WorldWideScience

Sample records for cell noble metal

  1. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  2. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals wer......-Phase-Boundary (TPB), and consequently the dissolution of the noble metal catalysts. (C) 2010 Elsevier B.V. All rights reserved....

  3. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    . Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were...

  4. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  5. Biomimetic Synthesis of Noble Metal Nanoparticles and Their Applications as Electro-catalysts in Fuel Cells

    OpenAIRE

    Li, Yujing

    2012-01-01

    Today, proton electrolyte membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) are attractive power conversion devices that generate fairly low or even no pollution, and considered to be potential to replace conventional fossil fuel based power sources on automobiles. The operation and performance of PEMFC and DMFC depend largely on electro-catalysts positioned between the electrode and the membranes. The most commonly used electro-catalysts for PEMFC and DMFC are Pt-based noble me...

  6. Carbon Nanotubes and Other Nanostructures as Support Material for Nanoparticulate Noble-Metal Catalysts in Fuel Cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Veltzé, Sune; Skou, Eivind Morten

    platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1-5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible for...

  7. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala;

    platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible for...

  8. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  9. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  10. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  11. Noble metal superparticles and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  12. One parameter model potential for noble metals

    International Nuclear Information System (INIS)

    A phenomenological one parameter model potential which includes s-d hybridization and core-core exchange contributions is proposed for noble metals. A number of interesting properties like liquid metal resistivities, band gaps, thermoelectric powers and ion-ion interaction potentials are calculated for Cu, Ag and Au. The results obtained are in better agreement with experiment than the ones predicted by the other model potentials in the literature. (author)

  13. Strategic role of selected noble metal nanoparticles in medicine.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Birla, Sonal; Yadav, Alka; Santos, Carolina Alves Dos

    2016-09-01

    Noble metals and their compounds have been used as therapeutic agents from the ancient time in medicine for the treatment of various infections. Recently, much progress has been made in the field of nanobiotechnology towards the development of different kinds of nanomaterials with a wide range of applications. Among the metal nanoparticles, noble metal nanoparticles have demonstrated potential biomedical applications. Due to the small size, nanoparticles can easily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. Noble metal nanoparticles inspired the researchers due to their remarkable role in detection and treatment of dreadful diseases. In this review, we have attempted to focus on the biomedical applications of noble metal nanoparticles particularly, silver, gold, and platinum in diagnosis and treatment of dreaded diseases such as cancer, human immunodeficiency virus (HIV), tuberculosis (TB), and Parkinson disease. In addition, the role of silver nanoparticles (AgNPs) such as novel antimicrobials, gold nanoparticles (AuNPs) such as efficient drug carrier, uses of platinum nanoparticles (PtNPs) in bone allograft, dentistry, etc. have been critically reviewed. Moreover, the toxicity due to the use of metal nanoparticles and some unsolved challenges in the field have been discussed with their possible solutions. PMID:26089024

  14. Optical response of noble metal alloy nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, Amit, E-mail: amit.bansal133@yahoo.com; Verma, S.S.

    2015-01-23

    The optical response, stability, and cost-effectiveness of individual noble metals can be improved by combining them to form alloy nanostructures. The present work reveals the influence of shape, size, and metal type on the optical response of alloy nanoparticles using discrete dipole approximation (DDA) simulations. It is found that sharp corner nanostructures show enhanced plasmonic properties in comparison to rounded counterpart. For all the three shapes, viz., nanocubes, rectangular, and nanobar particles, the increase in length resulted in redshifts of the longitudinal plasmon resonance alongwith enhancement in the scattering yield as well as relative efficiency parameters except for nanocubes of edge length 120 nm. The effect of size on full width at half maxima (FWHM) has also been studied and found to be maximal for nanocubes in comparison to other nanostructures. - Highlights: • The optical response of alloy nanostructures has been studied by discrete dipole approximation. • Sharp corner nanostructures show enhanced plasmonic properties. • Nanobars may be preferred over other nanostructures for absorption-based plasmonic applications. • Nanocubes of edge length greater than 100 nm may be useful for plasmonic solar cells. • Rectangular and nanobar particles may be preferred over nanocubes in plasmon sensing.

  15. Optical response of noble metal alloy nanostructures

    International Nuclear Information System (INIS)

    The optical response, stability, and cost-effectiveness of individual noble metals can be improved by combining them to form alloy nanostructures. The present work reveals the influence of shape, size, and metal type on the optical response of alloy nanoparticles using discrete dipole approximation (DDA) simulations. It is found that sharp corner nanostructures show enhanced plasmonic properties in comparison to rounded counterpart. For all the three shapes, viz., nanocubes, rectangular, and nanobar particles, the increase in length resulted in redshifts of the longitudinal plasmon resonance alongwith enhancement in the scattering yield as well as relative efficiency parameters except for nanocubes of edge length 120 nm. The effect of size on full width at half maxima (FWHM) has also been studied and found to be maximal for nanocubes in comparison to other nanostructures. - Highlights: • The optical response of alloy nanostructures has been studied by discrete dipole approximation. • Sharp corner nanostructures show enhanced plasmonic properties. • Nanobars may be preferred over other nanostructures for absorption-based plasmonic applications. • Nanocubes of edge length greater than 100 nm may be useful for plasmonic solar cells. • Rectangular and nanobar particles may be preferred over nanocubes in plasmon sensing

  16. Extraction of refractory noble metals

    International Nuclear Information System (INIS)

    Review of the literature data published during the past ten years devoted to extraction of refractory metals (Zr, Mo, Hf, W, Re) is presented. Considered are extractants and reagents used in the processes, kinetics, efficiency of separation and isolation processes. Methods of solvent extraction of refractory metals used in analytical chemistry are analyzed. Extraction methods of refractory metal isolation directly from solid phase are considered

  17. Oxygen adsorption at noble metal/TiO2 junctions

    Science.gov (United States)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.

    2016-03-01

    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  18. Noble Metals Would Prevent Hydrogen Embrittlement

    Science.gov (United States)

    Paton, N. E.; Frandsen, J. D.

    1987-01-01

    According to proposal, addition of small amounts of noble metals makes iron- and nickel-based alloys less susceptible to embrittlement by hydrogen. Metallurgists demonstrated adding 0.6 to 1.0 percent by weight of Pd or Pt eliminates stress/corrosion cracking in type 4130 steel. Proposal based on assumption that similar levels (0.5 to 1.0 weight percent) of same elements effective against hydrogen embrittlement.

  19. Engineering noble metal nanomaterials for environmental applications

    Science.gov (United States)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  20. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  1. Theoretical study of metal noble-gas positive ions

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  2. Probing biopolymer conformation by metallization with noble metals

    International Nuclear Information System (INIS)

    We propose a novel method for the simple visual (colorimetric) and spectroscopic monitoring of the conformational state of a biopolymer. We present an experimental example of the detection of the change in the conformation of a giant DNA molecule. This methodology is based on the difference in the manner of metallization with noble metals on a polymer scaffold depending on its conformation. Spectroscopic analysis of the metallization of DNA by metallic silver or gold provides information on the critical concentration of DNA binder, at which the folding transition from the elongated into the compact state occurs, together with the dimension and morphology of a compact DNA condensate. This method may be suitable for use in a rapid screening procedure for the high-throughput analysis of large chemical libraries to evaluate their ability to induce DNA compaction, protein folding and similar important processes

  3. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    Science.gov (United States)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  4. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support and...... electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... a significant role in the performance of the final electrode product. In this work, ex situ study of Nafion ionomer isothermal adsorption on catalysts / support materials is carried out. Experimental technique and method are improved based on earlier experience. Observation of Nafion ionomer in...

  5. [Polyacrylates of noble metals as potential antitumor drugs].

    Science.gov (United States)

    Ostrovskaia, L A; Voronkov, M G; Korman, D B; Bliukhterova, N V; Fomina, M M; Rykova, V A; Abzaeva, K A; Zhilitskaia, L V

    2014-01-01

    The antitumor activity of polyacrylates of the noble metals containing argentum (argacryl), aurum (auracryl) and platinum (platacryl) has been studied using experimental murine solid tumor models (Lewis lung carcinoma and Acatol adenocarcinoma). It has been found that polyacrylates of the noble metals are capable of inhibiting tumor development by 50-90% compared to control. Auracryl that inhibites the growth of Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90%, respectively, compared to control is the most efficient among the tested compounds and can be recommended for the further profound preclinical studies. PMID:25707247

  6. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    Science.gov (United States)

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports

  7. Antitumor activity of polyacrylates of noble metals in experiment

    OpenAIRE

    Larisa A. Ostrovskaya; David B. Korman; Natalia V. Bluhterova; Margarita M. Fomina; Valentina A. Rikova; Claudia A. Abzaeva; Larisa V. Zhilitskaya; Nina O. Yarosh

    2014-01-01

    The aim of this research has been the study of the antitumor activity of polymetalacrylate derivatives containing in their structure noble metals. Metallic derivatives of polyacrylic acid were not previously tested as antitumor agents.The antitumor activity of polyacrylates, containing argentum (argacryl), aurum (auracryl) and platinum (platacryl) against experimental models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma) as well as acute toxicity have been studied. It...

  8. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto; Jossen, Rainer; Pratsinis, Sotiris E.; Johannessen, Tue

    [3,4], palladium [5], silver [6] and gold [7] crystallites on Al2O3 [3,5], SiO2 [7] and TiO2 [4,6,7] in a single step.. The as-prepared materials exhibited a high external specific surface area (40 – 320 m2 g-1) [3-7] with a high degree of crystallinity and an excellent noble metal distribution [3...... conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...... particle size is mainly dependent on its loading [3,7]. In this study, the role of the supporting metal oxide on the noble metal particle size was systematically investigated for the flame spray pyrolysis process. The materials were produced at fixed process conditions such as resident time of the...

  9. Sintering and ripening resistant noble metal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  10. Antitumor activity of polyacrylates of noble metals in experiment

    Directory of Open Access Journals (Sweden)

    Larisa A. Ostrovskaya

    2014-08-01

    Full Text Available The aim of this research has been the study of the antitumor activity of polymetalacrylate derivatives containing in their structure noble metals. Metallic derivatives of polyacrylic acid were not previously tested as antitumor agents.The antitumor activity of polyacrylates, containing argentum (argacryl, aurum (auracryl and platinum (platacryl against experimental models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma as well as acute toxicity have been studied. It is found that the polyacrylates of noble metals are able to inhibit tumor growth up to 50-90% in comparison with the control. Auracryl induced the inhibition of the Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90% in comparison with the control, results recommending it for further advanced preclinical studies.

  11. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.

    Science.gov (United States)

    Sanabria-Chinchilla, Jean; Asazawa, Koichiro; Sakamoto, Tomokazu; Yamada, Koji; Tanaka, Hirohisa; Strasser, Peter

    2011-04-13

    We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells. PMID:21425793

  12. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Silicon nanocrystal-noble metal hybrid nanoparticles

    Science.gov (United States)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  14. Noble metal-free hydrogen evolution catalysts for water splitting.

    Science.gov (United States)

    Zou, Xiaoxin; Zhang, Yu

    2015-08-01

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts. PMID:25886650

  15. Determination of thin noble metal layers using laser ablation ICP-MS: An analytical tool for NobleChem technology

    International Nuclear Information System (INIS)

    concentration on highly radioactive deposition and crack/crevice monitors or components/fuel surfaces are required. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is a promising method for this purpose. LA-ICP-MS has gained increasing popularity over the last decade for the direct multi-element determination of major, minor, and trace elements in a variety of solid materials in geology, chemistry, metallurgy and biology. From the early experiments with IR laser, the development moved quickly towards the use of UV lasers. Shorter wavelength improved the laser-sample interaction primarily for transparent samples. Several types of lasers are in use, whereas the most widespread used LA systems are based on Nd:YAG lasers operating at the fourth harmonic at 266 nm. It offers the advantages of high spatial resolution, low sample preparation needs, low limits of detection and good quantification capabilities. A lot of effort has been made in the last years to improve the sensitivity of the technique and to simplify the quantification. Most of the work carried out focused on the sampling in terms of the laser wavelengths, pulse duration, carrier gas and ablation cell design as significant parameters influencing the aerosol generation, transport to the ICP and ionisation therein. Laser ablation ICP-MS has previously been used for thin layer and depth profile analyses. The detection and quantification capabilities for the determination of local noble metal concentrations using LA-ICP-MS were evaluated by the analysis of austenitic stainless steel samples homogeneously coated with platinum. The paper has the following structure: Introduction; Experimental; Sample preparation; Instrumentation; Results; Conclusion. To summarize, in a first series of experiments on platinum coated steel samples the linear dynamic range of the method and the detection limits for platinum within thin layers were determined. The analysis of Pt coated stainless steel samples with

  16. Ultrafast Hot Carrier Scattering and Generation from Surface Plasmons in Noble Metals

    Science.gov (United States)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-03-01

    Non-equilibrium ``hot''carriers in materials are challenging to study experimentally as they thermalize at subpicosecond time and nanometer length scale. Recent experiments employed hot carriers generated by light absorption or surface plasmon annihilation in noble metals (e.g., Au and Ag) for catalysis and solar cells. The energy distribution and transport of the generated hot carriers play a key role in these experiments. We present ab initio calculations of the energy distribution of hot carriers generated by surface plasmons in noble metals, and the relaxation time and mean free path of the hot carriers along different crystal directions within 5 eV of the Fermi energy. Our calculations show the interplay of the noble metal s and d bands in determining the damping rate of the plasmon and the mean free path of the hot carriers. The trends we find as a function of surface plasmon momentum and frequency allow us to define optimal experimental conditions for hot carrier generation and extraction. Our approach combines density functional theory, GW, and electron-phonon calculations. Our work provides microscopic insight into hot carriers in noble metals, and their ultrafast dynamics in the presence of surface plasmons.

  17. Electrocontact materials, means to save tungsten and noble metals. Review

    Energy Technology Data Exchange (ETDEWEB)

    Minakova, R.V.; Braterskaya, G.N.; Teodorovich, O.K. (AN Ukrainskoj SSR, Kiev. Inst. Problem Materialovedeniya)

    Periodicals, patent literature and firm catalogues are analyzed. It is shown that functional usefulness of the contact pair may be ensured only by means of ..delta..- signing'' heterogenous multicomponent materials whose constituents are chosen by investigating physical and chemical processes, influenced by various factors, and objective choice of criteria to estimate materials for given operating conditions. Certain means are shown expedient for saving tungsten and noble metals.

  18. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells.

    Science.gov (United States)

    Abdurhman, Abduraouf Alamer Mohamed; Zhang, Yan; Zhang, Guoan; Wang, Shuai

    2015-10-01

    We report the design and fabrication of a new type of nanohybrid microelectrode based on a hierarchical nanostructured Au/MnO2/graphene-modified carbon fiber (CF) via in situ electrochemical synthesis, which leads to better structural integration of different building blocks into the CF microelectrode. Our finding demonstrates that wrapping CF with graphene nanosheets has dramatically increased the surface area and electrical conductivity of the CF microelectrode. The subsequent template-free electrodeposition of MnO2 on graphene-wrapped CF gives rise to a porous nanonest architecture built up from twisted and intersectant MnO2 nanowires, which serves as an ideal substrate for the direct growth of Au nanoparticles. Owing to the structural merit and synergy effect between different components, the hierarchical nanostructured noble metal/metal oxide/graphene-coated CF demonstrates dramatically enhanced electrocatalytic activity. When used for nonenzymatic H2O2 sensing, the resultant modified microelectrode exhibits acceptable sensitivity, reproducibility, stability, and selectivity, which enable it to be used for real-time tracking H2O2 secretion in human cervical cancer cells. Graphical abstract A schematic illustration of preparation of hierarchical Au/MnO2/ERGO/CF nanohybrid electrode for real-time molecular detection of cancer cells. PMID:26359235

  19. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  20. Surface Plasmon Waves on noble metals at Optical Wavelengths

    Directory of Open Access Journals (Sweden)

    Niladri Pratap Maity

    2011-05-01

    Full Text Available In this paper the variation of the propagation constant, the attenuation coefficient, penetration depth inside the metal and the dielectric has been evaluated. The propagation characteristics of Surface Plasmon Waves (SPWs which exists on noble metals like gold (Au, silver (Ag and aluminium (Al due to the formation of Surface Plasmon Polaritons (SPPs, have been evaluated theoretically and simulated. It has been found that highly conducting metals Au and Ag provide a strong confinement to the SPWs than Al at optical frequencies. The comparative study reveals that metal having higher conductivity can support a more confined SPW, having a lower penetration depth than metals of lower conductivity at terahertz frequencies when its dielectric constant assumes a negative value.

  1. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  2. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts.

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S; Kumta, Prashant N

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  3. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-01-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations. PMID:27380719

  4. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; Agee, C. B.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approx.576-867 C. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Metallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120deg triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3+, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  5. Noble Metals and Spinel Settling in High Level Waste Glass Melters

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Perez, Joseph M.

    2000-09-30

    In the continuing effort to support the Defense Waste Processing Facility (DWPF), the noble metals issue is addressed. There is an additional concern about the amount of noble metals expected to be present in the future batches that will be considered for vitrification in the DWPF. Several laboratory, as well as melter-scale, studies have been completed by various organizations (mainly PNNL, SRTC, and WVDP in the USA). This letter report statuses the noble metals issue and focuses at the settling of noble metals in melters.

  6. Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Scarselli, M.; Camilli, L.; Castrucci, P.; De Crescenzi, M. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Matthes, L. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Institut fuer Festkoepertheorie und optik, Friedrich Schiller Universitaet, Max-Wien Platz 1, Jena (Germany); Pulci, O. [Dipartimento di Fisica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); ETSF, MIFO, and CNR-ISM, Via del Fosso del Cavaliere, Roma (Italy); Gatto, E.; Venanzi, M. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy)

    2012-12-10

    In this Letter, we investigated the photo-response of multi wall carbon nanotube-based composites obtained from in situ thermal evaporation of noble metals (Au, Ag, and Cu) on the nanotube films. The metal deposition process produced discrete nanoparticles on the nanotube outer walls. The nanoparticle-carbon nanotube films were characterized by photo-electrochemical measurements in a standard three electrode cell. The photocurrent from the decorated carbon nanotubes remarkably increased with respect to that of bare multiwall tubes. With the aid of first-principle calculations, these results are discussed in terms of metal nanoparticle-nanotube interactions and electronic charge transfer at the interface.

  7. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  8. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  9. Functionalized magnetite particles for adsorption of colloidal noble metal nanoparticles.

    Science.gov (United States)

    Lopes, Joana L; Marques, Karine L; Girão, Ana V; Pereira, Eduarda; Trindade, Tito

    2016-08-01

    Magnetite (inverse spinel type) particles have been surface-modified with siliceous shells enriched in dithiocarbamate groups. The deposition of colloidal noble metal nanoparticles (Au, Ag, Pt, Pd) onto the modified magnetites can be performed by treating the respective hydrosols with the magnetic sorbents, thus allowing their uptake from water under a magnetic gradient. In particular, for Au colloids, these magnetic particles are very efficient sorbents that we ascribe to the strong affinity of sulfur-containing groups at the magnetite surfaces for this metal. Considering the extensive use of Au colloids in laboratorial and industrial contexts, the approach described here might have an impact on the development of nanotechnologies to recover this precious metal. En route to these findings, we varied several operational parameters in order to investigate this strategy as a new bottom-up assembly method for producing plasmonic-magnetic nanoassemblies. PMID:27156089

  10. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  11. A New Model Describing the Metal-Support Interaction in Noble Metal Catalysts

    NARCIS (Netherlands)

    Koningsberger, D.C.; Mojet, B.L.; Miller, J.T.; Ramaker, D.E.

    1999-01-01

    The catalytic activity and spectroscopic properties of supported noble metal catalysts are strongly influenced by the acidity/alkalinity of the support but are relatively independent of the metal (Pd or Pt) or the type of support (zeolite LTL or SiO{2}). As the alkalinity of the support increases, t

  12. Noble Metal Arsenides and Gold Inclusions in Northwest Africa 8186

    Science.gov (United States)

    Srinivasan, P.; McCubbin, F. M.; Rahman, Z.; Keller, L. P.; Agee, C. B.

    2016-01-01

    CK carbonaceous chondrites are a highly thermally altered group of carbonaceous chondrites, experiencing temperatures ranging between approximately 576-867 degrees Centigrade. Additionally, the mineralogy of the CK chondrites record the highest overall oxygen fugacity of all chondrites, above the fayalite-magnetite-quartz (FMQ) buffer. Me-tallic Fe-Ni is extremely rare in CK chondrites, but magnetite and Fe,Ni sulfides are commonly observed. Noble metal-rich inclusions have previously been found in some magnetite and sulfide grains. These arsenides, tellurides, and sulfides, which contain varying amounts of Pt, Ru, Os, Te, As, Ir, and S, are thought to form either by condensation from a solar gas, or by exsolution during metamorphism on the chondritic parent body. Northwest Africa (NWA) 8186 is a highly metamorphosed CK chondrite. This meteorite is predominately composed of NiO-rich forsteritic olivine (Fo65), with lesser amounts of plagioclase (An52), augite (Fs11Wo49), magnetite (with exsolved titanomagnetite, hercynite, and titanohematite), monosulfide solid solution (with exsolved pentlandite), and the phosphate minerals Cl-apatite and merrillite. This meteorite contains coarse-grained, homogeneous silicates, and has 120-degree triple junctions between mineral phases, which indicates a high degree of thermal metamorphism. The presence of NiO-rich olivine, oxides phases all bearing Fe3 plus, and the absence of metal, are consistent with an oxygen fugacity above the FMQ buffer. We also observed noble metal-rich phases within sulfide grains in NWA 8186, which are the primary focus of the present study.

  13. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  14. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Hua

    2016-01-01

    The functional properties of noble metal nanomaterials are determined by their size, shape, composition, architecture and crystal structure/phase. In recent years, the crystal phase control of noble metal nanomaterials has emerged as an efficient and versatile strategy to tune their properties. In this tutorial review, we will give an overview of the latest research progress in the crystal phase-controlled synthesis of noble metal nanomaterials. Moreover, the crystal phase-dependent chemical and physical properties (e.g. chemical stability, magnetic, electrical and optical properties) and catalytic applications (e.g. oxygen reduction reaction, and oxidation reactions of formic acid, methanol and carbon monoxide) of noble metal nanomaterials are also briefly introduced. Finally, based on the current research status of the crystal phase-controlled synthesis of noble metal nanomaterials, we will provide some perspectives on the challenges and opportunities in this emerging research field. PMID:26584059

  15. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  16. Platinum-group and noble metals under oxidizing conditions

    International Nuclear Information System (INIS)

    Platinum-group metals and noble metals play an important role in catalysis, for total oxidation as well as for partial oxidation reactions. Only in recent years have advances in microscopic, spectroscopic and computer simulation techniques made it possible to investigate the interaction of oxygen with metallic substrates at an atomistic level. We present an overview on the formation of adsorption structures and surface oxides on Rh, Pd, Ag, Cu and Pt surfaces, with particular focus on the phase diagrams calculated from first-principles thermodynamics. The low-index (111), (100) and (110) surfaces as well as selected high-index surfaces have been considered. We predict the stability of novel structures such as the c(4 x 6) on Cu(100) and the α-PtO2 trilayer on Pt(100). The knowledge of the Gibbs free surface energies allows us to predict the adsorbate-induced changes in the thermodynamic equilibrium shape of metal nanoparticles. At low oxygen chemical potential, corresponding to clean surfaces, the (111) facets dominate the particle shape, with a significant contribution from (100) facets. But even under these conditions a small fraction of the overall surface corresponds to more open facets. As oxygen adsorption sets in, their contribution becomes larger. At high oxygen partial pressures, surface oxides form on the platinum-group metals. They do not only display different chemical properties than the metal, but also determine the exposed surface orientations of the particles. The latter effect might play an important role for the catalytic activity of transition metal nanoparticles

  17. Supported heteronuclear noble metal cluster catalysts and method for preparing same

    International Nuclear Information System (INIS)

    New heteronuclear noble metal cluster complexes have been discovered and synthesized for the first time. These complexes are (pyridine)2Pt(Ir2(CO)15), (pyridine)2 Pt(Ir2(CO)7), (Pyridine)3Pt(Ru3(CO)12), ((C6H5)3P)2Pt(Ir(CO)3(P6H5)3)2, ((C6H5)3P)2Rh(CO)(IR(CO)4), and (pyridine)2Pt(Rh(CO)2(P(C6H5)3)3)2. These new heteronuclear noble metal cluster complexes are useful as supported mixed noble metal catalyst precursors. These new cluster complexes, of known stoichiometry, are deposited on anhydrous refractory inorganic oxide or carbon supports and then reduced resulting in the formation of a supported heteronuclear noble metal catalyst having the same metals stoichiometry as the starting cluster complexes. In this way, precise control can be exercised over the ratio and distribution of multiple metal components in a mixed noble metal catalyst. The usage of preformed heteronuclear noble metal cluster complexes as supported mixed metal catalyst precursors maximizes surface alloy formation and also yields unique mixed-metal cluster structures on the support surface

  18. Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals

    OpenAIRE

    S. Basu; Basu, P. K.

    2009-01-01

    Methane is an important gas for domestic and industrial applications and its source is mainly coalmines. Since methane is extremely inflammable in the coalmine atmosphere, it is essential to develop a reliable and relatively inexpensive chemical gas sensor to detect this inflammable gas below its explosion amount in air. The metal oxides have been proved to be potential materials for the development of commercial gas sensors. The functional properties of the metal oxide-based gas sensors can ...

  19. Noble metal/functionalized cellulose nanofiber composites for catalytic applications.

    Science.gov (United States)

    Gopiraman, Mayakrishnan; Bang, Hyunsik; Yuan, Guohao; Yin, Chuan; Song, Kyung-Hun; Lee, Jung Soon; Chung, Ill Min; Karvembu, Ramasamy; Kim, Ick Soo

    2015-11-01

    In this study, cellulose acetate nanofibers (CANFs) with a mean diameter of 325 ± 2.0 nm were electrospun followed by deacetylation and functionalization to produce anionic cellulose nanofibers (f-CNFs). The noble metal nanoparticles (RuNPs and AgNPs) were successfully decorated on the f-CNFs by a simple wet reduction method using NaBH4 as a reducing agent. TEM and SEM images of the nanocomposites (RuNPs/CNFs and AgNPs/CNFs) confirmed that the very fine RuNPs or AgNPs were homogeneously dispersed on the surface of f-CNFs. The weight percentage of the Ru and Ag in the nanocomposites was found to be 13.29 wt% and 22.60 wt% respectively; as confirmed by SEM-EDS analysis. The metallic state of the Ru and Ag in the nanocomposites was confirmed by XPS and XRD analyses. The usefulness of these nanocomposites was realized from their superior catalytic activity. In the aerobic oxidation of benzyl alcohol to benzaldehyde, the RuNPs/CNFs system gave a better yield of 89% with 100% selectivity. Similarly, the AgNPs/CNFs produced an excellent yield of 99% (100% selectivity) in the aza-Michael reaction of 1-phenylpiperazine with acrylonitrile. Mechanism has been proposed for the catalytic systems. PMID:26256382

  20. Effect of Pressure on the Diffusion Rates in Noble Metals

    International Nuclear Information System (INIS)

    It is possible to find the activation volume, ΔV, for diffusion in solids by the thermodynamic relation (∂ΔG/∂P)T = ΔV , where ΔG is the Gibbs free energy for the process. In noble metals, self-diffusion rate measurement as a function of pressure at a constant temperature will then lead to the determination of the volume of a mole of vacancy in motion, since vacancy mechanism is established for these metals. Employing the standard technique of using a radioactive tracer and lathe sectioning, one can determine the diffusion rates in specimens subjected to diffusion runs at high temperature and at high pressures generated within a vessel containing pressurized gas. The activation volume for self-diffusion in gold was thus found to be 7.2 cm3/mole and that for self-diffusion in silver was found to be 9.3 cm3 /mole. It is possible to apply the same method to study the diffusion of impurities in an otherwise pure crystal. Diffusion of indium and antimony in silver was studied as a function of pressure. The results agree well with the screening theory developed by Lazarus and LeClaire. (author)

  1. Fluorescence enhancement in visible light: dielectric or noble metal?

    Science.gov (United States)

    Sun, S; Wu, L; Bai, P; Png, C E

    2016-07-28

    A high permittivity dielectric gives the impression of outperforming plasmonic noble metal in visible light fluorescence enhancement primarily because of its small loss. Nonetheless, the performances of these two platforms in various situations remain obscure due to the different optical confinement mechanisms as well as the complexity in the fluorescence enhancement process. This study presents a comprehensive comparison between these two platforms based on nanoparticles (NPs) to evaluate their capability and applicability in fluorescence enhancement by taking into account the fluorescence excitation rate, the quantum yield, the fluorophore wavelengths and Stokes shifts as well as the far field intensity. In a low permittivity sensing medium (e.g. air), the dielectric NP can achieve comparable or higher fluorescence enhancement than the metal NP due to its decent NP-enhanced excitation rate and larger quantum yield. In a relatively high permittivity sensing medium (e.g. water), however, there is a significant decrement of the excitation rate of the dielectric NP as the permittivity contrast decreases, leading to a smaller fluorescence enhancement compared to the metallic counterpart. Combining the fluorescence enhancement and the far field intensity studies, we further conclude that for both dielectric and plasmonic NPs, the optimal situation occurs when the fluorescence excitation wavelength, the fluorescence emission wavelength and the electric-dipole-mode of the dielectric NP (or the plasmonic resonance of the metal NP) are the same and all fall in the low conductivity region of the NP material. We also find that the electric-dipole-mode of the dielectric NP performs better than the magnetic-dipole-mode for fluorescence enhancement applications because only the electric-dipole-mode can be strongly excited by the routinely used fluorescent dyes and quantum dots, which behave as electric dipoles by nature. PMID:27374052

  2. Formation and application of Nano Noble metal particles to mitigate stress corrosion cracking in BWR

    International Nuclear Information System (INIS)

    Boiling water nuclear reactors (BWRs) throughout the world have applied the NobleChem™ (or noble metal chemical addition: NMCA) or Online NMCA (OLNC) process just before end-of-cycle shutdown or during an operation to mitigate the stress corrosion cracking (SCC) of structural materials in BWRs. When injected into BWR environments, the noble metal particles deposit on Type 304 stainless steel surfaces and reduce the corrosion potential, which decreases the propensity for SCC. Very fine noble metal particles are formed and able to potentially deposit inside a crack and maintain catalytic surfaces in the critical regions inside the crack. This paper demonstrates the sonochemical method for producing Pt nanoparticles and describes the feasibility of using noble metal nanoparticles to mitigate the stress corrosion cracking of structural materials in BWRs , called Nano NobleChem™. Several methods were explored to create Pt nanoparticles by the high intensity sonication of micron size of Pt and PtO2. This new approach would also enable the application of noble metal technology while the reactor is in operation. (author)

  3. Does noble metal modification improve the photocatalytic activity of BiOCl?

    Institute of Scientific and Technical Information of China (English)

    Liang Kong; Zheng Jiang; Henry H.-C. Lai; Tiancun Xiao; Peter P. Edwards

    2013-01-01

    Noble metal-surface-deposited BiOCl photocatalysts were prepared through photo-deposition and used for photodecomposition of Rhodamine B (RhB). The received materials were characterised using X-ray photoemission spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and X-ray diffraction (XRD) to understand the influence of surface deposited noble metals. The results showed that the noble metal species on the surface of BiOCl are in metallic state, which also brought about enhanced light absorption in broad UV-vis region due to plasmonic effects induced by the surface-deposited noble metal species. All the samples showed good activity in photodecomposition of RhB under UV-light irradiation, but only Ag/BiOCl was more active than bulk BiOCl. The mechanism of the different reactivity of these noble-metal modified BiOCl was tentatively proposed based on the band structure and the interactions between noble metals and the BiOCl.

  4. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    OpenAIRE

    Battocchio Chiara; Polzonetti Giovanni; Cametti Cesare; Fratoddi Ilaria; Venditti Iole; Russo Maria

    2011-01-01

    Abstract Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells cont...

  5. Methods for multielement analysis of high purity noble metals

    International Nuclear Information System (INIS)

    The current state of four main methods for analysis of high purity noble metals: atomic-absorption, atomic-emission, neutron-activation and spark source mass spectrometry methods. Most of impurities, 65 elements including Cs, Be, B, Sc, In, Zr, Hf, V, Nb, Ta, Mo, W, Tl, Te, Re, I, Ru, Th, U, RE and others, are determined by the method of spark source mass spectrometry. The detection limits for most of impurities are at the 10-6-10-8% level. The neutron-activation analysis possess the lowest detection limits. In the given case the detection limits can be reduced on account of sample irradiation in the 1-5x1014 n/cm2 x s neutron fluxes 10-15 times; on account of increasing the mass of samples analyzed up to 1g - 10 times; on account of using Ge(Li)-detectors with sensitive volume of 100-150 cm3 - 3-7 times. Thus under simultaneous realization of these conditions the detection limits are reduced approximately 5x103 times. The methods of extraction - atomic-absorption and echemical-spectral analysis - are inferior to spark source mass spectrometry and neutron activation analyses with regard to the attained detection limits but they are more simple and available

  6. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    Science.gov (United States)

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  7. Application of noble metals on line in Cofrentes NPP and operation experience; Aplicacion de metales nobles en linea en C.N. Cofrentes y experiencia de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Zapata, J. D.

    2015-07-01

    Cofrentes NPP implemented in 2010 the Noble Metal Chemistry as a mitigation technique for the Primary System materials protection against IGSCC. the paper describes briefly the technology fundamentals, the implementation of the specific project, the initial application and the operating experience along the last 3 cycles of the plant. (Author)

  8. Electroless plating of noble metal nanoparticles for improved performance of silicon photodiodes via surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Blackwood, D.J.; Khoo, S.M. [Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2010-07-15

    Surface plasmon resonance from noble metal nanoparticles is a promising way to improve the efficiencies of silicon based photodiodes and solar cells. Electroless plating is an extremely simple technique for producing such metallic nanoparticles. It is found that the deposition of gold on Si photodiodes occurs as chains that drastically reduce the photodiodes conversion efficiency. However, silver deposits as nano-islands that are efficient SPR centers, which improve the performance of Si photodiodes in the visible region; as measured by both IPCE and I-V curves. The greatest improvement observed was a 3.5% increase in J{sub sc} under solar irradiation. Although this improvement is lost upon annealing it can be regained by a further treatment in acidified HAuCl{sub 4}. Possible explanations for these latter two behaviors are proposed. (author)

  9. A novel approach for noble metal deposition on surfaces for IGSCC mitigation of boiling water reactor internals

    International Nuclear Information System (INIS)

    A novel in-situ approach has been developed to deposit noble metals on surfaces of materials commonly used in the nuclear power generating industry. The method involves the injection of a noble metal chemical solution directly into the high temperature water that is in contact with a metal surface to be coated with the noble metal. An effective noble metal coating on a surface can be achieved by maintaining the noble metal concentration at a level of 10 to 100 ppb over a period of 48 hours during the injection process. The surface concentration of the noble metal after the treatment was 2 to 3 atomic %, and the noble metal was present to a depth of 200 to 500 A. The concept of noble metal chemical addition (NMCA) technology was successfully used to create a ''noble metal like'' surface on three of the major nuclear materials, 304 SS, Alloy 600 and Alloy 182. The success of this technology was demonstrated by using constant extension rate tensile (CERT) tests, crack growth rate (CGR) tests and electrochemical corrosion potential (ECP) response tests. The NMCA technology in combination with hydrogen has successfully decreased the ECP of surfaces below the critical cracking potential of -0.230 V(SHE), and prevented both crack initiation and crack propagation in simulated boiling water reactor (BWR) environments

  10. Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants

    International Nuclear Information System (INIS)

    Atomic layer deposition (ALD) of noble metals by thermal processes has relied mostly on the use of molecular oxygen as a reactant at temperatures of 200 °C and above. In this study, the concept of using consecutive ozone and molecular hydrogen pulses with noble metal precursors in ALD is introduced for palladium, rhodium, and platinum metals. This approach facilitates the growth of noble metal thin films below 200 °C. Also the ALD of palladium oxide thin films is demonstrated by the ozone-based chemistry. The growth rates, resistivities, crystallinities, surface roughnesses, impurity contents, and adhesion of the films to the underlying Al2O3 starting surface are reported and the results are compared with the most common noble metal ALD processes. - Highlights: ► Atomic layer deposition used to deposit Rh, Pd, and Pt films below 200 °C. ► Noble metal film growth examined using ozone and molecular H2 as reactants. ► Deposition of palladium oxide films with ozone

  11. Effects of the atomic level shift in the Auger neutralization rates of noble metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, R.C., E-mail: r.c.monreal@uam.es [Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Centre (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Goebl, D.; Primetzhofer, D.; Bauer, P. [Institut für Experimentalphysik, Abteilung für Atom-und Oberflächenphysik, Johannes Kepler Universität Linz, 4040 Linz (Austria)

    2013-11-15

    In this work we compare characteristics of Auger neutralization of He{sup +} ions at noble metal and free-electron metal surfaces. For noble metals, we find that the position of the energy level of He with respect to the Fermi level has a non-negligible influence on the values of the calculated Auger rates through the evaluation of the surface dielectric susceptibility. We conclude that even though our calculated rates are accurate, further theoretical effort is needed to obtain realistic values of the energy level of He in front of these surfaces.

  12. Surface treatment of nanoporous silicon with noble metal ions and characterizations

    International Nuclear Information System (INIS)

    A very large surface to volume ratio of nanoporous silicon (PS) produces a high density of surface states, which are responsible for uncontrolled oxidation of the PS surface. Hence it disturbs the stability of the material and also creates difficulties in the formation of a reliable electrical contact. To passivate the surface states of the nanoporous silicon, noble metals (Pd, Ru, and Pt) were dispersed on the PS surface by an electroless chemical method. GIXRD (glancing incidence X-ray diffraction) proved the crystallinity of PS and the presence of noble metals on its surface. While FESEM (field emission scanning electron microscopy) showed the morphology, the EDX (energy dispersive X-ray) line scans and digital X-ray image mapping indicated the formation of the noble metal islands on the PS surface. Dynamic SIMS (secondary ion mass spectroscopy) further confirmed the presence of noble metals and other impurities near the surface of the modified PS. The variation of the surface roughness after the noble metal modification was exhibited by AFM (atomic force microscopy). The formation of a thin oxide layer on the modified PS surface was verified by XPS (X-ray photoelectron spectroscopy).

  13. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes.

    Science.gov (United States)

    Chen, Qiaoli; Jia, Yanyan; Xie, Shuifen; Xie, Zhaoxiong

    2016-06-01

    Precise engineering of noble-metal nanocrystals (NCs) is not only an important fundamental research topic, but also has great realistic significance in improving their performances required by the poor reserve and high cost of noble metals. Well-faceted noble-metal NCs with nonconvex polyhedral shapes could be promising candidates to optimize their performance and thus minimize their usage, as they may integrate a well-defined surface structure and a large surface area together, enabling them to have outstanding performance and high efficiency of atomic utilization. Moreover, undesirable aggregation and ripening phenomena could be avoided. This review provides a comprehensive summary of the unique characteristics and corresponding models of well-faceted nonconvex polyhedral noble-metal NCs by classifying the cases into four distinct types, namely the concave polyhedral structure, excavated polyhedral structure, branched structure and nanocage structure, respectively. Due to the complexity of nonconvex morphologies and the thermodynamic antipathy for the growth of nonconvex shaped NCs, we firstly demonstrate the structure characterization and synthetic methodology in detail. Subsequently, typical applications in electrocatalysis and plasmonic fields are presented to demonstrate the unique surface and morphological effects generated from the well-faceted nonconvex NCs. To promote further development in this field, the perspectives and challenges concerning well-faceted noble-metal NCs with nonconvex shapes are put forward in the end. PMID:27086861

  14. Nucleation and growth of noble metals on transition-metal di-tellurides

    Science.gov (United States)

    Hla, S. W.; Marinković, V.; Prodan, A.

    1997-04-01

    Transition-metal di-tellurides (α- and β-MoTe 2 and WTe 2) were used as substrates for nucleation and growth studies of noble metals. They represent a group of chemically closely related compounds with different surface topographies. Nucleation and growth of Ag and Au at room temperature were studied by means of UHV-STM, AFM and TEM. The results revealed that the growth and orientation of these metals are influenced by the topography of the substrate surfaces. Contrary to the growth on atomically flat α-MoTe 2, there is an enhanced diffusion and nucleation along the periodic surface troughs on β-MoTe 2 and WTe 2. The topography of their (001) surfaces is responsible for the orientation of metal (112) planes being parallel to the substrate surface.)

  15. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    Science.gov (United States)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  16. Integrated DWPF Melter System (IDMS) campaign report: The first two noble metals operations

    International Nuclear Information System (INIS)

    The Integrated DWPF Melter System (IDMS) is designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas systems. The facility is the first pilot-scale melter system capable of processing mercury, and flowsheet levels of halides and noble metals. In order to characterize the processing of noble metals (Pd, Rh, Ru, and Ag) on a large scale, the IDMS will be operated batchstyle for at least nine feed preparation cycles. The first two of these operations are complete. The major observation to date occurred during the second run when significant amounts of hydrogen were evolved during the feed preparation cycle. The runs were conducted between June 7, 1990 and March 8, 1991. This time period included nearly six months of ''fix-up'' time when forced air purges were installed on the SRAT MFT and other feed preparation vessels to allow continued noble metals experimentation

  17. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route.

    Science.gov (United States)

    Abedini, Alam; Bakar, Ahmad Ashrif A; Larki, Farhad; Menon, P Susthitha; Islam, Md Shabiul; Shaari, Sahbudin

    2016-12-01

    This paper focuses on the recent advances on radiolysis-assisted shape-controlled synthesis of noble metal nanostructures. The techniques and protocols for producing desirable shapes of noble metal nanoparticles are discussed through introducing the critical parameters which can influence the nucleation and growth mechanisms. Nucleation rate plays a vital role on the crystallinity of seeds while growth rate of different seeds' facets determines the final shape of resultant nanoparticles. Nucleation and growth rate both can be altered with factors such as absorbed dose, capping agents, and experimental environment condition to control the final shape. Remarkable physical and chemical properties of synthesized noble metal nanoparticles by controlled morphology have been systematically evaluated to fully explore their applications. PMID:27283051

  18. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Science.gov (United States)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  19. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  20. The preparation of primary standard solutions for each of the noble metals

    International Nuclear Information System (INIS)

    A revised method for the preparation of primary standard solutions for each of the noble metals is described. It is now recommended that standard noble-metal solutions should be made from the pure metals and not from salts as previously described. Metals should have a certified purity of 99,95 per cent or better, and the purity should be confirmed by analysis, the techniques of emission spectography or spark-source mass spectrography being used. After the metals have been dissolved, the solutions are made up to volume and the metal content of the standard solutions is checked. For most instrumental techniques for which the standards are intended, the check analysis should be within 0,3 per cent of the certified value

  1. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Lower Cambrian black rock series of South China is abnormally rich in noble metal elements. According to the concentrations, the ratios, the relations, the distribution and partition patterns of noble metal elements, the authors think that the noble metals and other elements are neither directly from extraterrestrial materials, nor from the products of normal marine sedimentation. The abnormal enrichment of noble metal elements is closely related with hydrothermal fluid that flew out on the sea floor through deep cycling and reaction with Proterozoic ultramafic-mafic igneous rocks forming noble metal rich fluid. It is possible to form industrial multiple-element- ore-deposits, especially hydrothermal type platinum-group-element-ore-deposits in the region with strong hydrothermal action.

