WorldWideScience

Sample records for cell noble metal

  1. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  2. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... catalyst. Other factors like medium acidity, chloride content and oxygen partial pressure all turned out to influence the noble metal dissolution. The degradation of the polyfluorinated sulfonic acid membrane electrolyte was also found to be an important source of increased acidity in the Three......-Phase-Boundary (TPB), and consequently the dissolution of the noble metal catalysts. (C) 2010 Elsevier B.V. All rights reserved....

  3. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    . Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were......Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  4. Optical Effects in the Active Layer of Organic Solar Cells with Embedded Noble Metal Nanoparticles

    OpenAIRE

    Supachai Sompech; Sukhontip Thaomola; Thananchai Dasri

    2016-01-01

    The optical properties of organic solar cells with noble metal nanoparticles such as Ag and Au embedded in the active layer were investigated. The Discrete Dipole Approximation theory was used to analyze the light scattering and absorption efficiencies. The results show that the size, refractive index of medium and amount of the metal nanoparticles are key factors that directly influence the plasmonic enhancements in the devices. These parameters were adjusted for the light scattering and abs...

  5. Optical Effects in the Active Layer of Organic Solar Cells with Embedded Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Supachai Sompech

    2016-03-01

    Full Text Available The optical properties of organic solar cells with noble metal nanoparticles such as Ag and Au embedded in the active layer were investigated. The Discrete Dipole Approximation theory was used to analyze the light scattering and absorption efficiencies. The results show that the size, refractive index of medium and amount of the metal nanoparticles are key factors that directly influence the plasmonic enhancements in the devices. These parameters were adjusted for the light scattering and absorption efficiency calculations, which first reveal that as the imaginary part increases more (strongly absorbing medium both efficiencies decrease slightly and becomes spectrally more broadened. Ag nanoparticle size increases both efficiency peak shifts to the longer wavelength. In addition, the increasing of the nanoparticle size results to the broaden efficiency spectra. When a large amount of particles the scattering and absorption spectral peak of the particles increase, the arrangement in linear chain aligned on the axis which perpendicular to the propagation direction and parallel to the linear polarized light shifts to shorter wavelength. And the higher resonance peak for more particles number is obtained.

  6. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  7. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    OpenAIRE

    Akimitsu Ishihara; Yuko Tamura; Mitsuharu Chisaka; Yoshiro Ohgi; Yuji Kohno; Koichi Matsuzawa; Shigenori Mitsushima; Ken-ichiro Ota

    2015-01-01

    In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR) activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was a...

  8. Synthesis and applications of graphene-based noble metal nanostructures

    Directory of Open Access Journals (Sweden)

    Chaoliang Tan

    2013-01-01

    Full Text Available Graphene and its derivatives, such as graphene oxide (GO and reduced graphene oxide (rGO, are ideal platforms for constructing graphene-based nanostructures for various applications. Hybrid materials of noble metal nanocrystal-decorated GO or rGO with novel or enhanced properties and functions have been extensively explored recently. In this mini-review, various approaches for synthesis of graphene-templated noble metal nanomaterials are discussed. In particular, those novel synthetic strategies and interesting architectures are highlighted. Moreover, the applications of graphene-based noble metal nanostructures in fuel cells, electrochemical sensors, and surface enhanced Raman scattering (SERS will be briefly introduced.

  9. Platinum-coated non-noble metal-noble metal core-shell electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir

    2015-04-14

    Core-shell particles encapsulated by a thin film of a catalytically active metal are described. The particles are preferably nanoparticles comprising a non-noble core with a noble metal shell which preferably do not include Pt. The non-noble metal-noble metal core-shell nanoparticles are encapsulated by a catalytically active metal which is preferably Pt. The core-shell nanoparticles are preferably formed by prolonged elevated-temperature annealing of nanoparticle alloys in an inert environment. This causes the noble metal component to surface segregate and form an atomically thin shell. The Pt overlayer is formed by a process involving the underpotential deposition of a monolayer of a non-noble metal followed by immersion in a solution comprising a Pt salt. A thin Pt layer forms via the galvanic displacement of non-noble surface atoms by more noble Pt atoms in the salt. The overall process is a robust and cost-efficient method for forming Pt-coated non-noble metal-noble metal core-shell nanoparticles.

  10. Incorporation of noble metals into aerogels

    Science.gov (United States)

    Hair, Lucy M.; Sanner, Robert D.; Coronado, Paul R.

    1998-01-01

    Aerogels or xerogels containing atomically dispersed noble metals for applications such environmental remediation. New noble metal precursors, such as Pt--Si or Pd(Si--P).sub.2, have been created to bridge the incompatibility between noble metals and oxygen, followed by their incorporation into the aerogel or xerogel through sol-gel chemistry and processing. Applications include oxidation of hydrocarbons and reduction of nitrogen oxide species, complete oxidation of volatile organic carbon species, oxidative membranes for photocatalysis and partial oxidation for synthetic applications.

  11. Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells

    Directory of Open Access Journals (Sweden)

    Akimitsu Ishihara

    2015-07-01

    Full Text Available In order to develop noble-metal- and carbon-free cathodes, titanium-niobium oxides were prepared as active materials for oxide-based cathodes and the factors affecting the oxygen reduction reaction (ORR activity were evaluated. The high concentration sol-gel method was employed to prepare the precursor. Heat treatment in Ar containing 4% H2 at 700–900 °C was effective for conferring ORR activity to the oxide. Notably, the onset potential for the ORR of the catalyst prepared at 700 °C was approximately 1.0 V vs. RHE, resulting in high quality active sites for the ORR. X-ray (diffraction and photoelectron spectroscopic analyses and ionization potential measurements suggested that localized electronic energy levels were produced via heat treatment under reductive atmosphere. Adsorption of oxygen molecules on the oxide may be governed by the localized electronic energy levels produced by the valence changes induced by substitutional metal ions and/or oxygen vacancies.

  12. Recovery and use of fission product noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, G.A.; Rohmann, C.A.; Perrigo, L.D.

    1980-06-01

    Noble metals in fission products are of strategic value. Market prices for noble metals are rising more rapidly than recovery costs. A promising concept has been developed for recovery of noble metals from fission product waste. Although the assessment was made only for the three noble metal fission products (Rh, Pd, Ru), there are other fission products and actinides which have potential value. (DLC)

  13. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  14. Noble metal superparticles and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yugang; Hu, Yongxing

    2016-07-12

    A method comprises heating an aqueous solution of colloidal silver particles. A soluble noble metal halide salt is added to the aqueous solution which undergoes a redox reaction on a surface of the silver particles to form noble metal/silver halide SPs, noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs on the surface of the silver particles. The heat is maintained for a predetermined time to consume the silver particles and release the noble metal/silver halide SPs, the noble metal halide/silver halide SPs or the noble metal oxide/silver halide SPs into the aqueous solution. The aqueous solution is cooled. The noble metal/silver halide SPs, the noble metal halide/silver halide SPs or noble metal oxide/silver halide SPs are separated from the aqueous solution. The method optionally includes adding a soluble halide salt to the aqueous solution.

  15. Synthesis of noble metal nanoparticles

    Science.gov (United States)

    Bahadory, Mozhgan

    Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.

  16. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...... for difficulties in contacting the nanotubes with other substances in the electrode or electrode preparation. Other promising candidate structures for catalyst support include carbon nanofibers (CNF) and various modifications of CNTs. We present some of our work with the investigation of surface properties...

  17. Carbon Nanotubes and Other Nanostructures as Support Material for Nanoparticulate Noble-Metal Catalysts in Fuel Cells

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul; Veltzé, Sune; Skou, Eivind Morten

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1-5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...... for difficulties in contacting the nanotubes with other substances in the electrode or electrode preparation. Other promising candidate structures for catalyst support include carbon nanofibers (CNF) and various modifications of CNTs. We present some of our work with the investigation of surface properties...

  18. Noble Metal Nanoparticles Applications in Cancer

    Science.gov (United States)

    Conde, João; Doria, Gonçalo; Baptista, Pedro

    2012-01-01

    Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings. PMID:22007307

  19. Noble Metal Nanoparticles Applications in Cancer

    Directory of Open Access Journals (Sweden)

    João Conde

    2012-01-01

    Full Text Available Nanotechnology has prompted new and improved materials for biomedical applications with particular emphasis in therapy and diagnostics. Special interest has been directed at providing enhanced molecular therapeutics for cancer, where conventional approaches do not effectively differentiate between cancerous and normal cells; that is, they lack specificity. This normally causes systemic toxicity and severe and adverse side effects with concomitant loss of quality of life. Because of their small size, nanoparticles can readily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. This way, a variety of nanoparticles with the possibility of diversified modification with biomolecules have been investigated for biomedical applications including their use in highly sensitive imaging assays, thermal ablation, and radiotherapy enhancement as well as drug and gene delivery and silencing. Here, we review the available noble metal nanoparticles for cancer therapy, with particular focus on those already being translated into clinical settings.

  20. Noble Metal Nanoparticles for Biosensing Applications

    Science.gov (United States)

    Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.

    2012-01-01

    In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731

  1. Noble metal nanowires incorporated Nafion {sup registered} membranes for reduction of methanol crossover in direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.X.; Liao, S.J.; Zeng, J.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Shi, J.Y. [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-09-15

    We electrodeposited noble metal (palladium, platinum) nanowires into the hydrophilic pores of Nafion membrane for mitigating the problem of methanol crossover in direct methanol fuel cells (DMFCs). The DMFC performance result shows that the composite membranes yield lower rate of methanol crossover and better cell performance than the pure Nafion {sup registered} membrane. At low current densities, the Pd nanowire incorporated Nafion membrane shows the best performance. In comparison, the highest performance is achieved at higher current densities with the Pt nanowire modified Nafion membrane. Based on the above findings, we suggest that for the Pd nanowire incorporated Nafion membrane, the mechanism for the suppression of the methanol crossover is mainly the blocking effect due to the 'narrowed' hydrophilic channels in Nafion membrane. For the Pt nanowire modified Nafion membrane, the mechanism includes both increasing the membrane tortuosity and so-called 'on-way consumption' of methanol on the Pt nanowires deposited into the Nafion membrane when the fuel cell is discharging. (author)

  2. Preparation and immobilization of noble metal nanoparticles for plasmonic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruoli; Pitzer, Martin; Hu, DongZhi; Schaadt, Daniel M. [Institut fuer Angewandte Physik, Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany); Fruk, Ljiljana [DFG Centrum fuer Funktionelle Nanostrukturen (CFN), KIT (Germany)

    2011-07-01

    Thin-film solar cells are of high interest due to good electrical properties and low material consumption. Traditional thin-film cells, however, have considerable transmission losses because of the reduced absorption volume. A promising way to enhance absorption in the active layer is the light-trapping by plasmonic nanostructures. Metallic nanoparticles have in particular shown large enhancement of the photocurrent in thin-film devices. In this poster, we present preparation of Au,Ag and Pt nanoparticles by polyol method and seed mediated methods for use in plasmonic solar cells. Polyol method typically uses ethylene glycol as the solvent and reducing agent,and in seed-mediated synthesis small nanoparticle seeds are first prepared and then used to promote the growth of different shapes of nanoparticles. We particularly focus on the use of nanocubes and nanospheres for solar cell design. Following the nanoparticle preparation, a new method to immobilize particles on GaAs surfaces via covalent chemical bonds has been developed which prevents agglomerations and allows control of the surface density. Photocurrent spectra of GaAs pin solar cells with and without particles have been recorded. These measurements show the dependence of the photocurrent enhancement on particle material, shape and density.

  3. Strategic role of selected noble metal nanoparticles in medicine.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Birla, Sonal; Yadav, Alka; Santos, Carolina Alves Dos

    2016-09-01

    Noble metals and their compounds have been used as therapeutic agents from the ancient time in medicine for the treatment of various infections. Recently, much progress has been made in the field of nanobiotechnology towards the development of different kinds of nanomaterials with a wide range of applications. Among the metal nanoparticles, noble metal nanoparticles have demonstrated potential biomedical applications. Due to the small size, nanoparticles can easily interact with biomolecules both at surface and inside cells, yielding better signals and target specificity for diagnostics and therapeutics. Noble metal nanoparticles inspired the researchers due to their remarkable role in detection and treatment of dreadful diseases. In this review, we have attempted to focus on the biomedical applications of noble metal nanoparticles particularly, silver, gold, and platinum in diagnosis and treatment of dreaded diseases such as cancer, human immunodeficiency virus (HIV), tuberculosis (TB), and Parkinson disease. In addition, the role of silver nanoparticles (AgNPs) such as novel antimicrobials, gold nanoparticles (AuNPs) such as efficient drug carrier, uses of platinum nanoparticles (PtNPs) in bone allograft, dentistry, etc. have been critically reviewed. Moreover, the toxicity due to the use of metal nanoparticles and some unsolved challenges in the field have been discussed with their possible solutions.

  4. Noble-Metal Nanocrystals with Controlled Facets for Electrocatalysis.

    Science.gov (United States)

    Hong, Jong Wook; Kim, Yena; Kwon, Yongmin; Han, Sang Woo

    2016-08-19

    Noble-metal nanocrystals (NCs) show excellent catalytic performance for many important electrocatalysis reactions. The crystallographic properties of the facets by which the NCs are bound, closely associated with the shape of the NCs, have a profound influence on the electrocatalytic function of the NCs. To develop an efficient strategy for the synthesis of NCs with controlled facets as well as compositions, understanding of the growth mechanism of the NCs and their interaction with the chemical species involved in NC synthesis is quite important. Furthermore, understanding the facet-dependent catalytic properties of noble-metal NCs and the corresponding mechanisms for various electrocatalysis reactions will allow for the rational design of robust electrocatalysts. In this review, we summarize recently developed synthesis strategies for the preparation of mono- and bimetallic noble-metal NCs by classifying them by the type of facets through which they are enclosed and discuss the electrocatalytic applications of noble-metal NCs with controlled facets, especially for reactions associated with fuel-cell applications, such as the oxygen reduction reaction and fuel (methanol, ethanol, and formic acid) oxidation reactions.

  5. Oxygen adsorption at noble metal/TiO2 junctions

    Science.gov (United States)

    Hossein-Babaei, F.; Alaei-Sheini, Navid; Lajvardi, Mehdi M.

    2016-03-01

    Electric conduction in titanium dioxide is known to be oxygen sensitive and the conductivity of a TiO2 ceramic body is determined mainly by the concentration of its naturally occurring oxygen vacancy. Recently, fabrications and electronic features of a number of noble metal/TiO2-based electronic devices, such as solar cells, UV detectors, gas sensors and memristive devices have been demonstrated. Here, we investigate the effect of oxygen adsorption at the noble metal/TiO2 junction in such devices, and show the potentials of these junctions in chemical sensor fabrication. The polycrystalline, poly-phase TiO2 layers are grown by the selective and controlled oxidation of titanium thin films vacuum deposited on silica substrates. Noble metal thin films are deposited on the oxide layers by physical vapor deposition. Current-voltage (I-V) diagrams of the fabricated devices are studied for Ag/, Au/, and Pt/TiO2 samples. The raw samples show no junction energy barrier. After a thermal annealing in air at 250° C, I-V diagrams change drastically. The annealed samples demonstrate highly non-linear I-V indicating the formation of high Schottky energy barriers at the noble metal/TiO2 junctions. The phenomenon is described based on the effect of the oxygen atoms adsorbed at the junction.

  6. Nanocrystalline Metal Oxides for Methane Sensors: Role of Noble Metals

    Directory of Open Access Journals (Sweden)

    S. Basu

    2009-01-01

    Full Text Available Methane is an important gas for domestic and industrial applications and its source is mainly coalmines. Since methane is extremely inflammable in the coalmine atmosphere, it is essential to develop a reliable and relatively inexpensive chemical gas sensor to detect this inflammable gas below its explosion amount in air. The metal oxides have been proved to be potential materials for the development of commercial gas sensors. The functional properties of the metal oxide-based gas sensors can be improved not only by tailoring the crystal size of metal oxides but also by incorporating the noble metal catalyst on nanocrystalline metal oxide matrix. It was observed that the surface modification of nanocrystalline metal oxide thin films by noble metal sensitizers and the use of a noble metal catalytic contact as electrode reduce the operating temperatures appreciably and improve the sensing properties. This review article concentrates on the nanocrystalline metal oxide methane sensors and the role of noble metals on the sensing properties.

  7. Noble Metal-Iron Oxide Hybrid Nanomaterials: Emerging Applications.

    Science.gov (United States)

    Leung, Ken Cham-Fai; Xuan, Shouhu

    2016-02-01

    This account provides an overview of current research activities that focus on the synthesis and applications of nanomaterials from noble metal (e.g., Au, Ag, Pd) and iron oxide (Fe3O4) hybrids. An introduction to the synthetic strategies that have been developed for generating M-Fe3O4 nanomaterials with different novel structures is presented. Surface functionalization and bioconjugation of these hybrid nanoparticles and nanocomposites are also reviewed. The utilization of the advantageous properties of both noble metals and iron oxide for a variety of applications, such as theranostics, gene delivery, biosensing, cell sorting, bioseparation, and catalysis, is discussed and highlighted. Finally, future trends and perspectives of these sophisticated nanocomposites are outlined. The fundamental requirements underpinning the effective preparation of M-Fex Oy hybrid nanomaterials shed light on the future development of heterogeneous catalysts, nanotheranostics, nanomedicines, and other chemical technologies.

  8. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto

    Noble metals on metal oxides play a major role in the performance of electrodes, catalysts and many other applications. Today, impregnation of noble metals on metal oxides is done in the wet phase involving multiple steps. The physicochemical nature of the support, the precursor and the reaction...... conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum......-7] with metal particles smaller than 7 nm on the metal oxide [3-7]. This makes them attractive for reactions with mass transfer limitation and for high temperature applications. An intimate contact of the two particles was observed in HRTEM images [3-5,7]. For a specific metal oxide support the metal particle...

  9. Electrocatalysis of chemically synthesized noble metal nanoparticles on carbon electrodes

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    Noble metal nanoparticles (NPs), such as platinum (Pt) and palladium (Pd) NPs are promising catalysts for dioxygen reduction and oxidation of molecules such as formic acid and ethanol in fuel cells. Carbon nanomaterials are ideal supporting materials for electrochemical catalysts due to their good...... microscopy (AFM) which have proved to be highly efficient techniques to map the in situ structures of selfassembled molecular monolayers at molecular or sub-molecular resolution. Electrocatalysis of the Pd NPs immobilized on atomically flat, highly oriented pyrolytic graphite (HOPG) will be investigated...

  10. DEVELOPMENT OF A NON-NOBLE METAL HYDROGEN PURIFICATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P; Kyle Brinkman, K; Thad Adams, T; George Rawls, G

    2008-11-25

    Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focus of the reported work was to develop a scaled reactor with a VNi-Ti alloy membrane to replace a production Pd-alloy tube-type purification/diffuser system.

  11. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts.

    Science.gov (United States)

    Liu, Wei; Herrmann, Anne-Kristin; Bigall, Nadja C; Rodriguez, Paramaconi; Wen, Dan; Oezaslan, Mehtap; Schmidt, Thomas J; Gaponik, Nikolai; Eychmüller, Alexander

    2015-02-17

    CONSPECTUS: Metallic and catalytically active materials with high surface area and large porosity are a long-desired goal in both industry and academia. In this Account, we summarize the strategies for making a variety of self-supported noble metal aerogels consisting of extended metal backbone nanonetworks. We discuss their outstanding physical and chemical properties, including their three-dimensional network structure, the simple control over their composition, their large specific surface area, and their hierarchical porosity. Additionally, we show some initial results on their excellent performance as electrocatalysts combining both high catalytic activity and high durability for fuel cell reactions such as ethanol oxidation and the oxygen reduction reaction (ORR). Finally, we give some hints on the future challenges in the research area of metal aerogels. We believe that metal aerogels are a new, promising class of electrocatalysts for polymer electrolyte fuel cells (PEFCs) and will also open great opportunities for other electrochemical energy systems, catalysis, and sensors. The commercialization of PEFCs encounters three critical obstacles, viz., high cost, insufficient activity, and inadequate long-term durability. Besides others, the sluggish kinetics of the ORR and alcohol oxidation and insufficient catalyst stability are important reasons for these obstacles. Various approaches have been taken to overcome these obstacles, e.g., by controlling the catalyst particle size in an optimized range, forming multimetallic catalysts, controlling the surface compositions, shaping the catalysts into nanocrystals, and designing supportless catalysts with extended surfaces such as nanostructured thin films, nanotubes, and porous nanostructures. These efforts have produced plenty of excellent electrocatalysts, but the development of multisynergetic functional catalysts exhibiting low cost, high activity, and high durability still faces great challenges. In this

  12. DWPF Hydrogen Generation Study-Form of Noble Metal SRAT Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C

    2005-09-01

    The Defense Waste Processing Facility, DWPF, has requested that the Savannah River National Laboratory, SRNL, investigate the factors that contribute to hydrogen generation to determine if current conservatism in setting the DWPF processing window can be reduced. A phased program has been undertaken to increase understanding of the factors that influence hydrogen generation in the DWPF Chemical Process Cell, CPC. The hydrogen generation in the CPC is primarily due to noble metal catalyzed decomposition of formic acid with a minor contribution from radiolytic processes. Noble metals have historically been added as trim chemicals to process simulations. The present study investigated the potential conservatism that might be present from adding the catalytic species as trim chemicals to the final sludge simulant versus co-precipitating the noble metals into the insoluble sludge solids matrix. Two sludge simulants were obtained, one with co-precipitated noble metals and one without noble metals. Co-precipitated noble metals were expected to better match real waste behavior than using trimmed noble metals during CPC simulations. Portions of both sludge simulants were held at 97 C for about eight hours to qualitatively simulate the effects of long term storage on particle morphology and speciation. The two original and two heat-treated sludge simulants were then used as feeds to Sludge Receipt and Adjustment Tank, SRAT, process simulations. Testing was done at relatively high acid stoichiometries, {approx}175%, and without mercury in order to ensure significant hydrogen generation. Hydrogen generation rates were monitored during processing to assess the impact of the form of noble metals. The following observations were made on the data: (1) Co-precipitated noble metal simulant processed similarly to trimmed noble metal simulant in most respects, such as nitrite to nitrate conversion, formate destruction, and pH, but differently with respect to hydrogen generation: (A

  13. Non-noble metal based catalysts for aqueous phase processing

    NARCIS (Netherlands)

    van Haasterecht, T.

    2015-01-01

    This thesis concerns the evaluation of the potential of supported non-noble metal catalysts in aqueous phase processes for the production hydrogen and oxygenates. The aim of this thesis is to investigate how different factors, especially the nature of the metal, additives and reaction conditions, de

  14. Synthesis and Applications of Noble-Metal Nanotubes

    Science.gov (United States)

    Kijima, Tsuyoshi

    Metallic nanotubular materials can be formed in two different manners, self-organization or template-assisted organization, depending on their bonding natures. Base metallic Bi and Te with a 1D or 2D interatomic covalent bonding nature form a nanotubular phase by the reduction reaction of their salts at elevated temperatures through the cylindrical or scrolled growth of the metal atoms based on their bonding anisotropies. In contrast, the nanotubular phases of noblemetals with no covalency are formed by the assistance of soild or supra-molecular core and sheath templates. The solid templating studies demonstrated the deposition of Au, Pt and Pd nanotubes on the outer surface of Ag nanorods as a sheath template as well as those on the inner surface of nanoporous polycarbonate or anodic aluminum oxide films as a sheath template. The use of triple-branched polyoxyethylene (PEO)-based nonionic surfactant LCs as a core template successfully leads to the growth of Pt, Pd, and Ag nanotubes with an outer diameter of as small as 6-7 nm. In this system, the thin-walled nanotubular structure is inherited from the 2D metal clusters induced through the specific effect of triple PEO chains of surfactant molecules, coupled with their spatially controlled growth within the aqueous shells of cylindrical micelles. A few examples are also referred to for the applications of noble-metal nanotubes as a catalyst for polymer electrolyte fuel cells or biphenyl formation reaction.

  15. Interaction between Nafion ionomer and noble metal catalyst for PEMFCs

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    The implement of polymer impregnation in electrode structure (catalyst layer) decreasing the noble metal catalyst loading by a factor of ten , , is one of the essential mile stones in the evolution of Proton Exchange Membrane Fuel Cells’ development among the application of catalyst support...... and electrode deposition etc. In fuel cell reactions, both electrons and protons are involved. Impregnation of Nafion ionomer in catalyst layer effectively increases the proton-electron contact, enlarge the reaction zone, extend the reaction from the surface to the entire electrode. Therefore, the entire...... catalyst layer conducts both electrons and protons so that catalyst utilization in the layer is improved dramatically. The catalyst layer will in turn generate and sustain a higher current density. One of the generally adapted methods to impregnate Nafion into the catalyst layer is to mix the catalysts...

  16. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis.

    Science.gov (United States)

    Palomares, R I; Dayman, K J; Landsberger, S; Biegalski, S R; Soderquist, C Z; Casella, A J; Brady Raap, M C; Schwantes, J M

    2015-04-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared.

  17. Antitumor activity of polyacrylates of noble metals in experiment

    Directory of Open Access Journals (Sweden)

    Larisa A. Ostrovskaya

    2014-08-01

    Full Text Available The aim of this research has been the study of the antitumor activity of polymetalacrylate derivatives containing in their structure noble metals. Metallic derivatives of polyacrylic acid were not previously tested as antitumor agents.The antitumor activity of polyacrylates, containing argentum (argacryl, aurum (auracryl and platinum (platacryl against experimental models of murine solid tumors (Lewis lung carcinoma and Acatol adenocarcinoma as well as acute toxicity have been studied. It is found that the polyacrylates of noble metals are able to inhibit tumor growth up to 50-90% in comparison with the control. Auracryl induced the inhibition of the Lewis lung carcinoma and Acatol adenocarcinoma by 80 and 90% in comparison with the control, results recommending it for further advanced preclinical studies.

  18. Determination of thin noble metal layers using laser ablation ICP-MS: An analytical tool for NobleChem technology

    Energy Technology Data Exchange (ETDEWEB)

    Guenther-Leopold, Ines; Hellwig, Christian [Paul Scherrer Institut, PSI, CH-5232 Villigen (Switzerland); Guillong, Marcel [ETH Zurich HG, Raemistrasse 101, 8092 Zurich (Switzerland)

    2006-07-01

    understand the transport, (re-)distribution and deposition behaviour of the noble metals in the reactor coolant circuit and to control the SCC mitigation effectiveness of NobleChem, analytical methods determining the local Pt and Rh concentration on highly radioactive deposition and crack/crevice monitors or components/fuel surfaces are required. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is a promising method for this purpose. LA-ICP-MS has gained increasing popularity over the last decade for the direct multi-element determination of major, minor, and trace elements in a variety of solid materials in geology, chemistry, metallurgy and biology. From the early experiments with IR laser, the development moved quickly towards the use of UV lasers. Shorter wavelength improved the laser-sample interaction primarily for transparent samples. Several types of lasers are in use, whereas the most widespread used LA systems are based on Nd:YAG lasers operating at the fourth harmonic at 266 nm. It offers the advantages of high spatial resolution, low sample preparation needs, low limits of detection and good quantification capabilities. A lot of effort has been made in the last years to improve the sensitivity of the technique and to simplify the quantification. Most of the work carried out focused on the sampling in terms of the laser wavelengths, pulse duration, carrier gas and ablation cell design as significant parameters influencing the aerosol generation, transport to the ICP and ionisation therein. Laser ablation ICP-MS has previously been used for thin layer and depth profile analyses. The detection and quantification capabilities for the determination of local noble metal concentrations using LA-ICP-MS were evaluated by the analysis of austenitic stainless steel samples homogeneously coated with platinum. The paper has the following structure: Introduction; Experimental; Sample preparation; Instrumentation; Results; Conclusion. To summarize, in a

  19. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Silicon nanocrystal-noble metal hybrid nanoparticles

    Science.gov (United States)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  1. Noble metal-free hydrogen evolution catalysts for water splitting.

    Science.gov (United States)

    Zou, Xiaoxin; Zhang, Yu

    2015-08-07

    Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

  2. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.

    Science.gov (United States)

    Sanabria-Chinchilla, Jean; Asazawa, Koichiro; Sakamoto, Tomokazu; Yamada, Koji; Tanaka, Hirohisa; Strasser, Peter

    2011-04-13

    We report the discovery of a highly active Ni-Co alloy electrocatalyst for the oxidation of hydrazine (N(2)H(4)) and provide evidence for competing electrochemical (faradaic) and chemical (nonfaradaic) reaction pathways. The electrochemical conversion of hydrazine on catalytic surfaces in fuel cells is of great scientific and technological interest, because it offers multiple redox states, complex reaction pathways, and significantly more favorable energy and power densities compared to hydrogen fuel. Structure-reactivity relations of a Ni(60)Co(40) alloy electrocatalyst are presented with a 6-fold increase in catalytic N(2)H(4) oxidation activity over today's benchmark catalysts. We further study the mechanistic pathways of the catalytic N(2)H(4) conversion as function of the applied electrode potential using differentially pumped electrochemical mass spectrometry (DEMS). At positive overpotentials, N(2)H(4) is electrooxidized into nitrogen consuming hydroxide ions, which is the fuel cell-relevant faradaic reaction pathway. In parallel, N(2)H(4) decomposes chemically into molecular nitrogen and hydrogen over a broad range of electrode potentials. The electroless chemical decomposition rate was controlled by the electrode potential, suggesting a rare example of a liquid-phase electrochemical promotion effect of a chemical catalytic reaction ("EPOC"). The coexisting electrocatalytic (faradaic) and heterogeneous catalytic (electroless, nonfaradaic) reaction pathways have important implications for the efficiency of hydrazine fuel cells.

  3. Syntheses and Assemblies of Noble Metal Nanostructures

    OpenAIRE

    Ziegler, Christoph

    2013-01-01

    Shape and size control as well as the control of the assembly of nanostructures are current challenges in nano sciences. Focussing on metal nanostructures all of these aspects have been addressed in the frame of the present work. It was possible to develop a new aqueous seeded growth method that produces gold nanoparticles with adjustable diameters over a large range of sizes. The spherical particles obtained show very low polydispersities and a good long term stability. Furthermore it was po...

  4. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells.

    Science.gov (United States)

    Abdurhman, Abduraouf Alamer Mohamed; Zhang, Yan; Zhang, Guoan; Wang, Shuai

    2015-10-01

    We report the design and fabrication of a new type of nanohybrid microelectrode based on a hierarchical nanostructured Au/MnO2/graphene-modified carbon fiber (CF) via in situ electrochemical synthesis, which leads to better structural integration of different building blocks into the CF microelectrode. Our finding demonstrates that wrapping CF with graphene nanosheets has dramatically increased the surface area and electrical conductivity of the CF microelectrode. The subsequent template-free electrodeposition of MnO2 on graphene-wrapped CF gives rise to a porous nanonest architecture built up from twisted and intersectant MnO2 nanowires, which serves as an ideal substrate for the direct growth of Au nanoparticles. Owing to the structural merit and synergy effect between different components, the hierarchical nanostructured noble metal/metal oxide/graphene-coated CF demonstrates dramatically enhanced electrocatalytic activity. When used for nonenzymatic H2O2 sensing, the resultant modified microelectrode exhibits acceptable sensitivity, reproducibility, stability, and selectivity, which enable it to be used for real-time tracking H2O2 secretion in human cervical cancer cells. Graphical abstract A schematic illustration of preparation of hierarchical Au/MnO2/ERGO/CF nanohybrid electrode for real-time molecular detection of cancer cells.

  5. Surface Plasmon Waves on noble metals at Optical Wavelengths

    Directory of Open Access Journals (Sweden)

    Niladri Pratap Maity

    2011-05-01

    Full Text Available In this paper the variation of the propagation constant, the attenuation coefficient, penetration depth inside the metal and the dielectric has been evaluated. The propagation characteristics of Surface Plasmon Waves (SPWs which exists on noble metals like gold (Au, silver (Ag and aluminium (Al due to the formation of Surface Plasmon Polaritons (SPPs, have been evaluated theoretically and simulated. It has been found that highly conducting metals Au and Ag provide a strong confinement to the SPWs than Al at optical frequencies. The comparative study reveals that metal having higher conductivity can support a more confined SPW, having a lower penetration depth than metals of lower conductivity at terahertz frequencies when its dielectric constant assumes a negative value.

  6. Noble metal-free bifunctional oxygen evolution and oxygen reduction acidic media electro-catalysts

    Science.gov (United States)

    Patel, Prasad Prakash; Datta, Moni Kanchan; Velikokhatnyi, Oleg I.; Kuruba, Ramalinga; Damodaran, Krishnan; Jampani, Prashanth; Gattu, Bharat; Shanthi, Pavithra Murugavel; Damle, Sameer S.; Kumta, Prashant N.

    2016-07-01

    Identification of low cost, highly active, durable completely noble metal-free electro-catalyst for oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, oxygen evolution reaction (OER) in PEM based water electrolysis and metal air batteries remains one of the major unfulfilled scientific and technological challenges of PEM based acid mediated electro-catalysts. In contrast, several non-noble metals based electro-catalysts have been identified for alkaline and neutral medium water electrolysis and fuel cells. Herein we report for the very first time, F doped Cu1.5Mn1.5O4, identified by exploiting theoretical first principles calculations for ORR and OER in PEM based systems. The identified novel noble metal-free electro-catalyst showed similar onset potential (1.43 V for OER and 1 V for ORR vs RHE) to that of IrO2 and Pt/C, respectively. The system also displayed excellent electrochemical activity comparable to IrO2 for OER and Pt/C for ORR, respectively, along with remarkable long term stability for 6000 cycles in acidic media validating theory, while also displaying superior methanol tolerance and yielding recommended power densities in full cell configurations.

  7. Plasmon resonances in linear noble-metal chains

    Science.gov (United States)

    Gao, Bin; Ruud, Kenneth; Luo, Yi

    2012-11-01

    The electronic excitations of three noble-metall chains—copper, silver, and gold—have been investigated at the time-dependent density functional theory level. The reduced single-electron density matrix is propagated according to the Liouville-von Neumann equation in the real-time domain after an impulse excitation. The propagation in the real-time domain enables us to investigate the formation and size evolution of electronic excitations in these metallic chains with different number of atoms, up to a total of 26 atoms. The longitudinal oscillations at lower excitation energies are dominated by s → p transitions in these chains and have collective or central resonances, while the first peak involving d → p transitions in the longitudinal mode appears at a higher excitation energy and shows collective resonances. In the transverse oscillations, there are in most cases d → p transitions in each resonance, which can be attributed to either central or end resonances. Convergence of the oscillations, in particular those involving the collective and central resonances in the three noble-metal chains can only be observed for chains with 18 atoms or more. Different spectroscopic characteristics among these three metallic chains can be attributed to their different electronic structures, in particular the relativistic effects in the gold chains have a dramatic effect on their electronic structures and excitations.

  8. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts.

    Science.gov (United States)

    Hunt, Sean T; Milina, Maria; Alba-Rubio, Ana C; Hendon, Christopher H; Dumesic, James A; Román-Leshkov, Yuriy

    2016-05-20

    We demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti(0.1)W(0.9)C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading, enhance the activity, and increase the stability of noble metal catalysts.

  9. Reversibility of Noble Metal-Catalyzed Aprotic Li-O₂ Batteries.

    Science.gov (United States)

    Ma, Shunchao; Wu, Yang; Wang, Jiawei; Zhang, Yelong; Zhang, Yantao; Yan, Xinxiu; Wei, Yang; Liu, Peng; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Xu, Ye; Peng, Zhangquan

    2015-12-01

    The aprotic Li-O2 battery has attracted a great deal of interest because, theoretically, it can store far more energy than today's batteries. Toward unlocking the energy capabilities of this neotype energy storage system, noble metal-catalyzed high surface area carbon materials have been widely used as the O2 cathodes, and some of them exhibit excellent electrochemical performances in terms of round-trip efficiency and cycle life. However, whether these outstanding electrochemical performances are backed by the reversible formation/decomposition of Li2O2, i.e., the desired Li-O2 electrochemistry, remains unclear due to a lack of quantitative assays for the Li-O2 cells. Here, noble metal (Ru and Pd)-catalyzed carbon nanotube (CNT) fabrics, prepared by magnetron sputtering, have been used as the O2 cathode in aprotic Li-O2 batteries. The catalyzed Li-O2 cells exhibited considerably high round-trip efficiency and prolonged cycle life, which could match or even surpass some of the best literature results. However, a combined analysis using differential electrochemical mass spectrometry and Fourier transform infrared spectroscopy, revealed that these catalyzed Li-O2 cells (particularly those based on Pd-CNT cathodes) did not work according to the desired Li-O2 electrochemistry. Instead the presence of noble metal catalysts impaired the cells' reversibility, as evidenced by the decreased O2 recovery efficiency (the ratio of the amount of O2 evolved during recharge/that consumed in the preceding discharge) coupled with increased CO2 evolution during charging. The results reported here provide new insights into the O2 electrochemistry in the aprotic Li-O2 batteries containing noble metal catalysts and exemplified the importance of the quantitative assays for the Li-O2 reactions in the course of pursuing truly rechargeable Li-O2 batteries.

  10. Noble metal nanoparticles: Optical forces, electrochemical Ostwald ripening, and photovoltage

    Science.gov (United States)

    Redmond, Peter

    This thesis describes three distinct aspects of the chemical properties of noble metal nanoparticles. The first chapter introduces the surface plasmon resonance of noble metal nanoparticles. The second chapter presents an electrodynamic model for the calculation of the attractive optical forces that arise when two dielectric particles are irradiated in a light field. These forces show resonances at dipolar plasmon wavelengths, similar to resonances in the near-field electromagnetic intensities. At MW/cm2 intensities, optical forces can be stronger than van der Waals forces. The third chapter investigates the size dependent electrochemical properties of silver nanoparticles. These thermally evaporated silver nanoparticles spontaneously evolve in size when immersed in pure water on conducting substrates. The process is understood through an electrochemical Ostwald ripening mechanism driven by the size dependence of the work function and standard electrode potential. The fourth and fifth chapters consider photo-induced surface reactivity of noble metal particles. First, in the fourth chapter, the light driven deposition of copper onto gold nanoparticle electrodes is presented. The photocurrent is a nonlinear function of laser intensity and increases sharply with cathodic voltage in the underpotential deposition region. The photoreduction is attributed to laser heating (caused by decay of the plasmon oscillation) of the Au nanoparticles, rather than "hot electron" processes. Secondly, in the fifth chapter, the photo-induced oxidation of citrate is studied on silver nanoparticle electrodes. Irradiation of the citrate coated particles is shown to cause the particles to charge negatively from the irreversible transfer of electrons from citrate to the particles. It is hypothesized that the particle plasmon oscillation decays into electron hole pair(s) that causes the photo-oxidation of the surface bound citrate. Both the gold and silver particle systems are simulated using

  11. Single-molecule chemistry of metal phthalocyanine on noble metal surfaces.

    Science.gov (United States)

    Li, Zhenyu; Li, Bin; Yang, Jinlong; Hou, Jian Guo

    2010-07-20

    To develop new functional materials and nanoscale electronics, researchers would like to accurately describe and precisely control the quantum state of a single molecule on a surface. Scanning tunneling microscopy (STM), combined with first-principles simulations, provides a powerful technique for acquiring this level of understanding. Traditionally, metal phthalocyanine (MPc) molecules, composed of a metal atom surrounded by a ligand ring, have been used as dyes and pigments. Recently, MPc molecules have shown great promise as components of light-emitting diodes, field-effect transistors, photovoltaic cells, and single-molecule devices. In this Account, we describe recent research on the characterization and control of adsorption and electronic states of a single MPc molecule on noble metal surfaces. In general, the electronic and magnetic properties of a MPc molecule largely depend on the type of metal ion within the phthalocyanine ligand and the type of surface on which the molecule is adsorbed. However, with the STM technique, we can use on-site molecular "surgery" to manipulate the structure and the properties of the molecule. For example, STM can induce a dehydrogenation reaction of the MPc, which allows us to control the Kondo effect, which describes the spin polarization of the molecule and its interaction with the complex environment. A specially designed STM tip can allow researchers to detect certain molecule-surface hybrid states that are not accessible by other techniques. By matching the local orbital symmetry of the STM tip and the molecule, we can generate the negative differential resistance effect in the formed molecular junction. This orbital symmetry based mechanism is extremely robust and does not critically depend on the geometry of the STM tip. In summary, this simple model system, a MPc molecule absorbed on a noble metal surface, demonstrates the power of STM for quantum characterization and manipulation of single molecules, highlighting the

  12. Noble-metal nanostructures on carburized W(110).

    Science.gov (United States)

    Bachmann, Magdalena; Memmel, Norbert; Bertel, Erminald

    2011-07-01

    Noble metal nanostructures of Au, Ag and Cu were prepared on two types of carbon-modified W(110) surfaces-R(15 × 12) and R(15 × 3)-and investigated by means of scanning tunneling microscopy. For all deposited metals qualitatively the same behaviour is observed: On the R(15 × 12)-template always isotropic clusters are formed. In contrast, on the R(15 × 3)-substrate the anisotropy of the nanostructures can be tuned from clusters at low temperatures via thin nanowires to thicker nanobars at high deposition temperatures. At intermediate temperatures on the R(15 × 3) the anisotropic Au nanowires arrange themselves into straight lines along domain boundaries induced by deposition of the Au metal. Similarities and differences to Au nanostructures as recently reported by Varykhalov et al. [A. Varykhalov, O. Rader, W. Gudat. Physical Review B 77, 035412 (2008).] are discussed.

  13. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  14. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  15. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  16. Surface entropy of liquid transition and noble metals

    Science.gov (United States)

    Gosh, R. C.; Das, Ramprosad; Sen, Sumon C.; Bhuiyan, G. M.

    2015-07-01

    Surface entropy of liquid transition and noble metals has been investigated using an expression obtained from the hard-sphere (HS) theory of liquid. The expression is developed from the Mayer's extended surface tension formula [Journal of Non-Crystalline Solids 380 (2013) 42-47]. For interionic interaction in metals, Brettonet-Silbert (BS) pseudopotentials and embedded atom method (EAM) potentials have been used. The liquid structure is described by the variational modified hypernetted chain (VMHNC) theory. The essential ingredient of the expression is the temperature dependent effective HS diameter (or packing fraction), which is calculated from the aforementioned potentials together with the VMHNC theory. The obtained results for the surface entropy using the effective HS diameter are found to be good in agreement with the available experimental as well as other theoretical values.

  17. Investigation of Noble Metals Colloidal Systems Formed by Laser Synthesis at Air

    Directory of Open Access Journals (Sweden)

    Victor Goncharov

    2012-01-01

    Full Text Available The present work is dedicated to the development of formation and diagnostics methods of water colloids of noble metals (Au, Au, Pt. As anoble nanoparticles formation method, the laser synthesis at air conditions is proposed. By the implantation of noble nanoparticles into water media, the colloidal systems of noble metals can be obtained. For the aims of investigation of noble colloid parameters, the complex diagnostics method is used. Such approach deals with direct methods (scanning electron microscopy and the characteristic radiation registration and indirect methods (absorption spectroscopy and extinction modeling by Mie theory.

  18. High-pressure synthesis of noble metal hydrides.

    Science.gov (United States)

    Donnerer, Christian; Scheler, Thomas; Gregoryanz, Eugene

    2013-04-07

    The formation of hydride phases in the noble metals copper, silver, and gold was investigated by in situ x-ray diffraction at high hydrogen pressures. In the case of copper, a novel hexagonal hydride phase, Cu2H, was synthesised at pressures above 18.6 GPa. This compound exhibits an anti-CdI2-type structure, where hydrogen atoms occupy every second layer of octahedral interstitial sites. In contrast to chemically produced CuH, this phase does not show a change in compressibility compared to pure copper. Furthermore, repeated compression (after decomposition of Cu2H) led to the formation of cubic copper hydride at 12.5 GPa, a phenomenon attributed to an alteration of the microstructure during dehydrogenation. No hydrides of silver (up to 87 GPa) or gold (up to 113 GPa) were found at both room and high temperatures.

  19. RISK REDUCTION VIA GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES

    Science.gov (United States)

    Aqueous preparation of nanoparticles using vitamins B2 and C which can function both as reducing and capping agents are described. Bulk and shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduction of noble metal salts using a-D-glucose,...

  20. H2O Nucleation Around Noble Metal Cations

    Science.gov (United States)

    Calaminici, Patrizia; Oropeza Alfaro, Pavel; Juarez Flores, Martin; Köster, Andreas; Beltran, Marcela; Ulises Reveles, J.; Khanna, Shiv N.

    2008-03-01

    First principle electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure and binding energy of noble metal cations (H2O)n^+ clusters containing up to 10 H2O molecules. The calculations are performed with the density functional theory code deMon2k [1]. Due to the very flat potential energy surface of these systems special care to the numerical stability of energy and gradient calculation must be taken.Comparison of the results obtained with Cu^+, Ag^+ and Au^+ will be shown. This investigation provides insight into the structural arrangement of the water molecules around these metals and a microscopic understanding of the observed incremental binding energy in the case of the gold cation based on collision induced dissociation experiments. [1] A.M. Köster, P. Calaminici, M.E. Casida, R. Flores-Moreno, G. Geudtner, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J. Martin del Campo, S. Patchkovski, J.U. Reveles, A. Vela and D.R. Salahub, deMon2k, The deMon Developers, Cinvestav, 2006

  1. Bio-related noble metal nanoparticle structure property relationships

    Science.gov (United States)

    Leonard, Donovan Nicholas

    Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ˜8.9eV, bulk plasmon-peak energy of ˜25.5eV and chemical composition of stoichiometric SiO2. Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel nanostructures. Data from control experiments found the hexagons could be made without RNA and confirmed the presence of nanocrystalline Pd metal NPs in unpurified Pd2(DBA)3 reagent powder. Furthermore, the study determined the hexagon platelets to have a chemical composition of ˜90at% carbon and ˜10at% Pd and a lattice parameter corresponding to molecular crystals of Pd2(DBA)3 precursor, not Pd metal.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Windows MediaPlayer or RealPlayer.

