells over continued passage. Like iPS cells, iTR cells did not senesce on extended passage and displayed high telomerase activity. Upon xenografting into immunodeficient mice, iTR cells formed nonhemorrhagic teratomas composed largely of layers of epithelium expressing TR markers. When cultured under conditions that promoted embryoid body formation, iTR cells formed floating spheres consisting of a single epithelial sheet whose cells were tethered laterally by desmosome-like structures. In conclusion, reprogramming of porcine fibroblasts to iPS cells generates, as a by-product, colonies composed of self-renewing populations of TR cells, possibly containing TR stem cells.

  13. Suppression of PGC-1α is critical for reprogramming oxidative metabolism in renal cell carcinoma

    Science.gov (United States)

    LaGory, Edward L.; Wu, Colleen; Taniguchi, Cullen M.; Ding, Chien-Kuang Cornelia; Chi, Jen-Tsan; von Eyben, Rie; Scott, David A.; Richardson, Adam D.; Giaccia, Amato J.

    2015-01-01

    Summary Long believed to be a byproduct of malignant transformation, reprogramming of cellular metabolism is now recognized as a driving force in tumorigenesis. In clear cell renal cell carcinoma (ccRCC) frequent activation of HIF-signaling induces a metabolic switch that promotes tumorigenesis. Here we demonstrate that PGC-1α, a central regulator of energy metabolism, is suppressed in VHL-deficient ccRCC by a HIF/Dec1-dependent mechanism. In VHL wild type cells, PGC-1α suppression leads to decreased expression of the mitochondrial transcription factor Tfam and impaired mitochondrial respiration. Conversely, PGC-1α expression in VHL-deficient cells restores mitochondrial function and induces oxidative stress. ccRCC cells expressing PGC-1α exhibit impaired tumor growth and enhanced sensitivity to cytotoxic therapies. In patients, low levels of PGC-1α expression are associated with poor outcome. These studies demonstrate that suppression of PGC-1α recapitulates key metabolic phenotypes of ccRCC and highlight the potential of targeting PGC-1α expression as a therapeutic modality for the treatment of ccRCC. PMID:26119730

  14. Suppression of PGC-1α Is Critical for Reprogramming Oxidative Metabolism in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Edward L. LaGory

    2015-07-01

    Full Text Available Long believed to be a byproduct of malignant transformation, reprogramming of cellular metabolism is now recognized as a driving force in tumorigenesis. In clear cell renal cell carcinoma (ccRCC, frequent activation of HIF signaling induces a metabolic switch that promotes tumorigenesis. Here, we demonstrate that PGC-1α, a central regulator of energy metabolism, is suppressed in VHL-deficient ccRCC by a HIF/Dec1-dependent mechanism. In VHL wild-type cells, PGC-1α suppression leads to decreased expression of the mitochondrial transcription factor Tfam and impaired mitochondrial respiration. Conversely, PGC-1α expression in VHL-deficient cells restores mitochondrial function and induces oxidative stress. ccRCC cells expressing PGC-1α exhibit impaired tumor growth and enhanced sensitivity to cytotoxic therapies. In patients, low levels of PGC-1α expression are associated with poor outcome. These studies demonstrate that suppression of PGC-1α recapitulates key metabolic phenotypes of ccRCC and highlight the potential of targeting PGC-1α expression as a therapeutic modality for the treatment of ccRCC.

  15. From cloned frogs to patient matched stem cells: induced pluripotency or somatic cell nuclear transfer?

    Science.gov (United States)

    Yamada, Mitsutoshi; Byrne, James; Egli, Dieter

    2015-10-01

    Nuclear transfer has seen a remarkable comeback in the past few years. Three groups have independently reported the derivation of stem cell lines by somatic cell nuclear transfer, from either adult, neonatal or fetal cells. Though the ability of human oocytes to reprogram somatic cells to stem cells had long been anticipated, success did not arrive on a straightforward path. Little was known about human oocyte biology, and nuclear transfer protocols developed in animals required key changes to become effective with human eggs. By overcoming these challenges, human nuclear transfer research has contributed to a greater understanding of oocyte biology, provided a point of reference for the comparison of induced pluripotent stem cells, and delivered a method for the generation of personalized stem cells with therapeutic potential.

  16. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  17. Chromatin roadblocks to reprogramming 50 years on

    Directory of Open Access Journals (Sweden)

    Skene Peter J

    2012-10-01

    Full Text Available Abstract A half century after John Gurdon demonstrated nuclear reprogramming, for which he was awarded the 2012 Nobel Prize in Physiology or Medicine, his group provides insights into the molecular mechanisms whereby chromatin remodeling is required for nuclear reprogramming. Among the issues addressed in Gurdon's latest work are the chromatin impediments to artificially induced reprogramming, discovered by Shinya Yamanaka, who shared the award with Gurdon. See research article: http://www.epigeneticsandchromatin.com/content/5/1/17

  18. Development of porcine tetraploid somatic cell nuclear transfer embryos is influenced by oocyte nuclei.

    Science.gov (United States)

    Fu, Bo; Liu, Di; Ma, Hong; Guo, Zhen-Hua; Wang, Liang; Li, Zhong-Qiu; Peng, Fu-Gang; Bai, Jing

    2016-02-01

    Cloning efficiency in mammalian systems remains low because reprogramming of donor cells is frequently incomplete. Nuclear factors in the oocyte are removed by enucleation, and this removal may adversely affect reprogramming efficiency. Here, we investigated the role of porcine oocyte nuclear factors during reprogramming. We introduced somatic cell nuclei into intact MII oocytes to establish tetraploid somatic cell nuclear transfer (SCNT) embryos containing both somatic nuclei and oocyte nuclei. We then examined the influence of the oocyte nucleus on tetraploid SCNT embryo development by assessing characteristics including pronucleus formation, cleavage rate, and blastocyst formation. Overall, tetraploid SCNT embryos have a higher developmental competence than do standard diploid SCNT embryos. Therefore, we have established an embryonic model in which a fetal fibroblast nucleus and an oocyte metaphase II plate coexist. Tetraploid SCNT represents a new research platform that is potentially useful for examining interactions between donor nuclei and oocyte nuclei. This platform should facilitate further understanding of the roles played by nuclear factors during reprogramming.

  19. Ionizing Radiation Potentiates High Fat Diet-Induced Insulin Resistance and Reprograms Skeletal Muscle and Adipose Progenitor Cells

    DEFF Research Database (Denmark)

    Nylander, Vibe; Ingerslev, Lars R; Andersen, Emil

    2016-01-01

    Exposure to ionizing radiation increases the risk of chronic metabolic disorders such as insulin resistance and type 2 diabetes later in life. We hypothesized that irradiation reprograms the epigenome of metabolic progenitor cells, which could account for impaired metabolism after cancer treatment...... mice. Mice subjected to total body irradiation showed alterations in glucose metabolism and, when challenged with HFD, marked hyperinsulinemia. Insulin signaling was chronically disrupted in skeletal muscle and adipose progenitor cells collected from irradiated mice and differentiated in culture...

  20. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone.

    Science.gov (United States)

    Meng, Xianmei; Neises, Amanda; Su, Rui-Jun; Payne, Kimberly J; Ritter, Linda; Gridley, Daila S; Wang, Jun; Sheng, Matilda; Lau, K-H William; Baylink, David J; Zhang, Xiao-Bing

    2012-02-01

    The reprogramming of cord blood (CB) cells into induced pluripotent stem cells (iPSCs) has potential applications in regenerative medicine by converting CB banks into iPSC banks for allogeneic cell replacement therapy. Therefore, further investigation into novel approaches for efficient reprogramming is necessary. Here, we show that the lentiviral expression of OCT4 together with SOX2 (OS) driven by a strong spleen focus-forming virus (SFFV) promoter in a single vector can convert 2% of CB CD34(+) cells into iPSCs without additional reprogramming factors. Reprogramming efficiency was found to be critically dependent upon expression levels of OS. To generate transgene-free iPSCs, we developed an improved episomal vector with a woodchuck post-transcriptional regulatory element (Wpre) that increases transgene expression by 50%. With this vector, we successfully generated transgene-free iPSCs using OS alone. In conclusion, high-level expression of OS alone is sufficient for efficient reprogramming of CB CD34(+) cells into iPSCs. This report is the first to describe the generation of transgene-free iPSCs with the use of OCT4 and SOX2 alone. These findings have important implications for the clinical applications of iPSCs.

  1. Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells.

    Science.gov (United States)

    Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G

    2016-01-08

    Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.

  2. Role of PUF-8/PUF protein in stem cell control, sperm-oocyte decision and cell fate reprogramming.

    Science.gov (United States)

    Datla, Udaya Sree; Scovill, Natasha Carol; Brokamp, Austin J; Kim, Eunsuk; Asch, Adam S; Lee, Myon-Hee

    2014-10-01

    Pumilio and FBF (PUF) proteins are conserved stem cell regulators that maintain germline stem cells (GSCs) in worms and flies. Moreover, they are also present in vertebrate stem cells. The nematode Caenorhabditis elegans has multiple PUF proteins with specialized roles. Among them, PUF-8 protein controls multiple cellular processes, including proliferation, differentiation, sperm-oocyte decision, and cell fate reprogramming, depending on the genetic context in the C. elegans germline. In this review, we describe the possible mechanisms of how PUF-8 protein systematically controls multiple cellular processes in the C. elegans germline. Since PUF proteins are evolutionarily conserved, we suggest that a similar mechanism may be involved in controlling stem cell regulation and differentiation in other organisms, including humans.

  3. Programming and reprogramming neuronal subtypes in the central nervous system.

    Science.gov (United States)

    Rouaux, Caroline; Bhai, Salman; Arlotta, Paola

    2012-07-01

    Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish.

  4. Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair.

    Science.gov (United States)

    Tseng, Ting-Chen; Hsieh, Fu-Yu; Dai, Niann-Tzyy; Hsu, Shan-Hui

    2016-09-01

    Cell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair. A simple, non-toxic, substrate-mediated method was applied to deliver the naked FOXD3 plasmid into human fibroblasts. The transfection of FOXD3 increased cell proliferation and up-regulated the neural crest marker genes (FOXD3, SOX2, and CD271), stemness marker genes (OCT4, NANOG, and SOX2), and neural lineage-related genes (Nestin, β-tubulin and GFAP). The expression levels of stemness marker genes and neural crest maker genes in the FOXD3-transfected fibroblasts were maintained until the fifth passage. The FOXD3 reprogrammed fibroblasts based on the new method significantly rescued the neural function of the impaired zebrafish. The chitosan substrate-mediated delivery of naked plasmid showed feasibility in reprogramming somatic cells. Particularly, the FOXD3 reprogrammed fibroblasts hold promise as an easily accessible cellular source with neural crest stem-like behavior for treating neural diseases in the future.

  5. ¹H NMR spectroscopy profiling of metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture.

    Directory of Open Access Journals (Sweden)

    Jane L Wagstaff

    Full Text Available We report an NMR based approach to determine the metabolic reprogramming of Chinese hamster ovary cells upon a temperature shift during culture by investigating the extracellular cell culture media and intracellular metabolome of CHOK1 and CHO-S cells during culture and in response to cold-shock and subsequent recovery from hypothermic culturing. A total of 24 components were identified for CHOK1 and 29 components identified for CHO-S cell systems including the observation that CHO-S media contains 5.6 times the level of glucose of CHOK1 media at time zero. We confirm that an NMR metabolic approach provides quantitative analysis of components such as glucose and alanine with both cell lines responding in a similar manner and comparable to previously reported data. However, analysis of lactate confirms a differentiation between CHOK1 and CHO-S and that reprogramming of metabolism in response to temperature was cell line specific. The significance of our results is presented using principal component analysis (PCA that confirms changes in metabolite profile in response to temperature and recovery. Ultimately, our approach demonstrates the capability of NMR providing real-time analysis to detect reprogramming of metabolism upon cellular perception of cold-shock/sub-physiological temperatures. This has the potential to allow manipulation of metabolites in culture supernatant to improve growth or productivity.

  6. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

    Directory of Open Access Journals (Sweden)

    Akira Shimamoto

    Full Text Available Werner syndrome (WS is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. Recent studies have revealed that cells from WS patients can be successfully reprogrammed into induced pluripotent stem cells (iPSCs. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency. WS iPSCs also showed recapitulation of the phenotypes during differentiation. Furthermore, karyotype analysis indicated that WS iPSCs were stable, and half of the descendant clones had chromosomal profiles that were similar to those of parental cells. These unexpected properties might be achieved by induced expression of endogenous telomerase gene during reprogramming, which trigger telomerase reactivation leading to suppression of both replicative senescence and telomere dysfunction in WS cells. These findings demonstrated that reprogramming suppressed premature senescence phenotypes in WS cells and WS iPSCs could lead to chromosomal stability over the long term. WS iPSCs will provide opportunities to identify affected lineages in WS and to develop a new strategy for the treatment of WS.

  7. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation.

    Science.gov (United States)

    Matoba, Shogo; Liu, Yuting; Lu, Falong; Iwabuchi, Kumiko A; Shen, Li; Inoue, Azusa; Zhang, Yi

    2014-11-06

    Mammalian oocytes can reprogram somatic cells into a totipotent state enabling animal cloning through somatic cell nuclear transfer (SCNT). However, the majority of SCNT embryos fail to develop to term due to undefined reprogramming defects. Here, we identify histone H3 lysine 9 trimethylation (H3K9me3) of donor cell genome as a major barrier for efficient reprogramming by SCNT. Comparative transcriptome analysis identified reprogramming resistant regions (RRRs) that are expressed normally at 2-cell mouse embryos generated by in vitro fertilization (IVF) but not SCNT. RRRs are enriched for H3K9me3 in donor somatic cells and its removal by ectopically expressed H3K9me3 demethylase Kdm4d not only reactivates the majority of RRRs, but also greatly improves SCNT efficiency. Furthermore, use of donor somatic nuclei depleted of H3K9 methyltransferases markedly improves SCNT efficiency. Our study thus identifies H3K9me3 as a critical epigenetic barrier in SCNT-mediated reprogramming and provides a promising approach for improving mammalian cloning efficiency.

  8. Different developmental potential of pluripotent stem cells generated by different reprogramming strategies

    Institute of Scientific and Technical Information of China (English)

    Jing Jiang; Yixue Li; Jiarui Wu; Jinsong Li; Guohui Ding; Jiangwei Lin; Man Zhang; Linyu Shi; Wenjian Lv; Hui Yang; Huasheng Xiao; Gang Pei

    2011-01-01

    @@ Dear Editor, Recent studies show that induced pluripotent stem cells (iPSCs) generated through ectopic expression of transcription factors retain an epigenetic memory of their original somatic cells (Kim et al., 2010; Polo et al., 2010) or aberrant silencing of a single imprinted gene cluster (Liu et al.,2010; Stadtfeld et al., 2010), which affects their developmental and differentiation potentials.In contrast, nuclear transfer can more faithfully reprogramme somatic cells into embryonic stem (ES)cells (nuclear transfer ES cells, ntESCs)(Brambrink et al., 2006; Wakayama et al.,2006).

  9. Clk1 deficiency promotes neuroinflammation and subsequent dopaminergic cell death through regulation of microglial metabolic reprogramming.

    Science.gov (United States)

    Gu, Ruinan; Zhang, Fali; Chen, Gang; Han, Chaojun; Liu, Jay; Ren, Zhaoxiang; Zhu, Yi; Waddington, John L; Zheng, Long Tai; Zhen, Xuechu

    2017-02-01

    Clock (Clk)1/COQ7 is a mitochondrial hydroxylase that is necessary for the biosynthesis of ubiquinone (coenzyme Q or UQ). Here, we investigate the role of Clk1 in neuroinflammation and consequentially dopaminergic (DA) neuron survival. Reduced expression of Clk1 in microglia enhanced the LPS-induced proinflammatory response and promoted aerobic glycolysis. Inhibition of glycolysis abolished Clk1 deficiency-induced hypersensitivity to the inflammatory stimulation. Mechanistic studies demonstrated that mTOR/HIF-1α and ROS/HIF-1α signaling pathways were involved in Clk1 deficiency-induced aerobic glycolysis. The increase in neuronal cell death was observed following treatment with conditioned media from Clk1 deficient microglia. Increased DA neuron loss and microgliosis were observed in Clk1(+/-) mice after treatment with MPTP, a rodent model of Parkinson's disease (PD). This increase in DA neuron loss was due to an exacerbated microglial inflammatory response, rather than direct susceptibility of Clk1(+/-) DA cells to MPP(+), the active species of MPTP. Exaggerated expressions of proinflammatory genes and loss of DA neurons were also observed in Clk1(+/-) mice after stereotaxic injection of LPS. Our results suggest that Clk1 regulates microglial metabolic reprogramming that is, in turn, involved in the neuroinflammatory processes and PD.

  10. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis

    Science.gov (United States)

    Wei, Max; Ren, Xiubao; Shao, Zonghong; Zhang, Ling; Levine, Ross L.; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs. PMID:28135282

  11. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    Directory of Open Access Journals (Sweden)

    Arnaud T Djami-Tchatchou

    Full Text Available Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.

  12. Reprogramming amacrine and photoreceptor progenitors into retinal ganglion cells by replacing Neurod1 with Atoh7.

    Science.gov (United States)

    Mao, Chai-An; Cho, Jang-Hyeon; Wang, Jing; Gao, Zhiguang; Pan, Ping; Tsai, Wen-Wei; Frishman, Laura J; Klein, William H

    2013-02-01

    The specification of the seven retinal cell types from a common pool of retina progenitor cells (RPCs) involves complex interactions between the intrinsic program and the environment. The proneural basic helix-loop-helix (bHLH) transcriptional regulators are key components for the intrinsic programming of RPCs and are essential for the formation of the diverse retinal cell types. However, the extent to which an RPC can re-adjust its inherent program and the mechanisms through which the expression of a particular bHLH factor influences RPC fate is unclear. Previously, we have shown that Neurod1 inserted into the Atoh7 locus activates the retinal ganglion cell (RGC) program in Atoh7-expressing RPCs but not in Neurod1-expressing RPCs, suggesting that Atoh7-expressing RPCs are not able to adopt the cell fate determined by Neurod1, but rather are pre-programmed to produce RGCs. Here, we show that Neurod1-expressing RPCs, which are destined to produce amacrine and photoreceptor cells, can be re-programmed into RGCs when Atoh7 is inserted into the Neurod1 locus. These results suggest that Atoh7 acts dominantly to convert a RPC subpopulation not destined for an RGC fate to adopt that fate. Thus, Atoh7-expressing and Neurod1-expressing RPCs are intrinsically different in their behavior. Additionally, ChIP-Seq analysis identified an Atoh7-dependent enhancer within the intronic region of Nrxn3. The enhancer recognized and used Atoh7 in the developing retina to regulate expression of Nrxn3, but could be forced to use Neurod1 when placed in a different regulatory context. The results indicate that Atoh7 and Neurod1 activate distinct sets of genes in vivo, despite their common DNA-binding element.

  13. The HIST1 Locus Escapes Reprogramming in Cloned Bovine Embryos

    Directory of Open Access Journals (Sweden)

    Byungkuk Min

    2016-05-01

    Full Text Available Epigenetic reprogramming is necessary in somatic cell nuclear transfer (SCNT embryos in order to erase the differentiation-associated epigenetic marks of donor cells. However, such epigenetic memories often persist throughout the course of clonal development, thus decreasing cloning efficiency. Here, we explored reprogramming-refractory regions in bovine SCNT blastocyst transcriptomes. We observed that histone genes residing in the 1.5 Mb spanning the cow HIST1 cluster were coordinately downregulated in SCNT blastocysts. In contrast, both the nonhistone genes of this cluster, and histone genes elsewhere remained unaffected. This indicated that the downregulation was specific to HIST1 histone genes. We found that, after trichostatin A treatment, HIST1 histone genes were derepressed, and DNA methylation at their promoters was decreased to the level of in vitro fertilization embryos. Therefore, our results indicate that the reduced expression of HIST1 histone genes is a consequence of poor epigenetic reprogramming in SCNT blastocysts.

  14. Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate.

    Science.gov (United States)

    Lavial, Fabrice; Acloque, Hervé; Bachelard, Elodie; Nieto, M Angela; Samarut, Jacques; Pain, Bertrand

    2009-06-01

    When they are derived from blastodermal cells of the pre-primitive streak in vitro, the pluripotency of Chicken Embryonic Stem Cells (cESC) can be controlled by the cPouV and Nanog genes. These cESC can differentiate into derivatives of the three germ layers both in vitro and in vivo, but they only weakly colonize the gonads of host embryos. By contrast, non-cultured blastodermal cells and long-term cultured chicken primordial germ cells maintain full germline competence. This restriction in the germline potential of the cESC may result from either early germline determination in the donor embryos or it may occur as a result of in vitro culture. We are interested in understanding the genetic determinants of germline programming. The RNA binding protein Cvh (Chicken Vasa Homologue) is considered as one such determinant, although its role in germ cell physiology is still unclear. Here we show that the exogenous expression of Cvh, combined with appropriate culture conditions, induces cESC reprogramming towards a germ cell fate. Indeed, these cells express the Dazl, Tudor and Sycp3 germline markers, and they display improved germline colonization and adopt a germ cell fate when injected into recipient embryos. Thus, our results demonstrate that Vasa can drive ES cell differentiation towards the germ cell lineage, both in vitro and in vivo.

  15. Residual expression of reprogramming factors affects the transcriptional program and epigenetic signatures of induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Cesar A Sommer

    Full Text Available Delivery of the transcription factors Oct4, Klf4, Sox2 and c-Myc via integrating viral vectors has been widely employed to generate induced pluripotent stem cell (iPSC lines from both normal and disease-specific somatic tissues, providing an invaluable resource for medical research and drug development. Residual reprogramming transgene expression from integrated viruses nevertheless alters the biological properties of iPSCs and has been associated with a reduced developmental competence both in vivo and in vitro. We performed transcriptional profiling of mouse iPSC lines before and after excision of a polycistronic lentiviral reprogramming vector to systematically define the overall impact of persistent transgene expression on the molecular features of iPSCs. We demonstrate that residual expression of the Yamanaka factors prevents iPSCs from acquiring the transcriptional program exhibited by embryonic stem cells (ESCs and that the expression profiles of iPSCs generated with and without c-Myc are indistinguishable. After vector excision, we find 36% of iPSC clones show normal methylation of the Gtl2 region, an imprinted locus that marks ESC-equivalent iPSC lines. Furthermore, we show that the reprogramming factor Klf4 binds to the promoter region of Gtl2. Regardless of Gtl2 methylation status, we find similar endodermal and hepatocyte differentiation potential comparing syngeneic Gtl2(ON vs Gtl2(OFF iPSC clones. Our findings provide new insights into the reprogramming process and emphasize the importance of generating iPSCs free of any residual transgene expression.