  2. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China

    Institute of Scientific and Technical Information of China (English)

    李胜荣; 高振敏

    2000-01-01

    The Lower Cambrian black rock series of South China is abnormally rich in noble metal elements. According to the concentrations, the ratios, the relations, the distribution and partition patterns of noble metal elements, the authors think that the noble metals and other elements are neither directly from extraterrestrial materials, nor from the products of normal marine sedimentation. The abnormal enrichment of noble metal elements is closely related with hydrothermal fluid that flew out on the sea floor through deep cycling and reaction with Proterozoic ultramafic-mafic igneous rocks forming noble metal rich fluid. It is possible to form industrial multiple-element-ore-deposits, especially hydrothermal type platinum-group-element-ore-deposits in the region with strong hydrothermal action.

  3. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    International Nuclear Information System (INIS)

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy's Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program

  4. The Behavior and Effects of the Noble Metals in the DWPF Melter System

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Bickford, D.F.

    1997-11-30

    Governments worldwide have committed to stabilization of high-level nuclear waste (HLW) by vitrification to a durable glass form for permanent disposal. All of these nuclear wastes contain the fission-product noble metals: ruthenium, rhodium, and palladium. SRS wastes also contain natural silver from iodine scrubbers. Closely associated with the noble metals are the fission products selenium and tellurium which are chemical analogs of sulfur and which combine with noble metals to influence their behavior and properties. Experience has shown that these melt insoluble metals and their compounds tend to settle to the floor of Joule-heated ceramic melters. In fact, almost all of the major research and production facilities have experienced some operational problem which can be associated with the presence of dense accumulations of these relatively conductive metals and/or their compounds. In most cases, these deposits have led to a loss of production capability, in some cases, to the point that melter operation could not continue. HLW nuclear waste vitrification facilities in the United States are the Department of Energy`s Defense Waste Processing Facility (DWPF) at the Savannah River Site, the planned Hanford Waste Vitrification Plant (HWVP) at the Hanford Site and the operating West Valley Demonstration Project (WVDP) at West Valley, NY. The Integrated DWPF Melter System (IDMS) is a vitrification test facility at the Savannah River Technology Center (SRTC). It was designed and constructed to provide an engineering-scale representation of the DWPF melter and its associated feed preparation and off-gas treatment systems. An extensive noble metals testing program was begun in 1990. The objectives of this task were to explore the effects of the noble metals on the DWPF melter feed preparation and waste vitrification processes. This report focuses on the vitrification portion of the test program.

  5. SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd-M/Y bimetallic catalysts, where M is non-noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd-M/Y catalysts were evaluated under the following conditions: H2 pressure 4.2 MPa, MHSV 4.0 h-1, sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.

  6. Letter Report on the Issue of Noble Metals in the DWPF Melter

    Energy Technology Data Exchange (ETDEWEB)

    Hutson, N.D.

    2001-09-05

    This report presents some historical data from the radioactive operation of the DWPF melter. Some of the data seem to indication that the melter is displaying symptoms that may be linked to accumulation of noble metal or other conductive material on the melter floor. The complex and often competing effects of waste composition, glass pool temperatures, and operating conditions must also be considered.

  7. Electrical resistivity of noble-metal alloys: Roles of pseudopotential refinements

    International Nuclear Information System (INIS)

    The electrical resistivity of liquid noble-metal alloys i.e. CuAu and AgAu is calculated as a function of concentration. The calculations employ transition-metal-pseudopotentials that include nonlocal effects, hybridization and corrections due to orthogonalization hole and use the hard-sphere structure factors; the optimal values of the hard-sphere diameters are being determined by variational calculations. The calculated resistivities are comparable to the experimental values and to the available theoretical results. (author)

  8. Interaction and local magnetic moments of metal phthalocyanine and tetraphenylporphyrin molecules on noble metal surfaces

    International Nuclear Information System (INIS)

    In order to understand the Kondo effect observed in molecular systems, first-principles calculations have been widely used to predict the ground state properties of molecules on metal substrates. In this work, the interaction and the local magnetic moments of magnetic molecules (3d-metal phthalocyanine and tetraphenylporphyrin molecules) on noble metal surfaces are investigated based on the density functional theory. The calculation results show that the dz2 orbital of the transition metal atom of the molecule plays a dominant role in the molecule—surface interaction and the adsorption energy exhibits a simple declining trend as the adsorption distance increases. In addition, the Au(111) surface generally has a weak interaction with the adsorbed molecule compared with the Cu(111) surface and thus serves as a better candidate substrate for studying the Kondo effect. The relation between the local magnetic moment and the Coulomb interaction U is examined by carrying out the GGA+U calculation according to Dudarev's scheme. We find that the Coulomb interaction is essential for estimating the local magnetic moment in molecule—surface systems, and we suggest that the reference values of parameter U are 2 eV for Fe and 2–3 eV for Co. (rapid communication)

  9. Role of noble metal nanoparticles in DNA base damage and catalysis: a radiation chemical investigation

    International Nuclear Information System (INIS)

    In the emerging field of nanoscience and nanotechnology, tremendous focus has been made by researcher to explore the applications of nanomaterials for human welfare by converting the findings into technology. Some of the examples have been the use of nanoparticles in the field of opto-electronic, fuel cells, medicine and catalysis. These wide applications and significance lies in the fact that nanoparticles possess unique physical and chemical properties very different from their bulk precursors. Numerous methods for the synthesis of noble nanoparticles with tunable shape and size have been reported in literature. The goal of our group is to use different methods of synthesis of noble metal nanoparticles (Au, Ag, Pt and Pd) and test their protective/damaging role towards DNA base damage induced by ionizing radiation (Au and Ag) and to test the catalytic activity of nanoparticles (Pt and Pd) in certain known organic synthesis/electron transfer reactions. Using radiation chemical techniques such as pulse radiolysis and steady state radiolysis complemented by the product analysis using HPLC/LC-MS, a detailed mechanism for the formation of transient species, kinetics leading to the formation of stable end products is studied in the DNA base damage induced by ionizing radiation in presence and absence of Au and Ag nanoparticles. Unraveling the complex interaction between catalysts and reactants under operando conditions is a key step towards gaining fundamental insight in catalysis. The catalytic activity of Pt and Pd nanoparticles in electron transfer and Suzuki coupling reactions has been determined. Investigations are currently underway to gain insight into the interaction between catalysts and reactants using time resolved spectroscopic measurements. These studies will be detailed during the presentation. (author)

  10. Preliminary investigation of a technique to separate fission noble metals from fission-product mixtures

    International Nuclear Information System (INIS)

    A variation of the gold-ore fire assay technique was examined as a method for recovering Pd, Rh and Ru from fission products. The mixture of fission product oxides is combined with glass-forming chemicals, a metal oxide such as PbO (scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed which extracts the noble metals. The remainder cools to form a glass for nuclear waste storage. Recovery depended only on reduction of the scavenger oxide to metal. When such reduction was achieved, no difference in noble metal recovery efficiency was found among the scavengers studied (PbO, SnO, CuO, Bi2O3, Sb2O3). Not all reducing agents studied, however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble metal recovery. The scavenger oxides Sb2O3, Bi2O3, and PbO, however, were reduced by all of the reducing agents tested. Similar noble metal recovery was found with each. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and its higher density may facilitate the separation. Use of lead oxide also appeared to have no deterimental effect on the glass quality. Charcoal was identified as the preferred reducing agent. As long as a separable metal phase was formed in the melt, noble metal recovery was not dependent on the amount of reducing agent and scavenger oxide. High glass viscosities inhibited separation of the molten scavenger, while low viscosities allowed volatile loss of RuO4. A viscosity of approx. 20 poise at the processing temperature offered a good compromise between scavenger separation and Ru recovery. Glasses in which PbO was used as the scavenging agent were homogeneous in appearance. Resistance to leaching was close to that of certain waste glasses reported in the literature. 12 figures. 7 tables

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    International Nuclear Information System (INIS)

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system

  12. Colored coatings on eye glass lenses by noble metal colloids

    OpenAIRE

    Mennig, Martin; Endres, Klaus; Schmitt, Mike; Schmidt, Helmut K.

    1997-01-01

    Metal colloids in glass coatings are suitable for preparation of colored transparent coatings with thicknesses of about 0.2 to 1 µm due to their high molar coefficient of absorbance (approximate to 10(6) 1/(mol cm)). The absorbance of these metallic particles in a dielectric environment is caused by a surface plasmon resonance effect of the conductive electrons of the colloids. Therefore, it is characteristic for the metal, but can be affected by the dielectric properties of the surroun...

  13. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes.

    Science.gov (United States)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter. PMID:27240546

  14. Orbital control of Rashba spin orbit coupling in noble metal surfaces

    Science.gov (United States)

    Gong, Shi-Jing; Cai, Jia; Yao, Qun-Fang; Tong, Wen-Yi; Wan, Xiangang; Duan, Chun-Gang; Chu, J. H.

    2016-03-01

    Rashba spin orbit coupling (SOC) in noble metal surfaces is of great importance for the application of metal films in spintronic devices. By combining the density-functional theory calculations with our recently developed orbital selective external potential method, we investigate the Rashba SOC in the Shockley surface states of Au(111) and Ag(111). We find that the large Rashba SOC in the sp-character surface states of Au(111) is mainly contributed by the minor d-orbitals in the surface states. While for the sd-character surface states, although they are dominated by the d-orbitals, Rashba splitting is found to be rather small. Band structure analysis reveals that this is mainly because the sd-character surface states are well below the Fermi level and can be less influenced by the asymmetric surface potential. We demonstrate that the Rashba SOC in noble metal surfaces can be effectively manipulated by shifting the d-orbitals in the surface states, which can be physically implemented through surface decoration. Our investigation provides a deep understanding on Rashba SOC in noble metal surfaces and could be helpful to their applications in spintronic devices.

  15. Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Blyznakov, Stoyan; Vukmirovic, Miomir

    2015-08-04

    Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.

  16. Differential pulse voltammetric determination of tin in the presence of noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Monticelli, Damiano; Pozzi, Andrea; Dossi, Carlo; Recchia, Sandro [Universita degli Studi dell' Insubria, Dipartimento di Scienze Chimiche e Ambientali, Como (Italy); Psaro, Rinaldo [CNR Institute ' ' ISTM' ' , Milano (Italy)

    2005-09-01

    A voltammetric method for the determination of tin is proposed to minimise interferences from noble metals that are commonly encountered with other analytical techniques. Strong distortions of voltammetric peaks are observed in the presence of platinum. On the basis of a full investigation, the formation of an intermediate Sn(II)-Pt mixed chloro-complex at the electrode surface is identified as being responsible for the platinum interference, as it competes with the normal Sn(IV){yields}Sn(0){sub Hg} reduction. The use of a higher scan rate prevents the relatively low reaction kinetics and thus gets rid of this interference. No problems are encountered with other noble metals such as Pd, Ir, Re, Rh and Ru when using the modified method, although a baseline subtraction is necessary for the latter one. The proposed method is validated with real Pt-Sn catalysts. (orig.)

  17. Ligand-Free Noble Metal Nanocluster Catalysts on Carbon Supports via "Soft" Nitriding.

    Science.gov (United States)

    Liu, Ben; Yao, Huiqin; Song, Wenqiao; Jin, Lei; Mosa, Islam M; Rusling, James F; Suib, Steven L; He, Jie

    2016-04-13

    We report a robust, universal "soft" nitriding method to grow in situ ligand-free ultrasmall noble metal nanocatalysts (UNMN; e.g., Au, Pd, and Pt) onto carbon. Using low-temperature urea pretreatment at 300 °C, soft nitriding enriches nitrogen-containing species on the surface of carbon supports and enhances the affinity of noble metal precursors onto these supports. We demonstrated sub-2-nm, ligand-free UNMNs grown in situ on seven different types of nitrided carbons with no organic ligands via chemical reduction or thermolysis. Ligand-free UNMNs supported on carbon showed superior electrocatalytic activity for methanol oxidation compared to counterparts with surface capping agents or larger nanocrystals on the same carbon supports. Our method is expected to provide guidelines for the preparation of ligand-free UNMNs on a variety of supports and, additionally, to broaden their applications in energy conversion and electrochemical catalysis. PMID:27014928

  18. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al2O3 > Rh/Al2O3 > Pt/Al2O3. Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  19. The Surface Plasmon Resonance of Supported Noble Metal Nanoparticles: Characterization, Laser Tailoring, and SERS Application

    OpenAIRE

    Blázquez Sánchez, David

    2007-01-01

    This work deals with the optical properties of supported noble metal nanoparticles, which are dominated by the so-called Mie resonance and are strongly dependent on the particles’ morphology. For this reason, characterization and control of the dimension of these systems are desired in order to optimize their applications. Gold and silver nanoparticles have been produced on dielectric supports like quartz glass, sapphire and rutile, by the technique of vapor deposition under ul...

  20. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  1. Noble Metal Catalysts Supported on Nanofibrous Polymeric Membranes for Environmental Applications

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Topka, Pavel; Hejtmánek, Vladimír; Petráš, D.; Valeš, V.; Šolcová, Olga

    2014-01-01

    Roč. 236, NOV 1 (2014), s. 3-11. ISSN 0920-5861 R&D Projects: GA ČR GPP106/11/P459; GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : electrospinning * noble metals * catalytic oxidation * volatile organic compoundas Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.893, year: 2014

  2. Noble Metal Catalysts for the Hydrocracking of Fischer-Tropsch waxes

    OpenAIRE

    Elorriaga de la Fuente, Ibone

    2012-01-01

    Fischer-Tropsch synthesis enables the production of high quality diesel fuel from biomass derived synthesis gas. In order to increase the overall diesel yield, it is necessary to perform a subsequent hydrocracking of the long-chain linear paraffins. This work is focused on characterization and testing of catalysts for the hydrocracking reaction of Fischer-Tropsch waxes. In particular, noble metal catalyst based on Pt and Pd on amorphous silica-alumina support were tested. Palladium based cata...

  3. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  4. Application of noble metal chemical addition technique to nuclear power station

    International Nuclear Information System (INIS)

    The Hamaoka Nuclear Power Station of the Chubu Electric Power Co., Ltd. started to operate its No.1 machine on 1976 and has its operation results for 24 years. In order to operate the plant safely and stably, development of countermeasure technique on stress corrosion cracking (SCC) of nuclear reactor pressure vessel (RPV) and inter-reactor structures and its countermeasure engineering has been carried out. Recently, the noble metal chemical addition (NMCA) technique was developed as an SCC prevention conservation countermeasure in U.S.A., and was already performed some actual operations at actual machines. The NMCA is performed by adding aqueous solution of noble metals (Pt, Rh) into the reactor under keeping 130 plus and minus 10 centigrade in water temperature in the reactor and 0.1 to 0.3 MPa in pressure, after removing power generators and stopping nuclear reactor for its periodical inspection, to keep these conditions for about two days to add micro amount of noble metals onto material surfaces in RPV and inter-reactor structures. Japanese electric power companies are investigating the application of NMCA technique to inland plants. (G.K.)

  5. Visible light active TiO2 films prepared by electron beam deposition of noble metals

    International Nuclear Information System (INIS)

    TiO2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO2 films by this method is affected by the concentration of impregnating solution.

  6. Visible light active TiO 2 films prepared by electron beam deposition of noble metals

    Science.gov (United States)

    Hou, Xing-Gang; Ma, Jun; Liu, An-Dong; Li, De-Jun; Huang, Mei-Dong; Deng, Xiang-Yun

    2010-03-01

    TiO 2 films prepared by sol-gel method were modified by electron beam deposition of noble metals (Pt, Pd, and Ag). Effects of noble metals on the chemical and surface characteristics of the films were studied using XPS, TEM and UV-Vis spectroscopy techniques. Photocatalytic activity of modified TiO 2 films was evaluated by studying the degradation of methyl orange dye solution under visible light UV irradiation. The result of TEM reveals that most of the surface area of TiO 2 is covered by tiny particles of noble metals with diameter less than 1 nm. Broad red shift of UV-Visible absorption band of modified photocatalysts was observed. The catalytic degradation of methyl orange in aqueous solutions under visible light illumination demonstrates a significant enhancement of photocatalytic activity of these films compared with the un-loaded films. The photocatalytic efficiency of modified TiO 2 films by this method is affected by the concentration of impregnating solution.

  7. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  8. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    International Nuclear Information System (INIS)

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  9. Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction.

    Science.gov (United States)

    Iwase, Kazuyuki; Yoshioka, Tatsuro; Nakanishi, Shuji; Hashimoto, Kazuhito; Kamiya, Kazuhide

    2015-09-14

    The electrochemical oxygen reduction reaction (ORR) is an important cathode reaction of various types of fuel cells. The development of electrocatalysts composed only of abundant elements is a key goal because currently only platinum is a suitable catalyst for ORR. Herein, we synthesized copper-modified covalent triazine frameworks (CTF) hybridized with carbon nanoparticles (Cu-CTF/CPs) as efficient electrocatalysts for the ORR in neutral solutions. The ORR onset potential of the synthesized Cu-CTF/CP was 810 mV versus the reversible hydrogen electrode (RHE; pH 7), the highest reported value at neutral pH for synthetic Cu-based electrocatalysts. Cu-CTF/CP also displayed higher stability than a Cu-based molecular complex at neutral pH during the ORR, a property that was likely as a result of the covalently cross-linked structure of CTF. This work may provide a new platform for the synthesis of durable non-noble-metal electrocatalysts for various target reactions. PMID:26227987

  10. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    Science.gov (United States)

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  11. Classical and quantum effects in noble metal and graphene plasmonics

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2015-01-01

    Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics...

  12. Noble Metal Immersion Spectroscopy of Silica Alcogels and Aerogels

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1998-01-01

    We have fabricated aerogels containing gold and silver nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  13. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    P R Vyas; C V Pandya; T C Pandya; V B Gohel

    2001-04-01

    A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of noble metals. It is found that three-body forces, in these metals, do play an important role. The inclusion of such three-body forces appreciably improves the agreement between the experimental and theoretical phonon dispersion curves.

  14. Unveiling nickelocene bonding to a noble metal surface

    Science.gov (United States)

    Bachellier, N.; Ormaza, M.; Faraggi, M.; Verlhac, B.; Vérot, M.; Le Bahers, T.; Bocquet, M.-L.; Limot, L.

    2016-05-01

    The manipulation of a molecular spin state in low-dimensional materials is central to molecular spintronics. The designs of hybrid devices incorporating magnetic metallocenes are very promising in this regard, but are hampered by the lack of data regarding their interaction with a metal. Here, we combine low-temperature scanning tunneling microscopy and density functional theory calculations to investigate a magnetic metallocene at the single-molecule level—nickelocene. We demonstrate that the chemical and electronic structures of nickelocene are preserved upon adsorption on a copper surface. Several bonding configurations to the surface are identified, ranging from the isolated molecule to molecular layers governed by van der Waals interactions.

  15. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Svane, K. L., E-mail: ksvane@inano.au.dk; Hammer, B., E-mail: hammer@phys.au.dk [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University (Denmark)

    2014-11-07

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations.

  16. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    International Nuclear Information System (INIS)

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined

  17. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    on their interfacial interaction with the supporting electrodes. In this work we aim at chemical production of size and shape controlled, specifically 22 nm cubic Pd NPs, and further understanding of the Pd NPs as electrocatalysts at the nanometer scale using both scanning tunneling microscopy (STM......) will be investigated by electrochemical SPM. This study offers promise for development of new high-efficiency catalyst types with low-cost for fuel cell technology...

  18. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    OpenAIRE

    Sahoo, P. K.; Radhamanohar Aepuru; Himanshu Sekhar Panda; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticit...

  19. Defense by-products production and utilization program: noble metal recovery screening experiments

    International Nuclear Information System (INIS)

    Isotopes of the platinum metals (rutheium, rhodium, and palladium) are produced during uranium fuel fission in nuclear reactors. The strategic values of these noble metals warrant considering their recovery from spent fuel should the spent fuel be processed after reactor discharge. A program to evaluate methods for ruthenium, rhodium, and palladium recovery from spent fuel reprocessing liquids was conducted at Pacific Northwest Laboratory (PNL). The purpose of the work reported in this docuent was to evaluate several recovery processes revealed in the patent and technical literature. Beaker-scale screening tests were initiated for three potential recovery processes: precipitation during sugar denitration of nitric acid reprocessing solutions after plutonium-uranium solvent extraction, adsorption using nobe metal selective chelates on active carbon, and reduction forming solid noble metal deposits on an amine-borane reductive resin. Simulated reprocessing plant solutions representing typical nitric acid liquids from defense (PUREX) or commercial fuel reprocessing facilities were formulated and used for evaluation of the three processes. 9 refs., 3 figs., 9 tabs

  20. Delivery of Highly Active Noble-Metal Nanoparticles into Microspherical Supports by an Aerosol-Spray Method.

    Science.gov (United States)

    Kan, Erjie; Kuai, Long; Wang, Wenhai; Geng, Baoyou

    2015-09-14

    Noble metal nanoparticles (NPs) with 1-5 nm diameter obtained from NaHB4 reduction possess high catalytic activity. However, they are rarely used directly. This work presents a facile, versatile, and efficient aerosol-spray approach to deliver noble-metal NPs into metal oxide supports, while maintaining the size of the NPs and the ability to easily adjust the loading amount. In comparison with the conventional spray approach, the size of the loaded noble-metal nanoparticles can be significantly decreased. An investigation of the 4-nitrophenol hydrogenation reaction catalyzed by these materials suggests that the NPs/oxides catalysts have high activity and good endurance. For 1 % Au/CeO2 and Pd/Al2 O3 catalysts, the rate constants reach 2.03 and 1.46 min(-1) , which is much higher than many other reports with the same noble-metal loading scale. Besides, the thermal stability of catalysts can be significantly enhanced by modifying the supports. Therefore, this work contributes an efficient method as well as some guidance on how to produce highly active and stable supported noble-metal catalysts. PMID:26234910

  1. Optical and structural properties of noble-metal nanoparticles; Optische und strukturelle Eigenschaften von Edelmetallnanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, C.

    2006-06-23

    Noble-metal nanoparticles exhibit rich optical behavior, such as resonant light scattering and absorption and non-linear signal enhancement. This makes them attractive for a multitude of physical, chemical, and biophysical applications. For instance, recent biomedical experiments demonstrate the suitability of noble-metal nanoparticles for selective photothermal apoptosis by heat transport by laser irradiation. The applications of nanoparticles largely exploit that plasmons, i. e. collective oscillations of the conduction electrons, can be optically excited in these nanoparticles. In optical spectroscopy, these are seen as pronounced resonances. In the first part of this work, model calculations are employed to elucidate how radiation damping in noble-metal nanoparticles, i. e. the transformation of plasmons into photons, depends on particle size, particle shape, and on electromagnetic coupling between individual particles. Exact electrodynamic calculations are carried out for individual spheroidal particles and for pairs of spherical particles. These calculations for spheroidal particles demonstrate for the first time that radiative plasmon decay is determined by both the particle volume and the particle shape. Model calculations for pairs of large spherical particles reveal that the electromagnetic fields radiated by the particles mediate electromagnetic coupling at interparticle distances in the micrometer range. This coupling can lead to immense modulations of the plasmonic linewidth. The question whether this coupling is sufficiently strong to mediate extended, propagating, plasmon modes in nanoparticle arrays is addressed next. Detailed analysis reveals that this is not the case; instead, for the particle spacings regarded here, a non-resonant, purely diffractive coupling is observed, which is identified by steplike signatures in reflection spectra of the particle arrays. In the second part of this work, structural and optical properties of noble-metal

  2. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.

    Science.gov (United States)

    Krystek, Petra; Brandsma, Sicco; Leonards, Pim; de Boer, Jacob

    2016-01-15

    The identification and quantification of the bioaccumulation of noble metal engineered nanoparticles (ENPs) by aquatic organisms is of great relevance to understand the exposure and potential toxicity mechanisms of nanoscale materials. Four analytical scenarios were investigated in relation to various sized and composed noble metal (gold (Au), platinum (Pt) and silver (Ag)) ENPs during acute, short-term exposure of Daphnia (D.) magna. Next to the total elemental quantification of absorbed ENPs by D. magna, especially information on the size and particle distribution of ENPs in D. magna is of relevance. Dissolution of the exposed biological material prior to measurement by asymmetric flow field flow fractionation coupled to inductively coupled plasma mass spectrometry (AF4-ICPMS) is challenging because the ENPs must stay stable regarding to particle size and composition. Next to dissolution of exposed D. magna by tetra methyl ammonium hydroxide (TMAH), a new enzymatic dissolution approach was explored by using trypsin. The presence of various sized and composed ENPs has been confirmed by AF4-ICPMS but the chosen dissolution medium was crucial for the results. TMAH and trypsin led to comparable results for medium-sized (50nm) noble metals ENPs in exposed D. magna. But it was also shown that the dissolution of biological materials with smaller (<5nm) ENPs led to different results in particle size and elemental concentration depending on the selected dissolution medium. A significant uptake of Au and Pt ENPs by D. magna or adsorption to particles occurred because only 1-5% of the exposed ENPs remained in the exposure medium. PMID:26592609

  3. Development of guidelines on the application of noble metals to BWRs

    International Nuclear Information System (INIS)

    Water Chemistry plays a critical role in determining the economics of BWR (boiling water reactor) operation. The chemistry controls the probability of repairs due to stress corrosion cracking of piping and internals, the operating and shutdown dose rates (and thus personnel exposure), radiation waste generation and fuel corrosion performance. Simultaneously addressing the adverse effects from these phenomena requires a delicate balance of chemistry variables. Earlier papers have reviewed the technologies that have evolved to provide this balance including specific impurity limits, hydrogen water chemistry, and isotopically depleted zinc injection. This paper addresses the experience with the latest technology, noble metal chemical addition (NMCA). (authors)

  4. Hydrothermal synthesis of nanosize phases based on non-ferrous and noble metals

    Science.gov (United States)

    Tupikova, E. N.; Platonov, I. A.; Lykova, T. N.

    2016-04-01

    Research is devoted to reactions of binary complexes containing noble (platinum, palladium) and non-ferrous (cobalt, chrome) metals. Reactions proceed under hydrothermal conditions by the autoclave technique. Initials complexes and products of autoclave thermolysis were characterized by the FT-IR spectroscopy, the transmission electron microscopy (TEM) and the energy-dispersive X-ray spectroscopy (EDX). Comparative catalytic experiments in the test reaction were conducted. The obtained results can form the basis of new methods of nanosize multicomponent phases synthesis under hydrothermal conditions.

  5. Corrosion potential behavior of noble metal-modified alloys in high temperature water

    International Nuclear Information System (INIS)

    Intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel (SS) components in boiling water reactors (BWRs) is known to be a major concern. There the effect of Pd or Pt additions to various alloys on the corrosion potential behavior was investigated in 288 C water containing various amounts of oxygen, hydrogen, and hydrogen peroxide. The data showed that the noble-metal alloying additions to engineering materials improved the catalytic efficiency for the recombination of oxygen and hydrogen on the surface and thereby lowered the corrosion potential for IGSCC protection when the molar ratio of hydrogen to oxygen in water is greater than about 2

  6. Monolithic Catalysts with Low Noble-Metal Content for Exhaust Purification of Small Gasoline Engines

    Institute of Scientific and Technical Information of China (English)

    Zhang Lijuan; Mao Xiaobo; Chen Yaoqiang; Zhong Junbo; Wang Jianli; Zhao Ming; Gong Maochu

    2007-01-01

    A series of low noble-metal content monolithic catalysts for exhaust purification of small gasoline engines was investigated, and it was found that the Pt/Rh-OSM/Al2O3 (where OSM was oxygen storage material) catalyst with Ce0.5Zr0.5-MnOx(3%MnOx) OSM held low light-off temperature for CO, HC, and NO;quite wide three-way window, and outstanding thermal stability. The catalyst could efficiently control exhaust emission of small gasoline engines.

  7. Inference on the Nature and the Mass of Earth's Late Veneer from Noble Metals and Gases

    CERN Document Server

    Dauphas, N

    2001-01-01

    Noble metals and gases are very sensitive to the late accretion to the Earth of asteroids and comets. We present mass balance arguments based on these elements that indicate that 0.7E22-2.7E22 kg of extraterrestrial bodies struck the Earth after core formation and that comets comprised less than 1E-5 by mass of the impacting population. These results imply that the dynamics of asteroids and comets changed drastically with time and that biogenic elements and prebiotic molecules were not delivered to the Earth by comets but rather by carbonaceous asteroids.

  8. First-principles calculations of the vacancy formation energy in transition and noble metals

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Abrikosov, Igor A.; Johansson, Börje; Ruban, Andrei; Skriver, Hans Lomholt

    1999-01-01

    Abstract: The vacancy formation energy and the vacancy formation volume of the 3d, 4d, and 5d transition and noble metals have been calculated within the local-density approximation. The calculations employ the order-N locally self-consistent Green's-function method in conjunction with a supercell...... approach and include electrostatic multipole corrections to the atomic sphere approximation. The results are in excellent agreement with available full-potential calculations and with the vacancy formation energies obtained in positron annihilation measurements. The variation of the vacancy formation...

  9. Expeditious Synthesis of Noble Metal Nanoparticles Using Vitamin B12 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Changseok Han

    2015-08-01

    Full Text Available A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized Ag, Au, and Pd samples were thoroughly characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, and UV-visible spectrophotometry, confirming that metallic Ag, Au, and Pd were synthesized by the green chemistry method.

  10. Noble-Metal-Free Molybdenum Disulfide Cocatalyst for Photocatalytic Hydrogen Production.

    Science.gov (United States)

    Yuan, Yong-Jun; Lu, Hong-Wei; Yu, Zhen-Tao; Zou, Zhi-Gang

    2015-12-21

    Photocatalytic water splitting using powered semiconductors as photocatalysts represents a promising strategy for clean, low-cost, and environmentally friendly production of H2 utilizing solar energy. The loading of noble-metal cocatalysts on semiconductors can significantly enhance the solar-to-H2 conversion efficiency. However, the high cost and scarcity of noble metals counter their extensive utilization. Therefore, the use of alternative cocatalysts based on non-precious metal materials is pursued. Nanosized MoS2 cocatalysts have attracted considerable attention in the last decade as a viable alternative to improve solar-to-H2 conversion efficiency because of its superb catalytic activity, excellent stability, low cost, availability, environmental friendliness, and chemical inertness. In this perspective, the design, structures, synthesis, and application of MoS2 -based composite photocatalysts for solar H2 generation are summarized, compared, and discussed. Finally, this Review concludes with a summary and remarks on some challenges and opportunities for the future development of MoS2 -based photocatalysts. PMID:26586523

  11. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Battocchio Chiara

    2011-01-01

    Full Text Available Abstract Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs, coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride, or poly(phenylacetylene-co-allylmercaptan. The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm with polymeric shell of about 2 nm.

  12. Replacing Noble Metals with Alternative Materials in Plasmonics and Metamaterials: how good an idea?

    CERN Document Server

    Khurgin, Jacob B

    2016-01-01

    Noble metals that currently dominate the fields of plasmonics and metamaterials suffer from large ohmic losses. New plasmonic materials, such as doped oxides and nitrides, have smaller material loss, and, using them in place of metals carries promise of reduced-loss plasmonic and metamaterial structures, with sharper resonances and higher field concentration. This promise is put to a rigorous analytical test in this work which reveals that having low material loss is not sufficient to have a reduced modal loss in plasmonic structures. To reduce the modal loss it is absolutely necessary for the plasma frequency to be significantly higher than the operational frequency. Using examples of nanoparticle plasmons and gap plasmons one comes to the conclusion that even in the mid-infrared spectrum metals continue to hold advantage over the alternative media. The new materials may still find application niche where the high absorption loss is beneficial, e.g. in medicine and thermal photovoltaics.

  13. Towards to Extraction of Nanodispersed Noble Metals From Natural Black Graphite Shales

    Directory of Open Access Journals (Sweden)

    Elena A. Mikhailenko

    2012-01-01

    Full Text Available A theoretical approach based on the density functional theory and the pseudopotential method was applied to consider diffusion and accumulation of Au, Pt, and Pd in graphite. It is shown that Pt atoms migrate easily inside graphite. They can stop at structure defects and accumulate there, attracting each other and forming plate clusters. Atoms of gold do not penetrate into graphite but link with edge atoms of broken graphite crystallites, forming three-dimensional metallic particles. Palladium behavior is intermediate between platinum and gold. Addition of silicon into graphite can promote the extraction of noble metals because Si atoms force out Pt, Pd, and Au atoms from their bonded states. Last effect can be used as a mechanism of striking off metals from graphite and their extraction from shales

  14. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    Science.gov (United States)

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. PMID:26584861

  15. Noble metals-compatible melter features development Phase 1: Establishing functional and design criteria and design concepts

    International Nuclear Information System (INIS)

    Premature failures have occurred in melters at Japan's Tokai Mockup Facility and at the Federal Republic of Germany (FRG) PAMELA plant during processing of feeds with high levels of noble metals. Melter failure was due to the accumulation of an electrically conductive, noble metals-containing precipitates in the glass, that then resulted in short circuiting of the electrodes. A comparison was made of the anticipated Hanford Waste Vitrification Plant (HWVP) feed with the feeds processed in the FRG and Japanese melters. The evaluation showed that comparable levels of noble metals and other potential precipitate-forming components (e.g. Cr/Fe/Ni-spinels) exist in the HWVP feed. As a result, the HWVP project made a decision to modify the present reference melter design to include features to prevent the precipitation and accumulation or otherwise accommodate precipitated phases on a routine basis without loss of production capacity

  16. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    KAUST Repository

    Li, Zhenzhen

    2015-06-12

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO.

  17. Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites

    Directory of Open Access Journals (Sweden)

    Panić Vladimir V.

    2013-01-01

    Full Text Available Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called „resistor/capacitor (RC ladder“. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues. [Projekat Ministarstva nauke Republike Srbije, br. 172060

  18. Effect of noble metal treatment to oxide film on SUS 304 under HWC condition

    International Nuclear Information System (INIS)

    Noble metal deposited SUS 304 specimens with an oxide film were exposed to a simulated HWC condition co-existing with Co radioactivity in order to establish a relationship between features of the oxide film such as the weight, composition and morphology, and the accumulation and distribution of Co radioactivity in the oxide film. The accumulated Co radioactivity decreased to about 40% of that of non-deposited sample, and the distribution of Co radioactivity in the outer layer of the oxide film was remarkably decreased. Compared with non-deposited sample, a significant weight loss and decrease in Fe involved in the outer layer of the oxide film occurred. Dissolution of oxide particles on the outer layer was observed by SEM-EDX analysis. From these results, the dissolution of the outer layer of the oxide film is thought to cause the decrease in accumulated Co radioactivity. But in an actual plant, the loss of the outer layer of the oxide film is thought to cause the increase in Co radioactivity in reactor water because the radioactivity, which was accumulated in the oxide film before the noble metal treatment, is released simultaneously. (authors)

  19. A simple approach for producing colloidal noble metal nanocrystals: Alternating voltage induced electrochemical synthesis

    Science.gov (United States)

    McCann, Kevin

    Intense research has been focused on developing bottom-up nanocrystal synthesis techniques to obtain nanocrystals with sophisticated compositions and enhanced perfomances. Three popular methods are: 1) the reduction of metal complex ions or molecules with selected reducing agents, 2) the decomposition of metal compounds at elevated temperatures, and 3) the electrochemical reduction of metal ions using specialized potentiostats. The first two require expensive metal salt precursors while the last requires specialized potentiostats and either employ a single sacrificial electrode or metal salt precursors. To resolve these issues, we have focused on a facile and generic approach to generate nanocrystals by an alternating voltage induced electrochemical synthesis (AVIES) method. Nanocrystals are produced when an alternating voltage is applied by a common laboratory transformer to two sacrificial electrodes that are inserted in an electrolyte solution containing capping ligands. This work focuses on the ability of the AVIES approach to synthesize Au, Pd, and Pt noble metal nanocrystals. The nanocrystals synthesized were found to be dependent on the electrolyte identity, capping ligand, applied voltage, reaction temperature. The ability of AVIES to produce alloyed nanocrystals starting with alloyed electrodes will be discussed. The AVIES approach requires neither expensive metal compounds nor specialized instruments, is environmentally benign, and can be easily adoptable to any research lab.

  20. Shear bond strength of a ceromer to noble and base metal alloys

    Directory of Open Access Journals (Sweden)

    Dorriz H.

    2006-08-01

    Full Text Available Background and Aim: The improvement of the physical and chemical properties of resins as well as great advances achieved in the field of chemical bonding of resin to metal has changed the trend of restorative treatments. Today the second generation of laboratory resins have an important role in the restoration of teeth. The clinical bond strength should be reliable in order to gain successful results. In this study the shear bond strength (SBS between targis (a ceromer and two alloys (noble and base metal was studied and the effect of thermocycling on the bond investigated. Materials and Methods: In this experimental study, alloys samples were prepared according to the manufacturer. After sandblasting of bonding surfaces with 50µ AI2o3 Targis was bonded to the alloy using Targis I link. All of the samples were placed in 37°C water for a period of 24 hours. Then half of the samples were subjected to 1000 cycles of thermocycling at temperatures of 5°C and 55°C. Planear shear test was used to test the bond strength in the Instron machine with the speed rate of 0.5mm/min. Data were analyzed by SPSS software. Two-way analysis of variance was used to compare the bond strength among the groups. T test was used to compare the alloys. The influence of thermocycling and alloy type on bond strength was studied using Mann Whitney test. P<0.05 was considered as the limit of significance. Result: The studied alloys did not differ significantly, when the samples were not thermocycled (P=0.136 but after thermocycling a significant difference was observed in SBS of resin to different alloys (P=000.1. Thermal stress and alloy type had significant interaction, with regard to shear bond strength (P=0.003. There was a significant difference in SBS before and after thermocycling in noble alloys (P=0.009, but this was not true in base metals (P=0.29. Maximum SBS (19.09 Mpa belonged to Degubond 4, before thermocycling. Minimum SBS (8.21 Mpa was seen in Degubond 4

  1. Effect of zinc and copper additions on catalytic response of noble metal alloyed 304 SS in high temperature water

    International Nuclear Information System (INIS)

    The effect of zinc (Zn) and copper (Cu) additions on the catalytic behavior of noble metal alloyed 304 stainless steel (SS) in 288 C water understoichiometric excess hydrogen was studied. It was observed that an increase in the Zn or Cu content of the water increased the electrochemical corrosion potential (ECP) of noble metal alloyed 304 SS by ∼ 30 to 50 mV and decreased the recombination efficiency of oxygen (O2)and hydrogen (H2) by ∼ 10%. The change in the ECP and recombination rate was correlated with incorporation of zinc and copper in the oxide film, which, by covering catalytic sites, would alter the redox reaction rate

  2. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties.

    Science.gov (United States)

    Ji, Zhenyuan; Shen, Xiaoping; Xu, Yuling; Zhu, Guoxing; Chen, Kangmin

    2014-10-15

    The strategy of structurally integrating noble metal, metal oxide, and graphene is expected to offer prodigious opportunities toward emerging functions of graphene-based nanocomposites. In this study, we develop a facile two-step approach to disperse noble metal (Pt and Au) nanoparticles on the surface of CeO2 functionalized reduced graphene oxide (RGO) nanosheets. It is shown that Pt and Au with particle sizes of about 5 and 2nm are well dispersed on the surface of RGO/CeO2. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 was used as a model reaction to quantitatively evaluate the catalytic properties of the as-synthesized RGO/Pt/CeO2 and RGO/Au/CeO2 ternary nanocomposites. In such triple-component catalysts, CeO2 nanocrystals provide unique and critical roles for optimizing the catalytic performance of noble metallic Pt and Au, allowing them to express enhanced catalytic activities in comparison with RGO/Pt and RGO/Au catalysts. In addition, a possible mechanism for the enhanced catalytic activities of the RGO/Pt/CeO2 and RGO/Au/CeO2 ternary catalysts in the reduction of 4-NP is proposed. It is expected that our prepared graphene-based triple-component composites, which inherit peculiar properties of graphene, metal oxide, and noble metal, are attractive candidates for catalysis and other applications. PMID:25080384

  3. Studies on State and Structure of Noble Metals in Electrocatalyst Made by Coprecipitation Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The electrocatalysts of Pt/C, PtRu/C and Ru/C were prepared by the impregnation method. The facet characterization, the dispersion and the particle size for the catalysts were determined by means of X-ray diffraction and transmission electron microscopy. X-ray photoelectron spectroscopy was also used to analyze the state and the valency of the noble metals. The results show that the particle size was in nanometer range and the binary metals have come into being an alloy. The platinum in the catalysts existed in zero valency. The valency of the ruthenium on the surface is different from that in the body, while the ruthenium on the surface existed in oxide-form. PtRu/C and Pt/C are of good activity to the electrooxidation of hydrogen except Ru/C. PtRu/C is more tolerant of CO than Pt/C, and CO is only adsorbed on Pt.

  4. Cohesive properties of noble metals by van der Waals-corrected Density Functional Theory

    CERN Document Server

    Ambrosetti, Alberto

    2016-01-01

    The cohesive energy, equilibrium lattice constant, and bulk modulus of noble metals are computed by different van der Waals-corrected Density Functional Theory methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10 and PBE-D. Two specifically-designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of Maximally Localized Wannier Functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the LDA, PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.