  2. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.

    Science.gov (United States)

    Kim, Seung-Hyun; Jeong, Gyoung Hwa; Choi, Donghyeuk; Yoon, Sunyoung; Jeon, Heung Bae; Lee, Sang-Min; Kim, Sang-Wook

    2013-01-01

    We carried out hydrazine-free, surfactant-free synthesis of noble metal/graphene nanocomposites. The reduction of the noble metals and GO was carried out simultaneously in hot water using ascorbic acid as a reductant. In the noble metal/graphene nanocomposites of Pd, Pt, Au, and Ag nanoparticles, the GO and metal salts were reduced completely by this synthetic method. In addition, the Pd/graphene nanocomposites showed good catalytic activity in the Suzuki coupling reaction and could be reused many times without loss of catalytic activity.

  3. Synthesis and self-assembly of thio derivatives of calix[4]arene on noble metal surfaces.

    Science.gov (United States)

    Genorio, Bostjan; He, Tao; Meden, Anton; Polanc, Slovenko; Jamnik, Janko; Tour, James M

    2008-10-21

    Self-assembled monolayers (SAMs) provide a simple route to functionalize electrode surfaces with organic molecules. Herein we use cavity-containing derivatives of calix[4]arenes in SAMs. Bound to noble metal surface, the assembled molecules are candidates to serve as molecular sieves for H 2 molecules and H (+) ions, which could have relevance for fuel cell applications. Tetra- O-alkylated calix[4]arenes with thiolacetate and thiolamide wide-rim anchoring groups in cone and partial-cone conformations were designed, synthesized and self-assembled onto Au, Pt, and Pd surfaces. The resulting SAMs were systematically examined. Single crystal X-ray diffraction of 5,11,17,23-tetrakis(thioacetyl)-25,26,27,28-tetra- i-propoxycalix[4]arene confirmed the cone conformation and revealed the cavity dimensions of the SAMs that were formed by immersing noble metal substrates (Au, Pt and Pd deposited on Si-wafers) in solutions of calix[4]arenes. Surface characterization techniques including ellipsometry, cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) were used, indicating that the metal surface is terminated with a monomolecular layer. Experimental thicknesses obtained from the ellipsometry are consistent with the calculated values. CV results showed 50 to 80% physical passivation against the Fe(CN) 6 (3-/4-) couple, implying an overall relatively low concentration of defects and pinholes in the films. The binding energies of the S2p core level in the XPS were consistent with the literature values and revealed that up to 3.2 out of four anchoring groups were bonded to the noble metal surface.

  4. Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future.

    Science.gov (United States)

    Arvizo, Rochelle R; Bhattacharyya, Sanjib; Kudgus, Rachel A; Giri, Karuna; Bhattacharya, Resham; Mukherjee, Priyabrata

    2012-04-01

    Biomedical nanotechnology is an evolving field having enormous potential to positively impact the health care system. Important biomedical applications of nanotechnology that may have potential clinical applications include targeted drug delivery, detection/diagnosis and imaging. Basic understanding of how nanomaterials, the building blocks of nanotechnology, interact with the cells and their biological consequences are beginning to evolve. Noble metal nanoparticles such as gold, silver and platinum are particularly interesting due to their size and shape dependent unique optoelectronic properties. These noble metal nanoparticles, particularly of gold, have elicited a lot of interest for important biomedical applications because of their ease of synthesis, characterization and surface functionalization. Furthermore, recent investigations are demonstrating another promising application of these nanomaterials as self-therapeutics. To realize the potential promise of these unique inorganic nanomaterials for future clinical translation, it is of utmost importance to understand a few critical parameters; (i) how these nanomaterials interact with the cells at the molecular level; (ii) how their biodistribution and pharmacokinetics influenced by their surface and routes of administration; (iii) mechanism of their detoxification and clearance and (iv) their therapeutic efficacy in appropriate disease model. Thus in this critical review, we will discuss the various clinical applications of gold, silver and platinum nanoparticles with relevance to above parameters. We will also mention various routes of synthesis of these noble metal nanoparticles. However, before we discuss present research, we will also look into the past. We need to understand the discoveries made before us in order to further our knowledge and technological development (318 references).

  5. Does noble metal modification improve the photocatalytic activity of BiOCl?

    Institute of Scientific and Technical Information of China (English)

    Liang Kong; Zheng Jiang; Henry H.-C. Lai; Tiancun Xiao; Peter P. Edwards

    2013-01-01

    Noble metal-surface-deposited BiOCl photocatalysts were prepared through photo-deposition and used for photodecomposition of Rhodamine B (RhB). The received materials were characterised using X-ray photoemission spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and X-ray diffraction (XRD) to understand the influence of surface deposited noble metals. The results showed that the noble metal species on the surface of BiOCl are in metallic state, which also brought about enhanced light absorption in broad UV-vis region due to plasmonic effects induced by the surface-deposited noble metal species. All the samples showed good activity in photodecomposition of RhB under UV-light irradiation, but only Ag/BiOCl was more active than bulk BiOCl. The mechanism of the different reactivity of these noble-metal modified BiOCl was tentatively proposed based on the band structure and the interactions between noble metals and the BiOCl.

  6. Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications.

    Science.gov (United States)

    Fan, Zhanxi; Zhang, Hua

    2016-12-20

    Noble metal nanocrystals own high chemical stability, unique plasmonic and distinctive catalytic properties, making them outstanding in many applications. However, their practical applications are limited by their high cost and scarcity on the earth. One promising strategy to solve these problems is to boost their catalytic performance in order to reduce their usage amount. To realize this target, great research efforts have been devoted to the size-, composition-, shape- and/or architecture-controlled syntheses of noble metal nanocrystals during the past two decades. Impressively, recent experimental studies have revealed that the crystal structure of noble metal nanocrystals can also significantly affect their physicochemical properties, such as optical, magnetic, catalytic, mechanical, electrical and electronic properties. Therefore, besides the well-established size, composition, shape, and architecture control, the rise of crystal structure-controlled synthesis of noble metal nanocrystals will open up new opportunities to further improve their functional properties, and thus promote their potential applications in energy conversion, catalysis, biosensing, information storage, surface enhanced Raman scattering, waveguide, near-infrared photothermal therapy, controlled release, bioimaging, biomedicine, and so on. In this Account, we review the recent research progress on the crystal structure control of noble metal nanocrystals with a template synthetic approach and their crystal structure-dependent catalytic properties. We first describe the template synthetic methods, such as epitaxial growth and galvanic replacement reaction methods, in which a presynthesized noble metal nanocrystal with either new or common crystal structure is used as the template to direct the growth of unusual crystal structures of other noble metals. Significantly, the template synthetic strategy described here provides an efficient, simple and straightforward way to synthesize unusual

  7. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    Science.gov (United States)

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  8. Designing a New Class of Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells: Probing Size, Composition, and Structure Dependent Electrocatalytic Performance in High-Quality, One-Dimensional Noble Metal Nanostructures

    Science.gov (United States)

    Koenigsmann, Christopher

    A key challenge in the practical commercialization of PEMFCs is the extremely high cost and relatively poor durability of carbon supported Pt nanoparticle (Pt NP/C) electrocatalysts utilized in both the anode and cathode half-cells. Herein, we synthesize and characterize a new class of high-quality one-dimensional noble metal nanostructures as a potentially new and promising structural paradigm for the next generation of electrocatalyst materials. Specifically, we investigate the nature of the complex interplay amongst size, chemical composition, and electrocatalytic performance in high-quality elemental and bimetallic 1D noble metal nanowire systems with an emphasis on achieving efficient and sustainable methods for catalyst preparation. In terms of nanowire dimensions and composition, an interesting and measureable size-dependent enhancement in performance emerges in the case of elemental Pt, Pd, and Pd1-xAux nanowires possessing diameters ranging from the submicron (d = ˜200 nm) to the ultrathin regime (d = ˜1 nm). In a similar context, we have considered the role of chemical composition in 1D electrocatalysts and noted significant composition-dependent enhancements in activity and durability in high-quality, bimetallic Pd1-xAux and Pd1-xPtx NWs. A key finding that is apparent from these experimental results is that widely seen behavioral trends in the composition- and size-dependent performance for 0D nanoparticle-based catalysts do not hold in the case of 1D architectures, because of the patently unique structural and electronic effects, associated with their anisotropic structures. As a culmination of our efforts to take advantage of these intrinsic structure-activity correlations, our group has developed a morphology-, size-, and composition-optimized Pd9Au NW possessing a Pt monolayer shell (PtML˜Pd9Au NWs) electrocatalyst with an ultrathin 2 nm diameter, which yielded outstanding Pt mass and platinum group metal activities of 2.56 A/mgPt and 0.64 A

  9. Application of noble metals on line in Cofrentes NPP and operation experience; Aplicacion de metales nobles en linea en C.N. Cofrentes y experiencia de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Zapata, J. D.

    2015-07-01

    Cofrentes NPP implemented in 2010 the Noble Metal Chemistry as a mitigation technique for the Primary System materials protection against IGSCC. the paper describes briefly the technology fundamentals, the implementation of the specific project, the initial application and the operating experience along the last 3 cycles of the plant. (Author)

  10. Solar Noble Gases from ACFER 111 Metal Etched in Vacuo

    Science.gov (United States)

    Pedroni, A.; Begemann, F.

    1992-07-01

    Regolith grains dissolved by stepwise etching release a mixture of near-surface implanted Solar Wind gases (SW) and a deeper- sited, isotopically heavier component attributed to Solar Energetic Particles (SEP) (1,2,3). In all regolith materials examined so far the elemental abundance ratios in both components are distinctly different from the canonical solar values (4). The differences are generally explained to be owing to diffusive elemental fractionation although there is no strong evidence that upon their implantation the composition of the gases was indeed solar. In contrast, the solar noble gases present in the H3-H6 chondritic regolith breccia Acfer 111 appear to be nearly unfractionated and thus offer a unique chance for more accurate analyses. A magnetic fraction of Acfer 111 matrix, consisting of approx. 80% metal and 20% silicates, was etched with a 60 g/mol aqueous solution of HNO3 in a high-vacuum extraction line similar to that in (1). The gases released were drawn off in steps and analyzed; the experiment was stopped when ~97% of the metal and ~50% of the silicates were dissolved. As etching proceeds, the isotopic composition of the released gases changes in a pattern similar to that observed previously in other regolithic materials. The isotopic composition of solar neon decreases from ^20Ne/^22Ne=13.1 in the first step to ^20Ne/^22Ne=11.6, which can be interpreted as a change of the mixing ratio of SW (^20Ne/^22Ne=13.7) and SEP (^20Ne/^22Ne=11.3) neon. The isotopic compositions of solar He, Ar, and Kr are consistent with their also being mixtures of SW and SEP having compositions reported previously (2,3), although our data are compromised to some extent by the presence of planetary gases extracted from the silicates and, in the first steps, by atmospheric contamination probably present in terrestrial weathering products (mostly rust). The elemental composition of noble gases released from Acfer 111 was distinct from previous experiments: The (^4He

  11. Study of Noble Metal Elements in Lower Cambrian Black Rock Series of Guizhou-Hunan Provinces, China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Systematic analyses of noble metal elements in the Lower Cambrian black rock series of South China are reported. Correlations of w(Os)/w(Ir), w(Au)/w(Ir), w(Ag)/w(Au), w(Pt+Pd)/w(Os+Ru+Rh+Ir), relations of noble metal and platinum group element (PGE) distribution patterns reveal that the noble metals are not directly from extraterrestrial materials. Studying the data of 9 aspects, the authors conclude that the noble metals were mainly from ultramafic-mafic igneous rocks and their enrichment in black rocks is mainly controlled by hydrothermal fluid.

  12. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.

    Science.gov (United States)

    Asefa, Tewodros

    2016-09-20

    The large-scale deployment of many types of fuel cells and electrolyzers is currently constrained by the lack of sustainable and efficient catalysts that can replace the less earth-abundant, noble metal-based catalysts, which are commonly used in these renewable energy systems. This burgeoning issue has led to explosive research efforts worldwide to find alternative, metal-free and noble metal-free catalysts that are composed of inexpensive and earth-abundant elements. Hence, the recent discoveries that doping carbon nanomaterials with heteroatoms (such as N, S, B, etc.) can give sustainable materials with good electrocatalytic activity for reactions carried out in fuel cells and electrolyzers have been not only quite exciting but also very promising to address these challenging issues. Interestingly, even though they contain no metals or involve only the inexpensive, more earth-abundant ones, the catalytic activity of some of these materials fares well with those of the commercially used noble metal-based electrocatalysts, such as Pt/C. However, research efforts to improve the catalytic activity, selectivity, and stability of some of these materials for various reactions are still necessary and thus continuing. While some of these efforts have focused on finding synthetic methods that can tune the structures and compositions of already known materials and thereby improve their catalytic properties (activity, selectivity, stability, etc.), others have focused on developing entirely new materials that can exhibit better or superior catalytic properties. In these efforts, additional considerations are also being paid to find facile synthetic routes or renewable and inexpensive precursors that can lead to such types of catalysts in order to make the entire process highly sustainable and widely applicable. In this Account, notable heteroatom-doped carbon catalysts that have been developed for reactions in fuel cells and water electrolyzers, the various synthetic

  13. Functional Application of Noble Metal Nanoparticles In Situ Synthesized on Ramie Fibers

    Science.gov (United States)

    Tang, Bin; Yao, Ya; Li, Jingliang; Qin, Si; Zhu, Haijin; Kaur, Jasjeet; Chen, Wu; Sun, Lu; Wang, Xungai

    2015-09-01

    Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

  14. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  15. Vitrification of noble metals containing NCAW simulant with an engineering scale melter (ESM): Campaign report

    Energy Technology Data Exchange (ETDEWEB)

    Grunewald, W.; Roth, G.; Tobie, W.; Weisenburger, S.; Weiss, K.; Elliott, M.; Eyler, L.L.

    1996-03-01

    ESM has been designed as a 10th-scale model of the DWPF-type melter, currently the reference melter for nitrification of Hanford double shell tankwaste. ESM and related equipment have been integrated to the existing mockup vitrification plant VA-WAK at KfK. On June 2-July 10, 1992, a shakedown test using 2.61 m{sup 3} of NCAW (neutralized current acid waste) simulant without noble metals was performed. On July 11-Aug. 30, 1992, 14.23 m{sup 3} of the same simulant with nominal concentrations of Ru, Rh, and Pd were vitrified. Objective was to investigate the behavior of such a melter with respect to discharge of noble metals with routine glass pouring via glass overflow. Results indicate an accumulation of noble metals in the bottom area of the flat-bottomed ESM. About 65 wt% of the noble metals fed to the melter could be drained out, whereas 35 wt% accumulated in the melter, based on analysis of glass samples from glass pouring stream in to the canisters. After the melter was drained at the end of the campaign through a bottom drain valve, glass samples were taken from the residual bottom layer. The samples had significantly increased noble metals content (factor of 20-45 to target loading). They showed also a significant decrease of the specific electric resistance compared to bulk glass (factor of 10). A decrease of 10- 15% of the resistance between he power electrodes could be seen at the run end, but the total amount of noble metals accumulated was not yet sufficient enough to disturb the Joule heating of the glass tank severely.

  16. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  17. Calculation of phonon spectrum for noble metals by modified analytic embedded atom method (MAEAM)

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Jun; Zhang Jian-Min; Xu Ke-Wei

    2006-01-01

    In the harmonic approximation, the atomic force constants are derived and the phonon dispersion curves along four major symmetry directions [00ζ], [0ζζ], [ζζζ] and [0ζ1] (or △, ∑, A and Z in group-theory notation) are calculated for four noble metals Cu, Ag, Au and Pt by combining the modified analytic embedded atom method (MAEAM) with the theory of lattice dynamics. A good agreement between calculations and measurements, especially for lower frequencies,shows that the MAEAM provides a reasonable description of lattice dynamics in noble metals.

  18. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Energy Technology Data Exchange (ETDEWEB)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  19. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China

    Institute of Scientific and Technical Information of China (English)

    李胜荣; 高振敏

    2000-01-01

    The Lower Cambrian black rock series of South China is abnormally rich in noble metal elements. According to the concentrations, the ratios, the relations, the distribution and partition patterns of noble metal elements, the authors think that the noble metals and other elements are neither directly from extraterrestrial materials, nor from the products of normal marine sedimentation. The abnormal enrichment of noble metal elements is closely related with hydrothermal fluid that flew out on the sea floor through deep cycling and reaction with Proterozoic ultramafic-mafic igneous rocks forming noble metal rich fluid. It is possible to form industrial multiple-element-ore-deposits, especially hydrothermal type platinum-group-element-ore-deposits in the region with strong hydrothermal action.

  20. Source tracing of noble metal elements in Lower Cambrian black rock series of Guizhou-Hunan Provinces, China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Lower Cambrian black rock series of South China is abnormally rich in noble metal elements. According to the concentrations, the ratios, the relations, the distribution and partition patterns of noble metal elements, the authors think that the noble metals and other elements are neither directly from extraterrestrial materials, nor from the products of normal marine sedimentation. The abnormal enrichment of noble metal elements is closely related with hydrothermal fluid that flew out on the sea floor through deep cycling and reaction with Proterozoic ultramafic-mafic igneous rocks forming noble metal rich fluid. It is possible to form industrial multiple-element- ore-deposits, especially hydrothermal type platinum-group-element-ore-deposits in the region with strong hydrothermal action.

  1. SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd-M/Y bimetallic catalysts, where M is non-noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd-M/Y catalysts were evaluated under the following conditions: H2 pressure 4.2 MPa, MHSV 4.0 h-1, sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.

  2. Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications

    NARCIS (Netherlands)

    Goeken, K.L.; Subramaniam, V.; Gill, R.

    2015-01-01

    Noble metal nanoparticles possess very large scattering cross-sections, which make them useful as tags in biosensing assays with the potential to detect even single binding events. In this study, we investigated the effects of nanoparticle size on the shift in the light scattering spectrum following

  3. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    Science.gov (United States)

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  4. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.

    Science.gov (United States)

    Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A

    2013-11-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.

  5. Observation of shell effects in nanowires for the noble metals copper, silver and gold

    OpenAIRE

    Mares, A. I.; van Ruitenbeek, J. M.

    2005-01-01

    We extend our previous shell effect observation in gold nanowires at room temperature under ultra high vacuum to the other two noble metals: silver and copper. Similar to gold, silver nanowires present two series of exceptionally stable diameters related to electronic and atomic shell filling. This observation is in concordance to what was previously found for alkali metal nanowires. Copper however presents only electronic shell filling. Remarkably we find that shell structure survives under ...

  6. Effect of electron heating on femtosecond laser-induced coherent acoustic phonons in noble metals

    Science.gov (United States)

    Wang, Jincheng; Guo, Chunlei

    2007-05-01

    We employ a surface plasmon technique to resolve the dynamics of femtosecond-laser-induced coherent acoustic phonons in noble metals. Clear acoustic oscillations are observed in our experiments. We further study the dependence of the initial phase of the oscillations on pump fluence, and we find that the initial phase decreases linearly with pump fluence. Our model calculations show that hot electrons instantaneously excited by femtosecond pulses contribute to the generation of coherent acoustic phonons in metals.

  7. Are matrix isolated species really “isolated”? Infrared spectroscopic and theoretical studies of noble gas-transition metal oxide complexes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this review, we summarize our recent results on matrix isolation infrared spectroscopic studies and theoretical investigations of noble gas-transition metal oxide complexes. The results show that some transition metal oxide species trapped in solid noble gas matrices are chemically coordinated by one or multiple noble gas atoms forming noble gas complexes and, hence, cannot be regarded as isolated species. Noble gas coordination alters the vibrational frequencies as well as the geometric and electronic structures of transition metal oxide species trapped in solid noble gas matrixes. The interactions between noble gas atoms and transition metal oxides involve ion-induced dipole interactions as well as chemical bonding interactions. Periodic trends in the bonding in these noble gas-transition metal complexes are discussed.

  8. Highly selective electrodeposition of sub-10 nm crystalline noble metallic nanorods inside vertically aligned multiwall carbon nanotubes

    Science.gov (United States)

    Wang, Xuyang; Wang, Ranran; Wu, Qiang; Zhang, Xiaohua; Yang, Zhaohui; Guo, Jun; Chen, Muzi; Tang, Minghua; Cheng, Yajun; Chu, Haibin

    2016-07-01

    In this paper crystalline noble metallic nanorods including Au and Ag with sub-10 nm diameter, are encapsulated within prealigned and open-ended multiwall carbon nanotubes (MWCNTs) through an electrodeposition method. As the external surface of CNTs has been insulated by the epoxy the CNT channel becomes the only path for the mass transport as well as the nanoreactor for the metal deposition. Highly crystallized Au and Ag2O nanorods parallel to the radial direction of CNTs are confirmed by high-resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray powder diffraction spectroscopy. The Ag2O nanorods are formed by air oxidation on the Ag metals and show a single crystalline structure with (111) planes. The Au nanorods exhibit a complex crystalline structure including twin-crystal and lattice dislocation with (111) and (200) planes. These crystalline noble metallic nanostructures may have important applications for nanocatalysts for fuel cells as well as nanoelectronic and nanophotonic devices. This method is deemed to benefit the precise deposition of other crystalline nanostructures inside CNTs with a small diameter.

  9. Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy.

    Science.gov (United States)

    Wang, Xiaojing; Wang, Chao; Cheng, Liang; Lee, Shuit-Tong; Liu, Zhuang

    2012-05-02

    Single-walled carbon nanotubes (SWNTs) with various unique optical properties are interesting nanoprobes widely explored in biomedical imaging and phototherapies. Herein, DNA-functionalized SWNTs are modified with noble metal (Ag or Au) nanoparticles via an in situ solution phase synthesis method comprised of seed attachment, seeded growth, and surface modification with polyethylene glycol (PEG), yielding SWNT-Ag-PEG and SWNT-Au-PEG nanocomposites stable in physiological environments. With gold or silver nanoparticles decorated on the surface, the SWNT-metal nanocomposites gain an excellent concentration and excitation-source dependent surface-enhanced Raman scattering (SERS) effect. Using a near-infrared (NIR) laser as the excitation source, targeted Raman imaging of cancer cells labeled with folic acid (FA) conjugated SWNT-Au nanocomposite (SWNT-Au-PEG-FA) is realized, with images acquired in significantly shortened periods of time as compared to that of using nonenhanced SWNT Raman probes. Owing to the strong surface plasmon resonance absorption contributed by the gold shell, the SWNTs-Au-PEG-FA nanocomposite also offers remarkably improved photothermal cancer cell killing efficacy. This work presents a facile approach to synthesize water-soluble noble metal coated SWNTs with a strong SERS effect suitable for labeling and fast Raman spectroscopic imaging of biological samples, which has been rarely realized before. The SWNT-Au-PEG nanocomposite developed here may thus be an interesting optical theranostic probe for cancer imaging and therapy.

  10. Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección

    Science.gov (United States)

    Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2005-04-01

    We present calculations of the ideal strength on the direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.

  11. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution

    Science.gov (United States)

    Sung, Woosuk; Choi, Jin-Woo

    This paper presents the development of a novel liquid-based microscale fuel cell using non-noble catalysts in an alkaline solution. The developed fuel cell is based on a membraneless structure. The operational complications of a proton exchange membrane lead the development of a fuel cell with the membraneless structure. Non-noble metals with relatively mild catalytic activity, nickel hydroxide and silver oxide, were employed as anode and cathode catalysts to minimize the effect of cross-reactions with the membraneless structure. Along with nickel hydroxide and silver oxide, methanol and hydrogen peroxide were used as a fuel at anode and an oxidant at cathode. With a fuel mixture flow rate of 200 μl min -1, a maximum output power density of 28.73 μW cm -2 was achieved. The developed fuel cell features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable applications.

  12. Plasmon excitation and damping in noble metal nanoparticle-MoS2 nanocomposites

    Science.gov (United States)

    Forcherio, Gregory T.; Benamara, Mourad; Roper, D. Keith

    2016-09-01

    Improved fundamental understanding of resonant optical and electric interactions between noble metal nanoparticles and 2D materials, such as semiconductive molybdenum disulfide (MoS2), could benefit characterization of optoelectronic light harvesting schemes. Energy and damping of plasmon resonances of noble metal nanoparticle-decorated MoS2 were examined via parallel synthesis of (a) approximate discrete dipole (DDA) simulations and (b) near-field electron energy loss (EELS) and far-field optical transmission spectroscopies. Energy of localized surface plasmon resonance altered by MoS2 interactions was studied for gold nanospheres and silver nanoprisms. Augmented plasmon damping by injection of plasmon-excited electrons into the MoS2 was measured in EELS and represented by DDA. These techniques support rapid improvements in nanoparticle-2D material prototypes for photocatalysis and photodetection, for example.

  13. Biphasic catalysis using amphiphilic polyphenols-chelated noble metals as highly active and selective catalysts

    Science.gov (United States)

    Mao, Hui; Yu, Hong; Chen, Jing; Liao, Xuepin

    2013-07-01

    In the field of catalysis, it is highly desired to develop novel catalysts that combine the advantages of both homogeneous and heterogeneous catalysts. Here we disclose that the use of plant pholyphenol as amphiphilic large molecule ligand/stabilizer allows for the preparation of noble metal complex and noble metal nanoparticle catalysts. These catalysts are found to be highly selective and active in aqueous-organic biphasic catalysis of cinnamaldehyde and quinoline, and can be reused at least 3 times without significant loss of activity. Moreover, the catalytic activity and reusability of the catalysts can be rationally controlled by simply adjusting the content of polyphenols in the catalysts. Our strategy may be extended to design a wide range of aqueous-organic biphasic catalysis system.

  14. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience.

    Science.gov (United States)

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature.

  15. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  16. Rice straw modified by click reaction for selective extraction of noble metal ions.

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun; Li, Juan

    2015-02-01

    Rice straw was modified by azide-alkyne click reaction in order to realize selective extraction of noble metal ions. The ability of the modified straw to adsorb Pd(2+) and Pt(4+) was assessed using a batch adsorption technique. It was found that the sorption equilibrium could be reached within 1h and the adsorption capacity increased with temperature for both Pd(2+) and Pt(4+). The maximum sorption capacities for Pd(2+) and Pt(4+) were respectively attained in 1.0 and 0.1 mol/L HCl. The modified straw showed excellent selectivity for noble metal ions in comparison to the pristine straw. In addition, the modified straw was examined as a column packing material for extraction of noble metal ions. It was indicated that 1.0 mL/min was the best flow rate for Pd(2+) and Pt(4+). The modified straw could be repeatedly used for 10 times without any significant loss in the initial binding affinity.

  17. Oxidation of ethoxylated fatty alcohols to alkylpolyglycol carboxylic acids using noble metals as catalysts

    Directory of Open Access Journals (Sweden)

    Sagredos, Angelos

    2009-09-01

    Full Text Available The conversion of ethoxylated fatty alcohols to the corresponding carboxylic acids through dehydrogenation/ oxidation using noble-metal catalysts has been studied. Ethoxylated primary aliphatic alcohols, ethoxylated random secondary aliphatic alcohols and ethoxylated alkylphenols have been converted to the corresponding acids in the presence of a base. The noble metal catalysts Palladium and Platinum were used without significant degradation of the ethoxyl chain in yields that exceeded 90%. On the other hand, the catalysts Rhodium and Ruthenium gave yields of about 80% and 60% respectively.La conversión de alcoholes grasos etoxilados a los correspondientes ácidos carboxílicos por deshidrogenación/ oxidación con metales nobles como catalizador ha sido estudiada. Alcoholes primarios alifáticos etoxilados, alcoholes alifáticos secundarios etoxilados al azar y alquilfenoles etoxilados han sido convertidos a los correspondientes ácidos en presencia de base. Los catalizadores paladio y platino fueron usados sin degradación significativa de las cadenas etoxiladas con un rendimiento que excedió del 90%. Por otra parte catalizadores de rodio y rutenio produjeron rendimientos del 80 y 60%, respectivamente.

  18. Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces.

    Science.gov (United States)

    Shrestha, Buddha R; Baimpos, Theodoros; Raman, Sangeetha; Valtiner, Markus

    2014-06-24

    Electrochemical solid|liquid interfaces are critically important for technological applications and materials for energy storage, harvesting, and conversion. Yet, a real-time Angstrom-resolved visualization of dynamic processes at electrified solid|liquid interfaces has not been feasible. Here we report a unique real-time atomistic view into dynamic processes at electrochemically active metal interfaces using white light interferometry in an electrochemical surface forces apparatus. This method allows simultaneous deciphering of both sides of an electrochemical interface-the solution and the metal side-with microsecond resolution under dynamically evolving reactive conditions that are inherent to technological systems in operando. Quantitative in situ analysis of the potentiodynamic electrochemical oxidation/reduction of noble metal surfaces shows that Angstrom thick oxides formed on Au and Pt are high-ik materials; that is, they are metallic or highly defect-rich semiconductors, while Pd forms a low-ik oxide. In contrast, under potentiostatic growth conditions, all noble metal oxides exhibit a low-ik behavior. On the solution side, we reveal hitherto unknown strong electrochemical reaction forces, which are due to temporary charge imbalance in the electric double layer caused by depletion/generation of charged species. The real-time capability of our approach reveals significant time lags between electron transfer, oxide reduction/oxidation, and solution side reaction during a progressing electrode process. Comparing the kinetics of solution and metal side responses provides evidence that noble metal oxide reduction proceeds via a hydrogen adsorption and subsequent dissolution/redeposition mechanism. The presented approach may have important implications for designing emerging materials utilizing electrified interfaces and may apply to bioelectrochemical processes and signal transmission.

  19. Classical and quantum effects in noble metal and graphene plasmonics

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2015-01-01

    Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics such as noncla...

  20. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals.

    Science.gov (United States)

    Volonakis, George; Filip, Marina R; Haghighirad, Amir Abbas; Sakai, Nobuya; Wenger, Bernard; Snaith, Henry J; Giustino, Feliciano

    2016-04-07

    Lead-based halide perovskites are emerging as the most promising class of materials for next-generation optoelectronics; however, despite the enormous success of lead-halide perovskite solar cells, the issues of stability and toxicity are yet to be resolved. Here we report on the computational design and the experimental synthesis of a new family of Pb-free inorganic halide double perovskites based on bismuth or antimony and noble metals. Using first-principles calculations we show that this hitherto unknown family of perovskites exhibits very promising optoelectronic properties, such as tunable band gaps in the visible range and low carrier effective masses. Furthermore, we successfully synthesize the double perovskite Cs2BiAgCl6, perform structural refinement using single-crystal X-ray diffraction, and characterize its optical properties via optical absorption and photoluminescence measurements. This new perovskite belongs to the Fm3̅m space group and consists of BiCl6 and AgCl6 octahedra alternating in a rock-salt face-centered cubic structure. From UV-vis and photoluminescence measurements we obtain an indirect gap of 2.2 eV.

  1. Optical response of a single noble metal nanoparticle

    Science.gov (United States)

    Muskens, Otto; Christofilos, Dimitris; DelFatti, Natalia; Vallée, Fabrice

    2006-04-01

    The characterization of a single metal nanoobject by comparing its theoretical and experimental far-field spectra measured by a spatial modulation spectroscopy (SMS) technique is discussed in the case of gold and silver nanoparticles. Quantitative determination of the polarization dependent absorption cross-section spectrum of a single nanoparticle is shown to permit its optical identification, i.e., determination of its shape, size and orientation on a surface.

  2. Local electronic properties of graphene flakes on noble metal surfaces

    OpenAIRE

    Leicht, Philipp

    2015-01-01

    This thesis examines possible routes for the preparation of graphene nanostructures on metal substrates and performs structural and electronic characterizations using scanning tunneling microcopy and spectroscopy. Investigations of graphene nanostructures necessitate the use of a suitable graphene-substrate combination, which allows for a controlled in situ preparation of small and well-shaped graphene nanostructures. The choice of a graphene-substrate combination with weak interaction in or...

  3. On directly measuring relative Fermi energies of noble metals and their alloys

    Science.gov (United States)

    Kleiman, G. G.; Sundaram, V. S.; Rogers, J. D.

    1981-09-01

    We present the first evidence of direct measurement of relative Fermi energies in alloys and between pure metals. From applying the "atomic" concept of core hole final state screening, the Auger energy shift of noble metal A equals EFA- EF( x). High resolution Auger shifts in P1- xtCux, AuxCu1- x and AuxAg1- x demonstrate experimental verification of this simple relation. We find E FCuE FAu ≅ - 0.2 eV, and E FPt ≅ E FCu and E FAg ≅ E FAu.

  4. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    P R Vyas; C V Pandya; T C Pandya; V B Gohel

    2001-04-01

    A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of noble metals. It is found that three-body forces, in these metals, do play an important role. The inclusion of such three-body forces appreciably improves the agreement between the experimental and theoretical phonon dispersion curves.

  5. Unveiling nickelocene bonding to a noble metal surface

    Science.gov (United States)

    Bachellier, N.; Ormaza, M.; Faraggi, M.; Verlhac, B.; Vérot, M.; Le Bahers, T.; Bocquet, M.-L.; Limot, L.

    2016-05-01

    The manipulation of a molecular spin state in low-dimensional materials is central to molecular spintronics. The designs of hybrid devices incorporating magnetic metallocenes are very promising in this regard, but are hampered by the lack of data regarding their interaction with a metal. Here, we combine low-temperature scanning tunneling microscopy and density functional theory calculations to investigate a magnetic metallocene at the single-molecule level—nickelocene. We demonstrate that the chemical and electronic structures of nickelocene are preserved upon adsorption on a copper surface. Several bonding configurations to the surface are identified, ranging from the isolated molecule to molecular layers governed by van der Waals interactions.

  6. Strong and coverage-independent promotion of catalytic activity of a noble metal by subsurface vanadium

    Science.gov (United States)

    Reichl, Wolfgang; Hayek, Konrad

    2003-07-01

    While common bimetallic surfaces have a variable composition, the stable subsurface alloys of V/Rh and V/Pd are characterised by a purely noble metal-terminated surface and the second metal positioned in near-surface layers. The uniform composition of the topmost surface layer excludes conventional ensemble effects in catalysis, and the activity of the surface can be controlled by the metal loading and by the temperature of annealing. For example, the activity of a polycrystalline Rh surface in CO hydrogenation is significantly increased by promotion with subsurface vanadium. The modification of the subsurface layer with a different metal must be considered a promising approach to improve the catalytic properties of a metal surface.

  7. Bioactivity of noble metal nanoparticles decorated with biopolymers and their application in drug delivery.

    Science.gov (United States)

    Rai, Mahendra; Ingle, Avinash P; Gupta, Indarchand; Brandelli, Adriano

    2015-12-30

    The unique properties of nanomaterials can be applied to solve different problems including new ways of drug delivery. Noble metal nanoparticles are most promising because they have been used for medicinal purposes since ancient time. It is evident from the past studies that the metallic nanoparticles are much more effective against various microorganisms when compared to their conventional counterparts. However, decoration of such nanoparticles with biomaterials add more advantages to their antimicrobial activity. Decoration of metal nanoparticles with biopolymers is a quite new area of research. Studies performed hitherto shown that nanoparticles of noble metals like silver, gold and platinum demonstrated better antibacterial, antifungal and antiviral activities when conjugated with biopolymers. The development of such technology has potential to develop materials that are more effective in the field of health science. Considering the importance and uniqueness of this concept, the present review aims to discuss the use of biopolymer-decorated metal nanoparticles for combating various diseases caused by microbial pathogens. Moreover, the nanotoxicity aspect has also been discussed.

  8. Thermodynamic aspects of dehydrogenation reactions on noble metal surfaces.

    Science.gov (United States)

    Svane, K L; Hammer, B

    2014-11-01

    The reaction free energy for dehydrogenation of phenol, aniline, thiophenol, benzoic acid, and 1,4-benzenediol on the close packed copper, silver, and gold surfaces has been studied by density functional theory calculations. Dehydrogenation of thiophenol is found to be favourable on all three surfaces while aniline does not dehydrogenate on any of them. For phenol, benzenediol and benzoic acid dehydrogenation is favourable on copper and silver only, following the general trend of an increasing reaction free energy when going form gold to silver to copper. This trend can be correlated with the changes in bond lengths within the molecule upon dehydrogenation. While copper is able to replace hydrogen, leaving small changes in the bond lengths of the aromatic ring, the metal-molecule bond is weaker for silver and gold, resulting in a partial loss of aromaticity. This difference in bond strength leads to pronounced differences in adsorption geometries upon multiple dehydrogenations.

  9. Baseline milestone HWVP-87-V110202F: Preliminary evaluation of noble metal behavior in the Hanford waste vitrification plant reference glass HW-39

    Energy Technology Data Exchange (ETDEWEB)

    Geldart, R.W.; Bates, S.O.; Jette, S.J.

    1996-03-01

    The precipitation and aggregation of ruthenium (Ru), rhodium (RLh) and palladium (Pd) in the Hanford Waste Vitrification Plant (HWVP) low chromium reference glass HLW-39 were investigated to determine if there is a potential for formation of a noble metal sludge in the HWVP ceramic melter. Significant noble metal accumulations on the floor of the melter will result in the electrical shorting of the electrodes and premature failure of the melter. The purpose of this study was to obtain preliminary information on the characteristics of noble metals in a simulated HWVP glass. Following a preliminary literature view to obtain information concerning the noble metals behavior, a number of variability studies were initiated. The effects of glass redox conditions, melt temperature, melting time and noble metal concentration on the phase characteristics of these noble metals were examined.

  10. Synthesis of Supported Ultrafine Non-noble Subnanometer-Scale Metal Particles Derived from Metal-Organic Frameworks as Highly Efficient Heterogeneous Catalysts.

    Science.gov (United States)

    Kang, Xinchen; Liu, Huizhen; Hou, Minqiang; Sun, Xiaofu; Han, Hongling; Jiang, Tao; Zhang, Zhaofu; Han, Buxing

    2016-01-18

    The properties of supported non-noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non-noble metal particles on supports using metal-organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt%. Interestingly, the ultrafine non-noble metal particles exhibited very high activity for liquid-phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions.

  11. Optical and structural properties of noble-metal nanoparticles; Optische und strukturelle Eigenschaften von Edelmetallnanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, C.

    2006-06-23

    Noble-metal nanoparticles exhibit rich optical behavior, such as resonant light scattering and absorption and non-linear signal enhancement. This makes them attractive for a multitude of physical, chemical, and biophysical applications. For instance, recent biomedical experiments demonstrate the suitability of noble-metal nanoparticles for selective photothermal apoptosis by heat transport by laser irradiation. The applications of nanoparticles largely exploit that plasmons, i. e. collective oscillations of the conduction electrons, can be optically excited in these nanoparticles. In optical spectroscopy, these are seen as pronounced resonances. In the first part of this work, model calculations are employed to elucidate how radiation damping in noble-metal nanoparticles, i. e. the transformation of plasmons into photons, depends on particle size, particle shape, and on electromagnetic coupling between individual particles. Exact electrodynamic calculations are carried out for individual spheroidal particles and for pairs of spherical particles. These calculations for spheroidal particles demonstrate for the first time that radiative plasmon decay is determined by both the particle volume and the particle shape. Model calculations for pairs of large spherical particles reveal that the electromagnetic fields radiated by the particles mediate electromagnetic coupling at interparticle distances in the micrometer range. This coupling can lead to immense modulations of the plasmonic linewidth. The question whether this coupling is sufficiently strong to mediate extended, propagating, plasmon modes in nanoparticle arrays is addressed next. Detailed analysis reveals that this is not the case; instead, for the particle spacings regarded here, a non-resonant, purely diffractive coupling is observed, which is identified by steplike signatures in reflection spectra of the particle arrays. In the second part of this work, structural and optical properties of noble-metal

  12. Method for localized deposition of noble metal catalysts with control of morphology

    Science.gov (United States)

    Ricco, Antonio J.; Manginell, Ronald P.; Huber, Robert J.

    1998-01-01

    A combustible gas sensor that uses a resistively heated, noble metal-coated, micromachined polycrystalline Si filament to calorimetrically detect the presence and concentration of combustible gases. A thin catalytic Pt film was deposited by CVD from the precursor Pt(acac).sub.2 onto microfilaments resistively heated to approximately 500 .degree. C.; Pt deposits only on the hot filament. The filaments tested to date are 2 .mu.m thick .times.10 .mu.m wide .times.100, 250, 500, or 1000 .mu.m-long polycrystalline Si; some are overcoated with a 0.25 .mu.m-thick protective CVD Si.sub.3 N.sub.4 layer.

  13. Inference on the Nature and the Mass of Earth's Late Veneer from Noble Metals and Gases

    CERN Document Server

    Dauphas, N

    2001-01-01

    Noble metals and gases are very sensitive to the late accretion to the Earth of asteroids and comets. We present mass balance arguments based on these elements that indicate that 0.7E22-2.7E22 kg of extraterrestrial bodies struck the Earth after core formation and that comets comprised less than 1E-5 by mass of the impacting population. These results imply that the dynamics of asteroids and comets changed drastically with time and that biogenic elements and prebiotic molecules were not delivered to the Earth by comets but rather by carbonaceous asteroids.

  14. Development of guidelines on the application of noble metals to BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [EPRI, Palo Alto, CA (United States); Cowan, R.L

    2002-07-01

    Water Chemistry plays a critical role in determining the economics of BWR (boiling water reactor) operation. The chemistry controls the probability of repairs due to stress corrosion cracking of piping and internals, the operating and shutdown dose rates (and thus personnel exposure), radiation waste generation and fuel corrosion performance. Simultaneously addressing the adverse effects from these phenomena requires a delicate balance of chemistry variables. Earlier papers have reviewed the technologies that have evolved to provide this balance including specific impurity limits, hydrogen water chemistry, and isotopically depleted zinc injection. This paper addresses the experience with the latest technology, noble metal chemical addition (NMCA). (authors)

  15. Expeditious Synthesis of Noble Metal Nanoparticles Using Vitamin B12 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Changseok Han

    2015-08-01

    Full Text Available A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized Ag, Au, and Pd samples were thoroughly characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, and UV-visible spectrophotometry, confirming that metallic Ag, Au, and Pd were synthesized by the green chemistry method.

  16. "Intelligent" reforming catalysts: Trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites

    Institute of Scientific and Technical Information of China (English)

    Katsuomi Takehira

    2009-01-01

    Trace amounts of noble metal-doped Ni/Mg(Al)O catalysts were pre-pared starting from Mg-Al hydrotalcites (HTs) and tested in daily start-up and shut-down (DSS) operation of steam reforming (SR) of methane or partial oxidation (PO) of propane. Although Ni/Mg(Al)O catalysts prepared from Mg(Ni)-Al HT exhibited high and stable activity in stationary SR,PO and dry reforming of methane and propane,the Ni/Mg(Al)O catalysts were drastically deactivated due to Ni oxidation by steam as purge gas when they were applied in DSS SR of methane. Such deactivation was effectively suppressed by dop-ing trace amounts of noble metal on the catalysts by using a "memory effect" of HTs. Moreover,the noble metal-doped Ni/Mg(Al)O cat-alysts exhibited "intelligent" catalytic behaviors,i.e.,self-activation and self-regenerative activity,leading to high and sustainable activity during DSS operation. Pt was the most effective among noble met-als tested. The self-activation occurred by the reduction of Ni2+ in Mg(Ni,Al)O periclase to Ni~0 assisted by hydrogen spillover from Pt (or Pt-Ni alloy). The self-regenerative activity was accomplished by self-redispersion of active Ni~0 particles due to a reversible reduction-oxidation movement of Ni between the outside and the inside of the Mg(Al)O periclase crystal;surface Ni~0 was oxidized to Ni~(2+) by steam and incorporated into Mg(Ni~(2+),Al)O periclase,whereas the Ni~(2+) in the periclase was reduced to Ni~0 by the hydrogen spillover and appeared as the fine Ni~0 particles on the catalyst surface. Fur-ther a "green" preparation of the Pt/Ni/[Mg3.5Al]O catalysts was ac-complished starting from commercial Mg3.5-Al HT by calcination,followed by sequential impregnation of Ni and Pt.

  17. In-situ synthesis of noble metal nanoparticles in alginate solution and their application in catalysis.

    Science.gov (United States)

    Chen, Peng; Zhang, Xiaogang; Miao, Zhenjiang; Han, Buxing; An, Guimin; Liu, Zhimin

    2009-04-01

    Integration of eco-friendly method into metallic nanotechnology is one of the key issues in the field of nanoscience research. In this work, we reported a facile method to synthesize noble metal (Pt, Au, and Pd) nanoparticles in sodium alginate (SA) aqueous solution at 100 degrees C. The SA provides circumstance for reducing the metal precursors to their corresponding elemental states, and also acts as stabilizing agent for these metal nanoparticles. X-ray photoelectron spectroscopy of the as-produced metal-SA composites showed that the metallic form was the dominant species in the SA matrix under the experimental conditions. Transmission electron microscopy demonstrated that the metallic nanoparticles prepared in this way appeared to be homogeneous and their sizes were well within quantum size domain (<10 nm). The size and size distribution of the metal nanoparticles can be adjusted by altering the concentration of the metal precursors. The Pt-SA suspension could be cross-linked with divalent ions to form beads with porous structure at room temperature. The reaction behavior of cyclohexene hydrogenation suggested that the resultant Pt-alginate composites exhibited high catalytic activity.

  18. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Battocchio Chiara

    2011-01-01

    Full Text Available Abstract Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs, coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride, or poly(phenylacetylene-co-allylmercaptan. The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm with polymeric shell of about 2 nm.

  19. Noble-metal Ag nanoparticle chains: annealing Ag/Bi superlattice nanowires in vacuum

    Science.gov (United States)

    Xu, Shao Hui; Fei, Guang Tao; You, Qiao; Gao, Xu Dong; Huo, Peng Cheng; De Zhang, Li

    2016-09-01

    One-dimensional noble-metal Ag nanoparticle chains have been prepared by electrodepositing Ag/Bi superlattice nanowires in a porous anodic alumina oxide (AAO) template and following an annealing process in vacuum. It is found that Bi, as a sacrificial metal, can be removed completely after annealing at 450 °C with a vacuum degree of 10-5 Torr. The regulation of particle size, shape and interparticle spacing of Ag NP chains has been realized by adjusting the segment length of the Ag/Bi superlattice nanowires and the annealing condition. With an extension of the annealing time, it is observed that Ag particles display the transform trend from ellipsoid to sphere. Our findings could inspire further investigation on the design and fabrication of metal nanoparticle chains.