  16. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  17. Reprogramming of enteroendocrine K cells to pancreatic β-cells through the combined expression of Nkx6.1 and Neurogenin3, and reaggregation in suspension culture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Esder; Ryu, Gyeong Ryul; Moon, Sung-Dae; Ko, Seung-Hyun; Ahn, Yu-Bae; Song, Ki-Ho, E-mail: kihos@catholic.ac.kr

    2014-01-17

    Highlights: •K cells were selected from STC-1 cells, a heterogeneous enteroendocrine cell line. •K cells did not express Nkx6.1 and Neurogenin3. •Combined expression of Nkx6.1 and Neurogenin3 reprogrammed K cells to β-cells. •Reprogramming of K cells to β-cells was not complete. -- Abstract: Recent studies have demonstrated that adult cells such as pancreatic exocrine cells can be converted to pancreatic β-cells in a process called cell reprogramming. Enteroendocrine cells and β-cells share similar pathways of differentiation during embryonic development. Notably, enteroendocrine K cells express many of the key proteins found in β-cells. Thus, K cells could be reprogrammed to β-cells under certain conditions. However, there is no clear evidence on whether these cells convert to β-cells. K cells were selected from STC-1 cells, an enteroendocrine cell line expressing multiple hormones. K cells were found to express many genes of transcription factors crucial for islet development and differentiation except for Nkx6.1 and Neurogenin3. A K cell clone stably expressing Nkx6.1 (Nkx6.1{sup +}-K cells) was established. Induction of Neurogenin3 expression in Nkx6.1{sup +}-K cells, by either treatment with a γ-secretase inhibitor or infection with a recombinant adenovirus expressing Neurogenin3, led to a significant increase in Insulin1 mRNA expression. After infection with the adenovirus expressing Neurogenin3 and reaggregation in suspension culture, about 50% of Nkx6.1{sup +}-K cells expressed insulin as determined by immunostaining. The intracellular insulin content was increased markedly. Electron microscopy revealed the presence of insulin granules. However, glucose-stimulated insulin secretion was defective, and there was no glucose lowering effect after transplantation of these cells in diabetic mice. In conclusion, we demonstrated that K cells could be reprogrammed partially to β-cells through the combined expression of Nkx6.1 and Neurogenin3, and

  18. Growth factor-activated stem cell circuits and stromal signals cooperatively accelerate non-integrated iPSC reprogramming of human myeloid progenitors.

    Directory of Open Access Journals (Sweden)

    Tea Soon Park

    Full Text Available Nonviral conversion of skin or blood cells into clinically useful human induced pluripotent stem cells (hiPSC occurs in only rare fractions (~0.001%-0.5% of donor cells transfected with non-integrating reprogramming factors. Pluripotency induction of developmentally immature stem-progenitors is generally more efficient than differentiated somatic cell targets. However, the nature of augmented progenitor reprogramming remains obscure, and its potential has not been fully explored for improving the extremely slow pace of non-integrated reprogramming. Here, we report highly optimized four-factor reprogramming of lineage-committed cord blood (CB myeloid progenitors with bulk efficiencies of ~50% in purified episome-expressing cells. Lineage-committed CD33(+CD45(+CD34(- myeloid cells and not primitive hematopoietic stem-progenitors were the main targets of a rapid and nearly complete non-integrated reprogramming. The efficient conversion of mature myeloid populations into NANOG(+TRA-1-81(+ hiPSC was mediated by synergies between hematopoietic growth factor (GF, stromal activation signals, and episomal Yamanaka factor expression. Using a modular bioinformatics approach, we demonstrated that efficient myeloid reprogramming correlated not to increased proliferation or endogenous Core factor expressions, but to poised expression of GF-activated transcriptional circuits that commonly regulate plasticity in both hematopoietic progenitors and embryonic stem cells (ESC. Factor-driven conversion of myeloid progenitors to a high-fidelity pluripotent state was further accelerated by soluble and contact-dependent stromal signals that included an implied and unexpected role for Toll receptor-NFκB signaling. These data provide a paradigm for understanding the augmented reprogramming capacity of somatic progenitors, and reveal that efficient induced pluripotency in other cell types may also require extrinsic activation of a molecular framework that commonly

  19. Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages.

    Directory of Open Access Journals (Sweden)

    Joao Incio

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is a highly desmoplastic tumor with a dismal prognosis for most patients. Fibrosis and inflammation are hallmarks of tumor desmoplasia. We have previously demonstrated that preventing the activation of pancreatic stellate cells (PSCs and alleviating desmoplasia are beneficial strategies in treating PDAC. Metformin is a widely used glucose-lowering drug. It is also frequently prescribed to diabetic pancreatic cancer patients and has been shown to associate with a better outcome. However, the underlying mechanisms of this benefit remain unclear. Metformin has been found to modulate the activity of stellate cells in other disease settings. In this study, we examine the effect of metformin on PSC activity, fibrosis and inflammation in PDACs.In overweight, diabetic PDAC patients and pre-clinical mouse models, treatment with metformin reduced levels of tumor extracellular matrix (ECM components, in particular hyaluronan (HA. In vitro, we found that metformin reduced TGF-ß signaling and the production of HA and collagen-I in cultured PSCs. Furthermore, we found that metformin alleviates tumor inflammation by reducing the expression of inflammatory cytokines including IL-1β as well as infiltration and M2 polarization of tumor-associated macrophages (TAMs in vitro and in vivo. These effects on macrophages in vitro appear to be associated with a modulation of the AMPK/STAT3 pathway by metformin. Finally, we found in our preclinical models that the alleviation of desmoplasia by metformin was associated with a reduction in ECM remodeling, epithelial-to-mesenchymal transition (EMT and ultimately systemic metastasis.Metformin alleviates the fibro-inflammatory microenvironment in obese/diabetic individuals with pancreatic cancer by reprogramming PSCs and TAMs, which correlates with reduced disease progression. Metformin should be tested/explored as part of the treatment strategy in overweight diabetic PDAC patients.

  20. Opposing regulation of PROX1 by interleukin-3 receptor and NOTCH directs differential host cell fate reprogramming by Kaposi sarcoma herpes virus.

    Directory of Open Access Journals (Sweden)

    Jaehyuk Yoo

    Full Text Available Lymphatic endothelial cells (LECs are differentiated from blood vascular endothelial cells (BECs during embryogenesis and this physiological cell fate specification is controlled by PROX1, the master regulator for lymphatic development. When Kaposi sarcoma herpes virus (KSHV infects host cells, it activates the otherwise silenced embryonic endothelial differentiation program and reprograms their cell fates. Interestingly, previous studies demonstrated that KSHV drives BECs to acquire a partial lymphatic phenotype by upregulating PROX1 (forward reprogramming, but stimulates LECs to regain some BEC-signature genes by downregulating PROX1 (reverse reprogramming. Despite the significance of this KSHV-induced bidirectional cell fate reprogramming in KS pathogenesis, its underlying molecular mechanism remains undefined. Here, we report that IL3 receptor alpha (IL3Rα and NOTCH play integral roles in the host cell type-specific regulation of PROX1 by KSHV. In BECs, KSHV upregulates IL3Rα and phosphorylates STAT5, which binds and activates the PROX1 promoter. In LECs, however, PROX1 was rather downregulated by KSHV-induced NOTCH signal via HEY1, which binds and represses the PROX1 promoter. Moreover, PROX1 was found to be required to maintain HEY1 expression in LECs, establishing a reciprocal regulation between PROX1 and HEY1. Upon co-activation of IL3Rα and NOTCH, PROX1 was upregulated in BECs, but downregulated in LECs. Together, our study provides the molecular mechanism underlying the cell type-specific endothelial fate reprogramming by KSHV.

  1. Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse.

    Science.gov (United States)

    Markoulaki, Styliani; Meissner, Alexander; Jaenisch, Rudolf

    2008-06-01

    Addressing the fundamental questions of nuclear equivalence in somatic cells has fascinated scientists for decades and has resulted in the development of somatic cell nuclear transfer (SCNT) or animal cloning. SCNT involves the transfer of the nucleus of a somatic cell into the cytoplasm of an egg whose own chromosomes have been removed. In the mouse, SCNT has not only been successfully used to address the issue of nuclear equivalence, but has been used as a model system to test the hypothesis that embryonic stem cells (ESCs) derived from NT blastocysts have the potential to correct--through genetic manipulations--degenerative diseases. This paper aims to provide a comprehensive description of SCNT in the mouse and the derivation of ESCs from blastocysts generated by this technique. SCNT is a very challenging and inefficient procedure because it is technically complex, it bypasses the normal events of gamete interactions and egg activation, and it depends on adequate reprogramming of the somatic cell nucleus in vivo. Improvements in any or all those aspects may enhance the efficiency and applicability of SCNT. ESC derivation from SCNT blastocysts, on the other hand, requires the survival of only a few successfully reprogrammed cells, which have the capacity to proliferate indefinitely in vitro, maintain correct genetic and epigenetic status, and differentiate into any cell type in the body--characteristics that are essential for transplantation therapy or any other in vivo application.

  2. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation

    Science.gov (United States)

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular differentiation, reprogramming and transdifferentiation are determined by underlying gene regulatory networks. Non-adiabatic regulation via slow binding/unbinding to the gene can be important in these cell fate decision-making processes. Based on a stem cell core gene network, we uncovered the stem cell developmental landscape. As the binding/unbinding speed decreases, the landscape topography changes from bistable attractors of stem and differentiated states to more attractors of stem and other different cell states as well as substates. Non-adiabaticity leads to more differentiated cell types and provides a natural explanation for the heterogeneity observed in the experiments. We quantified Waddington landscapes with two possible cell fate decision mechanisms by changing the regulation strength or regulation timescale (non-adiabaticity). Transition rates correlate with landscape topography through barrier heights between different states and quantitatively determine global stability. We found the optimal speeds of these cell fate decision-making processes. We quantified biological paths and predict that differentiation and reprogramming go through an intermediate state (IM1), whereas transdifferentiation goes through another intermediate state (IM2). Some predictions are confirmed by recent experimental studies. PMID:24132204

  3. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    Science.gov (United States)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  4. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells.

    Science.gov (United States)

    Reisz, Julie A; Wither, Matthew J; Dzieciatkowska, Monika; Nemkov, Travis; Issaian, Aaron; Yoshida, Tatsuro; Dunham, Andrew J; Hill, Ryan C; Hansen, Kirk C; D'Alessandro, Angelo

    2016-09-22

    Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plays a key regulatory function in glucose oxidation by mediating fluxes through glycolysis or the pentose phosphate pathway (PPP) in an oxidative stress-dependent fashion. Previous studies documented metabolic reprogramming in stored red blood cells (RBCs) and oxidation of GAPDH at functional residues upon exposure to pro-oxidants diamide and H2O2 Here we hypothesize that routine storage of erythrocyte concentrates promotes metabolic modulation of stored RBCs by targeting functional thiol residues of GAPDH. Progressive increases in PPP/glycolysis ratios were determined via metabolic flux analysis after spiking (13)C1,2,3-glucose in erythrocyte concentrates stored in Additive Solution-3 under blood bank conditions for up to 42 days. Proteomics analyses revealed a storage-dependent oxidation of GAPDH at functional Cys152, 156, 247, and His179. Activity loss by oxidation occurred with increasing storage duration and was progressively irreversible. Irreversibly oxidized GAPDH accumulated in stored erythrocyte membranes and supernatants through storage day 42. By combining state-of-the-art ultra-high-pressure liquid chromatography-mass spectrometry metabolic flux analysis with redox and switch-tag proteomics, we identify for the first time ex vivo functionally relevant reversible and irreversible (sulfinic acid; Cys to dehydroalanine) oxidations of GAPDH without exogenous supplementation of excess pro-oxidant compounds in clinically relevant blood products. Oxidative and metabolic lesions, exacerbated by storage under hyperoxic conditions, were ameliorated by hypoxic storage. Storage-dependent reversible oxidation of GAPDH represents a mechanistic adaptation in stored erythrocytes to promote PPP activation and generate reducing equivalents. Removal of irreversibly oxidized, functionally compromised GAPDH identifies enhanced vesiculation as a self-protective mechanism in ex vivo aging erythrocytes.

  5. Non-integrating episomal plasmid-based reprogramming of human amniotic fluid stem cells into induced pluripotent stem cells in chemically defined conditions.

    Science.gov (United States)

    Slamecka, Jaroslav; Salimova, Lilia; McClellan, Steven; van Kelle, Mathieu; Kehl, Debora; Laurini, Javier; Cinelli, Paolo; Owen, Laurie; Hoerstrup, Simon P; Weber, Benedikt

    2016-01-01

    Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.

  6. Discovery and progress of direct cardiac reprogramming.

    Science.gov (United States)

    Kojima, Hidenori; Ieda, Masaki

    2017-02-14

    Cardiac disease remains a major cause of death worldwide. Direct cardiac reprogramming has emerged as a promising approach for cardiac regenerative therapy. After the discovery of MyoD, a master regulator for skeletal muscle, other single cardiac reprogramming factors (master regulators) have been sought. Discovery of cardiac reprogramming factors was inspired by the finding that multiple, but not single, transcription factors were needed to generate induced pluripotent stem cells (iPSCs) from fibroblasts. We first reported a combination of cardiac-specific transcription factors, Gata4, Mef2c, and Tbx5 (GMT), that could convert mouse fibroblasts into cardiomyocyte-like cells, which were designated as induced cardiomyocyte-like cells (iCMs). Following our first report of cardiac reprogramming, many researchers, including ourselves, demonstrated an improvement in cardiac reprogramming efficiency, in vivo direct cardiac reprogramming for heart regeneration, and cardiac reprogramming in human cells. However, cardiac reprogramming in human cells and adult fibroblasts remains inefficient, and further efforts are needed. We believe that future research elucidating epigenetic barriers and molecular mechanisms of direct cardiac reprogramming will improve the reprogramming efficiency, and that this new technology has great potential for clinical applications.

  7. Efficient reprogramming of naïve-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system.

    Science.gov (United States)

    Zhang, Yu; Wei, Chao; Zhang, Pengfei; Li, Xia; Liu, Tong; Pu, Yong; Li, Yunsheng; Cao, Zubing; Cao, Hongguo; Liu, Ya; Zhang, Xiaorong; Zhang, Yunhai

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are somatic cells reprogrammed by ectopic expression of transcription factors or small molecule treatment, which resemble embryonic stem cells (ESCs). They hold great promise for improving the generation of genetically modified large animals. However, few porcine iPSCs (piPSCs) lines obtained currently can support development of cloned embryos. Here, we generated iPSCs from porcine adipose-derived stem cells (pADSCs), using drug-inducible expression of defined human factors (Oct4, Sox2, c-Myc and Klf4). Reprogramming of iPSCs from pADSCs was more efficient than from fibroblasts, regardless of using feeder-independent or feeder-dependent manners. By addition of Lif-2i medium containing mouse Lif, CHIR99021 and PD0325901 (Lif-2i), naïve-like piPSCs were obtained under feeder-independent and serum-free conditions. These successfully reprogrammed piPSCs were characterized by short cell cycle intervals, alkaline phosphatase (AP) staining, expression of Oct4, Sox2, Nanog, SSEA3 and SSEA4, and normal karyotypes. The resemblance of piPSCs to naïve ESCs was confirmed by their packed dome morphology, growth after single-cell dissociation, Lif-dependency, up-regulation of Stella and Eras, low expression levels of TRA-1-60, TRA-1-81 and MHC I and activation of both X chromosomes. Full reprogramming of naïve-like piPSCs was evaluated by the significant up-regulation of Lin28, Esrrb, Utf1 and Dppa5, differentiating into cell types of all three germ layers in vitro and in vivo. Furthermore, nuclear transfer embryos from naïve-like piPSCs could develop to blastocysts with improved quality. Thus, we provided an efficient protocol for generating naïve-like piPSCs from pADSCs in a feeder-independent and serum-free system with controlled regulation of exogenous genes, which may facilitate optimization of culture media and the production of transgenic pigs.

  8. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells.

    Science.gov (United States)

    Yamada, Mitsutoshi; Johannesson, Bjarki; Sagi, Ido; Burnett, Lisa Cole; Kort, Daniel H; Prosser, Robert W; Paull, Daniel; Nestor, Michael W; Freeby, Matthew; Greenberg, Ellen; Goland, Robin S; Leibel, Rudolph L; Solomon, Susan L; Benvenisty, Nissim; Sauer, Mark V; Egli, Dieter

    2014-06-26

    The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.

  9. Switch-like reprogramming of gene expression after fusion of multinucleate plasmodial cells of two Physarum polycephalum sporulation mutants.

    Science.gov (United States)

    Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta; Haas, Markus; Marwan, Wolfgang

    2013-05-24

    Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states. The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.

  10. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 μmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes.

  11. Induced Pluripotent Stem Cells With Six Reprogramming Factors From Prairie Vole, Which Is an Animal Model for Social Behaviors.

    Science.gov (United States)

    Katayama, Masafumi; Hirayama, Takashi; Horie, Kengo; Kiyono, Tohru; Donai, Kenichiro; Takeda, Satoru; Nishimori, Katsuhiko; Fukuda, Tomokazu

    2016-01-01

    Prairie voles show strong pair bonding with their mating partners, and they demonstrate parental behavior toward their infants, indicating that the prairie vole is a unique animal model for analysis of molecular mechanisms of social behavior. Until a recent study, the signaling pathway of oxytocin was thought to be critical for the social behavior of prairie voles, but neuron-specific functional research may be necessary to identify the molecular mechanisms of social behavior. Prairie vole pluripotent stem cells of high quality are essential to elucidate the molecular mechanisms of social behaviors. Generation of high-quality induced pluripotent stem cells (iPSCs) would help to establish a genetically modified prairie vole, including knockout and knock-in models, based on the pluripotency of iPSCs. Thus, we attempted to establish high-quality prairie vole-derived iPSCs (pv-iPSCs) in this study. We constructed a polycistronic reprogramming vector, which included six reprograming factors (Oct3/4, Sox2, Klf4, c-myc, Lin28, and Nanog). Furthermore, we evaluated the effect of six reprogramming factors, which included Oct3/4 with the transactivation domain (TAD) of MyoD. Implantation of the pv-iPSCs into immunodeficient mice caused a teratoma with three germ layers. Furthermore, the established pv-iPSCs tested positive for stem cell markers, including alkaline phosphatase activity (ALP), stage-specific embryonic antigen (SSEA)-1, and dependence on leukemia inhibitory factor (LIF). Our data indicate that our newly established pv-iPSCs may be a useful tool for genetic analysis of social behavior.

  12. Myogenic reprogramming of bone marrow derived cells in a W⁴¹Dmd(mdx deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Stuart Walsh

    Full Text Available Lack of expression of dystrophin leads to degeneration of muscle fibers and infiltration of connective and adipose tissue. Cell transplantation therapy has been proposed as a treatment for intractable muscle degenerative disorders. Several reports have demonstrated the ability of bone-marrow derived cells (BMDC to contribute to non-haematopoietic tissues including epithelium, heart, liver, skeletal muscle and brain following transplantation by means of fusion and reprogramming. A key issue is the extent to which fusion and reprogramming can occur in vivo, particularly under conditions of myogenic deterioration.To investigate the therapeutic potential of bone marrow transplantation in monogenetic myopathy, green fluorescent protein-positive (GFP+ bone marrow cells were transplanted into non-irradiated c-kit receptor-deficient (W⁴¹ mdx mice. This model allows BMDC reconstitution in the absence of irradiation induced myeloablation. We provide the first report of BMDC fusion in a W⁴¹Dmd(mdx deficient mouse model.In the absence of irradiation induced injury, few GFP+ cardiomyocytes and muscle fibres were detected 24 weeks post BMT. It was expected that the frequency of fusion in the hearts of W⁴¹Dmd(mdx mice would be similar to frequencies observed in infarcted mice. Although, it is clear from this study that individual cardiomyocytes with monogenetic deficiencies can be rescued by fusion, it is as clear that in the absence of irradiation, the formation of stable and reprogrammed fusion hybrids occurs, with the current techniques, at very low levels in non-irradiated recipients.

  13. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin;

    2011-01-01

    in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls......To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...

  14. Epigenetic reprogramming in the porcine germ line

    DEFF Research Database (Denmark)

    Matzen, Sara Maj Hyldig; Croxall, Nicola; Contreras, David A.

    2011-01-01

    BACKGROUND: Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next...... an increased proportion of cells in G2. CONCLUSIONS: Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic...... DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in mice, suggesting that epigenetic reprogramming of germ cells is conserved in mammals. A better understanding...

  15. Identification of microRNAs regulating reprogramming factor LIN28 in embryonic stem cells and cancer cells.

    Science.gov (United States)

    Zhong, Xiaomin; Li, Ning; Liang, Shun; Huang, Qihong; Coukos, George; Zhang, Lin

    2010-12-31

    LIN28 (a homologue of the Caenorhabditis elegans lin-28 gene) is an evolutionarily conserved RNA-binding protein and a master regulator controlling the pluripotency of embryonic stem cells. Together with OCT4, SOX2, and NANOG, LIN28 can reprogram somatic cells, producing induced pluripotent stem cells. Expression of LIN28 is highly restricted to embryonic stem cells and developing tissues. In human tumors, LIN28 is up-regulated and functions as an oncogene promoting malignant transformation and tumor progression. However, the mechanisms of transcriptional and post-transcriptional regulation of LIN28 are still largely unknown. To examine microRNAs (miRNAs) that repress LIN28 expression, a combined in silico prediction and miRNA library screening approach was used in the present study. Four miRNAs directly regulating LIN28 (let-7, mir-125, mir-9, and mir-30) were initially identified by this approach and further validated by quantitative RT-PCR, Western blot analysis, and a LIN28 3'-UTR reporter assay. We found that expression levels of these four miRNAs were clustered together and inversely correlated with LIN28 expression during embryonic stem cell differentiation. In addition, the expression of these miRNAs was remarkably lower in LIN28-positive tumor cells compared with LIN28-negative tumor cells. Importantly, we demonstrated that these miRNAs were able to regulate the expression and activity of let-7, mediated by LIN28. Taken together, our studies demonstrate that miRNAs let-7, mir-125, mir-9, and mir-30 directly repress LIN28 expression in embryonic stem and cancer cells. Global down-regulation of these miRNAs may be one of the mechanisms of LIN28 reactivation in human cancers.