  5. Nanomechanical and nanotribological characterization of noble metal-coated AFM tips for probe-based ferroelectric data recording

    International Nuclear Information System (INIS)

    Probe-based data recording is being developed as an alternative technology for ultrahigh areal density. In ferroelectric data storage, a conductive atomic force microscope (AFM) probe with a noble metal coating is placed in contact on lead zirconate titanate (PZT) film, which serves as the ferroelectric material. A crucial mechanical reliability concern is tip wear during contact of the ferroelectric material with the probe. To achieve high wear resistance, the mechanical properties (such as elastic modulus and hardness) of the metal-coated probe should be high. Nanoindentation experiments were performed in order to evaluate the mechanical properties of four commercial noble metal coatings, namely, Pt, Pt-Ni, Au-Ni and Pt-Ir, deposited on AFM probes. The effective hardness and elastic modulus were evaluated, using a contact mechanics model that accounts for the effect of the underlying silicon substrate. The Pt-Ir coating was found to exhibit the highest hardness, highest elastic modulus and lowest creep resistance. Nanoscratch studies reveal that the noble metal coatings are removed primarily by plastic deformation. The Pt-Ir and Pt coatings show the highest and lowest scratch resistance, respectively, which is consistent with results obtained from wear tests of the noble metal-coated AFM probes on a PZT surface

  6. Pd bonded on Nb(001): Dependence of noble metal and ferromagnetic characteristics on film thickness

    International Nuclear Information System (INIS)

    Experimental observations confirmed by density functional theory (DFT) calculations show that strong epitaxial bonds between Pd atoms and the substrate can induce two competing properties: nobleness and ferromagnetic order in the same material, i.e., Pd bonded on Nb(100). Angle-resolved ultraviolet photoelectron spectroscopy measurements, confirmed by first principles, self-consistent DFT calculations show that the strong, direct bonds between a Pd monolayer and Nb(001) push the d-band center of the monolayer toward lower binding energies, which results in the Pd reactivity comparable to that of the noble metal Ag. The strong epitaxial constraint of the Nb(001) substrate induces a (1120)-oriented hexagonal close-packed structure in thicker Pd films. First principles, self-consistent DFT calculations with spin-orbit coupling included performed at 0 K show that Pd in this structure is ferromagnetically ordered at the optimum lattice constant. Its bands at the Fermi level are flatter in comparison to those of Pd in its natural, nonmagnetic, face-centered-cubic structure, leading to the density of states (DOS) at the Fermi level which fulfills the Stoner criterion for ferromagnetism. We identify these bands in the bulk band structure and probe them with angle-resolved ultraviolet photoelectron spectroscopy in (1120)-oriented hexagonal close-packed Pd films

  7. The Effect of Novel Mercapto Silane Systems on Resin Bond Strength to Dental Noble Metal Alloys.

    Science.gov (United States)

    Lee, Yangho; Kim, Kyo-Han; Kim, Young Kyung; Son, Jun Sik; Lee, Eunkyung; Kwon, Tae-Yub

    2015-07-01

    Self-assembled monolayers of thiols (RSH), which are key elements in nanoscience and nanotechnology, have been used to link a range of materials to planar gold surfaces or gold nanoparticles. In this study, the adhesive performance of mercapto silane systems to dental noble metal alloys was evaluated in vitro and compared with that of commercial dental primers. Dental gold-palladium-platinum (Au-Pd-Pt), gold-palladium-silver (Au-Pd-Ag), and palladium-silver (Pd-Ag) alloys were used as the bonding substrates after air-abrasion (sandblasting). One of the following primers was applied to each alloy: (1) no primer treatment (control), (2) three commer- cial primers: V-Primer, Metal Primer II, and M.L. Primer, and (3) two experimental silane primer systems: 2-step application with 3-mercaptopropyltrimethoxysilane (SPS) (1.0 wt%) and then 3-methacryloxypropyltrimethoxysilane (MPS) (1.0 wt%), and a silane blend consisting of SPS and MPS (both 1.0 wt%). Composite resin cylinders with a diameter of 2.38 mm were bonded to the surfaces and irradiated for 40 sec using a curing light. After storage in water at 37 °C for 24 h, all the bonded specimens were thermocycled 5000 times before the shear bond strength test. Regardless of the alloy type, the mercapto silane systems (both the 2-step and blend systems) consistently showed superior bonding performance than the commercial primers. Contact angle analysis of the primed surfaces indicated that higher resin bond strengths were produced on more hydrophilic alloy surfaces. These novel mercapto silane systems are a promising alternative for improving resin bonding to dental noble metal alloys. PMID:26373046

  8. Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants

    International Nuclear Information System (INIS)

    Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase

  9. Application of noble metal chemical addition technology to an operating BWR to mitigate IGSCC of reactor internals

    International Nuclear Information System (INIS)

    Hydrogen Water Chemistry (HWC) has been successfully employed to mitigate the IGSCC of BWR internals over the past decade. However, the use of elevated levels of feed water hydrogen in the BWR results in high operating dose rates due to N16 partitioning into the main steam. Recent studies have shown that the presence of noble metals on reactor internal surfaces, by alloying or by various spray techniques could significantly reduce the hydrogen demand necessary to achieve the IGSCC protection potential of -230 mV(SHE) without the operating dose rate increase. A simpler method of applying noble metal on to reactor internals involve the addition of a noble metal compound into reactor water to cause deposition of noble metal from solution onto surfaces. This noble metal chemical addition (NMCA) technology has been successfully used in numerous laboratory tests to produce a ''noble metal like'' surface on three of the major structural materials, Type 304 SS, Inconel 600 and Alloy 182, used in the nuclear industry. The success of this technology has been tested using constant extension rate tensile (CERT) tests, crack growth rate (CGR) tests and electrochemical corrosion potential (ECP) response tests. The NMCA technology has successfully decreased the ECP of surfaces below -230 mVSHE, prevented crack initiation and mitigated crack growth rates in stoichiometric excess hydrogen in simulated boiling water reactor (BWR) environments. The NMCA treatment of surfaces has drastically lowered the hydrogen demand necessary for IGSCC protection of the materials tested, with no identified side effects including no adverse effects on zircaloy fuel cladding materials. This paper describes the performance of the first NMCA treated BWR over a 12 month period. The paper will also describe the application of NMCA technology to internal components of the BWR by employing the reactor coolant water as the medium of transport for depositing noble metal on in-reactor surfaces. The paper will

  10. High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide.

    Science.gov (United States)

    Hussain, Muhammad Asif; Yang, MinHo; Lee, Tae Jae; Kim, Jung Won; Choi, Bong Gill

    2015-08-01

    Here, we report a highly stable colloidal suspension of nanoparticles (i.e., Pt and Au)-deposited MoS2 sheets, in which polydopamine (PD) serves as surface functional groups. The adoption of polydopamine coating onto the MoS2 surface enables homogeneous deposition of nanoparticles in an aqueous solution. As-synthesized nanohybrids are thoroughly characterized by transmission electron microscopy (TEM), Raman spectroscopy, and X-ray diffraction (XRD) measurement. These intensive investigations reveal that noble metal nanocrystals are uniformly distributed on the surface of ultrathin MoS2 sheets (∼4 layers). Moreover, as-prepared Au/PD/MoS2 nanohybrids can be applied as a heterogeneous catalyst for reduction of 4-nitrophenol to 4-aminophenol, and they exhibit an excellent catalytic activity. PMID:25898116

  11. Preparation and characterization of noble metal nanocolloids by silk fibroin in situ reduction

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wenxing(陈文兴); WU; Wen(吴雯); CHEN; Haixiang(陈海相); SHEN; Zhiquan(沈之荃)

    2003-01-01

    Noble metal nanocolloids are prepared from their precursors by in situ reduction of a silk fibroin solution at room temperature without any reducing agent. The mechanism, the effects of pH and the molar ratio of the reactants on the reduction reaction are studied by UV-Vis spectroscopy. The structure of the colloids is characterized by FT-IR, TEM and AFM. According to the TEM images, the gold-silk fibroin colloid is a nanostructured bioconjugate with novel core-shell, while the silver-silk fibroin colloid tends to be congregated as clusters having more than ten nanoparticles of silver-silk fibroin. The gold colloid is highly dispersed and stable while the silver colloid is less dispersed and stable than the gold colloid.

  12. Dual mechanism of ion beam mixing of noble metals with oxide matrices

    International Nuclear Information System (INIS)

    Layers of noble metals M embedded in various oxide matrices (SiO2, Al2O3, TiO2, ZrO2, and also Si for a purpose of comparison) were irradiated with incremented fluences of MeV heavy ions. A major contribution of recoil implantation to displacements accounts for the linear rates of atoms relocation as a function of the ion fluence, measured by means of RBS. According to the temperature and to the initial thickness of the M layer, the in depth-straggling of M atoms varies in proportion to the ion fluence or to its square. This change of straggling rate is explained by its control either by the radiation-enhanced diffusion or by the recoil implantation process, when the solution of diffusion equations relative to an infinitely thin source cannot be applied. The mobility of M atoms in the oxide depends on the latter ionicity and on the M mass

  13. Enthalpies of Formation of Noble Metal Binary Alloys Bearing Rh or Ir

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The modified embedded atom method proposed by authors has been applied to calculating the enthalpies of formationof random alloys and the ordered intermetallic compounds for noble metal binary systems bearing Rh or lr. The presentresults are in good agreement with those of Miedema theory, available experiments and the first-principles quantummechanics calculations. The present results indicate that Cu-Rh, Cu-lr, Ag-Rh, Ag-lr, Au-Rh, Au-lr, Pd-Rh and Pd-lrsystems are repulsive, however, Ni-Rh, Ni-lr, Pt-lr, Pt-Rh and Rh-lr systems form solid solutions and Ni-Rh, Ni-lrand Pt-Rh show ordering tendency.

  14. Systematic studies of bonding distances of diindenoperylene on noble metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Buerker, Christoph; Gerlach, Alexander; Hosokai, Takuya; Schreiber, Frank [Institut fuer Angewandte Physik, Universitaet Tuebingen, 72076 Tuebingen (Germany); Niederhausen, Jens; Koch, Norbert [Institut fuer Physik, Humboldt-Universitaet zu Berlin, 12489 Berlin (Germany); Detlefs, Blanka [ESRF, 38043 Grenoble Cedex (France)

    2011-07-01

    The interaction of organic semiconducting molecules with different substrates is essential for the understanding of these systems and for possible applications in organic electronic devices. Diindenoperylene (DIP) is one promising semiconductor and has been studied widely in the recent years concerning its growth and ordering behavior on different substrates as well as electronic properties. Despite these efforts the bonding distance d{sub 0} and thus the coupling to the substrate is still an unknown key parameter of DIP adsorption. Here we present a systematic study of d{sub 0} of DIP on Cu(111), Ag(111) and Au(111) surfaces, determined by the X-ray standing wave (XSW) technique. Different bonding distances for different substrates indicate a substrate dependent interaction strength. Our results are compared with the well-established bonding distances and interaction strength of PTCDA on the same noble metal surfaces. Interesting similarities as well as differences between the two molecules are discussed.

  15. Visible-light-driven hydrogen production in a dye sensitized polyoxometalate system without noble metals

    Science.gov (United States)

    Liu, Xing; Li, Yuexiang; Peng, Shaoqin; Lai, Hua; Yi, Zhengji

    2016-05-01

    In this work, a noble-metal-free homogeneous system was constructed in one step with Keggin-type polyoxometalate (POM) SiW12O404- as a catalyst, Eosin Y as a photosensitizer, and triethanolamine (TEOA) as a sacrificial electron donor for water splitting to produce hydrogen under visible-light irradiation. A two-electron reduced heteropoly blue SiW12O406- is produced by photosensitization under visible-light irradiation. The effect of various component concentrations and POMs with different central atoms (PW12O403-, GeW12O404-, etc.) on hydrogen production was discussed. This simple system made of earth-abundant elements is expected to contribute toward the development of functional and efficient artificial photosynthetic system.

  16. Charge transfer and formation of conducting C60 monolayers at C60/noble-metal interfaces

    Science.gov (United States)

    Nouchi, Ryo; Kanno, Ikuo

    2005-05-01

    The resistance of a conducting C60 monolayer formed on a polycrystalline Ag film was found to be 0.7±0.1kΩ by in situ resistance measurements. By another series of in situ resistance measurements, the surface scattering cross sections, whose magnitude represents the relative amount of transferred charge, were evaluated as 100Å2 for C60/Au, and 150Å2 for C60/Cu and C60/Ag systems. However, comparison with previous results obtained for monolayers formed on Au and Cu films showed that the resistances of conducting C60 monolayers do not show a simple dependence on the transferred charge. Atomic force microscopy measurements revealed that the grain size of the underlying noble metals also plays an important role.

  17. Synthesis of noble metal nanoparticles and their superstructures; Darstellung von Edelmetallnanopartikeln und deren Ueberstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Bigall, Nadja-Carola

    2009-08-18

    A modified synthesis procedure for citrate-stabilized gold nanoparticles in aqueous solution is transferred under application of equal concentrations to the systems silver, platinum, and palladium. The nanoparticles are analyzed by means of absorption spectroscopy and electron microscopy. Ordered superstructures of the noble-metal nanoparticles can be synthesized by infiltration of templates of block-copolymer films with aqueous nanoparticle solution. In dependence on the pre-treatment of the polymer films either two-dimensional periodical arrangements with a periodicity of less than 30 nm or fingerprint-like arrangements with a groove distance in the same order of magnitude. By removal of the polymer one- respectively two-dimensional arrangements of platinum nanowires respectively nanoparticles on a silicon waver arise.

  18. Measurement of the Inhomogeneity in Type B and Land-Jewell Noble-Metal Thermocouples

    Science.gov (United States)

    Webster, E. S.; Greenen, A.; Pearce, J.

    2016-07-01

    Inhomogeneity is the largest contributor to uncertainty in temperature measurements made with thermocouples, and the knowledge of inhomogeneity is essential if low-uncertainty measurements are required. Inhomogeneity is a particular problem for long-term applications at temperatures near or above 1500 ^{circ }hbox {C}, where pairs of alloyed noble-metal thermocouples must be used and the alloy components and potential contaminants become very mobile and cause large deviations in the Seebeck coefficient. While changes in inhomogeneity are a known and well-studied problem in noble-metal alloys at temperatures below 1100 ^{circ }hbox {C}, the effects are not well quantified at higher temperatures. This paper reports the first detailed measurements of inhomogeneity in a number of Type B and Land-Jewell thermocouples exposed to either short-term calibration up to 1600 ^{circ }hbox {C} or long-term in situ measurements for a period of approximately 3000 h at 1600 ^{circ }hbox {C}. The inhomogeneity is measured in a high-resolution scanner operating over the range from 600 ^{circ }hbox {C} to 900 ^{circ }hbox {C}. The results show that drifts of between 0.2 % and 0.6 % can be expected for reversible crystallographic and oxidation effects, whereas drift caused by irreversible contamination effects can be expected to be between 0.6 % and 1.1 %. It is also shown that the deviations in emfs caused by irreversible homogeneities in these thermocouples scale approximately linearly with temperature. This scalability allows uncertainties assessed at one temperature, to be extrapolated to other temperatures. Additionally it is shown that a preconditioning anneal at 1100 ^{circ }hbox {C} should be applied both before and after calibration to remove undesirable crystallographic and rhodium-oxidation effects.

  19. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    The Hanford Waste Vitrification Plant (HWVP) is being designed by the U.S. Department of Energy to immobilize high-level nuclear waste. Simulants for the HWVP feed containing the major nonradioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO32-, NO3- and NO2- were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO2H→H2+/CO2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small-scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO2, H2, NO, and N2O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl3.3H2O, was found to be the most active catalyst for hydrogen generation from formic acid above nearly 80 degree C in the presence of nitrite ion in accord with earlier observations. The apparent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is consistent with the approximate pseudo-first-order dependence of the hydrogen production rate on Rh concentration. 24 refs., 7 figs., 2 tabs

  20. Conversion of ion-exchange resins, catalysts and sludges to glass with optional noble metal recovery using the GMODS process

    International Nuclear Information System (INIS)

    Chemical processing and cleanup of waste streams (air and water) typically result in products, clean air, clean water, and concentrated hazardous residues (ion exchange resins, catalysts, sludges, etc.). Typically, these streams contain significant quantities of complex organics. For disposal, it is desirable to destroy the organics and immobilize any heavy metals or radioactive components into stable waste forms. If there are noble metals in the residues, it is desirable to recover these for reuse. The Glass Material Oxidation and Dissolution System (GMODS) is a new process that directly converts radioactive and hazardous chemical wastes to borosilicate glass. GMODS oxidizes organics with the residue converted to glass; converts metals, ceramics, and amorphous solids to glass; converts halides (eg chlorides) to borosilicate glass and a secondary sodium halide stream; and recovers noble metals. GMODS has been demonstrated on a small laboratory scale (hundreds of grams), and the equipment needed for larger masses has been identified

  1. Update on the use of dissolved oxygen addition to monitor the effectiveness of noble metal applications in external manifolds

    International Nuclear Information System (INIS)

    Electrochemical corrosion potential (ECP) measurements in a Mitigation Monitoring System (MMS) ECP manifold have historically been a primary indicator of the effectiveness of an On-Line NobleChem™ (OLNC) application, with the MMS ECP intended to measure the catalytic effect of noble metal deposited on the ECP manifold surface. In some plants ECP measurements made on untreated surfaces prior to an OLNC application were significantly lower than what would be expected for stainless steel under reactor bulk chemistry conditions. This is due to the consumption and depletion of bulk liquid dissolved oxygen (DO) in the lines supplying reactor water to these external ECP measurement locations. This phenomenon degrades the ability to use these external manifolds to confirm noble metal deposition. Previous papers have described how the injection of an oxygen-rich stream to the MMS supply stream (DO Addition) can be used to re-establish the capability of external ECP measurements to monitor the catalytic behavior of platinum deposited during an OLNC injection. This paper will provide an update of how this method is being successfully used in operating BWRs to monitor OLNC injections. The paper will outline the overall approach used to characterize the catalytic behavior of external ECP manifolds before and after the noble metal application and present plant data collected during DO Additions performed under various conditions. (author)

  2. The determination, by x-ray-fluorescence spectrometry, of noble and base metals in matte-leach residues

    International Nuclear Information System (INIS)

    An accurate and precise method is described for the determination of noble and base metals in matte-leach residues. Preparation of the samples essentially involves fusion with sodium peroxide in a zirconium crucible and leaching with hydrochloric and nitric acids. Matrix correction and calibration are achieved by use of the single-standard calibration method with reference solutions prepared from pure metals or from compounds of the element to be determined

  3. Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction.

    Science.gov (United States)

    Seitz, Linsey C; Hersbach, Thomas J P; Nordlund, Dennis; Jaramillo, Thomas F

    2015-10-15

    Developing improved catalysts for the oxygen evolution reaction (OER) is key to the advancement of a number of renewable energy technologies, including solar fuels production and metal air batteries. In this study, we employ electrochemical methods and synchrotron techniques to systematically investigate interactions between metal oxides and noble metals that lead to enhanced OER catalysis for water oxidation. In particular, we synthesize porous MnOx films together with nanoparticles of Au, Pd, Pt, or Ag and observe significant improvement in activity for the combined catalysts. Soft X-ray absorption spectroscopy (XAS) shows that increased activity correlates with increased Mn oxidation states to 4+ under OER conditions compared to bare MnOx, which exhibits minimal OER current and remains in a 3+ oxidation state. Thickness studies of bare MnOx films and of MnOx films deposited on Au nanoparticles reveal trends suggesting that the enhancement in activity arises from interfacial sites between Au and MnOx. PMID:26722794

  4. Attachment of noble metal nanoparticles to conducting polymers containing sulphur - preparation conditions for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    Taking advantage of the spontaneous deposition of noble metals on polymers containing sulphur, the inclusion of gold and platinum in poly(3-methylthiophene) and poly(3,4-ehylenedioxythiophene) (PEDOTh) layers, achieved by immersion of the polymer into the metal nanoparticles suspension, is reported in the present work. Platinum and gold nanoparticles (NPs), with diameters between 3 and 17 nm, have been prepared from colloidal methods (citrate or borohydride reduction in the presence of citrate capping agent) and characterized by transmission electron microscopy, ultraviolet-visible spectrophotometry and X-ray diffraction (XRD). The electropolymerization was carried out under potentiostatic and potentiodynamic conditions, imparting distinct morphologies, as revealed by atomic force microscopy. After polymer films immersion in the colloidal solutions, evidence of the NPs confinement and distribution was provided by XRD analysis and scanning electron microscopy. For thin layers, the quantity of attached metal NPs could be estimated from quartz crystal microbalance data collected throughout the films immersion.The influence of the polymer type and morphology, NPs nature, size and incorporated amount on the electrocatalytic activity of the so-prepared modified electrodes towards the hydrazine oxidation, in phosphate buffer solution, has been investigated by cyclic voltammetry. The results clearly show the superior properties of potentiodynamically prepared PEDOTh films attaching very small (3 nm) freshly prepared Pt-NPs.

  5. Magnetic properties of ZnS doped with noble metals (X = Ru, Rh, Pd, and Ag)

    Science.gov (United States)

    Tan, Zhiyun; Xiao, Wenzhi; Wang, Lingling; Yang, Youchang

    2012-12-01

    Density functional theory calculations are carried out to study the electronic structures and magnetic properties in zinc-blende structure ZnS doped with nonmagnetic noble metals (X = Ru, Rh, Pd, and Ag). Results show robust magnetic ground states for X-doped ZnS. The total magnetic moments are about 2.0, 3.0, and 2.0 μB per supercell for the Ru-, Rh-, and Pd-doped ZnS, respectively. As the atomic number of X element increases, the local magnetic moment tends toward delocalize and the hybridization between X-4d and S-3p states become stronger. This trend is strongly related to the difference in electronegativity between the substitutional X and the cation in the ZnS host. For Ag-doped ZnS, both non-spin- and spin-polarized calculations yield nearly equal total energy. The substitution of Zn in ZnS parent material by the nonmagnetic 4d transition-metals may lead to half-metallic ferromagnetism which stems from the hybridization between X-4d and S-3p states and could be attributed to a double-exchange mechanism. Curie temperature values are estimated using mean-field approximation.

  6. UV-initiated formation of noble metal nanoparticles on zinc oxide quantum dots

    International Nuclear Information System (INIS)

    Full text: Quantum dots (nanosized semiconductor particles) are a relatively new phenomenon. They exhibit unusual properties as a result of spatial electron confinement within the particles, including an increased band gap energy and blue-shifted fluorescence. Quantum dots and nanoparticles have attracted a lot of academic and industrial interest because of their special properties, including small size and potential as catalysts, 'tunable' fluorescence, and potential use in biomedical applications. Still, there are many properties of quantum dots that need further investigation if they are to be fully utilised. The interaction between nanosized noble metal colloids and zinc oxide quantum dots (Q-ZnO) under UV-irradiation provides valuable information about the electronic structure of Q-ZnO. In a sample containing Q-ZnO and Pt6+, Au+ or Ag+, electrons from excited Q-ZnO were transferred to the metal ions, and consequently, metal particles were reduced onto the Q-ZnO particles. The processes that occur can be followed spectroscopically. The results will be discussed during the presentation. A Transmission Electron Microscope image of a 3nm zinc oxide quantum dot, with lattice planes clearly visible is presented

  7. Fundamental study of nanostructured electro-catalysts with reduced noble metal content for PEM based water electrolysis

    Science.gov (United States)

    Kadakia, Sandeep Karan

    Identification and development of non-noble metal based electro-catalysts or electro-catalysts with significant reduction of expensive noble metal contents (E.g. IrO2, Pt) with comparable electrochemical performance as the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would constitute a major breakthrough in the generation of hydrogen by water electrolysis. Accomplishing such a system would not only result reduction of the overall capital costs of PEM based water electrolyzers, but also help attain the targeted hydrogen production cost [oxygen evolution reaction (OER) in PEM based water electrolysis. Furthermore, corrosion resistant SnO2 and NbO 2 support has been doped with F and coupled with IrO2 or RuO2 for use as an OER electro-catalyst. A solid solution of SnO 2:F or NbO2:F with only 20 - 30 mol.% IrO2 or RuO2 yielding a rutile structure in the form of thin films and bulk nanoparticles displays similar electrochemical activity and stability as pure IrO2/RuO2. This would lead to more than 70 mol.% reduction in the noble metal oxide content. Novel nanostructured ternary (Ir,Sn,Nb)O 2 thin films of different compositions have also been studied. It has been shown that (Ir0.40Sn0.30Nb 0.30)O2 shows similar electrochemical activity and enhanced chemical robustness as compared to pure IrO2. F doping of the ternary (Ir,Sn,Nb)O2 catalyst helps in further decreasing the noble metal oxide content of the catalyst. As a result, these reduced noble metal oxide catalyst systems would potentially be preferred as OER electro-catalysts for PEM electrolysis. The excellent performance of the catalysts coupled with its robustness would make them great candidates for contributing to significant reduction in the overall capital costs of PEM based water electrolyzers. This thesis provides a detailed fundamental study of the synthesis, materials, characterization, theoretical studies and detailed electrochemical response and potential

  8. Interactions of noble metal nanoparticles with their environment; Wechselwirkungen von Edelmetallnanopartikeln mit ihrer Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Reismann, Maximilian

    2009-12-08

    Upon irradiating noble metal nanoparticles with light, unique optical phenomena can occur, such as resonantly enhanced light-scattering and light-absorption, or a tremendous enhancement of the exciting optical field close to the surface of the nanoparticles. These phenomena rely on the excitations of collective oscillations of the conduction electrons within a nanoparticle. The optical properties of a nanoparticle are determined by the resonance frequency of these so-called plasmon oscillations. This resonance frequency and the light-scattering spectrum of a nanoparticle depend (among other effects) on the dielectric environment of the particle. Due to this effect, noble metal nanoparticles can be applied for local optical sensing of chemical substances. The large light-absorption properties of a nanoparticle also enable the usage of light-irradiation to deposit heat in the nanoparticle in a selective and highly localized manner. Therefore, a local temperature increase can be induced in the nanoparticle and its immediate environment. This temperature increase could be used to trigger chemical or biological reactions, or it could be used for a selective hyperthermia of biological material. These and further possible applications rely on the detection or the systematic excitation of interactions between the noble metal nanoparticle and its environment. These interactions are the central subject of this thesis. Particular attention is paid to photothermal interactions. An interesting question is to what extend a nanoparticle-supported, photothermally-induced temperature rise can be applied to trigger a biomolecular reaction in a spatially confined volume. By carefully adjusting the photothermal treatment, one aims at affecting the molecules without damaging their chemical functionality. The photothermal interaction is addressed in two projects: First, networks built up by gold nanoparticles are investigated. In these networks, double-stranded DNA-molecules are used to

  9. Determination of noble metals by Inductively Coupled Plasma Atomic Emission Spectrometry

    International Nuclear Information System (INIS)

    Full text: It is well known that significant quantities of soluble fission products such as La, Ce, Pr, Eu, Gd, Sm and noble metals such as Ag, Pt, Au, Ru, Rh, Pd are produced in the spent fuel dissolver solutions, in nuclear reactors. The recovery of noble metals from generated high level waste assumes importance in view of their usage in chemical and electronic industries. In the present work, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) technique has been explored to determine six noble metals in aqueous solutions. Synthetic solution standards containing individually Ag, Au, Pt, Pd, Rh and Ru in the range of 1-500 μg/mL were prepared. Individual elemental solutions at 100μg/mL were fed in to the plasma. The instrumental parameters were obtained for positioning of the analytical line with appropriate sensitivity on the photomultiplier tube. The prominent ICP lines reported in literature in decreasing order of sensitivities for Au are 242.745, 267.895, 197.819, 208.219 nm; Ru are 240.272, 245.657, 267.876 nm; for Rh are 233.477, 249.077, 343.419, 252.053 nm and for Pt are 214.423, 203.646, 214.937 nm respectively. Of these the lines shown in bold are only accessible with the axial ICP unit used in these studies. In addition less sensitive lines in the polyscan mode were chosen, where one can access an elemental line 2.2 nm on either side of the analytical channel provided in polychromator of the instrument. The lines chosen in the polyscan are: Pt 306.471, Ru 249.877 and Rh at 343.489 nm. For Ag and Pd the lines at 328.068 nm and 340.458 nm available with the polychromator of the ICP unit were used. A three point standardization containing the analytes in the concentration range of 0.1 to 200 μg/mL was used. The detection limits determined as per the IUPAC convention for these elements are given. The analytical range for Ag and Pd were 0.05-200 μg/mL while for other elements viz: Au, Pt, Rh and Ru it was 0.5-500 μg/mL . Synthetic samples

  10. Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions.

    Science.gov (United States)

    Rodriguez, José A; Illas, Francesc

    2012-01-14

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show that Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O(2), C(2)H(4), SO(2), thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO(2) at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O(2) and perform the 2CO + O(2)→ 2CO(2) reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS(x) catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are excellent supports for enhancing the chemical

  11. Noble metals determination in ancient jewels with portable ED-XRF system

    International Nuclear Information System (INIS)

    A handmade system of Energy Dispersive X-Ray Fluorescence (ED-XRF) was used to perform the analysis of some jewels of the XIX century, as napkin holder, tobacco case, cigarette case, pen, pendant shrines, bracelets and a crucifix from the collection of the Museu Historico Nacional do Rio de Janeiro (MHN), Brazil. It was possible to verify the presence of Cu, Au and Ag as macro elements of the alloys, besides Hg as contaminant for one silver piece. Some gold and silver coins with well-known concentrations of gold and silver were also analysed, as reference material, to check out the methodology. To determine the concentrations of the metals, a methodology based on the equation of the fundamental parameters was used. For the jewels with silver aspect, it was possible to determine in average 90.4% of Ag for the napkin holder and 46.6% of Ag for one the bracelets, this last one presented also a high concentration of copper. For the jewels with golden aspect, it was possible to determine, in average, 88.6% to 98.9% for the Au content . For one special piece it was observed 62.5% of Au and 37.5% of Cu. For the coins, the obtained values showed a deviation of 0.4 and 7.6 percent for the average concentration of noble metals Ag and Au, respectively. The portable X-ray system showed to be a powerful tool in the investigation of metallic alloys with high concentration of major elements, allowing in situ measurements.(author)

  12. Noble metals determination in ancient jewels with portable ED-XRF system

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, Paulo S.; Galvao, Tiago D.; Appoloni, Carlos R. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada ], e-mail: parreira@uel.br, e-mail: tdggalvao@yahoo.com.br, e-mail: appoloni@uel.br

    2009-07-01

    A handmade system of Energy Dispersive X-Ray Fluorescence (ED-XRF) was used to perform the analysis of some jewels of the XIX century, as napkin holder, tobacco case, cigarette case, pen, pendant shrines, bracelets and a crucifix from the collection of the Museu Historico Nacional do Rio de Janeiro (MHN), Brazil. It was possible to verify the presence of Cu, Au and Ag as macro elements of the alloys, besides Hg as contaminant for one silver piece. Some gold and silver coins with well-known concentrations of gold and silver were also analysed, as reference material, to check out the methodology. To determine the concentrations of the metals, a methodology based on the equation of the fundamental parameters was used. For the jewels with silver aspect, it was possible to determine in average 90.4% of Ag for the napkin holder and 46.6% of Ag for one the bracelets, this last one presented also a high concentration of copper. For the jewels with golden aspect, it was possible to determine, in average, 88.6% to 98.9% for the Au content . For one special piece it was observed 62.5% of Au and 37.5% of Cu. For the coins, the obtained values showed a deviation of 0.4 and 7.6 percent for the average concentration of noble metals Ag and Au, respectively. The portable X-ray system showed to be a powerful tool in the investigation of metallic alloys with high concentration of major elements, allowing in situ measurements.(author)

  13. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  14. Ab initio investigation of the oxygen reduction reaction activity on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, for Lisbnd O2 cells

    Science.gov (United States)

    Sankarasubramanian, Shrihari; Singh, Nikhilendra; Mizuno, Fuminori; Prakash, Jai

    2016-07-01

    First principles, density functional theory (DFT) modelling of the oxygen reduction reaction (ORR) on noble metal (Pt, Au, Pd), Pt3M (M = Fe, Co, Ni, Cu) and Pd3M (M = Fe, Co, Ni, Cu) alloy surfaces, was carried out. Periodic models of close-packed (111) surfaces were constructed, their geometry was optimized and the most stable geometric surface configuration was identified. The correlation between the intermediate species binding energy and the favored reaction pathway from amongst 1e-, 2e-, and 4e- mechanisms were studied by calculating the binding energies of a 1/4 monolayer of O, O2, LiO, LiO2, Li2O2, and Li2O on various sites and orientations. The reaction free energies (ΔGrxn) were calculated and used to compute the catalytic activity of the surfaces using molecular kinetics theory. Plots of the catalytic activity vs. Oxygen binding energy (EBinding (O)) showed a typical "volcano" profile. The insights gained from this study can be used to guide the choice of cathode catalysts in Lisbnd O2 cells.

  15. Improved ORR activity of non-noble metal electrocatalysts by increasing ligand and metal ratio in synthetic complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liucheng [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Zhang Lei, E-mail: lei.zhang@nrc-cnrc.gc.ca [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Zhang Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada)

    2011-06-30

    Highlights: > Various mole ratios between precursor Fe(II) and nitrogen-containing ligand of tripyridyl triazine (TPTZ) were investigated in order to further improve the ORR activity of Fe-N{sub x}/C catalyst. > The research results revealed that as the Fe to TPTZ mole ratio in the precursor complex was decreased, the catalytic ORR activity of Fe-N{sub x}/C increased monotonically in the mole ratio range of 1:2-1:6. > Increasing the amount of ligand in the precursor metal complex was demonstrated to be an effective way to compress the decomposition of ORR active site density and thereby enhance the ORR activity of Fe-N{sub x}/C. - Abstract: In an effort to improve oxygen reduction reaction (ORR) activity by increasing the catalytic active site density in carbon-supported non-noble metal catalysts, several nitrogen-containing catalysts were synthesized through a heat treatment process at 900 deg. C using precursor complexes of Fe(II) and tripyridyl triazine (TPTZ). Fe to TPTZ mole ratios of 1:2, 1:3, 1:4, 1:5, 1:6, and 1:7 were used to prepare the precursor complexes. X-ray diffraction and surface electrochemical techniques were used to characterize these catalysts (Fe-N{sub x}/C), and revealed that when the amount of TPTZ in the precursor complex was increased, the decomposition of Fe-N{sub x} sites, which are considered active sites for the ORR, was effectively reduced, resulting in higher Fe-N{sub x} site density and thus improving the catalysts' ORR activity. This beneficial effect was validated through rotating disk electrode tests and analysis of the ORR kinetics catalyzed by these catalysts. The obtained results showed that as the Fe to TPTZ mole ratio in the precursor complex was decreased, the catalytic ORR activity of Fe-N{sub x}/C increased monotonically in the mole ratio range of 1:2-1:6. Therefore, increasing the amount of ligand in the precursor metal complex was demonstrated to be an effective way to reduce the decomposition of ORR active site

  16. Inhibitive Effect of Pyridine on HDS over Mo/Al2O3 Modified by Noble Metals

    Czech Academy of Sciences Publication Activity Database

    Vít, Zdeněk; Kaluža, Luděk; Gulková, Daniela; Zdražil, Miroslav

    Prague : J. Heyrovský Institute of Physical Chemistry of the ASCR, v.v.i, 2009, s. 56-57. ISBN 978-80-87351-04-8. [Symposium on Catalysis /41./. Prague (CZ), 02.11.2009-03.11.2009] R&D Projects: GA ČR GA104/09/0751 Institutional research plan: CEZ:AV0Z40720504 Keywords : HDS * noble metal * inhibition Subject RIV: CF - Physical ; Theoretical Chemistry

  17. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    OpenAIRE

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Nurul Shafeeqa Mohammad

    2015-01-01

    Carbon dioxide (CO2) in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4) gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. T...

  18. Resonance effects in the optical antennas shaped as finite comb-like gratings of noble-metal nanostrips

    Czech Academy of Sciences Publication Activity Database

    Shapoval, O.V.; Nosich, A. I.; Čtyroký, Jiří

    Vol. 8781. BELLINGHAM : SPIE, 2013 - (Cheben, P.; Čtyroký, P.; MolinaFernandez, I.) ISBN 978-0-8194-9583-9. ISSN 0277-786X. [Conference on Integrated Optics - Physics and Simulations. Prague (CZ), 17.04.2013-18.04.2013] Institutional support: RVO:67985882 Keywords : noble-metal thin strips * nanoantennas * grating resonance s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues

    Czech Academy of Sciences Publication Activity Database

    Sapurina, Irina; Stejskal, Jaroslav; Šeděnková, Ivana; Trchová, Miroslava; Kovářová, Jana; Hromádková, Jiřina; Kopecká, J.; Cieslar, M.; Abu El-Nasr, A.; Ayad, M. M.

    2016-01-01

    Roč. 214, April (2016), s. 14-22. ISSN 0379-6779 R&D Projects: GA ČR(CZ) GA13-00270S; GA MŠk(CZ) LH14199; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : conducting polymer * polypyrrole nanotubes * noble metals Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  20. Quasi-noble-metal graphene quantum dots deposited stannic oxide with oxygen vacancies: Synthesis and enhanced photocatalytic properties.

    Science.gov (United States)

    Quan, Bin; Liu, Wei; Liu, Yousong; Zheng, Ying; Yang, Guangcheng; Ji, Guangbin

    2016-11-01

    Quasi-noble-metal graphene quantum dots (GQDs) deposited stannic oxide (SnO2) with oxygen vacancies (VOs) were prepared by simply sintering SnO2 and citric acid (CA) together. The redox process between SnO2 and GQDs shows the formation of oxygen vacancy states below the conduction band of stannic oxide. The produced VOs obviously extend the optical absorption region of SnO2 to the visible-light region. Meanwhile, GQDs can effectively improve the charge-separation efficiency via a quasi function like noble metal and promote the visible-light response to some degree. In addition, the samples calcinated at 450°C reveals the best performance because of its relatively high concentrations of VOs. What is more, the possible degradation mechanism has been inferred as extended visible-light response as well as raised charge-separation efficiency has also been put forward. Our work may offer a simple strategy to combine the defect modulation and noble metal deposition simultaneously for efficient photocatalysis. PMID:27450887

  1. Phase formation study of noble metal (Au, Ag and Pd) doped lanthanum perovskites synthesized by hydrothermal method

    International Nuclear Information System (INIS)

    Noble metal (Au, Ag and Pd) doped Lanthanum perovskites (LaMnO3, LaCrO3 and LaFeO3) have been synthesized by hydrothermal method. The effect of dopant and their concentration on the phase purity, crystallite size, morphology and magnetic character of the synthesized perovskites were systematically studied by FTIR spectroscopy, XRD, TGA, SEM, ICP-AES and VSM. The results show that phase pure products were obtained only after calcining the hydrothermally synthesized products above 760 °C for a minimum of 6 h. Nature and concentration of the dopant plays an important role in determining the phase formation temperature, morphology and magnetic character. The dopant ion preferentially occupies A-site and homogeneous phase of product is obtained upto a dopant concentration of 4%, higher concentration results in phase separation. The products exhibit spherical morphology. Lanthanum ferrite shows ferromagnetic nature, while the doped samples show weak magnetic properties. - Highlights: • Hydrothermal synthesis of noble metal doped lanthanum perovskites. • Site preference of noble metal (Au, Ag and Pd) doping in LaBO3 (B = Mn, Cr and Fe). • Dopant ions affect the phase formation temperature and morphology the perovskites. • 4% appears to be the maximum limit of doping at A-site

  2. Hydrogen production by aqueous-phase reforming of glycerol on supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boonyanuwat, A.; Jentys, A.; Lercher, J.A. [Technische Univ. Muenchen, Garching (Germany). Dept. Chemie

    2006-07-01

    Hydrogen produced from renewable feedstocks such as crude glycerol, which is the main by-product formed during bio-diesel production, will develop into an attractive alternative energy source in the near future. A low temperature process is being developed using noble metal catalysts supported on gamma alumina. The overall catalytic activity of the catalysts Pt/Al{sub 2}O{sub 3}, Pd/Al{sub 2}O{sub 3}, Ni/Al{sub 2}O{sub 3}, Ru/Al{sub 2}O{sub 3} and Rh/Al{sub 2}O{sub 3} was studied. The activation energy decreased in the order: Pt>Pd>Ni>>Ru>Rh. The H{sub 2} selectivity of Pt was the highest and decreased for Pd > Ni > Ru > Rh. The H{sub 2} selectivity of Pt and Pd supported on gamma alumina was above 90%. The Pt/Al{sub 2}O{sub 3} catalyst showed a long term stability above 2 weeks using 1%wt glycerol in the feed, which indicates that these catalysts might have a high potential to be used for the aqueous phase reforming process of glycerol. (orig.)

  3. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review

    International Nuclear Information System (INIS)

    Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications. (author)

  4. Urban mining. Noble metals in the city; Urban Mining. Edelmetalle in der Stadt

    Energy Technology Data Exchange (ETDEWEB)

    Hagelueken, Christian [Umicore AG und Co. KG, Hanau (Germany)

    2012-11-01

    Europe has increasing problems to get noble and rare metals required for high-tech applications. In consequence, recycling is becoming an important source of materials but conventional recycling approaches are insufficient. Instead, high-efficiency process chains with high recovery yields must be developed. Innovative recycling processes, efficient process design, and prevention of product loss will be necessary. There are still great deficiencies here, and the current loss rates can be prevented only by systemic optimization along the value-add chain. (orig.) [German] Die sichere Versorgung mit den fuer Hi-Tech-Anwendungen essentiellen Edel- und Sondermetallen wird als zunehmend kritisch fuer die europaeische Volkswirtschaft angesehen. Altprodukte bilden eine wichtige Rohstoffquelle fuer diese Metalle, die durch ein umfassendes Recycling erschlossen werden kann. Hierfuer reichen allerdings die bestehenden, auf Massenstroeme ausgelegten Recyclingansaetze nicht aus, es gilt statt dessen hocheffiziente Prozessketten zu entwickeln, die mit hohen Ausbeuten auch die nur in Spuren enthaltenen ''Technologiemetalle'' gewinnen. Neben innovativen Recyclingprozessen sind hier die Auslegung des Gesamtsystems und die Vermeidung von unkontrollierten Abfluessen entscheidend. Hier bestehen erhebliche Defizite, und die derzeitigen grossen Metallverluste koennen nur durch eine systemische Optimierung entlang der Wertschoepfungskette vermieden werden. (orig.)

  5. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli

    2012-05-01

    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  6. Ab initio study of the trapping of polonium on noble metals

    Science.gov (United States)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  7. Quantum size effects on the adsorption of rare gases on Ag monolayer covered noble metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Forster, Frank; Nuber, Andreas; Bentmann, Hendrik; Ziroff, Johannes; Reinert, Friedrich [Universtaet Wuerzburg, Experimentelle Physik II, Wuerzburg (Germany)

    2008-07-01

    In the recent past it has been demonstrated that Shockley states on (111) surfaces of Cu,Ag, and Au are a sensitive probe for interactions between surfaces and adsorbates. Their significant change in binding energy, band mass and spin-orbit coupling allows an access to the comprehension of adsorption mechanisms like physisorption. On the example of Xe monolayers on noble metal surfaces we show vice versa that the Shockley states influence the adsorption dynamics of rare gas atoms. For that purpose we present real-time and high resolution ARPES investigations on Xe adsorption on Cu(111) and Au(111) substrates with Shockley states modified by a pre-adsorption of layer-by-layer grown Ag-films of various thickness. In the case of Xe on Ag/Cu(111) we found that the rare gas prefers the adsorption on the thickest Ag film to the disadvantage of thinner layers or the clean substrate. A similar behaviour could be observed for Ag/Au(111) with the exception of a single Ag layer, which is always unfavoured for Xe coverage. Within a simplified model, the local DOS of the Shockley state at the modified surfaces are compared to the obtained ARPES results.

  8. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    Directory of Open Access Journals (Sweden)

    Christopher Knoblauch

    2014-10-01

    Full Text Available Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs. Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.

  9. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits; Caracterizacion del comportamiento electroquimico de recubrimiento por soldadura de acero 308L y en presencia de depositos de metales nobles

    Energy Technology Data Exchange (ETDEWEB)

    Piedras, P.; Arganis J, C. R., E-mail: pedro.piedras@hotmail.es [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  10. Hartree-Fock ground-state properties for the group 1 alkali metals and the group 11 noble metals

    International Nuclear Information System (INIS)

    In order to use wavefunction-based correlation methods in solids it is necessary to have reliable Hartree-Fock results for the infinite system of interest. Therefore we performed Hartree-Fock calculations for the group 1 alkali metals (Li to Cs) and group 11 noble metals (Cu, Ag and Au). We optimized a basis set of valence-double-ζ quality for the periodic system. For the lighter atoms all-electron basis sets are applied, whereas for the heavier atoms small-core pseudopotentials with the corresponding basis sets were used to deal with the scalar-relativistic effects. We determine the cohesive energy, the lattice constant and the bulk modulus of the systems at the Hartree-Fock level. We use the counterpoise correction for the free atom to minimize the basis set superposition error occurring for finite basis sets. The effects due to the counterpoise correction not only for the cohesive energy but also for the lattice structure and bulk modulus are discussed in detail

  11. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  12. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.