  20. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  1. Replacing Noble Metals with Alternative Materials in Plasmonics and Metamaterials: how good an idea?

    CERN Document Server

    Khurgin, Jacob B

    2016-01-01

    Noble metals that currently dominate the fields of plasmonics and metamaterials suffer from large ohmic losses. New plasmonic materials, such as doped oxides and nitrides, have smaller material loss, and, using them in place of metals carries promise of reduced-loss plasmonic and metamaterial structures, with sharper resonances and higher field concentration. This promise is put to a rigorous analytical test in this work which reveals that having low material loss is not sufficient to have a reduced modal loss in plasmonic structures. To reduce the modal loss it is absolutely necessary for the plasma frequency to be significantly higher than the operational frequency. Using examples of nanoparticle plasmons and gap plasmons one comes to the conclusion that even in the mid-infrared spectrum metals continue to hold advantage over the alternative media. The new materials may still find application niche where the high absorption loss is beneficial, e.g. in medicine and thermal photovoltaics.

  2. Dithiocarbamate Self-Assembled Monolayers as Efficient Surface Modifiers for Low Work Function Noble Metals.

    Science.gov (United States)

    Meyer, Dominik; Schäfer, Tobias; Schulz, Philip; Jung, Sebastian; Rittich, Julia; Mokros, Daniel; Segger, Ingolf; Maercks, Franziska; Effertz, Christian; Mazzarello, Riccardo; Wuttig, Matthias

    2016-09-06

    Tuning the work function of the electrode is one of the crucial steps to improve charge extraction in organic electronic devices. Here, we show that N,N-dialkyl dithiocarbamates (DTC) can be effectively employed to produce low work function noble metal electrodes. Work functions between 3.1 and 3.5 eV are observed for all metals investigated (Cu, Ag, and Au). Ultraviolet photoemission spectroscopy (UPS) reveals a maximum decrease in work function by 2.1 eV as compared to the bare metal surface. Electronic structure calculations elucidate how the complex interplay between intrinsic dipoles and dipoles induced by bond formation generates such large work function shifts. Subsequently, we quantify the improvement in contact resistance of organic thin film transistor devices with DTC coated source and drain electrodes. These findings demonstrate that DTC molecules can be employed as universal surface modifiers to produce stable electrodes for electron injection in high performance hybrid organic optoelectronics.

  3. Towards to Extraction of Nanodispersed Noble Metals From Natural Black Graphite Shales

    Directory of Open Access Journals (Sweden)

    Elena A. Mikhailenko

    2012-01-01

    Full Text Available A theoretical approach based on the density functional theory and the pseudopotential method was applied to consider diffusion and accumulation of Au, Pt, and Pd in graphite. It is shown that Pt atoms migrate easily inside graphite. They can stop at structure defects and accumulate there, attracting each other and forming plate clusters. Atoms of gold do not penetrate into graphite but link with edge atoms of broken graphite crystallites, forming three-dimensional metallic particles. Palladium behavior is intermediate between platinum and gold. Addition of silicon into graphite can promote the extraction of noble metals because Si atoms force out Pt, Pd, and Au atoms from their bonded states. Last effect can be used as a mechanism of striking off metals from graphite and their extraction from shales

  4. Noble metal nanoparticles deposited on self-assembled monolayers using Pulsed Laser Deposition show coulomb blockade at room temperature

    NARCIS (Netherlands)

    Speets, Emiel A.; Dordi, Barbara; Ravoo, Bart Jan; Oncel, Nuri; Hallbäck, Ann-Sofie; Zandvliet, Harold J.W.; Poelsema, Bene; Rijnders, Guus; Blank, Dave H.A.; Reinhoudt, David N.

    2005-01-01

    Nanometer-sized noble-metal clusters are fabricated on top of alkylthiolate self-assembled monolayers (SAMs) on annealed gold by pulsed laser deposition at elevated pressures. The size distribution of the clusters depends on the metal and on the pressure during the deposition. Scanning tunneling mic

  5. Abiological catalysis by artificial haem proteins containing noble metals in place of iron.

    Science.gov (United States)

    Key, Hanna M; Dydio, Paweł; Clark, Douglas S; Hartwig, John F

    2016-06-23

    Enzymes that contain metal ions--that is, metalloenzymes--possess the reactivity of a transition metal centre and the potential of molecular evolution to modulate the reactivity and substrate-selectivity of the system. By exploiting substrate promiscuity and protein engineering, the scope of reactions catalysed by native metalloenzymes has been expanded recently to include abiological transformations. However, this strategy is limited by the inherent reactivity of metal centres in native metalloenzymes. To overcome this limitation, artificial metalloproteins have been created by incorporating complete, noble-metal complexes within proteins lacking native metal sites. The interactions of the substrate with the protein in these systems are, however, distinct from those with the native protein because the metal complex occupies the substrate binding site. At the intersection of these approaches lies a third strategy, in which the native metal of a metalloenzyme is replaced with an abiological metal with reactivity different from that of the metal in a native protein. This strategy could create artificial enzymes for abiological catalysis within the natural substrate binding site of an enzyme that can be subjected to directed evolution. Here we report the formal replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with abiological, noble metals to create enzymes that catalyse reactions not catalysed by native Fe-enzymes or other metalloenzymes. In particular, we prepared modified myoglobins containing an Ir(Me) site that catalyse the functionalization of C-H bonds to form C-C bonds by carbene insertion and add carbenes to both β-substituted vinylarenes and unactivated aliphatic α-olefins. We conducted directed evolution of the Ir(Me)-myoglobin and generated mutants that form either enantiomer of the products of C-H insertion and catalyse the enantio- and diastereoselective cyclopropanation of unactivated olefins. The presented method of preparing artificial haem

  6. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    KAUST Repository

    Li, Zhenzhen

    2015-06-12

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO.

  7. Tailoring the supercapacitive performances of noble metal oxides, porous carbons and their composites

    Directory of Open Access Journals (Sweden)

    Panić Vladimir V.

    2013-01-01

    Full Text Available Porous electrochemical supercapacitive materials, as an important type of new-generation energy storage devices, require a detailed analysis and knowledge of their capacitive performances upon different charging/discharging regimes. The investigation of the responses to dynamic perturbations of typical representatives, noble metal oxides, carbonaceous materials and RuO2-impregnated carbon blacks, by electrochemical impedance spectroscopy (EIS is presented. This presentation follows a brief description of supercapacitive behavior and origin of pseudocapacitive response of noble metal oxides. For all investigated materials, the electrical charging/discharging equivalent of the EIS response was found to obey the transmission line model envisaged as so-called „resistor/capacitor (RC ladder“. The ladder features are correlated to material physicochemical properties, its composition and the composition of the electrolyte. Fitting of the EIS data of different supercapacitive materials to appropriate RC ladders enables the in-depth profiling of the capacitance and pore resistance of their porous thin-layers and finally the complete revelation of capacitive energy storage issues. [Projekat Ministarstva nauke Republike Srbije, br. 172060

  8. Noble metal nanoparticle-decorated TiO2 nanobelts for enhanced photocatalysis

    Science.gov (United States)

    He, Haiyan; Yang, Ping; Jia, Changchao; Miao, Yanping; Zhao, Jie; Du, Yingying

    2014-07-01

    TiO2 nanobelts have been fabricated through a hydrothermal method and subsequently sulfuric-acid-corrosion-treated for a rough surface. Noble metal nanoparticles such as Ag and Au were deposited on the coarse surface of TiO2 nanobelts via a coprecipitation procedure. Ag-TiO2 nanobelts were prepared in ethanolic solution contained silver nitrate (AgNO3) and sodium hydroxide (NaOH). Au-TiO2 nanobelts were obtained in chloroauric acid (HAuCl4) using sodium borohydride (NaBH4) as the reductant. It is confirmed by the results of XRD patterns together with the SEM images that the composite of noble metal and TiO2 nanobelts were obtained successfully and the Ag or Au nanoparticles were well-dispersed on the TiO2 nanobelts. Moreover, the as-prepared Ag and Au nanoparticle-decorated TiO2 nanobelts represent an enhanced photocatalytic activity compared with pure TiO2 nanobelts, which is due to the fact that the Ag and Au nanoparticles on the surface of TiO2 nanobelts act as sinks for the photogenerated electrons and promote the separation of the electrons and holes.

  9. Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation.

    Science.gov (United States)

    Bumajdad, Ali; Madkour, Metwally

    2014-04-28

    Although TiO2 is one of the most efficient photocatalysts, with the highest stability and the lowest cost, there are drawbacks that hinder its practical applications like its wide band gap and high recombination rate of the charge carriers. Consequently, many efforts were directed toward enhancing the photocatalytic activity of TiO2 and extending its response to the visible region. To head off these attempts, modification of TiO2 with noble metal nanoparticles (NMNPs) received considerable attention due to their role in accelerating the transfer of photoexcited electrons from TiO2 and also due to the surface plasmon resonance which induces the photocatalytic activity of TiO2 under visible light irradiation. This insightful perspective is devoted to the vital role of TiO2 photocatalysis and its drawbacks that urged researchers to find solutions such as modification with NMNPs. In a coherent context, we discussed here the characteristics which qualify NMNPs to possess a great enhancement effect for TiO2 photocatalysis. Also we tried to understand the reasons behind this effect by means of photoluminescence (PL) and electron paramagnetic resonance (EPR) spectra, and Density Functional Theory (DFT) calculations. Then the mechanism of action of NMNPs upon deposition on TiO2 is presented. Finally we introduced a survey of the behaviour of these noble metal NPs on TiO2 based on the particle size and the loading amount.

  10. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Directory of Open Access Journals (Sweden)

    X. H. Liu

    2015-10-01

    Full Text Available We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of 87Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the 87Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the 87Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  11. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. H.; Luo, H.; Qu, T. L., E-mail: qutianliang@nudt.edu.cn; Yang, K. Y.; Ding, Z. C. [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  12. Anchoring noble metal nanoparticles on CeO2 modified reduced graphene oxide nanosheets and their enhanced catalytic properties.

    Science.gov (United States)

    Ji, Zhenyuan; Shen, Xiaoping; Xu, Yuling; Zhu, Guoxing; Chen, Kangmin

    2014-10-15

    The strategy of structurally integrating noble metal, metal oxide, and graphene is expected to offer prodigious opportunities toward emerging functions of graphene-based nanocomposites. In this study, we develop a facile two-step approach to disperse noble metal (Pt and Au) nanoparticles on the surface of CeO2 functionalized reduced graphene oxide (RGO) nanosheets. It is shown that Pt and Au with particle sizes of about 5 and 2nm are well dispersed on the surface of RGO/CeO2. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 was used as a model reaction to quantitatively evaluate the catalytic properties of the as-synthesized RGO/Pt/CeO2 and RGO/Au/CeO2 ternary nanocomposites. In such triple-component catalysts, CeO2 nanocrystals provide unique and critical roles for optimizing the catalytic performance of noble metallic Pt and Au, allowing them to express enhanced catalytic activities in comparison with RGO/Pt and RGO/Au catalysts. In addition, a possible mechanism for the enhanced catalytic activities of the RGO/Pt/CeO2 and RGO/Au/CeO2 ternary catalysts in the reduction of 4-NP is proposed. It is expected that our prepared graphene-based triple-component composites, which inherit peculiar properties of graphene, metal oxide, and noble metal, are attractive candidates for catalysis and other applications.

  13. Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts.

    Science.gov (United States)

    Helmy, Hassan M; Ballhaus, Chris; Fonseca, Raúl O C; Wirth, Richard; Nagel, Thorsten; Tredoux, Marian

    2013-01-01

    In low temperature aqueous solutions, it has long been recognized by in situ experiments that many minerals are preceded by crystalline nanometre-sized particles and non-crystalline nanophases. For magmatic systems, nanometre-sized precursors have not yet been demonstrated to exist, although the suggestion has been around for some time. Here we demonstrate by high temperature quench experiments that platinum and arsenic self-organize to nanoparticles, well before the melt has reached a Pt-As concentration at which discrete Pt arsenide minerals become stable phases. If all highly siderophile elements associate to nanophases in undersaturated melts, the distribution of the noble metals between silicate, sulphide and metal melts will be controlled by the surface properties of nano-associations, more so than by the chemical properties of the elements.

  14. Cohesive properties of noble metals by van der Waals-corrected Density Functional Theory

    CERN Document Server

    Ambrosetti, Alberto

    2016-01-01

    The cohesive energy, equilibrium lattice constant, and bulk modulus of noble metals are computed by different van der Waals-corrected Density Functional Theory methods, including vdW-DF, vdW-DF2, vdW-DF-cx, rVV10 and PBE-D. Two specifically-designed methods are also developed in order to effectively include dynamical screening effects: the DFT/vdW-WF2p method, based on the generation of Maximally Localized Wannier Functions, and the RPAp scheme (in two variants), based on a single-oscillator model of the localized electron response. Comparison with results obtained without explicit inclusion of van der Waals effects, such as with the LDA, PBE, PBEsol, or the hybrid PBE0 functional, elucidates the importance of a suitable description of screened van der Waals interactions even in the case of strong metal bonding. Many-body effects are also quantitatively evaluated within the RPAp approach.

  15. First-principles study of the noble metal-doped BN layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yungang; Yang, Ping; Sun, Xin; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei

    2011-04-18

    Intriguing electronic and magnetic properties of BN layer with noble metal (Pd, Pt, Ag and Au) doping are obtained by first-principles calculations. Adsorbed Pd (or Pt) reduces the band gap of BN sheet owing to the induction of impurity states. The unpaired electrons in the Ag (or Au)-adsorbed and the Pd (or Pt)-substituted BN layers are polarized, and thus exhibit a magnetic moment of 1.0 µB, leading to these BN configurations to be magnetic semiconductors. The half-metallic feature of the Ag-substituted BN layer, along with the delocalization of spin states, renders this configuration an excellent spin filter material. Thus, these findings offer a unique opportunity for developing BN-based nanoscale devices.

  16. First-principles calculations of the vacancy formation energy in transition and noble metals

    DEFF Research Database (Denmark)

    Korzhavyi, P.A.; Abrikosov, Igor A.; Johansson, Börje

    1999-01-01

    Abstract: The vacancy formation energy and the vacancy formation volume of the 3d, 4d, and 5d transition and noble metals have been calculated within the local-density approximation. The calculations employ the order-N locally self-consistent Green's-function method in conjunction with a supercell...... energy through a transition-metal series and the effects of crystal and magnetic structure are investigated and discussed. [S0163-1829(99)07717-6]....... approach and include electrostatic multipole corrections to the atomic sphere approximation. The results are in excellent agreement with available full-potential calculations and with the vacancy formation energies obtained in positron annihilation measurements. The variation of the vacancy formation...

  17. Noble metal nanowires: from plasmon waveguides to passive and active devices.

    Science.gov (United States)

    Lal, Surbhi; Hafner, Jason H; Halas, Naomi J; Link, Stephan; Nordlander, Peter

    2012-11-20

    Using chemical synthesis, researchers can produce noble metal nanowires with highly regular, crystalline properties unachievable by alternative, top-down nanofabrication methods. Sitting at the intersection of nanochemistry and nanooptics, noble metal nanowires have generated intense and growing research interest. These nanostructures combine subwavelength transverse dimensions (50-100 nm) and longitudinal dimensions that can reach tens of micrometers or more, which makes them an ideal platform to launch surface plasmon waves by direct illumination of one end of the structure. Because of this property, researchers are using noble metal nanowires as a tool for fundamental studies of subwavelength plasmon-based optics and the properties of surface plasmon guided wave propagation in highly confined geometries below the classical optical diffraction limit. In this Account, we review some of the recent developments in plasmonic nanowire fabrication, nanowire plasmon imaging, and nanowire optical components and devices. The addition of an adjacent nanowire, substrate, or other symmetry-breaking defect can enable the direct coupling of light to and from free space to the guided waves on a nanowire structure. Such structures lead to more complex nanowire-based geometries with multiple optical inputs and outputs. Additional nanowire imaging methods are also possible: plasmon propagation on nanowires produces intense near-field diffraction, which can induce fluorescence in nearby quantum dots or photobleach adjacent molecules. When the nanowire is deposited on a dielectric substrate, the plasmon propagation along chemically synthesized nanowires exceeds 10 μm, which makes these structures useful in nonlocal applications such as remote surface-enhanced Raman spectroscopy (SERS) sensing. Nanowires can be used as passive optical devices, which include, for example, polarization manipulators, linear polarization rotators, or even broadband linear-to-circular polarization

  18. Effect of Mercury-Noble Metal Interactions on SRAT Processing of SB3 Simulants (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Baich, M. A.

    2004-12-31

    Controlling hydrogen generation below the Defense Waste Processing Facility (DWPF) safety basis constrains the range of allowable acid additions in the DWPF Chemical Processing Cell. This range is evaluated in simulant tests at the Savannah River National Laboratory (SRNL). A minimum range of allowable acid additions is needed to provide operational flexibility and to handle typical uncertainties in process and analytical measurements used to set acid additions during processing. The range of allowable acid additions is a function of the composition of the feed to DWPF. Feed changes that lead to a smaller range of allowable acid additions have the potential to impact decisions related to wash endpoint control of DWPF feed composition and to the introduction of secondary waste streams into DWPF. A limited program was initiated in SRNL in 2001 to study the issue of hydrogen generation. The program was reinitiated at the end of fiscal year 2004. The primary motivation for the study is that a real potential exists to reduce the conservatism in the range of allowable acid additions in DWPF. Increasing the allowable range of acid additions can allow decisions on the sludge wash endpoint or the introduction of secondary waste streams to DWPF to be based on other constraints such as glass properties, organic carbon in the melter off-gas, etc. The initial phase of the study consisted of a review of site reports and off-site literature related to catalytic hydrogen generation from formic acid and/or formate salts by noble metals. Many things are already known about hydrogen generation during waste processing. This phase also included the development of an experimental program to improve the understanding of hydrogen generation. This phase is being documented in WSRC-TR-2002-00034. A number of areas were identified where an improved understanding would be beneficial. A phased approach was developed for new experimental studies related to hydrogen generation. The first phase

  19. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  20. Synthesis of noble metal nanoparticles and their superstructures; Darstellung von Edelmetallnanopartikeln und deren Ueberstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Bigall, Nadja-Carola

    2009-08-18

    A modified synthesis procedure for citrate-stabilized gold nanoparticles in aqueous solution is transferred under application of equal concentrations to the systems silver, platinum, and palladium. The nanoparticles are analyzed by means of absorption spectroscopy and electron microscopy. Ordered superstructures of the noble-metal nanoparticles can be synthesized by infiltration of templates of block-copolymer films with aqueous nanoparticle solution. In dependence on the pre-treatment of the polymer films either two-dimensional periodical arrangements with a periodicity of less than 30 nm or fingerprint-like arrangements with a groove distance in the same order of magnitude. By removal of the polymer one- respectively two-dimensional arrangements of platinum nanowires respectively nanoparticles on a silicon waver arise.

  1. Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts.

    Science.gov (United States)

    Jagadeesh, Rajenahally V; Junge, Henrik; Beller, Matthias

    2014-07-09

    (Hetero)aromatic and aliphatic nitriles constitute major building blocks for organic synthesis and represent a versatile motif found in numerous medicinally and biologically important compounds. In general, these nitriles are synthesized by traditional cyanation procedures using toxic cyanides. With respect to green chemistry, the development of more sustainable and cost-efficient processes for the synthesis of advanced nitriles is highly desired. Here we report an environmentally benign synthesis of all kinds of structurally diverse aryl, heterocyclic, allylic and aliphatic nitriles from easily available alcohols applying aqueous ammonia and molecular oxygen. Key to success for this synthesis is the use of nitrogen-doped graphene-layered non-noble metal oxides as stable and durable nanocatalysts. As an example a renewable synthesis of adiponitrile, an industrially important bulk chemical is presented.

  2. Interactions of noble metal nanoparticles with their environment; Wechselwirkungen von Edelmetallnanopartikeln mit ihrer Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Reismann, Maximilian

    2009-12-08

    Upon irradiating noble metal nanoparticles with light, unique optical phenomena can occur, such as resonantly enhanced light-scattering and light-absorption, or a tremendous enhancement of the exciting optical field close to the surface of the nanoparticles. These phenomena rely on the excitations of collective oscillations of the conduction electrons within a nanoparticle. The optical properties of a nanoparticle are determined by the resonance frequency of these so-called plasmon oscillations. This resonance frequency and the light-scattering spectrum of a nanoparticle depend (among other effects) on the dielectric environment of the particle. Due to this effect, noble metal nanoparticles can be applied for local optical sensing of chemical substances. The large light-absorption properties of a nanoparticle also enable the usage of light-irradiation to deposit heat in the nanoparticle in a selective and highly localized manner. Therefore, a local temperature increase can be induced in the nanoparticle and its immediate environment. This temperature increase could be used to trigger chemical or biological reactions, or it could be used for a selective hyperthermia of biological material. These and further possible applications rely on the detection or the systematic excitation of interactions between the noble metal nanoparticle and its environment. These interactions are the central subject of this thesis. Particular attention is paid to photothermal interactions. An interesting question is to what extend a nanoparticle-supported, photothermally-induced temperature rise can be applied to trigger a biomolecular reaction in a spatially confined volume. By carefully adjusting the photothermal treatment, one aims at affecting the molecules without damaging their chemical functionality. The photothermal interaction is addressed in two projects: First, networks built up by gold nanoparticles are investigated. In these networks, double-stranded DNA-molecules are used to

  3. Enthalpies of Formation of Noble Metal Binary Alloys Bearing Rh or Ir

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The modified embedded atom method proposed by authors has been applied to calculating the enthalpies of formationof random alloys and the ordered intermetallic compounds for noble metal binary systems bearing Rh or lr. The presentresults are in good agreement with those of Miedema theory, available experiments and the first-principles quantummechanics calculations. The present results indicate that Cu-Rh, Cu-lr, Ag-Rh, Ag-lr, Au-Rh, Au-lr, Pd-Rh and Pd-lrsystems are repulsive, however, Ni-Rh, Ni-lr, Pt-lr, Pt-Rh and Rh-lr systems form solid solutions and Ni-Rh, Ni-lrand Pt-Rh show ordering tendency.

  4. Preparation and characterization of noble metal nanocolloids by silk fibroin in situ reduction

    Institute of Scientific and Technical Information of China (English)

    CHEN; Wenxing(陈文兴); WU; Wen(吴雯); CHEN; Haixiang(陈海相); SHEN; Zhiquan(沈之荃)

    2003-01-01

    Noble metal nanocolloids are prepared from their precursors by in situ reduction of a silk fibroin solution at room temperature without any reducing agent. The mechanism, the effects of pH and the molar ratio of the reactants on the reduction reaction are studied by UV-Vis spectroscopy. The structure of the colloids is characterized by FT-IR, TEM and AFM. According to the TEM images, the gold-silk fibroin colloid is a nanostructured bioconjugate with novel core-shell, while the silver-silk fibroin colloid tends to be congregated as clusters having more than ten nanoparticles of silver-silk fibroin. The gold colloid is highly dispersed and stable while the silver colloid is less dispersed and stable than the gold colloid.

  5. Noble Metal Nanostructures Influence of Structure and Environment on Their Optical Properties

    Directory of Open Access Journals (Sweden)

    Ondřej Kvítek

    2013-01-01

    Full Text Available Optical properties of nanostructured materials, isolated nanoparticles, and structures composed of both metals and semiconductors are broadly discussed. Fundamentals of the origin of surface plasmons as well as the surface plasmon resonance sensing are described and documented on a number of examples. Localized plasmon sensing and surface-enhanced Raman spectroscopy are subjected to special interest since those techniques are inherently associated with the direct application of plasmonic structures. The possibility of tailoring the optical properties of ultra-thin metal layers via controlling their shape and morphology by postdeposition annealing is documented. Special attention is paid to the contribution of bimetallic particles and layers as well as metal structures encapsulated in semiconductors and dielectrics to the optical response. The opportunity to tune the properties of materials over a large scale of values opens up entirely new application possibilities of optical active structures. The nature of surface plasmons predetermines noble metal nanostructures to be promising great materials for development of modern label-free sensing methods based on plasmon resonance—SPR and LSPR sensing.

  6. Measurement of the Inhomogeneity in Type B and Land-Jewell Noble-Metal Thermocouples

    Science.gov (United States)

    Webster, E. S.; Greenen, A.; Pearce, J.

    2016-07-01

    Inhomogeneity is the largest contributor to uncertainty in temperature measurements made with thermocouples, and the knowledge of inhomogeneity is essential if low-uncertainty measurements are required. Inhomogeneity is a particular problem for long-term applications at temperatures near or above 1500 ^{circ }hbox {C}, where pairs of alloyed noble-metal thermocouples must be used and the alloy components and potential contaminants become very mobile and cause large deviations in the Seebeck coefficient. While changes in inhomogeneity are a known and well-studied problem in noble-metal alloys at temperatures below 1100 ^{circ }hbox {C}, the effects are not well quantified at higher temperatures. This paper reports the first detailed measurements of inhomogeneity in a number of Type B and Land-Jewell thermocouples exposed to either short-term calibration up to 1600 ^{circ }hbox {C} or long-term in situ measurements for a period of approximately 3000 h at 1600 ^{circ }hbox {C}. The inhomogeneity is measured in a high-resolution scanner operating over the range from 600 ^{circ }hbox {C} to 900 ^{circ }hbox {C}. The results show that drifts of between 0.2 % and 0.6 % can be expected for reversible crystallographic and oxidation effects, whereas drift caused by irreversible contamination effects can be expected to be between 0.6 % and 1.1 %. It is also shown that the deviations in emfs caused by irreversible homogeneities in these thermocouples scale approximately linearly with temperature. This scalability allows uncertainties assessed at one temperature, to be extrapolated to other temperatures. Additionally it is shown that a preconditioning anneal at 1100 ^{circ }hbox {C} should be applied both before and after calibration to remove undesirable crystallographic and rhodium-oxidation effects.

  7. One-dimensional carbon nanotube/SnO2/noble metal nanoparticle hybrid nanostructure: synthesis, characterization, and electrochemical sensing.

    Science.gov (United States)

    Fang, Youxing; Guo, Shaojun; Zhu, Chengzhou; Dong, Shaojun; Wang, Erkang

    2010-08-02

    Herein we report a facile and efficient method for self-assembling noble-metal nanoparticles (NPs) to the surface of SnO(2)-coated carbon nanotubes (CNT@SnO(2)) to construct CNT@SnO(2)/noble metal NP hybrids. By using SnCl(4) as the precursor of the SnO(2) shell on the surface of CNTs, the hydrolysis speed of SnCl(4) was slowed down in ethanol containing a trace amount of urea and water. The coaxial nanostructure of CNT@SnO(2) was confirmed by using X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). It was found that the coating layer of SnO(2) was homogeneous with the mean thickness of 8 nm. The CNT@SnO(2)/noble-metal NP hybrids were obtained by mixing noble-metal NPs with as-prepared CNT@SnO(2) coaxial nanocables by means of a self-assembly strategy. With the amino group terminated, the CNT@SnO(2) coaxial nanocable can readily adsorb the as-prepared noble-metal NPs (Au, Ag, Au-Pt, and Au-Pd NPs). The presence of an amino group at the surface of SnO(2) was proved by use of X-ray photoelectron spectroscopy (XPS). In addition, H(2)O(2) sensing by amperometric methods could serve as detection models for investigating the electrocatalytic ability of as-prepared hybrid materials. It was found that wide linear ranges and low detection limits were obtained by using the enzyme-free CNT@SnO(2)@Au-Pt modified electrode, which indicated the potential utilizations of the hybrid based on CNT@SnO(2) for electrochemical sensing.

  8. Interactions of noble metal nanoparticles with their environment; Wechselwirkungen von Edelmetallnanopartikeln mit ihrer Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Reismann, Maximilian

    2009-12-08

    Upon irradiating noble metal nanoparticles with light, unique optical phenomena can occur, such as resonantly enhanced light-scattering and light-absorption, or a tremendous enhancement of the exciting optical field close to the surface of the nanoparticles. These phenomena rely on the excitations of collective oscillations of the conduction electrons within a nanoparticle. The optical properties of a nanoparticle are determined by the resonance frequency of these so-called plasmon oscillations. This resonance frequency and the light-scattering spectrum of a nanoparticle depend (among other effects) on the dielectric environment of the particle. Due to this effect, noble metal nanoparticles can be applied for local optical sensing of chemical substances. The large light-absorption properties of a nanoparticle also enable the usage of light-irradiation to deposit heat in the nanoparticle in a selective and highly localized manner. Therefore, a local temperature increase can be induced in the nanoparticle and its immediate environment. This temperature increase could be used to trigger chemical or biological reactions, or it could be used for a selective hyperthermia of biological material. These and further possible applications rely on the detection or the systematic excitation of interactions between the noble metal nanoparticle and its environment. These interactions are the central subject of this thesis. Particular attention is paid to photothermal interactions. An interesting question is to what extend a nanoparticle-supported, photothermally-induced temperature rise can be applied to trigger a biomolecular reaction in a spatially confined volume. By carefully adjusting the photothermal treatment, one aims at affecting the molecules without damaging their chemical functionality. The photothermal interaction is addressed in two projects: First, networks built up by gold nanoparticles are investigated. In these networks, double-stranded DNA-molecules are used to

  9. MONTE CARLO SIMULATION STUDY OF SURFACE ELECTRONIC EXCITATION OF NOBLE METALS

    Institute of Scientific and Technical Information of China (English)

    H.M. Li; Z.J. Ding; Q.R. Pu; Z.M. Zhang

    2002-01-01

    In this work we present a numerical simulation of REELS-spectrum for noble metals,Au and Ag. The calculation is based on an electron-surface inelastic scattering modelpreviously developed. The differential inelastic cross section is obtained fron an inho-mogeneous electron self-energy in the surface region, which provides full informationof the dependency of the total and differential cross section on the kinetic energy,the distance from the surface and the moving direction of electrons, accommodatingthe formulation to the practical situation in surface electron spectroscopes. A novelMonte Carlo simulation code of electron interaction with a surface incorporating thelocal scattering mean free path has been developed. The comparison of the simulatedREELS-spectra with the experimental measurements shows a remarkable agreement onthe spectrum shape, which then confirms that the present model for electron-surfaceinelastic .scattering is quite reasonable. The simulation has further shown the compo.nent to surface excitation due to the individual scattering processes along trajectorypart, i.e., the loss in vacuum before reflection, the loss in vacuum after reflection andloss in metal events.

  10. Synthesis of Self-assembled Noble Metal Nanoparticle Chains Using Amyloid Fibrils of Lysozyme as Templates

    Directory of Open Access Journals (Sweden)

    Ziming Xu

    2016-01-01

    Full Text Available We reported a facile method for preparing self-assembled noble metal nanoparticle chains by using lysozyme amyloid fibrils as a biotemplate in an aqueous environ‐ ment. The nanoparticle chains of gold (AuNPCs, palladi‐ um (PdNPCs, platinum (PtNPCs and rhodium (RhNPCs, which are lysozyme fibrils coated by gold, palladium, platinum and rhodium nanoparticles, can be fabricated by simply reducing the corresponding metal salt precursors using NaBH4. Under the same molar ratio between salt precursors and fibrils, two types of morphologies of high- yield AuNPCs (thin- and thick- AuNPCs were synthesized as a result of adjusting the fibrosis time and temperature in the final stage. Abundant PdNPCs with a length of several micrometres intertwisted with each other to form PdNPC networks. The growth of RhNPCs started from the inner surface of the fibrils and gradually spread to the whole fibre as superabundant rhodium nanoparticles (RhNPs bound to the fibrils. Finally, PtNPCs at different growing periods were presented. The nanostructures were investigated by transmission electron microscope, UV-visible spectrosco‐ py, fluorescence spectroscopy, energy-dispersive X-ray spectroscopy and atomic force microscope.

  11. Synthesis and characterization of ZnO nanostructures on noble-metal coated substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dikovska, A.Og. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria); Atanasova, G.B. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Avdeev, G.V. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 11, 1113 Sofia (Bulgaria); Nedyalkov, N.N. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2016-06-30

    Highlights: • ZnO nanostructures were fabricated on Au–Ag alloy coated silicon substrates by applying pulsed laser deposition. • Morphology of the ZnO nanostructures was related to the Au–Ag alloy content in the catalyst layer. • Increasing the Ag content in Au–Ag catalyst layer changes the morphology of the ZnO nanostructures from nanorods to nanobelts. - Abstract: In this work, ZnO nanostructures were fabricated on noble-metal (Au, Ag and Au–Ag alloys) coated silicon substrates by applying pulsed laser deposition. The samples were prepared at a substrate temperature of 550 °C, an oxygen pressure of 5 Pa, and a laser fluence of 2 J cm{sup −2} – process parameters usually used for deposition of smooth and dense thin films. The metal layer's role is substantial for the preparation of nanostructures. Heating of the substrate changed the morphology of the metal layer and, subsequently, nanoparticles were formed. The use of different metal particles resulted in different morphologies and properties of the ZnO nanostructures synthesized. The morphology of the ZnO nanostructures was related to the Au–Ag alloy's content of the catalyst layer. It was found that the morphology of the ZnO nanostructures evolved from nanorods to nanobelts as the ratio of Au/Ag in the alloy catalyst was varied. The use of a small quantity of Ag in the Au–Ag catalyst (Au{sub 3}Ag) layer resulted predominantly in the deposition of ZnO nanorods. A higher Ag content in the catalyst alloy (AuAg{sub 2}) layer resulted in the growth of a dense structure of ZnO nanobelts.

  12. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles.

    Science.gov (United States)

    Bootharaju, M S; Pradeep, T

    2012-02-01

    Application of nanoparticles (NPs) in environmental remediation such as water purification requires a detailed understanding of the mechanistic aspects of the interaction between the species involved. Here, an attempt was made to understand the chemistry of noble metal nanoparticle-pesticide interaction, as these nanosystems are being used extensively for water purification. Our model pesticide, chlorpyrifos (CP), belonging to the organophosphorothioate group, is shown to decompose to 3,5,6-trichloro-2-pyridinol (TCP) and diethyl thiophosphate at room temperature over Ag and Au NPs, in supported and unsupported forms. The degradation products were characterized by absorption spectroscopy and electrospray ionization mass spectrometry (ESI MS). These were further confirmed by ESI tandem mass spectrometry. The interaction of CP with NP surfaces was investigated using transmission electron microscopy, energy dispersive analysis of X-rays, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS reveals no change in the oxidation state of silver after the degradation of CP. It is proposed that the degradation of CP proceeds through the formation of AgNP-S surface complex, which is confirmed by Raman spectroscopy. In this complex, the P-O bond cleaves to yield a stable aromatic species, TCP. The rate of degradation of CP increases with increase of temperature and pH. Complete degradation of 10 mL of 2 ppm CP solution is achieved in 3 h using 100 mg of supported Ag@citrate NPs on neutral alumina at room temperature at a loading of ∼0.5 wt %. The effect of alumina and monolayer protection of NPs on the degradation of CP is also investigated. The rate of degradation of CP by Ag NPs is greater than that of Au NPs. The results have implications to the application of noble metal NPs for drinking water purification, as pesticide contamination is prevalent in many parts of the world. Study shows that supported Ag and Au NPs may be employed in sustainable

  13. Solar wind noble gases and nitrogen in metal from lunar soil 68501

    Science.gov (United States)

    Becker, Richard H.; Pepin, Robert O.

    1994-01-01

    Noble gases and N were analyzed in handpicked metal separates from lunar soil 68501 by a combination of step-wise combustions and pyrolyses. Helium and Ne were found to be unfractionated with respect to one another when normalized to solar abundances, for both the bulk sample and for all but the highest temperature steps. However, they are depleted relative to Ar, Kr and Xe by at least a factor of 5. The heavier gases exhibit mass-dependent fractionation relative to solar system abundance ratios but appear unfractionated, both in the bulk metal and in early temperature steps, when compared to relative abundances derived from lunar ilmenite 71501 by chemical etching, recently put forward as representing the abundance ratios in solar wind. Estimates of the contribution of solar energetic particles (SEP) to the originally implanted solar gases, derived from a basic interpretation of He and Ne isotopes, yield values of about 10%. Analysis of the Ar isotopes requires a minimum of 20% SEP, and Kr isotopes, using our preferred composition for solar wind Kr, yield a result that overlaps both these values. It is possible to reconcile the data from these gases if significant loss of solar wind Ar, Kr and presumably Xe has occurred relative to the SEP component, most likely by erosive processes that are mass independent, although mass-dependent losses (Ar greater than Kr greater than Xe) cannot be excluded. If such losses did occur, the SEP contribution to the solar implanted gases must have been no more than a few percent. Nitrogen is a mixture of indigenous meteoritic N, whose isotopic composition is inferred to be relatively light, and implanted solar N, which has probably undergone diffusive redistribution and fractionation. If the heavy noble gases have not undergone diffusive loss, then N/Ar in the solar wind can be inferred to be at least several times the accepted solar ratio. The solar wind N appears, even after correction for fractionation effects, to have a minimum

  14. Noble metal nanoparticles deposited on self-assembled monolayers by pulsed laser deposition show coulomb blockade at room temperature.

    Science.gov (United States)

    Speets, Emiel A; Dordi, Barbara; Ravoo, Bart Jan; Oncel, Nuri; Hallbäck, Ann-Sofie; Zandvliet, Harold J W; Poelsema, Bene; Rijnders, Guus; Blank, Dave H A; Reinhoudt, David N

    2005-04-01

    Nanometer-sized noble-metal clusters are fabricated on top of alkylthiolate self-assembled monolayers (SAMs) on annealed gold by pulsed laser deposition at elevated pressures. The size distribution of the clusters depends on the metal and on the pressure during the deposition. Scanning tunneling microscopy (STM) and conductive probe atomic force microscopy (CP-AFM) showed that the metal clusters are insulated from the substrate on top of the SAM. Coulomb blockades could be measured at room temperature by STM for palladium clusters on decanethiol SAMs.

  15. Noble metals determination in ancient jewels with portable ED-XRF system

    Energy Technology Data Exchange (ETDEWEB)

    Parreira, Paulo S.; Galvao, Tiago D.; Appoloni, Carlos R. [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. de Fisica. Lab. de Fisica Nuclear Aplicada ], e-mail: parreira@uel.br, e-mail: tdggalvao@yahoo.com.br, e-mail: appoloni@uel.br

    2009-07-01

    A handmade system of Energy Dispersive X-Ray Fluorescence (ED-XRF) was used to perform the analysis of some jewels of the XIX century, as napkin holder, tobacco case, cigarette case, pen, pendant shrines, bracelets and a crucifix from the collection of the Museu Historico Nacional do Rio de Janeiro (MHN), Brazil. It was possible to verify the presence of Cu, Au and Ag as macro elements of the alloys, besides Hg as contaminant for one silver piece. Some gold and silver coins with well-known concentrations of gold and silver were also analysed, as reference material, to check out the methodology. To determine the concentrations of the metals, a methodology based on the equation of the fundamental parameters was used. For the jewels with silver aspect, it was possible to determine in average 90.4% of Ag for the napkin holder and 46.6% of Ag for one the bracelets, this last one presented also a high concentration of copper. For the jewels with golden aspect, it was possible to determine, in average, 88.6% to 98.9% for the Au content . For one special piece it was observed 62.5% of Au and 37.5% of Cu. For the coins, the obtained values showed a deviation of 0.4 and 7.6 percent for the average concentration of noble metals Ag and Au, respectively. The portable X-ray system showed to be a powerful tool in the investigation of metallic alloys with high concentration of major elements, allowing in situ measurements.(author)

  16. Magnetic and noble metallic nanoparticles deposited on silica spheres via silanization.

    Science.gov (United States)

    Zhang, Feifei; Shi, Ruixia; Yang, Ping

    2014-07-01

    A sol-gel technique has been developed to deposit various nanoparticles (NPs) on silica spheres. The silanization of the silica spheres using 3-mercaptopropyltrimethoxysilane (MPS) with mercapto groups (-SH) plays an important role for the deposition. After being functionalized by MPS, the deposition of magnetic and noble metallic NPs was performed by the reduction of Au3+ and Ag+ ions in-situ using sodium borohydride (NaBH4) or the co-precipitation reaction of Fe2+/Fe3+ ions and ammonia (NH3 H2O) at low reactant concentrations at room temperature. The transmission electron microscope (TEM) observation of samples exhibited the homogeneous deposition of Ag, Au, and Fe3O4 NPs on the silica spheres, in which the average size of Au and Ag NPs is 5 nm in diameter while the ones of Fe3O4 NPs is about 10 nm. In the case of without the silanization of silica spheres, the nucleation and growth of the NPs in solutions occur instead of the homogenous deposition. The results demonstrates that MPS containing the -SH metal-chelating functionality, can grow a layer in an ethanol solution on the silica spheres, thus improving the performance of the silica surface by grafting -SH groups. These hybrids offer a high absorption capacity for metal ions, all kinds of NPs can be deposited on the surface by co-precipitation channel on the basis of such property. The results presented hear may open up a novel and simple approach for the preparation of composite NPs.

  17. Noble metal based plasmonic nanomaterials and their application for bio-imaging and photothermal therapy

    Science.gov (United States)

    Zhu, Dewei

    During the past two decades, researchers have gained more and more insight into the manipulation of nanomaterials to create useful technologies. Numerous classes of nanomaterials have been produced and studied based upon their intriguing chemical and physical properties and their potential applications in diverse fields, ranging from electronics to renewable energy and biomedicine. In this dissertation, we describe the synthesis and potential biomedical applications of several types of noble metal-based nanomaterials in which we control size, shape, and coupling to other materials to tune their localized surface plasmon resonance (LSPR) interaction with light. We demonstrate the application of these novel nanostructures as contrast agents for photoacoustic imaging and as photosensitizers for photothermal therapy. Chapter one first presents protocols for producing monodisperse spherical nanoparticles of gold and silver. The diameter of the nanospheres can be adjusted from less than 2 nm to greater than 10 nm by controlling the reaction conditions, including ligands that cap the nanosphere surfaces, reaction time, and reaction temperature. Next, we describe the synthesis of multi-branched Au nanocrystals with predominantly tripodal, tetrapodal and star-shaped morphologies. We demonstrate tuning of the LSPR energy in these materials by changing the branch length. In the third part of this chapter, we present a novel method for coupling heavily-doped p-type copper selenide (Cu2-xSe) NPs with Au NPs by seeded nanocrystal growth to form a new type of semiconductor-metal heterogeneous nanostructure. This new class of plasmonic nanomaterials can simultaneously exhibit two types of LSPR in a single system, producing a broad optical absorbance that is nearly flat across the near infrared (NIR) spectral region (750-1150nm), along with a small shoulder at 566 nm that originates from the Au NP. We conclude this first chapter by demonstrating the use of self-doped copper sulfide

  18. Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors

    Directory of Open Access Journals (Sweden)

    Antonio Tricoli

    2012-05-01

    Full Text Available The structural stability of pure SnO2 nanoparticles and highly sensitive SnO2-SiO2 nanocomposites (0–15 SiO2 wt% has been investigated for conditions relevant to their utilization as chemoresistive gas sensors. Thermal stabilization by SiO2 co-synthesis has been investigated at up to 600 °C determining regimes of crystal size stability as a function of SiO2-content. For operation up to 400 °C, thermally stable crystal sizes of ca. 24 and 11 nm were identified for SnO2 nanoparticles and 1.4 wt% SnO2-SiO2 nanocomposites, respectively. The effect of crystal growth during operation (TO = 320 °C on the sensor response to ethanol has been reported, revealing possible long-term destabilization mechanisms. In particular, crystal growth and sintering-neck formation were discussed with respect to their potential to change the sensor response and calibration. Furthermore, the effect of SiO2 cosynthesis on the cross-sensitivity to humidity of these noble metal-free SnO2-based gas sensors was assessed.

  19. Optical pump wavelength dependence in visible-pump visible-probe spectroscopy of noble metals

    Science.gov (United States)

    Sahota, Derek G.; Lobo, Calvin; Duch, Konrad; Dodge, J. Steven

    2012-10-01

    We have developed a femtosecond visible-pump visible-probe reflectometer with individually tunable pump and probe photon energies. The spectrometer has been used to study optically thick films of the noble metals Au and Cu over a wide variety of pump fluences and photon energies. Through comparison between experimental measurements and two-temperature model (TTM) simulations, we estimate an electron-phonon coupling constant, g, of 2.37 ±0.11 x10^16 Wm-3K-1 for Au and 1.19 ±0.13 x10^17 Wm-3K-1 for Cu, consistent with previous studies. The variation of the optical pump parameters allows a more accurate determination of the electron-phonon coupling constant. The relaxation rate, τ, of the thermally excited electrons is shown to be strongly dependent on the peak electron temperature of the excited sample, and only weakly dependent on the pump photon energy. The static dielectric constant is found to significantly underestimate the dependence of the differential reflectivity on the pump photon energy.

  20. Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001)

    Energy Technology Data Exchange (ETDEWEB)

    El Gabaly, Farid; Figuera, Juan de la [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); McCarty, Kevin F [Sandia National Laboratories, Livermore, CA 94550 (United States); Schmid, Andreas K [Lawrence Berkeley National Laboratory, Berkeley 94720 (United States); Munoz, M Carmen; Gallego, Silvia [Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049 (Spain); Szunyogh, Laszlo [Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-111 Budapest (Hungary); Weinberger, Peter [Center for Computational Nanoscience, A-1010 Wien (Austria)], E-mail: juan.delafiguera@iqfr.csic.es

    2008-07-15

    Thin films of Co/Ru(0001) are known to exhibit an unusual spin reorientation transition (SRT) coupled to the completion of Co atomic layers for Co thicknesses under four layers. By means of spin-polarized low-energy electron microscopy, we follow in real space the magnetization orientation during the growth of atomically thick capping layers on Co/Ru(0001). Capping with noble metal (Cu, Ag and Au) elements modifies the SRT depending on the Co and overlayer thickness and on the overlayer material, resulting in an expanded range of structures with high perpendicular magnetic anisotropy. The origin of the SRT can be explained in terms of ab initio calculations of the layer-resolved contributions to the magnetic anisotropy energy. Besides the changes in the SRT introduced by the capping, a quantitative enhancement of the magnetic anisotropy is identified. A detailed analysis of the interplay between strain and purely electronic effects allows us to identify the conditions that lead to a high perpendicular magnetic anisotropy in thin hcp Co films.