  16. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals.

    Science.gov (United States)

    Secher, Jan O; Liu, Ying; Petkov, Stoyan; Luo, Yonglun; Li, Dong; Hall, Vanessa J; Schmidt, Mette; Callesen, Henrik; Bentzon, Jacob F; Sørensen, Charlotte B; Freude, Kristine K; Hyttel, Poul

    2017-03-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl-iPSCs) and embryonic germ cells (EGCs), which have earlier been characterized as being multipotent. The SCNT efficiencies of these stem cell lines were compared with that of the two fibroblast cell lines from which the iPSC lines were derived. The blastocyst rates for the 2i LIF DOX-iPSCs were 14.7%, for the 2i FGF Pl-iPSC 10.1%, and for the EGCs 34.5% compared with the fibroblast lines yielding 36.7% and 25.2%. The fibroblast- and EGC-derived embryos were used for embryo transfer and produced live offspring at similar low rates of efficiency (3.2 and 4.0%, respectively) and with several instances of malformations. In conclusion, potentially pluripotent porcine stem cells resulted in lower rates of embryonic development upon SCNT than multipotent stem cells and differentiated somatic cells.

  17. Sustained ERK Activation Underlies Reprogramming in Regeneration-Competent Salamander Cells and Distinguishes Them from Their Mammalian Counterparts

    Directory of Open Access Journals (Sweden)

    Maximina H. Yun

    2014-07-01

    Full Text Available In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species.

  18. Sustained ERK activation underlies reprogramming in regeneration-competent salamander cells and distinguishes them from their mammalian counterparts.

    Science.gov (United States)

    Yun, Maximina H; Gates, Phillip B; Brockes, Jeremy P

    2014-07-08

    In regeneration-competent vertebrates, such as salamanders, regeneration depends on the ability of various differentiated adult cell types to undergo natural reprogramming. This ability is rarely observed in regeneration-incompetent species such as mammals, providing an explanation for their poor regenerative potential. To date, little is known about the molecular mechanisms mediating natural reprogramming during regeneration. Here, we have identified the extent of extracellular signal-regulated kinase (ERK) activation as a key component of such mechanisms. We show that sustained ERK activation following serum induction is required for re-entry into the cell cycle of postmitotic salamander muscle cells, partially by promoting the downregulation of p53 activity. Moreover, ERK activation induces epigenetic modifications and downregulation of muscle-specific genes such as Sox6. Remarkably, while long-term ERK activation is found in salamander myotubes, only transient activation is seen in their mammalian counterparts, suggesting that the extent of ERK activation could underlie differences in regenerative competence between species.

  19. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation

    Directory of Open Access Journals (Sweden)

    Diego Balboa

    2015-09-01

    Full Text Available CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.

  20. Matrix identity and tractional forces influence indirect cardiac reprogramming

    Science.gov (United States)

    Kong, Yen P.; Carrion, Bita; Singh, Rahul K.; Putnam, Andrew J.

    2013-12-01

    Heart regeneration through in vivo cardiac reprogramming has been demonstrated as a possible regenerative strategy. While it has been reported that cardiac reprogramming in vivo is more efficient than in vitro, the influence of the extracellular microenvironment on cardiac reprogramming remains incompletely understood. This understanding is necessary to improve the efficiency of cardiac reprogramming in order to implement this strategy successfully. Here we have identified matrix identity and cell-generated tractional forces as key determinants of the dedifferentiation and differentiation stages during reprogramming. Cell proliferation, matrix mechanics, and matrix microstructure are also important, but play lesser roles. Our results suggest that the extracellular microenvironment can be optimized to enhance cardiac reprogramming.

  1. Regeneration and reprogramming compared

    Directory of Open Access Journals (Sweden)

    Robles Vanesa

    2010-01-01

    Full Text Available Abstract Background Dedifferentiation occurs naturally in mature cell types during epimorphic regeneration in fish and some amphibians. Dedifferentiation also occurs in the induction of pluripotent stem cells when a set of transcription factors (Oct4, Sox2, Klf4 and c-Myc is over expressed in mature cell types. Results We hypothesised that there are parallels between dedifferentiation or reprogramming of somatic cells to induced pluripotent stem cells and the natural process of dedifferentiation during epimorphic regeneration. We analysed expression levels of the most commonly used pluripotency associated factors in regenerating and non-regenerating tissue and compared them with levels in a pluripotent reference cell. We found that some of the pluripotency associated factors (oct4/pou5f1, sox2, c-myc, klf4, tert, sall4, zic3, dppa2/4 and fut1, a homologue of ssea1 were expressed before and during regeneration and that at least two of these factors (oct4, sox2 were also required for normal fin regeneration in the zebrafish. However these factors were not upregulated during regeneration as would be expected if blastema cells acquired pluripotency. Conclusions By comparing cells from the regeneration blastema with embryonic pluripotent reference cells we found that induced pluripotent stem and blastema cells do not share pluripotency. However, during blastema formation some of the key reprogramming factors are both expressed and are also required for regeneration to take place. We therefore propose a link between partially reprogrammed induced pluripotent stem cells and the half way state of blastema cells and suggest that a common mechanism might be regulating these two processes.

  2. Bright/Arid3A Acts as a Barrier to Somatic Cell Reprogramming through Direct Regulation of Oct4, Sox2, and Nanog

    Directory of Open Access Journals (Sweden)

    Melissa Popowski

    2014-01-01

    Full Text Available We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs and enhancement of standard four-factor (4F reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.

  3. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Fabrizio D'Anselmi

    Full Text Available The microenvironment drives mammary gland development and function, and may influence significantly both malignant behavior and cell growth of mammary cancer cells. By restoring context, and forcing cells to properly interpret native signals from the microenvironment, the cancer cell aberrant behavior can be quelled, and organization re-established. In order to restore functional and morphological differentiation, human mammary MCF-7 and MDA-MB-231 cancer cells were allowed to grow in a culture medium filled with a 10% of the albumen (EW, Egg White from unfertilized chicken egg. That unique microenvironment behaves akin a 3D culture and induces MCF-7 cells to produce acini and branching duct-like structures, distinctive of mammary gland differentiation. EW-treated MDA-MB-231 cells developed buds of acini and duct-like structures. Both MCF-7 and MDA-MB-231 cells produced β-casein, a key milk component. Furthermore, E-cadherin expression was reactivated in MDA-MB-231 cells, as a consequence of the increased cdh1 expression; meanwhile β-catenin - a key cytoskeleton component - was displaced behind the inner cell membrane. Such modification hinders the epithelial-mesenchymal transition in MDA-MB-231 cells. This differentiating pathway is supported by the contemporary down-regulation of canonical pluripotency markers (Klf4, Nanog. Given that egg-conditioned medium behaves as a 3D-medium, it is likely that cancer phenotype reversion could be ascribed to the changed interactions between cells and their microenvironment.

  4. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking

    Science.gov (United States)

    Lu, Yi-Ju; Schornack, Sebastian; Spallek, Thomas; Geldner, Niko; Chory, Joanne; Schellmann, Swen; Schumacher, Karin; Kamoun, Sophien; Robatzek, Silke

    2016-01-01

    Summary Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes. PMID:22233428

  5. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available UNLABELLED: The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules. METHODS AND RESULTS: SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS: Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  6. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...

  7. GM-CSF and MEF-conditioned media support feeder-free reprogramming of mouse granulocytes to iPS cells.

    Science.gov (United States)

    Firas, Jaber; Liu, Xiaodong; Nefzger, Christian M; Polo, Jose M

    2014-06-01

    Induced pluripotent stem cells (iPSCs) are characterised by their ability to differentiate into any cell type of the body. Accordingly, iPSCs possess immense potential for disease modelling, pharmaceutical screening and autologous cell therapies. The most common source of iPSCs derivation is skin fibroblasts. However, from a clinical point of view, skin fibroblasts may not be ideal, as invasive procedures such as skin biopsies are required for their extraction. Moreover, fibroblasts are highly heterogeneous with a poorly defined developmental pathway, which makes studying reprogramming mechanistics difficult. Granulocytes, on the other hand, are easily obtainable, their developmental pathway has been extensively studied and fluorescence activated cell sorting allows for the isolation of these cells at high purity; thus iPSCs derivation from granulocytes could provide an alternative to fibroblast-derived iPSCs. Previous studies succeeded in producing iPSC colonies from mouse granulocytes but with the use of a mitotically inactivated feeder layer, restricting their use for studying reprogramming mechanistics. As granulocytes display poor survival under culture conditions, we investigated the influence of haematopoietic cytokines to stabilise this cell type in vitro and allow for reprogramming in the absence of a feeder layer. Our results show that treatment with MEF-conditioned media and/or initial exposure to GM-CSF allows for reprogramming of granulocytes under feeder-free conditions. This work can serve as a basis for future work aimed at dissecting the reprogramming mechanism as well as obtaining large numbers of iPSCs from a clinically relevant cell source.

  8. Bmil puSHHes reprogramming

    Institute of Scientific and Technical Information of China (English)

    Han Li; Manuel Serrano

    2011-01-01

    In 2006,the group of Shinya Yamanaka demonstrated that somatic cells could be reprogrammed into induced pluripotent stem cells (iPSCs) by ectopic expression of four transcription factors associated to stemness:Oct4,Sox2,Klf4 and c-Myc [1].This groundbreaking discovery opened the possibility of generating patient-specific cells for research,drug development and regenerative medicine.Due to the tremendous potential of its clinical applications,understanding the process of reprogramming has become a priority and one of the most fascinating biomedical research topics.

  9. C/EBPα creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4

    DEFF Research Database (Denmark)

    Di Stefano, Bruno; Collombet, Samuel; Jakobsen, Janus Schou

    2016-01-01

    reprogrammed into iPSCs by the Yamanaka factors OSKM. Here we show that C/EBPα post-transcriptionally increases the abundance of several hundred proteins, including Lsd1, Hdac1, Brd4, Med1 and Cdk9, components of chromatin-modifying complexes present at super-enhancers. Lsd1 was found to be required for B cell...

  10. Reprogramming aging and progeria.

    Science.gov (United States)

    Freije, José M P; López-Otín, Carlos

    2012-12-01

    The aging rate of an organism depends on the ratio of tissue degeneration to tissue repair. As a consequence, molecular alterations that tip this balance toward degeneration cause accelerated aging. Conversely, interventions can be pursued to reduce tissue degeneration or to increase tissue repair with the aim of delaying the onset of age-associated manifestations. Recent studies on the biology of stem cells in aging have revealed the influence of systemic factors on their functionality and demonstrated the feasibility of reprogramming aged and progeroid cells. These results illustrate the reversibility of some aspects of the aging process and encourage the search for new anti-aging and anti-progeria interventions.

  11. Methods of Reprogramming to Induced Pluripotent Stem Cell Associated with Chromosomal Integrity and Delineation of a Chromosome 5q Candidate Region for Growth Advantage.

    Science.gov (United States)

    Sobol, Maria; Raykova, Doroteya; Cavelier, Lucia; Khalfallah, Ayda; Schuster, Jens; Dahl, Niklas

    2015-09-01

    Induced pluripotent stem cells (iPSCs) have brought great promises for disease modeling and cell-based therapies. One concern related to the use of reprogrammed somatic cells is the loss of genomic integrity and chromosome stability, a hallmark for cancer and many other human disorders. We investigated 16 human iPSC lines reprogrammed by nonintegrative Sendai virus (SeV) and another 16 iPSC lines generated by integrative lentivirus for genetic changes. At early passages we detected cytogenetic rearrangements in 44% (7/16) of iPSC lines generated by lentiviral integration whereas the corresponding figure was 6% (1/16) using SeV-based delivery. The rearrangements were numerical and/or structural with chromosomes 5 and 12 as the most frequently involved chromosomes. Three iPSC lines with chromosome 5 aberrations were derived from one and the same donor. We present in this study the aberrant karyotypes including a duplication of chromosome 5q13q33 that restricts a candidate region for growth advantage. Our results suggest that the use of integrative lentivirus confers a higher risk for cytogenetic abnormalities at early passages when compared to SeV-based reprogramming. In combination, our findings expand the knowledge on acquired cytogenetic aberrations in iPSC after reprogramming and during culture.

  12. Comprehensive Identification of Kruppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming.

    Directory of Open Access Journals (Sweden)

    Hyojung Jeon

    Full Text Available Pluripotency is maintained in mouse embryonic stem (ES cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf family members exert self-renewal and reprogramming functions when overexpressed. In this study, we examined whether overexpression of any representative Klf family member, such as Klf1-Klf10, would be sufficient for the self-renewal of mouse ES cells. We found that only Klf2, Klf4, and Klf5 produced leukemia inhibitory factor (LIF-independent self-renewal, although most KLF proteins, if not all, have the ability to occupy the regulatory regions of Nanog, a critical Klf target gene. We also examined whether overexpression of any of Klf1-Klf10 would be sufficient to convert epiblast stem cells into a naïve pluripotent state and found that Klf5 had such reprogramming ability, in addition to Klf2 and Klf4. We also delineated the functional domains of the Klf2 protein for LIF-independent self-renewal and reprogramming. Interestingly, we found that both the N-terminal transcriptional activation and C-terminal zinc finger domains were indispensable for this activity. Taken together, our comprehensive analysis provides new insight into the contribution of Klf family members to mouse ES self-renewal and cellular reprogramming.

  13. Asymmetric Reprogramming Capacity of Parental Pronuclei in Mouse Zygotes

    Directory of Open Access Journals (Sweden)

    Wenqiang Liu

    2014-03-01

    Full Text Available It has been demonstrated that reprogramming factors are sequestered in the pronuclei of zygotes after fertilization, because zygotes enucleated at the M phase instead of interphase of the first mitosis can support the development of cloned embryos. However, the contribution of the parental pronucleus derived from either the sperm or the oocyte in reprogramming remains elusive. Here, we demonstrate that the parental pronuclei have asymmetric reprogramming capacities and that the reprogramming factors reside predominantly in the male pronucleus. As a result, only female pronucleus-depleted (FPD mouse zygotes can reprogram somatic cells to a pluripotent state and support the full-term development of cloned embryos; male pronucleus-depleted (MPD zygotes fail to support somatic cell reprogramming. We further demonstrate that fusion of an additional male pronucleus into a zygote greatly enhances reprogramming efficiency. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.

  14. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Youfeng Yang

    Full Text Available Fumarate hydratase (FH-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP that either generate NADPH (oxidative or do not (non-oxidative, we utilized [U-(13C]-glucose, [U-(13C,(15N]-glutamine, and [1,2- (13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR and extracellular acidification rate (ECAR of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α-ketoglutarate through to fumarate. [1,2- (13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66% that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid

  15. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma.

    Science.gov (United States)

    Yang, Youfeng; Lane, Andrew N; Ricketts, Christopher J; Sourbier, Carole; Wei, Ming-Hui; Shuch, Brian; Pike, Lisa; Wu, Min; Rouault, Tracey A; Boros, Laszlo G; Fan, Teresa W-M; Linehan, W Marston

    2013-01-01

    Fumarate hydratase (FH)-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP) that either generate NADPH (oxidative) or do not (non-oxidative), we utilized [U-(13)C]-glucose, [U-(13)C,(15)N]-glutamine, and [1,2- (13)C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α-ketoglutarate through to fumarate. [1,2- (13)C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66%) that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid synthesis

  16. Rapid and efficient reprogramming of human fetal and adult blood CD34+ cells into mesenchymal stem cells with a single factor

    Institute of Scientific and Technical Information of China (English)

    Xianmei Meng; Rui-Jun Su; David J Baylink; Amanda Neises; Jason B Kiroyan; Wayne Yuk-Wai Lee; Kimberly J Payne

    2013-01-01

    The direct conversion of skin cells into somatic stem cells has opened new therapeutic possibilities in regenerative medicine.Here,we show that human induced mesenchymal stem cells (iMSCs) can be efficiently generated from cord blood (CB)-or adult peripheral blood (PB)-CD34+ cells by direct reprogramming with a single factor,OCT4.In the presence of a GSK3 inhibitor,16% of the OCT4-transduced CD34+ cells are converted into iMSCs within 2 weeks.Efficient direct reprogramming is achieved with both episomal vector-mediated transient OCT4 expression and lentiviral vector-mediated OCT4 transduction.The iMSCs express MSC markers,resemble bone marrow (BM)-MSCs in morphology,and possess in vitro multilineage differentiation capacity,yet have a greater proliferative capacity compared with BM-MSCs.Similar to BM-MSCs,the implanted iMSCs form bone and connective tissues,and are non-tumorigenic in mice.However,BM-MSCs do not,whereas iMSCs do form muscle fibers,indicating a potential functional advantage of iMSCs.In addition,we observed that a high level of OCT4 expression is required for the initial reprogramming and the optimal iMSC self-renewal,while a reduction of OCT4 expression is required for multilineage differentiation.Our method will contribute to the generation of patient-specific iMSCs,which could have applications in regenerative medicine.This discovery may also facilitate the development of strategies for direct conversion of blood cells into other types of cells of clinical importance.

  17. Reprogramming of endometrial adult stromal cells in the presence of a ROCK inhibitor, thiazovivin, could obtain more efficient iPSCs.

    Science.gov (United States)

    Mohseni, Rashin; Shoae-Hassani, Alireza; Verdi, Javad

    2015-05-01

    Today, there is a need for a platform to efficiently generate and maintain a feeder free culture of pluripotent stem cells by small molecules or pharmacological agents. Induced pluripotent stem cell (iPSC) is considered a promising resource for restorative cell therapy in clinical areas. While fully reprogrammed iPSCs are similar to embryonic stem cells, iPSCs could be derived from the patient's own cells (autologous), which avoids the immune rejection activities. Recent advances have demonstrated that iPSCs could be generated from human fibroblasts using only four transcription factors: OCT4, SOX2, CMYC, and KLF4. However, the limitations of reprogramming technologies include low efficiency, slow kinetics, transgene integration and residual expression. Surprisingly, adult stem cells from human endometrium (endometrial stem cells; EnSCs) express OCT4 and KLF4 pluripotency factors. On the other hand, small molecule inhibitors of specific signaling pathways such as thiazovivin have been used in various aspects of iPSC generation and maintenance. Thiazovivin is a selective small molecule that directly targets Rho-associated kinase (ROCK) and increases expression of pluripotency factors. The process using thiazovivin could be easier, faster and more cost effective than transgene integration into somatic cells. So reprogramming of OCT4 and KLF4 expressing EnSCs by a ROCK inhibitor, thiazovivin, could result in producing more efficient iPSCs compared with fibroblasts or conventional somatic cells without integration any transgene and retroviral vector.

  18. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres.

    Science.gov (United States)

    Albini, Sonia; Coutinho, Paula; Malecova, Barbora; Giordani, Lorenzo; Savchenko, Alex; Forcales, Sonia Vanina; Puri, Pier Lorenzo

    2013-03-28

    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for "disease in a dish" models of muscular physiology and dysfunction.

  19. Epigenetic Reprogramming of Human Embryonic Stem Cells into Skeletal Muscle Cells and Generation of Contractile Myospheres

    Directory of Open Access Journals (Sweden)

    Sonia Albini

    2013-03-01

    Full Text Available Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB, but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3 confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for “disease in a dish” models of muscular physiology and dysfunction.

  20. The mitochondrial H(+)-ATP synthase and the lipogenic switch: new core components of metabolic reprogramming in induced pluripotent stem (iPS) cells.

    Science.gov (United States)

    Vazquez-Martin, Alejandro; Corominas-Faja, Bruna; Cufi, Sílvia; Vellon, Luciano; Oliveras-Ferraros, Cristina; Menendez, Octavio J; Joven, Jorge; Lupu, Ruth; Menendez, Javier A

    2013-01-15

    Induced pluripotent stem (iPS) cells share some basic properties, such as self-renewal and pluripotency, with cancer cells, and they also appear to share several metabolic alterations that are commonly observed in human tumors. The cancer cells' glycolytic phenotype, first reported by Otto Warburg, is necessary for the optimal routing of somatic cells to pluripotency. However, how iPS cells establish a Warburg-like metabolic phenotype and whether the metabolic pathways that support the bioenergetics of iPS cells are produced by the same mechanisms that are selected during the tumorigenic process remain largely unexplored. We recently investigated whether the reprogramming-competent metabotype of iPS cells involves changes in the activation/expression status of the H(+)-ATPase, which is a core component of mitochondrial oxidative phosphorylation that is repressed at both the activity and protein levels in human carcinomas, and of the lipogenic switch, which refers to a marked overexpression and hyperactivity of the acetyl-CoA carboxylase (ACACA) and fatty acid synthase (FASN) lipogenic enzymes that has been observed in nearly all examined cancer types. A comparison of a starting population of mouse embryonic fibroblasts and their iPS cell progeny revealed that somatic cell reprogramming involves a significant increase in the expression of ATPase inhibitor factor 1 (IF1), accompanied by extremely low expression levels of the catalytic β-F1-ATPase subunit. The pharmacological inhibition of ACACA and FASN activities markedly decreases reprogramming efficiency, and ACACA and FASN expression are notably upregulated in iPS cells. Importantly, iPS cells exhibited a significant intracellular accumulation of neutral lipid bodies; however, these bodies may be a reflection of intense lysosomal/autophagocytic activity rather than bona fide lipid droplet formation in iPS cells, as they were largely unresponsive to pharmacological modulation of PPARgamma and FASN activities. The

  1. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek;

    2016-01-01

    One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  2. Daucus carota L.--an old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes.

    Science.gov (United States)

    Costa, J H; Cardoso, H G; Campos, M D; Zavattieri, A; Frederico, A M; Fernandes de Melo, D; Arnholdt-Schmitt, B

    2009-08-01

    The paper highlights Daucus carota L. as an ideal model to complement plant stress research on Arabidopsis thaliana L. Recently, alternative oxidase (AOX) is discussed as functional marker candidate for cell reprogramming upon stress. Carrot is the most studied species for cell reprogramming and our current research reveals that it is the only one that has expanded both AOX sub-family genes. We point to recently published, but not discussed results on conserved differences in the vicinity of the most active functional site of AOX1 and AOX2, which indicate the importance of studying AOX sequence polymorphism, structure and functionality. Thus, stress-inducible experimental systems of D. carota are especially appropriate to bring research on stress tolerance a significant step forward.