    Science.gov (United States)

    Pal, Ramkrishna; Chakraborty, Biswajit; Nath, Anupam; Singh, Leichombam Mohindro; Ali, Mohammed; Rahman, Dewan Shahidur; Ghosh, Sujit Kumar; Basu, Abhishek; Bhattacharya, Sudin; Baral, Rathindranath; Sengupta, Mahuya

    2016-09-01

    Diagnosis of cancer and photothermal therapy using optoelectronic properties of noble metal nanoparticles (NPs) has established a new therapeutic approach for treating cancer. Here we address the intrinsic properties of noble metal NPs (gold and silver) as well as the mechanism of their potential antitumor activity. For this, the study addresses the functional characterization of tumor associated macrophages (TAMs) isolated from murine fibrosarcoma induced by a chemical carcinogen, 3-methylcholanthrene (MCA). We have previously shown antitumor activity of both gold nanoparticles (AuNPs) and silver nanoparticle (AgNPs) in vivo in a murine fibrosarcoma model. In the present study, it has been seen that AuNPs and AgNPs modulate the reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, suppressing the antioxidant system of cells (TAMs). Moreover, the antioxidant-mimetic action of these NPs maintain the ROS and RNS levels in TAMs which act as second messengers to activate the proinflammatory signaling cascades. Thus, while there is a downregulation of tumor necrosis factor-α (TNF-α) and Interleukin-10 (IL-10) in the TAMs, the proinflammatory cytokine Interleukin-12 (IL-12) is upregulated resulting in a polarization of TAMs from M2 (anti-inflammatory) to M1 (pro-inflammatory) nature. PMID:27344639

  13. Temperature-programmed oxidation of coked noble metal catalysts after autothermal reforming of n-hexadecane

    Energy Technology Data Exchange (ETDEWEB)

    Kauppi, E.I.; Linnekoski, J.A.; Krause, A.O.I.; Veringa Niemelae, M.K. [Aalto University, School of Science and Technology, Department of Biotechnology and Chemical Technology, Research Group Industrial Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kaila, R.K. [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1001, FI-02044 VTT (Finland)

    2010-08-15

    Autothermal reforming (ATR) of n-hexadecane was carried out on zirconia-supported mono- and bimetallic noble metal (Rh, Pt) catalysts at 600, 700, and 800 C. After ATR, the reactivity of coke deposits (2.8-9.9 wt%) on the catalysts was investigated by temperature-programmed oxidation (TPO). Analysis of the results obtained from ATR and TPO experiments at various temperatures and on the different catalysts gave information on the reaction conditions where the detrimental coke can be minimized and allows estimating the nature of carbon deposits. H{sub 2} production increased with temperature on the tested Rh-containing catalysts and the ZrO{sub 2} support, but decreased as a function of temperature on the Pt catalyst. The formation of coke was least at 800 C, evidently due to the intensifying reaction of carbon and steam with increasing temperature, as well as to the better activity of the catalysts. The amount of coke formed was highest at 700 C. Comparison of the TPO profiles obtained for the monometallic Rh and Pt catalysts with the bimetallic RhPt revealed differences in the nature of carbon deposits on their surface. At 600 C, the coke formed on the monometallic Rh and Pt catalysts was located mostly on the support, whereas on the bimetallic RhPt catalyst the formation of this type of coke was suppressed. The bimetallic RhPt catalyst also exhibited better tolerance toward coking at 700 C. Therefore, although the selectivity toward hydrogen was not related to the amount of coke formed, the deactivation patterns differed on the mono- and bimetallic catalysts. (author)

  14. Mitigation of hydrogen by oxidation using nitrous oxide and noble metal catalysts

    International Nuclear Information System (INIS)

    This test studied the ability of a blend of nuclear-grade, noble-metal catalysts to catalyze a hydrogen/nitrous oxide reaction in an effort to mitigate a potential hydrogen (H2) gas buildup in the Hanford Site Grout Disposal Facility. For gases having H2 and a stoichiometric excess of either nitrous oxide or oxygen, the catalyst blend can effectively catalyze the H2 oxidation reaction at a rate exceeding 380 μmoles of H2 per hour per gram of catalyst (μmol/h/g) and leave the gas with less than a 0.15 residual H2 Concentration. This holds true in gases with up to 2.25% water vapor and 0.1% methane. This should also hold true for gases with up to 0.1% carbon monoxide (CO) but only until the catalyst is exposed to enough CO to block the catalytic sites and stop the reaction. Gases with ammonia up to 1% may be slightly inhibited but can have reaction rates greater than 250 μmol/h/g with less than a 0.20% residual H2 concentration. The mechanism for CO poisoning of the catalyst is the chemisorption of CO to the active catalyst sites. The CO sorption capacity (SC) of the catalyst is the total amount of CO that the catalyst will chemisorb. The average SC for virgin catalyst was determined to be 19.3 ± 2.0 μmoles of CO chemisorbed to each gram of catalyst (μmol/g). The average SC for catalyst regenerated with air was 17.3 ± 1.9 μmol/g

  15. Structure Determination of Noble Metal Clusters by Trapped Ion Electron Diffraction

    Science.gov (United States)

    Schooss, Detlef

    2006-03-01

    The structures of noble metal cluster ions have been studied by the recently developed technique of trapped ion electron diffraction (TIED)^1. In brief, cluster ions are generated by a magnetron sputter source and injected into a cooled (95 K) quadrupole ion trap. After mass selection and thermalization, the trapped ions are irradiated with a 40 keV electron beam. The resulting diffraction pattern is integrated with a CCD detector. The assignment of the structural motif is done via a comparison of the experimental and simulated scattering function, calculated from density functional theory structure calculations. The structures of mass selected silver cluster cations Ag19^+, Ag38^+, Ag55^+, Ag59^+, Ag75^+ and Ag79^+ have been investigated^2. The resulting experimental data are best described by structures based on the icosahedral motif, while closed packed structures could be ruled out. Additionally, we present a comparison of the structures of Cu20^+/-, Ag20^+/- and Au20^+/-. Our findings show unambiguously that the structure of Au20^- is predominantly given by a tetrahedron in agreement with the results of L.S. Wang et al.^3 In contrast, structures of Ag20^- and Cu20^- based on the icosahedral motif agree best with the experimental data. Small structural differences between the charge states are observed. The possibilities and limitations of the TIED method are discussed. (1) M. Maier-Borst, D. B. Cameron, M. Rokni, and J. H. Parks, Physical Review A 59 (5), R3162 (1999); S. Krückeberg, D. Schooss, M. Maier-Borst, and J. H. Parks, Physical Review Letters 85 (21), 4494 (2000). (2) D. Schooss, M.N. Blom, B. v. Issendorff, J. H. Parks, and M.M. Kappes, Nano Letters 5 (10), 1972 (2005). (3) J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science 299, 864 (2003)

  16. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process

    Indian Academy of Sciences (India)

    F Bonet; K Tekaia-Elhsissen; K Vijaya Sarathy

    2000-06-01

    Noble metal powders (Au, Ag, Pt, Pd and Ru) have been synthesized by the polyol process in both the nanometer and submicron scales (sans Pd, Pt and Ru). They have been characterized by both microscopic (TEM and SEM) as well as spectroscopic techniques (FT-IR and XPS). Infrared spectroscopy was employed to study the colloid particles in the presence of ethylene glycol and PVP and the results show that the interaction between the organic phase and the metal particles vary according to the particle size. The role of the solvent, ethylene glycol, during the reduction process was also investigated and we observe formation of >C=O vibration band after the reduction process implying that the solvent reduces the metal ions thereby getting oxidized. XPS measurements carried out on the colloidal sols have shown the presence of the organic phase adsorbed onto the metal particles.

  17. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  18. Experimental and computational approaches to evaluate the environmental mitigation effect in narrow spaces by noble metal chemical addition (NMCA)

    International Nuclear Information System (INIS)

    The environmental mitigation effect of NMCA in a narrow space was evaluated by experimental and computational approaches. In the experiment at 8 MPa and 553K, T-tube whose branched line had a narrow space was prepared, and the Zr electrodes were set in the branched line at certain intervals, which were 1, 3, 5, 7, 9, 11, 15 and 29 cm from the opening section of the branched line. Electrochemical corrosion potential (ECP) at the tip of the branched narrow space varied in response to the water chemistry in the main line which was at right angle with the branched line. Computational fluid dynamics (CFD) analysis reproduced the experimental results. It was also confirmed by CFD analysis that the ingress of water from the main line into the narrow space was accelerated by cavity flow and thermal convection. By CFD analysis in a thermal sleeve of actual plant condition, which had a narrow space, the concentration of dissolved oxygen at a tip of the thermal sleeve reached at 250 ppb within 300 sec, which was the same concentration of the main line. Noble metal deposition on the surface of the thermal sleeve was evaluated by mass transfer model. Noble metal deposition was the largest near the opening section of the branched line, and gradually decreased toward the tip section. In light of the consumption of dissolved oxygen in the branched line, noble metal deposition in the thermal sleeve was sufficient to reduce the ECP. It was expected that NMCA could mitigate the corrosion environment in the thermal sleeve. (author)

  19. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    Science.gov (United States)

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-12-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2-12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C.

  20. Tuning molecular level alignment and work function modification through self-assembled monolayers on noble metals: theoretical perspectives

    International Nuclear Information System (INIS)

    Full text: There is currently significant interest in highly-ordered, self-assembled monolayers (SAMs) on (noble) metal surfaces, inspired both by the emergence of the field of molecular electronics alongside the high potential for SAMs to improve the properties of more conventional device structures. SAMs are also used to control surface reactivity and for chemical sensing applications. In order to tune the interface properties and to endow the self-assembled systems with functionality suitable for use in either macroscopic or nanoscale devices, the use of π-conjugated systems is highly promising and the focus of intense, multidisciplinary research. The goal of the present study is to provide an in-depth description of the electronic structure of the interface between metallic substrates and covalently bound conjugated molecules. In this way, we expect to devise strategies to tune the interaction and thus the properties of the investigated systems and eventually to gain a full understanding of the processes governing the electronics of metal/organic interfaces. Here, we describe a first step in that direction: we study conjugated SAMs consisting of molecules with widely varied molecular ionization potentials, different conjugated backbones with different polarizabilities, and monolayers with varying degrees of coverage. We consider noble metals with varying work functions such as Au, Ag, and Pt, different molecule docking groups and investigate the effects of mechanical stress on the organic system. Using DFT band-structure-type methods, the details of the interface morphology, charge transfer between the metal and the molecules, interface dipoles, molecular layer depolarization, and work function modifications as well as the alignment between metallic and molecular levels are described. Our thorough analysis provides results that are sometimes a priori unexpected, like the finding that by properly tuning the molecular structure, the level alignment between the

  1. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation

    Science.gov (United States)

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  2. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  3. Specificity of noble metals dynamic sorption preconcentration on reversed-phase sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fedyunina, N.N.; Seregina, I.F.; Ossipov, K.; Dubenskiy, A.S. [Chemistry Department, Analytical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation); Tsysin, G.I. [Chemistry Department, Analytical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation); Institute for Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Street, 142190 Moscow, Troitsk (Russian Federation); Bolshov, M.A., E-mail: mbolshov@mail.ru [Chemistry Department, Analytical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation)

    2013-10-10

    Graphical abstract: -- Highlights: •StrataX and StrataX-AW for PGMs’ preconcentration were used for the first time. •Steric structure of chlorocomplexes plays critical role in the sorption mechanism. •The conditions of quantitative and reversible sorption of Ir on StrataX-AW were found. •The quantitative and reversible schemes for Pd, Pt, Au and Ir are developed. -- Abstract: The reversible sorption preconcentration of noble metals (NMs) using different schemes “sorbent–reagent–eluent” was investigated. The extraction of Au, Pd, Pt, Ir, Rh and Ru chlorocomplexes from hydrochloric acid solutions on hyper-crosslinked polysterene MN-200 in the form of ion associates with tributylamine (TBA) and 4-(n-octyl)diethylenetriamine (ODETA) was investigated. It was found that Pd, Pt and Au were quantitatively and reversibly extracted using TBA on hyper-crosslinked polysterene; the appropriate eluent for desorption was 1 M solution of HCl in ethanol. Ir, Rh and Ru under these conditions were not sorbed quantitatively. It was found that sorbent hydrophobicity is not the main characteristic that defines the efficiency of sorption of a particular NM ion associate. Different efficiencies of hyper-crosslinked polysterene MN-200 for sorption of square-planar chlorcomplexes of Pt, Pd and Au and octahedral complexes of Ir, Rh and Ru were found. For the first time, the sorbents with their own N-atoms – StrataX and StrataX-AW – were used for the sorption of Ir, Rh and Ru. Using these sorbents, the sorption of Ir was increased up to 95%, and the sorption of Ru and Rh was increased to about 40%. We can explain these results by nonspecific interaction of chlorcomplexes of Ir, Rh and Ru with ethylenediamine groups of the sorbent. Weak bases with large anions may be applied for desorption of Ir, Rh and Ru. Two schemes of dynamic sorption preconcentration of NMs from hydrochloric acid solutions were proposed – hyper-crosslinked polysterene MN-200 for the determination

  4. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins. PMID:26874441

  5. Incorporation of Fines and Noble Metals into HLW Borosilicate Glass: Industrial Responses to a Challenging Issue - 13056

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, E.; Chouard, N.; Prod' homme, A. [AREVA, AREVA NC, Paris (France); Boudot, E. [AREVA, AREVA NC, La Hague (France); Gruber, Ph.; Pinet, O. [CEA Marcoule LCV, France (France); Grosman, R. [AREVA, SGN, Paris (France)

    2013-07-01

    During the early stages of spent fuel reprocessing, the fuel rods are cut and dissolved to separate the solid metallic parts of the rods (cladding and end pieces) from the radioactive nitric acid solution containing uranium, plutonium, minor actinides and fission products (FP). This solution contains small, solid particles produced during the shearing process. These small particles, known as 'fines', are then separated from the liquid by centrifugation. At the La Hague plant in France, the fines solution is transferred to the vitrification facilities to be incorporated into borosilicate glass along with the highly radioactive FP solution. These fines are also composed of Zr, Mo and other noble metals (i.e. Ru, Pd, Rh, etc.) that are added before vitrification to the the FP solution that already contained noble metals. As noble metals has the potential to modify the glass properties (including viscosity, electrical conductivity, etc.) and to be affected by sedimentation inside the melter, their behavior in borosilicate glass has been studied in depth over the years by the AREVA and CEA teams which are now working together in the Joint Vitrification Laboratory (LCV). At La Hague, the R7 vitrification facility started operation in 1989 using induction-heated metallic melter technology and was quickly followed by the T7 vitrification facility in 1992. Incorporating the fines into glass has been a challenge since operation began, and has given rise to several R and D studies resulting in a number of technological enhancements to improve the mixing capability of the melters (multiple bubbling technology and mechanical stirring in the mid-90's). Nowadays, the incorporation of fines into R7T7 glass is well understood and process adaptations are deployed in the La Hague facilities to increase the operating flexibility of the melters. The paper will briefly describe the fines production mechanisms, give details of the resulting fines characteristics, explain

  6. Control of radiation fields in BWRs after noble metal chemical addition

    International Nuclear Information System (INIS)

    Hydrogen water chemistry (HWC) was developed to mitigate the intergranular stress corrosion cracking (IGSCC) that can occur in the welded piping and internal components of boiling water reactors (BWRs). HWC is practiced by adding hydrogen gas to the feedwater to reduce the electrochemical corrosion potential (ECP) of the component to be protected to below -0.230 V(SHE). Unfortunately, only a few BWR owners implemented HWC for internals component IGSCC protection because of the factor of 4 to 5 increase in operating dose rates that accompanies its use. Noble metal chemical addition (NMCA) was developed to address this shortcoming. NMCA is a process in which Pt and Rh chemicals are added to a shutdown Boiling Water Reactor while the reactor water temperature is maintained in the range of 120 C to 150 C for 48 hours. During that time, a target concentration of Pt and Rh is maintained in the reactor water. At the end of the 48 hour period the plant then either goes back to power or enters into a refueling outage. The end result of the NMCA process is a uniform deposit of Pt and Rh metal at very low concentrations, on the order of 0.5 to 1.0 mg/cm2, on the reactor wetted surfaces. During subsequent operation, when a small amount of hydrogen is added to the feedwater (less than 0.4 ppm), very low ECPs will be developed on the wetted catalytic surfaces, on the order of -0.500 V(SHE), and intergranular stress corrosion cracking (IGSCC) of components will be mitigated. Since NMCA with hydrogen changes the surface chemistry and not the bulk chemistry, there is little or no increase in operating dose rate. See References 1 through 5 for a more complete discussion of HWC and NMCA fundamentals. To date, 26 BWRs worldwide have applied NMCA. As operating plants have completed their first full operating cycle after NMCA application, it has become apparent that NMCA can have a significant impact on shutdown dose rates, as can be seen in Table 1. (The shut down dose rates referred

  7. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Rudolf Herrmann

    2014-12-01

    Full Text Available The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core–shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4–260 ± 40 nm diameter can be prepared and decorated with noble metal nanoparticles (2–5 nm diameter. Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.

  8. A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots

    Science.gov (United States)

    Yin, Shengming; Han, Jianyu; Zou, Yinjun; Zhou, Tianhua; Xu, Rong

    2016-07-01

    We report the construction of a highly efficient noble metal free photocatalytic hydrogen (H2) evolution system using CdS quantum dots as the light absorber and metallic MoP as the cocatalyst. MoP can be prepared by a facile temperature programmed reduction method and small clusters of MoP nanoparticles sized 10-30 nm were obtained by probe ultrasonication. The effect of synthesis conditions on the electrocatalytic and photocatalytic H2 evolution activity of MoP was investigated. The highest H2 evolution rate of 1100 μmol h-1 can be achieved by the optimized system under visible light (λ >= 420 nm), which is comparable to that when Pt was used as the cocatalyst. A high quantum efficiency of 45% is obtained at 460 nm irradiation.We report the construction of a highly efficient noble metal free photocatalytic hydrogen (H2) evolution system using CdS quantum dots as the light absorber and metallic MoP as the cocatalyst. MoP can be prepared by a facile temperature programmed reduction method and small clusters of MoP nanoparticles sized 10-30 nm were obtained by probe ultrasonication. The effect of synthesis conditions on the electrocatalytic and photocatalytic H2 evolution activity of MoP was investigated. The highest H2 evolution rate of 1100 μmol h-1 can be achieved by the optimized system under visible light (λ >= 420 nm), which is comparable to that when Pt was used as the cocatalyst. A high quantum efficiency of 45% is obtained at 460 nm irradiation. Electronic supplementary information (ESI) available: SEM image with EDS, XPS survey spectrum, XRD and TEM images of MoP samples prepared under different conditions; XRD, TEM, UV-vis and photoluminescence spectra of CdS QDs; H2 evolution activity comparison for different MoP/CdS samples; the effect of pH value on H2 evolution activity of a MoP/CdS system; the XPS spectrum of MoP/CdS after photoreaction; table of literature studies on H2 evolution activity by different noble metal free photocatalytic systems

  9. Expeditious Synthesis of Noble Metal Nanoparticles Using Vitamin B12 under Microwave Irradiation

    OpenAIRE

    Changseok Han; Varun Nagendra; R. B. Nasir Baig; Varma, Rajender S.; Mallikarjuna N. Nadagouda

    2015-01-01

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized Ag, Au, and Pd samples were thoroughly characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, and UV-visible spectrophotometry, c...

  10. A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots.

    Science.gov (United States)

    Yin, Shengming; Han, Jianyu; Zou, Yinjun; Zhou, Tianhua; Xu, Rong

    2016-08-14

    We report the construction of a highly efficient noble metal free photocatalytic hydrogen (H2) evolution system using CdS quantum dots as the light absorber and metallic MoP as the cocatalyst. MoP can be prepared by a facile temperature programmed reduction method and small clusters of MoP nanoparticles sized 10-30 nm were obtained by probe ultrasonication. The effect of synthesis conditions on the electrocatalytic and photocatalytic H2 evolution activity of MoP was investigated. The highest H2 evolution rate of 1100 μmol h(-1) can be achieved by the optimized system under visible light (λ≥ 420 nm), which is comparable to that when Pt was used as the cocatalyst. A high quantum efficiency of 45% is obtained at 460 nm irradiation. PMID:27406067

  11. The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors

    Science.gov (United States)

    Grunwaldt, Jan-Dierk; Hübner, Michael; Koziej, Dorota; Barsan, Nicolae; Weimar, Udo

    2013-04-01

    Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.

  12. The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors

    International Nuclear Information System (INIS)

    Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.

  13. 4,6-Dimethyl-dibenzothiophene conversion over Al2O3-TiO2-supported noble metal catalysts

    International Nuclear Information System (INIS)

    Research highlights: → Al2O3 and Al2O3-TiO2 (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with ∼1 wt% nominal metal loading. → Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). → In Pd-containing materials, TiO2 incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. → Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. → Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al2O3 and Al2O3-TiO2 (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with ∼1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N2-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H2 flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO2 incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion.

  14. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.

    Science.gov (United States)

    Loh, Guan Chee

    2016-04-18

    With the rise of 2D materials, such as graphene and transition metal dichalcogenides, as viable materials for numerous experimental applications, it becomes more necessary to maintain fine control of their properties. One expedient and efficacious technique to regulate their properties is surface functionalization. In this study, DFT calculations are performed on triangular MoS2 quantum dots (QDs) either partially or completely doped with nanoparticles (NPs) of the noble metals Au, Ag, and Pt. The effects of these dopants on the geometry, electronic properties, magnetic properties, and chemical bonding of the QDs are investigated. The calculations show that the structural stability of the QDs is reduced by Au or Ag dopants, whereas Pt dopants have a contrasting effect. The NPs diminish the metallicity of the QD, the extent of which is contingent on the number of NPs adsorbed on the QD. However, these NPs exert distinctly disparate charge transfer effects-Ag NPs n-dope the QDs, whereas Au and Pt NPs either n- or p-dope. The molecular electrostatic potential maps of the occupied states show that metallic states are removed from the doping sites. Notwithstanding the decrease of magnetization in all three types of hybrid QD, the distribution of spin density in the Pt-doped QD is inherently different from that in the other QDs. Bond analyses using the quantum theory of atoms in molecules and the crystal orbital Hamilton population suggest that bonds between the Pt NPs and the QDs are the most covalent and the strongest, followed by the Au-QD bonds, and then Ag-QD bonds. The versatility of these hybrid QDs is further examined by applying an external electric field in the three orthogonal orientations, and comparing their properties with those in the absence of the electric field. There are two primary observations: 1) dopants at the tail, head and tail, and in the fully encased configuration are most effective in modifying the distribution of metallic states if the

  15. Synthesis of metal-metal oxide catalysts and electrocatalysts using a metal cation adsorption/reduction and adatom replacement by more noble ones

    Science.gov (United States)

    Adzic, Radoslav; Vukmirovic, Miomir; Sasaki, Kotaro

    2010-04-27

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen. The invention also relates to methods of making the metal-metal oxide composites.

  16. Evaluation of HWVP feed preparation chemistry for an NCAW simulant -- Fiscal year 1993: Effect of noble metals concentration on offgas generation and ammonia formation

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Wiemers, K.D.; Bell, R.D.; Smith, H.D.; Williford, R.E.; Clemmer, R.G.

    1995-03-01

    The High-Level Waste Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies using a HWVP simulated waste slurry, Neutralized Current Acid Waste (NCAW). A FY 1993 laboratory-scale study focused on the effects of noble metals (Pd, Rh, and Ru) on feed preparation offgas generation and NH{sub 3} production. The noble metals catalyze H{sub 2} and NH{sub 3} production, which leads to safety concerns. The information gained from this study is intended to be used for technology development in pilot scale testing and design of the Hanford High-Level Waste Vitrification Facility. Six laboratory-scale feed preparation tests were performed as part of the FY 1993 testing activities using nonradioactive NCAW simulant. Tests were performed with 10%, 25%, 50% of nominal noble metals content. Also tested were 25% of the nominal Rh and a repeat of 25% nominal noble metals. The results of the test activities are described. 6 refs., 28 figs., 12 tabs.

  17. Laser ablation in liquid media of noble metals. The physics of plasma plume and the optical properties of the produced colloids

    International Nuclear Information System (INIS)

    In experiments of pulsed laser ablation in liquids (PLAL), performed on noble metal targets, many physical aspects regarding the characteristics of the plasma plume generated in the confining liquid, and the optical properties of the produced nano colloids deserve a clear definition and discussion. In this paper we present the relevant theories and the results of experiments performed in our laboratory on this argument.

  18. Radiological analysis by the addition of hydrogen and noble metals in the reactors of the Laguna Verde central

    International Nuclear Information System (INIS)

    During the operation of the nuclear power stations there are metals that are subject to condition and agents that cause that these they present indications of intergranular corrosion and for their importance they are subject to a continuous surveillance to assure their integrity. During the time of operation, for the level of indications, it can be necessary the substitution of these. The internal components of the vessel and particularly those of the structure of the reactor core are exposed during the operation to a neutron flow that causes that these they are activated and, in consequence, before an eventual repair it will be necessary to face high radiation levels. At the moment a technique that controls exists and it reduces the growth rate of the indications in the metals and it increases its useful life: the addition of hydrogen. The addition of hydrogen it is an ALARA measure from long term when protecting the internals of the vessel that requires to establish radiological controls in the stage of their application to avoid unnecessary dose to the personnel. The addition of hydrogen to the primary system has as objective to reduce the growth of indications taken place by intergranular corrosion in metals of the reactor core and this is achieved when the electrochemical thresholds are reached. Hydrogen to interacting with the metal surfaces it generates reductive reactions causing in consequence an increment in the concentration of soluble cobalt in the coolant one and an increment in the nitrogen concentration. To reduce the magnitude of the radiological impact that in some NC reach up to factors 10, its are injected to the system noble metals as the rhodium and the platinum, to reduce the concentration of hydrogen to the system and to be below the threshold electrochemical potential necessary to protect the internals of the reactor vessel. The external and internal operational experience generated on this protection technique to the internals of the vessel

  19. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    Science.gov (United States)

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications. PMID:23228941

  20. A stochastic optimization method based technique for finding out reaction paths in noble gas clusters perturbed by alkali metal ions

    International Nuclear Information System (INIS)

    Graphical abstract: The structure of a minimum in Ar19K+ cluster. Abstract: In this paper we explore the possibility of using stochastic optimizers, namely simulated annealing (SA) in locating critical points (global minima, local minima and first order saddle points) in Argon noble gas clusters perturbed by alkali metal ions namely sodium and potassium. The atomic interaction potential is the Lennard Jones potential. We also try to see if a continuous transformation in geometry during the search process can lead to a realization of a kind of minimum energy path (MEP) for transformation from one minimum geometry to another through a transition state (first order saddle point). We try our recipe for three sizes of clusters, namely (Ar)16M+, (Ar)19M+ and (Ar)24M+, where M+ is Na+ and K+.

  1. A Noble-Metal-Free Nickel(II) Polypyridyl Catalyst for Visible-Light-Driven Hydrogen Production from Water.

    Science.gov (United States)

    Yuan, Yong-Jun; Lu, Hong-Wei; Tu, Ji-Ren; Fang, Yong; Yu, Zhen-Tao; Fan, Xiao-Xing; Zou, Zhi-Gang

    2015-10-01

    The complex [Ni(bpy)3](2+) (bpy=2,2'-bipyridine) is an active catalyst for visible-light-driven H2 production from water when employed with [Ir(dfppy)2 (Hdcbpy)] [dfppy=2-(3,4-difluorophenyl)pyridine, Hdcbpy=4-carboxy-2,2'-bipyridine-4'-carboxylate] as the photosensitizer and triethanolamine as the sacrificial electron donor. The highest turnover number of 520 with respect to the nickel(II) catalyst is obtained in a 8:2 acetonitrile/water solution at pH 9. The H2 -evolution system is more stable after the addition of an extra free bpy ligand, owing to faster catalyst regeneration. The photocatalytic results demonstrate that the nickel(II) polypyridyl catalyst can act as a more effective catalyst than the commonly utilized [Co(bpy)3 ](2+). This study may offer a new paradigm for constructing simple and noble-metal-free catalysts for photocatalytic hydrogen production. PMID:26264140

  2. Photocatalytic Degradation of a Water Soluble Herbicide by Pure and Noble Metal Deposited TiO2 Nanocrystalline Films

    Directory of Open Access Journals (Sweden)

    Katerina Pelentridou

    2008-01-01

    Full Text Available We present the photocatalytic degradation of a water soluble sulfonylurea herbicide: azimsulfuron in the presence of titania nanocrystalline films. Efficient photodegradation of herbicide was achieved by using low-intensity black light tubes emitting in the Near-UV. The degradation of the herbicide follows first-order kinetics according to the Langmuir-Hinshelwood model. Intermediate products were identified by the LC-MS-MS technique during photocatalytic degradation. In order to increase photodegradation rate of the herbicide, we examined the effect of titania modification by depositing noble metals at various quantities and valence states. The presence of platinum at neutral valence state and optimum concentration induced higher photodegradation rates while silver-modified titania exhibited similar photocatalytic rates with those obtained with pure nanocrystalline TiO2 films. Finally, the effect of initial pH value was also examined. Acidic or alkaline media were unfavorable for azimsulfuron photodegradation.

  3. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.

    Science.gov (United States)

    Mu, Wei; Ben, Haoxi; Du, Xiaotang; Zhang, Xiaodan; Hu, Fan; Liu, Wei; Ragauskas, Arthur J; Deng, Yulin

    2014-12-01

    Aqueous phase hydrodeoxygenation of lignin pyrolysis oil and related model compounds were investigated using four noble metals supported on activated carbon. The hydrodeoxygenation of guaiacol has three major reaction pathways and the demethylation reaction, mainly catalyzed by Pd, Pt and Rh, produces catechol as the products. The presence of catechol and guaiacol in the reaction is responsible for the coke formation and the catalysts deactivation. As expected, there was a significant decrease in the specific surface area of Pd, Pt and Rh catalysts during the catalytic reaction because of the coke deposition. In contrast, no catechol was produced from guaiacol when Ru was used so a completely hydrogenation was accomplished. The lignin pyrolysis oil upgrading with Pt and Ru catalysts further validated the reaction mechanism deduced from model compounds. Fully hydrogenated bio-oil was produced with Ru catalyst. PMID:25280108

  4. Fano effect in the angle-integrated valence band photoemission of the noble metals Cu, Ag, and Au

    International Nuclear Information System (INIS)

    Results of a combined experimental and theoretical investigation on the Fano-effect in the angle-integrated valence band photoemission of the noble metals are presented. In line with the fact that the Fano-effect is caused by the spin-orbit-coupling, the observed spin polarization of the photocurrent was found to be the more pronounced the higher the atomic number of the element investigated. The ratio of the normalized spin difference curves, however, agreed only for Cu and Ag with the ratio of the corresponding spin-orbit coupling strength parameters. The deviation from this expected behavior in the case of Au could be explained by the properties of individual d-p- and d-f-contributions to the total spin difference curves, that were found to be quite different for Au compared to Cu and Ag

  5. Stability of noble-metal clusters on C/W(110) templates against CO and O2 exposure

    International Nuclear Information System (INIS)

    Full text: Small noble-metal (especially Au) clusters on oxidic supports have gained a lot of attention in the last years due to their high activity and selectivity as catalysts for CO oxidation. The importance of cluster-size effects and the influence of the substrate material are still discussed controversially. We introduce two differently carburized W(110) surfaces R(15x12)C/W(110) and R(15x3)C/W(110) as templates for the growth of different types of Au, Ag and Cu nanoclusters. In a first step towards exploring the catalytic properties these clusters we studied the stability of the nano-clusters against exposure to the reaction gases CO and O2 by scanning tunnelling microscopy. Differences and similarities concerning gas-induced alterations on different types of clusters are discussed. (author)

  6. Chemical sensing with nanoparticles as optical reporters: from noble metal nanoparticles to quantum dots and upconverting nanoparticles.

    Science.gov (United States)

    Deng, Wei; Goldys, Ewa M

    2014-11-01

    A wide variety of biological and medical analyses are based on the use of optical signals to report specific molecular events. Thanks to advances in nanotechnology, various nanostructures have been extensively used as optical reporters in bio- and chemical assays. This review describes recent progress in chemical sensing using noble metal nanoparticles (gold and silver), quantum dots and upconverting nanoparticles. It provides insights into various nanoparticle-based sensing strategies including fluorescence/luminescence resonance energy transfer nanoprobes as well as activatable probes sensitive to specific changes in the biological environment. Finally we list some research challenges to be overcome in order to accelerate the development of applications of nanoparticle bio- and chemical sensors. PMID:25170528

  7. Noble Hybrid Nanostructures as Efficient Anti-Proliferative Platforms for Human Breast Cancer Cell.

    Science.gov (United States)

    Tavangar, Amirhossein; Premnath, Priyatha; Tan, Bo; Venkatakrishnan, Krishnan

    2016-04-27

    Nanomaterials have proven to possess great potential in biomaterials research. Recently, they have suggested considerable promise in cancer diagnosis and therapy. Among others, silicon (Si) nanomaterials have been extensively employed for various biomedical applications; however, the utilization of Si for cancer therapy has been limited to nanoparticles, and its potential as anticancer substrates has not been fully explored. Noble nanoparticles have also received considerable attention owing to unique anticancer properties to improve the efficiency of biomaterials for numerous biological applications. Nevertheless, immobilization and control over delivery of the nanoparticles have been challenge. Here, we develop hybrid nanoplatforms to efficiently hamper breast cancer cell adhesion and proliferation. Platforms are synthesized by femtosecond laser processing of Si into multiphase nanostructures, followed by sputter-coating with gold (Au)/gold-palladium (Au-Pd) nanoparticles. The performance of the developed platforms was then examined by exploring the response of normal fibroblast and metastatic breast cancer cells. Our results from the quantitative and qualitative analyses show a dramatic decrease in the number of breast cancer cells on the hybrid platform compared to untreated substrates. Whereas, fibroblast cells form stable adhesion with stretched and elongated cytoskeleton and actin filaments. The hybrid platforms perform as dual-acting cytophobic/cytostatic stages where Si nanostructures depress breast cancer cell adhesion while immobilized Au/Au-Pd nanoparticles are gradually released to affect any surviving cell on the nanostructures. The nanoparticles are believed to be taken up by breast cancer cells via endocytosis, which subsequently alter the cell nucleus and may cause cell death. The findings suggest that the density of nanostructures and concentration of coated nanoparticles play critical roles on cytophobic/cytostatic properties of the platforms on

  8. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    OpenAIRE

    Dabaghi Tabriz F.; Epakchi S.; Mousavi N.; Neshati A.; Ahmadzadeh A.; Sarbazi AH.

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble a...

  9. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    LI; Xiangfeng; (黎向锋); LI; Yaqin; (李雅芹); CAI; Jun; (蔡军); ZHANG; Deyuan; (张德远)

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  10. Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation

    International Nuclear Information System (INIS)

    The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 1016 ions/cm2 become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate. - Highlights: • Phenomenological interpretation of dewetting and embedding of metal NPs in thin film. • Exploring fundamental thermodynamic principles under influence of ion irradiation. • Ion induced surface/interface microstructural changes using SEM/X-TEM. • Ion induced sputtering, thermal spike induced local melting. • Thermodynamic driving forces relate to surface and interfacial energies

  11. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    Science.gov (United States)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  12. Separation of the noble metals ruthenium and palladium from nitric acid solution of the nuclear fuel reprocessing containing complexing agents

    International Nuclear Information System (INIS)

    Two extraction chromatographic techniques have been developed. N'N diethylthiourea (DETU), which forms complexes with ruthenium that can be retained on an AG50W-X2 ion exchanger, has proved to be a suitable reagent. The structures of these complexes were elucidated by electrophoresis, ion exchange and IR spectroscopy. Under the same conditions Pd forms an insoluble DETU-complex of the formula [Pd(DETU)4]2+, which allows the separation of this metal quantitatively. With regard to the application of the developed technique for recovery of the mentioned noble metals from dissolver residues of the nuclear fuel reprocessing, comparative studies were carried out for accompanying fission product nuclides and actinides such as Mo, Tc, Zr, Ce, U and Pu. It was found out that no complex between diethylthiourea and the fission products zirconium, molybdenum and cerium and the actinides uranium, plutonium and americium were formed. Technetium, which was originally present as pertechnetate, is reduced to Tc(IV) and retained on the cation exchanger together with ruthenium. Ruthenium was eluted with 6 M HNO3. The efficiency of the developed process has been demonstrated with simulated solutions. The achieved decontamination factors ranged from 102 to 106 depending on the nuclide. (orig./RB)

  13. GREENER PRODUCTION OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES: RISK REDUCTION AND APPLICATIONS

    Science.gov (United States)

    The synthesis of nanometal/nano metal oxide/nanostructured polymer and their stabilization (through dispersant, biodegradable polymer) involves the use of natural renewable resources such plant material extract, biodegradable polymers, sugars, vitamins and finally efficient and s...

  14. Three-dimensional noble-metal nanostructure: A new kind of substrate for sensitive, uniform, and reproducible surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique for highly sensitive structural detection of low concentration analyte. The SERS activities largely depend on the topography of the substrate. In this review, we summarize the recent progress in SERS substrate, especially focusing on the three-dimensional (3D) noble-metal substrate with hierarchical nanostructure. Firstly, we introduce the background and general mechanism of 3D hierarchical SERS nanostructures. Then, a systematic overview on the fabrication, growth mechanism, and SERS property of various noble-metal substrates with 3D hierarchical nanostructures is presented. Finally, the applications of 3D hierarchical nanostructures as SERS substrates in many fields are discussed. (invited review — international conference on nanoscience and technology, china 2013)

  15. Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Beier, M.; Kimmerle, B.;

    2009-01-01

    The dynamics of the ignition and extinction of the catalytic partial oxidation (CPO) of methane to hydrogen and carbon monoxide over Pt-Rh/Al2O3 and Pt/Al2O3 were studied in the subsecond timescale using quick-EXAFS with a novel cam-driven X-ray monochromator employing Si(111) and Si(311) crystals......, allowing to discuss the potential and limitation of this technique in catalysis and related areas. With respect to the noble metal catalysed partial oxidation of methane, several interesting observations were made: structural changes during ignition were-independent of the chosen reaction conditions......-significantly faster than during the extinction of the reaction. The dynamic behavior of the catalysts was dependent on the flow conditions and the respective noble metal component(s). Higher reaction gas flow led to a faster ignition process. While the ignition over Pt-Rh/Al2O3 occurred at lower temperature than over...

  16. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  17. Displacement solid-phase extraction on mercapto-functionalized magnetite microspheres for inductively coupled plasma mass spectrometric determination of trace noble metals

    International Nuclear Information System (INIS)

    A flow injection online displacement solid-phase extraction (DSPE) via magnetic immobilization of mercapto-functionalized magnetite microspheres onto the inner walls of a knotted reactor (KR) coupled with inductively coupled plasma mass spectrometry was developed for selective preconcentration and determination of trace noble metals (Ru, Rh, Pd, Pt, Ir and Au) in complex matrices. Online DSPE of 2.7 mL aqueous solution gave the enhancement factors of 32-46 for the six noble metals in comparison with direct nebulization of aqueous sample solution, and the detection limits (3 s) of 2.1 ng L-1 for Ru, 1.9 ng L-1 for Rh, 2.5 ng L-1 for Pd, 1.8 ng L-1 for Ir, 1.9 ng L-1 for Pt and 1.7 ng L-1 for Au. The sample throughput of the developed method was about 20 samples h-1, and the relative standard deviation for eleven replicate determinations of the noble metals at the 30 ng L-1 level ranged from 1.2% to 2.1%. The recoveries of Ru, Rh, Pd, Pt, Ir and Au still maintained 90% even after successive 140 cycles of DSPE. The developed method was successfully applied to selective determination of trace Ru, Rh, Pd, Pt, Ir and Au in complex matrices.

  18. Noble metal emissions. Final presentation, Hanover, October 17/18, 1996; Edelmetall - Emissionen. Abschlusspraesentation, Hannover, 17. und 18. Oktober 1996. Kurzfassung der Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, D. [comp.

    1997-12-31

    The discussion concerning noble metal emissions, in particular platinum emissions, and their environmental effects, started with the introduction of catalytical cleaning of gasoline engine exhaust. The Research Association for Noble Metal Emissions (Forschungsverbund Edelmetallemissionen) ws founded for the purpose of investigating problems concerning the types and volumes of noble metal emissions as well as their toxicological and allergological potential. In order to make valid statements on physiological and toxicological effects, it was necessary to identify the chemical forms of platinum and to develop powerful methods of analysis. Investigations of platinum concentrations in environmental samples suggest a 10 percent bioavailability. [Deutsch] Mit der Einfuehrung der katalytischen Abgasreinigung von Ottomotoren begann gleichzeitig die Diskussion ueber moegliche Emissionen von Edelmetallen, insbesondere von Platin, sowie ueber ihre eventuell moeglichen negativen Wirkungen in der Umwelt. Zur Erforschung der Fragestellungen zur Art und Menge der emittierten Platinmetalle, ihrer Aufnahme und dem Uebergang in den Nahrungskreislauf, sowie zu ihrem toxikologischen und allergologischen Potential wurde der Forschungsverbund ``Edelmetallemissionen`` gegruendet. Um Aussagen ueber physiologische und toxikologische Einfluesse zu machen, war es notwendig, die chemischen Erscheinungsformen des Platins zu identifizieren und nachweisstarke Analysenmethoden zu entwickeln. Untersuchungen zu Platinkonzentrationen in Umweltproben deuten auf eine Bioverfuegbarkeit von ca. 10 % hin. (ABI)

  19. Production of hydrogen via steam reforming of biofuels on Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts promoted by noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Luciene P.R.; Ticianelli, Edson A.; Assaf, Elisabete M. [Universidade de Sao Paulo, Instituto de Quimica de Sao Carlos, C.P. 780, CEP 13560-970, Sao Carlos - SP (Brazil)

    2009-06-15

    The catalytic activity of Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO{sub 2} dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H{sub 2} yield with reasonably low amounts of CO. (author)

  20. Optimal control of light propagation and exciton transfer in arrays of molecular-like noble-metal clusters

    Science.gov (United States)

    Lisinetskaya, Polina G.; Mitrić, Roland

    2015-03-01

    We demonstrate theoretically the possibility of optimal control of light propagation and exciton transfer in arrays constructed of subnanometer sized noble-metal clusters by using phase-shaped laser pulses and analyze the mechanism underlying this process. The theoretical approach for simulation of light propagation in the arrays is based on the numerical solution of the coupled time-dependent Schrödinger equation and the classical electric field propagation in an iterative self-consistent manner. The electronic eigenstates of individual clusters and the dipole couplings are obtained from ab initio TDDFT calculations. The total electric field is propagated along the array by coupling an external excitation electric field with the electric fields produced by all clusters. A genetic algorithm is used to determine optimal pulse shapes which drive the excitation in a desired direction. The described theoretical approach is applied to control the light propagation and exciton transfer dynamics into a T-shaped structure built of seven Ag8 clusters. We demonstrate that a selective switching of light localization is possible in ˜5 nm sized cluster arrays which might serve as a building block for plasmonic devices with an ultrafast operation regime.

  1. From self-assembly to quantum guiding: A review of magnetic atomic structures on noble metal surfaces

    International Nuclear Information System (INIS)

    Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one-dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom—adatom interactions are the driving forces for self-assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly. (topical review — magnetism, magnetic materials, and interdisciplinary research)

  2. TiO2 promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H2 evolution

    International Nuclear Information System (INIS)

    TiO2 photocatalysts modified by cobalt and nickel cocatalysts were prepared via polymerized complex method (PCM) and evaluated by photocatalytic hydrogen evolution. Hydrogen generation in 6 h for the TiO2 promoted by cobalt and nickel (0.1%Co + 0.2%Ni/TiO2) is about two times (2456 μmol H2) compared to that of TiO2 promoted only by cobalt (1180 μmol H2 for 0.1%Co/TiO2) or nickel (1127 μmol H2 for 0.2%Ni/TiO2), and mechanically mixed TiO2 promoted by cobalt and TiO2 promoted by nickel (0.1%Co/TiO2:0.2%Ni/TiO2 = 1:1 (m/m), 1282 μmol H2). The high photocatalytic H2 evolution activity over TiO2 promoted by cobalt and nickel is ascribed to enhanced photo response due to the presence of cobalt and nickel impurity level, and effective separation of photogenerated electrons and holes due to the synergistic effect of cobalt and nickel, which serve as active sites for H2 evolution reaction (HER) and oxidation reaction (OR) respectively. This study demonstrates a viable strategy to design more active photocatalysts for photocatalytic H2 evolution by substituting noble metals with more abundant elements using as HER and OR cocatalysts, respectively.

  3. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region.

    Science.gov (United States)

    Fang, Xu; Mak, C L; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-01

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  10(21) cm(-3) with the lowest corresponding resistivity of 2.41  ×  10(-4) Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (films suggests the potential application of ITO in the near-infrared range. PMID:27054885

  4. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    International Nuclear Information System (INIS)

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal PtN nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for PtN, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D6h symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of PtN clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt57 motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d96s1) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about PtN clusters are also applicable to IrN clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP

  5. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region

    Science.gov (United States)

    Fang, Xu; Mak, C. L.; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-01

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  1021 cm‑3 with the lowest corresponding resistivity of 2.41  ×  10‑4 Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range.