  1. Efficient noble metal nanocatalysts supported on HfC(001) for O2 dissociation

    Science.gov (United States)

    Wang, Shiyan; Zhang, Xilin; Zhang, Yanxing; Mao, Jianjun; Yang, Zongxian

    2017-03-01

    The adsorption and dissociation of O2 on the M4 (M=Au, Pd, Pt) clusters supported on HfC(001) (Hafnium Carbide) are investigated using ab initio density functional theory calculations. The geometric and electronic structures are analyzed in detail. It is found that the dissociation barriers of O2 on Au4/HfC(001) (0.26 eV), Pd4/HfC(001) (0.49 eV) and Pt4/HfC(001) (0.09 eV) are much smaller than those on the clean surfaces of HfC(001) (1.60 eV), Au(111) (1.37 eV), Pd(111) (1.0 and 0.91 eV) and Pt(111) (0.27-0.7 eV), respectively. The low dissociation barriers imply that the Pt4/HfC(001) exhibits the highest catalytic activity for O2 dissociation, and the Au4/HfC(001) and Pd4/HfC(001) may also be possible substitutes with lower cost for the current Pt/C catalyst for O2 dissociation. The present study is conductive to designing new efficient noble metal catalyst using HfC support for efficiently promoting O2 dissociation.

  2. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides

    Institute of Scientific and Technical Information of China (English)

    Hongqing Chen; Hao Yu; Yong Tang; Minqiang Pan; Guangxing Yang; Feng Peng; Hongjuan Wang; Jian Yang

    2009-01-01

    Hydrogen was produced over noble metal (Ir, Ru, Rh, Pd) catalysts supported on various oxides, including γ-Al2O3, CeO2, ZrO2 and La2O3, via the autothermai reforming reaction of ethanol (ATRE) and oxidative reforming reaction of ethanol (OSRE). The conversion of ethanol and selectivites for hydrogen and byproducts such as methane, ethylene and acetaldehyde were studied. It was found that lanthana alone possessed considerable activity for the ATRE reaction, which could be used as a functional support for ATRE catalysts. It was demonstrated that Ir/La2O3 prevented the formation of methane, and Rh/La2O3 encumbered the production of ethylene and acetaldehyde. ATRE reaction was carried out over La2O3-supported catalysts (Ir/La2O3) with good stability on stream, high conversion, and excellent hydrogen selectivity approaching thermodynamic limit under autothermal condition. Typically, 3.4 H2 molecules can be extracted from a pair of ethanol and water molecules over Ir(5wt%)/La2O3. The results presented in this paper indicate that Ir/La2O3 can be used as a promising catalyst for hydrogen production via ATRE reaction from renewable ethanol.

  3. Ab initio study of the trapping of polonium on noble metals

    Science.gov (United States)

    Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan

    2016-04-01

    In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.

  4. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits; Caracterizacion del comportamiento electroquimico de recubrimiento por soldadura de acero 308L y en presencia de depositos de metales nobles

    Energy Technology Data Exchange (ETDEWEB)

    Piedras, P.; Arganis J, C. R., E-mail: pedro.piedras@hotmail.es [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  5. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    Directory of Open Access Journals (Sweden)

    Christopher Knoblauch

    2014-10-01

    Full Text Available Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs. Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.

  6. Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution

    Science.gov (United States)

    Niu, Kexing; Yang, Baoping; Cui, Jinfeng; Jin, Jutao; Fu, Xiaogang; Zhao, Qiuping; Zhang, Junyan

    2013-12-01

    This study develops a promising catalyst for oxygen reduction reaction (ORR) via a simple two-step heat treatment of a mixture of cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O), polyethyleneimine (PEI), and graphene oxide (GO), firstly in argon atmosphere and then in ammonia atmosphere. X-ray photoemission spectroscopy (XPS) result reveals that the catalyst has pyridinic N-dominant (46% atomic concentration among all N components) on the surface. The kinetics measurement of the catalyst in 0.1 M KOH solution using a rotating disk electrode (RDE) reveals that the catalyst (Co/N/rGO(NH3)) has high activity. Furthermore, the number of electrons exchanged during the ORR with the catalyst is determined to be ˜3.9, suggesting that the ORR is dominated by a 4e- reduction of O2 to H2O. The catalyst has good stability, and its performance is superior to the commercial Pt/C(20%) catalyst in alkaline condition, making the material a promising substitute to noble metal ORR electrocatalyst on the cathode side of fuel cells.

  7. Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection

    Science.gov (United States)

    Li, Zhenzhen; Xin, Yanmei; Zhang, Zhonghai; Wu, Hongjun; Wang, Peng

    2015-01-01

    One-dimensional nanocomposites of metal-oxide and noble metal were expected to present superior performance for nonenzymatic glucose detection due to its good conductivity and high catalytic activity inherited from noble metal and metal oxide respectively. As a proof of concept, we synthesized gold and copper oxide (Au/CuO) composite with unique one-dimensional nanocauliflowers structure. Due to the nature of the synthesis method, no any foreign binder was needed in keeping either Au or CuO in place. To the best of our knowledge, this is the first attempt in combining metal oxide and noble metal in a binder-free style for fabricating nonenzymatic glucose sensor. The Au/CuO nanocauliflowers with large electrochemical active surface and high electrolyte contact area would promise a wide linear range and high sensitive detection of glucose with good stability and reproducibility due to its good electrical conductivity of Au and high electrocatalytic activity of CuO. PMID:26068705

  8. Photo-induced reduction of Noble metal ions to metal nanoparticles on tubular J-aggregates

    Directory of Open Access Journals (Sweden)

    Stefan Kirstein

    2006-01-01

    Full Text Available Palladium and silver nanoparticles are formed on the surface of tubular J-aggregates of an amphiphilic tetrachlorobenzimidacarbocyanine dye by reduction of the respective metal cations in aqueous solution. Upon addition of the palladium complex Na2PdCl4 to the aggregate solution, the absorption spectrum shows significant changes which is explained by partial destruction of the aggregates. Cryogenic transmission electron microscopy (cryo-TEM images show that the tubular J-aggregates are randomly covered by well-separated Pd nanoparticles of approximately 1–3 nm size. Larger particles and higher particle density along the aggregates are obtained when an auxiliary reducing agent is added to the solution. The presence of the metallic particles leads to efficient fluorescence quenching giving clear evidence for super quenching. In similar experiments using AgNO3, silver nanoparticles are grown which are larger in size but less dense distributed along the aggregates. At least in the case of the silver particles, the spontaneous formation of metal nanoparticles is assumed to be initiated by a photo-induced electron transfer process (PET.

  9. Wire gauze and cordierite supported noble metal catalysts for passive autocatalytic recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Sanap, Kiran K. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India); Varma, S., E-mail: svarma@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Waghmode, S.B. [Department of Chemistry, University of Pune, Ganeshkhind, Pune 411007 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-12-01

    Highlights: • Synthesis by electroless deposition method and chemical reduction route. • Particle size of 0.1–0.5 μm & 3.5–5 nm for Pt–Pd/Wg & Pt–Pd/Cord catalysts. • Active for H{sub 2} and O{sub 2} reaction with initial H{sub 2} concentration of 1.5 to 7% in air. • Active in presence of different contaminants like CO{sub 2}, CH{sub 4}, CO & relative humidity. • Enhanced resistance of Pt–Pd/Cord catalyst towards the poisoning of CO. - Abstract: Hydrogen released in nuclear reactor containment under severe accident scenario poses a threat to containment and hence needs to be regulated by catalytic recombination. Mixed noble metal catalysts with platinum–palladium supported on stainless steel wire gauze and cordierite support have been developed for this purpose. The developed catalysts have been found to be highly efficient for removal of hydrogen concentration in the range of 1.5 to 7.0% v/v in air. Though both the catalysts exhibit similar kinetics for lower hydrogen concentration, cordierite supported catalysts exhibits better kinetic rate at higher hydrogen concentration. The performances of these catalysts in presence of various probable catalytic poison like carbon monoxide and catalytic inhibitors like moisture, carbon dioxide, and hydrocarbons provide data for use of these catalysts under the actual scenario. Compared to stainless steel wire gauze supported catalyst, the cordierite based catalyst are found to exhibit enhanced resistance towards carbon monoxide and limited temperature rise for safer application at higher hydrogen concentrations.

  10. Temperature-programmed oxidation of coked noble metal catalysts after autothermal reforming of n-hexadecane

    Energy Technology Data Exchange (ETDEWEB)

    Kauppi, E.I.; Linnekoski, J.A.; Krause, A.O.I.; Veringa Niemelae, M.K. [Aalto University, School of Science and Technology, Department of Biotechnology and Chemical Technology, Research Group Industrial Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kaila, R.K. [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1001, FI-02044 VTT (Finland)

    2010-08-15

    Autothermal reforming (ATR) of n-hexadecane was carried out on zirconia-supported mono- and bimetallic noble metal (Rh, Pt) catalysts at 600, 700, and 800 C. After ATR, the reactivity of coke deposits (2.8-9.9 wt%) on the catalysts was investigated by temperature-programmed oxidation (TPO). Analysis of the results obtained from ATR and TPO experiments at various temperatures and on the different catalysts gave information on the reaction conditions where the detrimental coke can be minimized and allows estimating the nature of carbon deposits. H{sub 2} production increased with temperature on the tested Rh-containing catalysts and the ZrO{sub 2} support, but decreased as a function of temperature on the Pt catalyst. The formation of coke was least at 800 C, evidently due to the intensifying reaction of carbon and steam with increasing temperature, as well as to the better activity of the catalysts. The amount of coke formed was highest at 700 C. Comparison of the TPO profiles obtained for the monometallic Rh and Pt catalysts with the bimetallic RhPt revealed differences in the nature of carbon deposits on their surface. At 600 C, the coke formed on the monometallic Rh and Pt catalysts was located mostly on the support, whereas on the bimetallic RhPt catalyst the formation of this type of coke was suppressed. The bimetallic RhPt catalyst also exhibited better tolerance toward coking at 700 C. Therefore, although the selectivity toward hydrogen was not related to the amount of coke formed, the deactivation patterns differed on the mono- and bimetallic catalysts. (author)

  11. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process

    Indian Academy of Sciences (India)

    F Bonet; K Tekaia-Elhsissen; K Vijaya Sarathy

    2000-06-01

    Noble metal powders (Au, Ag, Pt, Pd and Ru) have been synthesized by the polyol process in both the nanometer and submicron scales (sans Pd, Pt and Ru). They have been characterized by both microscopic (TEM and SEM) as well as spectroscopic techniques (FT-IR and XPS). Infrared spectroscopy was employed to study the colloid particles in the presence of ethylene glycol and PVP and the results show that the interaction between the organic phase and the metal particles vary according to the particle size. The role of the solvent, ethylene glycol, during the reduction process was also investigated and we observe formation of >C=O vibration band after the reduction process implying that the solvent reduces the metal ions thereby getting oxidized. XPS measurements carried out on the colloidal sols have shown the presence of the organic phase adsorbed onto the metal particles.

  12. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation

    Science.gov (United States)

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  13. Specificity of noble metals dynamic sorption preconcentration on reversed-phase sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Fedyunina, N.N.; Seregina, I.F.; Ossipov, K.; Dubenskiy, A.S. [Chemistry Department, Analytical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation); Tsysin, G.I. [Chemistry Department, Analytical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation); Institute for Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Street, 142190 Moscow, Troitsk (Russian Federation); Bolshov, M.A., E-mail: mbolshov@mail.ru [Chemistry Department, Analytical Chemistry Division, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow (Russian Federation)

    2013-10-10

    Graphical abstract: -- Highlights: •StrataX and StrataX-AW for PGMs’ preconcentration were used for the first time. •Steric structure of chlorocomplexes plays critical role in the sorption mechanism. •The conditions of quantitative and reversible sorption of Ir on StrataX-AW were found. •The quantitative and reversible schemes for Pd, Pt, Au and Ir are developed. -- Abstract: The reversible sorption preconcentration of noble metals (NMs) using different schemes “sorbent–reagent–eluent” was investigated. The extraction of Au, Pd, Pt, Ir, Rh and Ru chlorocomplexes from hydrochloric acid solutions on hyper-crosslinked polysterene MN-200 in the form of ion associates with tributylamine (TBA) and 4-(n-octyl)diethylenetriamine (ODETA) was investigated. It was found that Pd, Pt and Au were quantitatively and reversibly extracted using TBA on hyper-crosslinked polysterene; the appropriate eluent for desorption was 1 M solution of HCl in ethanol. Ir, Rh and Ru under these conditions were not sorbed quantitatively. It was found that sorbent hydrophobicity is not the main characteristic that defines the efficiency of sorption of a particular NM ion associate. Different efficiencies of hyper-crosslinked polysterene MN-200 for sorption of square-planar chlorcomplexes of Pt, Pd and Au and octahedral complexes of Ir, Rh and Ru were found. For the first time, the sorbents with their own N-atoms – StrataX and StrataX-AW – were used for the sorption of Ir, Rh and Ru. Using these sorbents, the sorption of Ir was increased up to 95%, and the sorption of Ru and Rh was increased to about 40%. We can explain these results by nonspecific interaction of chlorcomplexes of Ir, Rh and Ru with ethylenediamine groups of the sorbent. Weak bases with large anions may be applied for desorption of Ir, Rh and Ru. Two schemes of dynamic sorption preconcentration of NMs from hydrochloric acid solutions were proposed – hyper-crosslinked polysterene MN-200 for the determination

  14. Catalytic pyrolysis of wheat bran for hydrocarbons production in the presence of zeolites and noble-metals by using TGA-FTIR method.

    Science.gov (United States)

    Lazdovica, K; Liepina, L; Kampars, V

    2016-05-01

    Pyrolysis of wheat bran with or without catalysts was investigated using TGA-FTIR method in order to determine the influence of zeolite and noble metal catalysts on the evolution profile and relative yield of the volatile compounds. The addition of all catalysts decreased the volatile matter of wheat bran from 76.3% to 75.9%, 73.9%, 73.5%, 69.7% and increased the solid residue from 18.0% to 18.4%, 20.4%, 20.8%, 24.6% under the catalyst of ZSM-5, 5% Pd/C, MCM-41, and 5% Pt/C. Noble-metal catalysts had higher activity for deoxygenation of compounds containing carbonyl, carboxyl, and hydroxyl groups than zeolites. Degradation of nitrogen containing compounds atom proceeded better in presence of zeolites. Noble-metal catalysts promoted formation of aromatics and changed the profiles of evolved compounds whereas zeolites advanced formation of aliphatics and olefins.

  15. 含贵金属废催化剂的分析%Analysis of Spent Noble Metals Bearing Process Catalysts

    Institute of Scientific and Technical Information of China (English)

    Stephen Cooke; Algis Naujokas; James Lynn

    2007-01-01

    The industry procedures for analysis of spent noble metals bearing catalysts, including the fire assay collection and acid leaching, and their advantages and disadvantages were introduced. The quality control procedures were discussed in detail. They consist of three levels of quality control for the analysis of spent noble metals bearing catalysts: the method quality control, the sample specific quality control and the instrumental quality control. A flow chart detailing both fire assay and leach was given.%介绍了含贵金属废催化剂的工业分析方法,包括试金和湿法浸出分析法及其优缺点,详细地讨论了分析过程中的三级质量控制,包括方法质量控制、样品质量控制及仪器质量控制.给出了试金分析及湿法浸出分析原则流程图.

  16. On the effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel

    Science.gov (United States)

    Trummer, Martin; Nilsson, Sara; Jonsson, Mats

    2008-08-01

    Radiation induced oxidative dissolution of UO 2 is a key process for the safety assessment of future geological repositories for spent nuclear fuel. This process is expected to govern the rate of radionuclide release to the biosphere. In this work, we have studied the catalytic effects of fission product noble metal inclusions on the kinetics of radiation induced dissolution of spent nuclear fuel. The experimental studies were performed using UO 2 pellets containing 0%, 0.1%, 1% and 3% Pd as a model for spent nuclear fuel. H 2O 2 was used as a model for radiolytical oxidants (previous studies have shown that H 2O 2 is the most important oxidant in such systems). The pellets were immersed in aqueous solution containing H 2O 2 and HCO3- and the consumption of H 2O 2 and the dissolution of uranium were analyzed as a function of H 2 pressure (0-40 bar). The noble metal inclusions were found to catalyze oxidation of UO 2 as well as reduction of surface bound oxidized UO 2 by H 2. In both cases the rate of the process increases with increasing Pd content. The reduction process was found to be close to diffusion controlled. This process can fully account for the inhibiting effect of H 2 observed in several studies on spent nuclear fuel dissolution.

  17. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.

    Science.gov (United States)

    Zaleska-Medynska, Adriana; Marchelek, Martyna; Diak, Magdalena; Grabowska, Ewelina

    2016-03-01

    Nanoparticles composed of two different metal elements show novel electronic, optical, catalytic or photocatalytic properties from monometallic nanoparticles. Bimetallic nanoparticles could show not only the combination of the properties related to the presence of two individual metals, but also new properties due to a synergy between two metals. The structure of bimetallic nanoparticles can be oriented in random alloy, alloy with an intermetallic compound, cluster-in-cluster or core-shell structures and is strictly dependent on the relative strengths of metal-metal bond, surface energies of bulk elements, relative atomic sizes, preparation method and conditions, etc. In this review, selected properties, such as structure, optical, catalytic and photocatalytic of noble metals-based bimetallic nanoparticles, are discussed together with preparation routes. The effects of preparation method conditions as well as metal properties on the final structure of bimetallic nanoparticles (from alloy to core-shell structure) are followed. The role of bimetallic nanoparticles in heterogeneous catalysis and photocatalysis are discussed. Furthermore, structure and optical characteristics of bimetallic nanoparticles are described in relation to the some features of monometallic NPs. Such a complex approach allows to systematize knowledge and to identify the future direction of research.

  18. Simultaneous Elimination of Formaldehyde and Ozone Byproduct Using Noble Metal Modified TiO2 Films in the Gaseous VUV Photocatalysis

    OpenAIRE

    Pingfeng Fu; Pengyi Zhang; Jia Li

    2012-01-01

    Simultaneous removal of low concentration formaldehyde (HCHO) and ozone byproduct was investigated in the gaseous VUV (vacuum ultraviolet) photocatalysis by using noble metal modified TiO2 films. Noble metal (Pt, Au, or Pd) nanoparticles were deposited on TiO2 films with ultrafine particle size and uniform distribution. Under 35 h VUV irradiation, the HCHO gas (ca. 420 ppbv) was dynamically degraded to a level of 10~45 ppbv without catalyst deactivation, and over 50% O3 byproduct was in situ ...

  19. 非贵金属催化碱性硫离子-空气燃料电池%Alkaline sulfide-air fuel cell system using non-noble metal catalysts

    Institute of Scientific and Technical Information of China (English)

    黄永茂; 张志艳; 程艳坤; 李永真; 张贺

    2014-01-01

    The alkaline sulfide-air fuel cell system was assembled using alkaline sulfide solution as anode fuel and activated carbon as anodic catalyst. The electrochemical behavior of alkaline sulfide was investigated in a three-electrode system and the effects of concentration of sulfide ion,operation temperature on open circuit potential(OCP)and discharge platform were studied. The OCP of anode was rather negative and stable. Through single fuel cell test,a maximum power density of 11mW/cm2 was obtained at 0.24V with current density of 46mA/cm2,demonstrating excellent electrochemical performance for energy conversion. The alkaline sulfide-air fuel cell exhibited promising perspective due to its research potential and application value.%以碱性硫离子电解液作为阳极燃料构建了硫离子-氧气燃料电池体系,采用粉末活性炭材料制备了涂膏电极,将碱性硫化钠溶液作为阳极燃料,通过建立电化学三电极模型对电极在碱性硫离子溶液中的放电性能进行研究,主要考察了硫离子浓度、体系温度对开路电位以及放电平台的影响。电极在碱性硫离子溶液中具有较负的开路电位和稳定的放电平台;通过单体电池测试在0.24V 电压下获得11mW/cm2的最大功率密度,此时电池的电流密度为46mA/cm2,证明碱性硫离子燃料电池在阳极不使用贵金属催化剂的情况下表现出良好的放电性能,是一种具有潜在研究价值和广泛应用前景的电化学体系。

  20. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    Science.gov (United States)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  1. Radiological analysis by the addition of hydrogen and noble metals in the reactors of the Laguna Verde central; Analisis radiologico por la adicion de hidrogeno y metales nobles en los reactores de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Padilla C, I. [CFE, Proteccion Radiologica (Mexico)]. e-mail: ipadilla@cfe.gob.mx

    2006-07-01

    During the operation of the nuclear power stations there are metals that are subject to condition and agents that cause that these they present indications of intergranular corrosion and for their importance they are subject to a continuous surveillance to assure their integrity. During the time of operation, for the level of indications, it can be necessary the substitution of these. The internal components of the vessel and particularly those of the structure of the reactor core are exposed during the operation to a neutron flow that causes that these they are activated and, in consequence, before an eventual repair it will be necessary to face high radiation levels. At the moment a technique that controls exists and it reduces the growth rate of the indications in the metals and it increases its useful life: the addition of hydrogen. The addition of hydrogen it is an ALARA measure from long term when protecting the internals of the vessel that requires to establish radiological controls in the stage of their application to avoid unnecessary dose to the personnel. The addition of hydrogen to the primary system has as objective to reduce the growth of indications taken place by intergranular corrosion in metals of the reactor core and this is achieved when the electrochemical thresholds are reached. Hydrogen to interacting with the metal surfaces it generates reductive reactions causing in consequence an increment in the concentration of soluble cobalt in the coolant one and an increment in the nitrogen concentration. To reduce the magnitude of the radiological impact that in some NC reach up to factors 10, its are injected to the system noble metals as the rhodium and the platinum, to reduce the concentration of hydrogen to the system and to be below the threshold electrochemical potential necessary to protect the internals of the reactor vessel. The external and internal operational experience generated on this protection technique to the internals of the vessel

  2. In situ growth of noble metal nanoparticles on graphene oxide sheets and direct construction of functionalized porous-layered structure on gravimetric microsensors for chemical detection.

    Science.gov (United States)

    Xu, Pengcheng; Yu, Haitao; Li, Xinxin

    2012-11-11

    Noble metal nanoparticles are directly and homogeneously grown onto graphene-oxide (GO) sheets in oleylamine. After the oleylamine is removed, the GO sheets are exfoliated by the nanoparticle pillars to further form hierarchical GO nanostructures with molecule accessible nanopores. With specific sensing-groups modified, the porous-layered nanostructure can be constructed onto resonant microcantilevers for chemical sensing.

  3. Evaluation of HWVP feed preparation chemistry for an NCAW simulant -- Fiscal year 1993: Effect of noble metals concentration on offgas generation and ammonia formation

    Energy Technology Data Exchange (ETDEWEB)

    Patello, G.K.; Wiemers, K.D.; Bell, R.D.; Smith, H.D.; Williford, R.E.; Clemmer, R.G.

    1995-03-01

    The High-Level Waste Vitrification Program is developing technology for the Department of Energy to immobilize high-level and transuranic wastes as glass for permanent disposal. Pacific Northwest Laboratory (PNL) is conducting laboratory-scale melter feed preparation studies using a HWVP simulated waste slurry, Neutralized Current Acid Waste (NCAW). A FY 1993 laboratory-scale study focused on the effects of noble metals (Pd, Rh, and Ru) on feed preparation offgas generation and NH{sub 3} production. The noble metals catalyze H{sub 2} and NH{sub 3} production, which leads to safety concerns. The information gained from this study is intended to be used for technology development in pilot scale testing and design of the Hanford High-Level Waste Vitrification Facility. Six laboratory-scale feed preparation tests were performed as part of the FY 1993 testing activities using nonradioactive NCAW simulant. Tests were performed with 10%, 25%, 50% of nominal noble metals content. Also tested were 25% of the nominal Rh and a repeat of 25% nominal noble metals. The results of the test activities are described. 6 refs., 28 figs., 12 tabs.

  4. 贵金属纳米线的模板法制备及应用研究进展%Progress on Template-assisted Synthesis and Application of Noble Metal Nanowires

    Institute of Scientific and Technical Information of China (English)

    张慧; 芦志伟; 侯军伟; 吕小毅; 莫家庆

    2016-01-01

    贵金属纳米线因独特的光学性质吸引了人们的普遍关注,已经被广泛应用于生物传感器、太阳能电池、纳米尺度光电器件领域。其光学性能主要来源于贵金属表面的区域等离子体共振,而区域等离子体共振主要由金属纳米线的形状、尺寸、组成以及电磁常数决定。简要地回顾了模板法合成贵金属纳米线的方法,讨论了影响纳米线光学性质的因素,最后简述了应用前景。%Optical properties of noble metal nanowires have drawn particular interest due to their significant ap-plications in nanoscale research,such as biosensors,solar cells,and optoelectronic devices.The unique optical proper-ties of noble nanowires primarily originate from the localized surface plasmon resonance,which depends on the size, shape,composition,and dielectric character of the nanowires.In this article,we firstly give a brief review on synthe-sis of noble metal nanowires,then mainly discuss the relationship between their shape and optical properties.Finally, a number of potential applications of noble metal materials are introduced.

  5. Formation of Metal Selenide and Metal-Selenium Nanoparticles using Distinct Reactivity between Selenium and Noble Metals.

    Science.gov (United States)

    Park, Se Ho; Choi, Ji Yong; Lee, Young Hwan; Park, Joon T; Song, Hyunjoon

    2015-07-01

    Small Se nanoparticles with a diameter of ≈20 nm were generated by the reduction of selenium chloride with NaBH4 at -10 °C. The reaction with Ag at 60 °C yielded stable Ag2 Se nanoparticles, which subsequently were transformed into M-Se nanoparticles (M=Cd, Zn, Pb) through cation exchange reactions with corresponding ions. The reaction with Pt formed Pt layers that were evenly coated on the surface of the Se nanoparticles, and the dissolution of the Se cores with hydrazine generated uniform Pt hollow nanoparticles. The reaction with Au generated tiny Au clusters on the Se surface, and eventually formed acorn-shaped Au-Se nanoparticles through heat treatment. These results indicate that small Se nanoparticles with diameters of ≈20 nm can be used as a versatile platform for the synthesis of metal selenide and metal-selenium hybrid nanoparticles with complex structures.

  6. Comparative study of the structural and electrochemical properties of noble metal inclusions in a UO2 matrix

    Science.gov (United States)

    Stumpf, S.; Petersmann, T.; Seibert, A.; Gouder, T.; Huber, F.; Brendebach, B.; Denecke, M. A.

    2010-03-01

    The intention of the presented study is to elucidate the influence of noble metal inclusions (fission products) on the structure as well as on the electrochemical properties of spent nuclear fuel (SNF). To this aim, thin UO2 films doped with metal inclusions such as Pd, Mo and Au are prepared by sputter deposition. The films are characterized by spectroscopic (XPS, EXAFS, XRD) as well as by microscopic (AFM, SEM) methods. In a next step the electrochemical properties of these model systems are comparatively investigated by cyclo voltammetry (CV). The sputter technique in combination with the heating treatment of the films allows the formation of a crystalline UO2 matrix as it is found in SNF. The co-deposition with Au results in the dispersion of the pure metal in the oxide matrix. Pd as well as Mo are oxidized due to the deposition at RT. Heating the films involves a further oxidation of MoO2 to MoO3. By contrast Pd agglomerates and forms metallic -phases as it is found in SNF. Electrochemical investigations of the UO2-Pd samples indicate an inhibiting influence of Pd on the oxidative dissolution of UO2. When it comes to the formation of secondary phases under reducing conditions such influence is passivated. The precipitates finally dominate the overall redox behaviour of the model system.

  7. Structural, electronic, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd)

    Energy Technology Data Exchange (ETDEWEB)

    Puvaneswari, S. [Department of Physics, E.M.G. Yadava Women' s College, Madurai, Tamilnadu 625 014 (India); Rajeswarapalanichamy, R., E-mail: rrpcaspd2003@gmail.com [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India); Sudha Priyanga, G. [Department of Physics, N.M.S.S. Vellaichamy Nadar College, Madurai, Tamilnadu 625019 (India)

    2015-02-01

    The structural stability, electronic structure, elastic and superconducting properties of noble metal nitrides MN{sub 2} (M = Ru, Rh, Pd) are investigated in tetragonal (P4/mbm), fluorite (Fm3m), orthorhombic (Pnnm), pyrite (Pa-3) and hexagonal (P6/mmm) phases using first principles calculations. The calculated lattice parameters are in good agreement with other theoretical results. Among the considered structures, RhN{sub 2} and PdN{sub 2} are found to be most stable in tetragonal structure, whereas RuN{sub 2} is stable in fluorite structure. A sequence of structural phase transition is predicted under high pressure in these metal nitrides. The electronic structure reveals that these nitrides are metallic. These metal nitrides are found to be covalent, ionic and metallic in the stable phase. The observations show that these metal nitrides are mechanically stable at ambient condition. The superconducting transition temperatures for RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are found to be 1.65 K, 5.01 K and 8.7 K respectively. - Highlights: • Electronic, structural and elastic properties of RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are studied. • A pressure induced structural phase transition is predicted. • Electronic structure reveals that these materials exhibit metallic behavior. • High bulk modulus indicates that RuN{sub 2}, RhN{sub 2} and PdN{sub 2} are superhard materials. • Superconducting temperature values are reported.

  8. Determination of noble metals in biological samples by electrothermal vaporization inductively coupled plasma mass spectrometry, following cloud point extraction

    Science.gov (United States)

    Andreia Mesquita da Silva, Márcia; Lúcia Azzolin Frescura, Vera; José Curtius, Adilson

    2001-10-01

    A simple separation procedure for noble metals based on cloud point extraction is proposed. The analyte ions in aqueous acidic solution, obtained by the acid digestion of the samples, were complexed with O, O-diethyl-dithiophosphate and Triton X-114 was added as a non-ionic surfactant. By increasing the temperature up to the cloud point, a phase separation occurs, resulting in an aqueous phase and a surfactant-rich phase containing most of the analytes that were complexed. The metals in the surfactant-rich phase were determined by electrothermal vaporization inductively coupled plasma mass spectrometry. The extraction conditions as well as the instrumental parameters were optimized. Enrichment factors ranging from 7 (Rh) to 60 (Pt) and limits of detection from 0.6 (Pt) to 3.0 ng l -1 (Rh) were obtained in the digested samples. The extraction was not efficient for Ir. Among the reference materials analyzed in this work, only one (SRM 2670, urine) presented recommended values for Au and Pt. Due to the non-availability of adequate CRMs, accuracy was assessed by spiking known analyte amounts to the acid digests. Recoveries close to 100% were observed for all the studied elements but Ru. Poor agreement between found and recommended values was observed for non-digested urine sample, probably due to the carrier effect of co-extracted residual matrix components. However, good agreement was reached after urine acid mineralization.

  9. Rational Design of Biomolecular Templates for Synthesizing Multifunctional Noble Metal Nanoclusters toward Personalized Theranostic Applications.

    Science.gov (United States)

    Yu, Yong; Mok, Beverly Y L; Loh, Xian Jun; Tan, Yen Nee

    2016-08-01

    Biomolecule-templated or biotemplated metal nanoclusters (NCs) are ultrasmall (<2 nm) metal (Au, Ag) particles stabilized by a certain type of biomolecular template (e.g., peptides, proteins, and DNA). Due to their unique physiochemical properties, biotemplated metal NCs have been widely used in sensing, imaging, delivery and therapy. The overwhelming applications in these individual areas imply the great promise of harnessing biotemplated metal NCs in more advanced biomedical aspects such as theranostics. Although applications of biotemplated metal NCs as theranostic agents are trending, the rational design of biomolecular templates suitable for the synthesis of multifunctional metal NCs for theranostics is comparatively underexplored. This progress report first identifies the essential attributes of biotemplated metal NCs for theranostics by reviewing the state-of-art applications in each of the four modalities of theranostics, namely sensing, imaging, delivery and therapy. To achieve high efficacy in these modalities, we elucidate the design principles underlying the use of biomolecules (proteins, peptides and nucleic acids) to control the NC size, emission color and surface chemistries for post-functionalization of therapeutic moieties. We then propose a unified strategy to engineer biomolecular templates that combine all these modalities to produce multifunctional biotemplated metal NCs that can serve as the next-generation personalized theranostic agents.

  10. Modification of N-doped TiO2 photocatalysts using noble metals (Pt, Pd) - a combined XPS and DFT study.

    Science.gov (United States)

    Batalović, K; Bundaleski, N; Radaković, J; Abazović, N; Mitrić, M; Silva, R A; Savić, M; Belošević-Čavor, J; Rakočević, Z; Rangel, C M

    2017-03-08

    Nitrogen-doped TiO2 (N-TiO2) is considered as one of the most promising materials for various photocatalytic applications, while noble metals Pd and Pt are known as good catalysts for hydrogen evolution. This work focuses on the determination of structural and electronic modifications of N-TiO2, achieved by noble metal deposition at the surface, as a starting indicator for potential applications. We focus on the properties of easily synthesized nanocrystalline nitrogen-doped anatase TiO2, modified by depositing small amounts of Pd (0.05 wt%) and Pt (0.10 wt%), aiming to demonstrate efficient enhancement of optical properties. The chemical states of dopants are studied in detail, using X-ray photoemission spectroscopy, to address the potential of N-TiO2 to act as a support for metallic nanoparticles. DFT calculations are used to resolve substitutional from interstitial nitrogen doping of anatase TiO2, as well as to study the combined effect of nitrogen doping and oxygen vacancy formation. Based on the binding energies calculated using Slater's transition state theory, dominant contribution to the N 1s binding energy at 399.8 eV is ascribed to interstitially doped nitrogen in anatase TiO2. Given that both structure and photocatalytic properties depend greatly on the synthesis procedure, this work contributes further to establishing correlation between the structure and optical properties of the noble metal modified N-TiO2 system.

  11. Metallization of bacteria cells

    Institute of Scientific and Technical Information of China (English)

    黎向锋; 李雅芹; 蔡军; 张德远

    2003-01-01

    Bacteria cells with different standard shapes are well suited for use as templates for the fabrication of magnetic and electrically conductive microstructures. In this paper, metallization of bacteria cells is demonstrated by an electroless deposition technique of nickel-phosphorus initiated by colloid palladium-tin catalyst on the surfaces of Citeromyces matritensis and Bacillus cereus. The activated and metallized bacteria cells have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). Results showed that both Citeromyces matritensis and Bacillus cereus had no deformation in shape after metallization; the metallized films deposited on the surfaces of bacteria cells are homogeneous in thickness and noncrystalline in phase structure. The kinetics of colloid palladium-tin solution and electroless plating on bacteria cells is discussed.

  12. Chronology and shock history of the Bencubbin meteorite: A nitrogen, noble gas, and Ar-Ar investigation of silicates, metal and fluid inclusions

    Science.gov (United States)

    Marty, Bernard; Kelley, Simon; Turner, Grenville

    2010-11-01

    We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ⩾3 × 10 5 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N 2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity ( fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ˜40 Ma with two different methods. Noble gases present isotopic signatures similar to those of "phase Q" (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/ 36Ar ratios indicate mixing between a 15N-rich component (δ 15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N. Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated

  13. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  14. Radiolytic model of CN Cofrentes using BWRVIA: analysis of the effectiveness of mitigation in locations of the vessel with application of noble metal son-line; Modelo radiolitico de C. N: Cofrentes utilizando el BWRVIA: analisis de la efectividad de mitigacion en localizaciones de la vasija con aplicacion de metales nobles on-line

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Serrano Ledesma, C.; Sanchez Zapata, J. D.

    2012-07-01

    The effectiveness of mitigation is found from two chemical parameters: electrochemical potential (pm-a hydrogen injection) and Molar Ratio (for the application of noble metals). EPRI code exists, the BWRVIA (BWR Vessel Internals Application,) which enables setting model the impact radiolysis of water, the balance of liquid-vapor phase and recirculation have on the chemical variation of these parameters.

  15. Noble metal emissions. Final presentation, Hanover, October 17/18, 1996; Edelmetall - Emissionen. Abschlusspraesentation, Hannover, 17. und 18. Oktober 1996. Kurzfassung der Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    Pohl, D. [comp.

    1997-12-31

    The discussion concerning noble metal emissions, in particular platinum emissions, and their environmental effects, started with the introduction of catalytical cleaning of gasoline engine exhaust. The Research Association for Noble Metal Emissions (Forschungsverbund Edelmetallemissionen) ws founded for the purpose of investigating problems concerning the types and volumes of noble metal emissions as well as their toxicological and allergological potential. In order to make valid statements on physiological and toxicological effects, it was necessary to identify the chemical forms of platinum and to develop powerful methods of analysis. Investigations of platinum concentrations in environmental samples suggest a 10 percent bioavailability. [Deutsch] Mit der Einfuehrung der katalytischen Abgasreinigung von Ottomotoren begann gleichzeitig die Diskussion ueber moegliche Emissionen von Edelmetallen, insbesondere von Platin, sowie ueber ihre eventuell moeglichen negativen Wirkungen in der Umwelt. Zur Erforschung der Fragestellungen zur Art und Menge der emittierten Platinmetalle, ihrer Aufnahme und dem Uebergang in den Nahrungskreislauf, sowie zu ihrem toxikologischen und allergologischen Potential wurde der Forschungsverbund ``Edelmetallemissionen`` gegruendet. Um Aussagen ueber physiologische und toxikologische Einfluesse zu machen, war es notwendig, die chemischen Erscheinungsformen des Platins zu identifizieren und nachweisstarke Analysenmethoden zu entwickeln. Untersuchungen zu Platinkonzentrationen in Umweltproben deuten auf eine Bioverfuegbarkeit von ca. 10 % hin. (ABI)

  16. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.

    Science.gov (United States)

    Lin, Min; Wang, Yunqing; Sun, Xiuyan; Wang, Wenhai; Chen, Lingxin

    2015-04-15

    The Raman enhancing ability of noble metal nanoparticles (NPs) is an important factor for surface enhanced Raman scattering (SERS) substrate screening, which is generally evaluated by simply mixing as-prepared NPs with Raman reporters for Raman signal measurements. This method usually leads to incredible results because of the NP surface coverage nonuniformity and reporter-induced NP aggregation. Moreover, it cannot realize in situ, continuous SERS characterization. Herein, we proposed a dynamic SERS monitoring strategy for NPs with precisely tuned structures based on a simplified spatially confined NP growth method. Gold nanorod (AuNR) seed NPs were coated with a mesoporous silica (mSiO2) shell. The permeability of mSiO2 for both reactive species and Raman reporters rendered the silver overcoating reaction and SERS indication of NP growth. Additionally, the mSiO2 coating ensured monodisperse NP growth in a Raman reporter-rich reaction system. Moreover, "elastic" features of mSiO2 were observed for the first time, which is crucial for holding the growing NP without breakage. This feature makes the mSiO2 coating adhere to metal NPs throughout the growing process, providing a stable Raman reporter distribution microenvironment near the NPs and ensuring that the substrate's SERS ability comparison is accurate. Three types of NPs, i.e., core-shell Au@AgNR@mSiO2, Au@AuNR@mSiO2, and yolk-shell Au@void@AuNR@mSiO2 NPs, were synthesized via core-shell overgrowth and galvanic replacement methods, showing the versatility of the approach. The living cell SERS labeling ability of Au@AgNR@mSiO2-based tags was also demonstrated. This strategy addresses the problems of multiple batch NP preparation, aggregation, and surface adsorption differentiation, which is a breakthrough for the dynamic comparison of SERS ability of metal NPs with precisely tuned structures and optical properties.

  17. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  18. Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia.

    Science.gov (United States)

    Cui, Xinjiang; Dai, Xingchao; Deng, Youquan; Shi, Feng

    2013-03-11

    The N-alkylation of amines or ammonia with alcohols is a valuable route for the synthesis of N-alkyl amines. However, as a potentially clean and economic choice for N-alkyl amine synthesis, non-noble metal catalysts with high activity and good selectivity are rarely reported. Normally, they are severely limited due to low activity and poor generality. Herein, a simple NiCuFeOx catalyst was designed and prepared for the N-alkylation of ammonia or amines with alcohol or primary amines. N-alkyl amines with various structures were successfully synthesized in moderate to excellent yields in the absence of organic ligands and bases. Typically, primary amines could be efficiently transformed into secondary amines and N-heterocyclic compounds, and secondary amines could be N-alkylated to synthesize tertiary amines. Note that primary and secondary amines could be produced through a one-pot reaction of ammonia and alcohols. In addition to excellent catalytic performance, the catalyst itself possesses outstanding superiority, that is, it is air and moisture stable. Moreover, the magnetic property of this catalyst makes it easily separable from the reaction mixture and it could be recovered and reused for several runs without obvious deactivation.

  19. Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region.

    Science.gov (United States)

    Fang, Xu; Mak, C L; Zhang, Shiyu; Wang, Zhewei; Yuan, Wenjia; Ye, Hui

    2016-06-08

    Transparent conductive indium tin oxide thin films with thickness around 200 nm were deposited on glass substrates by pulsed laser deposition technology. The microstructure and the electrical and optical properties of the ITO films deposited under different oxygen pressures and substrate temperatures were systematically investigated. Distinct different x-ray diffraction patterns revealed that the crystallinity of ITO films was highly influenced by deposition conditions. The highest carrier concentration of the ITO films was obtained as 1.34  ×  10(21) cm(-3) with the lowest corresponding resistivity of 2.41  ×  10(-4) Ω cm. Spectroscopic ellipsometry was applied to retrieve the dielectric permittivity of the ITO films to estimate their potential as plasmonic materials in the near-infrared region. The crossover wavelength (the wavelength where the real part of the permittivity changes from positive to negative) of the ITO films exhibited high dependence on the deposition conditions and was optimized to as low as 1270 nm. Compared with noble metals (silver or gold etc), the lower imaginary part of the permittivity (<3) of ITO films suggests the potential application of ITO in the near-infrared range.

  20. Noble Metal-Free Ceria-Zirconia Solid Solutions Templated by Tobacco Materials for Catalytic Oxidation of CO

    Directory of Open Access Journals (Sweden)

    Donglai Zhu

    2016-09-01

    Full Text Available A series of ceria-zirconia solid solutions were synthesized using tobacco leaves, stems and stem-silks as biotemplates. A combination of physicochemical techniques such as powder X-ray diffraction (XRD, N2 adsorption/desorption measurement, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to characterize the as-synthesized samples. The results show that the morphologies of the templates were well replicated in the obtained ceria-zirconia solid solutions. Catalytic oxidation activities of CO over the ceria-zirconia solid solutions were then investigated. The catalyst templated by tobacco stem-silk exhibited higher conversion of CO at lower temperature than that of ceria-zirconia solid solutions templated by tobacco leaves and stems or without templates due to its special morphology. The catalyst even showed similar CO conversion when compared to ceria-zirconia solid solutions doped with 1.0 wt % noble metals such as Pt, Ag and Au. The results highlighted the advantages of using tobacco as biotemplate.

  1. Self-assembly of amino acids on noble metal surfaces: universality of the amino acid bonding scheme

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Joachim; Auwaerter, Willi; Marschall, Matthias; Barth, Johannes V. [Physik Department, TU Muenchen (Germany); Schiffrin, Agustin [Physik Department, TU Muenchen (Germany); Chemistry Department, University of British Columbia, Vancouver (Canada); Pennec, Yan; Weber-Bargioni, Alexander [Chemistry Department, University of British Columbia, Vancouver (Canada); Cvetko, Dean; Cossaro, Albano; Morgante, Alberto [INFM/TASC, Trieste (Italy)

    2009-07-01

    We investigated the molecular self-assemblies of L-methionine on Cu(111) and L-tyrosine on Ag(111) by means of STM, HAS, XPS and NEXAFS in UHV. The self-assembly of L-methionine on Cu(111) is strongly influenced by the substrate reactivity and reveals a temperature dependent structural transformation involving a chiral orientational switch and the emergence of an ordered 1D high temperature phase. XPS data show that this transformation is triggered by a thermally activated deprotonation of the NH{sub 3}{sup +} group. The ordered phase shows noncovalent molecular dimerization and alignment into chains which are commensurate with the underlying substrate. L-tyrosine on Ag(111) self-assembles into linear nanoribbons primarily following the substrate crystalline symmetry. A zwitterionic noncovalent molecular dimerization is observed, and NEXAFS data provide evidence of a non-flat adsorption of the phenol ring. This dimerization scheme is reminiscent of methionine on Cu(111) and Ag(111), and supports a universal self-assembling trend for amino acids on close-packed noble metal surfaces.

  2. Properties and modification of two-dimensional electronic states on noble metals; Eigenschaften und Modifikation zweidimensionaler Elektronenzustaende auf Edelmetallen

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.