  3. Stochastic anomaly of methylome but persistent SRY hypermethylation in disorder of sex development in canine somatic cell nuclear transfer

    OpenAIRE

    Young-Hee Jeong; Hanlin Lu; Chi-Hun Park; Meiyan Li; Huijuan Luo; Joung Joo Kim; Siyang Liu; Kyeong Hee Ko; Shujia Huang; In Sung Hwang; Mi Na Kang; Desheng Gong; Kang Bae Park; Eun Ji Choi; Jung Hyun Park

    2016-01-01

    Somatic cell nuclear transfer (SCNT) provides an excellent model for studying epigenomic reprogramming during mammalian development. We mapped the whole genome and whole methylome for potential anomalies of mutations or epimutations in SCNT-generated dogs with XY chromosomal sex but complete gonadal dysgenesis, which is classified as 78, XY disorder of sex development (DSD). Whole genome sequencing revealed no potential genomic variations that could explain the pathogenesis of DSD. However, e...

  4. Nuclear lamina in plant cells

    Institute of Scientific and Technical Information of China (English)

    汪健; 杨澄; 翟中和

    1996-01-01

    By using selective extraction and diethylene glycol distearate (DGD) embedment and embedment-free electron microscopy, the nuclear lamina was demonstrated in carrot and Ginkgo male generative cells. Western blotting revealed that the nuclear lamina was composed of A-type and B-type lamins which contained at least 66-ku and 84-ku or 66-ku and 86-ku polypeptides, respectively. These lamin proteins were localized at the nudear periphery as shown by immunogold-labelling. In situ hybridization for light microscope and electron microscope showed that plant cells have the homologous sequences of animal lamin cDNA. The sorting site of lamin mRNA is mainly distributed in the cytoplasm near the nudear envelope. The data have verified that there indeed exists nudear lamina in plant cells.

  5. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells.

    Directory of Open Access Journals (Sweden)

    Yilin Cao

    Full Text Available T lymphocytes (T cells undergo metabolic reprogramming after activation to provide energy and biosynthetic materials for growth, proliferation and differentiation. Distinct T cell subsets, however, adopt metabolic programs specific to support their needs. As CD4 T cells coordinate adaptive immune responses while CD8 T cells become cytotoxic effectors, we compared activation-induced proliferation and metabolic reprogramming of these subsets. Resting CD4 and CD8 T cells were metabolically similar and used a predominantly oxidative metabolism. Following activation CD8 T cells proliferated more rapidly. Stimulation led both CD4 and CD8 T cells to sharply increase glucose metabolism and adopt aerobic glycolysis as a primary metabolic program. Activated CD4 T cells, however, remained more oxidative and had greater maximal respiratory capacity than activated CD8 T cells. CD4 T cells were also associated with greater levels of ROS and increased mitochondrial content, irrespective of the activation context. CD8 cells were better able, however, to oxidize glutamine as an alternative fuel source. The more glycolytic metabolism of activated CD8 T cells correlated with increased capacity for growth and proliferation, along with reduced sensitivity of cell growth to metabolic inhibition. These specific metabolic programs may promote greater growth and proliferation of CD8 T cells and enhance survival in diverse nutrient conditions.

  6. Reprogramming to iPS cells and their subsequent hematopoietic differentiation is more efficient from MEFs than from preB cells.

    Science.gov (United States)

    Reimer, Andreas; Seiler, Katharina; Tornack, Julia; Tsuneto, Motokazu; Melchers, Fritz

    2012-03-30

    Efficiencies of the generation of induced pluripotent stem (iPS) cells from either mouse embryonic fibroblasts (MEF) or from mouse fetal liver (FL) derived preB cells and their hematogenic potencies were compared. In 10 days approximately 2% of the MEFs transduced with Sox-2, Oct-4 and Klf-4 developed to iPS cells, while only 0.01% of transduced FL-preB cells yielded iPS cells, and only after around 3 weeks. Subsequently, the generated iPS cells were induced to differentiate into hematopoietic cells in vitro. On day 5 of differentiation MEF-iPS yielded numbers and percentages of Flk-1(+) mesodermal-like cells comparable to those developed from embryonic stem (ES) cells. Compared to ES cells further differentiation to hematopoietic and lymphopoietic cells was reduced, possibly because of persistent expression of the reprogramming factors. By contrast, FL-iPS cells developed lower numbers and percentages of Flk-1(+) cells, and no significant further development to hematopoietic or lymphopoietic cells could be induced. These results indicate that the efficiencies of iPS generation and subsequent hematopoietic development depends on the type of differentiated cell from which iPS cells are generated.

  7. Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogrammed primary prostate cancer cells.

    Science.gov (United States)

    Pollock, Claire B; McDonough, Sara; Wang, Victor S; Lee, Hyojung; Ringer, Lymor; Li, Xin; Prandi, Cristina; Lee, Richard J; Feldman, Adam S; Koltai, Hinanit; Kapulnik, Yoram; Rodriguez, Olga C; Schlegel, Richard; Albanese, Christopher; Yarden, Ronit I

    2014-03-30

    Strigolactones are a novel class of plant hormones produced in roots and regulate shoot and root development. We have previously shown that synthetic strigolactone analogues potently inhibit growth of breast cancer cells and breast cancer stem cells. Here we show that strigolactone analogues inhibit the growth and survival of an array of cancer-derived cell lines representing solid and non-solid cancer cells including: prostate, colon, lung, melanoma, osteosarcoma and leukemic cell lines, while normal cells were minimally affected. Treatment of cancer cells with strigolactone analogues was hallmarked by activation of the stress-related MAPKs: p38 and JNK and induction of stress-related genes; cell cycle arrest and apoptosis evident by increased percentages of cells in the sub-G1 fraction and Annexin V staining. In addition, we tested the response of patient-matched conditionally reprogrammed primary prostate normal and cancer cells. The tumor cells exhibited significantly higher sensitivity to the two most potent SL analogues with increased apoptosis confirmed by PARP1 cleavage compared to their normal counterpart cells. Thus, Strigolactone analogues are promising candidates for anticancer therapy by their ability to specifically induce cell cycle arrest, cellular stress and apoptosis in tumor cells with minimal effects on growth and survival of normal cells.

  8. Reprogramming of mouse amniotic fluid cells using a PiggyBac transposon system

    Directory of Open Access Journals (Sweden)

    E. Bertin

    2015-11-01

    Full Text Available Induced pluripotent stem (iPS cells are generated from mouse and human somatic cells by forced expression of defined transcription factors using different methods. Amniotic fluid (AF cells are easy to obtain from routinely scheduled procedures for prenatal diagnosis and iPS cells have been generated from human AF. Here, we generated iPS cells from mouse AF cells, using a non-viral-based approach constituted by the PiggyBac (PB transposon system. All iPS cell lines obtained exhibited characteristics of pluripotent cells, including the ability to differentiate toward derivatives of all three germ layers in vitro and in vivo.

  9. The use of Xenopus oocytes and embryos as a route towards cell replacement

    Indian Academy of Sciences (India)

    J B Gurdon

    2005-02-01

    When nuclei of somatic cells are transplanted to enucleated eggs of Xenopus, a complete reprogramming of nuclear function can take place. To identify mechanisms of nuclear reprogramming, somatic nuclei can be transplanted to growing meiotic oocytes of Xenopus, and stem cell genes activated without DNA replication. The combination of somatic cell nuclear transfer with morphogen signalling and the community effect may lead towards the possibility of cell replacement therapy. When mechanisms of nuclear reprogramming are understood, it may eventually be possible to directly reprogramme human somatic cell nuclei without the use of eggs.

  10. WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens.

    Science.gov (United States)

    Sakakibara, Keiko; Reisewitz, Pascal; Aoyama, Tsuyoshi; Friedrich, Thomas; Ando, Sayuri; Sato, Yoshikatsu; Tamada, Yosuke; Nishiyama, Tomoaki; Hiwatashi, Yuji; Kurata, Tetsuya; Ishikawa, Masaki; Deguchi, Hironori; Rensing, Stefan A; Werr, Wolfgang; Murata, Takashi; Hasebe, Mitsuyasu; Laux, Thomas

    2014-04-01

    Many differentiated plant cells can dedifferentiate into stem cells, reflecting the remarkable developmental plasticity of plants. In the moss Physcomitrella patens, cells at the wound margin of detached leaves become reprogrammed into stem cells. Here, we report that two paralogous P. patens WUSCHEL-related homeobox 13-like (PpWOX13L) genes, homologs of stem cell regulators in flowering plants, are transiently upregulated and required for the initiation of cell growth during stem cell formation. Concordantly, Δppwox13l deletion mutants fail to upregulate genes encoding homologs of cell wall loosening factors during this process. During the moss life cycle, most of the Δppwox13l mutant zygotes fail to expand and initiate an apical stem cell to form the embryo. Our data show that PpWOX13L genes are required for the initiation of cell growth specifically during stem cell formation, in analogy to WOX stem cell functions in seed plants, but using a different cellular mechanism.

  11. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  12. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    Science.gov (United States)

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  13. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.

    Science.gov (United States)

    DeBerardinis, Ralph J; Lum, Julian J; Hatzivassiliou, Georgia; Thompson, Craig B

    2008-01-01

    Cell proliferation requires nutrients, energy, and biosynthetic activity to duplicate all macromolecular components during each passage through the cell cycle. It is therefore not surprising that metabolic activities in proliferating cells are fundamentally different from those in nonproliferating cells. This review examines the idea that several core fluxes, including aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis, form a stereotyped platform supporting proliferation of diverse cell types. We also consider regulation of these fluxes by cellular mediators of signal transduction and gene expression, including the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR system, hypoxia-inducible factor 1 (HIF-1), and Myc, during physiologic cell proliferation and tumorigenesis.

  14. Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming

    OpenAIRE

    Talluri, Thirumala R.; Kumar, Dharmendra; Glage, Silke; Garrels, Wiebke; Ivics, Zoltan; Debowski, Katharina; Behr, Rüdiger; Niemann, Heiner; Kues, Wilfried A.

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a seminal breakthrough in stem cell research and are promising tools for advanced regenerative therapies in humans and reproductive biotechnology in farm animals. iPSCs are particularly valuable in species in which authentic embryonic stem cell (ESC) lines are yet not available. Here, we describe a nonviral method for the derivation of bovine iPSCs employing Sleeping Beauty (SB) and piggyBac (PB) transposon systems encoding different combinations of ...

  15. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    Science.gov (United States)

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  16. DHP-derivative and low oxygen tension effectively induces human adipose stromal cell reprogramming.

    Directory of Open Access Journals (Sweden)

    Min Ki Jee

    Full Text Available BACKGROUND AND METHODS: In this study, we utilized a combination of low oxygen tension and a novel anti-oxidant, 4-(3,4-dihydroxy-phenyl-derivative (DHP-d to directly induce adipose tissue stromal cells (ATSC to de-differentiate into more primitive stem cells. De-differentiated ATSCs was overexpress stemness genes, Rex-1, Oct-4, Sox-2, and Nanog. Additionally, demethylation of the regulatory regions of Rex-1, stemnesses, and HIF1alpha and scavenging of reactive oxygen species were finally resulted in an improved stem cell behavior of de-differentiate ATSC (de-ATSC. Proliferation activity of ATSCs after dedifferentiation was induced by REX1, Oct4, and JAK/STAT3 directly or indirectly. De-ATSCs showed increased migration activity that mediated by P38/JUNK and ERK phosphorylation. Moreover, regenerative efficacy of de-ATSC engrafted spinal cord-injured rats and chemical-induced diabetes animals were significantly restored their functions. CONCLUSIONS/SIGNIFICANCE: Our stem cell remodeling system may provide a good model which would provide insight into the molecular mechanisms underlying ATSC proliferation and transdifferentiation. Also, these multipotent stem cells can be harvested may provide us with a valuable reservoir of primitive and autologous stem cells for use in a broad spectrum of regenerative cell-based disease therapy.

  17. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation.

    Science.gov (United States)

    Hwang, Jeong Ho; Kim, Sang Eun; Gupta, Mukesh Kumar; Lee, HoonTaek

    2016-08-01

    Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos.

  18. Nuclear choreography: interpretations from living cells.

    Science.gov (United States)

    Janicki, Susan M; Spector, David L

    2003-04-01

    The advent of green fluorescent protein technology, its use in photobleaching experiments and the development of methods to rapidly acquire images and analyze complex datasets have opened the door to unraveling the mechanisms of nuclear functions in living cells. Studies over the past few years have characterized the movement of chromatin, nuclear proteins and nuclear bodies and, in some cases, correlated their dynamics with energy dependence, cell cycle progression, developmental changes, factor targeting and nuclear position. The mechanisms by which nuclear components move or are restrained have important implications for understanding not only the efficacy of nuclear functions but also the regulation of developmental programs and cellular growth.

  19. Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol(®)-resistant ovarian cancer.

    Science.gov (United States)

    Shen, Yao-An; Li, Wai-Hou; Chen, Po-Hung; He, Chun-Lin; Chang, Yen-Hou; Chuang, Chi-Mu

    2015-01-01

    Taxol(®) remained as the mainstay therapeutic agent in the treatment of ovarian cancer, however recurrence rate is still high. Cancer stem cells (CSCs) represent a subset of cells in the bulk of tumors and play a central role in inducing drug resistance and recurrence. Furthermore, cancer metabolism has been an area under intensive investigation, since accumulating evidence has shown that CSCs and cancer metabolism are closely linked, an effect named as metabolic reprogramming. In this work, we aimed to investigate the impacts of a novel liposome-encapsulated paclitaxel (Nano-Taxol) on the stemness phenotype and metabolic reprogramming. A paclitaxel-resistant cell line (TR) was established at first. Tumor growth was induced in the mice peritoneal cavity by inoculation of TR cells. A 2x2 factorial experiment was designed to test the therapeutic efficacy in which factor 1 represented the comparison of drugs (Taxol(®) versus Nano-Taxol), while factor 2 represented the delivery route (intravenous versus intraperitoneal delivery). In this work, we found that intraperitoneal delivery of Nano-Taxol redirects metabolic reprogramming, from glycolysis to oxidative phosphorylation, and effectively suppresses cancer stem cells. Also, intraperitoneal delivery of Nano-Taxol led to a significantly better control of tumor growth compared with intravenous delivery of Taxol(®) (current standard treatment). This translational research may serve as a novel pathway for the drug development of nanomedicine. In the future, this treatment modality may be extended to treat several relevant cancers that have been proved to be suitable for the loco-regional delivery of therapeutic agents, including colon cancer, gastric cancer, and pancreatic cancer.

  20. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    OpenAIRE

    Lidiia Astakhova; Mtakai Ngara; Olga Babich; Aleksandr Prosekov; Lyudmila Asyakina; Lyubov Dyshlyuk; Tore Midtvedt; Xiaoying Zhou; Ingemar Ernberg; Liudmila Matskova

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell l...

  1. Production of De Novo Cardiomyocytes: Human Pluripotent Stem Cell Differentiation and Direct Reprogramming

    OpenAIRE

    Burridge, Paul W.; Keller, Gordon; Gold, Joseph D.; Wu, Joseph C

    2012-01-01

    Cardiovascular disease is a leading cause of death worldwide. The limited capability of heart tissue to regenerate has prompted method developments for creating de novo cardiomyocytes, both in vitro and in vivo. Beyond uses in cell replacement therapy, patient-specific cardiomyocytes may find applications in drug testing, drug discovery, and disease modeling. Recently, approaches for generating cardiomyocytes have expanded to encompass three major sources of starting cells: human pluripotent ...

  2. Reprogramming of cassava (Manihot esculenta) microspores towards sporophytic development.

    Science.gov (United States)

    Perera, P I P; Ordoñez, C A; Dedicova, B; Ortega, P E M

    2014-05-21

    Gametes have the unique potential to enter the sporophytic pathway, called androgenesis. The plants produced are usually haploid and recombinant due to the preceding meiosis and they can double their chromosome number to form doubled haploids, which are completely homozygous. Availability of the doubled haploids facilitates mapping the genes of agronomically important traits, shortening the time of the breeding process required to produce new hybrids and homozygous varieties, and saving the time and cost for inbreeding. This study aimed to test the feasibility of using isolated and in vitro cultured immature cassava (Manihot esculenta) microspores to reprogramme and initiate sporophytic development. Different culture media and different concentrations of two ion components (Cu(2+) and Fe(2+)) were tested in two genotypes of cassava. External structural changes, nuclear divisions and cellular changes during reprogramming were analysed by scanning electron microscopy, by staining with 4',6-diamidino-2-phenylindole, and through classical histology and transmission electron microscopy. In two cassava genotypes, different developmental stages of microspores were found to initiate sporophytic cell divisions, that is, with tetrads of TMS 60444 and with mid or late uni-nucleate microspores of SM 1219-9. In the modified NLN medium (NLNS), microspore enlargements were observed. The medium supplemented with either sodium ferrous ethylene-diamine-tetraacetic acid (NaFeEDTA) or CuSO4·5H2O induced sporophytic cell division in both genotypes. A low frequency of the reprogramming and the presence of non-responsive microspores among the responsive ones in tetrads were found to be related to the viability and exine formation of the microspores. The present study clearly demonstrated that reprogramming occurs much faster in isolated microspore culture than in anther culture. This paves the way for the development of an efficient technique for the production of homozygous lines in

  3. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  4. Mitochondrial uncoupling and the reprogramming of intermediary metabolism in leukemia cells

    Directory of Open Access Journals (Sweden)

    Juliana eVélez

    2013-04-01

    Full Text Available Nearly 60 years ago Otto Warburg proposed, in a seminal publication, that an irreparable defect in the oxidative capacity of normal cells supported the switch to glycolysis for energy generation and the appearance of the malignant phenotype (Warburg, 1956. Curiously, this phenotype was also observed by Warburg in embryonic tissues, and recent research demonstrated that normal stem cells may indeed rely on aerobic glycolysis – fermenting pyruvate to lactate in the presence of ample oxygen - rather than on the complete oxidation of pyruvate in the Krebs cycle - to generate cellular energy (Folmes et al., 2012. However, it remains to be determined whether this phenotype is causative for neoplastic development, or rather the result of malignant transformation. In addition, in light of mounting evidence demonstrating that cancer cells can carry out electron transport and oxidative phosphorylation, although in some cases predominantly using electrons from non-glucose carbon sources (Bloch-Frankenthal et al., 1965, Warburg´s hypothesis needs to be revisited. Lastly, recent evidence suggests that the leukemia bone marrow microenvironment promotes the Warburg phenotype adding another layer of complexity to the study of metabolism in hematological malignancies. In this review we will discuss some of the evidence for alterations in the intermediary metabolism of leukemia cells and present evidence for a concept put forth decades ago by lipid biochemist Feodor Lynen, and acknowledged by Warburg himself, that cancer cell mitochondria uncouple ATP synthesis from electron transport and therefore depend on glycolysis to meet their energy demands (Lynen, 1951;Warburg, 1956.

  5. Kinetic Measurement and Real Time Visualization of Somatic Reprogramming.

    Science.gov (United States)

    Quintanilla, Rene H; Asprer, Joanna; Sylakowski, Kyle; Lakshmipathy, Uma

    2016-07-30

    Somatic reprogramming has enabled the conversion of adult cells to induced pluripotent stem cells (iPSC) from diverse genetic backgrounds and disease phenotypes. Recent advances have identified more efficient and safe methods for introduction of reprogramming factors. However, there are few tools to monitor and track the progression of reprogramming. Current methods for monitoring reprogramming rely on the qualitative inspection of morphology or staining with stem cell-specific dyes and antibodies. Tools to dissect the progression of iPSC generation can help better understand the process under different conditions from diverse cell sources. This study presents key approaches for kinetic measurement of reprogramming progression using flow cytometry as well as real-time monitoring via imaging. To measure the kinetics of reprogramming, flow analysis was performed at discrete time points using antibodies against positive and negative pluripotent stem cell markers. The combination of real-time visualization and flow analysis enables the quantitative study of reprogramming at different stages and provides a more accurate comparison of different systems and methods. Real-time, image-based analysis was used for the continuous monitoring of fibroblasts as they are reprogrammed in a feeder-free medium system. The kinetics of colony formation was measured based on confluence in the phase contrast or fluorescence channels after staining with live alkaline phosphatase dye or antibodies against SSEA4 or TRA-1-60. The results indicated that measurement of confluence provides semi-quantitative metrics to monitor the progression of reprogramming.

  6. Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Hoare, Stacey F.; Kassem, Moustapha

    2006-01-01

    The human adult mesenchymal stem cell (hMSC) does not express telomerase and has been shown to be the target for neoplastic transformation after transduction with hTERT. These findings lend support to the stem cell hypothesis of cancer development but by supplying hTERT, the molecular events...... and that modifications of the chromatin environment lead to reactivation of telomerase gene expression. It is shown that repression of hTERT expression in hMSCs is due to promoter-specific histone hypoacetylation coupled with low Pol II and TFIIB trafficking. This repression is overcome by treatment with Trichostatin...

  7. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  8. Molecular beacon nanosensors for live cell detection and tracking differentiation and reprogramming

    DEFF Research Database (Denmark)

    Ilieva, Mirolyuba

    2013-01-01

    cell level is molecular beacons (MBs). They are stem-loop structured antisense oligonucleotide probes labelled with a reporter fluorophore at one end and with quencher at the other end. Upon hybridization with complementary target, hydrogen bonds between stem nucleotide bases brake, resulting...

  9. Knockdown Brm and Baf170, components of chromatin remodeling complex, facilitates reprogramming of somatic cells

    Science.gov (United States)

    The SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells (ESCs) esBAF contains Brg1 and Baf...

  10. Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages

    OpenAIRE

    Incio, Joao; Suboj, Priya; Chin, Shan M.; Vardam-Kaur, Trupti; Liu,Hao; Hato, Tai; Babykutty, Suboj; Chen, Ivy; Deshpande, Vikram; Jain, Rakesh K.; Fukumura, Dai

    2015-01-01

    Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic tumor with a dismal prognosis for most patients. Fibrosis and inflammation are hallmarks of tumor desmoplasia. We have previously demonstrated that preventing the activation of pancreatic stellate cells (PSCs) and alleviating desmoplasia are beneficial strategies in treating PDAC. Metformin is a widely used glucose-lowering drug. It is also frequently prescribed to diabetic pancreatic cancer patients and has been sho...

  11. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  12. Patient-Specific Therapy via Cell-Reprogramming Technology: a Curative Potential for Patients with Diabetes

    Science.gov (United States)

    Luo, Haizhao; Wang, Xianbao; Zhang, Ruyi; Chen, Youping; Shu, Yi; Li, Huixian; Chen, Hong

    2015-12-01

    Gene therapeutics provides great opportunities for curing diabetes. Numerous attempts have been made to establish a safe and high-efficiency gene delivery strategy, but all of them are unsuccessful. To achieve an ideal transfection, a novel gene delivery strategy was presented in this research. The novel system proposed was transfection mediated by the combination of ultrasound with microbubbles and cross-linked polyethylenimines (PEIs). Ultrasound with microbubbles enhances the permeability of target cells; moreover, cross-linked PEIs enabled DNA to escape from endosomes into the cytoplasm. If the proposed method is feasible and effective, the endogenous secretion system of insulin would be re-established in patients with diabetes.