  6. Synthesis and mechanistic study of stable water-soluble noble metal nanostructures

    Science.gov (United States)

    Cai, Ling-Jian; Wang, Min; Hu, Yang; Qian, Dong-Jin; Chen, Meng

    2011-07-01

    Sodium salt of poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA) has been employed to prepare a series of stable nanosized metal colloids such as silver, gold, palladium, platinum, and silver-gold alloy nanostructures. All of the as-synthesized products are very stable in water. The metal nanostructures have been directly confirmed by ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction (SAED), and also characterized by techniques such as Fourier transform infrared spectroscopy (FT-IR) and 1H NMR. Intensive study has found that the metal ions are most probably reduced by organic radicals, generated from the thermal degradation of PSSMA.

  7. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-02-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm-2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  8. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N.; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S.

    2016-01-01

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp2 carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm−2 at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production. PMID:26839148

  9. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.

    2007-07-06

    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  10. Temperature-dependence of phonons, solid state properties and liquid structure of noble metals: A comparison of pair-potentials

    Science.gov (United States)

    Januszko, A.; Bose, S. K.

    2015-02-01

    Two groups of effective pair-potentials are studied from the viewpoint of their suitability in being able to describe solid state properties and liquid state structure of noble metals Cu, Ag and Au over a wide temperature range. Since the effective pair-potentials are usually empirical in nature, with parameters obtained by fitting to some reference state properties, the objective of the present study is to determine whether a particular parametrization scheme has any definite advantage over another. We consider Morse potentials with parameters determined by equilibrium lattice parameter, cohesive/sublimation energies as well as bulk modulus values of the solid at low/room temperatures. The other group of potentials considered is Erkoç potentials, where the parameters were determined first by studying dimers and further modified using bulk stability condition and bulk cohesive energy values. The potentials were then used to study the energetics of microclusters containing 3-7 atoms. Quasiharmonic results for the solid obtained at different temperatures and Monte Carlo simulation for the liquid state show that phonon spectra, thermal expansion, temperature-dependence of specific heats and liquid structure are much better described by the latter group. The first group of potentials may have an advantage in reproducing the temperature-dependence of elastic constants and bulk moduli, since they are based on room temperature values of these properties, which show only weak temperature-dependence in general for all metals. It is argued that potentials based on parameters fitted to the properties at a single volume are less versatile in capturing the temperature-dependence of various thermodynamic properties over a wide range. Potentials capable of reproducing the energetics of clusters of different co-ordination numbers and volumes per atom may fare better in this regard.

  11. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  12. Defect-free nanostructured alumina coating doped with noble metal nanoparticles

    International Nuclear Information System (INIS)

    Nanostructured alumina coatings loaded with platinum or gold nanoparticles were prepared by two different methods. In the first method the alumina coatings were prepared in the presence of metal ions, which were reduced using UV irradiation once the film was deposited. In the second method, polyvinylpyrrolidone-stabilized nanoparticles were first synthesized and then incorporated in the coating. The texturation of the coating occurred in a last step by hot water treatment.

  13. Semiconducting polymer composites containing noble metal nanoparticles: preparation and optical properties

    Czech Academy of Sciences Publication Activity Database

    Pfleger, Jiří; Dammer, Ondřej; Podhájecká, Klára; Sedláček, J.; Vohlídal, J.

    Ljubljana: European Polymer Federation, Slovenian Chemical Society, 2007 - (Pezdir, B.), IL5.3.5_1-IL5.3.5_2 [European Polymer Congress. Portoroz (SI), 02.07.2007-05.07.2007] R&D Projects: GA AV ČR IAA4050406; GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40500505 Keywords : metal nanoparticles * SERS * .Pi.-conjugated polymers Subject RIV: CD - Macromolecular Chemistry http://www.europolymer.org/

  14. Assaying and smelting noble metals in sixteenth-century Austria: a comparative analytical study

    OpenAIRE

    Mongiatti, A.

    2009-01-01

    This thesis aims primarily at furthering our understanding of the technologies involved in the metallurgy of precious metals during the Renaissance, by combining a critical evaluation of historical texts with the analytical study of contemporary archaeological remains. In particular, this work focuses on high-temperature processes performed in the fire assay and smelting of ores, by investigating two archaeological case studies from sixteenth-century Austria: the small-scale laboratory of Obe...

  15. Preparation, Processing and Characterization of Noble Metal Nanoparticle-based Aerogels

    OpenAIRE

    Herrmann, Anne-Kristin

    2015-01-01

    New challenges in nanotechnology arise in the assembly of nanoobjects into three-dimensional superstructures, which may carry synergetic properties and open up new application fields. Within this new class of materials nanostructured, porous functional metals are of great interest since they combine high surface area, gas permeability, electrical conductivity, plasmonic behavior and size-enhanced catalytic reactivity. Even though a large variety of preparation pathways for the fabrication of...

  16. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    Science.gov (United States)

    Song, Jun-Ling; Zhang, Jian-Han; Mao, Jiang-Gao

    2016-05-01

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV2(H3O)(HPO3)4 (1), and Ba3V2(HPO3)6 (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO6 octahedra which are connected by HPO3 tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV2(H3O) (HPO3)4 (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.62}2{42.66.82}{63}{65.8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV2(H3O)(HPO3)4 suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H2 evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV-vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated.

  17. Noble-metal nanoparticles produced with colloidal lithography: fabrication, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bocchio, Noelia Laura

    2008-08-15

    In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this

  18. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient. PMID:21214003

  19. Electrocatalysis of the oxidations of some organic compounds on noble-metal electrodes by foreign-metal ad-atoms

    International Nuclear Information System (INIS)

    Electrochemical oxidation of formic acid was studied on Pt electrodes in acid, and that of dextrose was studied on Pt and Au in alkali. Poisoning was observed on Pt but not on Au. Several heavy-metal ad-atoms (Pb, Bi, Tl) enhance greatly the anodic currents on Pt, while transition metals (Cu, Zn) inhibit the oxidation on Pt. The enhancement effect of the metal ad-atoms is correlated with electron structure. All metal ad-atoms showed an inhibitory effect on Au. Amperometry showed that Pt electrodes are completely deactivated within 10 s during dextrose oxidation without ad-atoms, while Au retains much of its activity even after 10 min. Ad-atoms maintains the Pt activity over much more than 10 s. 50 figures, 38 tables

  20. Simultaneous Elimination of Formaldehyde and Ozone Byproduct Using Noble Metal Modified TiO2 Films in the Gaseous VUV Photocatalysis

    Directory of Open Access Journals (Sweden)

    Pingfeng Fu

    2012-01-01

    Full Text Available Simultaneous removal of low concentration formaldehyde (HCHO and ozone byproduct was investigated in the gaseous VUV (vacuum ultraviolet photocatalysis by using noble metal modified TiO2 films. Noble metal (Pt, Au, or Pd nanoparticles were deposited on TiO2 films with ultrafine particle size and uniform distribution. Under 35 h VUV irradiation, the HCHO gas (ca. 420 ppbv was dynamically degraded to a level of 10~45 ppbv without catalyst deactivation, and over 50% O3 byproduct was in situ decomposed in the reactor. However, under the same conditions, the outlet HCHO concentration remained at 125~178 ppbv in the O3 + UV254 nm photocatalysis process and 190~260 ppbv in the UV254 nm photocatalysis process. And the catalyst deactivation also appeared under UV254 nm irradiation. Metallic Pt or Au could simultaneously increase the elimination of HCHO and ozone, but the PdO oxide seemed to inhibit the HCHO oxidation in the UV254 nm photocatalysis. Deposition of metallic Pt or Au reduces the recombination of h+/e− pairs and thus increases the HCHO oxidation and O3 reduction reactions. In addition, adsorbed O3 may be partly decomposed by photogenerated electrons trapped on metallic Pt or Au nanoparticles under UV irradiation.

  1. Sputtering and scattering by interaction of low energy noble gas ions with monocrystalline metal surfaces

    International Nuclear Information System (INIS)

    Sputtering and scattering processes in monocrystalline metal surfaces caused by low energy ion bombardment are described. Three aspects of the sputtering process have been studied: (i) the phenomenon of sputtering in preferential directions, (ii) the dependence of sputtering on the projectile target atom mass ratio, and (iii) the transition in sputtering with increasing projectile energy from being a process dominated by multiple collisions in the surface, at the threshold energy, to a process dominated by collision cascades below the surface, at higher energy. The experiments deal with sputtering in the low energy region (projectile energy from 20 to 1000 eV); the projectile ions Ne+, Ar+, Kr+, Xe+ were perpendicularly incident on fcc (100) and fcc (110) Cu, Ag and Au surfaces. Evidence is found for a sputtering process in which light ions reflecting from sub-surface atoms cause the ejection of surface atoms by hitting them from below. (Auth.)

  2. Effect of noble metal buffer layers on superconducting YBa2Cu3O7 thin films

    International Nuclear Information System (INIS)

    Superconducting YBa2Cu3O7 thin films have been prepared by using a magnetron sputtering system in the single-source mode. Samples deposited on [100] single-crystal MgO with and without a Au buffer layer all show high transition temperatures (82--87 K). The use of a Au buffer layer significantly improves the superconducting properties, particularly the Meissner effect and critical current density (3.3 x 106 A/cm2 at T = 2 K and 3.5 x 104 A/cm2 at T = 77 K). The Au films remain metallic after high-temperature annealing in an oxygen atmosphere. We propose to use Au buffer layers as current shunts to protect superconducting films and devices

  3. Effectiveness of diffusion coatings of noble metals for heat resistance improvement

    International Nuclear Information System (INIS)

    To establish the possibility of palladium coatings substitution for platinum ones a study was made on heat resistance of these coatings for 5VMTs niobium alloy at 1150 deg C. Coatings were applied at 950 deg C by diffusion method in lithium melt with addition of 3 mas% palladium or platinum. Heat resistance tests of samples with coatings were conducted in the air during 100 h. The efficiency of protective coatings was evaluated by gravimetric and metallographic methods. It was established that palladium coating thickness changes less intensively as compared to platinum one and is controlled by the process of formation of dense film of hard oxide preventing evaporation of metallic palladium. It was concluded that substitution of niobium alloy palladization for platinization is possible

  4. Noble metals nanoparticles on titanium dioxide nanostructured films and the influence of their photocatalytic activity

    International Nuclear Information System (INIS)

    Currently, nanoscience and nanotechnology are considered an emerging field and continuously breaking the barrier among various disciplines. The main focus of study involves controlling structures at molecular level, arranging the atoms in order to achieve an understanding and controlling the fundamental properties of matter. In this study, molecular changes on the basis of morphology, optical and crystalline properties of TiO2hin films in order to increase their photon efficiency were proposed. The TiO2 thin films were prepared by sol gel process evaluating the influence of different acids and templates to obtain the nano structured arrangements. Then, metal nanoparticles like Au, Ag, Pd and Pt were incorporated on TiO2 thin films. This incorporation might minimize the electron-hole recombination, so it could improve the photon efficiency. From the several routes studied, the TiO2 thin films prepared with acetic acid showed the best performance by the reason of low agglomeration of TiO2 grains, which favors the exposure of the photoactive sites. The presence of template in the formulation had a slightly effect on photon efficiency, possible due to the higher agglomeration of the grains on the TiO2 thin films. The addition of Pt and Au nanoparticles on TiO2 thin films showed superior photon efficiency. The TiO2 thin films with hexamine and metallic nanoparticles did not show the improvement on photon efficiency except for Pt and Au nanoparticles. On these situations, the improvement on photon efficiency is might be due to a possible decrease at the electron-hole recombination's velocity. Thus, the present work demonstrates the great influence of preparation conditions on the optical, morphological properties and the photon efficiency. In the future, with greater understanding of the mechanism of this influence, the properties of TiO2 thin films will be able tailoring depending on the application. (author)

  5. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  6. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  7. Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas

    Institute of Scientific and Technical Information of China (English)

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Abdul Aziz Abdul Kadir; Salmiah Jamal Mat Rosid; Nurul Shafeeqa Mohammad

    2012-01-01

    A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co( 10∶90 )/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co( 10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co( 10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis (EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co( 10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co( 10∶90)/Al2O3 catalyst.

  8. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  9. The energy barrier at noble metal/TiO{sub 2} junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hossein-Babaei, F., E-mail: fhbabaei@kntu.ac.ir, E-mail: fhbabaei@yahoo.com; Lajvardi, Mehdi M., E-mail: mm.lajvardi@gmail.com; Alaei-Sheini, Navid, E-mail: navid-alaei@yahoo.com [Electronic Materials Laboratory, Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191 (Iran, Islamic Republic of)

    2015-02-23

    Nobel metal/TiO{sub 2} structures are used as catalysts in chemical reactors, active components in TiO{sub 2}-based electronic devices, and connections between such devices and the outside circuitry. Here, we investigate the energy barrier at the junctions between vacuum-deposited Ag, Au, and Pt thin films and TiO{sub 2} layers by recording their electrical current vs. voltage diagrams and spectra of optical responses. Deposited Au/, Pt/, and Ag/TiO{sub 2} behave like contacts with zero junction energy barriers, but the thermal annealing of the reverse-biased devices for an hour at 523 K in air converts them to Schottky diodes with high junction energy barriers, decreasing their reverse electric currents up to 10{sup 6} times. Similar thermal processing in vacuum or pure argon proved ineffective. The highest energy barrier and the lowest reverse current among the devices examined belong to the annealed Ag/TiO{sub 2} contacts. The observed electronic features are described based on the physicochemical parameters of the constituting materials. The formation of higher junction barriers with rutile than with anatase is demonstrated.

  10. Sputter fabricated Nb-oxide-Nb josephson junctions incorporating post-oxidation noble metal layers

    International Nuclear Information System (INIS)

    We present an extension, involving other metals, of the work of Hawkins and Clarke, who found that a thin layer of copper prevented the formation of the superconductive shorts which are an inevitable consequence of sputtering niobium counter-electrodes directly on top of niobium oxide. We find gold to be the most satisfactory, and that 0.3 nm is sufficient to guarantee short-free junctions of excellent electrical and mechanical stability, though high excess conductance means they are best suited to shunted-junction applications, as in SQUIDs. We present results for critical current dependence on oxide thickness and on gold thickness. Our data shows that thermal oxide growth is described by the Cabrera-Mott mechanism. We show that the protective effect of the gold layer can be understood in terms of the electro-chemistry of the Nb-oxide-Au structure, and that the reduced quasi-particle resistance of the junctions relative to goldfree junctions with evaporated counterelectrodes can be explained in terms of barrier shape modification, and not by proximity effect mechanisms. The performance of a DC SQUID based on these junctions is described

  11. Quantum mechanical origin of the plasmonic properties of noble metal nanoparticles

    Science.gov (United States)

    Guidez, Emilie Brigitte

    Small silver and gold clusters (less than 2 nm) display a discrete absorption spectrum characteristic of molecular systems whereas larger particles display a strong, broad absorption band in the visible. The latter feature is due to the surface plasmon resonance, which is commonly explained by the collective dipolar motion of free electrons across the particle, creating charged surface states. The evolution between molecular properties and plasmon is investigated. Time-dependent density functional theory (TDDFT) calculations are performed to study the absorption spectrum of cluster-size silver and gold nanorods. The absorption spectrum of these silver nanorods exhibits high-intensity longitudinal and transverse modes (along the long and short axis of the nanorod respectively), similar to the plasmons observed experimentally for larger nanoparticles. These plasmon modes result from a constructive addition of the dipole moments of nearly degenerate single-particle excitations. The number of single-particle transitions involved increases with increasing system size, due to the growing density of states available. Gold nanorods exhibit a broader absorption spectrum than their silver counterpart due to enhanced relativistic effects, affecting the onset of the longitudinal plasmon mode. The high-energy, high-intensity beta-peak of acenes also results from a constructive addition of single-particle transitions and I show that it can be assigned to a plasmon. I also show that the plasmon modes of both acenes and metallic nanoparticles can be described with a simple configuration interaction (CI) interpretation. The evolution between molecular absorption spectrum and plasmon is also investigated by computing the density of states of spherical thiolate-protected gold clusters using a charge-perturbed particle-in-a-sphere model. The electronic structure obtained with this model gives good qualitative agreement with DFT calculations at a fraction of the cost. The progressive

  12. Stabilisation of late transition metal and noble metal films in hexagonal and body centred tetragonal phases by epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Hueger, E.

    2005-08-26

    In this work ultrathin metallic films with a crystal phase different to their natural bulk structure were produced by hetero-epitaxial growth on metallic substrates. A further aim of this work was to understand the initiation, growth and stability of crystal phase modifications of these films. there exist cases where the films turn beyond the pseudomorphic-growth to a crystal phase different from their natural bulk structure. The present work presents and discusses such a case in addition to the general phenomenon of pseudomorphic-growth. In particular it is shown that metals whose natural phase is face centred cubic (fcc) can be grown in body centred tetragonal (bct) or hexagonal close packed (hcp) phases in the form of thin films on (001) surfaces of appropriate substrates. The growth behavior, electron diffraction analysis, appearance conditions, geometric fit considerations, examples and a discussion of the phase stability of non-covered films and superlattices is given reviewing all epitaxial-systems whose diffraction pattern can be explained by the hexagonal or pseudomorphic bct phase. (orig.)

  13. Information: Use of the Ex-6500 energy-dispersive x-ray fluorescence spectrometer in quantitative analysis. Component determination in noble metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    In the early 1990s, the BAIRD Co. put new analytical instruments on the world market - EX-series energy-dispersive x-ray fluorescence spectrometers intended for high-precision determination of macrocomponents in various materials over a wide spectral range with enhanced sensitivity for light elements. The high performance characteristics of these spectrometers has attracted the attention of numerous users in Europe, including Russia. In 1993-1994, several EX-series spectrometers (EX-6500 version) were supplied to a number of metallurgical works in Russia. At present, all these instruments have been put into service and are effectively used in factory laboratories. The statistical evidence available by now enables one to assess the strong and weak points of this instrumentation in solving concrete analytical problems. Data on jewelry alloys of noble metals analyzed by means of an EX-6500 spectrometer are given be- low; in our subsequent communications we intend to present results of analysis for various materials of ferrous metallurgy. The quantitative analysis of noble metals is a complicated analytical task in view of the stringent requirements imposed on the composition of such materials, which necessitates the use of high-precision analytical techniques. According to currently adopted standards in the analysis of noble metal alloys, the absolute tolerated error of parallel determinations for a confidence probability p = 0.95 must not be higher than 0.20% for the mass fraction of a particular component in an alloy up to 99.9%. Such a small error is usually achieved by using gravimetry or titrimetry, which requires time-consuming and laborious preparation of a sample for analysis. Viewed practically, the replacement of these conventional wet chemistry methods by advanced sophisticated instrumentation capable of ensuring the required accuracy of measurement, saving analysis time, and making sample preparation easier is undoubtedly advantageous.

  14. Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Hannemann, S.; Grunwaldt, Jan-Dierk; Kimmerle, B.;

    2009-01-01

    -line mass spectrometry. This experimental strategy allowed collecting data on the structure of the noble metal (oxidation state) and the temperature along the catalyst bed. The reaction was investigated in a fixed-bed quartz microreactor (1-1.5 mm diameter) following the catalytic performance by on-line gas...... exothermic methane oxidation was too strong. The results indicate that in the oxidized zone mainly combustion of methane occurs, whereas in the reduced part direct partial oxidation and reforming reactions prevail. The results demonstrate how spatially resolved spectroscopy can help in understanding...

  15. Measurement of the composition of noble-metal particles in high-burnup CANDU fuel by wavelength dispersive X-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, W.H.; Szostak, F.J

    1999-09-01

    An investigation of the composition of the metallic inclusions in CANDU fuel, which contain Mo, Tc, Ru, Rh and Pd, has been conducted as a function of burnup by wavelength dispersive X-ray (WDX) microanalysis. Quantitative measurements were performed on micrometer sized particles embedded in thin sections of fuel using elemental standards and the ZAF method. Because the fission yields of the noble metals change with burnup, as a consequence of a shift from almost entirely {sup 235}U fission to mainly {sup 239}Pu fission, their inventories were calculated from the fuel power histories using the WIMS-Origin code for comparison with experiment. Contrary to expectations that the oxygen potential would be buffered by progressive Mo oxidation, little evidence was obtained for reduced incorporation of Mo in the noble-metal particles at high burnup. These surprising results are discussed with respect to the oxygen balance in irradiated CANDU fuels and the likely intrinsic and extrinsic sinks for excess oxygen. (author)

  16. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO{sub 2} nanosheets with exposed {0 0 1} facets

    Energy Technology Data Exchange (ETDEWEB)

    Diak, Magdalena; Grabowska, Ewelina, E-mail: ewelina.grabowska@ug.edu.pl; Zaleska, Adriana

    2015-08-30

    Graphical abstract: - Highlights: • TiO{sub 2} nanosheets with exposed {0 0 1} facets were prepared by hydrothermal method. • Pd and Ag NPs-loaded enhanced the photocatalytic activity under visible irradiation. • Photodeposition is an effective method to obtain noble metal NPs on TiO{sub 2} surface. - Abstract: Pt, Pd, Ag and Au nanoparticles were photodeposited on the {0 0 1} crystal facets of the TiO{sub 2} anatase nanosheets. Morphological and surface characterization of the samples as well as photocatalytic activity were studied. The influence of metal precursor concentration used during photodeposition (0.05−0.5%) on size of formed metal nanoparticles together with UV and vis-mediated activity of Pt, Pd, Ag or Au−TiO{sub 2} was investigated. Generally, samples obtained by photodeposition of noble metal nanoparticles using their 0.2% precursor solutions revealed highest activity in phenol degradation reaction under visible light (λ > 420 nm). The photoactivity of the as-prepared samples with respect to the modified metal species was ordered Ag≅Pd > Au > Pt. TEM analysis showed that photodeposited metal nanoparticles appeared only on {0 0 1} facets of TiO{sub 2}. The average degradation rate of phenol in the presence of Pd and Ag−TiO{sub 2} was 0.5 μmol dm{sup −3} min{sup −1} after 60 min of irradiation under visible light, and was five times higher than that of pure TiO{sub 2} nanosheets.

  17. Synergistic effect of zinc injection and noble metal treatment on the IGSCC, and the improvement of hydrogen water chemistry management technique in BWR coolant

    International Nuclear Information System (INIS)

    Control effects of stress corrosion cracking (SCC) using the water treatment techniques were evaluated by experiments. SCC sensitivity was evaluated by the short strain rate tensile (SSRT) method. Zinc injection did not affect on the control of SCC. With using both zinc injection and noble metal treatment, zinc and noble metals were contained in the surface of stainless steel, but zinc did not affect on the SCC sensitivity of stainless steel. The phenomena that good SCC control electric potential of stainless steel is less than about -0.23V at 288degC was explained theoretically on the basis of transforming NiFe2O4 to FeCr2O4 in the grain boundary of surface oxide depend on hydrogen injection. Under the ordinary running conditions, NO3- is the chemical species of nitrogen in the aqueous solution of the boiling water reactor (BWR). However, chemical formula of nitrogen transformed NO3- → NO2- → NH3 (aq.) by hydrogen injection. To control SCC and decrease dose rate, the electric potential should be decrease by hydrogen injection until NO3- was no longer detectable. (S.Y.)

  18. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    International Nuclear Information System (INIS)

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA

  19. TLC-SERS Plates with a Built-In SERS Layer Consisting of Cap-Shaped Noble Metal Nanoparticles Intended for Environmental Monitoring and Food Safety Assurance

    Directory of Open Access Journals (Sweden)

    H. Takei

    2015-01-01

    Full Text Available We report on a thin layer chromatograph (TLC with a built-in surface enhanced Raman scattering (SERS layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G, crystal violet (CV, and 1,2-di(4-pyridylethylene (BPE. The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm−1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles.

  20. Proceedings of the 4th seminar of R and D on advanced ORIENT 'strategy and technical requirement for new resource of noble metals in advanced atomic energy science'

    International Nuclear Information System (INIS)

    The 4th Seminar of R and D on advanced ORIENT, 'Strategy and technical requirement for new resource of noble metals in advanced atomic energy science' was held in Swany hall, Rokkasho-Mura, on July 30th, 2010 organized by Japan Atomic Energy Agency. The first meeting of this seminar was held at Oarai, Ibaraki on May, 2007, the second seminar was held at Tokai, on November, 2008, and the third seminar was held at Sendai, on October, 2009. Spent nuclear fuel should be recognized as not only mass of radioactive elements but also potentially useful materials including platinum metals and rare earth elements. Taking the cooperation with universities related companies and research institutes, into consideration, we aimed at expanding and progressing the basic researches. In this seminar, there are many poster presentation included, and the useful discussion with many students are performed. This report records abstracts and figures submitted from the oral speakers in this seminar. (author)

  1. Metodologia para o crescimento de esferas monocristalinas de metais nobres A methodology for the growing of single crystal spheres of noble metals

    Directory of Open Access Journals (Sweden)

    Luiz H. Dall'Antonia

    1999-09-01

    Full Text Available This paper describes in detail a technique employed to grow quasi-spherical single crystals of noble metals for electrochemical applications, using platinum as an example. The metal beads were formed by melting the extremity of a wire in an oxygen / butane flame. X-ray techniques were used to check the crystallization and to determine the orientation of the crystals. Treatment with a pure hydrogen flame followed by a cooling procedure in a hydrogen / argon atmosphere were used for conditioning the well-defined platinum single crystal surfaces. Finally, electrochemical characterization of the Pt(111, Pt(110 and Pt(100 surfaces was done in diluted sulfuric acid solution in the hydrogen adsorption / desorption potential region.

  2. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst

    International Nuclear Information System (INIS)

    Biomass-derived platform intermediate furfural and levulinic acid were efficiently hydrogenated to the value-added furfuryl alcohol and promising biofuel γ-valerolactone, respectively, using a noble-metal-free Cu–Cr catalyst, which was facilely and successfully synthesized by a modified co-precipitation method using the cheap metal nitrates. In the first hydrogenation of furfural, 95% yield of furfuryl alcohol was highly selectively produced at 99% conversion of furfural under the mild conditions. For the hydrogenation of levulinic acid, 90% yield of γ-valerolactone was highly selectively produced at 97.8% conversion. Besides, the physical properties of the resulting Cu–Cr catalysts were studied by XRD (X-ray diffraction), EDX (Energy-dispersive X-ray), TEM (Transmission electron microscopy) and XPS (X-ray photoelectron spectroscopy) to reveal their influence on the catalytic performance. Subsequently, different reaction parameters were studied and it was found that Cu2+/Cr3+ ratios (0.5, 1 and 2), reaction temperature (120–220 °C) and hydrogen pressure (35–70 bar) presented important influence on the catalytic activities. In the end, the stability of the Cu–Cr catalysts was also studied. - Highlights: • A noble-metal-free Cu–Cr catalyst was successfully synthesized using metal nitrates. • Cu–Cr catalysts were highly selective hydrogenation of biomass-derived furfural to FA. • Cu–Cr catalysts were efficient for hydrogenation of biomass-derived LA to biofuel GVL. • The physical properties of the resulting Cu–Cr catalysts were systematically studied. • Reaction parameters and stability in the hydrogenation of furfural were studied in details

  3. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C. [The Johns Hopkins University Applied Physics Laboratory, Asymmetric Operations Department, Laurel, Maryland 20723 (United States); Coplan, M. [Institute for Physical Science and Technology, University of Maryland College Park, Maryland 20142 (United States); Thompson, Alan K.; Vest, Robert E.; Yue, A. T. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kowler, A. L. [Department of Chemical Physics, University of Maryland, College Park, Maryland 20142 (United States); Koeth, T. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20142 (United States); Al-Sheikhly, M. [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742 (United States); Clark, Charles W. [Institute for Physical Science and Technology, University of Maryland College Park, Maryland 20142 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899 (United States)

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  4. Noble-metal-free g-C3N4/Ni(dmgH)2 composite for efficient photocatalytic hydrogen evolution under visible light irradiation

    International Nuclear Information System (INIS)

    Graphical abstract: The noble-metal-free g-C3N4/Ni(dmgH)2 composites show efficient and stable photocatalytic hydrogen evolution under visible light in triethanolamine aqueous solution. - Highlights: • Ni(dmgH)2 sub-microwires as new noble-metal-free co-catalysts for H2 evolution reaction. • Ni(dmgH)2/g-C3N4 composites show highly efficient H2 generation in visible light. • The 1-D feature of Ni(dmgH)2 promotes charge transfer and electron–hole separation on g-C3N4. - Abstract: We report an economic photocatalytic H2 generation system consisting of earth-abundant elements only by coupling graphitic carbon nitride (g-C3N4) with Ni(dmgH)2 sub-microwires that serve as effective co-catalysts for H2 evolution. This composite photocatalyst exhibits efficient hydrogen evolution under visible-light irradiation in the presence of triethanolamine as electron donor. The optimal coupling of 3.5 wt% Ni(dmgH)2 to g-C3N4 (5 mg composite) allows for a steady H2 generation rate of 1.18 μmol/h with excellent stability. This study demonstrates that the combination of polymeric g-C3N4 semiconductor and small proportion of transition-metal-based co-catalyst could serve as a stable, earth-abundant and low-cost system for solar-to-hydrogen conversion

  5. Surface Functionalization of g-C3 N4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts.

    Science.gov (United States)

    Chen, Yin; Lin, Bin; Yu, Weili; Yang, Yong; Bashir, Shahid M; Wang, Hong; Takanabe, Kazuhiro; Idriss, Hicham; Basset, Jean-Marie

    2015-07-13

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3 N4 ) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3 N4 . This catalyst family (with less than 0.1 wt % of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt % platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24 h. PMID:26073972

  6. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts

    KAUST Repository

    Chen, Yin

    2015-11-02

    The graphitic carbon nitride (g-C3N4) usually is thought to be an inert material and it’s difficult to have the surface terminated NH2 groups functionalized. By modifying the g-C3N4 surface with hydrazine, the diazanyl group was successfully introduced onto the g-C3N4 surface, which allows the introduction with many other function groups. Here we illustrated that by reaction of surface hydrazine group modified g-C3N4 with CS2 under basic condition, a water electrolysis active group C(=S)SNi can be implanted on the g-C3N4 surface, and leads to a noble metal free hydrogen evolution catalyst. This catalyst has 40% hydrogen evolution efficiency compare to the 3 wt% Pt photo precipitated g-C3N4, with only less than 0.2 wt% nickel.

  7. Surface Functionalization of g-C 3 N 4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts

    KAUST Repository

    Chen, Yin

    2015-06-12

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3N4) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3N4. This catalyst family (with less than 0.1 wt% of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt% platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer

    International Nuclear Information System (INIS)

    Electroless Cu was investigated on refractory metal, W and TaN X, and Ir noble metal substrates with a plasma-assisted atomic layer deposited palladium layer for the potential back-end-of-the-line (BEOL) metallization of advanced integrated devices. The sodium and potassium-free Cu electroless bath consisted of: ethylenediamine tetraacetic acid (EDTA) as a chelating agent, glyoxylic acid as a reducing agent, and additional chemicals such as polyethylene glycol, 2,2'-dipyridine and RE-610 as surfactant, stabilizer and wetting agent respectively. The growth and chemical characterization of the Cu films was carried out with a field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Group VIII metals such as Pt, Pd, etc., are stable in the electroless bath and catalytic towards the oxidation of glyoxylic acid and therefore work well for the electroless deposition of Cu. From RBS analysis, the amount of carbon and oxygen in Cu films were less than 1-3%. The Cu films were electroless deposited at 45-50 deg. C on patterned tantalum nitride with plasma-assisted atomic layer deposited (PA-ALD) Pd as a catalytic layer. Electroless Cu trench fill was successful with ultrasonic vibration, RE-610, and lowering the temperature to 45-50 deg. C on TaN X with the PA-ALD Pd catalytic layer

  9. Rechargeable Lithium Metal Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  10. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-01

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate. PMID:24323873

  11. van der Waals-corrected Density Functional Theory simulation of adsorption processes on noble-metal surfaces: Xe on Ag(111), Au(111), and Cu(111)

    CERN Document Server

    Silvestrelli, Pier Luigi

    2016-01-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the Density Functional Theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the Quantum Harmonic Oscillator model which describes well many-body effects. Comparison of the computed equilibrium binding energies and distances, and the $C_3$ coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidate the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Dens...

  12. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide ne...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal.......The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...

  13. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide n...

  14. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide ne...

  15. Subshell-resolved photoionization in the reciprocal space: Metal and noble gas atoms in a fullerene cage

    Science.gov (United States)

    McCune, Matt; Madjet, Mohamed; Chakraborty, Himadri

    2009-05-01

    Theory has predicted oscillations in the photoionization cross section of various atoms trapped in C60. Most of the studies however modeled the confining shell by a simplistic one-active-electron potential. We recently established a method that treats the C60 electrons in a sophisticated multi-electron frame based on the density functional theory [1]. Using this method, we perform calculations for noble gas atoms in C60. In the past, the free C60 photo cross section, which also shows oscillations, was analyzed by a Fourier-transform technique to determine the origin of the oscillation [2] and its dependence on the electron's rotational motion [3]. In the present work, we employ the Fourier analysis to unravel the interplay between specific ionization modes that induces oscillations in the cross section of a confined atom. The quality of oscillations is found to strongly differ from the outermost to an inner subshell. [1] Madjet et al., J. Phys. B 41, 105101 (2008); [2] Ruedel et al., Phys. Rev. Letts. 89, 125503 (2002); [3] McCune et al., J. Phys. B FTC 41, 201003 (2008).

  16. Metal-air electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Sarbacher, R. I.; Fechter, H. R.

    1985-01-01

    An electrochemical cell for which fuel is prepared and introduced under artificial gravity forces. The active metal is deposited through the action of the field on an anode current collecting member, effecting good compaction and reduced cell internal impedance. A microprocessor provides control of the induced gravity, flow rates, temperature, and other variables-enabling the active metal to be controlled in its thickness as well as providing a predetermined separation from the cathode. Abrasion of the cathode and the possibility of shorting are avoided by the presence of outwardly directed radial forces. These forces are induced by rotation of the electrolyte, air cathode, anode collector and the active metal. The forces promote also the passage of moisture laden air through the air cathode elements. Reaction products produced within the cell volume are circulated to an outside container for separation and possible reuse.

  17. Synthesis of silica/carbon-encapsulated core-shell spheres: templates for other unique core-shell structures and applications in in situ loading of noble-metal nanoparticles.

    Science.gov (United States)

    Wan, Yong; Min, Yu-Lin; Yu, Shu-Hong

    2008-05-01

    Silica@carbon core-shell spheres have been synthesized via a hydrothermal carbonization procedure with glucose as the carbon precursor and silica spheres as the cores. Such SiO(2)@C core-shell spheres can be further used as templates to produce SiO(2)@C@SiO(2), and SiO(2)@SiO(2) spheres with a vacant region in two SiO(2) shells, noble-metal nanoparticle loaded SiO(2)@C core-shell spheres, and hollow carbon capsules through different follow-up processes. The obtained core-shell materials possess remarkable chemical reactivity in reducing noble-metal ions to nanoparticles, e.g., platinum. These unique core-shell spherical composites could find applications in catalyst supports, adsorbents, encapsulation, nanoreactors, and reaction templates. PMID:18363416

  18. 贵金属纳米材料生物还原制备技术的研究进展%Research Progress on Biosynthetic Technology of Noble Metal Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    郑炳云; 黄加乐; 孙道华; 贾立山; 李清彪

    2011-01-01

    This review provided a brief overview of progress on biosynthetic technology of noble metal nanomaterials and their nanocatalysts. And the future directions of this field were also envisioned.%综述了国内外利用生物还原技术制备贵金属纳米材料及贵金属催化剂的研究进展,并展望了该研究领域的发展方向.

  19. WS2 as an Effective Noble-Metal Free Cocatalyst Modified TiSi2 for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Dongmei Chu

    2016-09-01

    Full Text Available A noble-metal free photocatalyst consisting of WS2 and TiSi2 being used for hydrogen evolution under visible light irradiation, has been successfully prepared by in-situ formation of WS2 on the surface of TiSi2 in a thermal reaction. The obtained samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. The results demonstrate that WS2 moiety has been successfully deposited on the surface of TiSi2 and some kind of chemical bonds, such as Ti-S-W and Si-S-W, might have formed on the interface of the TiSi2 and WS2 components. Optical and photoelectrochemical investigations reveal that WS2/TiSi2 composite possesses lower hydrogen evolution potential and enhanced photogenerated charge separation and transfer efficiency. Under 6 h of visible light (λ > 420 nm irradiation, the total amount of hydrogen evolved from the optimal WS2/TiSi2 catalyst is 596.4 μmol·g−1, which is around 1.5 times higher than that of pure TiSi2 under the same reaction conditions. This study shows a paradigm of developing the effective, scalable and inexpensive system for photocatalytic hydrogen generation.

  20. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. PMID:26555960

  1. Noble Metal Decoration and Presulfation on TiO2: Increased Photocatalytic Activity and Efficient Esterification of n-Butanol with Citric Acid

    Directory of Open Access Journals (Sweden)

    Yu Niu

    2016-01-01

    Full Text Available TiO2 has been widely used as a key catalyst in photocatalytic reactions; it also shows good catalytic activity for esterification reactions. Different sulfated M-TiO2 nanoparticles (M = Ag, Au, Rh, and Pt were prepared by photodeposition and ultrasonic methods. The results show that the noble metal nanoparticles, which were loaded onto a TiO2 surface, slightly affected the crystal phase and particle size of TiO2. Among all the catalysts, SO42-/Au-TiO2 exhibited the best catalytic activity in the esterification reaction for the synthesis of citric acid n-butyl acetate and in the decomposition of methyl orange, as confirmed by a high conversion rate of up to 98.2% and 100% degradation rate, respectively. This can be attributed to an increase in the Lewis acidity of the catalyst and increased separation efficiency of electron-hole pairs. This superior catalyst has great potential applications in esterification reactions and wastewater treatments.

  2. Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction

    Science.gov (United States)

    Cao, Jiamu; Zhang, Xuelin; Zhang, Yufeng; Zhou, Jing; Chen, Yinuo; Liu, Xiaowei

    2016-01-01

    Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV. PMID:27556402

  3. Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2-SiO2.

    Science.gov (United States)

    Dong, Chunyang; Xing, Mingyang; Zhang, Jinlong

    2016-08-01

    On the basis of the fact that the competitive adsorption between CO2 and H2O on the catalyst plays an important role in the CO2 photoreduction process, here we develop an economic NH4F-induced hydrophobic modification strategy to enhance the CO2 competitive adsorption on the mesoporous TiO2-SiO2 composite surface via a simple solvothermal method. After the hydrophobic modification, the CO2 photoreduction for the selective generation of CH4 over the noble-metal-free TiO2-SiO2 composite can be greatly enhanced (2.42 vs 0.10 μmol/g in 4h). The enhanced CO2 photoreduction efficiency is assigned to the rational hydrophobic modification on TiO2-SiO2 surface by replacing Si-OH to hydrophobic Si-F bonds, which will improve the CO2 competitive adsorption and trigger the eight-electron CO2 photoreduction on the reaction kinetics. PMID:27415144

  4. Coupling Noble Metals and Carbon Supports in the Development of Combustion Catalysts for the Abatement of BTX Compounds in Air Streams

    Directory of Open Access Journals (Sweden)

    Sergio Morales-Torres

    2015-04-01

    Full Text Available The catalytic combustion of volatile organic compounds (VOCs is one of the most important techniques to remove these pollutants from the air stream, but it should be carried out at the lowest possible temperature, saving energy and avoiding the simultaneous formation of nitrogen oxides (NOx. Under these experimental conditions, the chemisorption of water generated from VOCs combustion may inhibit hydrophilic catalysts. Nowadays, a wide variety of carbon materials is available to be used in catalysis. The behavior of these hydrophobic materials in the development of highly active and selective combustion catalysts is analyzed in this manuscript. The support characteristics (porosity, hydrophobicity, structure, surface chemistry, etc. and the active phase nature (noble metals: Pt, Pd and dispersion were analyzed by several techniques and the results correlated with the dual adsorptive and/or catalytic performance of the corresponding catalysts. The coupling of highly active phases and carbon materials (activated carbons, honeycomb coated monoliths, carbon aerogels, etc. with tuneable physicochemical properties leads to the complete abatement of benzene, toluene and xylenes (BTX from dilute air streams, being selectively oxidized to CO2 at low temperatures.

  5. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    International Nuclear Information System (INIS)

    Highlights: ► Systematic study on the formation of Ag and Au nano-particles in Al2O3. ► Annealing in a reducing atmosphere, below the metal melting point is more suitable. ► Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. ► Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. ► Optical properties of metallic nano-particles in Al2O3 can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, α-Al2O3 single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 × 1016 ions/cm2 to 8 × 1016 ions/cm2). Afterwards, the samples were annealed at different temperatures (from 600 °C to 1100 °C) in oxidising, reducing, Ar or N2 atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  6. Deactivation of selected noble metal catalysts during CO oxidation: An in-situ IR and kinetic study

    International Nuclear Information System (INIS)

    The deactivation of the oxidation of CO over supported Rh, Ru and Pd as a function of the reactant gas composition is discussed. On supported Rh we have found that the rate of CO oxidation is strongly dependent on the oxidation state of the metal. The rate of CO oxidation over supported Ru is strongly inhibited by the incorporation of sub-surface O2. The oxidation of CO on supported Pd is inhibited by the formation of PdO under conditions in which the CO/O2 reactant gas ratio is net oxidizing and by enhanced CO surface coverage following ignition when the reactant gas ratio is net reducing

  7. Bias dependence of tunneling-electron-induced molecular fluorescence from porphyrin films on noble-metal substrates

    OpenAIRE

    Liu, H.W.; Le, Y.; Nishitani, Ryusuke; Aso, Y; Iwasaki, H.

    2007-01-01

    We investigated scanning tunneling microscope (STM)-excited luminescence from porphyrin (PhTPP and H2TPP) thin films on metal substrate (Au and Ag) under ambient conditions. Molecular fluorescence similar to the corresponding photoluminescence was observed from PhTPP/Au and H2TPP/Ag at both STM bias polarities. We found that at the same experimental condition and parameters, the STM-induced luminescence intensities of maxima peak are similar for PhTPP and H2TPP but weaker by a factor of about...

  8. The rapid and precise determination of noble metals in matte-leach residues by atomic-absorption spectrophotometry

    International Nuclear Information System (INIS)

    A method is proposed for the rapid analysis of platinum-group metals and gold in matte-leach residues. So that the precision of the atomic-absorption measurement is ensured, many measurements are taken (a chart recorder being used) and the calculation is done on a computer. The dissolution of samples was investigated and optimized. Iridium, which is usually present as a minor constituent, is treated on a separate aliquot portion that is concentrated before measurement. The precision of the method ranges from 0,5 per cent for platinum to 2,3 per cent for iridium

  9. Catalytic Reduction of Noble Metal Salts by Sodium Hypophosphite Promoted by the Film Poly-(p-Allyl Ether Benzenesulfonic Acid).