    2007-07-06

    In this thesis investigations on two-dimensional electronic structures of (111)-noble metal surfaces and the influence of various adsorbates upon them is presented. It chiefly focuses on the surface-localized Shockley states of Cu, Ag and Au and their band dispersion (binding energy, band mass, and spin-orbit splitting) which turns out to be a sensitive probe for surface modifications induced by adsorption processes. Angular resolved photoelectron spectroscopy enables the observation of even subtle changes in the electronic band structure of these two dimensional systems. Different mechanisms taking place at surfaces and the substrate/adsorbate interfaces influence the Shockley state in a different manner and will be analyzed using suitable adsorbate model systems. The experimental results are matched with appropriate theoretical models like the phase accumulation model and the nearly-free electron model and - if possible - with ab initio calculations based on density functional theory. This allows for the integration of the results into a stringent overall picture. The influence of sub-monolayer adsorption of Na upon the surface state regarding the significant change in surface work function is determined. A systematic study of the physisorption of noble gases shows the effect of the repulsive adsorbate-substrate interaction upon the electrons of the surface state. A step-by-step coverage of the Cu and Au(111) surfaces by monolayers of Ag creates a gradual change in the surface potential and causes the surface state to become increasingly Ag-like. For N=7 ML thick and layer-by-layer growing Ag films on Au(111), new two-dimensional electronic structures can be observed, which are attributed to the quantum well states of the Ag adsorbate. The question whether they are localized within the Ag-layer or substantially within the substrate is resolved by the investigation of their energetic and spatial evolution with increasing Ag-film thicknesses N. For this, beside the

  3. Hierarchical hybrid of Ni3N/N-doped reduced graphene oxide nanocomposite as a noble metal free catalyst for oxygen reduction reaction

    Science.gov (United States)

    Zhao, Qi; Li, Yingjun; Li, Yetong; Huang, Keke; Wang, Qin; Zhang, Jun

    2017-04-01

    Novel nickel nitride (Ni3N) nanoparticles supported on nitrogen-doped reduced graphene oxide nanosheets (N-RGOs) are synthesized via a facile strategy including hydrothermal and subsequent calcination methods, in which the reduced graphene oxide nanosheets (RGOs) are simultaneously doped with nitrogen species. By varying the content of the RGOs, a series of Ni3N/N-RGO nanocomposites are obtained. The Ni3N/N-RGO-30% hybrid nanocomposite exhibits superior catalytic activity towards oxygen reduction reaction (ORR) under alkaline condition (0.1 M KOH). Furthermore, this hybrid catalyst also demonstrates high tolerance to methanol poisoning. The RGO containing rich N confers the nanocomposite with large specific surface area and high electronic conduction ability, which can enhance the catalytic efficiency of Ni3N nanoparticles. The enhanced catalytic activity can be attributed to the synergistic effect between Ni3N and nitrogen doped reduced graphene oxide. In addition, the sufficient contact between Ni3N nanoparticles and the N-RGO nanosheets simultaneously promotes good nanoparticle dispersion and provides a consecutive activity sites to accelerate electron transport continuously, which further enhance the ORR performance. The Ni3N/N-RGO may be further an ideal candidate as efficient and inexpensive noble metal-free ORR electrocatalyst in fuel cells.

  4. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction.

    Science.gov (United States)

    Vij, Varun; Tiwari, Jitendra N; Lee, Wang-Geun; Yoon, Taeseung; Kim, Kwang S

    2016-02-03

    High performance non-precious cathodic catalysts for oxygen reduction reaction (ORR) are vital for the development of energy materials and devices. Here, we report an noble metal free, Fe5C2 nanoparticles-studded sp(2) carbon supported mesoporous material (CNTHb-700) as cathodic catalyst for ORR, which was prepared by pyrolizing the hybrid adduct of single walled carbon nanotubes (CNT) and lyophilized hemoglobin (Hb) at 700 °C. The catalyst shows onset potentials of 0.92 V in 0.1 M HClO4 and in 0.1 M KOH which are as good as commercial Pt/C catalyst, giving very high current density of 6.34 and 6.69 mA cm(-2) at 0.55 V vs. reversible hydrogen electrode (RHE), respectively. This catalyst has been confirmed to follow 4-electron mechanism for ORR and shows high electrochemical stability in both acidic and basic media. Catalyst CNTHb-700 possesses much higher tolerance towards methanol than the commercial Pt/C catalyst. Highly efficient catalytic properties of CNTHb-700 could lead to fundamental understanding of utilization of biomolecules in ORR and materialization of proton exchange membrane fuel cells for clean energy production.

  5. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    Science.gov (United States)

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented.

  6. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  7. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  8. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    Science.gov (United States)

    Song, Jun-Ling; Zhang, Jian-Han; Mao, Jiang-Gao

    2016-05-01

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV2(H3O)(HPO3)4 (1), and Ba3V2(HPO3)6 (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO6 octahedra which are connected by HPO3 tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV2(H3O) (HPO3)4 (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.62}2{42.66.82}{63}{65.8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV2(H3O)(HPO3)4 suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H2 evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV-vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated.

  9. Noble-metal nanoparticles produced with colloidal lithography: fabrication, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bocchio, Noelia Laura

    2008-08-15

    In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this

  10. ARTICLES: Methanol Tolerant Non-noble Metal Co-C-N Catalyst for Oxygen Reduction Reaction Using Urea as Nitrogen Source

    Science.gov (United States)

    Si, Yu-jun; Chen, Chang-guo; Yin, Wei; Cai, Hui

    2010-06-01

    A non-noble metal oxygen reduction reaction (ORR) catalyst labeled as Co-C-N(800) was synthesized by heat-treating a mixture of urea, cobalt chloride and acetylene black for 2 h at 800 °C in an inert nitrogen atmosphere. X-ray diffraction pattern indicates that a metallic β-Co is generated after the heat-treating process. The results from cyclic voltammograms show that the obtained Co-C-N(800) catalyst has good ORR catalytic activity in 0.5 mol/L H2SO4 solution. The catalyst is also good at methanol tolerance and stability in the acidic solution.

  11. Enabling Overall Water Splitting on Photocatalysts by CO-Covered Noble Metal Co-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Berto, Tobias F.; Sanwald, Kai E.; Byers, J. Paige; Browning, Nigel D.; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-10-17

    Photocatalytic overall water splitting requires co-catalysts that efficiently promote the generation of H-2 but do not catalyze its reverse oxidation. We demonstrate that CO chemisorbed on metal co-catalysts (Rh, Pt, Pd) suppresses the back reaction while maintaining the rate of H-2 evolution. On Rh/GaN:ZnO, the highest H-2 production rates were obtained with 4-40 mbar of CO, the back reaction remaining suppressed below 7 mbar of O-2. The O-2 and H-2 evolution rates compete with CO oxidation and the back reaction. The rates of all reactions increased with increasing photon absorption. However, due to different dependencies on the rate of charge carrier generation, the selectivities for O-2 and H-2 formation increased in comparison to CO oxidation and the back reaction with increasing photon flux and/or quantum efficiency. Under optimum conditions, the impact of CO to prevent the back reaction is identical to that of a Cr2O3 layer covering the active metal particle.

  12. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  13. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites.

    Science.gov (United States)

    Wang, Mengye; Ye, Meidan; Iocozzia, James; Lin, Changjian; Lin, Zhiqun

    2016-06-01

    Plasmonics has remained a prominent and growing field over the past several decades. The coupling of various chemical and photo phenomenon has sparked considerable interest in plasmon-mediated photocatalysis. Given plasmonic photocatalysis has only been developed for a relatively short period, considerable progress has been made in improving the absorption across the full solar spectrum and the efficiency of photo-generated charge carrier separation. With recent advances in fundamental (i.e., mechanisms) and experimental studies (i.e., the influence of size, geometry, surrounding dielectric field, etc.) on plasmon-mediated photocatalysis, the rational design and synthesis of metal/semiconductor hybrid nanostructure photocatalysts has been realized. This review seeks to highlight the recent impressive developments in plasmon-mediated photocatalytic mechanisms (i.e., Schottky junction, direct electron transfer, enhanced local electric field, plasmon resonant energy transfer, and scattering and heating effects), summarize a set of factors (i.e., size, geometry, dielectric environment, loading amount and composition of plasmonic metal, and nanostructure and properties of semiconductors) that largely affect plasmonic photocatalysis, and finally conclude with a perspective on future directions within this rich field of research.

  14. Simultaneous Elimination of Formaldehyde and Ozone Byproduct Using Noble Metal Modified TiO2 Films in the Gaseous VUV Photocatalysis

    Directory of Open Access Journals (Sweden)

    Pingfeng Fu

    2012-01-01

    Full Text Available Simultaneous removal of low concentration formaldehyde (HCHO and ozone byproduct was investigated in the gaseous VUV (vacuum ultraviolet photocatalysis by using noble metal modified TiO2 films. Noble metal (Pt, Au, or Pd nanoparticles were deposited on TiO2 films with ultrafine particle size and uniform distribution. Under 35 h VUV irradiation, the HCHO gas (ca. 420 ppbv was dynamically degraded to a level of 10~45 ppbv without catalyst deactivation, and over 50% O3 byproduct was in situ decomposed in the reactor. However, under the same conditions, the outlet HCHO concentration remained at 125~178 ppbv in the O3 + UV254 nm photocatalysis process and 190~260 ppbv in the UV254 nm photocatalysis process. And the catalyst deactivation also appeared under UV254 nm irradiation. Metallic Pt or Au could simultaneously increase the elimination of HCHO and ozone, but the PdO oxide seemed to inhibit the HCHO oxidation in the UV254 nm photocatalysis. Deposition of metallic Pt or Au reduces the recombination of h+/e− pairs and thus increases the HCHO oxidation and O3 reduction reactions. In addition, adsorbed O3 may be partly decomposed by photogenerated electrons trapped on metallic Pt or Au nanoparticles under UV irradiation.

  15. Catalytic methanation reaction over alumina supported cobalt oxide doped noble metal oxides for the purification of simulated natural gas

    Institute of Scientific and Technical Information of China (English)

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Abdul Aziz Abdul Kadir; Salmiah Jamal Mat Rosid; Nurul Shafeeqa Mohammad

    2012-01-01

    A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co( 10∶90 )/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co( 10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co( 10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis (EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co( 10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co( 10∶90)/Al2O3 catalyst.

  16. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  17. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  18. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  19. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-05

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

  20. Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating.

    Science.gov (United States)

    Vafa Homann, Manijeh; Johansson, Dorota; Wallen, Håkan; Sanchez, Javier

    2016-10-01

    Central line associated bloodstream infections (CLABSIs) are a serious cause of morbidity and mortality induced by the use of central venous catheters (CVCs). Nobel metal alloy (NMA) coating is an advanced surface modification that prevents microbial adhesion and growth on catheters and thereby reduces the risk of infection. In vitro microbiological analyses have shown up to 90% reduction in microbial adhesion on coated CVC compared to uncoated ones. This study aimed to assess the blood compatibility of NMA-coated CVC according to ISO 10993-4. Hemolysis, thrombin-antithrombin (TAT) complex, platelet counts, fibrin deposition, and C3a and SC5b-9 complement activation were analyzed in human blood exposed to the NMA-coated and control CVCs using a Chandler-loop model. NMA-coated CVC did not induce hemolysis and fell in the "nonhemolytic" category according to ASTM F756-00. Significantly lower amounts of TAT were generated and less fibrin was deposited on NMA-coated CVC than on uncoated ones. Slightly higher platelet counts and lower complement markers were observed for NMA-coated CVC compared to uncoated ones. These data suggest that the NMA-coated CVC has better ex vivo blood compatibility compared to uncoated CVC. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1359-1365, 2016.

  1. The energy barrier at noble metal/TiO{sub 2} junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hossein-Babaei, F., E-mail: fhbabaei@kntu.ac.ir, E-mail: fhbabaei@yahoo.com; Lajvardi, Mehdi M., E-mail: mm.lajvardi@gmail.com; Alaei-Sheini, Navid, E-mail: navid-alaei@yahoo.com [Electronic Materials Laboratory, Industrial Control Center of Excellence, Electrical Engineering Department, K. N. Toosi University of Technology, Tehran 16317-14191 (Iran, Islamic Republic of)

    2015-02-23

    Nobel metal/TiO{sub 2} structures are used as catalysts in chemical reactors, active components in TiO{sub 2}-based electronic devices, and connections between such devices and the outside circuitry. Here, we investigate the energy barrier at the junctions between vacuum-deposited Ag, Au, and Pt thin films and TiO{sub 2} layers by recording their electrical current vs. voltage diagrams and spectra of optical responses. Deposited Au/, Pt/, and Ag/TiO{sub 2} behave like contacts with zero junction energy barriers, but the thermal annealing of the reverse-biased devices for an hour at 523 K in air converts them to Schottky diodes with high junction energy barriers, decreasing their reverse electric currents up to 10{sup 6} times. Similar thermal processing in vacuum or pure argon proved ineffective. The highest energy barrier and the lowest reverse current among the devices examined belong to the annealed Ag/TiO{sub 2} contacts. The observed electronic features are described based on the physicochemical parameters of the constituting materials. The formation of higher junction barriers with rutile than with anatase is demonstrated.

  2. Noble metal-free reduced graphene oxide-ZnxCd₁-xS nanocomposite with enhanced solar photocatalytic H₂-production performance.

    Science.gov (United States)

    Zhang, Jun; Yu, Jiaguo; Jaroniec, Mietek; Gong, Jian Ru

    2012-09-12

    Design and preparation of efficient artificial photosynthetic systems for harvesting solar energy by production of hydrogen from water splitting is of great importance from both theoretical and practical viewpoints. ZnS-based solid solutions have been fully proved to be an efficient visible-light driven photocatalysts, however, the H(2)-production rate observed for these solid solutions is far from exciting and sometimes an expensive Pt cocatalyst is still needed in order to achieve higher quantum efficiency. Here, for the first time we report the high solar photocatalytic H(2)-production activity over the noble metal-free reduced graphene oxide (RGO)-Zn(x)Cd(1-x)S nanocomposite prepared by a facile coprecipitation-hydrothermal reduction strategy. The optimized RGO-Zn(0.8)Cd(0.2)S photocatalyst has a high H(2)-production rate of 1824 μmol h(-1) g(-1) at the RGO content of 0.25 wt % and the apparent quantum efficiency of 23.4% at 420 nm (the energy conversion efficiency is ca. 0.36% at simulated one-sun (AM 1.5G) illumination). The results exhibit significantly improved photocatalytic hydrogen production by 450% compared with that of the pristine Zn(0.8)Cd(0.2)S, and are better than that of the optimized Pt-Zn(0.8)Cd(0.2)S under the same reaction conditions, showing that the RGO-Zn(0.8)Cd(0.2)S nanocomposite represents one of the most highly active metal sulfide photocatalyts in the absence of noble metal cocatalysts. This work creates a green and simple way for using RGO as a support to enhance the photocatalytic H(2)-production activity of Zn(x)Cd(1-x)S, and also demonstrates that RGO is a promising substitute for noble metals in photocatalytic H(2)-production.

  3. Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs.

    Science.gov (United States)

    Baryshev, A V; Merzlikin, A M

    2014-05-10

    The Bloch surface wave resonance (SWR) was visualized with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a one-dimensional photonic crystal (PhC). An SWR peak in calculated spectra of such a plasmonic photonic crystal (PPhC) slab comprising a noble or base metal layer was demonstrated to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. The considered structure of PPhC slabs can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration. We found that, in case of PPhC slabs, gold (the key element of the surface plasmon resonance-based biosensors) can be replaced by other metals. The PPhC-based sensors can be low-cost, reusable, and robust sensors having a sensitivity surpassing that of the known optical sensors.

  4. Laser synthesis, structure and chemical properties of colloidal nickel-molybdenum nanoparticles for the substitution of noble metals in heterogeneous catalysis.

    Science.gov (United States)

    Marzun, Galina; Levish, Alexander; Mackert, Viktor; Kallio, Tanja; Barcikowski, Stephan; Wagener, Philipp

    2017-03-01

    Platinum and iridium are rare and expensive noble metals that are used as catalysts for different sectors including in heterogeneous chemical automotive emission catalysis and electrochemical energy conversion. Nickel and its alloys are promising materials to substitute noble metals. Nickel based materials are cost-effective with good availability and show comparable catalytic performances. The nickel-molybdenum system is a very interesting alternative to platinum in water electrolysis. We produced ligand-free nickel-molybdenum nanoparticles by laser ablation in water and acetone. Our results show that segregated particles were formed in water due to the oxidation of the metals. X-ray diffraction shows a significant change in the lattice parameter due to a diffusion of molybdenum atoms into the nickel lattice with increasing activity in the electrochemical oxygen evolution reaction. Even though the solubility of molecular oxygen in acetone is higher than in water, there were no oxides and a more homogeneous metal distribution in the particles in acetone as seen by TEM-EDX. This showed that dissolved molecular oxygen does not control oxide formation. Overall, the laser ablation of pressed micro particulate mixtures in liquids offers a combinational synthesis approach that allows the screening of alloy nanoparticles for catalytic testing and can convert micro-mixtures into nano-alloys.

  5. Stabilisation of late transition metal and noble metal films in hexagonal and body centred tetragonal phases by epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Hueger, E.

    2005-08-26

    In this work ultrathin metallic films with a crystal phase different to their natural bulk structure were produced by hetero-epitaxial growth on metallic substrates. A further aim of this work was to understand the initiation, growth and stability of crystal phase modifications of these films. there exist cases where the films turn beyond the pseudomorphic-growth to a crystal phase different from their natural bulk structure. The present work presents and discusses such a case in addition to the general phenomenon of pseudomorphic-growth. In particular it is shown that metals whose natural phase is face centred cubic (fcc) can be grown in body centred tetragonal (bct) or hexagonal close packed (hcp) phases in the form of thin films on (001) surfaces of appropriate substrates. The growth behavior, electron diffraction analysis, appearance conditions, geometric fit considerations, examples and a discussion of the phase stability of non-covered films and superlattices is given reviewing all epitaxial-systems whose diffraction pattern can be explained by the hexagonal or pseudomorphic bct phase. (orig.)

  6. Dose-dependent surface endothelialization and biocompatibility of polyurethane noble metal nanocomposites.

    Science.gov (United States)

    Hess, Christian; Schwenke, Andreas; Wagener, Philipp; Franzka, Steffen; Laszlo Sajti, Csaba; Pflaum, Michael; Wiegmann, Bettina; Haverich, Axel; Barcikowski, Stephan

    2014-06-01

    Surface pre-endothelialization is a promising approach to improve the hemocompatibility of implants, medical devices, and artificial organs. To promote the adhesive property of thermoplastic polyurethane (TPU) for endothelial cells (ECs), up to 1 wt % of gold (Au) or platinum (Pt) nanoparticles, fabricated by pulsed laser ablation in polymer solution, were embedded into the polymer matrix. The analysis of these nanocomposites showed a homogenous dispersion of the nanoparticles, with average diameters of 7 nm for Au or 9 nm for Pt. A dose-dependent effect was found when ECs were seeded onto nanocomposites comprising different nanoparticle concentrations, resulting in a fivefold improvement of proliferation at 0.1 wt % nanoparticle load. This effect was associated with a nanoparticle concentration-dependent hydrophilicity and negative charge of the nanocomposite. In dynamic flow tests, nanocomposites containing 0.1 wt % Au or Pt nanoparticles allowed for the generation of a confluent and resistant EC layer. Real-time polymerase chain reaction quantification of specific markers for EC activation indicated that ECs cultivated on nanocomposites remain in an inactivated, nonthrombogenic and noninflammatory state; however, maintain the ability to trigger an inflammatory response upon stimulation. These findings were confirmed by a platelet and leukocyte adhesion assay. The results of this study suggest the possible applicability of TPU nanocomposites, containing 0.1 wt % Au or Pt nanoparticles, for the generation of pre-endothelialized surfaces of medical devices.

  7. Radiolytic model of Cofrentes NPP using the BWRVIA: analysis of the effectiveness of mitigation in localizations of the vessel with noble metal application on-line; Modelo Radiolitico de C.N. Cofrentes utilizando el BWRVIA: analisis de la efectividad de mitigacion en localizaciones de la vasija con aplicacion de metales nobles on-line

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Zapata, J. D.; Martin-Serrano, C.

    2013-03-01

    Chemistry is one of the principal factors that takes part in IGSCC materials susceptibility. BWR industry has been applying different mitigation techniques against IGSCC: hydrogen injection and noble metals. Mitigation effectiveness is checked by studying chemical parameters: ECP (for hydrogen injection) and Molar Ratio (for noble metal application). There is a software from EPRI called BWRVIA that allows to modelize radiolysis influence in parameters variation and obtain them at different points in the vessel. Recently, this kind of studies have become very relevant within BWR industry because it is the previous step to implement BWRVIP-62-A guidelines in order to get longer inspection intervals at vessel location where mitigation effectiveness is justified, with the cost savings for plants that this means. (Author)

  8. In Situ Studies of Surface Mobility on Noble Metal Model Catalysts Using STM and XPS at Ambient Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Derek Robert [Univ. of California, Berkeley, CA (United States)

    2010-06-01

    High Pressure Scanning Tunneling Microscopy (HP-STM) and Ambient Pressure X-ray Photoelectron Spectroscopy were used to study the structural properties and catalytic behavior of noble metal surfaces at high pressure. HP-STM was used to study the structural rearrangement of the top most atomic surface layer of the metal surfaces in response to changes in gas pressure and reactive conditions. AP-XPS was applied to single crystal and nanoparticle systems to monitor changes in the chemical composition of the surface layer in response to changing gas conditions. STM studies on the Pt(100) crystal face showed the lifting of the Pt(100)-hex surface reconstruction in the presence of CO, H2, and Benzene. The gas adsorption and subsequent charge transfer relieves the surface strain caused by the low coordination number of the (100) surface atoms allowing the formation of a (1 x 1) surface structure commensurate with the bulk terminated crystal structure. The surface phase change causes a transformation of the surface layer from hexagonal packing geometry to a four-fold symmetric surface which is rich in atomic defects. Lifting the hex reconstruction at room temperature resulted in a surface structure decorated with 2-3 nm Pt adatom islands with a high density of step edge sites. Annealing the surface at a modest temperature (150 C) in the presence of a high pressure of CO or H2 increased the surface diffusion of the Pt atoms causing the adatom islands to aggregate reducing the surface concentration of low coordination defect sites. Ethylene hydrogenation was studied on the Pt(100) surface using HP-STM. At low pressure, the lifting of the hex reconstruction was observed in the STM images. Increasing the ethylene pressure to 1 Torr, was found to regenerate the hexagonally symmetric reconstructed phase. At room temperature ethylene undergoes a structural rearrangement to form ethylidyne. Ethylidyne preferentially binds at the three-fold hollow sites, which

  9. Poisoning of noble metal catalysts by arsenic and silicon compounds in an oxidizing atmosphere. Die Vergiftung von Edelmetall-Katalysatoren durch Arsen- und Siliziumverbindungen unter oxidierenden Verbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Kaizik, A.

    1984-01-12

    The dissertation deals with the poisoning of noble metal catalysts by arsenic and silicon compounds in an oxidizing atmosphere. The problem was studied in the field of catalytic exhaust and waste air post-combustion, but the findings can be applied to other catalytic processes in which arsenic and silicon compounds may occur as catalyst poisons. The following issues were investigated: 1. Kinetics of arsenic and silicon poisoning of platinum-containing carrier catalysts; 2. Regeneration of poisoned catalysts; 3. mathematical modelling of the poisoning processes.

  10. Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide

    DEFF Research Database (Denmark)

    Hussain, Muhammad; Sun, Hongyu; Karim, Shafqat

    2016-01-01

    Flower-like hierarchical Zinc oxide nanostructures synthesized by co-precipitation method have been hydrothermally functionalized with 8 nm Au NPs and 15 nm Ag nanoparticles. The photocatalytic and electrochemical performance of these structures are investigated. XPS studies show that the composite...... exhibits a strong interaction between noble metal nanoparticles (NPs) and Zinc oxide nanoflowers. The PL spectra exhibit UV emission arising due to near band edge transition and show that the reduced PL intensities of Au–ZnO and Ag–ZnO composites are responsible for improved photocatalytic activity arising...

  11. Effect of promoter and noble metals and suspension pH on catalytic nitrate reduction by bimetallic nanoscale Fe(0) catalysts.

    Science.gov (United States)

    Bae, Sungjun; Hamid, Shanawar; Jung, Junyoung; Sihn, Youngho; Lee, Woojin

    2016-01-01

    Experiments were conducted to investigate the effect of experimental factors (types of promotor and noble metals, H2 injection, and suspension pH) on catalytic nitrate reduction by bimetallic catalysts supported by nanoscale zero-valent iron (NZVI). NZVI without H2 injection showed 71% of nitrate reduction in 1 h. Cu/NZVI showed the almost complete nitrate reduction (96%) in 1 h, while 67% of nitrate was reduced by Ni/NZVI. The presence of noble metals (Pd and Pt) on Cu/NZVI without H2 injection resulted in the decrease of removal efficiency to 89% and 84%, respectively, due probably to the electron loss of NZVI for formation of metallic Pd and Pt. H2 injection into Cu-Pd/NZVI suspension significantly improved both catalytic nitrate reduction (>97% in 30 min) and N2 selectivity (18%), indicating that adsorbed H on active Pd sites played an important role for the enhanced nitrate reduction and N2 selectivity. The rapid passivation of NZVI surface resulted in a dramatic decrease in nitrate reduction (79-28%) with an increase in N2 selectivity (8-66%) as the suspension pH increased from 8 to 10.

  12. Measurement of the composition of noble-metal particles in high-burnup CANDU fuel by wavelength dispersive X-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, W.H.; Szostak, F.J

    1999-09-01

    An investigation of the composition of the metallic inclusions in CANDU fuel, which contain Mo, Tc, Ru, Rh and Pd, has been conducted as a function of burnup by wavelength dispersive X-ray (WDX) microanalysis. Quantitative measurements were performed on micrometer sized particles embedded in thin sections of fuel using elemental standards and the ZAF method. Because the fission yields of the noble metals change with burnup, as a consequence of a shift from almost entirely {sup 235}U fission to mainly {sup 239}Pu fission, their inventories were calculated from the fuel power histories using the WIMS-Origin code for comparison with experiment. Contrary to expectations that the oxygen potential would be buffered by progressive Mo oxidation, little evidence was obtained for reduced incorporation of Mo in the noble-metal particles at high burnup. These surprising results are discussed with respect to the oxygen balance in irradiated CANDU fuels and the likely intrinsic and extrinsic sinks for excess oxygen. (author)

  13. A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au)

    Indian Academy of Sciences (India)

    MANAS GHARA; SUDIP PAN; JYOTIRMOY DEB; ANAND KUMAR; UTPAL SARKAR; PRATIM KUMAR CHATTARAJ

    2016-10-01

    A density functional theory based study is performed to investigate the noble gas (Ng = Ar-Rn) binding ability of nitrates, sulfates and carbonates of noble metal (M). Their ability to bind Ng atoms is assessed through bond dissociation energy and thermochemical parameters like dissociation enthalpy and dissociation free energy change corresponding to the dissociation of Ng bound compound producing Ngand the respective salt. The zero-point energy corrected dissociation energy values per Ng atom for the dissociation process producing Ng atom(s) and the corresponding salts range within 6.0–13.1 kcal/mol in NgCuNO₃, 3.1–9.8 kcal/mol in NgAgNO₃, 6.0–13.2 kcal/mol in NgCuSO₄, 3.2–10.1 kcal/mol in NgAgSO₄, 5.1–11.7 kcal/mol in Ng₂Cu₂SO₄, 2.5–8.6 kcal/mol in Ng₂Ag₂SO₂, 8.1–19.9 kcal/mol in Ng₂Au2SO₂, 5.7–12.4 kcal/mol in NgCuCO₃, 2.3–8.0 kcal/mol in Ng₂Ag₂CO₃ and 7.3–18.2 kcal/mol in Ng₂Au₂CO₃, with a gradual increase in moving from Ar to Rn. For a given type of system, the stability of Ng bound analogues follows the order as Au > Cu > Ag. All dissociation processes are endothermic in nature whereas they become endergonic as well in most of the cases of Kr-Rn bound analogues at 298 K. Natural population analysis along with the computation of Wiberg bond indices, and electron density analyses provide insights into the nature of the Ng-M bonds. The Ng-M bonds can be represented as partial covalent bonds as supported by the different electron density descriptors.

  14. Synthesis, characterization and photocatalytic activity of noble metal-modified TiO{sub 2} nanosheets with exposed {0 0 1} facets

    Energy Technology Data Exchange (ETDEWEB)

    Diak, Magdalena; Grabowska, Ewelina, E-mail: ewelina.grabowska@ug.edu.pl; Zaleska, Adriana

    2015-08-30

    Graphical abstract: - Highlights: • TiO{sub 2} nanosheets with exposed {0 0 1} facets were prepared by hydrothermal method. • Pd and Ag NPs-loaded enhanced the photocatalytic activity under visible irradiation. • Photodeposition is an effective method to obtain noble metal NPs on TiO{sub 2} surface. - Abstract: Pt, Pd, Ag and Au nanoparticles were photodeposited on the {0 0 1} crystal facets of the TiO{sub 2} anatase nanosheets. Morphological and surface characterization of the samples as well as photocatalytic activity were studied. The influence of metal precursor concentration used during photodeposition (0.05−0.5%) on size of formed metal nanoparticles together with UV and vis-mediated activity of Pt, Pd, Ag or Au−TiO{sub 2} was investigated. Generally, samples obtained by photodeposition of noble metal nanoparticles using their 0.2% precursor solutions revealed highest activity in phenol degradation reaction under visible light (λ > 420 nm). The photoactivity of the as-prepared samples with respect to the modified metal species was ordered Ag≅Pd > Au > Pt. TEM analysis showed that photodeposited metal nanoparticles appeared only on {0 0 1} facets of TiO{sub 2}. The average degradation rate of phenol in the presence of Pd and Ag−TiO{sub 2} was 0.5 μmol dm{sup −3} min{sup −1} after 60 min of irradiation under visible light, and was five times higher than that of pure TiO{sub 2} nanosheets.

  15. a Chirped Pulse Fourier Transform Microwave Cp-Ftmw Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal Clusters

    Science.gov (United States)

    Marshall, Frank E.; Gillcrist, David Joseph; Persinger, Thomas D.; Moon, Nicole; Grubbs, G. S., II

    2016-06-01

    Microwave spectroscopic techniques have traditionally been part of the foundation of molecular structure and this conference. Instrumental developments by Brooks Pate and sourcing developments by Steve Cooke on these instruments have allowed for the dawning of a new era in modern microwave spectroscopic techniques. With these advances and the growth of powerful computational approaches, microwave spectroscopists can now search for molecules and/or cluster systems of actinide and noble metal-containing species with increasing certainty in molecular assignment even with the difficulties presented with spin-orbit coupling and relativistic effects. Spectrometer and ablation design will be presented along with any preliminary results on actinide-containing molecules or noble metal clusters or interactions. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 79 (2008) 053103-1 - 053103-13 G. S. Grubbs II, C. T. Dewberry, K. C. Etchison, K. E. Kerr, S. A. Cooke, Rev. Sci. Instrum. 78 (2007) 096106-1 - 096106-3

  16. TLC-SERS Plates with a Built-In SERS Layer Consisting of Cap-Shaped Noble Metal Nanoparticles Intended for Environmental Monitoring and Food Safety Assurance

    Directory of Open Access Journals (Sweden)

    H. Takei

    2015-01-01

    Full Text Available We report on a thin layer chromatograph (TLC with a built-in surface enhanced Raman scattering (SERS layer for in-situ identification of chemical species separated by TLC. Our goal is to monitor mixture samples or diluted target molecules suspended in a host material, as happens often in environmental monitoring or detection of food additives. We demonstrate that the TLC-SERS can separate mixture samples and provide in-situ SERS spectra. One sample investigated was a mixture consisting of equal portions of Raman-active chemical species, rhodamine 6 G (R6G, crystal violet (CV, and 1,2-di(4-pyridylethylene (BPE. The three components could be separated and their SERS spectra were obtained from different locations. Another sample was skim milk with a trace amount of melamine. Without development, no characteristic peaks were observed, but after development, a peak was observed at 694 cm−1. Unlike previous TLC-SERS whereby noble metal nanoparticles are added after development of a sample, having a built-in SERS layer greatly facilitates analysis as well as maintaining high uniformity of noble metal nanoparticles.

  17. A general approach to fabricate diverse noble-metal (Au, Pt, Ag, Pt/Au)/Fe2O3 hybrid nanomaterials.

    Science.gov (United States)

    Zhang, Jun; Liu, Xianghong; Guo, Xianzhi; Wu, Shihua; Wang, Shurong

    2010-07-19

    A novel, facile, and general one-pot strategy is explored for the synthesis of diverse noble-metal (Au, Pt, Ag, or Pt/Au)/Fe(2)O(3) hybrid nanoparticles with the assistance of lysine (which is a nontoxic, user friendly amino acid that is compatible with organisms) and without using any other functionalization reagents. Control experiments show that lysine, which contains both amino and carboxylic groups, plays dual and crucial roles as both linker and capping agents in attaching noble metals with a small size and uniform distribution onto an Fe(2)O(3) support. Considering the perfect compatibility of lysine with organism, this approach may find potentials in biochemistry and biological applications. Furthermore, this novel route is also an attractive alternative and supplement to the current methods using a silane coupling agent or polyelectrolyte for preparing hybrid nanomaterials. To demonstrate the usage of such hybrid nanomaterials, a chemical gas sensor has been fabricated from the as-synthesized Au/Fe(2)O(3) nanoparticles and investigated for ethanol detection. Results show that the hybrid sensor exhibits significantly improved sensor performances in terms of high sensitivity, low detection limit, better selectivity, and good reproducibility in comparison with pristine Fe(2)O(3). Most importantly, this general approach can be further employed to fabricate other hybrid nanomaterials based on different support materials.

  18. Decoration of Micro-/Nanoscale Noble Metal Particles on 3D Porous Nickel Using Electrodeposition Technique as Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte.

    Science.gov (United States)

    Qian, Xin; Hang, Tao; Shanmugam, Sangaraju; Li, Ming

    2015-07-29

    Micro-/nanoscale noble metal (Ag, Au, and Pt) particle-decorated 3D porous nickel electrodes for hydrogen evolution reaction (HER) in alkaline electrolyte are fabricated via galvanostatic electrodeposition technique. The developed electrodes are characterized by field emission scanning electron microscopy and electrochemical measurements including Tafel polarization curves, cyclic voltammetry, and electrochemical impedance spectroscopy. It is clearly shown that the enlarged real surface area caused by 3D highly porous dendritic structure has greatly reinforced the electrocatalytic activity toward HER. Comparative analysis of electrodeposited Ag, Au, and Pt particle-decorated porous nickel electrodes for HER indicates that both intrinsic property and size of the noble metal particles can lead to distinct catalytic activities. Both nanoscale Au and Pt particles have further reinforcement effect toward HER, whereas microscale Ag particles exhibit the reverse effect. As an effective 3D hydrogen evolution cathode, the nanoscale Pt-particle-decorated 3D porous nickel electrode demonstrates the highest catalytic activity with an extremely low overpotential of -0.045 V for hydrogen production, a considerable exchange current density of 9.47 mA cm(-2) at 25 °C, and high durability in long-term electrolysis, all of which are attributed to the intrinsic catalytic property and the extremely small size of Pt particles.

  19. PARAMETRIC EFFECTS OF ANTI-FOAM COMPOSITION, SIMULANT PROPERTIES AND NOBLE METALS ON THE GAS HOLDUP AND RELEASE OF A NON-NEWTONIAN WASTE SLURRY SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Charles Crawford, C; Mark Fowley, M

    2008-08-07

    Gas holdup tests were performed in bench-scale and small-scale mechanically-agitated mixing systems at the Savannah River National Laboratory (SRNL) for a simulant of waste from the Hanford Tank 241-AZ-101. These featured additions of DOW Corning Q2-3183A anti-foam agent. Results indicated that this anti-foam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter-intuitively, that the holdup increased as the non-newtonian simulant shear strength decreased (apparent viscosity decreased). Such results raised the potential of increased flammable gas retention in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs) during a Design Basis Event (DBE). Additional testing was performed to determine the effects of simulant properties, composition of alternate AFAs, and presence of trace noble metals. Key results are that: (1) Increased gas holdup resulting from addition of Q2-3183A is due to a decrease in surface tension that supports small bubbles which have low rise velocities. (2) Dow Corning 1520-US AFA shows it to be a viable replacement to Dow Corning Q2-3183A AFA. This alternative AFA, however, requires significantly higher dosage for the same anti-foam function. (3) Addition of noble metals to the AZ-101 waste simulant does not produce a catalytic gas retention effect with the AFA.

  20. Preferential oxidation of CO in H2-rich stream on non-noble metal catalyst%非贵金属催化剂用于CO选择性氧化脱除的研究

    Institute of Scientific and Technical Information of China (English)

    周桂林; 蒋毅; 邱发礼

    2011-01-01

    以Co和Ni为催化剂活性组分、活性炭为载体,通过饱和浸渍法制得非贵金属催化剂,采用XRD、SEM和TPD对催‘化剂性能进行表征,考察了该催化剂用于富氢气中CO选择性氧化活性及H2O或/和CO2对催化性能的影响.研究结果表明,催化剂以NiO和高分散的C03O4为主要物相,催化剂吸附O2的能力随着金属氧化物负载量的增加而增加,且催化剂对O2分子的吸附能力明显强于CO2分子.金属氧化物负载量为35%的催化剂表现出较高的CO选择性氧化活性和选择性,在低于473 K时O2氧化选择性达50%以上,此时可将CO浓度降到40×10-6以下,达到燃料电池对氢燃料气的要求.同时,催化剂表现出较强的抗水蒸气和CO2的能力.%A non-noble metal catalyst was prepared by loading cobalt and nickel on activated carbon through saturated impregnation; it was characterized by XRD, SEM and TPD and used in preferential oxidation of CO in H2-rich stream. The influence of water vapor and/or CO2 on the performance of this non-noble metal catalyst was also examined. The results indicted that NiO and finely dispersed Co3O4 are formed in the catalyst; the catalyst exhibits stronger adsorption ability to O2 than to CO2 and the adsorption ability to O2 increases with the loading of metal oxides. The non-noble metal catalyst exhibits high activity and selectivity in the preferential oxidation of CO. Over the catalyst CN250 ( 35 ) with a metal oxide loading of 35 %, CO concentration can be decreased to 40x 10-6 at 433 K ~473 K; meanwhile, the selectivity of O2 consumed by CO oxidation exceeds 50% at 473 K. Moreover, the non-noble metal catalyst exhibits good resistance to water vapor and CO2 in the stream. These suggest that current catalyst may meet the requests in purification of H2 feed for PEMFC fuel cell application.

  1. 4,6-Dimethyl-dibenzothiophene conversion over Al{sub 2}O{sub 3}-TiO{sub 2}-supported noble metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Sara [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Escobar, Jose, E-mail: jeaguila@imp.mx [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico); Vazquez, Armando; Reyes, Jose Antonio de los [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, Iztapalapa, 09340, Mexico, D.F. (Mexico); Hernandez-Barrera, Melissa [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, San Bartolo Atepehuacan, Gustavo A. Madero, 07730, Mexico, D.F. (Mexico)

    2011-03-15

    Research highlights: {yields} Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were pore-filling impregnated to obtain Pd, Pt and Pd-Pt catalysts with {approx}1 wt% nominal metal loading. {yields} Reduced catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS). {yields} In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts. {yields} Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide. {yields} Yield to different products over various catalysts seemed to be strongly influenced by metallic particles dispersion. - Abstract: Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-TiO{sub 2} (molar ratio Al/Ti = 2, AT2) mixed oxides were synthesized using a low-temperature sol-gel method and were further pore-filling impregnated to obtain Pd and Pt catalysts with {approx}1 wt% nominal metal loading. Simultaneous impregnation was used to prepare bimetallic materials at Pd:Pt = 80:20. Solids characterization was carried out by N{sub 2}-physisorption, high-resolution transmission electron microscopy (HR-TEM and E-FTEM), X-ray diffraction, temperature-programmed reduction and CO-chemisorption. Reduced (350 deg. C, H{sub 2} flow) catalysts were tested in the 4,6-dimethyl-dibenzothiophene hydrodesulfurization (HDS) (in n-dodecane, at 300 deg. C and 5.5 MPa, batch reactor). In Pd-containing materials, TiO{sub 2} incorporation into the alumina support was favorable to the catalytic activity of noble metal catalysts, where bimetallic Pd-Pt with AT2 carrier had the highest organo-S compound conversion. Enhanced intrinsic activity (per exposed metallic site) was obtained in Pt-containing catalysts supported on the AT2 mixed oxide (as compared to alumina-supported ones). Yield to different products over various catalysts seemed to be strongly influenced by

  2. Demonstration of neutron detection utilizing open cell foam and noble gas scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Lavelle, C. M., E-mail: christopher.lavelle@jhuapl.edu; Miller, E. C. [The Johns Hopkins University Applied Physics Laboratory, Asymmetric Operations Department, Laurel, Maryland 20723 (United States); Coplan, M. [Institute for Physical Science and Technology, University of Maryland College Park, Maryland 20142 (United States); Thompson, Alan K.; Vest, Robert E.; Yue, A. T. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kowler, A. L. [Department of Chemical Physics, University of Maryland, College Park, Maryland 20142 (United States); Koeth, T. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20142 (United States); Al-Sheikhly, M. [Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742 (United States); Clark, Charles W. [Institute for Physical Science and Technology, University of Maryland College Park, Maryland 20142 (United States); National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899 (United States)

    2015-03-02

    We present results demonstrating neutron detection via a closely spaced converter structure coupled to low pressure noble gas scintillation instrumented by a single photo-multiplier tube (PMT). The converter is dispersed throughout the gas volume using a reticulated vitreous carbon foam coated with boron carbide (B{sub 4}C). A calibrated cold neutron beam is used to measure the neutron detection properties, using a thin film of enriched {sup 10}B as a reference standard. Monte Carlo computations of the ion energy deposition are discussed, including treatment of the foam random network. Results from this study indicate that the foam shadows a significant portion of the scintillation light from the PMT. The high scintillation yield of Xe appears to overcome the light loss, facilitating neutron detection and presenting interesting opportunities for neutron detector design.

  3. Surface Functionalization of g-C 3 N 4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts

    KAUST Repository

    Chen, Yin

    2015-06-12

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3N4) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3N4. This catalyst family (with less than 0.1 wt% of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt% platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts

    KAUST Repository

    Chen, Yin

    2015-11-02

    The graphitic carbon nitride (g-C3N4) usually is thought to be an inert material and it’s difficult to have the surface terminated NH2 groups functionalized. By modifying the g-C3N4 surface with hydrazine, the diazanyl group was successfully introduced onto the g-C3N4 surface, which allows the introduction with many other function groups. Here we illustrated that by reaction of surface hydrazine group modified g-C3N4 with CS2 under basic condition, a water electrolysis active group C(=S)SNi can be implanted on the g-C3N4 surface, and leads to a noble metal free hydrogen evolution catalyst. This catalyst has 40% hydrogen evolution efficiency compare to the 3 wt% Pt photo precipitated g-C3N4, with only less than 0.2 wt% nickel.

  5. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Kim, Hyung-Il [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Cho, Joong-Hee [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Seo, Hyung-Kee [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Dar, M.A. [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Shin, Hyung-Shik [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Ten Eyck, Gregory A. [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Senkevich, Jay J. [Brewer Science Inc., Rolla, MO 65401 (United States)]. E-mail: jsenkevich@brewerscience.com

    2006-02-25

    Electroless Cu was investigated on refractory metal, W and TaN {sub X}, and Ir noble metal substrates with a plasma-assisted atomic layer deposited palladium layer for the potential back-end-of-the-line (BEOL) metallization of advanced integrated devices. The sodium and potassium-free Cu electroless bath consisted of: ethylenediamine tetraacetic acid (EDTA) as a chelating agent, glyoxylic acid as a reducing agent, and additional chemicals such as polyethylene glycol, 2,2'-dipyridine and RE-610 as surfactant, stabilizer and wetting agent respectively. The growth and chemical characterization of the Cu films was carried out with a field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Group VIII metals such as Pt, Pd, etc., are stable in the electroless bath and catalytic towards the oxidation of glyoxylic acid and therefore work well for the electroless deposition of Cu. From RBS analysis, the amount of carbon and oxygen in Cu films were less than 1-3%. The Cu films were electroless deposited at 45-50 deg. C on patterned tantalum nitride with plasma-assisted atomic layer deposited (PA-ALD) Pd as a catalytic layer. Electroless Cu trench fill was successful with ultrasonic vibration, RE-610, and lowering the temperature to 45-50 deg. C on TaN {sub X} with the PA-ALD Pd catalytic layer.

  6. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).

    Science.gov (United States)

    Sun, Dengrong; Liu, Wenjun; Fu, Yanghe; Fang, Zhenxing; Sun, Fangxiang; Fu, Xianzhi; Zhang, Yongfan; Li, Zhaohui

    2014-04-14

    M-doped NH2-MIL-125(Ti) (M=Pt and Au) were prepared by using the wetness impregnation method followed by a treatment with H2 flow. The resultant samples were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS) analyses, N2-sorption BET surface area, and UV/Vis diffuse reflectance spectroscopy (DRS). The photocatalytic reaction carried out in saturated CO2 with triethanolamine (TEOA) as sacrificial agent under visible-light irradiations showed that the noble metal-doping on NH2-MIL-125(Ti) promoted the photocatalytic hydrogen evolution. Unlike that over pure NH2-MIL-125(Ti), in which only formate was produced, both hydrogen and formate were formed over Pt- and Au-loaded NH2-MIL-125(Ti). However, Pt and Au have different effects on the photocatalytic performance for formate production. Compared with pure NH2-MIL-125(Ti), Pt/NH2-MIL-125(Ti) showed an enhanced activity for photocatalytic formate formation, whereas Au has a negative effect on this reaction. To elucidate the origin of the different photocatalytic performance, electron spin resonance (ESR) analyses and density functional theory (DFT) calculations were carried out over M/NH2-MIL-125(Ti).The photocatalytic mechanisms over M/NH2-MIL-125(Ti) (M=Pt and Au) were proposed. For the first time, the hydrogen spillover from the noble metal Pt to the framework of NH2-MIL-125(Ti) and its promoting effect on the photocatalytic CO2 reduction is revealed. The elucidation of the mechanism on the photocatalysis over M/NH2-MIL-125(Ti) can provide some guidance in the development of new photocatalysts based on MOF materials. This study also demonstrates the potential of using noble metal-doped MOFs in photocatalytic reactions involving hydrogen as a reactant, like hydrogenation reactions.