  13. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Giacomo Palazzolo

    2016-01-01

    Full Text Available The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs. We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C, known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.

  14. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis.

    Science.gov (United States)

    Teoh-Fitzgerald, M L; Fitzgerald, M P; Zhong, W; Askeland, R W; Domann, F E

    2014-01-16

    Expression of the antioxidant enzyme EcSOD in normal human mammary epithelial cells was not recognized until recently. Although expression of EcSOD was not detectable in non-malignant human mammary epithelial cells (HMEC) cultured in conventional two-dimensional (2D) culture conditions, EcSOD protein expression was observed in normal human breast tissues, suggesting that the 2D-cultured condition induces a repressive status of EcSOD gene expression in HMEC. With the use of laminin-enriched extracellular matrix (lrECM), we were able to detect expression of EcSOD when HMEC formed polarized acinar structures in a 3D-culture condition. Repression of the EcSOD-gene expression was again seen when the HMEC acini were sub-cultured as a monolayer, implying that lrECM-induced acinar morphogenesis is essential in EcSOD-gene activation. We have further shown the involvement of DNA methylation in regulating EcSOD expression in HMEC under these cell culture conditions. EcSOD mRNA expression was strongly induced in the 2D-cultured HMEC after treatment with a DNA methyltransferase inhibitor. In addition, epigenetic analyses showed a decrease in the degree of CpG methylation in the EcSOD promoter in the 3D versus 2D-cultured HMEC. More importantly, >80% of clinical mammary adenocarcinoma samples showed significantly decreased EcSOD mRNA and protein expression levels compared with normal mammary tissues and there is an inverse correlation between the expression levels of EcSOD and the clinical stages of breast cancer. Combined bisulfite restriction analysis analysis of some of the tumors also revealed an association of DNA methylation with the loss of EcSOD expression in vivo. Furthermore, overexpression of EcSOD inhibited breast cancer metastasis in both the experimental lung metastasis model and the syngeneic mouse model. This study suggests that epigenetic silencing of EcSOD may contribute to mammary tumorigenesis and that restoring the extracellular superoxide scavenging

  15. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID.

    Directory of Open Access Journals (Sweden)

    Quy Le

    2015-09-01

    Full Text Available AID (Activation Induced Deaminase deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.

  16. Effect of biophysical cues on reprogramming to cardiomyocytes.

    Science.gov (United States)

    Sia, Junren; Yu, Pengzhi; Srivastava, Deepak; Li, Song

    2016-10-01

    Reprogramming of fibroblasts to cardiomyocytes offers exciting potential in cell therapy and regenerative medicine, but has low efficiency. We hypothesize that physical cues may positively affect the reprogramming process, and studied the effects of periodic mechanical stretch, substrate stiffness and microgrooved substrate on reprogramming yield. Subjecting reprogramming fibroblasts to periodic mechanical stretch and different substrate stiffness did not improve reprogramming yield. On the other hand, culturing the cells on microgrooved substrate enhanced the expression of cardiomyocyte genes by day 2 and improved the yield of partially reprogrammed cells at day 10. By combining microgrooved substrate with an existing optimized culture protocol, yield of reprogrammed cardiomyocytes with striated cardiac troponin T staining and spontaneous contractile activity was increased. We identified the regulation of Mkl1 activity as a new mechanism by which microgroove can affect reprogramming. Biochemical approach could only partially recapitulate the effect of microgroove. Microgroove demonstrated an additional effect of enhancing organization of sarcomeric structure, which could not be recapitulated by biochemical approach. This study provides insights into new mechanisms by which topographical cues can affect cellular reprogramming.

  17. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kang

    Full Text Available Human-induced pluripotent stem cells (iPSCs are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines", 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines", and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV, loss of heterozygosity (LOH and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic

  18. Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kang, Xiangjin; Yu, Qian; Huang, Yuling; Song, Bing; Chen, Yaoyong; Gao, Xingcheng; He, Wenyin; Sun, Xiaofang; Fan, Yong

    2015-01-01

    Human-induced pluripotent stem cells (iPSCs) are derived from differentiated somatic cells using defined factors and provide a renewable source of autologous cells for cell therapy. Many reprogramming methods have been employed to generate human iPSCs, including the use of integrating vectors and non-integrating vectors. Maintenance of the genomic integrity of iPSCs is highly desirable if the cells are to be used in clinical applications. Here, using the Affymetrix Cytoscan HD array, we investigated the genomic aberration profiles of 19 human cell lines: 5 embryonic stem cell (ESC) lines, 6 iPSC lines derived using integrating vectors ("integrating iPSC lines"), 6 iPSC lines derived using non-integrating vectors ("non-integrating iPSC lines"), and the 2 parental cell lines from which the iPSCs were derived. The genome-wide copy number variation (CNV), loss of heterozygosity (LOH) and mosaicism patterns of integrating and non-integrating iPSC lines were investigated. The maximum sizes of CNVs in the genomes of the integrating iPSC lines were 20 times higher than those of the non-integrating iPSC lines. Moreover, the total number of CNVs was much higher in integrating iPSC lines than in other cell lines. The average numbers of novel CNVs with a low degree of overlap with the DGV and of likely pathogenic CNVs with a high degree of overlap with the ISCA (International Symposium on Computer Architecture) database were highest in integrating iPSC lines. Different single nucleotide polymorphisms (SNP) calls revealed that, using the parental cell genotype as a reference, integrating iPSC lines displayed more single nucleotide variations and mosaicism than did non-integrating iPSC lines. This study describes the genome stability of human iPSCs generated using either a DNA-integrating or non-integrating reprogramming method, of the corresponding somatic cells, and of hESCs. Our results highlight the importance of using a high-resolution method to monitor genomic aberrations

  19. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality.

  20. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways.

    Science.gov (United States)

    Yang, Li; Hou, Yixuan; Yuan, Jie; Tang, Shifu; Zhang, Hailong; Zhu, Qing; Du, Yan-e; Zhou, Mingli; Wen, Siyang; Xu, Liyun; Tang, Xi; Cui, Xiaojiang; Liu, Manran

    2015-09-22

    Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR.

  1. Uncoupled embryonic and extra-embryonic tissues compromise blastocyst development after somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Séverine A Degrelle

    Full Text Available Somatic cell nuclear transfer (SCNT is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each; one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extra-embryonic patterns, as evidenced by morphological and molecular "uncoupling". Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538, we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity and subsequent pregnancy loss. Finally

  2. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells.

  3. Cellular Reprogramming Employing Recombinant Sox2 Protein

    Directory of Open Access Journals (Sweden)

    Marc Thier

    2012-01-01

    Full Text Available Induced pluripotent stem (iPS cells represent an attractive option for the derivation of patient-specific pluripotent cells for cell replacement therapies as well as disease modeling. To become clinically meaningful, safe iPS cells need to be generated exhibiting no permanent genetic modifications that are caused by viral integrations of the reprogramming transgenes. Recently, various experimental strategies have been applied to accomplish transgene-free derivation of iPS cells, including the use of nonintegrating viruses, episomal expression, or excision of transgenes after reprogramming by site-specific recombinases or transposases. A straightforward approach to induce reprogramming factors is the direct delivery of either synthetic mRNA or biologically active proteins. We previously reported the generation of cell-permeant versions of Oct4 (Oct4-TAT and Sox2 (Sox2-TAT proteins and showed that Oct4-TAT is reprogramming-competent, that is, it can substitute for Oct4-encoding virus. Here, we explore conditions for enhanced Sox2-TAT protein stabilization and functional delivery into somatic cells. We show that cell-permeant Sox2 protein can be stabilized by lipid-rich albumin supplements in serum replacement or low-serum-supplemented media. Employing optimized conditions for protein delivery, we demonstrate that Sox2-TAT protein is able to substitute for viral Sox2. Sox2-piPS cells express pluripotency-associated markers and differentiate into all three germ layers.

  4. Effects of trichostatin A on histone acetylation and methylation characteristics in early porcine embryos after somatic cell nuclear transfer.

    Science.gov (United States)

    Cong, Peiqing; Zhu, Kongju; Ji, Qianqian; Zhao, Haijing; Chen, Yaosheng

    2013-09-01

    Until now, the efficiency of animal cloning by somatic cell nuclear transfer (SCNT) has remained low. Efforts to improve cloning efficiency have demonstrated a positive role of trichostatin A (TSA), an inhibitor of deacetylases, on the development of nuclear transfer (NT) embryos in many species. Here, we report the effects of TSA on pre-implantation development of porcine NT embryos. Our results showed that treatment of reconstructed porcine embryos with 50 nmol/L TSA for 24 h after activation significantly improved the production of blastocysts (P cells with the same solution resulted in increases in cleavage rates and blastomere numbers (P cells and SCNT embryos did not improve blastocyst production, nor did it increase blastomere numbers. Using indirect immunofluorescence, we found that TSA treatment of NT embryos could improve the reprogramming of histone acetylation at lysine 9 of histone 3 (H3K9) and affect nuclear swelling of transferred nuclei. However, no apparent effect of TSA treatment on H3K9 dimethylation (H3K9me2) was observed. These findings suggest a positive effect of TSA treatment (either treating NT embryos or donor cells) on the development of porcine NT embryos, which is achieved by improving epigenetic reprogramming.

  5. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  6. Cell fusion and nuclear fusion in plants.

    Science.gov (United States)

    Maruyama, Daisuke; Ohtsu, Mina; Higashiyama, Tetsuya

    2016-12-01

    Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.

  7. Development of interspecies nuclear transfer embryos reconstructed with argali (Ovis ammon) somatic cells and sheep ooplasm.

    Science.gov (United States)

    Pan, Xiaoyan; Zhang, Yanli; Guo, Zhiqin; Wang, Feng

    2014-02-01

    Interspecies nuclear transfer has already achieved success in several species, which shows great potential in recovery and conservation of endangered animals. The study was conducted to establish an efficient system for in vitro argali (Ovis ammon)-sheep embryo reconstruction via interspecies somatic cell nuclear transfer (iSCNT). The competence of domestic sheep cytoplasts to reprogram the adult argali fibroblast nuclei was evaluated, and the effects of enucleation methods and donor cell passage and cell state on the in vitro development of argali-sheep cloned embryos were also examined. Sheep oocytes could support argali and sheep fibroblast cell nuclei transfer and develop to blastocysts in vitro. Oocytes matured for 21–23 h and enucleated by chemically assisted enucleation (CAE) had a higher enucleation rate than blind enucleation (BE), but the development rate of iSCNTembryos was the same (P>0.05). Moreover, passage numbers of fibroblast cells cell cycle stages did not affect the development rate of iSCNT reconstructed embryos. Thus sheep cytoplasm successfully supports argali nucleus development to blastocyst stage after optimising the nuclear transfer procedure, which indicates that iSCNT can be used to conserve endangered argali in the near future.

  8. Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors.

    Science.gov (United States)

    Johannesson, Bjarki; Sagi, Ido; Gore, Athurva; Paull, Daniel; Yamada, Mitsutoshi; Golan-Lev, Tamar; Li, Zhe; LeDuc, Charles; Shen, Yufeng; Stern, Samantha; Xu, Nanfang; Ma, Hong; Kang, Eunju; Mitalipov, Shoukhrat; Sauer, Mark V; Zhang, Kun; Benvenisty, Nissim; Egli, Dieter

    2014-11-06

    The recent finding that reprogrammed human pluripotent stem cells can be derived by nuclear transfer into human oocytes as well as by induced expression of defined factors has revitalized the debate on whether one approach might be advantageous over the other. Here we compare the genetic and epigenetic integrity of human nuclear-transfer embryonic stem cell (NT-ESC) lines and isogenic induced pluripotent stem cell (iPSC) lines, derived from the same somatic cell cultures of fetal, neonatal, and adult origin. The two cell types showed similar genome-wide gene expression and DNA methylation profiles. Importantly, NT-ESCs and iPSCs had comparable numbers of de novo coding mutations, but significantly more than parthenogenetic ESCs. As iPSCs, NT-ESCs displayed clone- and gene-specific aberrations in DNA methylation and allele-specific expression of imprinted genes. The occurrence of these genetic and epigenetic defects in both NT-ESCs and iPSCs suggests that they are inherent to reprogramming, regardless of derivation approach.

  9. Reconstitution of nuclear import in permeabilized cells.

    Science.gov (United States)

    Cassany, Aurelia; Gerace, Larry

    2009-01-01

    The trafficking of protein and RNA cargoes between the cytoplasm and the nucleus of eukaryotic cells, which is a major pathway involved in cell regulation, is mediated by nuclear transport sequences in the cargoes and by shuttling transport factors. The latter include receptors (karyopherins) that recognize the cargoes and carry them across the nuclear pore complex (NPC), and the small GTPase Ran, which modulates karyopherin-cargo binding. Nuclear import can be studied in vitro using digitonin-permeabilized cells, which are depleted of shuttling transport factors. Nuclear import can be reconstituted in the permeabilized cells with exogenous cytosol or with purified recombinant transport factors, and can be quantified by light microscopy of fluorescently labeled cargoes or by immunofluorescence staining. Here we describe procedures for in vitro nuclear import in permeabilized mammalian cells, and for the preparation of recombinant transport factors (importin alpha, importin beta, importin 7, transportin, Ran, NTF2) and other reagents commonly used in the assay. This assay provides means to characterize the molecular mechanisms of nuclear import and to study the import requirements of specific cargoes.

  10. Plant parasitic nematode effectors target host defence and nuclear functions to establish feeding cells

    Directory of Open Access Journals (Sweden)

    Michaël eQuentin

    2013-03-01

    Full Text Available Plant parasitic nematodes are microscopic worms, the most damaging species of which have adopted a sedentary lifestyle within their hosts. These obligate endoparasites have a biotrophic relationship with plants, in which they induce the differentiation of root cells into hypertrophied, multinucleate feeding cells. Effectors synthesised in the oesophageal glands of the nematode are injected into the plant cells via the syringe-like stylet and play a key role in manipulating the host machinery. The establishment of specialized feeding cells requires these effectors to modulate many aspects of plant cell morphogenesis and physiology, including defence responses. This cell reprogramming requires changes to host nuclear processes. Some proteins encoded by parasitism genes target host nuclei. Several of these proteins were immunolocalised within feeding cell nuclei or shown to interact with host nuclear proteins. Comparative genomics and functional analyses are gradually revealing the roles of nematode effectors. We describe here these effectors and their hypothesised roles in the unique feeding behaviour of these pests.

  11. Tet-mediated imprinting erasure in H19 locus following reprogramming of spermatogonial stem cells to induced pluripotent stem cells

    Science.gov (United States)

    Selective methylation of CpG islands at imprinting control regions (ICR) determines the monoparental expression of a subset of genes. The imprinting marks are protected from global demethylation taking place during pre-implantation development before being reset in primordial germ cells. However, it...

  12. Research progress in reprogramming somatic cells into stem cells%体细胞重编程为干细胞的方法研究与进展***

    Institute of Scientific and Technical Information of China (English)

    阮光萍; 王金祥; 杨晓燕; 宋巧巧; 姚翔; 庞荣清; 潘兴华

    2013-01-01

    BACKGROUND:The use of cloned human embryos gives rise to ethical issues and al ows scientists to find alternative ways to reverse differentiation of cel s into multi/pluripotent stem cel s, which is known as reprogramming. The new method of reprogramming is the focus of attention. OBJECTIVE:To investigate the current status of reprogramming and review the methods of somatic cel reprogramming into stem cel s. METHODS:Using the database of CNKI and Pubmed (1983-01/2006-12) to search the related articles about reprogramming. The retrieval words include reprogramming, method, somatic cel , stem cel , differentiation. Papers related reprogramming published recently or in high-impact journals were initial y surveyed and 17 papers were included in the final analysis. RESULTS AND CONCLUSION:The reprogramming of a pluripotent stem cel is the consequence of gradual reconstruction of cel structure, genetic change of chromatin, transcription expression and posttranscriptional control. Remodeling of targeted cel s requires a stable status of reprogramming and a final reorientation into specific differentiation. Sufficient evidence demonstrates that cel identification is influenced by in vitro operation. The fate of reprogrammed cel s needs further in vivo determination.%  背景:克隆人类胚胎会引起伦理问题,这使科学家寻找替代的方法来逆向分化细胞为多能/全能干细胞,这个过程称为重编程。重编程的新方法是研究者关注的焦点。目的:探讨重编程技术的研究现状,并对体细胞重编程为干细胞的各种方法做一综述。方法:应用计算机检索CNKI和Pubmed数据库中1983年1月至2006年12月关于重编程的文章,在标题和中以“重编程,方法,体细胞,干细胞,分化”或“reprogramming, method, somatic cel , stem cel , differentiation”为检索词进行检索。选择文章内容与重编程有关者,同一领域文献则选择近期发表或发表在权

  13. Modeling psychiatric disorders through reprogramming

    Directory of Open Access Journals (Sweden)

    Kristen J. Brennand

    2012-01-01

    Full Text Available Psychiatric disorders, including autism spectrum disorders and schizophrenia, are extremely heritable complex genetic neurodevelopmental disorders. It is now possible to directly reprogram fibroblasts from psychiatric patients into human induced pluripotent stem cells (hiPSCs and subsequently differentiate these disorder-specific hiPSCs into neurons. This means that researchers can generate nearly limitless quantities of live human neurons with genetic backgrounds that are known to result in psychiatric disorders, without knowing which genes are interacting to produce the disease state in each patient. With these new human-cell-based models, scientists can investigate the precise cell types that are affected in these disorders and elucidate the cellular and molecular defects that contribute to disease initiation and progression. Here, we present a short review of experiments using hiPSCs and other sophisticated in vitro approaches to study the pathways underlying psychiatric disorders.

  14. Somatic cell nuclear transfer and transgenesis in large animals: current and future insights.

    Science.gov (United States)

    Galli, C; Lagutina, I; Perota, A; Colleoni, S; Duchi, R; Lucchini, F; Lazzari, G

    2012-06-01

    Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.

  15. The influence of interspecies somatic cell nuclear transfer on epigenetic enzymes transcription in early embryos

    Directory of Open Access Journals (Sweden)

    Martin Morovic

    2016-10-01

    Full Text Available One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a genes in early embryonic stages of interspecies (bovine, porcine nuclear transfer embryos (iSCNT by RT-PCR were analyzed. Coming out from the diverse timing of embryonic genome activation (EGA in porcine and bovine preimplantation embryos, the intense effect of ooplasm on transferred somatic cell nucleus was expected. In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly infl uenced by the ooplasmic environment.

  16. Characterization of the proximal region of the goat NANOG promoter that is used for monitoring cell reprogramming and early embryo development.

    Science.gov (United States)

    Guo, Yanjie; Lei, Lei; Ma, Xiaoling; Wang, Huayan

    2014-01-01

    Nanog is a key transcription regulatory molecule that plays an important role in maintaining stem cell pluripotency. However, the molecular features and transcription regulation of the NANOG gene in domestic animals are not well investigated. In this study, the 751-base pairs (bp) fragment of the proximal region of the goat NANOG promoter (GNP), which has a 572-bp promoter sequence retaining multiple transcription binding sites and a 179-bp 5' untranslated region of the goat NANOG gene, was cloned and characterized. The recombinant construct of pGNP-EGFP (enhanced green fluorescent protein) was solely activated in pluripotent cells and could be upregulated by the Oct4/Sox2 complex. The construct was stably transfected into goat fetal fibroblast (GFF) cells that were then used as the recipient cells to generate the induced pluripotent stem (iPS) cells. GNP-directed EGFP expression could be used to monitor the progression of cell reprogramming and the formation of iPS cells. The pGNP-EGFP construct was also delivered into goat oocytes cultured in vitro by microinjection. Interestingly, NANOG expression pattern in early stage goat embryos matured in vitro was asymmetrical. In two-cell embryos, the expression level of NANOG was uneven with one blastomere expressing EGFP and the next blastomere with no expression of EGFP. This was also observed in four-cell embryos. This asymmetrical expression may be due to the heterozygous expression of NANOG because of the quality of embryos and the culture environment. In conclusion, the GNP-EGFP reporter system represents a useful tool to monitor endogenous NANOG activation and for research with goat pluripotent stem cells.

  17. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome

    Science.gov (United States)

    Malinen, Marjo; Niskanen, Einari A.; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2017-01-01

    Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC. PMID:27672034

  18. Reprogramming of HUVECs into Induced Pluripotent Stem Cells (HiPSCs), Generation and Characterization of HiPSC-Derived Neurons and Astrocytes

    Science.gov (United States)

    Boakye, Paul A.; Baker, Glen; Smith, Peter A.; Murray, Allan G.; Giuliani, Fabrizio; Jahroudi, Nadia

    2015-01-01

    Neurodegenerative diseases are characterized by chronic and progressive structural or functional loss of neurons. Limitations related to the animal models of these human diseases have impeded the development of effective drugs. This emphasizes the need to establish disease models using human-derived cells. The discovery of induced pluripotent stem cell (iPSC) technology has provided novel opportunities in disease modeling, drug development, screening, and the potential for “patient-matched” cellular therapies in neurodegenerative diseases. In this study, with the objective of establishing reliable tools to study neurodegenerative diseases, we reprogrammed human umbilical vein endothelial cells (HUVECs) into iPSCs (HiPSCs). Using a novel and direct approach, HiPSCs were differentiated into cells of central nervous system (CNS) lineage, including neuronal, astrocyte and glial cells, with high efficiency. HiPSCs expressed embryonic genes such as nanog, sox2 and Oct-3/4, and formed embryoid bodies that expressed markers of the 3 germ layers. Expression of endothelial-specific genes was not detected in HiPSCs at RNA or protein levels. HiPSC-derived neurons possess similar morphology but significantly longer neurites compared to primary human fetal neurons. These stem cell-derived neurons are susceptible to inflammatory cell-mediated neuronal injury. HiPSC-derived neurons express various amino acids that are important for normal function in the CNS. They have functional receptors for a variety of neurotransmitters such as glutamate and acetylcholine. HiPSC-derived astrocytes respond to ATP and acetylcholine by elevating cytosolic Ca2+ concentrations. In summary, this study presents a novel technique to generate differentiated and functional HiPSC-derived neurons and astrocytes. These cells are appropriate tools for studying the development of the nervous system, the pathophysiology of various neurodegenerative diseases and the development of potential drugs for their

  19. Mash1 efifciently reprograms rat astrocytes into neurons

    Institute of Scientific and Technical Information of China (English)

    Daofang Ding; Leqin Xu; Hao Xu; Xiaofeng Li; Qianqian Liang; Yongjian Zhao; Yongjun Wang

    2014-01-01

    To date, it remains poorly understood whether astrocytes can be easily reprogrammed into neurons. Mash1 and Brn2 have been previously shown to cooperate to reprogram fibroblasts into neurons. In this study, we examined astrocytes from 2-month-old Sprague-Dawley rats, and found that Brn2 was expressed, but Mash1 was not detectable. Thus, we hypothesized that Mash1 alone could be used to reprogram astrocytes into neurons. We transfected a recombinant MSCV-MASH1 plasmid into astrocytes for 72 hours, and saw that all cells expressed Mash1. One week later, we observed the changes in morphology of astrocytes, which showed typical neuro-nal characteristics. Moreover,β-tubulin expression levels were signiifcantly higher in astrocytes expressing Mash1 than in control cells. These results indicate that Mash1 alone can reprogram astrocytes into neurons.