    Science.gov (United States)

    Costa, M I C F; Steter, J R; Purgato, F L S; Romero, J R

    2011-01-01

    Glassy carbon electrodes were coated with the film poly-(p-allyl ether benzenesulfonic acid) by an anodic procedure. Nickel, platinum, and palladium ions were introduced into the film by ion exchange of H(+) with the corresponding salts. These ions were catalytically reduced to their corresponding metals using the known electroless reducing agent sodium hypophosphite. Scanning electron microcopy and energy dispersive X-ray spectroscopy were carried out to demonstrate the occurrence of the catalytic process. To compare this method with another one carried out in our laboratory, the electrocatalytic reduction of H(+) was studied using the same modified electrodes. A suggested mechanism for the catalysis is proposed. PMID:24052832

  10. Selective extraction and detection of noble metal based on ionic liquid immobilized silica gel surface using ICP-OES

    Indian Academy of Sciences (India)

    HADI M MARWANI; AMJAD E ALSAFRANI; HAMAD A AL-TURAIF; ABDULLAH M ASIRI; SHER BAHADAR KHAN

    2016-08-01

    In this study, an efficiently employed ionic liquid combined with commercially available silica gel (SG–ClPrNTf$_2$) was developed for selective detection of gold(III) by use of inductively coupled plasma–optical emission spectrometry (ICP-OES). The selectivity of SG–ClPrNTf$_2$ was evaluated towards seven metal ions, including Y(III), Mn(II), Zr(IV), Pb(II), Mg(II), Pd(II) and Au(III). Based on pH study and distribution coefficient values, the SG–ClPrNTf$_2$ phase was found to be the most selective towards Au(III) at pH 2 as compared to other metal ions. The adsorption isotherm of Au(III) on the SG–ClPrNTf$_2$ phase followed the Langmuir model with adsorption capacity of 59.48 mg g$^{−1}$, which was highly in agreement with experimental data of adsorption isotherm study. The kinetics study indicated that Au(III) adsorption kinetics data were well fit with the pseudo-second-order kinetic model on the basis of correlation coefficient fitting (0.996) and adsorption capacity agreement (62.26 mg g$^{−1}$). Furthermore, SG–ClPrNTf$_2$ phase was effectively performed for the determination of Au(III) in real water samples with satisfactory results.

  11. Production of mono- and bimetallic nanoparticles of noble metals by pyrolysis of organic extracts on silicon dioxide

    International Nuclear Information System (INIS)

    In the present work the influence of the tri-n-octylammonium (Oct3NH+) salt anion (PtCl62-, PdCl42-, AuCl4−) nature on the phase composition and mean size of crystallites of the extract pyrolysis products on the SiO2 nanopowder has been studied. The XRD phase analysis of the composites (metal loading 2.4 wt.%) made under the same conditions, at the pyrolysis of Pt- and Au-containing extracts has shown the formation of nanoparticles of Pt (dPt = 15 nm) and Au (dAu = 33 nm), respectively. The end-product of the pyrolysis of the Pd-containing extract has an admixture phase of PdO along with the main metal phase (dPd = 21 nm). At the preparation of bimetallic particles (Pt-Pd, Pt-Au, Pd-Au) on the SiO2 nanopowder it has been found that the nanoparticles of the PtPd alloy, Pt and Au or Pd and Au nanoparticles are the products of the thermal decomposition of two-component mixtures of extracts. The investigation of catalytic properties of the produced composites in the reaction of glycerol oxidation by molecular oxygen in alkaline aqueous solutions has shown that all bimetallic composites exhibit catalytic activity in contrast to monometallic ones

  12. Three-electrode current-voltage measurements on erbia-stabilized bismuth oxide with sputtered noble metal electrodes

    NARCIS (Netherlands)

    Vinke, I.C.; Boukamp, B.A.; Vries, de K.J.; Burggraaf, A.J.

    1992-01-01

    The anodic and cathodic polarization behaviour of sputtered porous gold electrodes on (Bi2O3)0.75(Er2O3)0.25 (abbreviated BE25) was studied as function of temperature and oxygen partial pressure using a three-electrode cell. The anodic polarization is smaller than the cathodic polarization, allowing

  13. TiO{sub 2} promoted by two different non-noble metal cocatalysts for enhanced photocatalytic H{sub 2} evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jing-Dong, E-mail: jdlin@xmu.edu.cn [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005 (China); Institute of Physical Chemistry, Xiamen University, Xiamen 361005 (China); Yan, Shi; Huang, Qin-Dong; Fan, Mei-Ting [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yuan, You-Zhu [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005 (China); Institute of Physical Chemistry, Xiamen University, Xiamen 361005 (China); State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Tan, Timothy Thatt-Yang, E-mail: tytan@ntu.edu.sg [Solar Fuel Lab, School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457 (Singapore); Liao, Dai-Wei [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005 (China); Institute of Physical Chemistry, Xiamen University, Xiamen 361005 (China); State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China)

    2014-08-01

    TiO{sub 2} photocatalysts modified by cobalt and nickel cocatalysts were prepared via polymerized complex method (PCM) and evaluated by photocatalytic hydrogen evolution. Hydrogen generation in 6 h for the TiO{sub 2} promoted by cobalt and nickel (0.1%Co + 0.2%Ni/TiO{sub 2}) is about two times (2456 μmol H{sub 2}) compared to that of TiO{sub 2} promoted only by cobalt (1180 μmol H{sub 2} for 0.1%Co/TiO{sub 2}) or nickel (1127 μmol H{sub 2} for 0.2%Ni/TiO{sub 2}), and mechanically mixed TiO{sub 2} promoted by cobalt and TiO{sub 2} promoted by nickel (0.1%Co/TiO{sub 2}:0.2%Ni/TiO{sub 2} = 1:1 (m/m), 1282 μmol H{sub 2}). The high photocatalytic H{sub 2} evolution activity over TiO{sub 2} promoted by cobalt and nickel is ascribed to enhanced photo response due to the presence of cobalt and nickel impurity level, and effective separation of photogenerated electrons and holes due to the synergistic effect of cobalt and nickel, which serve as active sites for H{sub 2} evolution reaction (HER) and oxidation reaction (OR) respectively. This study demonstrates a viable strategy to design more active photocatalysts for photocatalytic H{sub 2} evolution by substituting noble metals with more abundant elements using as HER and OR cocatalysts, respectively.

  14. Hybrid Coordination Networks Constructed from ɛ-Keggin-Type Polyoxometalates and Rigid Imidazole-Based Bridging Ligands as New Carriers for Noble-Metal Catalysts.

    Science.gov (United States)

    Yang, Xiao-Jian; Sun, Meng; Zang, Hong-Ying; Ma, Yuan-Yuan; Feng, Xiao-Jia; Tan, Hua-Qiao; Wang, Yong-Hui; Li, Yang-Guang

    2016-03-18

    Three hybrid coordination networks that were constructed from ɛ-Keggin polyoxometalate building units and imidazole-based bridging ligands were prepared under hydrothermal conditions, that is, H[(Hbimb)2 (bimb){Zn4 PMo(V8) Mo(VI) 4 O40 }]⋅6 H2 O (1), [Zn(Hbimbp)(bimbp)3 {Zn4 PMo(V8) Mo(VI) 4 O40 }]⋅DMF⋅3.5 H2 O (2), and H[Zn2 (timb)2 (bimba)2 Cl2 {Zn4 PMo(V8) Mo(VI) 4 O40 }]⋅7 H2 O (3) (bimb=1,4-bis(1-imidazolyl)benzene, bimbp=4,4'-bis(imidazolyl)biphenyl, timb=1,3,5-tris(1-imidazolyl)benzene, bimba=3,5-bis(1-imidazolyl)benzenamine). All three compounds were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single-crystal X-ray diffraction. The mixed valence of the Mo centers was analyzed by XPS spectroscopy and bond-valence sum calculations. In all three compounds, the ɛ-Keggin polyoxometalate (POM) units acted as nodes that were connected by rigid imidazole-based bridging ligands to form hybrid coordination networks. In compound 1, 1D zigzag chains extended to form a 3D supramolecular architecture through intermolecular hydrogen-bonding interactions. Compound 2 consisted of 2D curved sheets, whilst compound 3 contained chiral 2D networks. Because of the intrinsic reducing properties of ɛ-Keggin POM species, noble-metal nanoparticles were loaded onto these POM-based coordination networks. Thus, compounds 1-3 were successfully loaded with Ag nanoparticles, and the corresponding composite materials exhibited high catalytic activities for the reduction of 4-nitrophenol. PMID:26807960

  15. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP (Argentina)

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  16. Investigations on extraction separation of noble metals from secondary raw materials by means of tracer technique application

    International Nuclear Information System (INIS)

    In laboratory scale equilibrium and kinetics of the liquid extraction of gold, platinum and palladium from chloride and nitrate-chloride solutions were investigated. Experiments were done using model solutions and solutions, obtained in processing of secondary raw materials, for example: solutions in aqua regia of anode slurries after electrical refining of silver and jewelry wastes, as well as solutions after extraction of silver from nitrate mwdia. In investigations for determination of the extraction factor, the radioisotope indicators method have been used. Gold-198, platinum-197, palladium-109, silver-110 m and copper-64 were used. Radioisotope platinum-197 was refined from gold-199 on the ionite Dauex 50VX2 in the medium of hydrobromic acid. Gold was extracted by neutral extraction agents such as tributilphosphate; methylizobutylketone; amylacetate; amil alcohol; 2-ethylhexanol and dibutylcarbitol. In details extraction of palladium and platinum by tri-n-actylamine in different diluents with additions of modifiers, as well as their extraction by aliquat 336 in benzene and by some petroleum products. Influence was determined of the time of phases contact, of application of diluents, influence of extracting agents concentrations on the magnitude of extraction factor and on the separation factor for investigated metals

  17. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    International Nuclear Information System (INIS)

    This paper develops a novel method for simultaneously determining the plasma frequency ωP   and the damping constant γfree in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ωp (0.5%–1.6%) and for γfree (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ωp and γfree determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ωp and γfree determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  18. Autothermal reforming of simulated and commercial fuels on zirconia-supported mono- and bimetallic noble metal catalysts

    OpenAIRE

    Kaila, Reetta

    2008-01-01

    New energy sources are needed if energy supply and demand are to remain in balance. At the same time, the level of emissions needs to be reduced to minimise their contribution to the greenhouse effect. Renewable energy sources, and hydrogen (H2), have been attracting much attention, and more efficient technologies for energy recovery have been developed. Among these are fuel cells. H2 is not a source of energy but an energy carrier, which needs to be produced from a primary fuel (hydroca...

  19. Experiments on transmission sputtering with 100-300 keV noble gas ions on metal films

    International Nuclear Information System (INIS)

    The yield and energy spectra of sputtered ions were investigated in the energy range of 100-300 keV with Ne, Ar, Kr ions on aluminium, copper, and silver films of 500-1500 A. The goal of these experiments was to compare the measured yields to Sigmund's theory for transmission sputtering, and to investigate the dependence of the energy spectra on the bombarding ion's energy. The energy dependence of the sputtering yield was studied at one foil thickness for different ion energies, whereby the varying sputtered ion curents were registered. Sigmund's formula S(E1)=const. α' Ssub(n) (E1) (E=exit energy, Ssub(n)=nuclear stopping power of the projectile) proved to be well applicable for sputtered ions in the 100-300 keV range. A scattering experiment and the erosion of a vapor deposited surface on a carrier foil were performed to obtain the factor const. α'. The results of these experiments agreed with Sigmunds theory. The energy spectra of the sputtered ions above E=30eV were fitted by a polynomial with four parameters. At energies above 200 eV, the spectra had the form P(E) approximately Esup(-b), with b approximately 2. No significant change of P(E) with the energy of the projectile was noticed. The following tendency could be noted: beyond the maximum of Ssub(n) (E1), b decreases with decreasing E1 for a fixed projectile, i.e. with increasing stopping power more high energy ions are sputtered. The b values for different metals are approximately equal to those of reflection sputtering experiments. (Auth.)

  20. Synthesis of carbon-supported binary FeCo-N non-noble metal electrocatalysts for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li Shang [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada)] [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Zhang Lei, E-mail: lei.zhang@nrc.gc.c [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Kim, Jenny [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Pan Mu, E-mail: panmu@whut.edu.c [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Shi Zheng; Zhang Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada)

    2010-10-01

    In this paper, a carbon-supported binary FeCo-N/C catalyst using tripyridyl triazine (TPTZ) as the complex ligand was successfully synthesized. The FeCo-TPTZ complex was then heat-treated at 600 {sup o}C, 700 {sup o}C, 800 {sup o}C, and 900 {sup o}C to optimize its oxygen reduction reaction (ORR) activity. It was found that the 700 {sup o}C heat-treatment yielded the most active FeCo-N/C catalyst for the ORR. XRD, EDX, TEM, XPS, and cyclic voltammetry techniques were used to characterize the structural changes in these catalysts after heat-treatment, including the total metal loading and the mole ratio of Fe to Co in the catalyst, the possible structures of the surface active sites, and the electrochemical activity. XPS analysis revealed that Co-N{sub x}, Fe-N{sub x}, and C-N were present on the catalyst particle surface. To assess catalyst ORR activity, quantitative evaluations using both RDE and RRDE techniques were carried out, and several kinetic parameters were obtained, including overall ORR electron transfer number, electron transfer coefficient in the rate-determining step (RDS), electron transfer rate constant in the RDS, exchange current density, and mole percentage of H{sub 2}O{sub 2} produced in the catalyzed ORR. The overall electron transfer number for the catalyzed ORR was {approx}3.88, with H{sub 2}O{sub 2} production under 10%, suggesting that the ORR catalyzed by FeCo-N/C catalyst is dominated by a 4-electron transfer pathway that produces H{sub 2}O. The stability of the binary FeCo-N/C catalyst was also tested using single Fe-N/C and Co-N/C catalysts as baselines. The experimental results clearly indicated that the binary FeCo-N/C catalyst had enhanced activity and stability towards the ORR. Based on the experimental results, a possible mechanism for ORR performance enhancement using a binary FeCo-N/C catalyst is proposed and discussed.

  1. MICROWAVE-ASSISTED SYNTHESIS OF NOBLE NANOSTRUCTURES

    Science.gov (United States)

    Microwave-assisted (MW) spontaneous reduction of noble metal salts, silver (Ag), gold (Au), platinum (Pt) and palladium (Pd) is reported using sugar solutions such as -D glucose, sucrose and maltose, etc. to generate nanomaterials. These MW-assisted reactions, conducted in aqueo...

  2. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde

    International Nuclear Information System (INIS)

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na2Pt (OH)6 and Na3Rh (NO2)6, Silver (Ag) with an aqueous solution of AgNO3, zirconium (Zr) with aqueous Zr O (NO3) and ZrO2, and zinc (Zn) in aqueous solution of Zn (NO3)2 under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides formed on the surface of 304l stainless steel in normal water

  3. Noble-metal-free g-C{sub 3}N{sub 4}/Ni(dmgH){sub 2} composite for efficient photocatalytic hydrogen evolution under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shao-Wen [Solar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yuan, Yu-Peng [Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China); Barber, James [Solar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Life Science, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Solar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xue, Can, E-mail: cxue@ntu.edu.sg [Solar Fuels Lab, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-11-15

    Graphical abstract: The noble-metal-free g-C{sub 3}N{sub 4}/Ni(dmgH){sub 2} composites show efficient and stable photocatalytic hydrogen evolution under visible light in triethanolamine aqueous solution. - Highlights: • Ni(dmgH){sub 2} sub-microwires as new noble-metal-free co-catalysts for H{sub 2} evolution reaction. • Ni(dmgH){sub 2}/g-C{sub 3}N{sub 4} composites show highly efficient H{sub 2} generation in visible light. • The 1-D feature of Ni(dmgH){sub 2} promotes charge transfer and electron–hole separation on g-C{sub 3}N{sub 4}. - Abstract: We report an economic photocatalytic H{sub 2} generation system consisting of earth-abundant elements only by coupling graphitic carbon nitride (g-C{sub 3}N{sub 4}) with Ni(dmgH){sub 2} sub-microwires that serve as effective co-catalysts for H{sub 2} evolution. This composite photocatalyst exhibits efficient hydrogen evolution under visible-light irradiation in the presence of triethanolamine as electron donor. The optimal coupling of 3.5 wt% Ni(dmgH){sub 2} to g-C{sub 3}N{sub 4} (5 mg composite) allows for a steady H{sub 2} generation rate of 1.18 μmol/h with excellent stability. This study demonstrates that the combination of polymeric g-C{sub 3}N{sub 4} semiconductor and small proportion of transition-metal-based co-catalyst could serve as a stable, earth-abundant and low-cost system for solar-to-hydrogen conversion.

  4. Effect of the energy transfer collision between noble gas and sputtered metal atom on the voltage-current curve of a hollow-cathode discharge

    International Nuclear Information System (INIS)

    The voltage-current curves and the optogalvanic signals of hollow-cathode discharge tubes were measured. Attention was focused on the existence of negative dynamic resistance properties for argon and neon discharges. Three hollow-cathodes, each was made of gadolinium, uranium, and copper, were used with both the noble gases. The negative dynamic resistance regions were observed only in Ar/U, Ar/Gd, and Ne/Cu discharges. These results suggest that resonant Penning ionization is one of the main reactions producing the negative dynamic resistance characteristics in hollow cathode discharges

  5. Heavy metal biosorption by bacterial cells

    Energy Technology Data Exchange (ETDEWEB)

    Vecchio, A.; Finoli, C.; Di Simine, D.; Andreoni, V. [Department of Food Science and Microbiology, State University, Milan (Italy)

    1998-06-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the assessment of the capability of Brevibacterium sp. cells to remove bivalent ions, when present alone or in pairs, from aqueous solutions, using immobilized polyacrylamide cells of the microorganism in a flow-through system. The biosorption capacity of Brevibacterium cells was studied for lead, cadmium and copper. The metal cell binding capacity followed the order Cu > Pb > Cd, based on estimated q{sub max}. These values, expressed as mmol metal/g dry weight cells, were 0.54 for Cu, 0.36 for Pb and 0.14 for Cd. Polyacrylamide-gel immobilized cells were effective in Pb, Cu and Cd removal. Lead removal was not affected by the presence of Cd and Cu; lead instead inhibited Cd and Cu removal. The desorption of the metal, by fluxing a chelating solution, restored the metal binding capacity of the cells, thus affording the multiple use of the same biomass in the remediation treatment. (orig.) (orig.) With 5 figs., 4 tabs., 23 refs.

  6. Open Cell Metal Foams for Beam Liners?

    OpenAIRE

    Croce, R. P.; Petracca, S.; Stabile, A.

    2013-01-01

    The possible use of open-cell metal foams for particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are pointed out, and a study program is outlined.

  7. Screen Printed Metallization of Silicon Solar Cells

    OpenAIRE

    Govaerts, R.; Van Overstraeten, R.; Mertens, R.; Ph. Lauwers; Frisson, L.

    1980-01-01

    This paper presents a screen printing process for the metallization of silicon solar cells. The physics and construction of a classical solar cell are reviewed. The results obtained with a screen printing process are comparable with other, more expensive technologies. This technology does not introduce an additional contact resistance on silicon. The process optimization and the influence of different parameters are discussed.

  8. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    Science.gov (United States)

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  9. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    nanoantennas absorbing photons with energy smaller than the semiconductor gap but larger than the Schottky barrier height between metal and semiconductor. The optimization of the fabrication process of GaAs and a-Si:H Schottky solar cells is first conducted and subsequently, the incorporation of Au or Ag...... efficiency in such spectral range; after an overview of the different technologies available today, the employment of localized surface plasmons (LSPs) through the incorporation of metallic nanoparticles within the photovoltaic device is chosen as a cheap and simple method. The LSP resonance wavelength...... to increase light trapping and can come along regardless, we aim, as first target, to absorb forbidden (for the semiconductor) photons by the NPs which can excite hot electrons inside the metal NP and emit them directly into the conduction band of the solar cell semiconductor, without going through...

  10. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    Science.gov (United States)

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-12

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2. PMID:26999042

  11. Noble gases solubility in water

    International Nuclear Information System (INIS)

    The available experimental data of solubility of noble gases in water for temperatures smaller than 3300C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author)

  12. Positron scattering from noble gases future prospects

    International Nuclear Information System (INIS)

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total (σGT), Ps formation (σPs) and Grand total - Ps formation ((σGT-Ps) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  13. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  14. Polyaniline-coated carbon nanotubes decorated with metal nanoparticles as materials for fuel-cell electrodes

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.

    Gargnano : Associazione Italiana di Scienza e Tecnologia delle Macromolecole, 2008. s. 121. [Advanced Polymeric Materials for Energy Resources Exploitation: Synthesis, Properties and Applications. 01.06.2008-05.06.2008, Gargnano] R&D Projects: GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * conducting polymer * noble metals Subject RIV: CD - Macromolecular Chemistry

  15. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  16. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  17. Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Li Huang

    2014-03-01

    Full Text Available Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc and Zn-phthalocyanine (ZnPc on Au(111 and Ag(111 surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111 are exclusively due to Pauli pushback. On Ag(111, we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  18. Estimation of the Patients' Adaptation to Noble Alloy Dentures Relying on the Parameters of Biological Fluids in Oral Cavities

    Institute of Scientific and Technical Information of China (English)

    LEBEDENKO I. Yu.; PARUNOV V. A.; KITKINA T. B.

    2012-01-01

    For the study of the effect of Plagodent and Palladent noble alloy dentures (OJSC "SIC ‘Supermetal’",Russia),the elemental compositions of the fluids obtained from gingival sulcus of abutment teeth of metal-ceramic dentures with frames made of the above-stated dental alloys,have been investigated.Response of white blood cells and fibroblasts in the gingival fluid and the mixed saliva of the patients a long time after prosthetic repair,relying on the content of proinflammatory interleukins IL-1 β and IL-6,anti-inflammatory interleukins IL-4 and IL-10,the factor of tumor necrosis TNF-α and lactoferrin,has been investigated.The results obtained have convincingly proved the biosafety of the Plagodent and Palladent noble alloys.

  19. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    Science.gov (United States)

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. PMID:26428172

  20. Effect of noble metal buffer layers on superconducting YBa/sub 2/Cu/sub 3/O/sub 7/ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chien, C.L.; Xiao, G.; Streitz, F.H.; Gavrin, A.; Cieplak, M.Z.

    1987-12-21

    Superconducting YBa/sub 2/Cu/sub 3/O/sub 7/ thin films have been prepared by using a magnetron sputtering system in the single-source mode. Samples deposited on (100) single-crystal MgO with and without a Au buffer layer all show high transition temperatures (82--87 K). The use of a Au buffer layer significantly improves the superconducting properties, particularly the Meissner effect and critical current density (3.3 x 10/sup 6/ A/cm/sup 2/ at T = 2 K and 3.5 x 10/sup 4/ A/cm/sup 2/ at T = 77 K). The Au films remain metallic after high-temperature annealing in an oxygen atmosphere. We propose to use Au buffer layers as current shunts to protect superconducting films and devices.

  1. On the mechanisms of cation injection in conducting bridge memories: The case of HfO2 in contact with noble metal anodes (Au, Cu, Ag)

    Science.gov (United States)

    Saadi, M.; Gonon, P.; Vallée, C.; Mannequin, C.; Grampeix, H.; Jalaguier, E.; Jomni, F.; Bsiesy, A.

    2016-03-01

    Resistance switching is studied in HfO2 as a function of the anode metal (Au, Cu, and Ag) in view of its application to resistive memories (resistive random access memories, RRAM). Current-voltage (I-V) and current-time (I-t) characteristics are presented. For Au anodes, resistance transition is controlled by oxygen vacancies (oxygen-based resistive random access memory, OxRRAM). For Ag anodes, resistance switching is governed by cation injection (Conducting Bridge random access memory, CBRAM). Cu anodes lead to an intermediate case. I-t experiments are shown to be a valuable tool to distinguish between OxRRAM and CBRAM behaviors. A model is proposed to explain the high-to-low resistance transition in CBRAMs. The model is based on the theory of low-temperature oxidation of metals (Cabrera-Mott theory). Upon electron injection, oxygen vacancies and oxygen ions are generated in the oxide. Oxygen ions are drifted to the anode, and an interfacial oxide is formed at the HfO2/anode interface. If oxygen ion mobility is low in the interfacial oxide, a negative space charge builds-up at the HfO2/oxide interface. This negative space charge is the source of a strong electric field across the interfacial oxide thickness, which pulls out cations from the anode (CBRAM case). Inversely, if oxygen ions migration through the interfacial oxide is important (or if the anode does not oxidize such as Au), bulk oxygen vacancies govern resistance transition (OxRRAM case).

  2. Influence of the noble metals (Pd, Au, Ag) in the thermoluminescent signal induced by radiation in the ZrO2

    International Nuclear Information System (INIS)

    When increasing the use of the ionizing and non ionizing radiations (for example, gamma and ultraviolet radiation) in different areas of the science and technology, there is necessary to apply more accurate safety measures and to avoid over-exposures that could put in risk the life of workers that manipulate radiation sources, patient that are exposed to this under some medical treatment, as well as materials that undergo intentionally to radiation. Also, the UV radiation that arrives to the earth can cause some damages, to the one to weaken the protector layer of ozone the UV radiation increases that arrives to the earth surface being able to affect the alive beings and the materials. By this so much the development of new materials able to take a census of in a more accurate way, fields of gamma and UV radiation is becoming necessary. In this sense, this work presents the obtained results when quantifying radiation fields, through the analysis in the thermoluminescent behavior (TL) induced by the gamma and UV radiation in the zirconium dioxide synthesized by the sol gel method and doped with nanoparticles of Pd, Au and Ag. It is necessary to mention that in reported works in this respect its mention that the zircon has good thermoluminescent sensitivity induced by these radiation types, however it has shown high thermoluminescent instability that is translated in an important lost of the information after the irradiation. For that through the incorporation of the metallic nanoparticles it was intended to stabilize the TL behavior of zircon. The results showed that the doped zircon has a high sensitivity to the gamma and UV radiation. These also show that the ionizing and non ionizing radiation induce a thermoluminescent curve consisting of two TL peaks with maxima located around 65 C and 145 C and that the intensity is increased with the dose, following a lineal behavior in certain interval of dose exposure that is influenced by the presence of the nanoparticles

  3. Noble metal recycling. Project 2: Optimization of discontinuous thermal processes (emission reduction). Final report; Edelmetallrecycling. Teilvorhaben 2: Weiterentwicklung der Verfahrenstechnik bei diskontinuierlichen thermischen Prozessen (Emissionsminderung). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baumbach, G.; Berger, R.

    2000-10-01

    A batch operated incineration process, used for the recycling of precious metals is described in the report. The development of a new combined pyrolysis/oxidation Process is the main focus of the work. This new process has several remarkable advantages compared to traditionally used techniques. The optimisation of the process with a modern fuzzy based control technique is described in detail. The emissions of the process were reduced considerably applying the new process and the innovative control technique. Furthermore the layout of several components of the new process can be reduced in the future. The developed techniques can also be applied in other thermal processes, especially batch processes. Additionally the application of catalysts for PCDD/PCDF reduction in the flue gas upstream and downstream of the filter was investigated. Whereas the catalyst performed well, as expected, downstream of the filter, no acceptable operation was possible upstream of the filter. As the reheating downstream the filter is economically not feasible the application of catalysts is not applicable for the describe process. (orig.) [German] Die Arbeit beschreibt einen diskontinuierlichen thermischen Prozess, der zur Rueckgewinnung von Edelmetallen eingesetzt wird. Der Schwerpunkt der Arbeit liegt auf der Entwicklung eines neuartigen kombinierten Pyrolyse/Oxidations-Prozesses, der gegenueber den traditionell eingesetzten Anlagen grosse Vorteile aufweist. Die Optimierung dieses Prozesses mit Hilfe modernster Fuzzy-Regelungstechnik wird detailliert beschrieben. Mit dem neuen Verfahren und den innovativen Regelungstechniken konnten die Emissionen des Prozesses merklich gesenkt werden, ohne den Energiebedarf negativ zu beeinflussen. Ausserdem koennen zukuenftige Anlagen kleiner ausgelegt werden. Die entwickelten Verfahren koennen auch auf andere thermische Prozesse uebertragen werden. Weiterhin wurde der Einsatz von Katalysatoren zur PCDD/PCDF-Minderung im Rein- und Rohgas untersucht

  4. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  5. Electrical resistivity of liquid noble metal alloys

    International Nuclear Information System (INIS)

    Calculations of the dependence of the electrical resistivity in liquid Ag-Au, Cu-Ag, Cu-Au binary alloys on composition are reported. The structure of the binary alloy is described as a hard sphere system. A one-parameter local pseudopotential, which incorporates s-d hybridization effects phenomenologically, is employed in the resistivity calculation. A reasonable agreement with experimental trends is observed in cases where experimental information is available. (author)

  6. Molybdenum-tin as a solar cell metallization system

    Science.gov (United States)

    Boyd, D. W.; Radics, C.

    The operations of solar cell manufacture are briefly examined. The formation of reliable, ohmic, low-loss, and low-cost metal contacts on solar cells is a critical process step in cell manufacturing. In a commonly used process, low-cost metallization is achieved by screen printing a metal powder-glass frit ink on the surface of the Si surface and the conductive metal powder. A technique utilizing a molybdenum-tin alloy for the metal contacts appears to lower the cost of materials and to reduce process complexity. The ink used in this system is formulated from MoO3 with Sn powder and a trace amount of titanium resonate. Resistive losses of the resulting contacts are low because the ink contains no frit. The MoO3 is finally melted and reduced in forming gas (N2+H2) to Mo metal. The resulting Mo is highly reactive which facilitates the Mo-Si bonding.

  7. A sliding cell technique for diffusion measurements in liquid metals

    OpenAIRE

    Yongliang Geng; Chunao Zhu; Bo Zhang

    2014-01-01

    The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liqui...

  8. Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts promoted with noble metals for the hydrogen production by ethanol vapor reforming; Catalisadores de Ni/CeO{sub 2}-Al{sub 2}O{sub 3} promovidos com metais nobres para a producao de hidrogenio por reforma a vapor de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Luciene P.R.; Ticianelli, Edson Antonio; Assaf, Elisabete Moreira [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: eassaf@iqsc.usp.br

    2008-07-01

    The catalytic activity of Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts modified with noble metals (Ru, Ir, Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by energy dispersive spectroscopy, X-ray diffraction, UV-Vis diffuse reflectance spectroscopy and H{sub 2} temperature-programmed reduction-X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was avoided due to the presence of a CeO{sub 2} dispersed on the alumina. The promoting effect of noble metals included a decrease of the reduction temperatures of NiO species interacting with the support due to the hydrogen spillover effect, leading to an increase of the reducibilities of the promoted catalysts The better catalytic performance for the ethanol steam reforming was obtained for the NiPd/CeAl catalyst, which presented an effluent gaseous mixture with the highest H{sub 2} yield. (author)

  9. A PEM fuel cell with metal foam as flow distributor

    International Nuclear Information System (INIS)

    Highlights: ► Metal foams are used to replace conventional flow channels as the flow distributor. ► Cell with metal foam out-performs the conventional cell with flow channel plate. ► Mass transport limitation phenomenon is not as obvious as in conventional unit cell. ► This is due to metal foam’s high porosity plus convective flow through the foam. ► Even operated at 40 °C, the current density reaches 1870 mA cm−2 at 0.6 V. - Abstract: In this work, we report our experimental results of the PEM fuel cell with metal foam as flow distributor. These experimental results show the characteristics of the PEM fuel cell with the metal foam as flow distributor and extend our understanding of the relation between cell performance and mass transport properties into a region of parameters that the conventional PEM unit cell cannot provide. The comparison in polarization curve is made between the PEM unit cell with different metal-foam properties and the PEM unit cell with graphite flow channel plate as flow distributor. The experimental results show that the PEM fuel cell with metal foam as flow distributor possesses some unique characteristics compared with the conventional PEM unit cell with flow channel plate as flow distributor. The unique characteristics are listed in this paper with our preliminary analysis. Due to the high porosity of metal-foam (as high as 95%) plus convective flow through the metal-foam, mass transport limitation phenomenon is not as pronounced as in the case of conventional PEM unit cell with flow channel plate as flow distributor. Another interesting phenomenon is that electrical conductivity of metal-foam plays a significant role in performance, which is seldom the case in the conventional PEM unit cell with flow channel plate as flow distributor. Although there are several technical challenges to be overcome for the current form of metal-foam to replace flow channel plates, the unique mass-transport properties of metal foam plus its

  10. A metal-organic framework-derived bifunctional oxygen electrocatalyst

    Science.gov (United States)

    Xia, Bao Yu; Yan, Ya; Li, Nan; Wu, Hao Bin; Lou, Xiong Wen (David); Wang, Xin

    2016-01-01

    Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal-air batteries and water electrolysis. Replacing noble metal-based electrocatalysts with highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts is critical for the practical applications of these technologies. Here we report a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C electrocatalysts. The remarkable electrochemical properties are mainly attributed to the synergistic effect from chemical compositions and the robust hollow structure composed of interconnected crystalline nitrogen-doped carbon nanotubes. The presented strategy for controlled design and synthesis of metal-organic framework-derived functional nanomaterials offers prospects in developing highly active electrocatalysts in electrochemical energy devices.

  11. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    1998-01-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the a

  12. Plant Chemistry Response to On-Line NobleChemTM

    International Nuclear Information System (INIS)

    Noble metal chemical addition is widely and successfully used in boiling water reactors (BWRs) as a mitigation method for intergranular stress corrosion cracking (IGSCC). This technology is used to reduce the electrochemical corrosion potential (ECP) of reactor internals and associated piping while maintaining low hydrogen injection rates. Over the past six years, BWRs have started to transition away from applying noble metals during refueling outages to the application of noble metals while the reactor is operating at full power using the On-Line NobleChemTM (OLNC) process. The ability to apply noble metals on-line allows for greater reapplication flexibility and eliminates the impact of an application on the duration of refueling outages. As more plants have begun to perform OLNC applications, the industry has started to accumulate a significant amount of reactor water chemistry and operating experience for periods both during and after injections. The intent of this paper is to summarize changes in chemistry parameters typically observed during and after an OLNC application, such as increases in reactor water conductivity and activated corrosion by product levels. These parameters can therefore be used during an OLNC injection as secondary indicators of application progress. This paper will also discuss methods of monitor an application, including direct ECP measurements and the use of secondary indicators. (authors)

  13. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  14. Noble gases in Tagish Lake

    OpenAIRE

    Grady, Monica; Verchovsky, Sasha; Franchi, Ian; Wright, Ian; Pillinger, Colin

    2001-01-01

    From the introduction: Tagish Lake has been classified as a CI2 chondrite [1] with an interstellar grain abundance enhanced over that of CI1 and CM2 chondrites [2]. Noble gases have been used as markers for the presence of exotic, presolar grains in chondritic meteorites: Xe-HL (nanodiamonds) and Xe-s/Ne-E (SiC). We have measured 4He, Ne, Ar and Xe in whole-rock Tagish Lake, and an orthophosphoric acid-resistant residue, in an effort to define more precisely the...

  15. Influence of the noble metals (Pd, Au, Ag) in the thermoluminescent signal induced by radiation in the ZrO{sub 2}; Influencia de los metales nobles (Pd, Au, Ag) en la senal termoluminiscente inducida por la radiacion en la ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Villa S, G

    2006-07-01

    When increasing the use of the ionizing and non ionizing radiations (for example, gamma and ultraviolet radiation) in different areas of the science and technology, there is necessary to apply more accurate safety measures and to avoid over-exposures that could put in risk the life of workers that manipulate radiation sources, patient that are exposed to this under some medical treatment, as well as materials that undergo intentionally to radiation. Also, the UV radiation that arrives to the earth can cause some damages, to the one to weaken the protector layer of ozone the UV radiation increases that arrives to the earth surface being able to affect the alive beings and the materials. By this so much the development of new materials able to take a census of in a more accurate way, fields of gamma and UV radiation is becoming necessary. In this sense, this work presents the obtained results when quantifying radiation fields, through the analysis in the thermoluminescent behavior (TL) induced by the gamma and UV radiation in the zirconium dioxide synthesized by the sol gel method and doped with nanoparticles of Pd, Au and Ag. It is necessary to mention that in reported works in this respect its mention that the zircon has good thermoluminescent sensitivity induced by these radiation types, however it has shown high thermoluminescent instability that is translated in an important lost of the information after the irradiation. For that through the incorporation of the metallic nanoparticles it was intended to stabilize the TL behavior of zircon. The results showed that the doped zircon has a high sensitivity to the gamma and UV radiation. These also show that the ionizing and non ionizing radiation induce a thermoluminescent curve consisting of two TL peaks with maxima located around 65 C and 145 C and that the intensity is increased with the dose, following a lineal behavior in certain interval of dose exposure that is influenced by the presence of the nanoparticles

  16. Preparation of open-cell metal foams by investment cast

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures,called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described.Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.

  17. Recycled Cell Phones - A Treasure Trove of Valuable Metals

    Science.gov (United States)

    Sullivan, Daniel E.

    2006-01-01

    This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.

  18. Nitrogen-doped carbon onions encapsulating metal alloys as efficient and stable catalysts for dye-sensitized solar cells

    Science.gov (United States)

    Zhu, Chongyang; Xu, Feng; Chen, Jing; Min, Huihua; Dong, Hui; Tong, Ling; Qasim, Khan; Li, Shengli; Sun, Litao

    2016-01-01

    Designing a new class of non-noble metal catalysts with triiodide reduction activity and stability comparable to those of conventional Pt is extremely significant for the application of dye-sensitized solar cells (DSSCs). Here, we demonstrate newly designed counter electrode (CE) materials of onion-like nitrogen-doped carbon encapsulating metal alloys (ONC@MAs) such as FeNi3 (ONC@FeNi3) or FeCo (ONC@FeCo), by a facile and scalable pyrolysis method. The resulting composite catalysts show superior catalytic activities towards the triiodide reduction and exhibit low charge transfer resistance between the electrode surfaces and electrolytes. As a result, the DSSCs based on ONC@FeCo and ONC@FeNi3 achieve outstanding power conversion efficiencies (PCEs) of 8.26% and 8.87%, respectively, which can rival the 8.28% of Pt-based DSSC. Moreover, the excellent electrochemical stabilities for both the two catalysts also have been corroborated by electrochemical impendence spectra and cyclic voltammetry (CV). Noticeably, TEM investigation further reveals that the N-doped graphitic carbon onions exhibit the high structural stability in iodine-containing medium even subject to hundreds of CV scanning. These results make ONC@MAs the promising candidates to supersede costly Pt as efficient and stable CEs for DSSCs.

  19. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.

    Science.gov (United States)

    Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C

    2016-06-01

    Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values. PMID:27172429

  20. Metal transport in cells: cadmium uptake by rat hepatocytes and renal cortical epithelial cells.

    OpenAIRE

    Shaikh, Z A; Blazka, M E; Endo, T

    1995-01-01

    The toxic metals appear to use the transport pathways that exist for biologically essential metals. In this regard interactions between the toxic and essential metals are possible. This report summarizes recent findings on the transport of cadmium in rat hepatocytes and renal cortical epithelial cells in the presence or absence of certain essential metals. The transport of cadmium in hepatocytes does not require energy and, therefore, is not an active process. It occurs primarily (80%) by tem...

  1. Biosorption and Metal Removal Through Living Cells

    Czech Academy of Sciences Publication Activity Database

    Kotrba, P.; Macková, M.; Fišer, J.; Macek, Tomáš

    Dordrecht: Springer, 2011 - (Kotrba, P.; Macková, M.; Macek, T.), s. 197-233 ISBN 978-94-007-0442-8 R&D Projects: GA MŠk 1M06030 Grant ostatní: GA MŠk(CZ) 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : heavy metal * bioprecipitation * biotransformation * activated sludge * phytoremediation Subject RIV: EI - Biotechnology ; Bionics

  2. PRAGMATIC KNOWLEDGE OR NOBLE KNOWLEDGE?

    Directory of Open Access Journals (Sweden)

    Marian MANOLESCU

    2015-11-01

    Full Text Available Disputes about the opportunity to introduce competence-based education are increasingly present in terms of educational policies and strategies. Obviously, in the last decade and a half, several countries have introduced competence based education. Although specific knowledge acquisition should be an essential component of student learning, assessing such knowledge in adult life depends largely on the individual purchase of more general concepts and skills. The article discusses pragmatic knowledge and noble knowledge. This is a collective dilemma, to the extent that the education system lives in the tension between the two logics. The two positions or divergent attitudes can coexist as long ast hey do not become extremist. Educational dilemma is especially now a priority.

  3. Advances in Metal Supported Cells in the METSOFC EU Consortium

    DEFF Research Database (Denmark)

    McKenna, B. J.; Christiansen, N.; Schauperl, R.;

    2013-01-01

    The EU‐sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements toward implementing a mechanically robust metal support as the structural element in SOFC. Technical University of Denmark (DTU) Energy Conversion's research into planar metal supported cells...... tolerance to thermal cycles and load cycles. These and other key outcomes of the METSOFC consortium are covered, along with associated work supported by the Danish National Advanced Technology Foundation....

  4. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y2wsup(a)/y2wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  5. Advances in Metal Supported Cells in the METSOFC EU Consortium

    DEFF Research Database (Denmark)

    McKenna, B. J.; Christiansen, N.; Schauperl, R.; Prenninger, P.; Nielsen, Jimmi; Blennow Tullmar, Peter; Klemensø, Trine; Ramousse, Severine; Kromp, A.; Weber, A.

    2013-01-01

    The EU‐sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements toward implementing a mechanically robust metal support as the structural element in SOFC. Technical University of Denmark (DTU) Energy Conversion's research into planar metal supported cells (M...... tolerance to thermal cycles and load cycles. These and other key outcomes of the METSOFC consortium are covered, along with associated work supported by the Danish National Advanced Technology Foundation.......The EU‐sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements toward implementing a mechanically robust metal support as the structural element in SOFC. Technical University of Denmark (DTU) Energy Conversion's research into planar metal supported cells...... (MSCs) has produced an advanced cell design with high performance and mechanical robustness. At low operation temperatures (650 °C), these cells have shown low Area‐specific resistances (ASRs): 0.35 Ω cm2 in cell tests (16 cm2 active area) and under 0.3 Ω cm2 in button cells (0.5 cm2 active area...

  6. Metal sulfide nanoparticle/polymer hybrid solar cells

    International Nuclear Information System (INIS)

    Full text: The decomposition of metal xanthates directly in a matrix of a conjugated polymer have been recently been introduced for copper indium sulphide polymer solar cells reaching efficiencies up to 3 %. Using this process the nanoparticles are naked without a ligand shell. In this contribution we show the versatility of this process to other metal sulphides-polymer systems. Aspects of materials synthesis and devices physics will be discussed. Different electrodes (Ag, Ag/Al, Al) have a strong influence on efficiency as well as devices stability. In addition, first results on tandem hybrid solar cells using the xanthate approach will be presented. (author)

  7. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress

    International Nuclear Information System (INIS)

    Highlights: •Metals induce morphological alterations on P. subcapitata. •Algal cell cycle consists: mother cell growth; cell division, with two nucleus divisions; release of four autospores. •Cu(II) and Cr(VI) arrest cell growth before the first nuclear division. •Cd(II) arrests cell growth after the second nuclear division but before the cytokinesis. •The approach used can be useful in the elucidation of different modes of action of pollutants. -- Abstract: The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC10 values), intermediate (closed to 72 h-EC50 values) and high (upper than 72 h-EC90 values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of different metals studied

  8. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Manuela D. [Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Soares, Eduardo V., E-mail: evs@isep.ipp.pt [Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto (Portugal); IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2014-02-15

    Highlights: •Metals induce morphological alterations on P. subcapitata. •Algal cell cycle consists: mother cell growth; cell division, with two nucleus divisions; release of four autospores. •Cu(II) and Cr(VI) arrest cell growth before the first nuclear division. •Cd(II) arrests cell growth after the second nuclear division but before the cytokinesis. •The approach used can be useful in the elucidation of different modes of action of pollutants. -- Abstract: The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC{sub 10} values), intermediate (closed to 72 h-EC{sub 50} values) and high (upper than 72 h-EC{sub 90} values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of

  9. Low Cost PEM Fuel Cell Metal Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Conghua [TreadStone Technologies, Inc.

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  10. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Carriere, M. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Thiebault, C. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Berger, P. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Khodja, H. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gouget, B. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)]. E-mail: barbara.gouget@cea.fr

    2007-07-15

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se{sup IV} and Cu as the most toxic and Ni, Se{sup VI}, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  11. MICROWAVE-ASSISTED SHAPE-CONTROLLED BULK SYNTHESIS OF NOBLE NANOCRYSTALS AND THEIR CATALYTIC PROPERTIES

    Science.gov (United States)

    Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...