  7. van der Waals-corrected Density Functional Theory simulation of adsorption processes on noble-metal surfaces: Xe on Ag(111), Au(111), and Cu(111)

    CERN Document Server

    Silvestrelli, Pier Luigi

    2016-01-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the Density Functional Theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the Quantum Harmonic Oscillator model which describes well many-body effects. Comparison of the computed equilibrium binding energies and distances, and the $C_3$ coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidate the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Dens...

  8. 锂离子电池中贵重金属的回收%Recovery of noble metal in lithium ion battery

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 孔祥华; 赵增营

    2001-01-01

    The noble metal nickel,cobalt and other metals such as aluminiumfrom used lithium secondary battery or waste material discarded by factory was recovered easily and a high percent recovery was obtained by means of a combination of simple chemical procedures with inexpensive chemicals . The recovered metal oxide components could be reused for preparing new materials for lithium secondary battery or alike.%新型储能器件锂离子二次电池的正极材料中含有大量的钴,镍等贵重金属元素,尝试将传统的络合法与离子交换法相结合,实现了对材料中的多种金属元素的分离和回收,其中钴镍两种金属的回收率分别达到了84.9%和89.1%,工艺流程简单,是一种可行的回收工艺,对其他工业产品中的类似金属的回收也有参考价值。

  9. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    Science.gov (United States)

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  10. Van Der Waals-Corrected Density Functional Theory Simulation of Adsorption Processes on Noble-Metal Surfaces: Xe on Ag(111), Au(111), and Cu(111)

    Science.gov (United States)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto

    2016-10-01

    The DFT/vdW-WF2s1 method based on the generation of localized Wannier functions, recently developed to include the van der Waals interactions in the density functional theory and describe adsorption processes on metal surfaces by taking metal-screening effects into account, is applied to the case of the interaction of Xe with noble-metal surfaces, namely Ag(111), Au(111), and Cu(111). The study is also repeated by adopting the DFT/vdW-QHO-WF variant relying on the quantum harmonic oscillator model which describes well many body effects. Comparison of the computed equilibrium binding energies and distances, and the C_3 coefficients characterizing the adatom-surface van der Waals interactions, with available experimental and theoretical reference data shows that the methods perform well and elucidates the importance of properly including screening effects. The results are also compared with those obtained by other vdW-corrected DFT schemes, including PBE-D, vdW-DF, vdW-DF2, rVV10, and by the simpler local density approximation and semi-local (PBE) generalized gradient approximation approaches.

  11. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4

    Science.gov (United States)

    Bo, Xiangjie; Zhang, Yufan; Li, Mian; Nsabimana, Anaclet; Guo, Liping

    2015-08-01

    Three ordered mesoporous carbons (OMCs) with different structures are used as catalyst supports for growth of NiCo2O4 spinel. The high surface area of OMCs provides more active sites to adsorb metal precursors. The porous structure confines the growth of NiCo2O4 and supplies more efficient transport passage for reactant molecules to access the active sites. Due to the structural characteristics of OMCs and catalytic properties of NiCo2O4, NiCo2O4/OMCs composites are highly active, cheap, and selective noble metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. The electrochemical activity of NiCo2O4 supported on three OMCs with different structures, surface areas, pore sizes, pore volumes, and defective sites is studied. NiCo2O4/OMCs composites may be further used as efficient and inexpensive noble metal-free ORR catalysts in alkaline solution.

  12. Preparation and applications of noble metal nanoparticles/carbon quantum dots nanocomposites%贵金属纳米粒子/碳量子点复合材料的制备及应用

    Institute of Scientific and Technical Information of China (English)

    林振华; 唐志姣; 胡玉玲; 李攻科

    2016-01-01

    Noble metal nanoparticles/carbon quantum dots possesses the merits of both noble metal nanoparticles (AuNPs and AgNPs) and carbon quantum dots(CDs), which has be regraded as a kind of promising functional materials. In recent years, the research on the preparation methods and application of noble metal nanoparticles/carbon quantum dots has gradually increased. AuNPs and AgNPs are widely used in surface enhanced Raman scattering (SERS), sensor, catalysis and antibacterial,etc. Carbon quantum dots are served not only as excellent electron donors, but also as electron acceptors because of the rich functional groups at the surface. What’s more, the preparation process of the noble metal nanoparticles is efficient, environment friendly and controllable, enabling noble metal nanoparticles to be more extensively applied. In this paper, the preparation and application of noble metal nanoparticles/carbon quantum dots in resent years as well as the prospects were summarized.%贵金属纳米粒子/碳量子点纳米材料结合了贵金属纳米粒子和碳量子点的优点,是一种非常有前途的功能材料。近年来,国内外对其制备方法及应用研究逐渐增多,已广泛应用于表面增强拉曼光谱、传感、催化和抗菌等方面。碳量子点表面含有丰富的基团,既可以作为电子供体也可作为电子受体,在贵金属纳米粒子的制备中已经得到了很好的应用,制备过程高效、环保且形态可控。本文概述了近年来银纳米粒子/碳量子点和金纳米粒子/碳量子点复合纳米材料的制备方法及其应用,并对前景进行了展望。

  13. Adsorption of water and ethanol on noble and transition-metal substrates: a density functional investigation within van der Waals corrections.

    Science.gov (United States)

    Freire, Rafael L H; Kiejna, Adam; Da Silva, Juarez L F

    2016-10-26

    We report the results of extensive computational investigation of the adsorption properties of water and ethanol on several Cu-, Pt-, and Au-based substrates, including the close-packed unreconstructed Cu(111), Pt(111), and Au(111) surfaces, defected metal substrates with on-surface low-coordinated sites generated by the intermixing of Pt-Cu and Pt-Au in the topmost surface layers and strained on-surface and sub-surface Pt-layers at Cu(111) and Au(111) substrates. The calculations are based on the density functional theory (DFT) within the van der Waals (vdW) correction. For all the substrates, we found that water and ethanol bind via the anionic O atom to the cationic one-fold coordinated on-top metal sites, which enhances the adsorbate-substrate Coulomb interactions. For water, both DFT and DFT + vdW calculations predict a flat geometry. For ethanol, the DFT and DFT + vdW results are in contrast, namely, DFT yields a perpendicular orientation of the C-C bond with respect to the surface, while we obtained a parallel orientation of the C-C bond using DFT + vdW, which maximizes the adsorption energies. Despite expected deviations due to the nature of the weak adsorbate-substrate interactions, we found that the adsorption energy of water and ethanol shows a linear dependence as a function of the position of the center of gravity of the occupied d-band, and hence, the magnitude of the adsorption energy increases as the d-band center position shifts towards the Fermi energy. Thus, it indicates hybridization between the O p- and metal d-states, which determines the magnitude of the adsorption energy of water and ethanol on clean, low-coordinated, and strained noble and transition-metal substrates.

  14. Rechargeable Lithium Metal Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  15. Phenolic Fractions from Muscadine Grape "Noble" Pomace can Inhibit Breast Cancer Cell MDA-MB-231 Better than those from European Grape "Cabernet Sauvignon" and Induce S-Phase Arrest and Apoptosis.

    Science.gov (United States)

    Luo, Jianming; Wei, Zheng; Zhang, Shengyu; Peng, Xichun; Huang, Yu; Zhang, Yali; Lu, Jiang

    2017-03-22

    Tons of grape pomace which still contained a rich amount of plant polyphenols, is discarded after winemaking. Plant polyphenols have multi-functional activities for human body. In this study, polyphenols of pomaces from Muscadinia rotundifolia "Noble" and Vitis vinifera "Cabernet Sauvignon" were extracted and fractionated, and then they were analyzed with LC-MS and the inhibitory effects on breast cancer cells were compared. The inhibition on MDA-MB-231 cells of fractions from "Noble" was further evaluated. The results showed that polyphenols from 2 grape pomaces could be separated into 3 fractions, and ellagic acid and/or ellagitannins were only detected in fractions from "Noble" pomace. All 3 fractions from "Noble" pomace inhibited MDA-MB-231 better than MCF-7. But fraction 2 from "Cabernet Sauvignon" inhibited MCF-7 better while fraction 1 and fraction 3 inhibited both 2 cells similarly. Moreover, the fractions from "Noble" pomace rather than "Cabernet Sauvignon" can inhibit MDA-MB-231 better. Finally, fractions from "Noble" pomace can induce S-phase arrest and apoptosis on MDA-MB-231. These findings suggested the extracts from grape pomace especially those from "Noble," are potential to be utilized as health beneficial products or even anti-breast cancer agents.

  16. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step.

    Science.gov (United States)

    Jiménez, Ernesto; Abderrafi, Kamal; Abargues, Rafael; Valdés, José L; Martínez-Pastor, Juan P

    2010-05-18

    Here we describe a simple, powerful technique based on the laser ablation of a target immersed in a water solution of a metal salt. With this method, nanoparticles of different metals and alloys can be processed very quickly. Both the target and the salt solution can be chosen to produce metal nanoparticles of different sizes, surface-oxidized nanoparticles (silica-silver, for example), or even more complex structures to be defined by the researcher on one or more steps because the technique combines the advantages of both physical and chemical methods. We have applied this technique to the fabrication of inert silica-metal (silver, gold, and silver-gold) nanoparticles with a strong surface plasmon resonance all together in a single step. The advantage of the simultaneous production of silica during laser ablation is the stabilization of the metal nanoparticle colloid but also the possibility to reduce the toxicity of these nanoparticles.

  17. Experimental observations on noble metal nanonuggets and Fe-Ti oxides, and the transport of platinum group elements in silicate melts

    Science.gov (United States)

    Anenburg, Michael; Mavrogenes, John A.

    2016-11-01

    Platinum group element (PGE) nanonuggets are a nuisance in experimental studies designed to measure solubility or partitioning of noble metals in silicate melts. Instead of treating nanonuggets as experimental artifacts, we studied their behaviour motivated by recent discoveries of PGE nanonuggets in a variety of natural settings. We used an experimental setup consisting of AgPd, Pt or AuPd capsules and Fe(-Ti) oxide-saturated hydrous peralkaline silicate melts to maximise nanonugget production. TABS (Te, As, Bi, Sb, Sn) commonly occur in PGM (platinum group minerals), prompting addition of Bi to our experiments to investigate its properties as well. Three-dimensional optical examination by 100× objective and immersion oil reveals variable colour which correlates with nanonugget size and shape due to plasmon resonance effects. We observe two textural types: (1) intermediate-sized nanonuggets dispersed in the glass and adhering to oxides, and (2) abundant fine nanonuggets dispersed in the glass with coarse euhedral crystals in contact with oxides. Slow cooling removes dispersed nanonuggets and greatly coarsens existing oxide-associated metal crystals. Nanonugget-free halos are commonly observed around oxide grains. All metal phases are composed of major (Ag, Pd) and trace (Pt, Ir, Au) capsule material. Our results show reduction processes, imposed by growing oxides, causing local metal saturation in the oxide rich zones with preferential nucleation on smaller oxide grains. The redox gradient then blocks additional metals from diffusing into oxide rich zones, forming halos. As the entire experimental charge is reduced throughout the run, nanonuggets form in the distal glass. Bismuth contents of metal phases do not depend on Bi2O3 amounts dissolved in the melt. Further PGM crystallisation consumes nanonuggets as feedstock. We conclude that the appearance of metallic PGE phases happens in two stages: first as nanonuggets and then as larger PGM. Once formed

  18. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide ne...

  19. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide n...

  20. Synthesis, morphological control, dispersion stabilization and in situ self-assembly of noble metal nanostructures using multidentate resorcinarene surfactants

    Science.gov (United States)

    Han, Sangbum

    In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. (Abstract shortened by ProQuest.).

  1. Mo2 C as Non-Noble Metal Co-Catalyst in Mo2 C/CdS Composite for Enhanced Photocatalytic H2 Evolution under Visible Light Irradiation.

    Science.gov (United States)

    Ma, Baojun; Xu, Haojie; Lin, Keying; Li, Jie; Zhan, Haijuan; Liu, Wanyi; Li, Can

    2016-04-21

    Co-catalysts are a major factor to enhance photocatalytic H2 activity; they are mainly composed of expensive noble metals. Here, we reported a new non-noble-metal co-catalyst Mo2 C that efficiently improves the photocatalytic H2 evolution of CdS under visible light irradiation. Mo2 C is prepared by temperature-programmed reaction with molybdenum oxide as precursor, and the Mo2 C/CdS composite is prepared by deposition of CdS on Mo2 C. The optimum composite 2.0 % Mo2 C/CdS shows a high H2 evolution rate of 161 μmol h(-1) , which is ten times higher than that of CdS alone and 2.3 times higher than the optimum for 1.0 % Pt/CdS. Moreover, the Mo2 C/CdS is stable for 50 h. This study presents a new low-cost non-noble-metal co-catalyst as a photocatalyst to achieve highly efficient H2 evolution.

  2. Down-conversion phosphors as noble-metal-free co-catalyst in ZnO for efficient visible light photocatalysis

    Science.gov (United States)

    Chu, Haipeng; Liu, Xinjuan; Liu, Jiaqing; Lei, Wenyan; Li, Jinliang; Wu, Tianyang; Li, Ping; Li, Huili; Pan, Likun

    2017-01-01

    Exploring novel visible light responsive photocatalysts is one of greatly significant issues from the viewpoint of using solar energy. Here we report the yellow-orange emitting α-Si3N4-doped Lu3Al5O12:Ce3+ (Lu3Al5-xSixO12-xNx:Ce3+) phosphors as a noble-metal-free co-catalyst for enhanced visible light photocatalytic activity of ZnO. The results show that ZnO-Lu3Al5-xSixO12-xNx:Ce3+ hybrid photocatalysts using a fast microwave-assisted approach exhibits a 91% methylene blue (MB) degradation under visible light irradiation at 240 min, which evidence the synergistic effect of ZnO and Lu3Al5-xSixO12-xNx:Ce3+ that suppress the rate of charge recombination and increase the self-sensitized degradation of MB. ZnO-down conversion phosphors can be envisaged as potential candidate in environmental engineering and solar energy applications.

  3. Photocatalytic H2 Production Using Pt-TiO2 in the Presence of Oxalic Acid: Influence of the Noble Metal Size and the Carrier Gas Flow Rate

    Directory of Open Access Journals (Sweden)

    Ákos Kmetykó

    2014-10-01

    Full Text Available The primary objective of the experiments was to investigate the differences in the photocatalytic performance when commercially available Aeroxide P25 TiO2 photocatalyst was deposited with differently sized Pt nanoparticles with identical platinum content (1 wt%. The noble metal deposition onto the TiO2 surface was achieved by in situ chemical reduction (CRIS or by mixing chemically reduced Pt nanoparticle containing sols to the aqueous suspensions of the photocatalysts (sol-impregnated samples, CRSIM. Fine and low-scale control of the size of resulting Pt nanoparticles was obtained through variation of the trisodium citrate concentration during the syntheses. The reducing reagent was NaBH4. Photocatalytic activity of the samples and the reaction mechanism were examined during UV irradiation (λmax = 365 nm in the presence of oxalic acid (50 mM as a sacrificial hole scavenger component. The H2 evolution rates proved to be strongly dependent on the Pt particle size, as well as the irradiation time. A significant change of H2 formation rate during the oxalic acid transformation was observed which is unusual. It is probably regulated both by the decomposition rate of accumulated oxalic acid and the H+/H2 redox potential on the surface of the catalyst. The later potential is influenced by the concentration of the dissolved H2 gas in the reaction mixture.

  4. Noble Metal Decoration and Presulfation on TiO2: Increased Photocatalytic Activity and Efficient Esterification of n-Butanol with Citric Acid

    Directory of Open Access Journals (Sweden)

    Yu Niu

    2016-01-01

    Full Text Available TiO2 has been widely used as a key catalyst in photocatalytic reactions; it also shows good catalytic activity for esterification reactions. Different sulfated M-TiO2 nanoparticles (M = Ag, Au, Rh, and Pt were prepared by photodeposition and ultrasonic methods. The results show that the noble metal nanoparticles, which were loaded onto a TiO2 surface, slightly affected the crystal phase and particle size of TiO2. Among all the catalysts, SO42-/Au-TiO2 exhibited the best catalytic activity in the esterification reaction for the synthesis of citric acid n-butyl acetate and in the decomposition of methyl orange, as confirmed by a high conversion rate of up to 98.2% and 100% degradation rate, respectively. This can be attributed to an increase in the Lewis acidity of the catalyst and increased separation efficiency of electron-hole pairs. This superior catalyst has great potential applications in esterification reactions and wastewater treatments.

  5. WS2 as an Effective Noble-Metal Free Cocatalyst Modified TiSi2 for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Dongmei Chu

    2016-09-01

    Full Text Available A noble-metal free photocatalyst consisting of WS2 and TiSi2 being used for hydrogen evolution under visible light irradiation, has been successfully prepared by in-situ formation of WS2 on the surface of TiSi2 in a thermal reaction. The obtained samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX, transmission electron microscopy (TEM, and X-ray photoelectron spectroscopy (XPS. The results demonstrate that WS2 moiety has been successfully deposited on the surface of TiSi2 and some kind of chemical bonds, such as Ti-S-W and Si-S-W, might have formed on the interface of the TiSi2 and WS2 components. Optical and photoelectrochemical investigations reveal that WS2/TiSi2 composite possesses lower hydrogen evolution potential and enhanced photogenerated charge separation and transfer efficiency. Under 6 h of visible light (λ > 420 nm irradiation, the total amount of hydrogen evolved from the optimal WS2/TiSi2 catalyst is 596.4 μmol·g−1, which is around 1.5 times higher than that of pure TiSi2 under the same reaction conditions. This study shows a paradigm of developing the effective, scalable and inexpensive system for photocatalytic hydrogen generation.

  6. Synthesis and characterization of a Noble metal Enhanced Optical Nanohybrid (NEON): a high brightness detection platform based on a dye-doped silica nanoparticle.

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2012-05-29

    A highly bright and photostable, fluorescent nanohybrid particle is presented which consists of gold nanoparticles (GNPs) embedded in dye-doped silica in a core-shell configuration. The dye used is the near-infrared emitting 4,5-benzo-5'-(iodoacetaminomethyl)-1',3,3,3',3'-pentamethyl-1-(4-sulfobutyl) indodicarbo cyanine. The nanohybrid architecture comprises a GNP core which is separated from a layer of dye molecules by a 15 nm buffer layer and has an outer protective, undoped silica shell. Using this architecture, a brightness factor of 550 has been achieved compared to the free dye. This hybrid system, referred to as Noble metal Enhanced Optical Nanohybrid (NEON) in this paper, is the first nanohybrid construct to our knowledge which demonstrates such tunable fluorescence property. NEON has enhanced photostability compared to the free dye and compared to a control particle without GNPs. Furthermore, the NEON particle, when used as a fluorescent label in a model bioassay, shows improved performance over assays using a conventional single dye molecule label.

  7. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions.

  8. Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Beier, M.; Kimmerle, B.

    2009-01-01

    -significantly faster than during the extinction of the reaction. The dynamic behavior of the catalysts was dependent on the flow conditions and the respective noble metal component(s). Higher reaction gas flow led to a faster ignition process. While the ignition over Pt-Rh/Al2O3 occurred at lower temperature than over...... Pt/Al2O3, the structural changes during ignition were significantly faster in the latter case. The rate of reduction of the catalyst during ignition was also dependent on the axial position in the fixed-bed. The spectroscopic results provide important insight into the ignition and extinction behavior......The dynamics of the ignition and extinction of the catalytic partial oxidation (CPO) of methane to hydrogen and carbon monoxide over Pt-Rh/Al2O3 and Pt/Al2O3 were studied in the subsecond timescale using quick-EXAFS with a novel cam-driven X-ray monochromator employing Si(111) and Si(311) crystals...

  9. Free MoS2 Nanoflowers Grown on Graphene by Microwave-Assisted Synthesis as Highly Efficient Non-Noble-Metal Electrocatalysts for the Hydrogen Evolution Reaction

    Science.gov (United States)

    Cao, Jiamu; Zhang, Xuelin; Zhang, Yufeng; Zhou, Jing; Chen, Yinuo; Liu, Xiaowei

    2016-01-01

    Advanced approaches to preparing non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER) are considered to be a significant breakthrough in promoting the exploration of renewable resources. In this work, a hybrid material of MoS2 nanoflowers (NFs) on reduced graphene oxide (rGO) was synthesized as a HER catalyst via an environmentally friendly, efficient approach that is also suitable for mass production. Small-sized MoS2 NFs with a diameter of ca. 190 nm and an abundance of exposed edges were prepared by a hydrothermal method and were subsequently supported on rGO by microwave-assisted synthesis. The results show that MoS2 NFs were distributed uniformly on the remarkably reduced GO and preserved the outstanding original structural features perfectly. Electrochemical tests show that the as-prepared hybrid material exhibited excellent HER activity, with a small Tafel slope of 80 mV/decade and a low overpotential of 170 mV. PMID:27556402

  10. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    Science.gov (United States)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  11. Self-organization of noble-metal nanoparticles on rippled dielectric surfaces produced by low-energy ion erosion

    Energy Technology Data Exchange (ETDEWEB)

    Babonneau, David; Camelio, Sophie; Simonot, Lionel [Institut PPRIMME, Poitiers (France)

    2010-07-01

    A new route to control the morphology and the spatial organization of metallic nanoparticles, and therefore their physical properties, is to use nanostructured surfaces as templates. We report on the development of an original approach that integrates the production of nanoripple patterns with long-range order by Xe{sup +} ion-etching of amorphous dielectric films (Al{sub 2}O{sub 3}, BN, Si{sub 3}N{sub 4}) and the elaboration of organized arrays of aligned Au and Ag nanoparticles by grazing incidence ion-beam sputtering. By combining direct imaging methods (TEM, AFM) and grazing incidence small-angle X-ray scattering (GISAXS) experiments associated with quantitative analysis, we show that valuable information can be obtained on the morphology as well as lateral and vertical correlations of the nanostructures present in the nanocomposite films (i.e., ripples, nanoparticles, and surface roughness of the capping layer). In particular, shadowing effects due to the grazing incidence geometry lead to the formation of self-organized nanoparticles with an ellipsoidal shape and a major axis parallel to the ripples. The optical properties of the metallic nanoparticles deposited onto such unidimensional patterns of nanoripples exhibit a strong dependence on the light polarization, which can interpreted as the consequence of both the in-plane spatial organization of the nanoparticles and their shape anisotropy.

  12. Production of mono- and bimetallic nanoparticles of noble metals by pyrolysis of organic extracts on silicon dioxide

    Science.gov (United States)

    Serga, V.; Kulikova, L.; Cvetkov, A.; Krumina, A.; Kodols, M.; Chornaja, S.; Dubencovs, K.; Sproge, E.

    2013-12-01

    In the present work the influence of the tri-n-octylammonium (Oct3NH+) salt anion (PtCl62-, PdCl42-, AuCl4-) nature on the phase composition and mean size of crystallites of the extract pyrolysis products on the SiO2 nanopowder has been studied. The XRD phase analysis of the composites (metal loading 2.4 wt.%) made under the same conditions, at the pyrolysis of Pt- and Au-containing extracts has shown the formation of nanoparticles of Pt (dPt = 15 nm) and Au (dAu = 33 nm), respectively. The end-product of the pyrolysis of the Pd-containing extract has an admixture phase of PdO along with the main metal phase (dPd = 21 nm). At the preparation of bimetallic particles (Pt-Pd, Pt-Au, Pd-Au) on the SiO2 nanopowder it has been found that the nanoparticles of the PtPd alloy, Pt and Au or Pd and Au nanoparticles are the products of the thermal decomposition of two-component mixtures of extracts. The investigation of catalytic properties of the produced composites in the reaction of glycerol oxidation by molecular oxygen in alkaline aqueous solutions has shown that all bimetallic composites exhibit catalytic activity in contrast to monometallic ones.

  13. Selective extraction and detection of noble metal based on ionic liquid immobilized silica gel surface using ICP-OES

    Indian Academy of Sciences (India)

    HADI M MARWANI; AMJAD E ALSAFRANI; HAMAD A AL-TURAIF; ABDULLAH M ASIRI; SHER BAHADAR KHAN

    2016-08-01

    In this study, an efficiently employed ionic liquid combined with commercially available silica gel (SG–ClPrNTf$_2$) was developed for selective detection of gold(III) by use of inductively coupled plasma–optical emission spectrometry (ICP-OES). The selectivity of SG–ClPrNTf$_2$ was evaluated towards seven metal ions, including Y(III), Mn(II), Zr(IV), Pb(II), Mg(II), Pd(II) and Au(III). Based on pH study and distribution coefficient values, the SG–ClPrNTf$_2$ phase was found to be the most selective towards Au(III) at pH 2 as compared to other metal ions. The adsorption isotherm of Au(III) on the SG–ClPrNTf$_2$ phase followed the Langmuir model with adsorption capacity of 59.48 mg g$^{−1}$, which was highly in agreement with experimental data of adsorption isotherm study. The kinetics study indicated that Au(III) adsorption kinetics data were well fit with the pseudo-second-order kinetic model on the basis of correlation coefficient fitting (0.996) and adsorption capacity agreement (62.26 mg g$^{−1}$). Furthermore, SG–ClPrNTf$_2$ phase was effectively performed for the determination of Au(III) in real water samples with satisfactory results.

  14. Quasi-phase-matched high-harmonic generation in composites of metal nanoparticles and a noble gas

    Science.gov (United States)

    Husakou, A.; Herrmann, J.

    2014-08-01

    We theoretically study high-harmonic generation (HHG) in a composite which consists of ellipsoidal silver nanoparticles in argon. The significant field enhancement in argon in the vicinity of metal nanoparticles allows us to use much lower incident intensities than in typical HHG experiments. A periodic modulation of the nanoparticle concentration provides quasi-phase matching, which mitigates the negative effect of the significant phase mismatch. First, we study the linear optical properties of such a composite and the field enhancement and consider the technological possibilities of creating such a composite. Then the generation of high harmonics is simulated using a propagation equation which includes field enhancement, phase mismatch, absorption of the pump beam and harmonics, and other relevant effects. Generation of harmonics with an efficiency above 10-7 is predicted.

  15. «Green» Synthesis of Noble Metal Nanoparticles and CdS Semiconductor Nanocrystals Using Biological Material

    Directory of Open Access Journals (Sweden)

    Blume, Ya.B.

    2015-01-01

    Full Text Available The basic principles of synthesis of metal nanoparticles and semiconductor nanocrystals and its application prospects are considered. The relevance of the exploiting living systems and their components for the development of «green » synthesis technology for nano-objects with the unique properties and a wide range of applications is analyzed. The biotechnological synthesis of nanoparticles of silver, gold and bimetallic silver-gold nanoparticles using plant extracts of Magnolia denudata, M. stellata, Camellia sinensis var. sinensis, C. sinensis var. assamica, Orthosiphon stamineus and Hypericum perforatum is described. The results of cadmium sulfide fluorescent semiconductor nanocrystal synthesis using bacteria Escherichia coli, basidiomycete Pleurotus ostreatus and plant Linaria maroccana are reported. Morphological and optical characteristics of the synthesized nanoparticles are presented.

  16. The Thermochemical Stability of Ionic Noble Gas Compounds.

    Science.gov (United States)

    Purser, Gordon H.

    1988-01-01

    Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…

  17. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas (CIOp), (CONICET La Plata-CIC) (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, UNLP (Argentina)

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ω{sub P}   and the damping constant γ{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ω{sub p} (0.5%–1.6%) and for γ{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ω{sub p} and γ{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ω{sub p} and γ{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  18. Autothermal reforming of simulated and commercial fuels on zirconia-supported mono- and bimetallic noble metal catalysts

    OpenAIRE

    Kaila, Reetta

    2008-01-01

    New energy sources are needed if energy supply and demand are to remain in balance. At the same time, the level of emissions needs to be reduced to minimise their contribution to the greenhouse effect. Renewable energy sources, and hydrogen (H2), have been attracting much attention, and more efficient technologies for energy recovery have been developed. Among these are fuel cells. H2 is not a source of energy but an energy carrier, which needs to be produced from a primary fuel (hydroca...

  19. 铠装贵金属热电偶测量端位置的确定方法%Method for Determining Sheathed Noble Metal Thermocouple Measuring End Position

    Institute of Scientific and Technical Information of China (English)

    侯运安; 赵雪茹; 王兵利; 苏剑

    2015-01-01

    Accurate positioning of measuring ends of thermocouples has an important influence on the calibration and use of thermocouples, especially for armored noble metal thermocouples. It is impossible to accurately identify the position of thermocouple measuring ends inside protec-tion tubes by visual inspection, and therefore the top of protection tubes is chosen as the position for measuring ends in the calibration and use processes of thermocouples. However, through field test, the measuring ends of armored noble metal thermocouples are not located at the top of protection tubes. This paper provides a method for accurate positioning of armored noble metal thermocouple measuring ends.%热电偶测量端位置的准确定位对于热电偶的校准和使用有着重要影响,特别对于铠装贵金属热电偶来说,由于无法通过肉眼准确识别保护管内部热电偶测量端的位置,因此在热电偶检定和使用过程中一般将其外保护管顶部作为测量端所在位置。然而通过现场试验发现,铠装贵金属热电偶测量端一般并不位于保护管顶部,本文提供了一种准确定位铠装贵金属热电偶测量端的方法。

  20. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries.

    Science.gov (United States)

    Suntivich, Jin; Gasteiger, Hubert A; Yabuuchi, Naoaki; Nakanishi, Haruyuki; Goodenough, John B; Shao-Horn, Yang

    2011-06-12

    The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ-orbital (e(g)) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ orbital and metal-oxygen covalency on the competition between O(2)(2-)/OH(-) displacement and OH(-) regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

  1. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive......The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...

  2. Self-supported spinel FeCo2O4 nanowire array: an efficient non-noble-metal catalyst for the hydrolysis of NaBH4 toward on-demand hydrogen generation

    Science.gov (United States)

    Hao, Shuai; Yang, Libin; Cui, Liang; Lu, Wenbo; Yang, Yingchun; Sun, Xuping; Asiri, Abdullah M.

    2016-11-01

    NaBH4 has been considered as one of the most advantageous candidates for chemical hydrogen storage, but it is still a huge challenge to design efficient non-noble-metal catalysts for on-demand hydrogen generation from NaBH4 hydrolysis. In this paper, we demonstrate for the first time that a spinel FeCo2O4 nanowire array supported on carbon cloth (FeCo2O4 NA/CC) behaves as an efficient earth-abundant catalyst toward NaBH4 hydrolysis in alkaline solutions with an activation energy of 44.98 kJ mol-1. Such FeCo2O4 NA/CC offers a hydrogen generation rate of 2551 ml min-1 g-1 under ambient conditions, with good stability and reusability. Its use as an ON/OFF switch for on-demand hydrogen generation is also demonstrated successfully.

  3. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  4. Study and characterization of noble metal deposits on similar rusty surfaces to those of the reactor U-1 type BWR of nuclear power station of Laguna Verde; Estudio y caracterizacion de depositos de metales nobles sobre superficies oxidadas similares a las del reactor de la Central de Laguna Verde (CNLV) U1 del tipo BWR

    Energy Technology Data Exchange (ETDEWEB)

    Flores S, V. H.

    2011-07-01

    In the present investigation work, were determined the parameters to simulate the conditions of internal oxidation reactor circulation pipes of the nuclear power plant of Laguna Verde in Veracruz. We used 304l stainless steel cylinders with two faces prepared with abrasive paper of No. 600, with the finality to obtain similar surface to the internal circulation piping nuclear reactor. Oxides was formed within an autoclave (Autoclave MEX-02 unit B), which is a device that simulates the working conditions of the nuclear reactor, but without radiation generated by the fission reaction within the reactor. The oxidation conditions were a temperature of 280 C and pressure of 8 MPa, similar conditions to the reactor operating in nuclear power plant of Laguna Verde in Veracruz, Mexico (BWR conditions), with an average conductivity of 4.58 ms / cm and 2352 ppb oxygen to simulate normal water chemistry NWC. Were obtained deposits of noble metal oxides formed on 304l stainless steel samples, in a 250 ml autoclave at a temperature range of 180 to 200 C. The elements that were used to deposit platinum-rhodium (Pt-Rh) with aqueous Na{sub 2}Pt (OH){sub 6} and Na{sub 3}Rh (NO{sub 2}){sub 6}, Silver (Ag) with an aqueous solution of AgNO{sub 3}, zirconium (Zr) with aqueous Zr O (NO{sub 3}) and ZrO{sub 2}, and zinc (Zn) in aqueous solution of Zn (NO{sub 3}){sub 2} under conditions of normal water chemistry. Also there was the oxidation of 304l stainless steel specimens in normal water chemistry with a solution of Zinc (Zn) (NWC + Zn). Oxidation of the specimens in water chemistry with a solution of zinc (Zn + NWC) was prepared in two ways: within the MEX-02 autoclave unit A in a solution of zinc and a flask at constant temperature in zinc solution. The oxides formed and deposits were characterized by scanning electron microscopy, energy dispersive X-ray analysis, elemental field analysis and X-ray diffraction. By other hand was evaluated the electrochemical behavior of the oxides

  5. Open Cell Metal Foams for Beam Liners?

    CERN Document Server

    Croce, R P; Stabile, A

    2013-01-01

    The possible use of open-cell metal foams for particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are pointed out, and a study program is outlined.

  6. Comparative Analysis of Cobalt Oxide Nanoisland Stability and Edge Structures on Three Related Noble Metal Surfaces: Au (111), Pt (111) and Ag (111)

    DEFF Research Database (Denmark)

    Fester, Jakob; Bajdich, Michal; Walton, Alexander

    2016-01-01

    Metal oxide nanostructures and thin films grown on metallic substrates have attracted strong attention as model catalysts and as interesting inverse catalyst systems in their own right. In this study, we investigate the role of metal support in the growth and stabilization of cobalt oxide nanostr...

  7. Osteoblastic cell behavior on nanostructured metal implants.

    NARCIS (Netherlands)

    Guehennec, L Le; Martin, F.; Lopez-Heredia, M.A.; Louarn, G.; Amouriq, Y.; Cousty, J.; Layrolle, P.

    2008-01-01

    AIMS: Surface modifications at the nanometric scale may promote protein adsorption, cell adhesion and thus favor the osseointegration of metal implants. The behavior of osteoblastic cells was studied on mirror-polished (Smooth-SS) and nanostructured (Nano-SS) stainless steel surfaces. MATERIALS & ME

  8. Fuel cells and the theory of metals.

    Science.gov (United States)

    Bocciarelli, C. V.

    1972-01-01

    Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.

  9. Development of nickel-metal hydride cell

    Science.gov (United States)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  10. A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts.

    Science.gov (United States)

    Barman, Barun Kumar; Nanda, Karuna Kar

    2016-04-21

    Here, we demonstrate a green and environment-friendly pyrolysis route for the synthesis of metal-rich sulphide embedded in an N-doped carbon (NC) framework in the absence of sulphide ions (S(2-)). The metal-chelate complex (tris(ethylenediamine) metal(ii) sulfate) serves as a new and single source precursor for the synthesis of earth abundant and non-precious hybrid structures such as metal-rich sulphides Co9S8@NC and Ni3S2@NC when M(II) = Co(2+) and Ni(2+) and counter sulphate (SO4(2-)) ions are the source of S. Both the hybrids show superior OER activity as compared to commercial RuO2.

  11. Formation of a quasi-solid structure by intercalated noble gas atoms in pores of Cu(I)-MFU-4l metal-organic framework.

    Science.gov (United States)

    Magdysyuk, Oxana V; Denysenko, Dmytro; Weinrauch, Ingrid; Volkmer, Dirk; Hirscher, Michael; Dinnebier, Robert E

    2015-01-14

    The primary adsorption sites for Kr and Xe within the large-pore metal-organic framework Cu(I)-MFU-4l have been investigated by high-resolution synchrotron powder diffraction, revealing an enormous number of adsorption sites: in total, 10 crystallographically different positions for Xe and 8 positions for Kr were localized, the first five of which are located near metal atoms and the organic linker, and the remaining sites form a second adsorption layer in the pores.

  12. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  13. Síntesis y caracterización de materiales poliméricos para la separación no cromatográfica de metales nobles. Separación y determinación de iridio mediante cromatografía líquida y electroforesis capilar

    OpenAIRE

    Sánchez Navarro, Juan Manuel

    1999-01-01

    For the selective separation of Noble Metals, different new chelating polymers with the same functional group, based on tri-isobutylphosphine sulphide, have been synthesised. Different spacers between the polymeric matrix and the functional group were introduced during the synthetic process, varying the length and number of heteroatoms (O, S) in the spacer molecule. These polymers show a good affinity towards gold and silver ions and a lower adsorption capacity towards palladium, and do not a...

  14. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts

    Science.gov (United States)

    Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu

    2017-02-01

    Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H2) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H2 evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu2MoS4 nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu2MoS4nanosheets. These layered Cu2MoS4 nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H2 production by water splitting. We have obtained superior H2 production rates by using Cu2MoS4 loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.

  15. Third-order nonlinear optical responses in derivatives of phenylhydrazone by Z-scan and optical limiting studies-influence of noble metal nanoparticles

    Science.gov (United States)

    Sudheesh, P.; Siji Narendran, N. K.; Chandrasekharan, K.

    2013-12-01

    Here we report a study on the third-order nonlinear optical properties of a new class of phenylhydrazones and the influence of silver and gold metal nanoparticles on their nonlinear response. Metal nanoparticles were prepared by laser ablation method. Single beam Z-scan technique with a 7 ns, 10 Hz Nd: YAG laser pulses at 532 nm were employed for the measurements. The compounds exhibit well optical limiting properties. Hence, these compounds are a promising class of materials for the optical device applications.

  16. Static impedance behavior of programmable metallization cells

    Science.gov (United States)

    Rajabi, S.; Saremi, M.; Barnaby, H. J.; Edwards, A.; Kozicki, M. N.; Mitkova, M.; Mahalanabis, D.; Gonzalez-Velo, Y.; Mahmud, A.

    2015-04-01

    Programmable metallization cell (PMC) devices work by growing and dissolving a conducting metallic bridge across a chalcogenide glass (ChG) solid electrolyte, which changes the resistance of the cell. PMC operation relies on the incorporation of metal ions in the ChG films via photo-doping to lower the off-state resistance and stabilize resistive switching, and subsequent transport of these ions by electric fields induced from an externally applied bias. In this paper, the static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film with active Ag and inert Ni electrodes is characterized and modeled using three dimensional simulation code. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

  17. Carbonates-based noble metal-free lean NOx trap catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) with superior catalytic performance

    Science.gov (United States)

    Zhang, Yuxia; You, Rui; Liu, Dongsheng; Liu, Cheng; Li, Xingang; Tian, Ye; Jiang, Zheng; Zhang, Shuo; Huang, Yuying; Zha, Yuqing; Meng, Ming

    2015-12-01

    A series of base metal-based lean NOx trap (LNT) catalysts MOx-K2CO3/K2Ti8O17 (M = Ce, Fe, Cu, Co) were synthesized by successive impregnations and employed for the storage and reduction of NOx in the emissions of lean-burn engines at 350 °C. The XRD and XANES/EXAFS results reveal that the active phases in the corresponding catalysts exist as CeO2, Fe2O3, CuO and Co3O4, respectively. Among all the catalysts, CoOx-K2CO3/K2Ti8O17 exhibits the best performance, which cannot only trap the NOx quickly and completely at lean condition, giving the highest storage capacity (3.32 mmol/g) reported so far, but also reduce the NOx at rich condition, showing a NOx reduction percentage as high as 99.0%. Meanwhile, this catalyst displays an ultralow NOx to N2O selectivity (0.3%) during NOx reduction. The excellent performance of CoOx-K2CO3/K2Ti8O17 results from its largest amount of surface active oxygen species as revealed by XPS, O2-TPD and NO-TPD. HRTEM, FT-IR and CO2-TPD results illustrate that several kinds of K species such as sbnd OK groups, K2O, surface carbonates and bulk or bulk-like carbonates coexist in the catalysts. Based upon the in situ DRIFTS results, the participation of K2CO3 in NOx storage is confirmed, and the predominant NOx storage species is revealed as bidentate nitrites formed via multiple kinetic pathways. The low cost and high catalytic performance of the CoOx-based LNT catalyst make it most promising for the substitution of noble metal-based LNT catalysts.

  18. Understanding the Adsorption of CuPc and ZnPc on Noble Metal Surfaces by Combining Quantum-Mechanical Modelling and Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yu Li Huang

    2014-03-01

    Full Text Available Phthalocyanines are an important class of organic semiconductors and, thus, their interfaces with metals are both of fundamental and practical relevance. In the present contribution we provide a combined theoretical and experimental study, in which we show that state-of-the-art quantum-mechanical simulations are nowadays capable of treating most properties of such interfaces in a quantitatively reliable manner. This is shown for Cu-phthalocyanine (CuPc and Zn-phthalocyanine (ZnPc on Au(111 and Ag(111 surfaces. Using a recently developed approach for efficiently treating van der Waals (vdW interactions at metal/organic interfaces, we calculate adsorption geometries in excellent agreement with experiments. With these geometries available, we are then able to accurately describe the interfacial electronic structure arising from molecular adsorption. We find that bonding is dominated by vdW forces for all studied interfaces. Concomitantly, charge rearrangements on Au(111 are exclusively due to Pauli pushback. On Ag(111, we additionally observe charge transfer from the metal to one of the spin-channels associated with the lowest unoccupied π-states of the molecules. Comparing the interfacial density of states with our ultraviolet photoelectron spectroscopy (UPS experiments, we find that the use of a hybrid functionals is necessary to obtain the correct order of the electronic states.

  19. Review: gas-phase ion chemistry of the noble gases: recent advances and future perspectives.

    Science.gov (United States)

    Grandinetti, Felice

    2011-01-01

    This review article surveys recent experimental and theoretical advances in the gas-phase ion chemistry of the noble gases. Covered issues include the interaction of the noble gases with metal and non-metal cations, the conceivable existence of covalent noble-gas anions, the occurrence of ion-molecule reactions involving singly-charged xenon cations, and the occurrence of bond-forming reactions involving doubly-charged cations. Research themes are also highlighted, that are expected to attract further interest in the future.

  20. Noble metal ions incorporated in lattice points of perovskites - water gas shift activity of BaCe1-xPtxO3-d

    Science.gov (United States)

    Jijil, C. P.; Rajarajan, A. K.; Devi, R. Nandini

    2012-06-01

    Recently precious metals supported on oxides were reported to be very promising catalysts for the lower-temperature WGS reaction. Here we report the synthesis of platinum doped barium cerate and its use as catalysts for WGS reaction. It has been found that maximum CO conversion was obtained at 3500C which enhanced after the first cycle. XPS analysis shows that after the first cycle more ionic Platinum species are present on the surface of the catalyst. Neutron diffraction at room temperature shows that the oxygen vacancies are in the O2 position and increases with increasing Pt substitution.

  1. Estimation of the Patients' Adaptation to Noble Alloy Dentures Relying on the Parameters of Biological Fluids in Oral Cavities

    Institute of Scientific and Technical Information of China (English)

    LEBEDENKO I. Yu.; PARUNOV V. A.; KITKINA T. B.

    2012-01-01

    For the study of the effect of Plagodent and Palladent noble alloy dentures (OJSC "SIC ‘Supermetal’",Russia),the elemental compositions of the fluids obtained from gingival sulcus of abutment teeth of metal-ceramic dentures with frames made of the above-stated dental alloys,have been investigated.Response of white blood cells and fibroblasts in the gingival fluid and the mixed saliva of the patients a long time after prosthetic repair,relying on the content of proinflammatory interleukins IL-1 β and IL-6,anti-inflammatory interleukins IL-4 and IL-10,the factor of tumor necrosis TNF-α and lactoferrin,has been investigated.The results obtained have convincingly proved the biosafety of the Plagodent and Palladent noble alloys.

  2. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity

    Science.gov (United States)

    Yu, Shixin; Zhang, Yihe; Li, Min; Du, Xin; Huang, Hongwei

    2017-01-01

    Bi metal deposited on Bi2WO6 composite photocatalysts have been successfully synthesized via a simple in-situ reduction method at room temperature with using Bi2WO6 as self-sacrificing template and NaBH4 as reducing agent. The reduction extent can be easily modulated by controlling the concentration of NaBH4 solution. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectra, N2 adsorption-desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), diffuse reflection spectroscopy (DRS) and photoelectrochemical measurements were carried out to analyze the phase, morphology, optical property and photoelectrochemical property of the as-prepared samples. The photocatalytic activity is surveyed by degradation of phenol under visible light (λ > 420 nm), which showed that the BWO-0.2 photocatalyst exhibited the highest efficiency, which was over 3 times as high as pure Bi2WO6. The enhanced photocatalytic activity should be attributed to strengthened photoabsorption and charge separation efficiency derived from the surface plasmon resonance (SPR) of Bi metal.

  3. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  4. Effects of surface treatments and storage times on the tensile bond strength of adhesive cements to noble and base metal alloys.

    Science.gov (United States)

    Burmann, Paulo Afonso; Santos, Jose Fortunato Ferreira; May, Liliana Gressler; Pereira, Joao Eduardo da Silva; Cardoso, Paulo Eduardo Capel

    2008-01-01

    This work evaluated two resin cements and a glass-ionomer cement and their bond strength to gold-palladium (Au-Pd), silver-palladium (Ag-Pd), and nickel-chromium-beryllium (Ni-Cr-Be) alloys, utilizing three surface treatments over a period of six months. Eight hundred ten pieces were cast (in a button shape flat surfaces) in one of three alloys. Each alloy group was assigned to three other groups, based on the surface treatment utilized. Specimens were fabricated by bonding similar buttons in using one of three adhesive cements. The 405 pairs were thermocycled and stored in saline solution (0.9% NaCl) at 37 degrees C. The tensile bond strengths were measured in a universal testing machine after storage times of 2, 90, or 180 days. The highest mean bond strength value was obtained with the base metal alloy (10.9 +/- 8.6 MPa). In terms of surface treatment, oxidation resulted in the highest mean bond strength (13.7 +/- 7.3 MPa), followed by sandblasting (10.3 +/- 5.5 MPa) and polishing (3.0 +/- 6.4 MPa). Panavia Ex (13.2 +/- 9.3 MPa) showed significantly higher bond strengths than the other two cements, although the storage time reduced all bond strengths significantly.