  20. Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer.

    Science.gov (United States)

    Edwards, J L; Schrick, F N; McCracken, M D; van Amstel, S R; Hopkins, F M; Welborn, M G; Davies, C J

    2003-08-01

    In 1997, Wilmut et al. announced the birth of Dolly, the first ever clone of an adult animal. To date, adult sheep, goats, cattle, mice, pigs, cats and rabbits have been cloned using somatic cell nuclear transfer. The ultimate challenge of cloning procedures is to reprogram the somatic cell nucleus for development of the early embryo. The cell type of choice for reprogramming the somatic nucleus is an enucleated oocyte. Given that somatic cells are easily obtained from adult animals, cultured in the laboratory and then genetically modified, cloning procedures are ideal for introducing specific genetic modifications in farm animals. Genetic modification of farm animals provides a means of studying genes involved in a variety of biological systems and disease processes. Moreover, genetically modified farm animals have created a new form of 'pharming' whereby farm animals serve as bioreactors for production of pharmaceuticals or organ donors. A major limitation of cloning procedures is the extreme inefficiency for producing live offspring. Dolly was the only live offspring produced after 277 attempts. Similar inefficiencies for cloning adult animals of other species have been described by others. Many factors related to cloning procedures and culture environment contribute to the death of clones, both in the embryonic and fetal periods as well as during neonatal life. Extreme inefficiencies of this magnitude, along with the fact that death of the surrogate may occur, continue to raise great concerns with cloning humans.

  1. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone

    Institute of Scientific and Technical Information of China (English)

    Jiekai Chen; Duanqing Pei; Jing Liu; Jiaqi Yang; You Chen; Jing Chen; Su Ni; Hong Song; Lingwen Zeng; Ke Ding

    2011-01-01

    Generation of induced pluripotent stem cells by defined factors has become a useful model to investigate the mechanism of reprogramming and cell fate determination.However,the precise mechanism of factor-based reprogramming remains unclear.Here,we show that Klf4 mainly acts at the initial phase of reprogramming to initiate mesenchymal-to-epithelial transition and can be functionally replaced by bone morphogenetic proteins(BMPs).BMPs boosted the efficiency of Oct4/Sox2-mediated reprogramming of mouse embryonic fibroblasts(MEFs)to~1%.BMPs also promoted single-factor Oct4-based reprogramming of MEFs and tail tibiai fihroblasts.Our studies clarify the contribution of Klf4 in reprogramming and establish Oct4 as a singular setter of pluripotency in differentiated cells.

  2. Acquired resistance to metformin in breast cancer cells triggers transcriptome reprogramming toward a degradome-related metastatic stem-like profile

    Science.gov (United States)

    Oliveras-Ferraros, Cristina; Vazquez-Martin, Alejandro; Cuyàs, Elisabet; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Martin-Castillo, Begoña; Joven, Jorge; Menendez, Javier A

    2014-01-01

    Therapeutic interventions based on metabolic inhibitor-based therapies are expected to be less prone to acquired resistance. However, there has not been any study assessing the possibility that the targeting of the tumor cell metabolism may result in unforeseeable resistance. We recently established a pre-clinical model of estrogen-dependent MCF-7 breast cancer cells that were chronically adapted to grow (> 10 months) in the presence of graded, millimolar concentrations of the anti-diabetic biguanide metformin, an AMPK agonist/mTOR inhibitor that has been evaluated in multiple in vitro and in vivo cancer studies and is now being tested in clinical trials. To assess what impact the phenomenon of resistance might have on the metformin-like “dirty” drugs that are able to simultaneously hit several metabolic pathways, we employed the ingenuity pathway analysis (IPA) software to functionally interpret the data from Agilent whole-human genome arrays in the context of biological processes, networks, and pathways. Our findings establish, for the first time, that a “global” targeting of metabolic reprogramming using metformin certainly imposes a great selective pressure for the emergence of new breast cancer cellular states. Intriguingly, acquired resistance to metformin appears to trigger a transcriptome reprogramming toward a metastatic stem-like profile, as many genes encoding the components of the degradome (KLK11, CTSF, FREM1, BACE-2, CASP, TMPRSS4, MMP16, HTRA1), cancer cell migration and invasion factors (TP63, WISP2, GAS3, DKK1, BCAR3, PABPC1, MUC1, SPARCL1, SEMA3B, SEMA6A), stem cell markers (DCLK1, FAK), and key pro-metastatic lipases (MAGL and Cpla2) were included in the signature. Because this convergent activation of pathways underlying tumor microenvironment interactions occurred in low-proliferative cancer cells exhibiting a notable downregulation of the G2/M DNA damage checkpoint regulators that maintain genome stability (CCNB1, CCNB2, CDC20, CDC25C

  3. 癌细胞葡萄糖代谢重编程的分子基础%Molecular basis of glucose metabolic reprogramming in cancer cells

    Institute of Scientific and Technical Information of China (English)

    赵世光

    2014-01-01

    代谢的重编程是癌细胞的基本特征之一,其中葡萄糖代谢方式和途径的改变对癌症的发生和发展至关重要。即使在氧气足够充足的情况下,快速增殖的癌细胞生长所需的能量主要由糖酵解而非氧化磷酸化提供,癌细胞这种特殊的糖代谢现象被称为Warburg效应。这种特有的能量获取方式已在多种癌细胞中得到验证,以癌细胞对葡萄糖高摄取率和利用增加为原理的18F-FDG PET/CT显像已广泛应用于临床的癌症诊断。但癌细胞为何利用有氧酵解获取能量以及有氧酵解进行的分子基础目前尚不明确,本文围绕调控癌细胞糖酵解进程中的直接调控酶、癌基因及致癌代谢小分子进行分析和综述。%Cancer metabolic reprogramming is among the basic characteristics of cancer cells. Changes in glucose metabolism are essential for carcinogenesis and cancer development. Previous study indicated that energy is acquired mainly via glycolysis rather than oxidative phosphorylation in the presence of sufficient oxygen levels to promote the rapid proliferation of cells, such as cancer cells. This phenomenon is called the"Warburg effect."Furthermore, this unique approach of energy production in cancer cells has been validated in various types of cancer cells. On the basis of the characteristics of cancer cells with high glucose uptake and utilization, cli-nicians and medical practitioners extensively apply 18-fludeoxyglucose positron emission tomography in clinical diagnosis. Tumor cells undergo aerobic glycolysis to produce energy, but this metabolic pathway is poorly efficient;the molecular basis of aerobic glycol-ysis and the reason for these cells to undergo this metabolic pathway also remain unclear. In this article, glycolysis-related processes, in-cluding enzyme, oncogene, and oncometabolite regulation, in cancer cells are summarized.

  4. Manipulation of KLF4 Expression Generates iPSCs Paused at Successive Stages of Reprogramming

    Directory of Open Access Journals (Sweden)

    Ken Nishimura

    2014-11-01

    Full Text Available The detailed mechanism of reprogramming somatic cells into induced pluripotent stem cells (iPSCs remains largely unknown. Partially reprogrammed iPSCs are informative and useful for understanding the mechanism of reprogramming but remain technically difficult to generate in a predictable and reproducible manner. Using replication-defective and persistent Sendai virus (SeVdp vectors, we analyzed the effect of decreasing the expression levels of OCT4, SOX2, KLF4, and c-MYC and found that low KLF4 expression reproducibly gives rise to a homogeneous population of partially reprogrammed iPSCs. Upregulation of KLF4 allows these cells to resume reprogramming, indicating that they are paused iPSCs that remain on the path toward pluripotency. Paused iPSCs with different KLF4 expression levels remain at distinct intermediate stages of reprogramming. This SeVdp-based stage-specific reprogramming system (3S reprogramming system is applicable for both mouse and human somatic cells and will facilitate the mechanistic analysis of reprogramming.

  5. The human application of gene therapy to re-program T-cell specificity using chimeric antigen receptors

    Institute of Scientific and Technical Information of China (English)

    Alan DGuerrero; Judy SMoyes; Laurence JN Cooper

    2014-01-01

    The adoptive transfer of T cells is a promising approach to treat cancers. Primary human T cells can be modified using viral and non-viral vectors to promote the specific targeting of cancer cells via the introduction of exogenous T-cell receptors (TCRs) or chimeric antigen receptors (CARs). This gene transfer displays the potential to increase the specificity and potency of the anticancer response while decreasing the systemic adverse effects that arise from conventional treatments that target both cancerous and healthy cells. This review highlights the generation of clinical-grade T cells expressing CARs for immunotherapy, the use of these cels to target B-cellmalignancies and, particularly, the first clinical trials deploying the Sleeping Beauty gene transfer system, which engineers T cells to target CD19+ leukemia and non-Hodgkin’s lymphoma.

  6. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  7. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  8. DNA methylation in porcine preimplantation embryos developed in vivo or produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben;

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome....... Embryos produced under in vitro conditions had higher levels of DNA methylation than IV. A lineage-specific DNA methylation (hypermethylation of the inner cell mass and hypomethylation of the trophectoderm) was observed in porcine IV late blastocysts, but was absent in PA- and SCNT-derived blastocysts...

  9. Epigenetic Regulation of B Lymphocyte Differentiation, Transdifferentiation, and Reprogramming

    Directory of Open Access Journals (Sweden)

    Bruna Barneda-Zahonero

    2012-01-01

    Full Text Available B cell development is a multistep process that is tightly regulated at the transcriptional level. In recent years, investigators have shed light on the transcription factor networks involved in all the differentiation steps comprising B lymphopoiesis. The interplay between transcription factors and the epigenetic machinery involved in establishing the correct genomic landscape characteristic of each cellular state is beginning to be dissected. The participation of “epigenetic regulator-transcription factor” complexes is also crucial for directing cells during reprogramming into pluripotency or lineage conversion. In this context, greater knowledge of epigenetic regulation during B cell development, transdifferentiation, and reprogramming will enable us to understand better how epigenetics can control cell lineage commitment and identity. Herein, we review the current knowledge about the epigenetic events that contribute to B cell development and reprogramming.

  10. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  11. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus.

    Science.gov (United States)

    Fong, Chui-Yee; Biswas, Arijit; Stunkel, Walter; Chong, Yap-Seng; Bongso, Ariff

    2017-03-01

    The infants of mothers with gestational diabetes mellitus (GDM) have an increased risk of metabolic and cardiovascular disease. It has been difficult to study the direct effects of maternal hyperglycemia on the fetus because of inaccessibility of fetal tissues. The development of tissues that simulate the function of fetal organs using stem cell technology provides an unprecedented opportunity to study this disorder. Stem cells in the Wharton's jelly of the umbilical cord (hWJSCs), possess unique properties that are different from other stem cells. They are primitive, present in large numbers, non-tumorigenic, hypoimmunogenic, tumoricidal, and carry a genetic signature that represents the fetus. They are multipotent but their differentiation into functional pancreatic and cardiovascular tissues has been challenging. We have been able to reprogram hWJSCs from normal and GDM cords into induced pluripotent stem cells (iPSCs) from which a variety of functional fetal tissues including insulin-producing and cardiovascular tissues could be derived. Such tissues from reprogrammed hWJSCs of normal and GDM cords that physiologically and genetically mimic the fetus of the diabetic or non-diabetic mother are an ideal platform to study the effects of glucose, the Zika virus, and other harmful agents on the fetus. The immature stemness phenotype of hWJSCs, easy accessibility, availability in large numbers without the need for propagation, and lower risk of accumulation of epigenetic mutations make them the most attractive candidate over other umbilical cord cell types for reprogramming. Additionally, some of their beneficial genes may be retained in memory in the iPSCs derived from them. J. Cell. Biochem. 118: 437-441, 2017. © 2016 Wiley Periodicals, Inc.

  12. Imprinting: DNA methyltransferases illuminate reprogramming.

    Science.gov (United States)

    Calarco, Joseph P; Martienssen, Robert A

    2012-11-06

    Progress in studying epigenetic reprogramming in plants has been impeded by the difficulty in obtaining tissue for analysis. Now, using a combination of fluorescent reporters and translational fusions, a new study sheds some light on this process.

  13. 2-Methoxyestradiol Impacts on Amino Acids-mediated Metabolic Reprogramming in Osteosarcoma Cells by Interaction with NMDA Receptor.

    Science.gov (United States)

    Gorska-Ponikowska, Magdalena; Perricone, Ugo; Kuban-Jankowska, Alicja; Lo Bosco, Giosue; Barone, Giampaolo

    2017-03-06

    Deregulation of serine and glycine metabolism, have been identified to function as metabolic regulators in supporting tumor cell growth. The role of serine and glycine in regulation of cancer cell proliferation is complicated, dependent on concentrations of amino acids and tissue-specific. D-serine and glycine are coagonists of N-methyl-D-aspartate receptor subunit GRIN1. Importantly, NMDA receptors are widely expressed in cancer cells and play an important role in regulation of cell death, proliferation and metabolism of numerous malignancies. The aim of the present work was to associate the metabolism of glycine and D-serine with the anticancer activity of 2-methoxyestradiol. 2-methoxyestradiol is a potent anticancer agent but also a physiological 17β- estradiol metabolite. In the study we have chosen two malignant cell lines expressing functional GRIN1 receptors, i.e. osteosarcoma 143B and breast cancer MCF7. We used MTS assay, migration assay, flow cytometric analyses, western blotting and immunoprecipitation techniques as well as molecular modeling studies. We have demonstrated the extensive crosstalk between the deregulated metabolic network and cancer cell signaling. Herein, we observed an anticancer effect of high concentrations of glycine and D-serine in osteosarcoma cells. In contrast, the amino acids when used at low, physiological concentrations induced the proliferation and migration of osteosarcoma and breast cancer cells. Importantly, the pro-cancergogenic effects of both glycine and D-serine where abrogated by the usage of 2-methoxyestradiol at both physiological and pharmacological relevant concentrations. The obtained data confirmed that 2-methoxyestradiol may be a physiological anticancer molecule. This article is protected by copyright. All rights reserved.

  14. Human monocytes undergo functional re-programming during differentiation to dendritic cell mediated by human extravillous trophoblasts

    Science.gov (United States)

    Zhao, Lei; Shao, Qianqian; Zhang, Yun; Zhang, Lin; He, Ying; Wang, Lijie; Kong, Beihua; Qu, Xun

    2016-01-01

    Maternal immune adaptation is required for a successful pregnancy to avoid rejection of the fetal–placental unit. Dendritic cells within the decidual microenvironment lock in a tolerogenic profile. However, how these tolerogenic DCs are induced and the underlying mechanisms are largely unknown. In this study, we show that human extravillous trophoblasts redirect the monocyte-to-DC transition and induce regulatory dendritic cells. DCs differentiated from blood monocytes in the presence of human extravillous trophoblast cell line HTR-8/SVneo displayed a DC-SIGN+CD14+CD1a− phenotype, similar with decidual DCs. HTR8-conditioned DCs were unable to develop a fully mature phenotype in response to LPS, and altered the cytokine secretory profile significantly. Functionally, conditioned DCs poorly induced the proliferation and activation of allogeneic T cells, whereas promoted CD4+CD25+Foxp3+ Treg cells generation. Furthermore, the supernatant from DC and HTR-8/SVneo coculture system contained significant high amount of M-CSF and MCP-1. Using neutralizing antibodies, we discussed the role of M-CSF and MCP-1 during monocyte-to-DCs differentiation mediated by extravillous trophoblasts. Our data indicate that human extravillous trophoblasts play an important role in modulating the monocyte-to-DC differentiation through M-CSF and MCP-1, which facilitate the establishment of a tolerogenic microenvironment at the maternal–fetal interface. PMID:26857012

  15. Transcriptional Reprogramming of Mature CD4+ T helper Cells generates distinct MHC class II-restricted Cytotoxic T Lymphocytes

    Science.gov (United States)

    Mucida, Daniel; Husain, Mohammad Mushtaq; Muroi, Sawako; van Wijk, Femke; Shinnakasu, Ryo; Naoe, Yoshinori; Reis, Bernardo Sgarbi; Huang, Yujun; Lambolez, Florence; Docherty, Michael; Attinger, Antoine; Shui, Jr-Wen; Kim, Gisen; Lena, Christopher J.; Sakaguchi, Shinya; Miyamoto, Chizuko; Wang, Peng; Atarashi, Koji; Park, Yunji; Nakayama, Toshinori; Honda, Kenya; Ellmeier, Wilfried; Kronenberg, Mitchell; Taniuchi, Ichiro; Cheroutre, Hilde

    2013-01-01

    TCRαβ thymocytes differentiate to either CD8αβ cytotoxic T lymphocytes or CD4+ T helper cells. This functional dichotomy is controlled by key transcription factors, including the T helper master regulator, ThPOK, which suppresses the cytolytic program in MHC class II-restricted CD4+ thymocytes. ThPOK continues to repress CD8-lineage genes in mature CD4+ T cells, even as they differentiate to T helper effector subsets. Here we show that the T helper-fate was not fixed and that mature antigen-stimulated CD4+ T cells could terminate Thpok expression and reactivate CD8-lineage genes. This unexpected plasticity resulted in the post-thymic termination of the T helper-program and the functional differentiation of distinct MHC class II-restricted CD4+ cytotoxic T lymphocytes. PMID:23334788

  16. Localization of a bacterial group II intron-encoded protein in eukaryotic nuclear splicing-related cell compartments.

    Directory of Open Access Journals (Sweden)

    Rafael Nisa-Martínez

    Full Text Available Some bacterial group II introns are widely used for genetic engineering in bacteria, because they can be reprogrammed to insert into the desired DNA target sites. There is considerable interest in developing this group II intron gene targeting technology for use in eukaryotes, but nuclear genomes present several obstacles to the use of this approach. The nuclear genomes of eukaryotes do not contain group II introns, but these introns are thought to have been the progenitors of nuclear spliceosomal introns. We investigated the expression and subcellular localization of the bacterial RmInt1 group II intron-encoded protein (IEP in Arabidopsis thaliana protoplasts. Following the expression of translational fusions of the wild-type protein and several mutant variants with EGFP, the full-length IEP was found exclusively in the nucleolus, whereas the maturase domain alone targeted EGFP to nuclear speckles. The distribution of the bacterial RmInt1 IEP in plant cell protoplasts suggests that the compartmentalization of eukaryotic cells into nucleus and cytoplasm does not prevent group II introns from invading the host genome. Furthermore, the trafficking of the IEP between the nucleolus and the speckles upon maturase inactivation is consistent with the hypothesis that the spliceosomal machinery evolved from group II introns.

  17. Nuclear transfer in rodents.

    Science.gov (United States)

    Mullins, Linda J; Wilmut, Ian; Mullins, John J

    2004-01-01

    Cloning is the asexual reproduction of an individual, such that the offspring have an essentially identical nuclear genome. Nuclear transfer and cloning have been achieved in a number of species, namely sheep, cows, goats, rabbits, cats and mice, but have been largely unsuccessful, so far, in dogs, primates and rats. Clearly, contributory factors which affect the outcome of successful cloning experiments are not universally applicable to all species. One theme common to all cloning experiments, however, is the overall inefficiency of the process, typically 0-4%. A number of factors contribute to nuclear transfer inefficiency, and we will review mouse cloning experiments, which address these problems, highlighting the importance of donor nucleus choice (somatic or ES cell, fetal or adult, quiescent or actively dividing). Finally, we will summarize the emerging principles which appear to govern nuclear reprogramming and production of clones, and will consider the application of nuclear transfer to the rat.

  18. Effect of donor cell type on nuclear remodelling in rabbit somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Tian, J; Song, J; Li, H; Yang, D; Li, X; Ouyang, H; Lai, L

    2012-08-01

    Cloned rabbits have been produced for many years by somatic cell nuclear transfer (SCNT). The efficiency of cloning by SCNT, however, has remained extremely low. Most cloned embryos degenerate in utero, and the few that develop to term show a high incidence of post-natal death and abnormalities. The cell type used for donor nuclei is an important factor in nuclear transfer (NT). As reported previously, NT embryos reconstructed with fresh cumulus cells (CC-embryos) have better developmental potential than those reconstructed with foetal fibroblasts (FF-embryos) in vivo and in vitro. The reason for this disparity in developmental capacity is still unknown. In this study, we compared active demethylation levels and morphological changes between the nuclei of CC-embryos and FF-embryos shortly after activation. Anti-5-methylcytosine immunofluorescence of in vivo-fertilized and cloned rabbit embryos revealed that there was no detectable active demethylation in rabbit zygotes or NT-embryos derived from either fibroblasts or CC. In the process of nuclear remodelling, however, the proportion of nuclei with abnormal appearance in FF-embryos was significantly higher than that in CC-embryos during the first cell cycle. Our study demonstrates that the nuclear remodelling abnormality of cloned rabbit embryos may be one important factor for the disparity in developmental success between CC-embryos and FF-embryos.