  12. Noble Gases and Halogens in Icelandic Basalts

    OpenAIRE

    Weston, Bridget

    2013-01-01

    Noble gas and halogen data from a suite of Icelandic samples are presented. Iceland combines hotspot volcanism, a spreading ridge and abundant subglacially erupted samples. This combination allows for samples that erupted under high enough pressures to retain a measurable mantle volatile content, and also display signatures representing interaction between ocean island basalt (OIB) and mid-ocean ridge basalt (MORB) mantle sources.Erupted samples used to determine the mantle’s halogen and nobl...

  13. Photosensitive dopants for liquid noble gases

    Science.gov (United States)

    Anderson, David F.

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  14. Noble gas sputtering calculations using TRIM

    International Nuclear Information System (INIS)

    In conjunction with our experimental work on saddle field ion sputtering, we have attempted to apply the Monte Carlo program TRIM (Transport of Ions in Matter) to calculate the sputter yields for a variety of noble gas sputtering applications. Comparison with experiments are shown. Information extracted from these analyses have proved useful in optimizing the experimental sputtering parameters. Calculated sputter yields obtained utilizing TRIM are presented for noble gas sputtering of a variety of materials common to nuclear target production

  15. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application

    International Nuclear Information System (INIS)

    Upflow anaerobic sludge bed (UASB) bioreactors are commonly used for anaerobic wastewater treatment. Trace metals need to be dosed to these bioreactors to maintain microbial metabolism and growth. The dosing needs to balance the supply of a minimum amount of micronutrients to support a desired microbial activity or growth rate with a maximum level of micronutrient supply above which the trace metals become inhibitory or toxic. In studies on granular sludge reactors, the required micronutrients are undefined and different metal formulations with differences in composition, concentration and species are used. Moreover, an appropriate quantification of the required nutrient dosing and suitable ranges during the entire operational period has been given little attention. This review summarizes the state-of-the-art knowledge of the interactions between trace metals and cells growing in anaerobic granules, which is the main type of biomass retention in anaerobic wastewater treatment reactors. The impact of trace metal limitation as well as overdosing (toxicity) on the biomass is overviewed and the consequences for reactor performance are detailed. Special attention is given to the influence of metal speciation in the liquid and solid phase on bioavailability. The currently used methods for trace metal dosing into wastewater treatment reactors are overviewed and ways of optimization are suggested.

  16. NobleChemTM for commercial power plant application

    International Nuclear Information System (INIS)

    NoblechemTM is a GE patented technology that has been applied in 26 operating BWRs worldwide for potential IGSCC mitigation of reactor internal components, when used along with low levels of hydrogen in the feedwater. The technology demonstrates a method of utilizing hydrogen water chemistry (HWC) more effectively by using the extraordinary catalytic activity of noble metals to react hydrogen and oxygen. The addition of hydrogen gas to the feedwater of a BWR, was developed in the 1980's to mitigate the stress corrosion cracking propensity of BWR structural materials. The specification for HWC recommends establishing an electrochemical corrosion potential (ECP) of -230 mV(SHE) or less on the component of interest. Unfortunately, meeting this specification in BWR reactor internal components results in a significant increase in the radiation levels in the main steam. The accompanying operating dose rate is unacceptable for many utilities and thus moderate HWC (1 to 1.6 ppm hydrogen in the feedwater) has not been widely adapted. Unlike BWR structural materials, which only reach the ECP specification of -230 mV(SHE) at low bulk concentrations of reactor water oxidants (oxygen and hydrogen peroxide), noble metal treated surfaces respond to the molar ratio of hydrogen to total oxidants which is attained at very low hydrogen levels, with little or no long-term increase in main steam radiation levels. NoblechemTM takes advantage of this catalytic property by incorporating a thin deposit of platinum and rhodium on structural surfaces. This paper briefly describes the process of NobleChemTM application and the knowledge gained from the extensive experience from 26 BWRs over the past 5 years. (authors)

  17. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  18. A review of liquid metal anode solid oxide fuel cells

    OpenAIRE

    ALIYA TOLEUOVA; VLADIMIR YUFIT; STEFAAN SIMONS; Maskell, William C.; Brett, Daniel J. L.

    2013-01-01

    This review discusses recent advances in a solid oxide fuel cell (SOFC) variant that uses liquid metal electrodes (anodes) with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  19. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...

  20. Burp Charging Nickel Metal Hydride Cells

    Science.gov (United States)

    Darcy, Eric; Pollard, Richard

    1997-01-01

    The SKYNET 4 constellation consists of three spacecraft which were launched between December 1988 and August 1990. The spacecraft are three-axis stabilized geostationary earth-orbiting military communications satellites with a design life of seven years on station. With the mission objective achieved all the batteries continue to give excellent performance. This paper presents a review of the history of the six batteries from cell procurement to the end of their design life and beyond. Differences in operational strategies are discussed and the lifetime trends in performance are analyzed. The combination of procurement acceptance criteria and the on-station battery management strategy utilized are presented as the prime factors in achieving completely successful battery performance throughout the mission.

  1. Noble gas fractionation during subsurface gas migration

    Science.gov (United States)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  2. Metallic materials in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Willem Joseph Quadakkers

    2004-03-01

    Full Text Available Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC. Recently, a new type of FeCrMn(Ti/La based ferritic steels has been developed to be used as construction material for SOFC interconnects. In the present paper, the long term oxidation resistance of this class of steels in both air and simulated anode gas will be discussed and compared with the behaviour of a number of commercial available ferritic steels. Besides, in-situ studies were carried out to characterize the high temperature conductivity of the oxide scales formed under these conditions. Main emphasis will be put on the growth and adherence of the oxide scales formed during exposure, their contact resistance at service temperature as well as their interaction with various perovskite type contact materials. Additionally, parameters and protection methods in respect to the volatilization of chromia based oxide scales will be illustrated.

  3. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    International Nuclear Information System (INIS)

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position

  4. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  5. Nanometer-scale metal precipitates in multicrystalline silicon solar cells

    International Nuclear Information System (INIS)

    In this study, we have utilized characterization methods to identify the nature of metal impurity precipitates in low performance regions of multicrystalline silicon solar cells. Specifically, we have utilized synchrotron-based x-ray fluorescence and x-ray absorption spectromicroscopy to study the elemental and chemical nature of these impurity precipitates, respectively. We have detected nanometer-scale precipitates of Fe, Cr, Ni, Cu, and Au in multicrystalline silicon materials from a variety of solar cell manufacturers. Additionally, we have obtained a direct correlation between the impurity precipitates and regions of low light-induced current, providing direct proof that metal impurities play a significant role in the performance of multicrystalline silicon solar cells. Furthermore, we have identified the chemical state of iron precipitates in the low-performance regions. These results indicate that the iron precipitates are in the form of oxide or silicate compound. These compounds are highly stable and cannot be removed with standard silicon processing, indicating remediation efforts via impurity removal need to be improved. Future improvements to multicrystalline silicon solar cell performance can be best obtained by inhibiting oxygen and metal impurity introduction as well as modifying thermal treatments during crystal growth to avoid oxide or silicate formation

  6. A sliding cell technique for diffusion measurements in liquid metals

    Directory of Open Access Journals (Sweden)

    Yongliang Geng

    2014-03-01

    Full Text Available The long capillary and shear cell techniques are the usual methods for diffusion measurements in liquid metals. Here we present a new “sliding cell technique” to measure interdiffusion in liquid alloys, which combines the merits of these two methods. Instead of a number of shear cells, as used in the shear cell method, only one sliding cell is designed to separate and join the liquid diffusion samples. Using the sliding cell technique, the influence of the heating process (which affects liquid diffusion measurements in the conventional long capillary method can be eliminated. Time-dependent diffusion measurements at the same isothermal temperature were carried out in Al-Cu liquids. Compared with the previous results measured by in-situ X-ray radiography, the obtained liquid diffusion coefficient in this work is believed to be influenced by convective flow. The present work further supports the idea that to obtain accurate diffusion constants in liquid metals, the measurement conditions must be well controlled, and there should be no temperature gradients or other disturbances.

  7. Perspectives on the metallic interconnects for solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei-zhong; YAN Mi

    2004-01-01

    The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000 ℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in pro moting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.

  8. Advances in Metal Supported Cells in the METSOFC EU Consortium

    DEFF Research Database (Denmark)

    McKenna, Brandon J.; Christiansen, Niels; Schauperl, Richard;

    2012-01-01

    metal supported cells (MSCs) having low ASR at low temperature, incorporation into small stacks of powers approaching ½kW, and stack tolerance to various operation cycles. DTU Energy Conversion's (formerly Risø DTU) research into planar MSCs has produced an advanced cell design with high performance......Employing a mechanically robust metal support as the structural element in SOFC has been the objective of various development efforts. The EU-sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements towards implementing this strategy. These include robust...... outcomes of the METSOFC consortium are covered, along with associated work supported by the Danish National Advanced Technology Foundation....

  9. Nuclear Structure of the Noble Gas

    Science.gov (United States)

    Seong, Nakyeong

    Modern physics usually pictures the nuclear structure as about sphere and treats various detailed situation as perturbative, which may be obscured. In addition, the explanation why 235U undergoes nuclear fission and 238U does not is too difficult and unclear for the people to understand. However, in this paper, we introduce a new approach on the nuclear structure of the noble gas, which simultaneously can explain several phenomena that is obscurely elucidated by modern physics. We consider a 1:1 ratio between protons and neutrons and need the concept of the symmetry of the nuclear structure, because the electron's shell of the noble gas is fully occupied. From these, we can predict the number of neutrons of each noble gas exactly

  10. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in...

  11. Diffusive separation of noble gases and noble gas abundance patterns in sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Torgersen, T.; Kennedy, B.M.; van Soest, M.C.

    2004-06-14

    The mechanisms responsible for noble gas concentrations, abundance patterns, and strong retentivity in sedimentary lithologies remain poorly explained. Diffusion-controlled fractionation of noble gases is modeled and examined as an explanation for the absolute and relative abundances of noble gases observed in sediments. Since the physical properties of the noble gases are strong functions of atomic mass, the individual diffusion coefficients, adsorption coefficients and atomic radii combine to impede heavy noble gas (Xe) diffusion relative to light noble gas (Ne) diffusion. Filling of lithic grains/half-spaces by diffusive processes thus produces Ne enrichments in the early and middle stages of the filling process with F(Ne) values similar to that observed in volcanic glasses. Emptying lithic grains/half-spaces produces a Xe-enriched residual in the late (but not final) stages of the process producing F(Xe) values similar to that observed in shales. 'Exotic but unexceptional' shales that exhibit both F(Ne) and F(Xe) enrichments can be produced by incomplete emptying followed by incomplete filling. This mechanism is consistent with literature reported noble gas abundance patterns but may still require a separate mechanism for strong retention. A system of labyrinths-with-constrictions and/or C-, Si-nanotubes when combined with simple adsorption can result in stronger diffusive separation and non-steady-state enrichments that persist for longer times. Enhanced adsorption to multiple C atoms inside C-nanotubes as well as dangling functional groups closing the ends of nanotubes can provide potential mechanisms for 'strong retention'. We need new methods of examining noble gases in rocks to determine the role and function of angstrom-scale structures in both the diffusive enrichment process and the 'strong retention' process for noble gas abundances in terrestrial rocks.

  12. Metal-accelerated oxidation in plant cell death

    Energy Technology Data Exchange (ETDEWEB)

    Czuba, M. (National Research Council, Ottawa, Ontario (Canada))

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death are Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.

  13. Voltage effects on cells cultured on metallic biomedical implants

    Science.gov (United States)

    Haerihosseini, Seyed Morteza

    Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. Surface potential of biomedical implants and excursions from resting open circuit potential (OCP), which is the voltage they attain while in contact with an electrolyte, can significantly change the interfacial properties of the metallic surfaces and alter the behavior of the surrounding cells, compromising the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. To date, the details of the physico-chemical phenomena and the role of different biomaterial parameters involved in the interaction between cells and metallic surfaces under cathodic bias have not been fully elucidated. In this work, changes in the interfacial properties of a CoCrMo biomedical alloy (ASTM F-1537) in phosphate-buffered saline (PBS) (pH 7.4) at different voltages was studied. Step polarization impedance spectroscopy technique was used to apply 50 mV voltage steps to samples, and the time-based current transients were recorded. A new equation was derived based on capacitive discharge through a Tafel element and generalized to deal with non-ideal impedance behavior. The new function compared to the KWW-Randles function, better matched the time-transient response. The results also showed a voltage dependent oxide resistance and capacitance behavior. Additionally, the in-vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from -1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each

  14. Using 220Rn to calibrate liquid noble gas detectors

    CERN Document Server

    Kobayashi, M; Takeda, A; Kishimoto, K; Moriyama, S

    2016-01-01

    In this paper, we describe 220Rn calibration source that was developed for liquid noble gas detectors. The key advantage of this source is that it can provide 212Bi-212Po consecutive events, which enables us to evaluate the vertex resolution of a detector at low energy by comparing low-energy events of 212Bi and corresponding higher-energy alpha-rays from 212Po. Since 220Rn is a noble gas, a hot metal getter can be used when introduced using xenon as the carrier gas. In addition, no long-life radioactive isotopes are left behind in the detector after the calibration is complete; this has clear advantage over the use of 222Rn which leaves long- life radioactivity, i.e., 210Pb. Using a small liquid xenon test chamber, we developed a system to introduce 220Rn via the xenon carrier gas; we demonstrated the successful introduction of 6 times 10^2 220Rn atoms in our test environment.

  15. Thermal Conductivity of Metallic Micro-Cell Fuel Pellet with Different Unit Cell Geometry

    International Nuclear Information System (INIS)

    Recently, the metallic micro-cell pellets have been successfully fabricated to increase the thermal conductivities of nuclear fuel pellets with the minimal inclusion of thermal conductive materials (e.g., Mo, W, Cr, etc.) to UO2. Here we numerically characterize the effects of the geometry, such as the size and the aspect ratio, of the UO2-Mo micro-cells on their thermal conductivities. The geometric effects of the metallic (UO2-Mo) micro-cells on their thermal conductivities were numerically investigated in terms of the size and the aspect ratio of the micro-cells. Our simulation results agreed well with the experimental measurements. Under the same contents of the Mo in the UO2, changing the sizes of the micro-cells did not vary their thermal conductivities as long as their aspect ratio was fixed. However, increasing the aspect ratio of the micro-cells greatly increased their thermal conductivities

  16. Lab-size rechargeable metal hydride-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Kang; Noreus, Dag [Department of Materials and Enviromental Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm (Sweden)

    2010-09-01

    Lab-size rechargeable metal hydride-air (MH-air) cells with a gas management device were designed in order to minimize the loss of electrolyte. An AB{sub 5}-type hydrogen storage alloy was used as anode materials of the MH-air. The thickness of the metal hydride electrodes was in the range of 3.0-3.4 mm. Porous carbon-based air electrodes with Ag{sub 2}O catalysts were used as bi-functional electrodes for oxygen reduction and generation. The electrodes were first examined in half-cells to evaluate their performance and then assembled into one MH-air cell. The results showed the good cycling stability of the rechargeable MH-air cell with a capacity of 1990 mAh. The discharge voltage was 0.69 V at 0.05-0.1 C. The charge efficiency was about 90%. The specific and volumetric energy densities were about 95Wh kg{sup -1} and 140 Wh L{sup -1}, respectively. (author)

  17. Multi-metallic anodes for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    A new method for direct preparation of materials for solid oxide fuel cell anode - Ni- YSZ cermets - based on mechanical alloying (MA) of the original powders is developed, allowing to admix homogeneously any component. Additive metals are selected from thermodynamic criteria, leading to compacts consolidation through sintering by activated surface (SAS). The combined process MA-SSA can reduce the sintering temperature by 300 deg C, yielding porous anodes. Densification mechanisms are discussed from quasi-isothermal sintering kinetics results. Doping with Ag, W, Cu, Mo, Nb, Ta, in descending order, promotes the densification of pellets through liquid phase sintering and evaporation of metals and oxides, which allow reducing the sintering temperature. Powders and pellets characterization by electronic microscopy and X-ray diffraction completes the result analyses. (author)

  18. Hydrometallurgical Recovery of Metal Values From Spent Dry Battery Cells

    International Nuclear Information System (INIS)

    This study focuses on the recovery of metal values from spent dry battery cells (DBC) applying a hydro-pyrometallurgical method. A process flow sheet was followed up starting with cutting the DBC with toothed cutter disc followed by water soaking and rinsing. Water soluble ingredients were filtered. Solid residue was assorted with the help of magnetic separation and water flotation.The method utilizes hydrogen peroxide to enhance dissolution of these metals in acidic or alkaline leachants. Parameters affecting the recovery efficiency such as stoichiometric ratio, solid: liquid ratio, temperature, time and ph of the system were investigated. In this concern, experiments were executed with a battery sample weighing up to 15 kg. Atomic absorption analysis showed that the input DBC contain appreciable amounts of metal zinc, zinc chloride and manganese that are recoverable.Results obtained revealed that metallic parts, carbon rods and paper were safely separated for recycling. From the water-soluble salts, pure NH4CI, MnO2 and ZnCI2 salts are obtained meeting the standard specifications. Temperature up to 55 degree enhances the recovery process. Under the optimum conditions, maximum recovery efficiency obtained amounts to 93% for Mn, and 99.5% for Zn and NH4CI. A model for explaining the obtained results was also given. Dissolution of metals concerned increases in the order nitric> hydrochloric acid. Results were explained in the premise of the kinetic and thermodynamic properties of the reactions involved. Cost estimate of the products shows that the prices of the products are competitive to those of the market prices

  19. Therapeutic Potential of Noble Nanoparticles for Wound Repair

    Directory of Open Access Journals (Sweden)

    Timur Saliyev

    2014-12-01

    Full Text Available Introduction. Nanoparticles made of noble metals, such as gold and silver, have a great potential to be effectively employed for wound management. The nano-size of such particles provides an opportunity to enlarge the contacting area, which results in more effective anti-bacterial action and faster wound repair. It must be noted that the shape of noble nanoparticles might play a crucial role in the manifestation of their anti-microbial properties. The modern state of technology allows fabrication of the nanoparticles with the desired shape and physical properties. In order to provide efficacy and close contact with the wound, the noble nanoparticles can be incorporated into a special matrix made of a cryogel (based on polymethyl methacrylate. This combination might serve as a foundation for developing completely new types of wound dressing.Materials and methods. We have developed a few methods for synthesizing gold and silver nanoparticles of different shapes and sizes. After fabrication of metallic nanoparticles, they were characterized by using Tunneling Electron Microscopy (TEM and Malvern Zetasizer system in order to determine the average population size and consistency. The silver nanoparticles was synthesized using sodium borohydride reduction of silver nitrate. The synthesis of gold nanoparticles was conducted by using the Turkevich method.Results. We have developed a synthetic cryogel based on polyacrylamide (by cryogelation reaction at several temperatures. At the second step, we developed a method for conjugating fabricated gold and silver nanoparticles to the surface (or pores of cryogel through covalent bonds so they can provide antibacterial action within the wound. By following the developed protocol, we were able to obtain an approximate cryogel layer (1 cm thickness with embedded gold and silver nanoparticles. This conjugate was analyzed and confirmed using Scanning Electron Microscopy (SEM and TEM.Discussion. The obtained

  20. Computational investigation of noble gas adsorption and separation by nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Sanders, Joseph C.; Greathouse, Jeffery A.

    2008-10-01

    Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xe and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.

  1. A fast cost-assessment method for boiler equipment made of noble materials

    International Nuclear Information System (INIS)

    The method is aimed at assessing equipment costs for preliminary technical-economic studies or succinct project evaluation. Advantages and disadvantages of nobles metals such as nickel, tantalum, titanium, zirconium ... are reviewed. The economic evaluation method is based on a combination of parametric techniques and statistical results, and allows for the assessment of the various cost components as a function of mass, design and manufacturing complexity in the context of industrial specific operating constraints. 3 figs., 6 tabs., 2 refs

  2. The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells

    Directory of Open Access Journals (Sweden)

    Sondra S. Teske

    2015-01-01

    Full Text Available Humans are increasingly exposed to nanoparticles (NPs in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems.

  3. Metal organic frameworks for enzyme immobilization in biofuel cells

    Science.gov (United States)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  4. High performance, high durability non-precious metal fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  5. Experimental determination of noble gas, SF6 and CO2 flow profiles through a porous sandstone

    Science.gov (United States)

    Kilgallon, Rachel; Gilfillan, Stuart; Edlmann, Katriona; McDermott, Chris

    2016-04-01

    The noble gases (He, Ne, Ar, Kr and Xe) and SF6 have recently been used as artificial and inherent tracers of CO2 flow and migration from within[1,2] and from geological reservoirs[3]. However, outstanding questions remain, particularly regarding the flow behaviour of the noble gases compared to CO2. Here we present results from specially constructed experimental equipment, which has been used to determine the factors affecting transport of noble gases relative to CO2 in a porous sandstone. The experimental setup consists of a sample loop that can be loaded with a desired gas mixture. This sample can be released as a pulse into a feeder gas stream through a flow cell. The flow cell consists of a 3.6 cm diameter core, which can be of any length. The sample is surrounded by aluminium foil and treated with epoxy resin inside stainless steel tubing. The flow cell is encased by two purpose designed dispersion end plates. Real-time analysis of the arrival peaks of the gases downstream is recorded using a Quadrupole Mass Spectrometer (QMS). For the experiments, a 0.96 m core of Fell Sandstone was selected to represent a porous media. Noble gases and SF6 pulses were flowed through a CO2 carrier gas at five different pressure gradients (10 - 50 kPa) with arrival profiles measured using the QMS. Surprisingly, peak arrival times of He were slower than the other noble gases at each pressure gradient. The differences in peak arrival times between He and other noble gases increased as pressure decreased and the curve profiles for each noble gas differ significantly. The heavier noble gases (Kr and Xe) along with SF6 show a steeper peak rise at initial appearance, but have a longer duration profile than the He curves. Interestingly, the breakthrough curve profiles for both Kr and Xe were similar to SF6 indicating that Kr and Xe could be substituted for SF6, which is a potent greenhouse gas, in tracing applications. In addition, CO2 pulses were passed through a N2 carrier gas. The

  6. Simulated study of plasmonic coupling in noble bimetallic alloy nanosphere arrays

    International Nuclear Information System (INIS)

    The plasmonic coupling between the interacting noble metal nanoparticles plays an important role to influence the optical properties of arrays. In this work, we have extended the Mie theory results of our recent communication to include the effect of particle interactions between the alloy nanoparticles by varying interparticle distance and number of particles. The localized surface plasmon resonance (LSPR) peak position, full width at half maxima (FWHM) and scattering efficiency of one dimensional (1D) bimetallic alloy nanosphere (BANS) arrays of earlier optimized compositions i.e. Ag0.75Au0.25, Au0.25Cu0.75 and Ag0.50Cu0.50 have been studied presently by using discrete dipole approximation (DDA) simulations. Studies have been made to optimize size of the nanosphere, number of spheres in the arrays, material and the interparticle distance. It has been found that both the scattering efficiency and FWHM (bandwidth) can be controlled in the large region of the electromagnetic (EM) spectrum by varying the number of interacting particles and interparticle distance. In comparison to other alloy arrays, Ag0.50Cu0.50 BANS arrays (each of particle radius 50 nm) shows larger tunability of LSPR with wide bandwidth (essential condition for plasmonic solar cells)

  7. Diffraction of Random Noble Means Words

    Science.gov (United States)

    Moll, Markus

    2014-09-01

    In this paper, several aspects of the random noble means substitution are studied. Beyond important dynamical facets such as the frequency of subwords and the computation of the topological entropy, the important issue of ergodicity is addressed. From the geometrical point of view, we outline a suitable cut and project setting for associated point sets and present results for the spectral analysis of the diffraction measure.

  8. Alpha particles energy straggling in noble gases

    International Nuclear Information System (INIS)

    The comparison of the calculated spectra by the Monte-Carlo simulation with the experimental alpha-particles spectra after their passage through noble gases target has good agreement for Ar, Kr, and Xe and significant deviation for He and Ne. These agreement or disagreement of the calculated and experimental spectra were ascribed to adequacy or inadequacy of the applied Bohr's charged particles energy loss formula for the specific medium. (author)

  9. Pathway to low-cost metallization of silicon solar cell through understanding of the silicon metal interface and plating chemistry

    International Nuclear Information System (INIS)

    Metallization is crucial to silicon solar cell performance. It is the second most expensive process step in the fabrication of a solar cell. In order to reduce the cost of solar cell, the metallization cost has to be cut down by using less metal without compromising the efficiency. Screen-printing has been used in metallizing the commercial solar cell because of the high throughput and low cost at the expense of performance. However, because of the variability in the screen-printed gridlines, the amount of Ag metal used cannot be controlled. More so, the dependence of the contact resistance on doping necessitates the use of low sheet resistance emitters, which exacerbates losses in the blue response and hence the efficiency. To balance the contact resistance and improve blue response, several approaches have been undertaken including, use of Ag pastes incorporating nanoparticle glass frits that will not diffuse excessively into a lightly doped emitter, Ni plating on lightly doped emitter through SiNx dielectric plus NiSi formation followed by Cu and/or Ag plating, light induced plating (LIP) of Ag or Cu on fired through dielectric metal seed layers formed by aerosol or inkjet or screen-printing. All these approaches require excellent adhesion and gridline conductivity to minimize the total series resistance, which impedes the collection of electrons. This paper presents the issues and the pathway to achieving high efficiency using low cost metallization technology involving inkjet-printed Ag fine gridline having 38 μm width and 3 μm height fired through the SiNx followed by Ni and Cu plating. A comprehensive analysis of silicon/metal interface, using high precision microscopy, has shown that the investigated metallization technology is appropriate for the longevity of the device

  10. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN6), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  11. Noble metals nanoparticles on titanium dioxide nanostructured films and the influence of their photocatalytic activity; Atividade fotocatalitica de filmes nanoestruturados de dioxido de titanio incorporados com nanoparticulas de metais nobres

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Liana Key Okada

    2012-07-01

    Currently, nanoscience and nanotechnology are considered an emerging field and continuously breaking the barrier among various disciplines. The main focus of study involves controlling structures at molecular level, arranging the atoms in order to achieve an understanding and controlling the fundamental properties of matter. In this study, molecular changes on the basis of morphology, optical and crystalline properties of TiO{sub 2}hin films in order to increase their photon efficiency were proposed. The TiO{sub 2} thin films were prepared by sol gel process evaluating the influence of different acids and templates to obtain the nano structured arrangements. Then, metal nanoparticles like Au, Ag, Pd and Pt were incorporated on TiO{sub 2} thin films. This incorporation might minimize the electron-hole recombination, so it could improve the photon efficiency. From the several routes studied, the TiO{sub 2} thin films prepared with acetic acid showed the best performance by the reason of low agglomeration of TiO{sub 2} grains, which favors the exposure of the photoactive sites. The presence of template in the formulation had a slightly effect on photon efficiency, possible due to the higher agglomeration of the grains on the TiO{sub 2} thin films. The addition of Pt and Au nanoparticles on TiO{sub 2} thin films showed superior photon efficiency. The TiO{sub 2} thin films with hexamine and metallic nanoparticles did not show the improvement on photon efficiency except for Pt and Au nanoparticles. On these situations, the improvement on photon efficiency is might be due to a possible decrease at the electron-hole recombination's velocity. Thus, the present work demonstrates the great influence of preparation conditions on the optical, morphological properties and the photon efficiency. In the future, with greater understanding of the mechanism of this influence, the properties of TiO{sub 2} thin films will be able tailoring depending on the application. (author)

  12. INGAS: Iranian Noble Gas Analyzing System for radioxenon measurement

    Science.gov (United States)

    Doost-Mohammadi, V.; Afarideh, H.; Etaati, G. R.; Safari, M. J.; Rouhi, H.

    2016-03-01

    In this article, Iranian Noble Gas Analyzing System (INGAS) will be introduced. This system is based on beta-gamma coincidence technique and consists of a well-type NaI(Tl) as gamma or X radiation detector and a cylindrical plastic scintillator to detect beta or conversion electron. Standard NIM modules were utilized to detect coincidence events of detectors. Both the beta and gamma detectors were appropriately calibrated. The efficiency curve of gamma detector for volume geometry was obtained by comparing the results of gamma point sources measurements and simulations of GATE V7.0 Monte Carlo code. The performance of detection system was checked by injection of 222Rn and 131mXe gaseous source in the detection cell. The minimum detectable activity of the system for 133Xe is 1.240±0.024 mBq for 24 h measurement time.

  13. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity

    International Nuclear Information System (INIS)

    Brown algae are often used as heavy metal biomonitors and biosorbents because they can accumulate high concentrations of metals. Cation-exchange performed by cell wall polysaccharides is pointed out as the main chemical mechanism for the metal sequestration. Here, we biochemically investigated if the brown alga Padina gymnospora living in a heavy metal contaminated area would modify their polysaccharidic content. We exposed non-living biomass to Cd and Pb and studied the metals adsorption and localization. We found that raw dried polysaccharides, sulfate groups, uronic acids, fucose, mannose, and galactose were significantly higher in contaminated algae compared with the control ones. Metal concentrations adsorbed by non-living biomass were rising comparatively to the tested concentrations. Electron microscopy showed numerous granules in the cell walls and X-ray microanalysis revealed Cd as the main element. We concluded that P. gymnospora overproduces cell wall polysaccharides when exposed to high metal concentrations as a defense mechanism.

  14. Noble Gases in the LEW 88663 L7 Chondrite

    Science.gov (United States)

    Miura, Y. N.; Sugiura, N.; Nagao, K.

    1995-09-01

    LEW88663 and some meteorites (e.g. Shaw) are the most highly metamorphosed meteorites among L group chondrites. Although the abundances of lithophile elements and oxygen isotopic compositions of the L7 chondrite LEW88663 (total recovered mass: 14.5g) are close to those of the range for L chondrites [1,2], metallic iron is absent and concentrations of siderophile elements are about half of typical values for L chondrites [3,4]. Petrographical and geochemical observation suggested that this meteorite has experienced partial melting [5]. As a part of our study on differentiated meteorites, we also investigated noble gases in this meteorite. We present here noble gas compositions of LEW88663 and discuss history of this meteorite. In addition, we will consider whether there is any evidence for bridging between chondrites and achondrites. Noble gases were extracted from a whole rock sample weighing 66.31 mg by total fusion, and all stable noble gas isotopes as well as cosmogenic radioactive 81Kr were analyzed using a mass spectrometer at ISEI, Okayama University. The results are summarized in the table. The concentrations of cosmogenic ^3He, ^21Ne, and ^38Ar are 7.3, 1.6 and 3.1x10^-8 cm^3STP/g, respectively. The cosmic-ray exposure ages based on them are calculated to be 4.7, 6.9 and 8.8 m.y., respectively, using the production rates proposed by [6, 7] and mean chemical compositions of L chondrites. The shorter cosmic-ray exposure ages T(sub)3 and T(sub)21 than T(sub)38 would be due to diffusive loss of lighter noble gases from the meteorite. The concentrations of trapped Kr and Xe in LEW88663 are lower than those for L6 chondrites [8], supporting thermal metamorphism for the meteorite higher than that for L6 chondrites. The Kr and Xe are isotopically close to those of the terrestrial atmospheric Kr and Xe, and elemental abundance ratios for Ar, Kr and Xe suggest adsorbed noble gas patterns of the terrestrial atmosphere. The terrestrial atmospheric Ar, Kr and Xe (most

  15. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain. PMID:27114164

  16. Prospects of metal research

    International Nuclear Information System (INIS)

    Topical questions about modern metal research are considered covering fundamentals and applications. Many, hitherto undeveloped distinguished properties of metals, such as resistance against particle and quantum radiations, neutrons, very high and very low temperatures , stresses, and chemical agents; memory effects; superconductivity etc. are pointed out. The following topics are treated: subject and methodology of the science of metals, significance of metals; discovery of new properties of metallic materials; theory of metallic alloys; extreme conditions; intermetallic compounds, polymorphic metals; rare metals (rare earth metals, rhenium, noble metals); questions of strength and technology of metals and alloys; temperature zones of brittle fracture in metals and alloys; alloys with particular electrophysical properties; superconductive metalic materials; 'biological' science of metals; and conclusions. The booklet will be useful for students at technical schools and universities as well as for engineers and scientists engaged in metal research

  17. Manufacturing and characterization of metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Hjelm, Johan; Klemensø, Trine;

    2011-01-01

    A metal-supported solid oxide fuel cell design offers competitive advantages, for example reduced material costs and improved robustness. This paper reports the performance and stability of a recently developed metal-supported cell design, based on a novel cermet anode, on a 25cm2 (1cm2/16cm2...

  18. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    OpenAIRE

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter; Klemensø, Trine; Weber, André

    2012-01-01

    Metal supported SOFC designs offer competitive advantages such as reduced material costs and improved mechanical robustness. On the other hand, disadvantages might arise due to possible corrosion of the porous metal parts during processing and operation at high fuel utilization. In this paper we present the results of performance and stability improvements for a metal supported cell developed within the European project METSOFC and the Danish National Advanced Technology Foundation. The cells...

  19. Metal Nanowire Networks as Transparent Electrode for Small-Molecule Organic Solar Cells

    OpenAIRE

    Sachse, Christoph

    2015-01-01

    This work focuses on the development of metal nanowire networks for the use as transparent electrodes in small-molecule organic solar cells. Broad adoption of organic solar cells requires inexpensive roll-to-roll processing on flexible, lightweight substrates. Under these conditions, traditional metal oxide electrodes suffer from significant drawbacks such as brittleness and cost. In contrast, metal nanowire networks provide properties more suitable for high-throughput processing and thus...

  20. Resonance ionization spectroscopy: Counting noble gas atoms

    International Nuclear Information System (INIS)

    The purpose of this paper is to describe new work on the counting of noble gas atoms, using lasers for the selective ionization and detectors for counting individual particles (electrons or positive ions). When positive ions are counted, various kinds of mass analyzers (magnetic, quadrupole, or time-of-flight) can be incorporated to provide A selectivity. We show that a variety of interesting and important applications can be made with atom-counting techniques which are both atomic number (Z) and mass number (A) selective. (orig./FKS)

  1. Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuo-Fu; Deng Jin-Xiang

    2012-01-01

    A metal plate cooling model for 400× single concentrator solar cells was established.The effects of the thickness and the radius of the metal plate,and the air environment on the temperature of the solar cells were analyzed in detail.It is shown that the temperature of the solar cells decreased sharply at the beginning,with the increase in the thickness of the metal plate,and then changed more smoothly.When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker,the temperature of the solar cell basically stabilized at about 53 ℃.Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably.The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively,and demonstrated the superiority of Al material for the cooling system.Furthermore,considering cost reduction,space holding and the stress of the system,we optimized the structural design of the metal plate.The simulated results can be referred to the design of the structure for the metal plate.Finally,a method to devise the structure of the metal plate for single concentrator solar cells was given.

  2. Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

    International Nuclear Information System (INIS)

    A metal plate cooling model for 400× single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53 °C. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of Al and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of Al material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Fullerenes and Noble Gases in the Murchison and Allende Meteorites

    Science.gov (United States)

    Becker, Luann; Poreda, Robert J.; Bunch, Ted E.

    2000-01-01

    In this work we report the detection of fullerenes (C60 to C250) in the Murchison and Allende meteorites. By exploiting the unique ability of these molecules to trap noble gases, we have determined that fullerene is indeed a new carrier phase for noble gases in meteorites.

  4. Far-ultraviolet signatures of the 3He(n,tp) reaction in noble gas mixtures

    CERN Document Server

    Hughes, Patrick P; Thompson, Alan K; Vest, Robert E; Clark, Charles W

    2010-01-01

    Previous work showed that the 3He(n,tp) reaction in a cell of 3He at atmospheric pressure generated tens of far-ultraviolet photons per reacted neutron. Here we report amplification of that signal by factors of 1000 and more when noble gases are added to the cell. Calibrated filter-detector measurements show that this large signal is due to noble-gas excimer emissions, and that the nuclear reaction energy is converted to far-ultraviolet radiation with efficiencies of up to 30%. The results have been placed on an absolute scale through calibrations at the NIST SURF III synchrotron. They suggest possibilities for high-efficiency neutron detectors as an alternative to existing proportional counters.

  5. [Application of low noble alloys in telescoped crowns].

    Science.gov (United States)

    Susulić, T

    1989-01-01

    It is known that low noble alloys (Hera SG, Aurea-Heraus, Stabilor-Degussa, Midgold-Bego etc.) are used woredwide for the preparation of prosthetic constructions. For this reason attempts to produce low noble alloys with the properties equal to those of more expensive high noble alloys, are justified, as they are cheap and available to a great number of patients. The Yugoslav producer of dental materials "Zlatarna Celje" has produced a low noble alloy named Midor S. The comparative investigations of resistance to the mouth, performed at the University School of Dentistry in Ljubljana and in the Laboratory of Metallurgy of "Zlatarna Celje", have shown that this alloy was more resistant to corrosion than 22 karat, high noble alloy. In our Department Mikdor S was experimentally tested on telescoped crowns. The obtained results showed the satisfactory hardness and resistance to attrition between the internal and external crowns within the limits of tolerance which made it suitable for use. PMID:2489991

  6. Constructal Optimization of Top Contact Metallization of a Photovoltaic Solar Cell

    OpenAIRE

    Santanu Bandyopadhyay; Aditya Bhakta

    2005-01-01

    A top contact metallization of a photovoltaic solar cell collects the current generated by incident solar radiation. Several power-loss mechanisms are associated with the current flow through the front contact grid. The design of the top metal contact grid is one of the most important areas of efficient photovoltaic solar cell design. In this paper, an approach based on the constructal theory is proposed to design the grid pattern in a photovoltaic solar cell, minimizing total resistive losse...

  7. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells

    Science.gov (United States)

    Vodyanoy, Vitaly; Daniels, Yasmine; Pustovyy, Oleg; MacCrehan, William A; Muramoto, Shin; Stan, Gheorghe

    2016-01-01

    Background Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm–2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22±0.08 nmol/L (standard error [SE]) and 0.12±0.02 nmol/L (SE), respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine. Purpose Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal nanoparticles. Materials and methods RG2, rat brain glioma cells CTX TNA2 brain rat astrocytes, obtained from the American Type Culture Collection, high-voltage discharge, atomic force microscope, X-ray photoelectron spectroscopy, high-resolution light microscopy, zeta potential measurements, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium

  8. Carbon Nanofibers as Catalyst Support for Noble Metals

    NARCIS (Netherlands)

    Toebes, M.L.

    2004-01-01

    In the quest for new and well-defined support materials for heterogeneous catalysts we explored the potential of carbon nanofibers (CNF). CNF belongs to the by now extensive family of synthetic graphite-like carbon materials with advantageous and tunable physico-chemical properties. Aim of the work

  9. Carbon Nanofibers as Catalyst Support for Noble Metals

    OpenAIRE

    Toebes, M.L.

    2004-01-01

    In the quest for new and well-defined support materials for heterogeneous catalysts we explored the potential of carbon nanofibers (CNF). CNF belongs to the by now extensive family of synthetic graphite-like carbon materials with advantageous and tunable physico-chemical properties. Aim of the work described in this thesis has been the exploration of the potential of CNF as catalyst support material, notably for platinum and ruthenium, and its role in the performance of these catalysts in hyd...

  10. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto;

    . Figuéras, J. Mol. Catal., 79, (1993), 253. [2] M. Arai, Y. Takada, T. Ebina, M. Shirai, Appl. Catal. A: General, 183, (1999), 365. [3] R. Strobel, W. J. Stark, L. Mädler, S. E. Pratsinis, A. Baiker, J. Catal., 213, (2003) 296. [4] T. Johannessen, S. Koutsopoulos, J. Catal., 205, (2003) 404. [5] R. Strobel...

  11. Noble metal supported catalysts for lactose transformations in liquid phase

    OpenAIRE

    Meyer, Nathalie

    2014-01-01

    Carbohydrates are an important source of renewable materials which can be converted into high added-value products. Sugar transformations should ideally be carried out with recyclable catalysts, in water, with the highest possible selectivity in the desired product. The aim of the present work was to explore the microstructural properties of the heterogeneous catalysts needed to carry out selectively lactose oxidation into lactobionic acid and lactose hydrogenation into lactitol. The first pa...

  12. Interaction of Graphene and Arenes with Noble Metals

    Czech Academy of Sciences Publication Activity Database

    Granatier, Jaroslav; Lazar, P.; Prucek, R.; Šafářová, K.; Zbořil, R.; Otyepka, M.; Hobza, Pavel

    2012-01-01

    Roč. 116, č. 26 (2012), s. 14151-14162. ISSN 1932-7447 R&D Projects: GA ČR GBP208/12/G016 Grant ostatní: GA MŠk(CZ) EE2.3.20.0017; European Regional Development Fund(XE) CZ.1.05/2.1.00/03.0058; GA ČR(CZ) GAP208/10/1742 Institutional research plan: CEZ:AV0Z40550506 Keywords : density-functional theory * effective core potentials * augmented-wave method * active catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.814, year: 2012

  13. Noble Metal Catalysts in the Production of Biofuels

    OpenAIRE

    Gutiérrez, Andrea

    2013-01-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the d...

  14. Noble metal catalysts for the hydrocracking of FT waxes

    OpenAIRE

    Suárez París, Rodrigo

    2012-01-01

    Bifunctional catalysts consisting of palladium or platinum and supported on amorphous silica-alumina were prepared and tested in the hydrocracking of n-hexadecane, which is considered to be representative of n-paraffins in hydrocracker feeds. In addition to the evaluation of the  physicochemical properties, a comprehensive study on catalyst activity and selectivity has been conducted, in the full range of conversions. A theoretical model was proposed to fit the experimental conversion-selecti...

  15. Tracing Noble Gas Radionuclides in the Environment

    CERN Document Server

    Collon, P; Lu, Z T

    2004-01-01

    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA).

  16. Thin-Film Solar Cell Fabricated on a Flexible Metallic Substrate

    Science.gov (United States)

    Tuttle, J. R.; Noufi, R.; Hasoon, F. S.

    2006-05-30

    A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).

  17. Fence line noble gas monitoring system

    International Nuclear Information System (INIS)

    A new system has been developed for monitoring noble gas emissions at the fence line around the Pickering NPP in Canada. The system differs from the traditional method of assessing the dose to the critical group based on meteorological models. Instead, the new system monitors the dose directly at the fence line, which in fact has reduced the reported doses by 1 to 2 orders of magnitude. Typical annual Minimum Detectable Levels (MDLs)4 in Air Kerma are 1.8 nGy (135Xe), 4.2 nGy (135Xe), and 11.0 nGy (41Ar). The complete system comprises 7 self-contained Na(Tl) detector units located around the Pickering fence line. System design makes each detector assembly a stand-alone unit with internal data scanning, Stabilization and data storage capability. Each detector has been calibrated for Air Kerma, Ambient Dose Equivalent, Effective Dose (adults), and Effective Dose (Juvenile)5. The detector systems are polled every 24 hrs. (user selected from real-time to every 7 days as required) by one or more central computers. The central computers collect spectral data from each detector unit and store all the data in a SQL database. The data is analyzed and preliminary noble gas concentration calculated. Every month the complete data set for the month is reevaluated based on actual wind information using the new computed calibration factors, to achieve maximum data accuracy. The system creates automatic monthly reports with tables of emissions and MDLs. Included in the reports are also graphs of the emissions during the month. (author)

  18. High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyzer Cells (SOEC)

    OpenAIRE

    Schiller, Günter; Ansar, Asif Syed; Patz, Olaf

    2010-01-01

    Metal supported cells as developed at DLR for use as solid oxide fuel cells by applying plasma deposition technologies were investigated in operation of high temperature steam electrolysis. The cells consisted of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ fuel electrode, a YSZ electrolyte and a LSCF oxygen electrode. During fuel cell and electrolysis operation the cells were electrochemically characterized by means of i-V characteristics and electrochemical impedance...

  19. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    OpenAIRE

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial ...

  20. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells

    OpenAIRE

    Raval, Mehul C.; Solanki, Chetan S.