  5. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111).

    Science.gov (United States)

    Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Li, Zheshen; Studener, Florian; Stöhr, Meike

    2016-04-18

    The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates.

  6. Noble metal recycling. Project 2: Optimization of discontinuous thermal processes (emission reduction). Final report; Edelmetallrecycling. Teilvorhaben 2: Weiterentwicklung der Verfahrenstechnik bei diskontinuierlichen thermischen Prozessen (Emissionsminderung). Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baumbach, G.; Berger, R.

    2000-10-01

    A batch operated incineration process, used for the recycling of precious metals is described in the report. The development of a new combined pyrolysis/oxidation Process is the main focus of the work. This new process has several remarkable advantages compared to traditionally used techniques. The optimisation of the process with a modern fuzzy based control technique is described in detail. The emissions of the process were reduced considerably applying the new process and the innovative control technique. Furthermore the layout of several components of the new process can be reduced in the future. The developed techniques can also be applied in other thermal processes, especially batch processes. Additionally the application of catalysts for PCDD/PCDF reduction in the flue gas upstream and downstream of the filter was investigated. Whereas the catalyst performed well, as expected, downstream of the filter, no acceptable operation was possible upstream of the filter. As the reheating downstream the filter is economically not feasible the application of catalysts is not applicable for the describe process. (orig.) [German] Die Arbeit beschreibt einen diskontinuierlichen thermischen Prozess, der zur Rueckgewinnung von Edelmetallen eingesetzt wird. Der Schwerpunkt der Arbeit liegt auf der Entwicklung eines neuartigen kombinierten Pyrolyse/Oxidations-Prozesses, der gegenueber den traditionell eingesetzten Anlagen grosse Vorteile aufweist. Die Optimierung dieses Prozesses mit Hilfe modernster Fuzzy-Regelungstechnik wird detailliert beschrieben. Mit dem neuen Verfahren und den innovativen Regelungstechniken konnten die Emissionen des Prozesses merklich gesenkt werden, ohne den Energiebedarf negativ zu beeinflussen. Ausserdem koennen zukuenftige Anlagen kleiner ausgelegt werden. Die entwickelten Verfahren koennen auch auf andere thermische Prozesse uebertragen werden. Weiterhin wurde der Einsatz von Katalysatoren zur PCDD/PCDF-Minderung im Rein- und Rohgas untersucht

  7. Ultrathin metallic interlayers in vacuum deposited MoOx/metal/MoOx electrodes for organic solar cells

    Science.gov (United States)

    Travkin, V. V.; Luk'yanov, A. Yu.; Drozdov, M. N.; Vopilkin, E. A.; Yunin, P. A.; Pakhomov, G. L.

    2016-12-01

    Eight types of practically important metals were tested as interlayers in MoOx/Metal/MoOx composite electrodes. Ultrathin semitransparent electrodes with a fixed thickness were deposited on glass, using thermal vacuum evaporation, and characterized by various microscopic and X-ray techniques and by mass spectrometry profiling. The optical transmission and sheet resistance of the electrodes were compared as key parameters for photovoltaic applications. We attempted to find correlations between the chemical properties of embedded metals and the structural/conducting properties of composite electrodes. In general, the electrodes with noble metal interlayers feature a better conductivity, whereas their average transparency in the visible and near infrared range is similar to that of electrodes with reactive metals. Diffusion and oxidation processes in composite electrodes were examined by the SIMS depth profiling technique.

  8. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  9. Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction%铜基非贵金属氧还原电催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    杜诚; 高小惠; 陈卫

    2016-01-01

    The high cost of Pt‐based catalysts and the sluggish dynamics of the oxygen reduction reaction (ORR) severely hinder the rapid development of fuel cells. Therefore, the search for inexpensive, non‐noble metal catalysts to substitute Pt‐based catalysts has become a critical issue in the ORR research field. As an earth‐abundant element, the use of Cu to catalyze the ORR has been explored with the ultimate target of finding a replacement for Pt‐based catalysts in fuel cells. This review mainly focuses on recent research progress with Cu‐based ORR catalysts and aims to aid readers’ understanding of the status of development in this field. The review begins with a general update on the state of knowledge pertaining to ORR. This is followed by an overview of recent research based on Cu nanomaterial catalysts, which comprises Cu complexes, compounds, and other structures. Charting the development of Cu‐based ORR catalysts shows that designing Cu‐based materials to mimic active enzymes is an effective approach for ORR catalysis. By collecting recent developments in the field, we hope that this review will promote further development of Cu‐based ORR catalysts and their application in fuel cells.%面对日益严重的全球能源危机,燃料电池作为一种清洁的能源转换装置在全世界范围内得到了广泛关注。燃料电池是一种能够使氢气、甲醇、甲酸和乙醇等小分子燃料和氧气发生氧化还原反应,并将其化学能转换为电能的新型装置。在燃料电池中,由于在阴极发生的氧气还原反应动力学速率缓慢而使得燃料电池的整体转换效率过低,目前商用的燃料电池一般采用贵金属铂作为催化剂来加速其反应。但由于铂的价格高昂且在反应过程中易被反应中间产物毒化而活性下降,使得燃料电池的整体成本过高,从而阻碍了燃料电池的实际商业化。为此,人们尝试利用非贵金属催化剂来替代

  10. Opacity and conductivity measurements in noble gases at conditions of planetary and stellar interiors.

    Science.gov (United States)

    McWilliams, R Stewart; Dalton, D Allen; Konôpková, Zuzana; Mahmood, Mohammad F; Goncharov, Alexander F

    2015-06-30

    The noble gases are elements of broad importance across science and technology and are primary constituents of planetary and stellar atmospheres, where they segregate into droplets or layers that affect the thermal, chemical, and structural evolution of their host body. We have measured the optical properties of noble gases at relevant high pressures and temperatures in the laser-heated diamond anvil cell, observing insulator-to-conductor transformations in dense helium, neon, argon, and xenon at 4,000-15,000 K and pressures of 15-52 GPa. The thermal activation and frequency dependence of conduction reveal an optical character dominated by electrons of low mobility, as in an amorphous semiconductor or poor metal, rather than free electrons as is often assumed for such wide band gap insulators at high temperatures. White dwarf stars having helium outer atmospheres cool slower and may have different color than if atmospheric opacity were controlled by free electrons. Helium rain in Jupiter and Saturn becomes conducting at conditions well correlated with its increased solubility in metallic hydrogen, whereas a deep layer of insulating neon may inhibit core erosion in Saturn.

  11. Research on magnetic metallization of bacterial cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A multidisciplinary approach to the fabrication of biologically based magnetic monomers for biolimited forming is described. Rod-like Bacilli cereus about 0.5 μm in diameter and 3-5 μm in length, were used as templates on which the ferromagnetic material was deposited by an electroless deposition method. Different electroless plating solutions were compared in detail and CoNiP solution was selected. During the deposition process, both dispersant and mechanical stirring were used to solve the problem of aggregation of bacterial cells so as to obtain a uniform plating layer. The CoNiP film on Bacilli cereus was a mixture of crystalline and non-crystalline in the phase structure and showed a good magnetism. The magnetic metallized bacterial cells could be manipulated with a magnetic field. Parallel arrays of these micro magnetic particles were achieved and they could rotate along with the magnetic field.

  12. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell

    NARCIS (Netherlands)

    Jeremiasse, A.W.; Bergsma, J.; Kleijn, J.M.; Saakes, M.; Buisman, C.J.N.; Cohen Stuart, M.A.; Hamelers, H.V.M.

    2011-01-01

    H2 can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease the energy input and increase the H2 production rate of an MEC, a catalyst is used at the cathode. Platinum is an effective catalyst, but its high costs stimulate searching for alternatives, such as non-nobl

  13. Assessment on MRI artifacts of two low noble metal alloys%2种低贵金属合金在 MRI影像中伪影的评价

    Institute of Scientific and Technical Information of China (English)

    苏葵; 肖学红; 方铁钧; 狄丽莎

    2015-01-01

    Objective To study the influence of two low noble metal alloys for dental restorations on MRI .Methods Anhydrite model for full crown preparation of low right second premolar was prepared .Porcelain-fused-to-metal ( PFM) crown and ceramic crown were made from silver-palladium (Ag-Pd),gold-palladium (Au-Pd),cobalt-chrome (Co-Cr)and zirconia,with 8 samples for each type.The samples were subjected to magnetic resonance imaging (MRI)examination.The areas of MRI artifacts were measured and then analyzed with SPSS16.0 Statistic Software.Results Conspicuous artifacts were found in all the materials in GRE sequence ,and crown structures could hardly be discriminated .In SE and TSE sequences ,the artifact area in Co-Cr PFM crown was larger than that in Ag-Pd and Au-Pd PFM crowns ,and the difference was statistically significant .Besides ,the difference of artifact areas between Ag-Pd and Au-Pd PFM crowns demonstrated no statistical significance .Conclusions There are no conspicuous MRI artifacts of Ag-Pd and Au-Pd PFM crowns in SE and TSE sequences ,which is preferable in clinic .%目的:探讨两种口腔修复用低贵金属合金对磁共振成像的影响。方法制取右下第二前磨牙全冠预备体的超硬石膏模型,使用银钯合金、金钯合金、钴铬合金、氧化锆分别制作烤瓷冠及全瓷冠,每种8个样本,于体外实验模型中进行磁共振成像检测,对产生的金属伪影进行测量,SPSS 16.0统计软件进行分析。结果4种材料在GRE序列中都形成明显伪影,冠结构均基本不能分辨。 SE、TSE序列中,钴铬合金形成伪影面积较银钯、金钯合金、氧化锆组大,且差异具有统计学意义。银钯合金与金钯合金伪影面积差异无统计学意义。结论行MRI检查时,银钯合金和金钯合金在SE、TSE序列中形成的伪影面积轻微,值得临床推荐。

  14. Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts promoted with noble metals for the hydrogen production by ethanol vapor reforming; Catalisadores de Ni/CeO{sub 2}-Al{sub 2}O{sub 3} promovidos com metais nobres para a producao de hidrogenio por reforma a vapor de etanol

    Energy Technology Data Exchange (ETDEWEB)

    Profeti, Luciene P.R.; Ticianelli, Edson Antonio; Assaf, Elisabete Moreira [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: eassaf@iqsc.usp.br

    2008-07-01

    The catalytic activity of Ni/CeO{sub 2}-Al{sub 2}O{sub 3} catalysts modified with noble metals (Ru, Ir, Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by energy dispersive spectroscopy, X-ray diffraction, UV-Vis diffuse reflectance spectroscopy and H{sub 2} temperature-programmed reduction-X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was avoided due to the presence of a CeO{sub 2} dispersed on the alumina. The promoting effect of noble metals included a decrease of the reduction temperatures of NiO species interacting with the support due to the hydrogen spillover effect, leading to an increase of the reducibilities of the promoted catalysts The better catalytic performance for the ethanol steam reforming was obtained for the NiPd/CeAl catalyst, which presented an effluent gaseous mixture with the highest H{sub 2} yield. (author)

  15. Cell Surface-based Sensing with Metallic Nanoparticles

    OpenAIRE

    Jiang, Ziwen; Le, Ngoc D. B.; Gupta, Akash; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed.

  16. A Review of the Application and Performance of Carbon Nanotubes in Fuel Cells

    OpenAIRE

    Chong Luo; Hui Xie; Qin Wang; Geng Luo; Chao Liu

    2015-01-01

    The fuel cell has the nature of high energy conversion efficiency and low pollutant emission. Carbon nanotubes used for fuel cells can decrease the needs of noble metals which are used for catalyst and improve the performance of fuel cells. The application of carbon nanotubes in fuel cells is summarized and discussed. The following aspects ...

  17. New perspectives for noble gases in oceanography

    Science.gov (United States)

    Aeschbach, Werner

    2016-08-01

    Conditions prevailing in regions of deep water formation imprint their signature in the concentrations of dissolved noble gases, which are conserved in the deep ocean. Such "recharge conditions" including temperature, salinity, and interactions with sea ice are important in view of ocean-atmosphere CO2 partitioning. Noble gases, especially the temperature sensitive Kr and Xe, are well-established tracers to reconstruct groundwater recharge conditions. In contrast, tracer oceanography has traditionally focused on He isotopes and the light noble gases Ne and Ar, which could be analyzed at the required high precision. Recent developments of analytical and data interpretation methods now provide fresh perspectives for noble gases in oceanography.

  18. Electrocatalyst advances for hydrogen oxidation in phosphoric acid fuel cells

    Science.gov (United States)

    Stonehart, P.

    1984-01-01

    The important considerations that presently exist for achieving commercial acceptance of fuel cells are centered on cost (which translates to efficiency) and lifetime. This paper addresses the questions of electrocatalyst utilization within porous electrode structures and the preparation of low-cost noble metal electrocatalyst combinations with extreme dispersions of the metal. Now that electrocatalyst particles can be prepared with dimensions of 10 A, either singly or in alloy combinations, a very large percentage of the noble metal atoms in a crystallite are available for reaction. The cost savings for such electrocatalysts in the present commercially driven environment are considerable.

  19. Influence of the noble metals (Pd, Au, Ag) in the thermoluminescent signal induced by radiation in the ZrO{sub 2}; Influencia de los metales nobles (Pd, Au, Ag) en la senal termoluminiscente inducida por la radiacion en la ZrO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Villa S, G

    2006-07-01

    When increasing the use of the ionizing and non ionizing radiations (for example, gamma and ultraviolet radiation) in different areas of the science and technology, there is necessary to apply more accurate safety measures and to avoid over-exposures that could put in risk the life of workers that manipulate radiation sources, patient that are exposed to this under some medical treatment, as well as materials that undergo intentionally to radiation. Also, the UV radiation that arrives to the earth can cause some damages, to the one to weaken the protector layer of ozone the UV radiation increases that arrives to the earth surface being able to affect the alive beings and the materials. By this so much the development of new materials able to take a census of in a more accurate way, fields of gamma and UV radiation is becoming necessary. In this sense, this work presents the obtained results when quantifying radiation fields, through the analysis in the thermoluminescent behavior (TL) induced by the gamma and UV radiation in the zirconium dioxide synthesized by the sol gel method and doped with nanoparticles of Pd, Au and Ag. It is necessary to mention that in reported works in this respect its mention that the zircon has good thermoluminescent sensitivity induced by these radiation types, however it has shown high thermoluminescent instability that is translated in an important lost of the information after the irradiation. For that through the incorporation of the metallic nanoparticles it was intended to stabilize the TL behavior of zircon. The results showed that the doped zircon has a high sensitivity to the gamma and UV radiation. These also show that the ionizing and non ionizing radiation induce a thermoluminescent curve consisting of two TL peaks with maxima located around 65 C and 145 C and that the intensity is increased with the dose, following a lineal behavior in certain interval of dose exposure that is influenced by the presence of the nanoparticles

  20. The Chemistry of the noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Chernick, Cedric L. [Agonne National Laboratory

    1967-01-01

    This booklet discusses the 6 noble gases: helium, neon, argon, krypton, xenon, and radon. Until 1962, it was believed that these 6 elements were not able to form chemical compounds. Hence they were called "noble" because they didn't mingle with the common masses of elements.

  1. Noble Gases in the Lunar Regolith

    Institute of Scientific and Technical Information of China (English)

    邹永廖; 徐琳; 欧阳自远

    2003-01-01

    The most fundamental character of lunar soil is its high concentrations of solar-windimplanted dements,and the concentrations and behavior of the noble gases He,Ne,Ar,and Xe,which provide unique and extensive information about a broad range of fundamental problems. In this paper,the authors studied the forming mechanism of lunar regolith,and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil,with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition,the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas s He in lunar regolith will be further discussed.

  2. 火焰燃烧法在金属氧化物和贵金属负载型催化剂制备中的应用%The application of flame combustion synthesis in the preparation of metal oxide and supported noble metal catalysts

    Institute of Scientific and Technical Information of China (English)

    李佳琪; 邓昱洲; 刘刚; 岳仁亮; 杨军; 陈运法

    2016-01-01

    Flame combustion synthesis (FCS)is widely used to produce nanoparticles on a large scale,and has been applied in the preparation of carbon black and fumed silica.FCS is a versatile technique to be used but not limited in the specific field of catalyst preparation,gas sensor fabrication,luminant materials and antibacterial materials.In the re-view,we focus on the recent advances in using FCS for the catalyst preparation,including metal oxides and supported noble metals,and in the last section,we make some perspetives for the future developments of this promising synthetic technique.%火焰燃烧法合成纳米颗粒是工业上大规模生产纳米粉体的主要方法。现已经广泛应用于炭黑、颜料等功能粉体的制备,并随着应用领域的拓展逐渐用于催化剂的制备。结合本研究组工作详细综述了近年来国内外火焰燃烧法在催化剂制备方面的研究进展,主要包括金属氧化物催化剂和金属负载催化剂等两方面,并对火焰燃烧法的发展趋势和在催化剂制备相关领域的应用前景进行了展望。

  3. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    1998-01-01

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the a

  4. Novel fuel cell stack with coupled metal hydride containers

    Science.gov (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng

    2016-10-01

    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  5. Back contact to film silicon on metal for photovoltaic cells

    Science.gov (United States)

    Branz, Howard M.; Teplin, Charles; Stradins, Pauls

    2013-06-18

    A crystal oriented metal back contact for solar cells is disclosed herein. In one embodiment, a photovoltaic device and methods for making the photovoltaic device are disclosed. The photovoltaic device includes a metal substrate with a crystalline orientation and a heteroepitaxial crystal silicon layer having the same crystal orientation of the metal substrate. A heteroepitaxial buffer layer having the crystal orientation of the metal substrate is positioned between the substrate and the crystal silicon layer to reduce diffusion of metal from the metal foil into the crystal silicon layer and provide chemical compatibility with the heteroepitaxial crystal silicon layer. Additionally, the buffer layer includes one or more electrically conductive pathways to electrically couple the crystal silicon layer and the metal substrate.

  6. FIB/SEM cell sectioning for intracellular metal granules characterization

    Science.gov (United States)

    Milani, Marziale; Brundu, Claudia; Santisi, Grazia; Savoia, Claudio; Tatti, Francesco

    2009-05-01

    Focused Ion Beams (FIBs) provide a cross-sectioning tool for submicron dissection of cells and subcellular structures. In combination with Scanning Electron Microscope (SEM), FIB provides complementary morphological information, that can be further completed by EDX (Energy Dispersive X-ray Spectroscopy). This study focus onto intracellular microstructures, particularly onto metal granules (typically Zn, Cu and Fe) and on the possibility of sectioning digestive gland cells of the terrestrial isopod P. scaber making the granules available for a compositional analysis with EDX. Qualitative and quantitative analysis of metal granules size, amount and distribution are performed. Information is made available of the cellular storing pattern and, indirectly, metal metabolism. The extension to human level is of utmost interest since some pathologies of relevance are metal related. Apart from the common metal-overload-diseases (hereditary hemochromatosis, Wilson's and Menkes disease) it has been demonstrated that metal in excess can influence carcinogenesis in liver, kidney and breast. Therefore protocols will be established for the observation of mammal cells to improve our knowledge about the intracellular metal amount and distribution both in healthy cells and in those affected by primary or secondary metal overload or depletion.

  7. Nobel metal alloyed thin-films with optical properties on demand

    Science.gov (United States)

    Gong, Chen; Leite, Marina S.

    Metallic materials with tunable optical responses can enable the unprecedented control of optoelectronic and nanophotonic devices with enhanced performance, such as thin-film solar cells, metamaterials and metasurfaces for tunable absorbers and optical filters, among others. Here we present the alloying of noble metals, Ag, Au and Cu, to develop a novel class of material with optical response not achieved by pure metals. We fabricate binary mixtures with controlled chemical composition by co-sputtering. Ellipsometry and surface plasmon polariton coupling angle measurements are in excellent agreement when determining the real part of the dielectric function (ɛ1). Surprisingly, in some cases, a mixture provides a material with higher surface plasmon polariton quality factor than the corresponding pure metals. Our approach paves the way to implement metallic nanostructures with tunable absorption/transmission, overcoming the current limitation of the dielectric function of noble metals.

  8. Environmental tests of metallization systems for terrestrial photovoltaic cells

    Science.gov (United States)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  9. PRAGMATIC KNOWLEDGE OR NOBLE KNOWLEDGE?

    Directory of Open Access Journals (Sweden)

    Marian MANOLESCU

    2015-11-01

    Full Text Available Disputes about the opportunity to introduce competence-based education are increasingly present in terms of educational policies and strategies. Obviously, in the last decade and a half, several countries have introduced competence based education. Although specific knowledge acquisition should be an essential component of student learning, assessing such knowledge in adult life depends largely on the individual purchase of more general concepts and skills. The article discusses pragmatic knowledge and noble knowledge. This is a collective dilemma, to the extent that the education system lives in the tension between the two logics. The two positions or divergent attitudes can coexist as long ast hey do not become extremist. Educational dilemma is especially now a priority.

  10. Preparation of open-cell metal foams by investment cast

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures,called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described.Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.

  11. Preparation of open-cell metal foams by investment cast

    Directory of Open Access Journals (Sweden)

    Lucai WANG

    2005-02-01

    Full Text Available Metal foams are a new kind of materials with low densities and novel physical, mechanical, thermal, electrical and acoustic properties. They can be divided into closed and open cell structures. In this paper the open cell structures, called sponges, were treated. A new technique to manufacture sponges by plaster investment casting was described. Experimental results show that it is essential to make a sound plaster mould by casting plaster slurry into the polyurethane foams and infiltrate the open channels of the baked plaster mold by molten metal. The optimal processes include plaster slurry preparation, plaster mold baking, and molten metal infiltration. The sponge sample with porosity of 97% is presented.

  12. On a cryogenic noble gas ion catcher

    CERN Document Server

    Dendooven, P; Purushothaman, S

    2006-01-01

    In-situ purification of the gas used as stopping medium in a noble gas ion catcher by operating the device at low temperatures of 60 to 150 K was investigated. Alpha-decay recoil ions from a 223Ra source served as energetic probes. The combined ion survival and transport efficiencies for 219Rn ions saturated below about 90 K, reaching 28.7(17) % in helium, 22.1(13) % in neon, and 17.0(10) % in argon. These values may well reflect the charge exchange and stripping cross sections during the slowing down of the ions, and thus represent a fundamental upper limit for the efficiency of noble gas ion catcher devices. We suggest the cryogenic noble gas ion catcher as a technically simpler alternative to the ultra-high purity noble gas ion catcher operating at room temperature.

  13. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    Science.gov (United States)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  14. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  15. Low-Temperature Electrostatic Self-Assembly of Noble Metals on TiO2 Nanostructured Films with Enhanced Photocatalytic Activity%低温静电自组装法制备贵金属修饰TiO2纳米结构薄膜及其增强的光催化性能

    Institute of Scientific and Technical Information of China (English)

    傅平丰; 张彭义

    2014-01-01

    Photoactive TiO2 nanostructured films (i.e., nanoflowers and nanowires) have been directly synthesized on Ti sheets using an alkali-hydrothermal route. Ultrafine noble metals (i.e., Au, Pt, Pd) nanoparticles (NPs) were homogenously dispersed onto the TiO2 nanostructures using a facile low temperature electrostatic self-assembly approach. The resulting noble-metal/TiO2-nanostructured films supported on Ti sheets had an al -in-one structure with al of the virtues of a porous framework and enhanced photocatalytic activity. Ultra high-resolution field-emission scanning electron microscopy (FESEM) revealed that the noble metal NPs were uniformly dispersed on the TiO2 surface with good physical separation properties. The average sizes of the loaded Au, Pt, and Pd NPs were approximately 4.0, 2.0, and 10.0 nm, respectively. Noble metal NPs were deposited not only on the film surface but also in the interior framework of the TiO2 films with a depth of more than 580 nm, as revealed by Auger electron spectroscopic (AES) in-depth profiling analysis. X-ray photoelectron spectroscopy (XPS) analysis revealed that the Pt and Pd NPs had been partial y oxidized to PtOabs and immobicompletely oxidized to PdO, respectively, whereas the Au NPs remained in a metallic state after being annealed in air at 300 °C. During the electrostatic self-assembly process, the loading of the noble metal can be adjusted by controlling the assembly time and the colloidal pH value. The degradation of aqueous methyl orange showed that the Au/TiO2 (or Pt/TiO2)-nanostructured films possessed remarkably enhanced photocatalytic activity compared with pure TiO2 films, and revealed that the metal NPs played a positive role in separating photogenerated hole-electron pairs. However, the deposited PdO species had no discernible impact on the activity of the TiO2 nanostructures.%以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超

  16. Metal-Insulator-Semiconductor Nanowire Network Solar Cells.

    Science.gov (United States)

    Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C

    2016-06-08

    Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.

  17. Combined toxicity of heavy metal mixtures in liver cells.

    Science.gov (United States)

    Lin, Xialu; Gu, Yuanliang; Zhou, Qi; Mao, Guochuan; Zou, Baobo; Zhao, Jinshun

    2016-09-01

    With rapid industrialization, China is now facing great challenges in heavy metal contamination in the environment. Human exposure to heavy metals through air, water and food commonly involves a mixture consisting of multiple heavy metals. In this study, eight common heavy metals (Pb, Cd, Hg, Cu, Zn, Mn, Cr, Ni) that cause environmental contamination were selected to investigate the combined toxicity of different heavy metal mixtures in HL7702 cells. Toxicity (24 h LC50 ) of each individual metal on the cells ranked Hg > Cr = Cd > Cu > Zn > Ni > Mn > Pb; toxicity of the different mixtures ranked: M5 > M3PbHgCd > M5+Mn > M5+Cu > M2CdNi > M4A > M8-Mn > M8 > M5+Zn > M4B > M8-Cr > M8-Zn > M8-Cu > M8-Pb > M8-Cd > M8-Hg > M8-Ni > M3PbHgNi > M3CuZnMn. The cytotoxicity data of individual metals were successfully used to build the additive models of two- to eight-component metal mixtures. The comparison between additive model and combination model or partly additive model was useful to evaluate the combined effects in mixture. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures. These results suggest that the combined effects should be considered in the risk assessment of heavy metal co-exposure, and more comprehensive investigations on the combined effects of different heavy metal mixtures are needed in the future. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Electrocatalysis and electrocatalysts for low temperature fuel cells: fundamentals, state of the art, research and development

    Directory of Open Access Journals (Sweden)

    Wendt Hartmut

    2005-01-01

    Full Text Available This article deals with electrocatalysis and electrocatalysts for low temperature fuel cells and also with established means and methods in electrocatalyst research, development and characterization. The intention is to inform about the fundamentals, state of the art, research and development of noble metal electrocatalysts for fuel cells operating at low temperatures.

  19. Noble gas fractionation during subsurface gas migration

    Science.gov (United States)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  20. Low Cost PEM Fuel Cell Metal Bipolar Plates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Conghua [TreadStone Technologies, Inc.

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  1. Cell-metal interactions: A comparison of natural uranium to other common metals in renal cells and bone osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Milgram, S. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Carriere, M. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Thiebault, C. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Berger, P. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Khodja, H. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France); Gouget, B. [Laboratoire Pierre Suee, CEA-CNRS UMR 9956, CEA/Saclay, 91191 Gif-sur-Yvette (France)]. E-mail: barbara.gouget@cea.fr

    2007-07-15

    Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se{sup IV} and Cu as the most toxic and Ni, Se{sup VI}, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.

  2. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... a change from ZEP resist to double layer of PMMA and always requires preliminary exposure dose-tests and final particular attention for lift-off step. EBL resulted to be more suitable for silver NPs, since the deposition of gold (on top of an adhesion thin titanium layer) leads to a variation and non...

  3. Transition metal catalysis in the mitochondria of living cells

    Science.gov (United States)

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R.; Mascareñas, José L.

    2016-09-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential.

  4. Neuroprotection (and lack of neuroprotection) afforded by a series of noble gases in an in vitro model of neuronal injury.

    Science.gov (United States)

    Jawad, Noorulhuda; Rizvi, Maleeha; Gu, Jianteng; Adeyi, Olar; Tao, Guocai; Maze, Mervyn; Ma, Daqing

    2009-09-01

    Xenon-induced neuroprotection has been well studied both in vivo and in vitro. In this study, the neuroprotective properties of the other noble gases, namely, krypton, argon, neon and helium, were explored in an in vitro model of neuronal injury. Pure neuronal cultures, derived from foetal BALB/c mice cortices, were provoked into injury by oxygen and glucose deprivation (OGD). Cultures were exposed to either nitrogen hypoxia or noble gas hypoxia in balanced salt solution devoid of glucose for 90min. The cultures were allowed to recover in normal culture medium for a further 24h in nitrogen or noble gas. The effect of noble gases on cell reducing ability in the absence of OGD was also investigated. Cell reducing ability was quantified via an MTT assay and expressed as a ratio of the control. The OGD caused a reduction in cell reducing ability to 0.56+/-0.04 of the control in the absence of noble gas (pNeon and krypton did not have a protective effect under our experimental conditions. Helium had a detrimental effect on the cells. In the absence of OGD, krypton reduced the reducing ability of uninjured cells to 0.84+/-0.09 (p<0.01), but argon showed an improvement in reducing ability to 1.15+/-0.11 (p<0.05). Our data suggest that the cheap and widely available noble gas argon may have potential as a neuroprotectant for the future.

  5. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  6. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    Science.gov (United States)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  7. A precious-metal free micro fuel cell accumulator

    Science.gov (United States)

    Bretthauer, C.; Müller, C.; Reinecke, H.

    2011-05-01

    In recent years, integrated fuel cell (FC) type primary and secondary batteries attracted a great deal of attention as integrated on-chip power sources due to their high theoretical power densities. Unfortunately, the costs of these devices have been rather high. This is partially due to the involved clean-room processes, but also due to the fact that these devices generally rely on expensive precious-metals such as Pd and Pt. Therefore we developed a novel integrated FC type accumulator that is based on non-precious-metals only. The key component of the presented accumulator is its alkaline polymer electrolyte membrane that allows not only the usage of a low-cost AB5 type hydrogen storage electrode, but also the usage of La0.6Ca0.4CoO3 as a precious-metal free bifunctional catalyst for the air-breathing electrode. Additionally the presented design requires only comparatively few cleanroom processes which further reduces the overall production costs. Although abdicating precious-metals, the presented accumulator shows an open circuit voltage of 0.81 V and a maximum power density of 0.66 mW cm-2 which is comparable or even superior to former precious-metal based cells.

  8. Using 220Rn to calibrate liquid noble gas detectors

    CERN Document Server

    Kobayashi, M; Takeda, A; Kishimoto, K; Moriyama, S

    2016-01-01

    In this paper, we describe 220Rn calibration source that was developed for liquid noble gas detectors. The key advantage of this source is that it can provide 212Bi-212Po consecutive events, which enables us to evaluate the vertex resolution of a detector at low energy by comparing low-energy events of 212Bi and corresponding higher-energy alpha-rays from 212Po. Since 220Rn is a noble gas, a hot metal getter can be used when introduced using xenon as the carrier gas. In addition, no long-life radioactive isotopes are left behind in the detector after the calibration is complete; this has clear advantage over the use of 222Rn which leaves long- life radioactivity, i.e., 210Pb. Using a small liquid xenon test chamber, we developed a system to introduce 220Rn via the xenon carrier gas; we demonstrated the successful introduction of 6 times 10^2 220Rn atoms in our test environment.

  9. 贵金属银选择性修饰高能晶面暴露二氧化钛光催化剂的制备及性能%Preparation and photocatalytic activity of noble metal Ag selectively loading on high energy facet of TiO2 single crystal

    Institute of Scientific and Technical Information of China (English)

    刘辉; 刘婷婷; 董晓楠

    2016-01-01

    TiO2 single crystal with high energy facet was successfully synthesized through a simple sintering method by using TBOT (Ti(OC4 H9 )4 ) as Ti source ,and HF acid as facet‐controlling agent .Noble metal Ag was selectively loaded on high energy facet of TiO2 single crystal through sonochemical deposition .The physical and chemical properties of noble metal Ag selectively loading on high energy facet of TiO2 single crystal photocatalyst (Ag‐TiO2 ) was carefully studied by XRD ,SEM ,TEM ,XPS and UV‐vis diffuse reflectance spectra (DRS) .The photocatalytic activity of Ag‐TiO2 was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under simulated sunlight ir‐radiation .The experimental results shown that the high energy (001) facet was successfully exposed in as‐prepared TiO2 nanoparticle and Ag nanoparticles were deposited in (001) fac‐et .The deposition of Ag nanoparticles changed the band gap and valence band position of TiO2 ,and made it can be excited by visible light .Both the exposure of high energy facet and the deposition of noble mental Ag are good for the separation of electron‐hole ,w hich resulted with the good photocatalytic activity of Ag‐TiO2 .%以钛酸丁酯为钛源,以H F酸为表面形貌控制剂,采用烧结方法制备出了高能(001)晶面暴露的TiO2光催化剂,并采用超声沉积方法在其特定晶面(001)晶面上沉积贵金属银。通过XRD、SEM、T EM、XPS和U V‐vis光谱仪等分析手段对样品进行了表征,并测试了该光催化剂在模拟太阳光下对模拟污染物RhB的光催化降解性能。结果表明:所制备的TiO2纳米颗粒成功地暴露了高能(001)晶面,并使贵金属银选择性地沉积在(001)晶面上;贵金属银的沉积改变了TiO2的禁带宽度和价带位置,从而使其可被可见光激发;高能晶面的暴露及贵金属的沉积都有利于TiO2电子空穴对的分

  10. Burp Charging Nickel Metal Hydride Cells

    Science.gov (United States)

    Darcy, Eric; Pollard, Richard

    1997-01-01

    The SKYNET 4 constellation consists of three spacecraft which were launched between December 1988 and August 1990. The spacecraft are three-axis stabilized geostationary earth-orbiting military communications satellites with a design life of seven years on station. With the mission objective achieved all the batteries continue to give excellent performance. This paper presents a review of the history of the six batteries from cell procurement to the end of their design life and beyond. Differences in operational strategies are discussed and the lifetime trends in performance are analyzed. The combination of procurement acceptance criteria and the on-station battery management strategy utilized are presented as the prime factors in achieving completely successful battery performance throughout the mission.

  11. Advances in Metal Supported Cells in the METSOFC EU Consortium

    DEFF Research Database (Denmark)

    McKenna, Brandon J.; Christiansen, Niels; Schauperl, Richard

    2012-01-01

    Employing a mechanically robust metal support as the structural element in SOFC has been the objective of various development efforts. The EU-sponsored project “METSOFC”, completed at the end of 2011, resulted in a number of advancements towards implementing this strategy. These include robust......). Further success was attained with even larger cell areas of 12 cm squares, which facilitated integration into stacks at Topsoe Fuel Cell. Development of MSC stacks showed that the MSCs could achieve similar or better performance, compared to SoA anode supported ceramic cells. The best stacked MSCs had...

  12. A Grounded Theory of the Development of Noble Youth Purpose

    Science.gov (United States)

    Bronk, Kendall Cotton

    2012-01-01

    Having a noble purpose in life is an important component of positive youth development; however, little is known about how noble purposes develop over time. Therefore, using three waves of interviews over a 5-year period with 9 adolescents (N = 9) who demonstrated intense commitments to various noble purposes, the present study developed a…

  13. Metallic materials in solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Willem Joseph Quadakkers

    2004-03-01

    Full Text Available Fe-Cr alloys with variations in chromium content and additions of different elements were studied for potential application in intermediate temperature Solid Oxide Fuel Cell (SOFC. Recently, a new type of FeCrMn(Ti/La based ferritic steels has been developed to be used as construction material for SOFC interconnects. In the present paper, the long term oxidation resistance of this class of steels in both air and simulated anode gas will be discussed and compared with the behaviour of a number of commercial available ferritic steels. Besides, in-situ studies were carried out to characterize the high temperature conductivity of the oxide scales formed under these conditions. Main emphasis will be put on the growth and adherence of the oxide scales formed during exposure, their contact resistance at service temperature as well as their interaction with various perovskite type contact materials. Additionally, parameters and protection methods in respect to the volatilization of chromia based oxide scales will be illustrated.

  14. Different options for noble gas categorization schemes

    Science.gov (United States)

    Kalinowski, Martin

    2010-05-01

    For noble gas monitoring it is crucial to support the decision makers who need to decide whether a decection may indicate a potential nuclear test. Several parameters are available that may help to distinguish a legitimate civilian source from a nuclear explosion. The most promising parameters are: (a) Anomaly observations with respect to the history of concentrations found at that site. (b) Isotopic activity ratios can be used to separate a nuclear reactor domain from the parameter space that is specific for nuclear explosions. (c) Correlation with source-receptor-sensitivities related to known civilian sources as determined by atmospheric transport simulations. A combination of these can be used to categorize an observation. So far, several initial ideas have been presented but the issue of noble gas categorisation has been postponed with the argument that further scientific studies and additional experience have to be awaited. This paper presents the principles of different options for noble gas categorisation and considers how they would meet the interests of different classes of member states. It discusses under different points of view what might be the best approach for the noble gas categorisation scheme.

  15. INKJET PRINTING OF NICKEL AND SILVER METAL SOLAR CELL CONTACTS

    Energy Technology Data Exchange (ETDEWEB)

    Pasquarelli, R.; Curtis, C.; Van Hest, M.

    2008-01-01

    With about 125,000 terawatts of solar power striking the earth at any given moment, solar energy may be the only renewable energy resource with enough capacity to meet a major portion of our future energy needs. Thin-fi lm technologies and solution deposition processes seek to reduce manufacturing costs in order to compete with conventional coal-based electricity. Inkjet printing, as a derivative of the direct-write process, offers the potential for low-cost, material-effi cient deposition of the metals for photovoltaic contacts. Advances in contact metallizations are important because they can be employed on existing silicon technology and in future-generation devices. We report on the atmospheric, non-contact deposition of nickel (Ni) and silver (Ag) metal patterns on glass, Si, and ZnO substrates at 180–220°C from metal-organic precursor inks using a Dimatix inkjet printer. Near-bulk conductivity Ag contacts were successfully printed up to 4.5 μm thick and 130 μm wide on the silicon nitride antirefl ective coating of silicon solar cells. Thin, high-resolution Ni adhesion-layer lines were printed on glass and zinc oxide at 80 μm wide and 55 nm thick with a conductivity two orders of magnitude less than the bulk metal. Additionally, the ability to print multi-layered metallizations (Ag on Ni) on transparent conducting oxides was demonstrated and is promising for contacts in copper-indium-diselenide (CIS) solar cells. Future work will focus on further improving resolution, printing full contact devices, and investigating copper inks as a low-cost replacement for Ag contacts.

  16. Perspectives on the metallic interconnects for solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei-zhong; YAN Mi

    2004-01-01

    The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000 ℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in pro moting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.

  17. Therapeutic Potential of Noble Nanoparticles for Wound Repair

    Directory of Open Access Journals (Sweden)

    Timur Saliyev

    2014-12-01

    Full Text Available Introduction. Nanoparticles made of noble metals, such as gold and silver, have a great potential to be effectively employed for wound management. The nano-size of such particles provides an opportunity to enlarge the contacting area, which results in more effective anti-bacterial action and faster wound repair. It must be noted that the shape of noble nanoparticles might play a crucial role in the manifestation of their anti-microbial properties. The modern state of technology allows fabrication of the nanoparticles with the desired shape and physical properties. In order to provide efficacy and close contact with the wound, the noble nanoparticles can be incorporated into a special matrix made of a cryogel (based on polymethyl methacrylate. This combination might serve as a foundation for developing completely new types of wound dressing.Materials and methods. We have developed a few methods for synthesizing gold and silver nanoparticles of different shapes and sizes. After fabrication of metallic nanoparticles, they were characterized by using Tunneling Electron Microscopy (TEM and Malvern Zetasizer system in order to determine the average population size and consistency. The silver nanoparticles was synthesized using sodium borohydride reduction of silver nitrate. The synthesis of gold nanoparticles was conducted by using the Turkevich method.Results. We have developed a synthetic cryogel based on polyacrylamide (by cryogelation reaction at several temperatures. At the second step, we developed a method for conjugating fabricated gold and silver nanoparticles to the surface (or pores of cryogel through covalent bonds so they can provide antibacterial action within the wound. By following the developed protocol, we were able to obtain an approximate cryogel layer (1 cm thickness with embedded gold and silver nanoparticles. This conjugate was analyzed and confirmed using Scanning Electron Microscopy (SEM and TEM.Discussion. The obtained

  18. Computational investigation of noble gas adsorption and separation by nanoporous materials.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Sanders, Joseph C.; Greathouse, Jeffery A.

    2008-10-01

    Molecular simulations are used to assess the ability of metal-organic framework (MOF) materials to store and separate noble gases. Specifically, grand canonical Monte Carlo simulation techniques are used to predict noble gas adsorption isotherms at room temperature. Experimental trends of noble gas inflation curves of a Zn-based material (IRMOF-1) are matched by the simulation results. The simulations also predict that IRMOF-1 selectively adsorbs Xe atoms in Xe/Kr and Xe/Ar mixtures at total feed gas pressures of 1 bar (14.7 psia) and 10 bar (147 psia). Finally, simulations of a copper-based MOF (Cu-BTC) predict this material's ability to selectively adsorb Xe and Kr atoms when present in trace amounts in atmospheric air samples. These preliminary results suggest that Cu-BTC may be an ideal candidate for the pre-concentration of noble gases from air samples. Additional simulations and experiments are needed to determine the saturation limit of Cu-BTC for xenon, and whether any krypton atoms would remain in the Cu-BTC pores upon saturation.

  19. Lanthanides: new metallic cathode materials for organic photovoltaic cells.

    Science.gov (United States)

    Nikiforov, Maxim P; Strzalka, Joseph; Jiang, Zhang; Darling, Seth B

    2013-08-21

    Organic photovoltaics (OPVs) are compliant with inexpensive, scalable, and environmentally benign manufacturing technologies. While substantial attention has been focused on optimization of active layer chemistry, morphology, and processing, far less research has been directed to understanding charge transport at the interfaces between the electrodes and the active layer. Electrical properties of these interfaces not only impact efficiency, but also play a central role in stability of organic solar cells. Low work function metals are the most widely used materials for the electron transport layer with Ca being the most common material. In bulk heterojunction OPV devices, low work function metals are believed to mirror the role they play in OLEDs, where such metals are used to control carrier selectivity, transport, extraction, and blocking, as well as interface band bending. Despite their advantages, low work function materials are generally prone to reactions with water, oxygen, nitrogen, and carbon dioxide from air leading to rapid device degradation. Here we discuss the search for a new metallic cathode interlayer material that increases device stability and still provides device efficiency similar to that achieved with a Ca interlayer.

  20. How do bacterial cells ensure that metalloproteins get the correct metal?

    Science.gov (United States)

    Waldron, Kevin J; Robinson, Nigel J

    2009-01-01

    Protein metal-coordination sites are richly varied and exquisitely attuned to their inorganic partners, yet many metalloproteins still select the wrong metals when presented with mixtures of elements. Cells have evolved elaborate mechanisms to scavenge for sufficient metal atoms to meet their needs and to adjust their needs to match supply. Metal sensors, transporters and stores have often been discovered as metal-resistance determinants, but it is emerging that they perform a broader role in microbial physiology: they allow cells to overcome inadequate protein metal affinities to populate large numbers of metalloproteins with the right metals.

  1. Noble Gases in the Chelyabinsk Meteorites

    Science.gov (United States)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.

    2014-01-01

    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  2. Development of nickel-metal hydride cell: An update

    Science.gov (United States)

    Kuwajima, S.; Kusawake, Hiroaki; Nakatani, Kensuke; Yano, Y.

    1994-01-01

    This paper presents in viewgraph format an overview of NASDA's evaluation of commercial nickel metal-hydride (Ni-MH) cells and the development and testing of Ni-MH cells for use in space. The commercial cells are concluded to be feasible and suitable for use in LEO; for GEO, the durability for overcharge is needed because long-term charge retention is required. For the aerospace Ni-MH cell design, two activation procedures are applied to evaluate the effect of the difference in the amount of overcharge protection and precharge. Specific energy of the Ni-MH cell is nearly accomplished at 50 Wh/kg. Initial characteristics indicate the effect derived from precharge. Thirty-five amp-hour class Ni-MH cells have good performance for LEO cycle of 25 and 40 percent DOD up to 3000 cycles as similar to commercial cells. The effect of the difference in the amount of overcharge protection will appear in life test.