  19. Cellular reprogramming for understanding and treating human disease.

    Directory of Open Access Journals (Sweden)

    Riya Rajan Kanherkar

    2014-11-01

    Full Text Available In the last two decades we have witnessed a paradigm shift in our understanding of cells so radical that it has rewritten the rules of biology. The study of cellular reprogramming has gone from little more than a hypothesis, to applied bioengineering, with the creation of a variety of important cell types. By way of metaphor, we can compare the discovery of reprogramming with the archaeological discovery of the Rosetta stone. This stone slab made possible the initial decipherment of Egyptian hieroglyphics because it allowed us to see this language in a way that was previously impossible. We propose that cellular reprogramming will have an equally profound impact on understanding and curing human disease, because it allows us to perceive and study molecular biological processes such as differentiation, epigenetics, and chromatin in ways that were likewise previously impossible. Stem cells could be called cellular Rosetta stones because they allow also us to perceive the connections between development, disease, cancer, aging, and regeneration in novel ways. Here we present a comprehensive historical review of stem cells and cellular reprogramming, and illustrate the developing synergy between many previously unconnected fields. We show how stem cells can be used to create in vitro models of human disease and provide examples of how reprogramming is being used to study and treat such diverse diseases as cancer, aging and accelerated aging syndromes, infectious diseases such as AIDS, and epigenetic diseases such as polycystic ovary syndrome. While the technology of reprogramming is being developed and refined there have also been significant ongoing developments in other complementary technologies such as gene editing, progenitor cell production, and tissue engineering. These technologies are the foundations of what is becoming a fully-functional field of regenerative medicine and are converging to a point that will allow us to treat almost any

  20. Advances in MicroRNA-Mediated Reprogramming Technology

    Directory of Open Access Journals (Sweden)

    Chih-Hao Kuo

    2012-01-01

    Full Text Available The use of somatic cells to generate induced-pluripotent stem cells (iPSCs, which have gene characteristic resembling those of human embryonic stem cells (hESCs, has opened up a new avenue to produce patient-specific stem cells for regenerative medicine. MicroRNAs (miRNAs have gained much attention over the past few years due to their pivotal role in many biological activites, including metabolism, host immunity, and cancer. Soon after the discovery of embryonic-stem-cell- (ESC- specific miRNAs, researchers began to investigate their functions in embryonic development and differentiation, as well as their potential roles in somatic cell reprogramming (SCR. Several approaches for ESC-specific miRNA-mediated reprogramming have been developed using cancer and somatic cells to generate ESC-like cells with similarity to iPSCs and/or hESCs. However, the use of virus-integration to introduce reprogramming factors limits future clinical applications. This paper discusses the possible underlying mechanism for miRNA-mediated somatic cell reprogramming and the approaches used by different groups to induce iPSCs with miRNAs.

  1. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    Directory of Open Access Journals (Sweden)

    Thais de Castro Barbosa

    2016-03-01

    Conclusion: Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations.

  2. Shifting behaviour: epigenetic reprogramming in eusocial insects.

    Science.gov (United States)

    Patalano, Solenn; Hore, Timothy A; Reik, Wolf; Sumner, Seirian

    2012-06-01

    Epigenetic modifications are ancient and widely utilised mechanisms that have been recruited across fungi, plants and animals for diverse but fundamental biological functions, such as cell differentiation. Recently, a functional DNA methylation system was identified in the honeybee, where it appears to underlie queen and worker caste differentiation. This discovery, along with other insights into the epigenetics of social insects, allows provocative analogies to be drawn between insect caste differentiation and cellular differentiation, particularly in mammals. Developing larvae in social insect colonies are totipotent: they retain the ability to specialise as queens or workers, in a similar way to the totipotent cells of early embryos before they differentiate into specific cell lineages. Further, both differentiating cells and insect castes lose phenotypic plasticity by committing to their lineage, losing the ability to be readily reprogrammed. Hence, a comparison of the epigenetic mechanisms underlying lineage differentiation (and reprogramming) between cells and social insects is worthwhile. Here we develop a conceptual model of how loss and regain of phenotypic plasticity might be conserved for individual specialisation in both cells and societies. This framework forges a novel link between two fields of biological research, providing predictions for a unified approach to understanding the molecular mechanisms underlying biological complexity.

  3. Cellular Reprogramming Using Defined Factors and MicroRNAs.

    Science.gov (United States)

    Eguchi, Takanori; Kuboki, Takuo

    2016-01-01

    Development of human bodies, organs, and tissues contains numerous steps of cellular differentiation including an initial zygote, embryonic stem (ES) cells, three germ layers, and multiple expertized lineages of cells. Induced pluripotent stem (iPS) cells have been recently developed using defined reprogramming factors such as Nanog, Klf5, Oct3/4 (Pou5f1), Sox2, and Myc. This outstanding innovation is largely changing life science and medicine. Methods of direct reprogramming of cells into myocytes, neurons, chondrocytes, and osteoblasts have been further developed using modified combination of factors such as N-myc, L-myc, Sox9, and microRNAs in defined cell/tissue culture conditions. Mesenchymal stem cells (MSCs) and dental pulp stem cells (DPSCs) are also emerging multipotent stem cells with particular microRNA expression signatures. It was shown that miRNA-720 had a role in cellular reprogramming through targeting the pluripotency factor Nanog and induction of DNA methyltransferases (DNMTs). This review reports histories, topics, and idea of cellular reprogramming.

  4. Spermatozoa-like cell invaders (nuclear vlimata) in human neoplasia.

    Science.gov (United States)

    Logothetou-Rella, H

    1993-07-01

    Spermatozoa-like cells (nuclear vlimata) have been identified in malignant cell cultures and embryonic cells, also common in the cytology and histology of all types of human neoplasia even after chemotherapy. A new mechanism of invasion of malignant cells has been described, according to which neoplastic cells behave and function as parasites using host-cells to divide, survive and eventually produce nuclear vlimata (bullets). Nuclear vlimata are the end cell products of incomplete, unequal, assymetrical division of neoplastic cells. The nuclear vlima exhibits similar morphology to spermatozoa and virus (head with, or without, tail) and invades the cytoplasm and/or nucleus of surrounding host-cells by a similar mechanism to sperm-oocyte interaction (fertilization) or viral cell infection, in the events of nuclear vlima-->tumor-->nuclear vlima-->tumor. The nuclear vlima head contains and transfers DNA, and when incorporated into the host-nucleus is indistinguishable from nucleoli and when in the cytoplasm is similar to sperm pronucleus, observed after sperm penetration of the oocyte. Function of nuclear vlimata is directly dependent on the specific extracellular matrix produced by malignant cells, consisting of glycosaminoglycans-protease-membranes. This mechanism of invasion constitutes the link of all scientific information concerning human neoplasia.

  5. The Natural Product Resveratrol Inhibits Yeast Cell Separation by Extensively Modulating the Transcriptional Landscape and Reprogramming the Intracellular Metabolome.

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    Full Text Available An increasing number of studies have shown that the promising compound resveratrol treats multiple diseases, such as cancer and aging; however, the resveratrol mode-of-action (MoA remains largely unknown. Here, by virtue of multiple omics approaches, we adopted fission yeast as a model system with the goal of dissecting the common MoA of the anti-proliferative activity of resveratrol. We found that the anti-proliferative activity of resveratrol is mainly due to its unique role of inhibiting the separation of sister cells, similar phenotype with the C2H2 zinc finger transcription factor Ace2 knock-out strain. Microarray analysis shown that resveratrol has extensive impact on the fission yeast transcription levels. Among the changed gene's list, 40% of up-regulated genes are Core Environmental Stress Responses genes, and 57% of the down-regulated genes are periodically expressed. Moreover, resveratrol leverages the metabolome, which unbalances the intracellular pool sizes of several classes of amino acids, nucleosides, sugars and lipids, thus reflecting the remodulated metabolic networks. The complexity of the resveratrol MoA displayed in previous reports and our work demonstrates that multiple omics approaches must be applied together to obtain a complete picture of resveratrol's anti-proliferative function.

  6. Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors

    Directory of Open Access Journals (Sweden)

    Nils Pfaff

    2017-04-01

    Thus, conducting a full library miRNA screen we here describe a miRNA family, which markedly reduces generation of iPSC and upon inhibition in turn enhances reprogramming. These miRNAs, at least in part, exert their functions through repression of the epigenetic modulators p300 and Jarid1a, highlighting these two molecules as an endogenous epigenetic roadblock during iPSC generation.

  7. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation

    Directory of Open Access Journals (Sweden)

    Youngkyun Kim

    2016-01-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs. In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  8. The Generation of Human Induced Pluripotent Stem Cells from Blood Cells: An Efficient Protocol Using Serial Plating of Reprogrammed Cells by Centrifugation.

    Science.gov (United States)

    Kim, Youngkyun; Rim, Yeri Alice; Yi, Hyoju; Park, Narae; Park, Sung-Hwan; Ju, Ji Hyeon

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) have demonstrated great potential for differentiation into diverse tissues. We report a straightforward and highly efficient method for the generation of iPSCs from PBMCs. By plating the cells serially to a newly coated plate by centrifugation, this protocol provides multiple healthy iPSC colonies even from a small number of PBMCs. The generated iPSCs expressed pluripotent markers and differentiated into all three germ layer lineages. The protocol can also be used with umbilical cord blood mononuclear cells (CBMCs). In this study, we present a simple and efficient protocol that improved the yield of iPSCs from floating cells such as PBMCs and CBMCs by serial plating and centrifugation.

  9. A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer

    Directory of Open Access Journals (Sweden)

    Madhusudana Girija Sanal

    2014-09-01

    Full Text Available Even after several years since the discovery of human embryonic stem cells and induced pluripotent stem cells (iPSC, we are still unable to make any significant therapeutic benefits out of them such as cell therapy or generation of organs for transplantation. Recent success in somatic cell nuclear transfer (SCNT made it possible to generate diploid embryonic stem cells, which opens up the way to make high-quality pluripotent stem cells. However, the process is highly inefficient and hence expensive compared to the generation of iPSC. Even with the latest SCNT technology, we are not sure whether one can make therapeutic quality pluripotent stem cell from any patient’s somatic cells or by using oocytes from any donor. Combining iPSC technology with SCNT, that is, by using the nucleus of the candidate somatic cell which got reprogrammed to pluripotent state instead that of the unmodified nucleus of the candidate somatic cell, would boost the efficiency of the technique, and we would be able to generate therapeutic quality pluripotent stem cells. Induced pluripotent stem cell nuclear transfer (iPSCNT combines the efficiency of iPSC generation with the speed and natural reprogramming environment of SCNT. The new technique may be called iPSCNT. This technique could prove to have very revolutionary benefits for humankind. This could be useful in generating organs for transplantation for patients and for reproductive cloning, especially for childless men and women who cannot have children by any other techniques. When combined with advanced gene editing techniques (such as CRISPR-Cas system this technique might also prove useful to those who want to have healthy children but suffer from inherited diseases. The current code of ethics may be against reproductive cloning. However, this will change with time as it happened with most of the revolutionary scientific breakthroughs. After all, it is the right of every human to have healthy offspring and it is

  10. Nuclear area measurement on viable cells, using confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, K.M.S.; Marsden, S.J. (Medical Research Council, Harwell (United Kingdom). Radiobiological Research Unit)

    1992-04-01

    The authors describe a rapid procedure for the accurate measurement of nuclear areas on unperturbed living cells as used in radiobiological experiments, using the confocal laser scanning microscope. The microdosimetric interpretation of radiobiological data requires precise information on the nuclear area of cells as irradiated with high-LET radiation. (author).

  11. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification.

    Science.gov (United States)

    Deng, Wenwen; Cao, Xia; Wang, Yan; Yu, Qingtong; Zhang, Zhijian; Qu, Rui; Chen, Jingjing; Shao, Genbao; Gao, Xiangdong; Xu, Ximing; Yu, Jiangnan

    2016-02-17

    Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification.

  12. Positive correlation between the efficiency of induced pluripotent stem cells and the development rate of nuclear transfer embryos when the same porcine embryonic fibroblast lines are used as donor cells.

    Science.gov (United States)

    Xie, Bingteng; Wang, Jianyu; Liu, Shichao; Wang, Jiaqiang; Xue, Binghua; Li, Jingyu; Wei, Renyue; Zhao, Yanhua; Liu, Zhonghua

    2014-06-01

    Induced pluripotent stem cells (iPSCs) and nuclear transfer (NT) are two of the primary routes to reprogram differentiated cells back to the pluripotent state. However, it is still unknown whether there is any correlation between the reprogramming efficiency of iPSCs and NT if the same donor cells are employed. In this study, six porcine embryonic fibroblast (PEF) lines from Landrace (L1, L6, L9) or Congjiang local pigs (C4, C5, C6) were used for iPSC induction and NT. Furthermore, the resultant iPSCs from four PEF lines (L1, L6, C4, and C5) were used for NT (iPSC-NT), and the expression of exogenous genes was detected in iPSC-NT embryos by real-time PCR. The results showed that the efficiency of iPSC lines established from different PEF lines were significantly different. When the same PEF lines were used as donor cells for NT, the blastocysts rates were also different among different PEF lines and positively related with iPSCs induction efficiency. When the iPSCs were used as donor cells for NT, compared with the source PEFs, the blastocysts rates were significantly decreased. Real-time PCR results indicated that exogenous genes (Oct4, c-Myc) continued to be expressed in iPSC-NT embryos. In summary, our results demonstrate that there was a positive correlation between iPSCs and NT reprogramming efficiency, although the mechanism of these two routes is different. This may provide a new method to select the appropriate donor cells for inducing iPSCs.

  13. Complete reprogramming to all-iPS mice

    Institute of Scientific and Technical Information of China (English)

    Steven Y Cheng

    2010-01-01

    @@ The landmark discoveries by Shinya Yamanaka in mice and later separately by James Thompson in humans that adult animal cells can be reprogrammed to a pluripotent state of embryonic stem (ES) cells by forced expression of just a few key transcription factors have permanently altered a long-held view about the stability of differentiated cells in developmental biology, and suggested a way of generating personalized replacement tissues from patients' own cells for the regen-erative medical treatment. However, those initial repro-grammed cells, called induced pluripotent stem (iPS) cells,were not completely identical to ES cells because of their limited ability to contribute to every type of cells in an embryo.

  14. Exploring the Mechanisms of Differentiation, Dedifferentiation, Reprogramming and Transdifferentiation

    Science.gov (United States)

    Xu, Li; Zhang, Kun; Wang, Jin

    2014-01-01

    We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good

  15. Epigenetic reprogramming in plant sexual reproduction.

    Science.gov (United States)

    Kawashima, Tomokazu; Berger, Frédéric

    2014-09-01

    Epigenetic reprogramming consists of global changes in DNA methylation and histone modifications. In mammals, epigenetic reprogramming is primarily associated with sexual reproduction and occurs during both gametogenesis and early embryonic development. Such reprogramming is crucial not only to maintain genomic integrity through silencing transposable elements but also to reset the silenced status of imprinted genes. In plants, observations of stable transgenerational inheritance of epialleles have argued against reprogramming. However, emerging evidence supports that epigenetic reprogramming indeed occurs during sexual reproduction in plants and that it has a major role in maintaining genome integrity and a potential contribution to epiallelic variation.

  16. Role of SIRT6 in Metabolic Reprogramming During Colorectal Carcinoma

    Science.gov (United States)

    2014-09-01

    metabolic pathway halts proliferation and induces cell death.60 As in cancer cells, this high glycolytic flux provides precursors for anaplerotic...drives this metabolic reprograming.81 In addition, several PDK isoforms, which limit the flux of pyruvate into the mitochondria, have been reported... metabolism has been found to be a hallmark of non-small cell lung cancer tumor initiating cells.41 Genome-wide transcriptome analysis of 20     CD166

  17. Cellular Reprogramming: a novel tool for investigating autism spectrum disorders

    OpenAIRE

    Kim, Kun-Yong; Jung, Yong Wook; Sullivan, Gareth J.; Chung, Leeyup; Park, In-Hyun

    2012-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in reciprocal social interaction, communication, and the manifestation of stereotyped behaviors. Despite much effort, ASDs are not yet fully understood. Advanced genetics and genomics technologies have recently identified novel ASD genes. Approaches using genetically engineered murine models or postmortem human brain have facilitated understanding ASD. Reprogramming somatic cells into induced pluripote...

  18. New balance in pluripotency: reprogramming with lineage specifiers.

    Science.gov (United States)

    Ben-David, Uri; Nissenbaum, Jonathan; Benvenisty, Nissim

    2013-05-23

    Induction of pluripotency in somatic cells has been achieved by myriad combinations of transcription factors that belong to the core pluripotency circuitry. In this issue, Shu et al. report reprogramming with lineage specifiers, lending support to the view of the pluripotent state as a fine balance between competing differentiation forces.

  19. Nuclear protein import is reduced in cells expressing nuclear envelopathy-causing lamin A mutants

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Albert; Kiel, Tilman; Heupel, Wolfgang-M. [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany); Wehnert, Manfred [Institute of Human Genetics, University of Greifswald, Greifswald (Germany); Huebner, Stefan, E-mail: stefan.huebner@mail.uni-wuerzburg.de [University of Wuerzburg, Institute of Anatomy and Cell Biology, Koellikerstrasse 6, 97070 Wuerzburg (Germany)

    2009-08-15

    Lamins, which form the nuclear lamina, not only constitute an important determinant of nuclear architecture, but additionally play essential roles in many nuclear functions. Mutations in A-type lamins cause a wide range of human genetic disorders (laminopathies). The importance of lamin A (LaA) in the spatial arrangement of nuclear pore complexes (NPCs) prompted us to study the role of LaA mutants in nuclear protein transport. Two mutants, causing prenatal skin disease restrictive dermopathy (RD) and the premature aging disease Hutchinson Gilford progeria syndrome, were used for expression in HeLa cells to investigate their impact on the subcellular localization of NPC-associated proteins and nuclear protein import. Furthermore, dynamics of the LaA mutants within the nuclear lamina were studied. We observed affected localization of NPC-associated proteins, diminished lamina dynamics for both LaA mutants and reduced nuclear import of representative cargo molecules. Intriguingly, both LaA mutants displayed similar effects on nuclear morphology and functions, despite their differences in disease severity. Reduced nuclear protein import was also seen in RD fibroblasts and impaired lamina dynamics for the nucleoporin Nup153. Our data thus represent the first study of a direct link between LaA mutant expression and reduced nuclear protein import.

  20. The nuclear pore complex acts as a master switch for nuclear and cell differentiation

    Science.gov (United States)

    Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2015-01-01

    Cell differentiation is associated with the functional differentiation of the nucleus, in which alteration of the expression profiles of transcription factors occurs to destine cell fate. Nuclear transport machineries, such as importin-α, have also been reported as critical factors that induce cell differentiation. Using various fluorescence live cell imaging methods, including time-lapse imaging, FRAP analysis and live-cell imaging associated correlative light and electron microscopy (Live CLEM) of Tetrahymena, a unicellular ciliated protozoan, we have recently discovered that type switching of the NPC is the earliest detectable event of nuclear differentiation. Our studies suggest that this type switching of the NPC directs the fate of the nucleus to differentiate into either a macronucleus or a micronucleus. Our findings in this organism may provide new insights into the role of the NPC in controlling nuclear functions in general in eukaryotes, including controlling cell fate leading to cell differentiation in multicellular metazoa. PMID:26479399

  1. Development of an all-in-one inducible lentiviral vector for gene specific analysis of reprogramming.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Yamaguchi

    Full Text Available Fair comparison of reprogramming efficiencies and in vitro differentiation capabilities among induced pluripotent stem cell (iPSC lines has been hampered by the cellular and genetic heterogeneity of de novo infected somatic cells. In order to address this problem, we constructed a single cassette all-in-one inducible lentiviral vector (Ai-LV for the expression of three reprogramming factors (Oct3/4, Klf4 and Sox2. To obtain multiple types of somatic cells having the same genetic background, we generated reprogrammable chimeric mice using iPSCs derived from Ai-LV infected somatic cells. Then, hepatic cells, hematopoietic cells and fibroblasts were isolated at different developmental stages from the chimeric mice, and reprogrammed again to generate 2nd iPSCs. The results revealed that somatic cells, especially fetal hepatoblasts were reprogrammed 1200 times more efficiently than adult hepatocytes with maximum reprogramming efficiency reaching 12.5%. However, we found that forced expression of c-Myc compensated for the reduced reprogramming efficiency in aged somatic cells without affecting cell proliferation. All these findings suggest that the Ai-LV system enables us to generate a panel of iPSC clones derived from various tissues with the same genetic background, and thus provides an invaluable tool for iPSC research.

  2. Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration.

    Science.gov (United States)

    Neff, Anton W; King, Michael W; Mescher, Anthony L

    2011-05-01

    A central feature of epimorphic regeneration during amphibian limb regeneration is cellular dedifferentiation. Two questions are discussed. First, what is the origin and nature of the soluble factors involved in triggering local cellular and tissue dedifferentiation? Secondly, what role does the key stem cell transcription factor Sall4 play in reprogramming gene expression during dedifferentiation? The pattern of Sall4 expression during Xenopus hindlimb regeneration is consistent with the hypothesis that Sall4 plays a role in dedifferentiation (reprogramming) and in maintaining limb blastema cells in an undifferentiated state. Sall4 is involved in maintenance of ESC pluripotency, is a major repressor of differentiation, plays a major role in reprogramming differentiated cells into iPSCs, and is a component of the stemness regulatory circuit of pluripotent ESCs and iPSCs. These functions suggest Sall4 as an excellent candidate to regulate reprogramming events that produce and maintain dedifferentiated blastema cells required for epimorphic regeneration.

  3. Stress-triggered atavistic reprogramming (STAR) addiction: driving force behind head and neck cancer?

    Science.gov (United States)

    Masuda, Muneyuki; Wakasaki, Takahiro; Toh, Satoshi

    2016-01-01

    Recent results of the Cancer Genome Atlas on head and neck squamous cell carcinoma (HNSCC) revealed that HNSCC lacked predominant gain-of-function mutations in oncogenes, whereas an essential role for epigenetics in oncogenesis has become apparent. In parallel, it has gained general acceptance that cancer is considered as complex adaptive system, which evolves responding environmental selective pressures. This somatic evolution appears to proceed concurrently with the acquisition of an atavistic pluripotent state (i.e., "stemness"), which is inducible by intrinsic epigenetic reprogramming program as demonstrated by induced pluripotent stem (iPS) cells. This Nobel prize-winning discovery has markedly accelerated and expanded cancer stem cell research from the point of epigenetic reprogramming. Taken together, we hypothesize that stress-triggered atavistic reprogramming (STAR) may be the major driving force of HNSCC evolution. In this perspective, we discuss the possible mechanisms of STAR in HNSCC, focusing on recent topics of epigenetic reprogramming in developmental and cancer cell biology.