    2013-01-01

    Given the high percentage of metal cost in cell processing and concerns due to increasing Ag prices, alternative metallization schemes are being considered. Ni-Cu based front side metallization offers potential advantages of finer grid lines, lower series resistance, and reduced costs. A brief overview of various front side patterning techniques is presented. Subsequently, working principle of various plating techniques is discussed. For electroless plated Ni seed layer, fill factor values n...

  1. Synergy between metals in bimetallic zeolite supported catalyst for NO-promoted N2O decomposition

    NARCIS (Netherlands)

    Pieterse, J.A.Z.; Mul, G.; Melian-Cabrera, I.; van den Brink, R.W.

    2005-01-01

    The detrimental effect of NO on N2O decomposition over zeolite supported noble metal catalysts can be (partly) eliminated by combining noble metal with iron or cobalt. In the presence of NO, the total conversion of N2O over these bimetallic-zeolites exceeds the sum of conversions over the monometall

  2. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence; Matlin, Ramail

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  3. ELECTRON BEAM GENERATED IN LOW PRESSURE NOBLE GAS ATMOSPHERE – COMPACT DEVICE CONSTRUCTION AND APPLICATIONS

    OpenAIRE

    Zawada, Aleksander; Konarski, Piotr

    2013-01-01

    Simple and compact design of prototype electron beam welding machine is presented. The instrument allows welding of typical materials as metals and alloys. It can be used also for surface melting of insulators like glass and ceramic. Electron beam source uses hollow cathode of 20 mm diameter and operates in the pressure between 0.001 to 0.1 Torr of noble gas, with the work-piece positioned at 30 mm distance from the cathode. Focussing of the electron beam is provided by curvature and...

  4. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  5. Cytochemical characterization of gill and hepatopancreatic cells of the crab Ucides cordatus (Crustacea, Brachyura validated by cell metal transport

    Directory of Open Access Journals (Sweden)

    Priscila Ortega

    2014-09-01

    Full Text Available Ucides cordatus (Linnaeus, 1763 is a hypo-hyper-regulating mangrove crab possessing gills for respiratory and osmoregulatory processes, separated in anterior and posterior sections. They also have hepatopancreas, which is responsible for digestion and absorption of nutrients and detoxification of toxic metals. Each of these organs has specific cells that are important for in vitro studies in cell biology, ion and toxic metals transport. In order to study and characterize cells from gills and hepatopancreas, both were separated using a Sucrose Gradient (SG from 10 to 40% and cells in each gradient were characterized using the vital mitochondrial dye DASPEI (2-(4-dimethylaminostyryl-N- ethylpyridinium iodide and Trichrome Mallory's stain. Both in 20 and 40% SG for gill cells and 30% SG for hepatopancreatic cells, a greater number of cells were colored with DASPEI, indicating a larger number of mitochondria in these cells. It is concluded that the gill cells present in 20% and 40% SG are Thin cells, responsible for respiratory processes and Ionocytes responsible for ion transport, respectively. For hepatopancreatic cells, the 30% SG is composed of Fibrillar cells that possess larger number of membrane ion and nutrient transporters. Moreover, the transport of toxic metal cadmium (Cd by isolated hepatopancreatic cells was performed as a way of following cell physiological integrity after cell separation and to study differences in transport among the cells. All hepatopancreatic cells were able to transport Cd. These findings are the first step for further work on isolated cells of these important exchange epithelia of crabs, using a simple separation method and to further develop successful in vitro cell culture in crabs.

  6. Cytotoxicity of Metal Ions Released from Nitinol Alloys on Endothelial Cells

    Science.gov (United States)

    Haider, W.; Munroe, N.; Tek, V.; Gill, P. K. S.; Tang, Y.; McGoron, A. J.

    2011-07-01

    Most implantable medical devices are expected to function in the body over an extended period of time. Therefore, immersion tests under simulated conditions can be useful for assessing the amount of metal ions released in situ. In this investigation, dissolved ions from as-received binary and ternary Nitinol alloys in cell culture media were periodically measured under static and dynamic conditions. Endothelial cells were grown in aliquots of culture media obtained and the effect of dissolved ions on cell proliferation and viability of endothelial cells (HUVEC) was studied by cytotoxicity assays. The concentration of metal ions in the media was measured by inductively coupled plasma mass spectrometry.

  7. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  8. Biomedical Investigations with Laser-Polarized Noble Gas Magnetic Resonance

    Science.gov (United States)

    Walsworth, Ronald L.

    2003-01-01

    We pursued advanced technology development of laser-polarized noble gas nuclear magnetic resonance (NMR) as a novel biomedical imaging tool for ground-based and eventually space-based application. This new multidisciplinary technology enables high-resolution gas-space magnetic resonance imaging (MRI)-e.g., of lung ventilation-as well as studies of tissue perfusion. In addition, laser-polarized noble gases (3He and 129Xe) do not require a large magnetic field for sensitive detection, opening the door to practical MRI at very low magnetic fields with an open, lightweight, and low-power device. We pursued two technology development specific aims: (1) development of low-field (less than 0.01 T) noble gas MRI of humans; and (2) development of functional MRI of the lung using laser-polarized noble gas and related techniques.

  9. Nitride Conversion: A Novel Approach to c-Si Solar Cell Metallization

    Science.gov (United States)

    Hook, David Henry

    Metallization of commercial-grade c-Si solar cells is currently accomplished by screen-printing fine lines of a Ag/PbO-glass paste amalgam (Ag-frit) onto the insulating SiNx antireflective coating (ARC) that lies atop the shallow n-type emitter layer of the cell. Upon annealing, the glass etches SiNx and permits the crystallization of Ag near the electrically-active emitter interface, thus contacting the cell. While entirely functional, the contact interface produced by Ag-frit metallization is non-ideal, and Ag metal itself is expensive; its use adds to overall solar cell costs. The following work explores the use of Ti-containing alloys as metallization media for c-Si solar cells. There is a -176 kJ [mol N]--1 free energy change associated with the conversion of Si3N4 to TiN. By combining Ti with a low-melting point metal, this reaction can take place at temperatures as low as 750°C in the bulk. Combinations of Ti with Cu, Sn, Ag, and Pb ternary and binary systems are investigated. On unmetallized, c-Si textured solar cells it is shown that 900 nm of stoichiometric Ti6Sn 5 is capable of converting the SiNx ARC to TiN and Ti5Si3, both of which are conducting materials with electrically low-barriers to contact with n-type Si. Alongside electron microscopy, specific contact resistivity (rho c) measurements are used to determine the interfacial quality of TiN/Ti5Si3 contacts to n-Si. Circular transmission line model (CTLM) measurements are utilized for the characterization of reacted Ag0.05Cu0.69Ti0.26, Sn0.35 Ag0.27Ti0.38, and Ti6Sn5 contacts. rhoc values as low as 26 muOcm 2 are measured for reacted Ti6Sn5-SiN x on conventional c-Si solar cells. This value is approximately 2-3 orders of magnitude lower than rhoc of contacts produced by traditional Ag-frit metallization. Viable 1x1 cm, Ti6Sn5-metallized solar cells on 5x5 cm substrates were fabricated through a collaboration with the Georgia Institute of Technology (GA Tech). Front-side metallization was performed

  10. Metal mixture (As-Cd-Pb)-induced cell transformation is modulated by OLA1.

    Science.gov (United States)

    Martínez-Baeza, Elia; Rojas, Emilio; Valverde, Mahara

    2016-07-01

    Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2 3H2O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N-Acetyl-l-cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation. PMID:26984302

  11. Noble gas transport during devolatilization of oceanic crust

    Science.gov (United States)

    Jackson, C.; Smye, A.; Shuster, D. L.; Parman, S. W.; Kelley, S. P.; Hesse, M. A.; Cooper, R. F.

    2014-12-01

    Here we examine the role of slab dehydration in determining the elemental pattern of recycled noble gases. As a first step, we apply newly reported measurements of He-Ne-Ar (light noble gases) solubility and diffusivity in amphibole to parameterize a 1D diffusive-reaction transport model that simulates noble gas behavior during fluid loss from down-going oceanic crust. Recent experiments demonstrate that noble gases are highly soluble in ring-structured minerals, such as amphibole and other common hydrothermal products in slabs [1]. These results suggest that ring-structured minerals have the potential to strongly influence the budget of noble gases input into subduction zones and the elemental fractionations associated with volatile loss from slabs New measurements of He-Ne-Ar solubility in a suite of amphiboles have been completed utilizing the methodology described in [1]. These new measurements confirm that all light noble gases are highly soluble in amphibole, and that noble gas solubility correlates with the availability of unoccupied ring sites. New experimental measurements of He and Ne diffusivity have also been completed using a step-degassing approach at the Berkeley Geochronology Center. These measurements suggest that vacant ring sites in amphibole act to slow noble gas diffusion. We combine the newly acquired He and Ne diffusivity measurements with literature values for Ar diffusivity [2] to parameterize the diffusive-reaction transport model. Application of these data to the diffusive-reaction transport model yields several new insights. The relative mobility of Ne compared to Ar allows for efficient extraction of Ne from "hot" slabs by shallow depths (supercritical fluids, causing noble gases to partition back into minerals from any fluids retained in slabs at depth. The efficiency of noble gas extraction is particularly sensitive to the thermal regime and porosity of the slab (i.e. cold slabs with low porosity have the potential to recycle

  12. Nano-electrocatalyst materials for low temperature fuel cells:A review

    Institute of Scientific and Technical Information of China (English)

    K. Vignarooban; J. Lin; A. Arvay; S. Kolli; I. Kruusenberg; K. Tammeveski; L. Munukutla; A. M. Kannan

    2015-01-01

    Low temperature fuel cells are an attractive technology for transportation and residential applica‐tions due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non‐noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocat‐alysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durabil‐ity.

  13. A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams

    International Nuclear Information System (INIS)

    We present a simplistic yet accurate analytical model for the effective thermal conductivity of high porosity open-cell metal foams saturated in a low conducting fluid (air). The model is derived analytically based on a realistic representative unit cell (a tetrakaidecahedron) under the assumption of one-dimensional heat conduction along highly tortuous-conducting ligaments at high porosity ranges (ε ⩾ 0.9). Good agreement with existing experimental data suggests that heat conduction along highly conducting and tortuous ligaments predominantly defines the effective thermal conductivity of open-cell metal foams with negligible conduction in parallel through the fluid phase. (paper)

  14. The corrosion resistance of two non-noble alloys

    OpenAIRE

    Capelo, Sofia; Fernandes, JCS; Proença, L.; Fonseca, ITE

    2013-01-01

    Nickel-chromium and cobalt-chromium alloys are commonly used for crown and bridge castings. These non-noble dental alloys are much cheaper than noble dental alloys but on the other hand they have disadvantages related to their lower corrosion resistance and corrosion products (released ions), some of them recognized as toxic ions that may cause allergies and other oral pathologies. Therefore it is important to evaluate the corrosion behaviour of such alloys. This study aims to evaluate the...

  15. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  16. Noble gas permeability of polymer films and coatings

    International Nuclear Information System (INIS)

    Permeabilities of noble gases, particularly argon, krypton, and xenon, were measured through a number of polymer films and coatings. Extrapolation of the log of the permeation coefficient versus the square of the gas molecular diameter was used to estimate radon permeability. An equation has been developed that can predict permeability to these noble gases as a function of the base polymer structure of the coating

  17. High Voltage in Noble Liquids for High Energy Physics

    CERN Document Server

    Rebel, Edited by B; Faham, C H; Ito, T M; Lundberg, B; Messina, M; Monrabal, F; Pereverzev, S P; Resnati, F; Rowson, P C; Soderberg, M; Strauss, T; Tomas, A; Va'vra, J; Wang, H

    2014-01-01

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  18. Development of hyperpolarized noble gas MRI

    Science.gov (United States)

    Albert, M. S.; Balamore, D.

    1998-02-01

    Magnetic resonance imaging using the MR signal from hyperpolarized noble gases 129Xe and 3He may become an important new diagnostic technique. Alex Pines (adapting the hyperpolarization technique pioneered by William Happer) presented MR spectroscopy studies using hyperpolarized 129Xe. The current authors recognized that the enormous enhancement in the detectability of 129Xe, promised by hyperpolarization, would solve the daunting SNR problems impeding their attempts to use 129Xe as an in vivo MR probe, especially in order to study the action of general anesthetics. It was hoped that hyperpolarized 129Xe MRI would yield resolutions equivalent to that achievable with conventional 1H 2O MRI, and that xenon's solubility in lipids would facilitate investigations of lipid-rich tissues that had as yet been hard to image. The publication of hyperpolarized 129Xe images of excised mouse lungs heralded the emergence of hyperpolarized noble-gas MRI. Using hyperpolarized 3He, researchers have obtained images of the lung gas space of guinea pigs and of humans. Lung gas images from patients with pulmonary disease have recently been reported. 3He is easier to hyperpolarize than 129Xe, and it yields a stronger MR signal, but its extremely low solubility in blood precludes its use for the imaging of tissue. Xenon, however, readily dissolves in blood, and the T1 of dissolved 129Xe is long enough for sufficient polarization to be carried by the circulation to distal tissues. Hyperpolarized 129Xe dissolved-phase tissue spectra from the thorax and head of rodents and humans have been obtained, as have chemical shift 129Xe images from the head of rats. Lung gas 129Xe images of rodents, and more recently of humans, have been reported. Hyperpolarized 129Xe MRI (HypX-MRI) may elucidate the link between the structure of the lung and its function. The technique may also be useful in identifying ventilation-perfusion mismatch in patients with pulmonary embolism, in staging and tracking the

  19. Monitoring of noble gas radioisotopes in nuclear power plant effluents

    International Nuclear Information System (INIS)

    Monitoring of gaseous radionuclides in the effluents of nuclear facilities is an essential requirement in effluent management programs. Since there is no practical way of removing noble gas radioisotopes from air at release pathways, their accurate monitoring is essential for providing appropriate environmental protection. Emitted γ dose-rate is the limiting factor for concentration-time integral of noble gas in gaseous effluents of reactor facilities. The external exposure to the public from a semi-infinite cloud is directly proportional to both the noble gas isotope concentration and the integrated γ energy per disintegration. Both can be directly measured in gaseous effluent pathways with a suitable detector. The capability of NaI(T1), CaF2(Eu) and plastic scintillation detectors to measure the γ-Ci.MeV content of noble gas releases was experimentally evaluated. The combination of CaF2(Eu) detector in a pressurized through-flow chamber, with a charge integrating scaler well complied with both γ energy response and detection sensitivity requirements. Noble gas source terms and effluent monitoring criteria are discussed, theoretical and experimental results are presented and a practical, on-line noble gas monitoring system is described

  20. The diverse biological properties of the chemically inert noble gases.

    Science.gov (United States)

    Winkler, David A; Thornton, Aaron; Farjot, Géraldine; Katz, Ira

    2016-04-01

    The noble gases represent an intriguing scientific paradox. They are extremely inert chemically but display a remarkable spectrum of clinically useful biological properties. Despite a relative paucity of knowledge of their mechanisms of action, some of the noble gases have been used successfully in the clinic. Studies with xenon have suggested that the noble gases as a class may exhibit valuable biological properties such as anaesthesia; amelioration of ischemic damage; tissue protection prior to transplantation; analgesic properties; and a potentially wide range of other clinically useful effects. Xenon has been shown to be safe in humans, and has useful pharmacokinetic properties such as rapid onset, fast wash out etc. The main limitations in wider use are that: many of the fundamental biochemical studies are still lacking; the lighter noble gases are likely to manifest their properties only under hyperbaric conditions, impractical in surgery; and administration of xenon using convectional gaseous anaesthesia equipment is inefficient, making its use very expensive. There is nonetheless a significant body of published literature on the biochemical, pharmacological, and clinical properties of noble gases but no comprehensive reviews exist that summarize their properties and the existing knowledge of their models of action at the molecular (atomic) level. This review provides such an up-to-date summary of the extensive, useful biological properties of noble gases as drugs and prospects for wider application of these atoms. PMID:26896563

  1. Metallization improvement on fabrication of interdigitated backside and double sided buried contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiun-Hua; Cotter, Jeffrey E. [Center of Excellence for Advanced Silicon Photovoltaics and Photonics, University of New South Wales, Sydney NSW 2052 (Australia)

    2005-04-01

    Metallization based on electroless metal plating of nickel and copper is a simple, cost-effective process used in the fabrication of Buried Contact silicon solar cells. Whereas the electroless Ni-Cu metallization scheme works well for metal deposition on early Buried Contact solar cells, in which deposition was required only on phosphorus diffused contact regions, more care is required for advanced Buried Contact solar cell designs that require simultaneous deposition on to both phosphorus and boron diffused contact regions. In this paper, we examine two key issues related to the metallization in these solar cells. Firstly we demonstrate an improved buffered hydrofluoric acid etch process for simultaneous removal of borosilicate and borophosphosilicate glasses from the contact regions prior to electroless deposition of nickel with good etch selectivity against silicon dioxide masking films. Secondly, we demonstrate an improved process for nucleation of the nickel layer on both phosphorus and boron diffused contact areas based on immersion palladium chloride activation of the plating surfaces. N-type double-sided buried contact solar cells metallized by processing introduced in this study show improvement on absolute efficiency of more than 3%.

  2. Dynamics of Metal Partitioning at the Cell-Solution Interface: Implications for Toxicity Assessment under Growth-Inhibiting Conditions.

    Science.gov (United States)

    Duval, Jérôme F L; Paquet, Nathalie; Lavoie, Michel; Fortin, Claude

    2015-06-01

    Metal toxicity toward microorganisms is usually evaluated by determining growth inhibition. To achieve a mechanistic interpretation of such toxic effects, the intricate coupling between cell growth kinetics and metal partitioning dynamics at the cell-solution interface over time must be considered on a quantitative level. A formalism is elaborated to evaluate cell-surface-bound, internalized, and extracellular metal fractions in the limit where metal uptake kinetics is controlled by internalization under noncomplexing medium conditions. Cell growth kinetics is tackled using the continuous logistic equation modified to include growth inhibition by metal accumulation to intracellular or cell surface sites. The theory further includes metal-proton competition for adsorption at cell-surface binding sites, as well as possible variation of cell size during exposure to metal ions. The formalism elucidates the dramatic impacts of initial cell concentration on metal bioavailability and toxicity over time, in agreement with reported algae bioassays. It further highlights that appropriate definition of toxicity endpoints requires careful inspection of the ratio between exposure time scale and time scale of metal depletion from bulk solution. The latter depends on metal internalization-excretion rate constants, microorganism growth, and the extent of metal adsorption on nonspecific, transporter, and growth inhibitory sites. As an application of the theory, Cd toxicity in the algae Pseudokirchneriella subcapitata is interpreted from constrained modeling of cell growth kinetics and of interfacial Cd-partitioning dynamics measured under various exposure conditions. PMID:25945520

  3. A PROCESS FOR DEPOSITING METAL CONTACTS ON A BURIED GRID SOLAR CELL AND A SOLAR CELL OBTAINED BY THE PROCESS

    DEFF Research Database (Denmark)

    2002-01-01

    A buried grid solar cell is manufactured by a process for metallising one or more metal contacts of a buried grid solar cell having a body of doped semiconductor material, wherein the electrical contact(s) is/are provided by conducting material being arranged in a pattern of one or more grooves i...... an electrically conducting contact forming material by electrolytic plating using a conventional electrolytic bath further comprising a levelling additive and a suppressing additive and using substantially constant cell voltage....

  4. Underground sources of radioactive noble gas

    International Nuclear Information System (INIS)

    It is well known that radon is present in relatively high concentrations below the surface of the Earth due to natural decay of uranium and thorium. However, less information is available on the background levels of other isotopes such as 133Xe and 131mXe produced via spontaneous fission of either manmade or naturally occurring elements. The background concentrations of radioxenon in the subsurface are important to understand because these isotopes potentially can be used to confirm violations of the comprehensive nuclear-test-ban treaty during an on-site inspection. Recently, Pacific Northwest National Laboratory measured radioxenon concentrations from the subsurface at the Nevada Nuclear Security Site (NNSS - formerly known as the Nevada Test Site) to determine whether xenon isotope background levels could be detected from spontaneous fission of naturally occurring uranium or legacy 240Pu as a result of historic nuclear testing. In this paper, we discuss the results of those measurements and review the sources of xenon background that must be taken into account during OSI noble gas measurements. (author)

  5. Noble gas atmospheric monitoring at reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  6. Electron Impact Excitation of Noble Gases

    Science.gov (United States)

    Zeman, Vlado; Bartschat, Klaus

    1998-05-01

    We have extended our Breit-Pauli R-matrix work [1,2] to model electron impact excitation of the [np^5(n+1)s] and [np^5(n+1)p] states in the noble gases Ne--Xe. Total and differential cross sections, the polarization of emitted light, and spin asymmetry parameters will be presented for incident electron energies between threshold and 30 eV. The results will be analyzed and compared with a large amount of recent experimental data [3--8]. 1. V. Zeman et al., Phys. Rev. Lett. 79, 1825 (1997) 2. V. Zeman and K. Bartschat, J. Phys. B 30, 4609 (1997) 3. C. Norén et al., Phys. Rev. A53, 3253 (1996) and 54, 510 (1996) 4. T.J. Gay et al., Phys. Rev. A53, 1623 (1996) 5. D.H. Yu et al., Phys. Rev. Lett. 78, 2724 (1997); J. Phys. B 30, L461 5. (1997); J. Phys. B 30, 1799 (1997) 6. J.E. Chilton et al., Phys. Rev. A57, 267 (1998) 7. M.A. Khakoo, private communication (1998) 8. M. Dümmler, G.F. Hanne and J. Kessler, J. Phys. B 28, 2985 (1995)

  7. The metal wrap through solar cell. Developement and characterisation; Die metal wrap through Solarzelle. Entwicklung und Charakterisierung

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Florian

    2009-03-20

    This work focuses on the development and the optimization of the metal wrap through (MWT) solar cell. Primary goal of this work has been the development of an appropriate process flow for MWT solar cells, which generates only insignificant extra costs compared to the conventional process flow, however, achieves a significant efficiency increase for MWT cells compared to conventionally processed cells. The latter was one of the main challenges of this work. For this purpose MWT solar cells have been studied and characterized in detail. Loss mechanisms have been detected and improvements evaluated as well as transferred to the cell process. Furthermore, the assembling process for MWT solar cells in the module has been optimized focusing on less series resistance losses. A comparison with the conventional module assembling process is presented. A process flow similar to the one for the conventional process has been developed for MWT solar cells. Merely two additional laser process steps for hole drilling and rear contact isolation as well as one screen printing step for the through connection turn out to be necessary. It is shown that the additional screen printing process can be omitted without significant efficiency losses, if the through connection and solder pad metallization is done in a single process step. Furthermore, a fast and reliable through connection process has been developed and characterized in detail. Moreover, a gauge mounting block for MWT solar cells has been constructed, analyzed and calibrated for current-voltage-characteristic measurements. With multi crystalline MWT silicon solar cells an efficiency gain up to 0.5% absolute has been achieved compared to conventionally processed solar cells - thereby reaching a maximum cell efficiency of more than 16.7%. Due to a novel MWT module technology developed in this work the efficiency compared to the conventional technology could be improved further by another 0.3% absolute. The primary loss

  8. Stability of metal-based nanopartiles in cell culture medium

    Czech Academy of Sciences Publication Activity Database

    Lovric, M.; Ferhatovic Hamzic, L.; Jurasin, D.; Gajovic, S.; Horák, Daniel; Vinkovic Vrcek, I.

    Braga : 3B´s Research Group, University of Minho, 2014. s. 37-38. [POLARIS 2nd Workshop Top-down fabrication and nanocharacterization techniques to develop nanosystems for biomedical applications. 20.10.2014-22.10.2014, Porto] EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : metal-based nanoparticles * tissue engineering Subject RIV: CD - Macromolecular Chemistry

  9. Stability of metal-based nanopartiles in cell culture medium

    Czech Academy of Sciences Publication Activity Database

    Lovric, M.; Ferhatovic Hamzic, L.; Jurasin, D.; Gajovic, S.; Horák, Daniel; Vinkovic Vrcek, I.

    Braga : 3B´s Research Group, University of Minho, 2014. s. 62-63. [TERM STEM 2014 NanoTools for diagnosis and regeneration of tissues with PT|Korea symposium. 23.10.2014-24.10.2014, Porto] EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : metal-based nanoparticles * tissue engineering Subject RIV: CD - Macromolecular Chemistry

  10. Applications of noble gas radiation detectors to counter-terrorism

    International Nuclear Information System (INIS)

    Radiation detectors are essential tools in the detection, analysis and disposition of potential terrorist devices containing hazardous radioactive and/or fissionable materials. For applications where stand-off distance and source shielding are limiting factors, large detectors have advantages over small ones. The ability to distinguish between Special Nuclear Materials and false-positive signals from natural or man-made benign sources is also important. Ionization chambers containing compressed noble gases, notably xenon and helium-3, can be scaled up to very large sizes, improving the solid angle for acceptance of radiation from a distant source. Gamma spectrometers using Xe have a factor of three better energy resolution than NaI scintillators, allowing better discrimination between radioisotopes. Xenon detectors can be constructed so as to have extremely low leakage currents, enabling them to operate for long periods of time on batteries or solar cells. They are not sensitive to fluctuations in ambient temperature, and are therefore suitable for deployment in outdoor locations. Position-sensitive 3He chambers have been built as large as 3000 cm2, and with spatial resolution of less than 1 mm. Combined with coded apertures made of cadmium, they can be used to create images of thermal neutron sources. The natural background of spallation neutrons from cosmic rays generates a very low count rate, so this instrument could be quite effective at identifying a man-made source, such as a spontaneous fission source (Pu) in contact with a moderator (high explosive)

  11. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin;

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important in...

  12. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    Science.gov (United States)

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  13. Cell overcharge testing inside sodium metal halide battery

    Science.gov (United States)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  14. Increasing the solar cell power output by coating with transition metal-oxide nanorods

    International Nuclear Information System (INIS)

    Highlights: → Nanoparticles enhance solar cell efficiency. → Solar cell power increase by nanorod coating. → Metal-oxide nanorods are prepared in flames. → Molybdenum oxide nanorods effectively scatter light on solar cell surface. → Scattering efficiency depends on coating density. -- Abstract: Photovoltaic cells produce electric current through interactions among photons from an ambient light source and electrons in the semiconductor layer of the cell. However, much of the light incident on the panel is reflected or absorbed without inducing the photovoltaic effect. Transition metal-oxide nanoparticles, an inexpensive product of a process called flame synthesis, can cause scattering of light. Scattering can redirect photon flux, increasing the fraction of light absorbed in the thin active layer of silicon solar cells. This research aims to demonstrate that the application of transition metal-oxide nanorods to the surface of silicon solar panels can enhance the power output of the panels. Several solar panels were coated with a nanoparticle-methanol suspension, and the power outputs of the panels before and after the treatment were compared. The results demonstrate an increase in power output of up to 5% after the treatment. The presence of metal-oxide nanorods on the surface of the coated solar cells is confirmed by electron microscopy.

  15. High Temperature Water Electrolysis Using Metal Supported Solid Oxide Electrolyser Cells (SOEC)

    OpenAIRE

    Schiller, Günter; Ansar, Asif; Lang, Michael; Patz, Olaf

    2009-01-01

    Metal supported cells as developed according to the DLR SOFC concept by applying plasma deposition technologies were investigated for use as solid oxide electrolyser cells (SOEC) for high temperature steam electrolysis. Cells consisting of a porous ferritic steel support, a diffusion barrier layer, a Ni/YSZ hydrogen electrode, a YSZ electrolyte and a LSCF oxygen electrode were electrochemically characterised by means of i-V characteristics and electrochemical impedance spectroscopy measuremen...

  16. Biosorption characteristics of Spirulina and Chlorella cells to accumulate heavy metals

    OpenAIRE

    Kőnig-Péter Anikó; Kilár Ferenc; Felinger Attila; Pernyeszi Tímea

    2015-01-01

    The heavy metal biosorption of dried Chlorella vulgaris and Spirulina platensis-Spirulina maxima cells was studied under various experimental conditions. The effect of biosorbent dosage, pH, adsorption time, temperature, initial metal concentration on biosorption was studied. Biosorption process can be divided into two parts: the first part follows zero-order, the second part pseudo second-order kinetics. Characterization of biosorption equilibrium was eval...

  17. Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells

    OpenAIRE

    Egger, Alexander E.; Rappel, Christina; Jakupec, Michael A.; Hartinger, Christian G.; Heffeter, Petra; Keppler, Bernhard K.

    2009-01-01

    Cellular uptake is being widely investigated in the context of diverse biological activities of metal compounds on the cellular level. However, the applied techniques differ considerably, and a validated methodology is not at hand. Therefore, we have varied numerous aspects of sample preparation of the human colon carcinoma cell line SW480 exposed in vitro to the tumor-inhibiting metal complexes cisplatin and indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)] (KP1019) prior to analy...

  18. Performance evaluation and characterization of metallic bipolar plates in a proton exchange membrane (PEM) fuel cell

    Science.gov (United States)

    Hung, Yue

    Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316

  19. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    Science.gov (United States)

    Xie, Junfeng; Xie, Yi

    2016-03-01

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. PMID:26494184

  20. Investigation of metal oxide/cuprous oxide heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Herion, J.; Neikisch, E.A.; Scharl, G.

    1980-12-01

    ZnO/Cu/sub 2/O heterojunction solar cells can be prepared by means of rf sputter deposition of In-doped ZnO layers on Cu/sub 2/O. The temperature at which ZnO is deposited is found to be of crucial importance for the photovoltaic performance of the cells. Maxima of the open-circuit voltage, the short-circuit current, and the dark resistance are observed for deposition temperatures between 230 and 240/sup 0/C. Auger sputter profiles show an oxygen depletion zone at the ZnO/Cu/sub 2/O interface which can be attributed to a very thin copper layer. The oxygen depletion and, correspondingly, the copper enrichment are apparently correlated with the photovoltaic effects. A relatively small copper enrichment has also been observed in CuO/Cu/sub 2/O cells. However, the nature of copper enrichment seems to be different in both types of cells.

  1. Molecular solution processing of metal chalcogenide thin film solar cells

    OpenAIRE

    Yang, Wenbing

    2013-01-01

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (C...

  2. Numerical simulation of current distribution in metal pad of aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    QI Xi-quan; FENG Nai-xiang; CUI Jian-zhong

    2005-01-01

    Based on the numerical calculation of 3-D potential distribution in aluminum reduction cells, current distribution in the metal pad is calculated under the following conditions: 1) pot ledge ideally formed; 2) ledge extension to below anode; 3) different metal heights; 4) AC and 5) Spike. It is found that Jy in metal pad increases first to a highest point and then decreases along anode length. At normal status, the largest Jy is about 0. 4 A/cm2 and it locates at about 2/3 of anode length. With longer ledge, the maximum value of Jy decreases and its position movescenter-ward. The longer the side ledge, the larger the negative current flowing center-ward at side channel. Jz in metal pad increases with anode length and it is not affected by metal height; while Jy increases with metal height. At AC, current flows toward metal under new anode. At spike, current concentrates at spike rather than evenly distributes. Normally, Jx is almost negligible in metal pad.

  3. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Mehul C. Raval

    2013-01-01

    Full Text Available Given the high percentage of metal cost in cell processing and concerns due to increasing Ag prices, alternative metallization schemes are being considered. Ni-Cu based front side metallization offers potential advantages of finer grid lines, lower series resistance, and reduced costs. A brief overview of various front side patterning techniques is presented. Subsequently, working principle of various plating techniques is discussed. For electroless plated Ni seed layer, fill factor values nearing 80% and efficiencies close to 17.5% have been demonstrated, while for Light Induced Plating deposited layers, an efficiency of 19.2% has been reported. Various methods for qualifying adhesion and long term stability of metal stack are discussed. Adhesion strengths in the range of 1–2.7 N/mm have been obtained for Ni-Cu contacts tabbed with conventional soldering process. Given the significance of metallization properties, different methods for characterization are outlined. The problem of background plating for Ni-Cu based metallization along with the various methods for characterization is summarized. An economic evaluation of front side metallization indicates process cost saving of more than 50% with Ni-Cu-Sn based layers. Recent successful commercialization and demonstration of Ni-Cu based metallization on industrial scale indicate a potential major role of Ni-Cu based contacts in near future.

  4. General survey of techniques for separation and containment of noble gases from nuclear facilities

    International Nuclear Information System (INIS)

    Radioactive noble gases produced during uranium fission constitute a waste material requiring special treatment and handling techniques if releases to the environment are to be reduced or minimized. To date, treatment has been confined to short-term holdup of reactor off-gases to allow short half-life fission products to decay. Although the required degree of noble gas separation and containment is not yet defined, considerable development effort has been expended on a variety of separation processes. With some separation processes, the technology is sufficiently advanced that commercial separation units are now being offered for sale. Early installations of these will be mainly at reactors. Eventually, separation processes may be installed at fuel processing plants to collect the long-lived krypton-85. The separation processes potentially applicable to removing noble gas fission products from off-gas streams include absorption in liquids (liquid air, carbon dioxide, or fluorocarbons), adsorption on charcoal and other solids, thermal diffusion, electrostatic diffusion, and diffusion through a selective membrane. A cryogenic liquid-air absorption process has been operated intermittently at the Idaho Chemical Processing Plant for many years to recover krypton-85 for a variety of uses. High pressure storage in steel cylinders presently appears to be the most practical means of ultimate disposal of the krypton-85. However, inclusion of the krypton-85 into glasses, resins, clathrates, molecular sieves, and metals offer ways of reducing the effective vapor pressure in a cylinder. Long-term disposal means that have been considered including placement of the cylinders into an engineered storage facility, dumping of cylinders into the sea, and direct discharge of the krypton-85 into an appropriate geologic formation

  5. Laser-polarized noble gases: a powerful probe for biology, medicine, and subatomic physics

    Science.gov (United States)

    Cates, Gordon

    2010-03-01

    For over a decade, laser-polarized noble gases such as ^3He and ^129Xe have proven useful for a wide range of scientific inquiries. These include investigations of pulmonary disease using the polarized gas as a signal source for magnetic resonance imaging (MRI), measurements of various aspects of nucleon structure, and tests of fundamental symmetries. Early efforts were often limited by expensive and bulky laser systems, but ongoing advancements in solid-state lasers have enabled increasingly large volumes of polarized gas to be produced with steadily improved polarization. Equally important have been advances in the fundamental understanding of spin exchange. This has led, for example, to the introduction of hybrid mixtures of alkali metals that can increase the efficiency of spin exchange by an order of magnitude. As a consequence of these advances, the figure of merit for polarized nuclear targets has increased by roughly three orders of magnitude in comparison to early accelerator-based experiments. And in MRI applications, it has become possible to pursue increasingly sophisticated imaging protocols that provide a wide range of diagnostic information. Even the earliest noble-gas MR images of the gas space of the human lung provided unprecedented resolution. More recent work includes the use of diffusion-sensitizing pulse sequences to study lung microstructure, and tagging techniques that enable the visualization (in real-time MRI movies) of gas flow during breathing. The range of applications of laser-polarized noble gases is continuing to grow, and it is notable that with an improved understanding of the underlying physics, it is quite likely that the capabilities of this useful technology will expand for some time to come.

  6. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    International Nuclear Information System (INIS)

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 μM and 10 μM Cr(VI) or Cd. Cultures treated with 10 μM Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 μM Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure

  7. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel;

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent ...... (water). The photograph here was taken just before screen printing of the aqueous silver ink.......The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  8. Method of removal of metal atoms and explosives from aqueous solution using suspended plant cells

    International Nuclear Information System (INIS)

    The use of plant suspension cultures to remove ionic metallic species and TNT-based explosives and their oxidation products from aqueous solution is described. Several plant strains were investigated including D. innoxia, Citrus citrus, and Black Mexican Sweet Corn. All showed significant ability to remove metal ions. Ions removed to sub-ppm levels include barium, iron, and plutonium. D. innoxia cells growing in media containing weapons effluent contaminated with Ba2+ also remove TNT, other explosives and oxidation products thereof from solution. The use of dead, dehydrated cells were also found to be use in treating waste directly. (author)

  9. Microbial cells as biosorbents for heavy metals: accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent

  10. Recent Experimental Advances to Determine (noble) Gases in Waters

    Science.gov (United States)

    Kipfer, R.; Brennwald, M. S.; Huxol, S.; Mächler, L.; Maden, C.; Vogel, N.; Tomonaga, Y.

    2013-12-01

    In aquatic systems noble gases, radon, and bio-geochemically conservative transient trace gases (SF6, CFCs) are frequently applied to determine water residence times and to reconstruct past environmental and climatic conditions. Recent experimental breakthroughs now enable ● to apply the well-established concepts of terrestrial noble gas geochemistry in waters to the minute water amounts stored in sediment pore space and in fluid inclusions (A), ● to determine gas exchange processes on the bio-geochemical relevant time scales of minutes - hours (B), and ● to separate diffusive and advective gas transport in soil air (C). A. Noble-gas analysis in water samples (10.1021/es401698p. [4] Mächler et al. (2012) Environ. Sci. Technol., 47, 7060-7066. [5] Huxol et al. Environ. Sci. Technol., in revision.

  11. International Conference on LIght Detection in Noble Elements

    CERN Document Server

    2016-01-01

    The objective of the Light Detection in Noble Elements (LIDINE) 2015 conference is to promote discussion between the members of the particle and nuclear physics communities about light and charge collection in detectors based on liquid or gaseous noble elements, xenon and argon being the most common, but neon and helium also in use, and represented at this conference. The neutrino physics, ultra-cold neutron study, dark matter search, and medical physics communities all utilize noble-based detector technologies, recording UV scintillation and/or ionization. Therefore, this will be an interdisciplinary opportunity for information exchange, and a chance for each of these communities enumerated above, in the U.S. as well as abroad, to expand their technical knowledge bases.

  12. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals

    International Nuclear Information System (INIS)

    Heavy metals are common environmental toxicants with adverse effects on steroid biosynthesis. The importance of mitochondria has been recognized in cytotoxic mechanism of heavy metals on Leydig cells these years. But it is still poorly known. Our previous study reported that dihydrolipoamide dehydrogenase (DLD) located on the mitochondria was significantly decreased in Leydig cells exposed to cadmium, which suggested that DLD might be involved in the cytotoxic effects. Therefore, the altered expression of DLD was validated in rats and R2C cells exposed to cadmium, manganese and lead, and the role of DLD in the steroid synthesis pathway cAMP/PKA-ERK1/2 was investigated in this study. With a low expression of DLD, heavy metals dramatically reduced the levels of steroid hormone by inhibiting the activation of cAMP/PKA, PKC signaling pathway and the steroidogenic enzymes StAR, CYP11A1 and 3β-HSD. After knockdown of DLD in R2C cells, progesterone synthesis was reduced by 40%, and the intracellular concentration of cAMP, protein expression of StAR, 3β-HSD, PKA, and the phosphorylation of ERK1/2 were also decreased. These results highlight that DLD is down-regulation and related to steroid biosynthesis in Leyig cells exposed to heavy metals; cAMP/PKA act as downstream effector molecules of DLD, which activate phosphorylation of ERK1/2 to initiate the steroidogenesis

  13. Geometric classification of open-cell metal foams using X-ray micro-computed tomography

    International Nuclear Information System (INIS)

    The geometry of foams has long been an area of interest, and a number of idealized geometric descriptions have been proposed. In order to acquire detailed, quantitative, geometric data for aluminum open-cell metal foams, X-ray μCT is employed. The X-ray μCT images are analyzed using specialized software, FoamView®, from which geometric information including strut length and pore shapes are extracted. The X-ray μCT analysis allows comparison of the ideal geometric models to the actual geometric characteristics of the metal foam samples. The results reveal a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire–Phelan unit cell. The geometric findings provide information useful for improving current models of open-cell metal foam. Applications can range from predicting heat transfer or load failure to predicting liquid retention. Highlights: ► Aluminum open-cell metal foams are geometrically classified ► X-ray micro-computed tomography and specialized software are used to gather geometric data ► The foams are shown to have a high variability in strut length ► The Weaire–Phelan unit cell is shown to be a better representative of these foams

  14. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    International Nuclear Information System (INIS)

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd3+ by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 μm size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 μm) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation

  15. [Advance in the bioavailability monitoring of heavy metal based on microbial whole-cell sensor].

    Science.gov (United States)

    Hou, Qi-Hui; Ma, An-Shou; Zhuang, Xiu-Liang; Zhuang, Guo-Qiang

    2013-01-01

    Microbial whole-cell biosensor is an excellent tool to assess the bioavailability of heavy metal in soil and water. However, the traditional physicochemical instruments are applied to detect the total metal. Furthermore, microbial whole-cell biosensor is simple, rapid and economical in manipulating, and is thus a highly qualified candidate for emergency detection of pollution incidents. The biological component of microbial whole-cell biosensor mostly consists of metalloregulatory proteins and reporter genes. In detail, metalloregulatory proteins mainly include the MerR family, ArsR family and RS family, and reporter genes mainly include gfp, lux and luc. Metalloregulatory protein and reporter gene are related to the sensitivity, specificity and properties in monitoring. The bioavailability of heavy metals is alterable under different conditions, influenced by pH, chelate and detection methods and so on. Increasing the accumulation of intracellular heavy metal, modifying the metalloregulatory proteins and optimizing the detecting conditions are important for improving the sensitivity, specificity and accuracy of the microbial whole-cell biosensor. The future direction of microbial whole-cell biosensor is to realize the monitoring of pollutions in situ and on line. PMID:23487961

  16. Metal-air cell with performance enhancing additive

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A; Buttry, Daniel

    2015-11-10

    Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.

  17. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    Directory of Open Access Journals (Sweden)

    M. M. Aliyu

    2012-01-01

    Full Text Available This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS, electrodeposition (ED, magnetic sputtering (MS, and high vacuum thermal evaporation (HVE have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS, ease of constituent control (ED, high material incorporation (MS, and low temperature process (MS, HVE, ED. These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

  18. On the possible noble gas deficiency of Pluto's atmosphere

    OpenAIRE

    Mousis, Olivier; Lunine, Jonathan I.; Mandt, Kathleen E.; Schindhelm, Eric; Weaver, Harold A.; Stern, S. Alan; Waite, J. Hunter; Gladstone, Randy; Moudens, Audrey

    2013-01-01

    We use a statistical-thermodynamic model to investigate the formation and composition of noble-gas-rich clathrates on Pluto's surface. By considering an atmospheric composition close to that of today's Pluto and a broad range of surface pressures, we find that Ar, Kr and Xe can be efficiently trapped in clathrates if they formed at the surface, in a way similar to what has been proposed for Titan. The formation on Pluto of clathrates rich in noble gases could then induce a strong decrease in ...

  19. Galvanic Corrosion of Two Non Noble Dental Alloys

    OpenAIRE

    Capelo, Sofia; Proença, L; Fernandes, JCS; Fonseca, ITE

    2013-01-01

    This study aims to evaluate the corrosion resistance of two nonnoble dental alloys, namely, the Wiron®88 (Ni–Cr–Mo) and the Remanium 2000+ (Co–Cr–Mo–W). A noble alloy, the V-Gnathos® Plus (AuPt) previously studied was also considered for the purpose of comparison. The study was conducted in artificial saliva, pH 7.1, at 37 °C, by cyclic and linear sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The Rp value of the alloy of high contents of Ni, the Wiron®88, ...

  20. Noble liquid detectors for fundamental physics and applications

    International Nuclear Information System (INIS)

    Noble liquid detectors come in many sizes and configurations and cover a lot of ground as particle and radiation detectors: from calorimeters for colliders to imaging detectors for neutrino physics and proton decay to WIMP Dark Matter detectors. It turns out that noble liquid detectors are a mature technology for imaging and spectroscopy of gamma rays and for neutron detection, a fact that makes them suitable for applications, e.g. cargo scanning and Homeland Security. In this short paper I will focus on liquid xenon and liquid argon, which make excellent detectors for hypothetical WIMP Dark Matter and neutrinos and for much less exotic gamma rays.