  4. Development-inspired reprogramming of the mammalian central nervous system.

    Science.gov (United States)

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  5. Enhanced Differentiation of Three-Gene-Reprogrammed Induced Pluripotent Stem Cells into Adipocytes via Adenoviral-Mediated PGC-1α Overexpression

    Directory of Open Access Journals (Sweden)

    Yi-Jen Chen

    2011-11-01

    Full Text Available Induced pluripotent stem cells formed by the introduction of only three factors, Oct4/Sox2/Klf4 (3-gene iPSCs, may provide a safer option for stem cell-based therapy than iPSCs conventionally introduced with four-gene iPSCs. Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α plays an important role during brown fat development. However, the potential roles of PGC-1α in regulating mitochondrial biogenesis and the differentiation of iPSCs are still unclear. Here, we investigated the effects of adenovirus-mediated PGC-1α overexpression in 3-gene iPSCs. PGC-1α overexpression resulted in increased mitochondrial mass, reactive oxygen species production, and oxygen consumption. Microarray-based bioinformatics showed that the gene expression pattern of PGC-1α-overexpressing 3-gene iPSCs resembled the expression pattern observed in adipocytes. Furthermore, PGC-1α overexpression enhanced adipogenic differentiation and the expression of several brown fat markers, including uncoupling protein-1, cytochrome C, and nuclear respiratory factor-1, whereas it inhibited the expression of the white fat marker uncoupling protein-2. Furthermore, PGC-1α overexpression significantly suppressed osteogenic differentiation. These data demonstrate that PGC-1α directs the differentiation of 3-gene iPSCs into adipocyte-like cells with features of brown fat cells. This may provide a therapeutic strategy for the treatment of mitochondrial disorders and obesity.

  6. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  7. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  8. Human somatic cell nuclear transfer is alive and well.

    Science.gov (United States)

    Cibelli, Jose B

    2014-06-05

    In this issue, Chung et al. (2014) generate human embryonic stem cells by fusing an adult somatic cell to a previously enucleated human oocyte, in agreement with recent reports by the Mitalipov and Egli groups. We can now safely say that human somatic cell nuclear transfer is alive and well.

  9. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors

    Institute of Scientific and Technical Information of China (English)

    Lei Bao; Lei Qian; Yijun Gu; Huimin Dai; Xun Xu; Jinqiu Zhou; Wen Wang; Chun Cui; Lei Xiao; Lixiazi He; Jijun Chen; Zhao Wu; Jing Liao; Lingjun Rao; Jiangtao Ren; Hui Li; Hui Zhu

    2011-01-01

    Reprogramming of somatic cells in the enucleated egg made Dolly, the sheep, the first successfully cloned mammal in 1996. However, the mechanism of sheep somatic cell reprogramming has not yet been addressed. Moreover, sheep embryonic stem (ES) cells are still not available, which limits the generation of precise gene-modified sheep, in this study, we report that sheep somatic cells can be directly reprogrammed to induced pluripotent stem (iPS) cells using defined factors (Oct4, Sox2, c-Myc, KIf4, Nanog, Lin28, SV40 large T and hTERT). Our observations indicated that somatic cells from sheep are more difficult to reprogram than somatic cells from other species, in which iPS cells have been reported. We demonstrated that sheep iPS cells express ES cell markers, including alkaline phosphatase, Oct4, Nanog, Sox2, Rexl, stage-specific embryonic antigen-l, TRA-1-60, TRA-1-81 and E-cadherin. Sheep iPS cells exhibited normal karyotypes and were able to differentiate into all three germ layers both in vitro and in teratomas.Our study may help to reveal the mechanism of somatic cell reprogramming in sheep and provide a platform to explore the culture conditions for sheep ES cells. Moreover, sheep iPS cells may be directly used to generate precise gene-modified sheep.

  10. Nuclear envelope rupture and repair during cancer cell migration

    Science.gov (United States)

    Denais, Celine M.; Gilbert, Rachel M.; Isermann, Philipp; McGregor, Alexandra L.; te Lindert, Mariska; Weigelin, Bettina; Davidson, Patricia M.; Friedl, Peter; Wolf, Katarina; Lammerding, Jan

    2016-01-01

    During cancer metastasis, tumor cells penetrate tissues through tight interstitial spaces, requiring extensive deformation of the cell and its nucleus. Here, we investigated tumor cell migration in confining microenvironments in vitro and in vivo. Nuclear deformation caused localized loss of nuclear envelope (NE) integrity, which led to the uncontrolled exchange of nucleo-cytoplasmic content, herniation of chromatin across the NE, and DNA damage. The incidence of NE rupture increased with cell confinement and with depletion of nuclear lamins, NE proteins that structurally support the nucleus. Cells restored NE integrity using components of the endosomal sorting complexes required for transport-III (ESCRT-III) machinery. Our findings indicate that cell migration incurs substantial physical stress on the NE and its content, requiring efficient NE and DNA damage repair for survival. PMID:27013428

  11. Technical Challenges in the Derivation of Human Pluripotent Cells

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2011-01-01

    Full Text Available It has long been discovered that human pluripotent cells could be isolated from the blastocyst state of embryos and called human embryonic stem cells (ESCs. These cells can be adapted and propagated indefinitely in culture in an undifferentiated manner as well as differentiated into cell representing the three major germ layers: endoderm, mesoderm, and ectoderm. However, the derivation of human pluripotent cells from donated embryos is limited and restricted by ethical concerns. Therefore, various approaches have been explored and proved their success. Human pluripotent cells can also be derived experimentally by the nuclear reprogramming of somatic cells. These techniques include somatic cell nuclear transfer (SCNT, cell fusion and overexpression of pluripotent genes. In this paper, we discuss the technical challenges of these approaches for nuclear reprogramming, involving their advantages and limitations. We will also highlight the possible applications of these techniques in the study of stem cell biology.

  12. Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression

    Directory of Open Access Journals (Sweden)

    Richard Ventura

    2015-08-01

    Research in context: Fatty acid synthase (FASN is a vital enzyme in tumor cell biology; the over-expression of FASN is associated with diminished patient prognosis and resistance to many cancer therapies. Our data demonstrate that selective and potent FASN inhibition with TVB-3166 leads to selective death of tumor cells, without significant effect on normal cells, and inhibits in vivo xenograft tumor growth at well-tolerated doses. Candidate biomarkers for selecting tumors highly sensitive to FASN inhibition are identified. These preclinical data provide mechanistic and pharmacologic evidence that FASN inhibition presents a promising therapeutic strategy for treating a variety of cancers.

  13. Embryonic stem cell as nuclear donor could promote in vitro development of the heterogeneous reconstructed embryo

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The nucleus of a somatic cell could be dedifferentiated and reprogrammed in an enucleated heterogeneous oocyte. Some reconstructed oocytes could develop into blastocysts in vitro, and a few could develop into term normally after transferred into foster mothers, but most of cloning embryos fail to develop to term. In order to evaluate the efficacy of embryonic stem cell as nucleus donor in interspecific animal cloning, we reconstructed enucleated rabbit oocytes with nuclei from mouse ES cells, and analyzed the developmental ability of reconstructed embryos in vitro. Two kinds of fibroblast cells were used as donor control, one derived from ear skin of an adult Kunming albino mouse, and the other derived from a mouse fetus. Three types of cells were transferred into perivitelline space under zona pellucida of rabbit oocytes respectively. The reconstructed oocytes were fused and activated by electric pulses, and cultured in vitro. The developmental rate of reconstructed oocytes derived from embryonic stem cells was 16.1%, which was significantly higher than that of both the adult mouse fibroblast cells (0%-3.1%, P < 0.05) and fetus mouse fibroblast cells (2.1%-3.7%, P < 0.05). Chromosome analysis confirmed that blastocyst cells were derived from ES donor cell. These observations show that reprogramming is easier in interspecific embryos reconstructed with ES cells than that reconstructed with somatic cells, and that ES cells have the higher ability to direct the reconstructed embryos development normally than fibroblast cells.

  14. A critical role for p38MAPK signalling pathway during reprogramming of human fibroblasts to iPSCs

    Science.gov (United States)

    Neganova, Irina; Chichagova, Valeria; Armstrong, Lyle; Lako, Majlinda

    2017-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) holds enormous promise for regenerative medicine. Reprogramming is a stepwise process with well-defined stages of initiation, maturation and stabilisation which are critically dependent on interactions between key pluripotency transcription factors, epigenetic regulators and signalling pathways. In this manuscript we have investigated the role of p38 MAPK signalling pathway and have shown a subpopulation- and phase-specific pattern of activation occurring during the initiation and maturation stage of reprogramming in partially and fully reprogrammed cells respectively. Downregulation of p38 MAPK activity via RNA interference or small molecule inhibitor led to cell accumulation in G1 phase of the cell cycle and reduced expression of cell cycle regulators during the initiation stage of reprogramming. This was associated with a significant downregulation of key pluripotency marker expression, disruption of mesenchymal to epithelial transition (MET), increased expression of differentiation markers and presence of partially reprogrammed cells which retained a typical gene expression profile of mesendodermal cells and were unable to progress to fully reprogrammed phenotype. Together our data indicate an important role for p38 MAPK activity in proliferation, MET progression and establishment of pluripotent phenotype, which are necessary steps for the development of human iPSCs. PMID:28155868

  15. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida

    2011-01-01

    Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-cell...... intergeneric SCNT embryos were compared to their parthenogenetic counterparts to assess the effects of the introduced somatic cell. Despite the absence of morphological remodeling (premature chromatin condensation, nuclear envelope breakdown), reconstructed embryos showed nuclear and nucleolar precursor body...... (NPB) morphology similar to the host ooplasm, which, together with detected posttranslational activity of somatic cell introduced into the bovine ooplasm, suggests a universal function of ooplasmic factors. However, the lack of distinct UBF localization in intergeneric embryos indicates failures...

  16. From stealing fire to cellular reprogramming: a scientific history leading to the 2012 Nobel Prize.

    Science.gov (United States)

    Lensch, M William; Mummery, Christine L

    2013-06-04

    Cellular reprogramming was recently "crowned" with the award of the Nobel Prize to two of its groundbreaking researchers, Sir John Gurdon and Shinya Yamanaka. The recent link between reprogramming and stem cells makes this appear almost a new field of research, but its historical roots have actually spanned more than a century. Here, the Nobel Prize in Physiology or Medicine 2012 is placed in its historical context.

  17. Galvanic cell for processing of used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  18. Scriptaid Treatment Decreases DNA Methyltransferase 1 Expression by Induction of MicroRNA-152 Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    Full Text Available Abnormal epigenetic reprogramming of donor nuclei after somatic cell nuclear transfer (SCNT is thought to be the main cause of low cloning efficiencies. A growing body of evidence has demonstrated a positive role of Scriptaid, a histone deacetylase inhibitor (HDACi that belongs to an existing class of hydroxamic acid-containing HDACis, on the development competence of cloned embryos in many species. The present study investigated the effects of Scriptaid on the development of porcine SCNT embryos in vitro and its mechanism. Treatment with 300 or 500 nM Scriptaid for 20 h after activation significantly increased the percentage of SCNT embryos that developed to the blastocyst stage and the total number of cells per blastocyst and significantly decreased the percentage of apoptotic cells in blastocysts. Scriptaid treatment significantly increased the level of histone H3 acetylated at K9 and the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and significantly decreased the level of histone H3 trimethylated at K9 at the pronuclear stage. As a potential mechanism for the DNA methylation changes, our results showed that the expression of DNA methyltransferase 1 was frequently down-regulated in Scriptaid-treated embryos in comparison with untreated embryos and was inversely correlated to endogenous microRNA-152 (miR-152. Taken together, these findings illustrated a crucial functional crosstalk between miR-152 and DNMT1. Meanwhile, mRNA and protein levels of POU5F1 and CDX2 were increased in Scriptaid-treated embryos. mRNA levels of Caspase3, and Bax were significantly decreased and that of Bcl-xL was significantly increased in Scriptaid-treated embryos. In conclusion, these observations would contribute to uncover the nuclear reprogramming mechanisms underlying the effects of Scriptaid on the improvement of porcine SCNT embryos.

  19. Statins augment the chemosensitivity of colorectal cancer cells inducing epigenetic reprogramming and reducing colorectal cancer cell 'stemness' via the bone morphogenetic protein pathway

    NARCIS (Netherlands)

    Kodach, L.L.; Jacobs, R.J.; Voorneveld, P.W.; Wildenberg, M.E.; Verspaget, H.W.; van Wezel, T.; Morreau, H.; Hommes, D.W.; Peppelenbosch, M.P.; van den Brink, G.R.; Hardwick, J.C.H.

    2011-01-01

    Promoter hypermethylation is an important and potentially reversible mechanism of tumour suppressor gene silencing in cancer. Compounds that demethylate tumour suppressor genes and induce differentiation of cancer cells, but do not have toxic side effects, would represent an exciting option in cance

  20. PARP activation promotes nuclear AID accumulation in lymphoma cells.

    Science.gov (United States)

    Tepper, Sandra; Jeschke, Julia; Böttcher, Katrin; Schmidt, Angelika; Davari, Kathrin; Müller, Peter; Kremmer, Elisabeth; Hemmerich, Peter; Pfeil, Ines; Jungnickel, Berit

    2016-03-15

    Activation-induced cytidine deaminase (AID) initiates immunoglobulin diversification in germinal center B cells by targeted introduction of DNA damage. As aberrant nuclear AID action contributes to the generation of B cell lymphoma, the protein's activity is tightly regulated, e.g. by nuclear/cytoplasmic shuttling and nuclear degradation. In the present study, we asked whether DNA damage may affect regulation of the AID protein. We show that exogenous DNA damage that mainly activates base excision repair leads to prevention of proteasomal degradation of AID and hence its nuclear accumulation. Inhibitor as well as knockout studies indicate that activation of poly (ADP-ribose) polymerase (PARP) by DNA damaging agents promotes both phenomena. These findings suggest that PARP inhibitors influence DNA damage dependent AID regulation, with interesting implications for the regulation of AID function and chemotherapy of lymphoma.

  1. Recent Progress of Somatic Cell Nuclear Transfer in Pigs

    Institute of Scientific and Technical Information of China (English)

    Xu Xiaoming; Dou Zhongying

    2005-01-01

    Research in the field of somatic cell nuclear transfer (SCNT) and transgenic cloning in pigs has become a global hotspot, because porcine organs probably can be the first source of donor organs for human xenotransplantation. In recent years, though great progress has been made in porcine SCNT, the efficiency of nuclear transfer remains very low (<1% ). Thus, it is necessary to improve the procedure of nuclear transfer and to investigate some basic problems further. Recent progress and the related problems of SCNT in pigs are reviewed and analyzed so as to offer some beneficial illumination to researchers.

  2. Nuclear tristetraprolin acts as a corepressor of multiple steroid nuclear receptors in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Tonatiuh Barrios-García

    2016-06-01

    Full Text Available Tristetraprolin (TTP is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα, which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR, glucocorticoid receptor (GR and androgen receptor (AR. In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

  3. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine

    Institute of Scientific and Technical Information of China (English)

    Grace E.Asuelime; Yanhong Shi

    2012-01-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming.While in recent years,much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state,there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming,including relatively low reprogramming efficiency,the times required for the reprogramming event to take place,the epigenetic instability,and the tumorigenicity associated with the pluripotent state.On the other hand,lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate.It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts.While lineage reprogramming provides exciting potential,there is still much to be assessed before this technology is ready to be applied in a clinical setting.

  4. Trichostatin A rescues the disrupted imprinting induced by somatic cell nuclear transfer in pigs.

    Directory of Open Access Journals (Sweden)

    Yanjun Huan

    Full Text Available Imprinting disorders induced by somatic cell nuclear transfer (SCNT usually lead to the abnormalities of cloned animals and low cloning efficiency. Histone deacetylase inhibitors have been shown to improve gene expression, genomic methylation reprogramming and the development of cloned embryos, however, the imprinting statuses in these treated embryos and during their subsequent development remain poorly studied. In this study, we investigated the dynamics of H19/Igf2 methylation and transcription in porcine cloned embryos treated with trichostatin A (TSA, and examined H19/Igf2 imprinting patterns in cloned fetuses and piglets. Our results showed that compared with the maintenance of H19/Igf2 methylation in fertilized embryos, cloned embryos displayed aberrant H19/Igf2 methylation and lower H19/Igf2 transcripts. When TSA enhanced the development of cloned embryos, the disrupted H19/Igf2 imprinting was largely rescued in these treated embryos, more similar to those detected in fertilized counterparts. Further studies displayed that TSA effectively rescued the disrupted imprinting of H19/Igf2 in cloned fetuses and piglets, prevented the occurrence of cloned fetus and piglet abnormalities, and enhanced the full-term development of cloned embryos. In conclusion, our results demonstrated that aberrant imprinting induced by SCNT led to the abnormalities of cloned fetuses and piglets and low cloning efficiency, and TSA rescued the disrupted imprinting in cloned embryos, fetuses and piglets, and prevented the occurrence of cloned fetus and piglet abnormalities, thereby improving the development of cloned embryos. This study would have important implications in improving cloning efficiency and the health of cloned animals.

  5. Review paper: a review of the pathology of abnormal placentae of somatic cell nuclear transfer clone pregnancies in cattle, sheep, and mice.

    Science.gov (United States)

    Palmieri, C; Loi, P; Ptak, G; Della Salda, L

    2008-11-01

    Cloning of cattle, sheep, and mice by somatic cell nuclear transfer (SCNT) can result in apparently healthy offspring, but the probability of a successful and complete pregnancy is less than 5%. Failures of SCNT pregnancy are associated with placental abnormalities, such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium, and altered basement membrane. The pathogenesis of these changes is poorly understood, but current evidence implicates aberrant reprogramming of donor nuclei by the recipient oocyte cytoplast, resulting in epigenetic modifications of key regulatory genes essential for normal placental development. The purpose of this review is to provide an overview of the anatomic pathology of abnormal placentae of SCNT clones and to summarize current knowledge concerning underlying pathogenetic mechanisms.

  6. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yingying; Chen, Xi; Yu, Dehai [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Tao [Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Cui, Jiuwei; Wang, Guanjun [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Hu, Ji-Fan, E-mail: jifan@stanford.edu [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China); Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304 (United States); Li, Wei, E-mail: jdyylw@163.com [Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061 (China)

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  7. Hot-cell for dismantling of nuclear gauges

    CERN Document Server

    Reis, L C A

    2000-01-01

    This work objectives the design of a hot-cell that will be used for dismantling of nuclear gauges. In the hot-cell, nuclear gauges received as radioactive waste at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN will be dismantled, in order to decrease the volume of radioactive waste to be stored at the Center. Sources originally conditioned as special form radioactive material will be tested and in case do not present leakage, the respective gauges will be disposable for reusing by radioisotope users. The remaining sources will be taken off the original shielding and conditioned in special packages adequate for storage and disposal. All steps of work, the hot-cell design and methodology for conditioning are also described.

  8. Nuclear motility in glioma cells reveals a cell-line dependent role of various cytoskeletal components.

    Directory of Open Access Journals (Sweden)

    Alexa Kiss

    Full Text Available Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns--thereby forced into a bipolar morphology--displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved.

  9. KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency

    Directory of Open Access Journals (Sweden)

    Shin-Il Kim

    2015-04-01

    Full Text Available As the quintessential reprogramming model, OCT3/4, SOX2, KLF4, and c-MYC re-wire somatic cells to achieve induced pluripotency. Yet, subtle differences in methodology confound comparative studies of reprogramming mechanisms. Employing transposons, we systematically assessed cellular and molecular hallmarks of mouse somatic cell reprogramming by various polycistronic cassettes. Reprogramming responses varied in the extent of initiation and stabilization of transgene-independent pluripotency. Notably, the cassettes employed one of two KLF4 variants, differing only by nine N-terminal amino acids, which generated dissimilar protein stoichiometry. Extending the shorter variant by nine N-terminal amino acids or augmenting stoichiometry by KLF4 supplementation rescued both protein levels and phenotypic disparities, implicating a threshold in determining reprogramming outcomes. Strikingly, global gene expression patterns elicited by published polycistronic cassettes diverged according to each KLF4 variant. Our data expose a Klf4 reference cDNA variation that alters polycistronic factor stoichiometry, predicts reprogramming hallmarks, and guides comparison of compatible public data sets.

  10. Molecular structure and biological function of proliferating cell nuclear antigen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Proliferating cell nuclear antigen (PCNA) is the core component of replication complex in eukaryote.As a processive factor of DNA polymerase delta, PCNA coordinates the replication process by interacting with various replication proteins. PCNA appears to play an essential role in many cell events, such as DNA damage repair, cell cycle regulation, and apoptosis, through the coordination or organization of different partners. PCNA is an essential factor in cell proliferation, and has clinical significance in tumor research. In this article we review the functional structure of PCNA, which acts as a function switch in different cell events.

  11. Research Advances and Forecast Prospect of Somatic Reprogramming%体细胞重编程研究进展及前景展望

    Institute of Scientific and Technical Information of China (English)

    蒋明贵; 汪妹; 肖亚梅; 赵小阳

    2012-01-01

    体细胞重编程是指已分化的体细胞通过体细胞核移植或转录因子诱导等手段重建其表观遗传标记,恢复胚胎期多能性或全能性状态的过程.由于这一发现革新了人们对发育生物学的理解,同时具有良好的应用前景,今年的诺贝尔生理或医学奖授予了在该领域做出创造性贡献的两位科学家——约翰·戈登(John Gurdon)和山中伸弥(Shinya Yamanaka).目前广泛使用的体细胞重编程手段主要有体细胞核移植和诱导多能性干细胞.由于诱导多能干细胞(induced pluripotent stem cells,iPS cells)能够分化为机体所有的细胞类型,因此,在药物筛选、疾病病理学研究、细胞替代治疗等领域具有重要的应用价值和前景.本文将简要回顾这一领域的发展过程,并讨论本领域未来面临的主要问题.%Nuclear reprogramming is a process erasing a differentiated adult cell's epigenetic marks and reverting it to the pluripotent state by somatic cell nuclear transfer or induced pluripotent stem cells. Because this finding reforms our understandings to the development and cell fate determination, and because of its bright application prospect, the Nobel Prize in physiology or medicine 2012 has been awarded to two scientists John Gurdon and Shinya Yamanaka, who contributed to this field creatively. There are two major approaches of nuclear reprogramming: somatic cell nuclear transfer and induced pluripotent stem (iPS) cells. The iPS cells could differentiate into all cell types of the body, it might have wildly applications in drug screening, pathogenesis of diseases and cell therapy. Here we will briefly introduce the developing process of the reprogramming research and its future orientation.

  12. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies

    Institute of Scientific and Technical Information of China (English)

    Susumu; Kohno; Shunsuke; Kitajima; Nobunari; Sasaki; Chiaki; Takahashi

    2016-01-01

    Carcinogenic transformation of somatic cells resembles nuclea