  3. Experimental determination of noble gas, SF6 and CO2 flow profiles through a porous sandstone

    Science.gov (United States)

    Kilgallon, Rachel; Gilfillan, Stuart; Edlmann, Katriona; McDermott, Chris

    2016-04-01

    The noble gases (He, Ne, Ar, Kr and Xe) and SF6 have recently been used as artificial and inherent tracers of CO2 flow and migration from within[1,2] and from geological reservoirs[3]. However, outstanding questions remain, particularly regarding the flow behaviour of the noble gases compared to CO2. Here we present results from specially constructed experimental equipment, which has been used to determine the factors affecting transport of noble gases relative to CO2 in a porous sandstone. The experimental setup consists of a sample loop that can be loaded with a desired gas mixture. This sample can be released as a pulse into a feeder gas stream through a flow cell. The flow cell consists of a 3.6 cm diameter core, which can be of any length. The sample is surrounded by aluminium foil and treated with epoxy resin inside stainless steel tubing. The flow cell is encased by two purpose designed dispersion end plates. Real-time analysis of the arrival peaks of the gases downstream is recorded using a Quadrupole Mass Spectrometer (QMS). For the experiments, a 0.96 m core of Fell Sandstone was selected to represent a porous media. Noble gases and SF6 pulses were flowed through a CO2 carrier gas at five different pressure gradients (10 - 50 kPa) with arrival profiles measured using the QMS. Surprisingly, peak arrival times of He were slower than the other noble gases at each pressure gradient. The differences in peak arrival times between He and other noble gases increased as pressure decreased and the curve profiles for each noble gas differ significantly. The heavier noble gases (Kr and Xe) along with SF6 show a steeper peak rise at initial appearance, but have a longer duration profile than the He curves. Interestingly, the breakthrough curve profiles for both Kr and Xe were similar to SF6 indicating that Kr and Xe could be substituted for SF6, which is a potent greenhouse gas, in tracing applications. In addition, CO2 pulses were passed through a N2 carrier gas. The

  4. The Biomechanisms of Metal and Metal-Oxide Nanoparticles’ Interactions with Cells

    Directory of Open Access Journals (Sweden)

    Sondra S. Teske

    2015-01-01

    Full Text Available Humans are increasingly exposed to nanoparticles (NPs in medicine and in industrial settings, where significant concentrations of NPs are common. However, NP interactions with and effects on biomolecules and organisms have only recently been addressed. Within we review the literature regarding proposed modes of action for metal and metal-oxide NPs, two of the most prevalent types manufactured. Iron-oxide NPs, for instance, are used as tracers for magnetic resonance imaging of oncological tumors and as vehicles for therapeutic drug delivery. Factors and theories that determine the physicochemical and biokinetic behaviors of NPs are discussed, along with the observed toxicological effects of NPs on cells. Key thermodynamic and kinetic models that explain the sources of energy transfer from NPs to biological targets are summarized, in addition to quantitative structural activity relationship (QSAR modeling efforts. Future challenges for nanotoxicological research are discussed. We conclude that NP studies based on cell culture are often inconsistent and underestimate the toxicity of NPs. Thus, the effect of NPs needs to be examined in whole animal systems.

  5. TRPML: transporters of metals in lysosomes essential for cell survival?

    Science.gov (United States)

    Kiselyov, Kirill; Colletti, Grace A; Terwilliger, Austen; Ketchum, Kathleen; Lyons, Christopher W P; Quinn, James; Muallem, Shmuel

    2011-09-01

    Key aspects of lysosomal function are affected by the ionic content of the lysosomal lumen and, therefore, by the ion permeability in the lysosomal membrane. Such functions include regulation of lysosomal acidification, a critical process in delivery and activation of the lysosomal enzymes, release of metals from lysosomes into the cytoplasm and the Ca(2+)-dependent component of membrane fusion events in the endocytic pathway. While the basic mechanisms of lysosomal acidification have been largely defined, the lysosomal metal transport system is not well understood. TRPML1 is a lysosomal ion channel whose malfunction is implicated in the lysosomal storage disease Mucolipidosis Type IV. Recent evidence suggests that TRPML1 is involved in Fe(2+), Ca(2+) and Zn(2+) transport across the lysosomal membrane, ascribing novel physiological roles to this ion channel, and perhaps to its relatives TRPML2 and TRPML3 and illuminating poorly understood aspects of lysosomal function. Further, alterations in metal transport by the TRPMLs due to mutations or environmental factors may contribute to their role in the disease phenotype and cell death.

  6. Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells.

    Science.gov (United States)

    Liu, Qiao; Zhang, Junyan

    2013-03-19

    Graphitic carbon nitride (g-C3N4) polymer was doped with cobalt species and supported on a similar sp(2) structure graphene, to form a novel nitrogen-metal macrocyclic catalyst for the oxygen reduction reaction (ORR) in alkaline fuel cells. The structural characterizations confirmed the formation of Co-N bonds and the close electron coupling between Co-g-C3N4 and graphene sheets. The electrocatalytic measurements demonstrated Co-g-C3N4-catalyzed reduction of oxygen mainly in a four electron pathway. The improvement of ORR activity is closely related to the abundant accessible Co-Nx active sites and fast charge transfer at the interfaces of Co-g-C3N4/graphene. Also, Co-g-C3N4@graphene exhibited comparable ORR activity, better durability, and methanol tolerance ability in comparison to Pt/C, and bodes well for a promising non-noble cathode catalyst for the application of direct methanol fuel cells. The chemical doping strategy in this work would be helpful to improve other present catalysts for fuel cell applications.

  7. Noble metals nanoparticles on titanium dioxide nanostructured films and the influence of their photocatalytic activity; Atividade fotocatalitica de filmes nanoestruturados de dioxido de titanio incorporados com nanoparticulas de metais nobres

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Liana Key Okada

    2012-07-01

    Currently, nanoscience and nanotechnology are considered an emerging field and continuously breaking the barrier among various disciplines. The main focus of study involves controlling structures at molecular level, arranging the atoms in order to achieve an understanding and controlling the fundamental properties of matter. In this study, molecular changes on the basis of morphology, optical and crystalline properties of TiO{sub 2}hin films in order to increase their photon efficiency were proposed. The TiO{sub 2} thin films were prepared by sol gel process evaluating the influence of different acids and templates to obtain the nano structured arrangements. Then, metal nanoparticles like Au, Ag, Pd and Pt were incorporated on TiO{sub 2} thin films. This incorporation might minimize the electron-hole recombination, so it could improve the photon efficiency. From the several routes studied, the TiO{sub 2} thin films prepared with acetic acid showed the best performance by the reason of low agglomeration of TiO{sub 2} grains, which favors the exposure of the photoactive sites. The presence of template in the formulation had a slightly effect on photon efficiency, possible due to the higher agglomeration of the grains on the TiO{sub 2} thin films. The addition of Pt and Au nanoparticles on TiO{sub 2} thin films showed superior photon efficiency. The TiO{sub 2} thin films with hexamine and metallic nanoparticles did not show the improvement on photon efficiency except for Pt and Au nanoparticles. On these situations, the improvement on photon efficiency is might be due to a possible decrease at the electron-hole recombination's velocity. Thus, the present work demonstrates the great influence of preparation conditions on the optical, morphological properties and the photon efficiency. In the future, with greater understanding of the mechanism of this influence, the properties of TiO{sub 2} thin films will be able tailoring depending on the application. (author)

  8. Fractionated (Martian) Noble Gases — EFA, Experiments and Meteorites

    Science.gov (United States)

    Schwenzer, S. P.; Barnes, G.; Bridges, J. C.; Bullock, M. A.; Chavez, C. L.; Filiberto, J.; Herrmann, S.; Hicks, L. J.; Kelley, S. P.; Miller, M. A.; Moore, J. M.; Ott, U.; Smith, H. D.; Steer, E. D.; Swindle, T. D.; Treiman, A. H.

    2016-08-01

    Noble gases are tracers for physical processes, including adsorption, dissolution and secondary mineral formation. We examine the Martian fractionated atmosphere through literature, terrestrial analogs and experiments.

  9. Metal organic frameworks for enzyme immobilization in biofuel cells

    Science.gov (United States)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  10. High performance, high durability non-precious metal fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  11. In-cell NMR: an emerging approach for monitoring metal-related events in living cells.

    Science.gov (United States)

    Li, Hongyan; Sun, Hongzhe

    2014-01-01

    In-cell NMR, an isotope-assisted multi-dimensional NMR technique, has been proven to be successful in the investigation of protein dynamics, folding, conformational changes induced by binding events, posttranslational modification in the complex native environments, as well as in vivo drug screening, even de novo 3D protein structure determination in living cells. This technique was initially applied to bacterial cells, and subsequently has been extended to various other cells including eukaryotic cells. In this review, we briefly summarize the methodology and application of in-cell NMR with a focus on its application in metallomics and metalloproteomics. This emerging technique is anticipated to be an excellent tool for studying metal-associated events in complex native environments of living cells.

  12. Photocatalytic Removal of Bromates with Noble Metal-Modified Titanium Dioxide%贵金属改性二氧化钛光催化去除溴酸盐

    Institute of Scientific and Technical Information of China (English)

    喻灵敏; 朱荣淑; 董文艺

    2014-01-01

    用浸渍法制备了各贵金属(包括Pt、Pd、Ru、Rh、Ir、Au、Ag)改性二氧化钛(M/TiO2)光催化剂,研究了紫外光下其光催化去除溴酸盐(BrO3-)活性。结果表明,Pt和高Ag量负载提高了TiO2光催化去除BrO3-活性,分别提高了4.6和2.9倍,Pt通过表面活性物种PtCl4的光敏化作用提高了其活性,而高负载量Ag通过与BrO3-还原产物Br-生成具有可见光活性的 AgBr 来提高其活性。Pd/TiO2、Ru/TiO2、Au/TiO2、Ir/TiO2、Rh/TiO2和低负载量的 Ag/TiO2,因不能有效提高 P25 TiO2光生电子与空穴的分离效率,反而可成为电子与空穴的复合中心,从而抑制了 TiO2光催化去除BrO3-活性。%TiO2 modified with nobel metals (M/TiO2, M = Pt, Pd, Ru, Rh, Ir, Au, Ag) was prepared by an impregnation method. The photocatalytic activity of M/TiO2 for bromate removal was studied under UV or visible light. The results show that high loading of Pt and Ag improves the photocatalytic activity of TiO2 on the removal of bromates up to 4.6 and 2.9 times, respectively. The photosensitization of the active species of the PtCl4 at the surface of Pt/TiO2 significantly improves the photocatalytic activity of TiO2. Ag mainly existed on the surface of TiO2 in the form of Ag0. During the photocatalytic removal process, Ag0 reacted with Br-to form AgBr with visible light activity. Similar to PtCl4, AgBr greatly improves the photocatalytic activity of TiO2 for bromate removal under visible light. However, Pd/TiO2, Ru/TiO2, Au/TiO2, Ir/TiO2, Rh/TiO2 and Ag/TiO2 with low Ag loading can not enhance the separation efficiency of photogenerated electron and hole, or generate the active species with visible activity directly or indirectly. These materials become the recombination centers of the charge carriers, thus inhibits the photocatalytic activity of TiO2 for bromate removal.

  13. Comparative activities of p-nonylphenol and diethylstilbestrol in noble rat mammary gland and uterotrophic assays.

    Science.gov (United States)

    Odum, J; Pyrah, I T; Foster, J R; Van Miller, J P; Joiner, R L; Ashby, J

    1999-04-01

    Colerangle and Roy (1996, Endocrine 4, 115-122) have described the apparent ability of both diethylstilbestrol (DES) and p-nonylphenol (NP) to cause extensive cell proliferation and lobular development in the mammary glands of young adult Noble rats. The chemicals were administered over 11 days via subcutaneously implanted minipumps. The dose level of DES used (0.076 mg/kg/day) was about 70 times higher than its minimum detection level in rodent uterotrophic and reproductive toxicology studies. In contrast, the lowest active dose level of NP (0.073 mg/kg/day) in the Noble rat mammary gland study was about 600 times lower than its minimum detection level in rat uterotrophic and multigeneration studies. The apparent enhanced sensitivity of the Noble rat mammary gland to the estrogenic activity of NP was considered worthy of further study. Ovariectomized Noble rat uterotrophic assays with NP (minimum detection level approximately 40 mg/kg/day, 3 or 11 days, oral gavage) revealed similar assay sensitivity to that observed for earlier immature and ovariectomized Alderley Park (AP) rat uterotrophic assays of this chemical. The response of the ovariectomized Noble rat uterotrophic assay to DES and estradiol was also as expected from earlier immature AP rat assays. It is concluded that the general sensitivity to estrogens of the Noble rat and the AP rat is similar. A repeat of the Noble rat mammary gland study with DES (11 x 0.076 mg/kg/day) and NP (11 x either 0.073 or 53.2 mg/kg/day), as originally reported by Colerangle and Roy (1996), revealed a strong positive response to DES and no response to NP. It is concluded that the minimum detection level of NP as a weakly estrogenic material in the rat should be based on the results of rat uterotrophic and multigeneration studies and therefore be set at approximately 40 mg/kg/day. It is also concluded that induced S-phase in the rodent mammary gland is best monitored using BRDU, as opposed to PCNA staining, and that use of

  14. Film induced intergranular cracking of binary noble alloys

    Energy Technology Data Exchange (ETDEWEB)

    Friedersdorf, F. [Bureau of Mines, Albany, OR (United States); Sieradzki, K. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Dealloying of a binary noble alloy produces a porous layer rich in the more noble element. Application of a tensile load may initiate a brittle intergranular crack in the dealloyed layer that advances into the unattached material. The relationships between the dealloying potential, dealloyed layer thickness and alloy susceptibility to film induced intergranular cracking have been studied. Ag-Au alloys were studied.

  15. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied...... in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum...... be a good support for platinum redispersion at PEMFC cathodes....

  16. Metal-sulfur type cell having improved positive electrode

    Science.gov (United States)

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1988-03-01

    A novel metal-sulfur type cell operable at a temperature of 200 C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S) sub y) n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  17. The emerging multiple metal nanostructures for enhancing the light trapping of thin film organic photovoltaic cells.

    Science.gov (United States)

    Choy, Wallace C H

    2014-10-18

    Recently, various metal nanostructures have been introduced into organic solar cells (OSCs) for performance enhancement. Here, we review the recent progress in OSCs incorporated with multiple metal nanostructures including various metal nanopatterns and metal nanomaterials. Multiple physical effects arise from these incorporated nanostructures, which require careful distinction. Changes induced by the metal nanostructures are examined in detail from the optical and electrical aspects. With the comprehensive understanding of the physical mechanisms for various metal nanostructures, further improvement in device performance and emerging applications can be expected for the new class of nanostructure-incorporated OSCs.

  18. Far-ultraviolet signatures of the 3He(n,tp) reaction in noble gas mixtures

    CERN Document Server

    Hughes, Patrick P; Thompson, Alan K; Vest, Robert E; Clark, Charles W

    2010-01-01

    Previous work showed that the 3He(n,tp) reaction in a cell of 3He at atmospheric pressure generated tens of far-ultraviolet photons per reacted neutron. Here we report amplification of that signal by factors of 1000 and more when noble gases are added to the cell. Calibrated filter-detector measurements show that this large signal is due to noble-gas excimer emissions, and that the nuclear reaction energy is converted to far-ultraviolet radiation with efficiencies of up to 30%. The results have been placed on an absolute scale through calibrations at the NIST SURF III synchrotron. They suggest possibilities for high-efficiency neutron detectors as an alternative to existing proportional counters.

  19. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    OpenAIRE

    Aliyu, M. M.; Islam, M.A.; Hamzah, N. R.; Karim, M. R.; M.A. Matin; Sopian, K.; Amin, N

    2012-01-01

    This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears...

  20. Fluorescent metal nanoshell and CK19 detection on single cell image

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: jian@cfs.biomet.umaryland.edu [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Fu, Yi [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Li, Ge [Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Lakowicz, Joseph R. [Center for Fluorescence Spectroscopy, University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, 725 West Lombard Street, Baltimore, MD 21201 (United States); Zhao, Richard Y., E-mail: rzhao@som.umaryland.edu [Division of Molecular Pathology, Department of Pathology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Department of Microbiology-Immunology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States); Institute of Human Virology, University of Maryland School of Medicine, 10 South Pine Street, Baltimore, MD 21201 (United States)

    2011-09-16

    Highlights: {yields} Novel metal nanoshell as fluorescence imaging agent. {yields} Fluorescent mAb-metal complex with enhanced intensity and shortened lifetime. {yields} Immuno-interactions of mAb-metal complexes with CK19 molecules on CNCAP and HeLa cell surfaces. {yields} Isolation of conjugated mAb-metal complexes from cellular autofluorescence on cell image. -- Abstract: In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10 nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.

  1. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    OpenAIRE

    Christophe Coutanceau; Marc Reinholdt; Jean Durand; Valérie Flaud; Serguei Martemianov; Alina Ilie; Eric Beche; Stéphanie Roualdès; Mauricio Schieda; Jérémy Frugier

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, com...

  2. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.

  3. A metallic interconnect for a solid oxide fuel cell stack

    Science.gov (United States)

    England, Diane Mildred

    A solid oxide fuel cell (SOFC) electrochemically converts the chemical energy of reaction into electrical energy. The commercial success of planar, SOFC stack technology has a number of challenges, one of which is the interconnect that electrically and physically connects the cathode of one cell to the anode of an adjacent cell in the SOFC stack and in addition, separates the anodic and cathodic gases. An SOFC stack operating at intermediate temperatures, between 600°C and 800°C, can utilize a metallic alloy as an interconnect material. Since the interconnect of an SOFC stack must operate in both air and fuel environments, the oxidation kinetics, adherence and electronic resistance of the oxide scales formed on commercial alloys were investigated in air and wet hydrogen under thermal cycling conditions to 800°C. The alloy, Haynes 230, exhibited the slowest oxidation kinetics and the lowest area-specific resistance as a function of oxidation time of all the alloys in air at 800°C. However, the area-specific resistance of the oxide scale formed on Haynes 230 in wet hydrogen was unacceptably high after only 500 hours of oxidation, which was attributed to the high resistivity of Cr2O3 in a reducing atmosphere. A study of the electrical conductivity of the minor phase manganese chromite, MnXCr3-XO4, in the oxide scale of Haynes 230, revealed that a composition closer to Mn2CrO4 had significantly higher electrical conductivity than that closer to MnCr 2O4. Haynes 230 was coated with Mn to form a phase closer to the Mn2CrO4 composition for application on the fuel side of the interconnect. U.S. Patent No. 6,054,231 is pending. Although coating a metallic alloy is inexpensive, the stringent economic requirements of SOFC stack technology required an alloy without coating for production applications. As no commercially available alloy, among the 41 alloys investigated, performed to the specifications required, a new alloy was created and designated DME-A2. The oxide scale

  4. Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

    Institute of Scientific and Technical Information of China (English)

    Cui Min; Chen Nuo-Fu; Deng Jin-Xiang

    2012-01-01

    A metal plate cooling model for 400× single concentrator solar cells was established.The effects of the thickness and the radius of the metal plate,and the air environment on the temperature of the solar cells were analyzed in detail.It is shown that the temperature of the solar cells decreased sharply at the beginning,with the increase in the thickness of the metal plate,and then changed more smoothly.When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker,the temperature of the solar cell basically stabilized at about 53 ℃.Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably.The effects of A1 and Cu as the metal plate material on cooling were analyzed contrastively,and demonstrated the superiority of Al material for the cooling system.Furthermore,considering cost reduction,space holding and the stress of the system,we optimized the structural design of the metal plate.The simulated results can be referred to the design of the structure for the metal plate.Finally,a method to devise the structure of the metal plate for single concentrator solar cells was given.

  5. GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES

    Science.gov (United States)

    A brief account of a greener preparation of nanoparticles which reduces or eliminates the use and generation of hazardous substances is presented. The utility of vitamins B1 and B2, which can function both as reducing and capping agents, provides an extremely simple, one-pot, gre...

  6. Pi resonance of chemisorbed alkali atoms on noble metals.

    Science.gov (United States)

    Borisov, A G; Sametoglu, V; Winkelmann, A; Kubo, A; Pontius, N; Zhao, J; Silkin, V M; Gauyacq, J P; Chulkov, E V; Echenique, P M; Petek, H

    2008-12-31

    We have performed a joint experimental and theoretical study of the unoccupied electronic structure of alkali adsorbates on the (111) surfaces of Cu and Ag. Combining angle- and time-resolved two-photon photoemission spectroscopy with wave packet propagation calculations we show that, along with the well known sigma resonance oriented along the surface normal, there exist long-lived alkali-localized resonances oriented parallel to the surface (pi symmetry). These new resonances are stabilized by the projected band gap of the substrate and emerge primarily from the mixing of the p and d Rydberg orbitals of the free alkali atom modified by the interaction with the surface.

  7. Composite nanomaterials of semiconductors and noble metals as plasmonic photocatalysts

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    behavior, and can be more stable under operating conditions. Composite photocatalysts of semiconductor nanoparticles (SNPs) and PNPs exploit broadly the solar spectrum, provide new catalytic routes and expand the scope of solar photocatalysis. The newly initiated project aims at developing composite...

  8. Au42: A possible ground-state noble metallic nanotube

    Science.gov (United States)

    Wang, Jing; Ning, Hua; Ma, Qing-Min; Liu, Ying; Li, You-Cheng

    2008-10-01

    A large hollow tubelike Au42 is predicted as a new ground-state configuration based on the scalar relativistic density functional theory. The shape of this new Au42 cluster is similar to a (5,5) single-wall gold nanotube, the two ends of which are capped by half of a fullerenelike Au32. In the same way, a series of Aun (n =37,42,47,52,57,62,67,72,…, Δn =5) tubelike structures has been constructed. The highest occupied molecular orbital-lowest unoccupied molecular orbital gaps suggested a significant semiconductor-conductor alternation in n ɛ[32,47]. Similar to the predictions and speculation of Daedalus [D. E. H. Jones, New Sci. 32, 245 (1966); E. Osawa, Superaromaticity (Kagaku, Kyoto, 1970), Vol. 25, pp. 854-863; Z. Yoshida and E. Osawa, Aromaticity Chemical Monograph (Kagaku Dojin, Kyoto, Japan, 1971), Vol. 22, pp. 174-176; D. A. Bochvar and E. G. Gal'pern, Dokl. Akad. Nauk SSSR 209, 610 (1973)], here a large hollow ground-state gold nanotube was predicted theoretically.

  9. Effect of palladium on sulfide tarnishing of noble metal alloys.

    Science.gov (United States)

    Suoninen, E; Herø, H; Minni, E

    1985-10-01

    Electron spectroscopic studies of Au-Ag-Cu alloys of the type used for dental castings show that small additions (less than or equal to 3 wt%) of palladium reduce essentially the thickness of the sulfide layer formed on surfaces of samples treated in aqueous Na2S solutions. Relative to silver, palladium does not enrich in the sulfide, but statistically significant enrichment is found immediately below the sulfide layer. This enrichment probably takes place during the exposure of the substrate surface to atmosphere before the sulfiding treatment. The mechanism of the impeding effect of palladium on sulfiding is assumed to be a decrease in diffusion from the bulk alloy to the surface due to the enriched layer. The effect cannot be explained by changes in the electronic structure of the alloy due to palladium alloying.

  10. Noble metal nanostructures for double plasmon resonance with tunable properties

    Science.gov (United States)

    Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.

    2017-02-01

    We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.

  11. Static Behavior of Chalcogenide Based Programmable Metallization Cells

    Science.gov (United States)

    Rajabi, Saba

    Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities. The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior. The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of

  12. Tracing Noble Gas Radionuclides in the Environment

    CERN Document Server

    Collon, P; Lu, Z T

    2004-01-01

    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA).

  13. Sir William Ramsay and the noble gases.

    Science.gov (United States)

    Davies, Alwyn G

    2012-01-01

    Sir William Ramsay was one of the world's leading scientists at the end of the 19th century, and in a spectacular period of research between 1894 and 1898, he discovered five new elements. These were the noble gases, helium, neon, argon, krypton, and xenon; they added a whole new group to the Periodic Table of the elements, and provided the keystone to our understanding of the electronic structure of atoms, and the way those electrons bind the atoms together into molecules. For this work he was awarded the Nobel Prize in Chemistry in 1904, the first such prize to come to a British subject. He was also a man of great charm, a good linguist, and a composer and performer of music, poetry and song. This review will trace his career, describe his character and give and account of the chemistry which led to the award of the Nobel Prize.

  14. From 1 Sun to 10 Suns c-Si Cells by Optimizing Metal Grid, Metal Resistance, and Junction Depth

    Directory of Open Access Journals (Sweden)

    Vikrant A. Chaudhari

    2009-01-01

    Full Text Available Use of a solar cell in concentrator PV technology requires reduction in its series resistance in order to minimize the resistive power losses. The present paper discusses a methodology of reducing the series resistance of a commercial c-Si solar cell for concentrator applications, in the range of 2 to 10 suns. Step by step optimization of commercial cell in terms of grid geometry, junction depth, and electroplating of the front metal contacts is proposed. A model of resistance network of solar cell is developed and used for the optimization. Efficiency of unoptimized commercial cell at 10 suns drops by 30% of its 1 sun value corresponding to resistive power loss of about 42%. The optimized cell with grid optimization, junction optimization, electroplating, and junction optimized with electroplated contacts cell gives resistive power loss of 20%, 16%, 11%, and 8%, respectively. An efficiency gain of 3% at 10 suns for fully optimized cell is estimated.

  15. MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.

    Science.gov (United States)

    Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin

    2011-04-01

    Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells.

  16. Fluorescent metal nanoshell and CK19 detection on single cell image.

    Science.gov (United States)

    Zhang, Jian; Fu, Yi; Li, Ge; Lakowicz, Joseph R; Zhao, Richard Y

    2011-09-16

    In this article, we report the synthesis strategy and optical properties of a novel type of fluorescence metal nanoshell when it was used as imaging agent for fluorescence cell imaging. The metal nanoshells were made with 40 nm silica cores and 10nm silver shells. Unlike typical fluorescence metal nanoshells which contain the organic dyes in the cores, novel metal nanoshells were composed of Cy5-labelled monoclonal anti-CK19 antibodies (mAbs) on the external surfaces of shells. Optical measurements to the single nanoparticles showed that in comparison with the metal free labelled mAbs, the mAb-Ag complexes displayed significantly enhanced emission intensity and dramatically shortened lifetime due to near-field interactions of fluorophores with metal. These metal nanoshells were found to be able to immunoreact with target cytokeratin 19 (CK19) molecules on the surfaces of LNCAP and HeLa cells. Fluorescence cell images were recorded on a time-resolved confocal microscope. The emissions from the metal nanoprobes could be clearly isolated from the cellular autofluorescence backgrounds on the cell images as either individuals or small clusters due to their stronger emission intensities and shorter lifetimes. These emission signals could also be precisely counted on single cell images. The count number may provide an approach for quantifying the target molecules in the cells.

  17. Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting

    Science.gov (United States)

    Andoshe, Dinsefa M.; Jeon, Jong-Myeong; Kim, Soo Young; Jang, Ho Won

    2015-05-01

    Recently, 2-dimensional (2D) transition metal dichalcogenides (TMDs) have received great attention for solar water splitting and electrocatalysis. In addition to their wide variety of electronic and microstructural properties, their promising catalytic activities for hydrogen production make 2D TMDs as earth-abundant and inexpensive catalysts that can replace noble metals. This paper reviews the electronic, structural, and optical properties of 2D TMDs. We highlight the various synthetic methods for 2D TMDs and their applications in hydrogen evolution based on photoelectrochemical and electrocatalytic cells. We also discuss perspectives and challenges of 2D TMDs for hydrogen production and artificial photosynthesis.[Figure not available: see fulltext.

  18. Inorganic and Metallic Nanotubular Materials Recent Technologies and Applications

    CERN Document Server

    Kijima, Tsuyoshi

    2010-01-01

    This book describes the synthesis, characterization and applications of inorganic and metallic nanotubular materials. It cover a wide variety of nanotubular materials excluding carbon nanotubes, ranging from metal oxides, sulfides and nitrides such as titanium oxide, tungsten sulfide, and boron nitride, as well as platinum and other noble-metals to unique nanotubes consisting of water, graphene or fullerene. Based on their structural and compositional characteristics, these nanotubular materials are of importance for their potential applications in electronic devices, photocatalysts, dye-sensitized solar cells, nanothermometers, electrodes for fuel cells and batteries, sensors, and reinforcing fillers for plastics, among others. Such materials are also having a great impact on future developments, including renewable-energy sources as well as highly efficient energy-conversion and energy-saving technologies. This book will be of particular interest to experts in the fields of nanotechnology, material science ...

  19. Spinel-based coatings for metal supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Stefan, Elena; Neagu, Dragos; Blennow Tullmar, Peter

    2017-01-01

    Metal supports and metal supported half cells developed at DTU are used for the study of a solution infiltration approach to form protective coatings on porous metal scaffolds. The metal particles in the anode layer, and sometimes even in the support may undergo oxidation in realistic operating...... conditions leading to severe cell degradation. Here, a controlled oxidation of the porous metal substrate and infiltration of Mn and/or Ce nitrate solutions are applied for in situ formation of protective coatings. Our approach consists of scavenging the FeCr oxides formed during the controlled oxidation...... into a continuous and well adhered coating. The effectiveness of coatings is the result of composition and structure, but also of the microstructure and surface characteristics of the metal scaffolds....

  20. High Voltage in Noble Liquids for High Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rebel, B. [Fermilab; Bernard, E. [Yale U.; Faham, C. H. [LBL, Berkeley; Ito, T. M. [Los Alamos; Lundberg, B. [Maryland U.; Messina, M. [Columbia U.; Monrabal, F. [Valencia U., IFIC; Pereverzev, S. P. [LLNL, Livermore; Resnati, F. [Zurich, ETH; Rowson, P. C. [SLAC; Soderberg, M. [Fermilab; Strauss, T. [Bern U.; Tomas, A. [Imperial Coll., London; Va' vra, J. [SLAC; Wang, H. [UCLA

    2014-08-22

    A workshop was held at Fermilab November 8-9, 2013 to discuss the challenges of using high voltage in noble liquids. The participants spanned the fields of neutrino, dark matter, and electric dipole moment physics. All presentations at the workshop were made in plenary sessions. This document summarizes the experiences and lessons learned from experiments in these fields at developing high voltage systems in noble liquids.

  1. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    OpenAIRE

    Martínez Bastidas, David

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects....

  2. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach.

    Science.gov (United States)

    Bereza-Malcolm, Lara Tess; Mann, Gülay; Franks, Ashley Edwin

    2015-05-15

    Whole cell microbial biosensors are offering an alternative means for rapid, on-site heavy metal detection. Based in microorganisms, biosensing constructs are designed and constructed to produce both qualitative and quantitative outputs in response to heavy metal ions. Previous microbial biosensors designs are focused on single-input constructs; however, development of multiplexed systems is resulting in more flexible designs. The movement of microbial biosensors from laboratory based designs toward on-site, functioning heavy metal detectors has been hindered by the toxic nature of heavy metals, along with the lack of specificity of heavy metals promoter elements. Applying a synthetic biology approach with alternative microbial chassis may increase the robustness of microbial biosensors and mitigate these issues. Before full applications are achieved, further consideration has to be made regarding the risk and regulations of whole cell microbial biosensor use in the environment. To this end, a standard framework for future whole cell microbial biosensor design and use is proposed.

  3. Studies of noble gases in meteorites and in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.P.

    1979-01-01

    The isotopic and elemental abundances of noble gases in the solar system are investigated, using simple mixing models and mass-spectrometric measurements of the noble gases in meteorites and terrestrial rocks and minerals. Primordial neon is modeled by two isotopically distinct components from the interstellar gas and dust. Neon from the gas dominates solar neon, which contains about ten times more /sup 20/Ne than /sup 22/Ne. Neon in meteorites consists of galactic cosmic ray spallation neon and at least two primordial components, neon-E and neon-S. Neon was measured in several meteorites to investigate these end-members. Ca,Al-rich inclusions from the Allende meteorite were examined for correlation between neon-E and oxygen or magnesium isotopic anomalies. Measurements were made to determine the noble gas contents of various terrestrial rocks and minerals, and to investigate the cycling of noble gases between different terrestrial reservoirs. Juvenile and atmospheric gases have been measured in the glassy rims of mid-ocean ridge (MOR) pillow basalts. Evidence is presented that three samples contain excess radiogenic /sup 129/Xe and fission xenon, in addition to the excess radiogenic /sup 40/Ar found in all samples. The Skaergaard data demonstrate that atmospheric noble gases dissolved in ground water can be transferred into crustal rocks. Subduction of oceanic crust altered by seawater can transport atmospheric noble gases into the upper mantle.

  4. Metal Hydrides as hot carrier cell absorber materials

    Science.gov (United States)

    Wang, Pei; Wen, Xiaoming; Shrestha, Santosh; Conibeer, Gavin; Aguey-Zinsou, Kondo-Francois

    2016-09-01

    The hot Carrier Solar Cell (HCSC) allows the photon-induced hot carriers (the carriers with energy larger than the band gap) to be collected before they completely thermalise. The absorber of the HCSC should have a large phononic band gap to supress Klemens Decay, which results in a slow carrier cooling speed. In fact, a large phononic band gap likely exists in a binary compound whose constituent elements have a large mass ratio between each other. Binary hydrides with their overwhelming mass ratio of the constituent elements are important absorber candidates. Study on different types of binary hydrides as potential absorber candidates is presented in this paper. Many binary transition metal hydrides have reported theoretical or experimental phonon dispersion charts which show large phononic band gaps. Among these hydrides, the titanium hydride (TiHX) is outstanding because of its low cost, easy fabrication process and is relatively inert to air and water. A TiHX thin film is fabricated by directly hydrogenating an evaporated titanium thin film. Characterisation shows good crystal quality and the hydrogenation process is believed to be successful. Ultrafast transient absorption (TA) spectroscopy is used to study the electron cooling time of TiHX. The result is very noisy due to the low absorption and transmission of the sample. The evolution of the TA curves has been explained by band to band transition using the calculated band structure of TiH2. Though not reliable due to the high noise, decay time fitting at 700nm and 600nm shows a considerably slow carrier cooling speed of the sample.

  5. Fuel cell life improved by metallic sinter activation after electrode assembly welding

    Science.gov (United States)

    Taylor, W. A.

    1967-01-01

    Technique improves the service life of fuel cell electrodes. The welding is done before the metallic sinter is activated by depositing finely divided metal within the sinter structure from a solution with corrosion inhibiting ions. The activator solution flows through the porous sinter while attached to the backup plate.

  6. Noble gas atmospheric monitoring at reprocessing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-05-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data.

  7. Development of Novel Non-Pt Group Metal Electrocatalysts for PEM Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukerjee, Sanjeev [Northeastern Univ., Boston, MA (United States). Dept. of Chemistry and Chemical Biology; Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States); Barton, Scott [Michigan State Univ., East Lansing, MI (United States); Dale, Nilesh [Nissan Technical Center North America (NTCNA), Farmington Hills, MI (United States); Halevi, Bar [Pajarito Powder LLC, Albuquerque, NM (United States)

    2016-01-04

    The objective of this multi-institutional effort was to comprehensively pursue the goal of eliminating noble metal (Pt group metals, PGM) from the cathodic oxygen reduction reaction (ORR) electrode thereby providing a quantum leap in lowering the overall PGM loading in a polymer electrolyte fuel cell (PEMFC). The overall project scope encompassed (a) comprehensive materials discovery effort, (b) a concomitant effort to scale up these materials with very high ( ±5%) reproducibility, both intra and inter, (c) understanding mass transport in porous medium both in gas diffusion and micro-porous layers for enhanced areal activity, (d) understanding mechanistic aspects of active site structure and ORR electrocatalytic pathway. Overall project milestones and metrics were (a) first phase effort based on performance in oxygen where the project’s Go/No-Go decision point milestone of 100 mA/cm2 at 0.8 V (internal resistance-free, iR-free) at 80°C, pure H2/O2, with 1.5 bar total pressure was met. Subsequently, the principle objectives were to (a) transition the project from H2/O2 to H2/Air with slated target of exceeding 30 mA/cm2 @ 0.8 V, 2.5 bar total pressure and an end of the project target of 1 A/cm2 @ 0.4 V (same total pressure), both under 100% relative humidity. The target for catalyst material scale up was to achieve 100 g batch size at the end of the program. This scale up target had a quality control milestone of less than 5% variation of activity measured with H2/Air (2.5 bar total pressure) at 0.8 V. In addition, the project also aimed at arriving at a unified understanding of the nature of active sites in these catalysts as well as some preliminary understanding of the mechanistic pathway. Also addressed is the development of an integrated method for determination of mass transport parameters using a combination of Helox experiments and modeling of the gas

  8. Optical studies of multilayer dielectric-metal-dielectric coatings as applied to solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Demichelis, F.; Minetti-Mezzetti, E.; Perotto, V.

    1982-09-01

    A study of antireflection coatings for solar cells which provide maximum transmittance in the range of the spectral response of the cell and maximum reflectance in the IR portion of the spectrum of normally incident radiation is reported. Dielectric-metal-dielectric filters with a relatively low number of dielectric layers are designed as coatings for silicon and GaAs solar cells.

  9. Study on Static Polarizability and Absorption Spectrum of Coupling Noble Metal Nanoclusters by Density Functional Theory%密度泛函理论研究贵金属耦合纳米团簇的静电极化率与吸收光谱

    Institute of Scientific and Technical Information of China (English)

    吴波; 杨秀德; 张颂

    2011-01-01

    基于密度泛函理论计算了2个贵金属(Ag、Au、Cu)纳米团簇组成的团簇对的静电极化率和吸收光谱,结果表明这2个团簇之间存在强烈的静电耦合效应,其贡献主要来自于外加弱电场下团簇之间的电荷迁移和电子云的扭曲.随着团簇对间距的不断增大,静电极化率先增大后减小,存在一个极化率最大的最佳位置.在团簇对的吸收谱中,随着团簇对间距的增加,高能峰的位置和强度基本保持不变,而低能峰则不断蓝移且峰值先增大后减小,最终消失于高能峰的位置.进一步计算团簇-吡嗪和团簇-吡嗪-团簇体系的静电极化率和吸收光谱,结果发现团簇连接有机小分子后部分电子将从有机小分子向团簇迁移,使整个体系具有较大的固有极矩,在外加弱电场下,团簇与有机小分子之间的电荷迁移能力显著增强.%For a cluster-pair consisting of two same noble metal(Ag, Au, Cu) clusters, the static polarizability and absorption spectrum were calculated within density functional theory(DFT). The results show that between two cluster particles an intense static coupling effect exist, and under weak electric field which are mainly contributed by the charge transfer between two clusters and the distortion of electron cloud of individual cluster. Increasing interval distance of cluster-pair, the polarizability increases firstly then decreases, and an optimal position is characterized by the maximal polarizability. For the absorption spectrum of the cluster-pair, with the increase of interval distance the high-energy peak almost hold its absorption position unchanged, then the low-energy peak will step blue shift and the strength increases firstly then gradually decreases, lastly disappears at the high-energy position. For the static polarizability and absorption spectrum of the cluster-pyrazine or the cluster-pyrazine-cluster system, the farther calculations show that some electrons in small

  10. A versatile synthesis route for metal@SiO2 core-shell nanoparticles using 11-mercaptoundecanoic acid as primer

    NARCIS (Netherlands)

    Zhang, Y.; Kong, X.; Xue, B.; Zeng, Q.; Liu, X.; Tu, L.; Liu, K.; Zhang, H.

    2013-01-01

    Applying the Stober method to directly coat noble metal nanoparticles (NPs) such as gold (Au) and silver (Ag) NPs with silica shells presents challenges, since the noble metal NPs are not stable in alcoholic solution and have low chemical affinity for silica. This paper describes a method which uses

  11. Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition

    NARCIS (Netherlands)

    Speets, Emiel A.; Riele, te Paul; Boogaart, van den Marc A.F.; Doeswijk, Lianne M.; Ravoo, Bart Jan; Rijnders, Guus; Brugger, Jürgen; Reinhoudt, David N.; Blank, Dave H.A.

    2006-01-01

    Patterns of noble-metal structures on top of self-assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano- and microstencils. In the second approach, noble-metal

  12. Polypyridyl transition metal complexes with application in water oxidation catalysis and dye-sensitised solar cells

    OpenAIRE

    Rudd, Jennifer A.

    2012-01-01

    This thesis contains complementary synthetic and computational studies of transition metal complexes with polypyridyl ligands for use either as water oxidation catalysts or for application in dye-sensitised solar cells (DSSCs). Chapter 1 introduces the reasons for researching water splitting catalysts and describes a number of current techniques used to do so; from photoelectrochemical cells to the use of transition metal polypyridyl complexes. It also introduces three commercially avail...

  13. Prion protein prevents heavy metals overloading of cells and thus protects them against their toxicity.

    Science.gov (United States)

    Prčina, M; Kontseková, E; Novák, M

    2015-06-01

    Physiological function of a prion protein (PrP) is not known yet. Regarding the relation of PrP to heavy metals it is known that PrP is able to bind divalent ions of copper, zinc, manganese and nickel through its octarepeat region. It has been hypothesized but not yet confirmed that PrP could play a role in copper metabolism. In this study, cells expressing human full-length PrP (HuPrP1) and PrP-knockout (PrP0/0/1) cells were incubated with various concentrations of copper, zinc, manganese and nickel for 4 days and then were assayed for intracellular content of these metals and cell viability. The results showed that HuPrP1 cells accumulated less heavy metals than PrP0/0/1 cells when concentrations of heavy metals exceeded physiological level. In conclusion, HuPrP1 cells are more resistant to chronic overload with copper, manganese, zinc or nickel than PrP0/0/1 cells. The resistance to metals overload is caused solely by the presence of PrP, since HuPrP1 and PrP0/0/1 cells differ only in the expression of PrP. These results indicate that one of the functions of PrP can be the modulation of trace heavy metal concentrations in cells and protection of cells against heavy metals overload and subsequent oxidative stress.

  14. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shi-You [Harvard Univ., Cambridge, MA (United States)

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  15. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells.

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-24

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  16. Application of metal nanowire networks on hydrogenated amorphous silicon thin film solar cells

    Science.gov (United States)

    Xie, Shouyi; Hou, Guofu; Chen, Peizhuan; Jia, Baohua; Gu, Min

    2017-02-01

    We demonstrate the application of metal nanowire (NW) networks as a transparent electrode on hydrogenated amorphous Si (a-Si:H) solar cells. We first systematically investigate the optical performances of the metal NW networks on a-Si:H solar cells in different electrode configurations through numerical simulations to fully understand the mechanisms to guide the experiments. The theoretically optimized configuration is discovered to be metal NWs sandwiched between a 40 nm indium tin oxide (ITO) layer and a 20 nm ITO layer. The overall performances of the solar cells integrated with the metal NW networks are experimentally studied. It has been found the experimentally best performing NW integrated solar cell deviates from the theoretically predicated design due to the performance degradation induced by the fabrication complicity. A 6.7% efficiency enhancement was achieved for the solar cell with metal NW network integrated on top of a 60 nm thick ITO layer compared to the cell with only the ITO layer due to enhanced electrical conductivity by the metal NW network.

  17. Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell.

    Science.gov (United States)

    Zhang, Jian; Fu, Yi; Mei, Yuping; Jiang, Feng; Lakowicz, Joseph R

    2010-06-01

    In this study, fluorescent metal nanoshells were synthesized as a molecular imaging agent to detect single microRNA (miRNA) molecules in the cells positive to lung cancer. These metal nanoshells were composed of silica spheres with encapsulated Ru(bpy)(3)(2+) complexes as cores and thin silver layers as shells. Compared with the silica spheres in the absence of metal, the metal nanoshells displayed an enhanced emission intensity, shortened lifetime, and extended photostability. The single-stranded probe oligonucleotides were covalently bound on the metal nanoshells to hybridize with the target miRNA-486 molecules in the cells. It was shown that with stronger emission intensity and longer lifetime, the conjugated metal nanoshells were isolated distinctly from the cellular autofluorescence on the cell images. These emission spots on the cell images were counted accurately and analyzed with a pool of cells representing the miRNA-486 expression levels in the cells. The results may reflect a genomic signal change and provide a reference to lung cancer early diagnosis as well as other diseases.

  18. In vitro reactivity to implant metals demonstrates a person-dependent association with both T-cell and B-cell activation.

    Science.gov (United States)

    Hallab, Nadim James; Caicedo, Marco; Epstein, Rachel; McAllister, Kyron; Jacobs, Joshua J

    2010-02-01

    Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a delayed-type-hypersensitivity response. We tested this by comparing proliferation (6 days) of primary lymphocytes with early T-cell and B-cell activation (48 h) in three groups of subjects likely to demonstrate elevated metal reactivity: group 1 (n = 12) history of metal sensitivity with no implant; group 2a (n = 6) well performing metal-on-metal THRs, and group 2b (n = 20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100% (12/12) metal reactivity (stimulation index > 2) to Ni. Groups 2a and 2b were 83% (5/6) and 75% (15/22) metal reactive (to Co, Cr, or Ni), respectively. Of the n = 32 metal-reactive subjects to Co, Cr, or Ni (SI > 2), n = 22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+, CD69+) to metal challenge when compared with untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R(2) metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris-induced osteolysis in metal-sensitive individuals.

  19. Nano-electrocatalyst materials for low temperature fuel cells:A review

    Institute of Scientific and Technical Information of China (English)

    K. Vignarooban; J. Lin; A. Arvay; S. Kolli; I. Kruusenberg; K. Tammeveski; L. Munukutla; A. M. Kannan

    2015-01-01

    Low temperature fuel cells are an attractive technology for transportation and residential applica‐tions due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non‐noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocat‐alysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durabil‐ity.

  20. Effect of electromagnetic force on turbulent flow of molten metal in aluminum electrolysis cells

    Institute of Scientific and Technical Information of China (English)

    周萍; 梅炽; 周乃君; 姜昌伟

    2004-01-01

    The standard k-ε model was adopted to simulate the flow field of molten metal in three aluminum electrolysis cells with different anode risers. The Hartman number, Reynolds number and the turbulent Reynolds number of molten metal were calculated quantitatively. The turbulent Reynolds number is in the order of 103 , and Reynolds number is in the order of 104 if taking the depth of molten metal as the characteristic length. The results show that the molten metal flow is the turbulence of high Reynolds number, the turbulent Reynolds number is more appropriate than Reynolds number to be used to describe the turbulent characteristic of molten metal, and Hartman number displays very well that electromagnetic force inhibits turbulent motion of molten metal.

  1. Cytochemical characterization of gill and hepatopancreatic cells of the crab Ucides cordatus (Crustacea, Brachyura validated by cell metal transport

    Directory of Open Access Journals (Sweden)

    Priscila Ortega

    2014-09-01

    Full Text Available Ucides cordatus (Linnaeus, 1763 is a hypo-hyper-regulating mangrove crab possessing gills for respiratory and osmoregulatory processes, separated in anterior and posterior sections. They also have hepatopancreas, which is responsible for digestion and absorption of nutrients and detoxification of toxic metals. Each of these organs has specific cells that are important for in vitro studies in cell biology, ion and toxic metals transport. In order to study and characterize cells from gills and hepatopancreas, both were separated using a Sucrose Gradient (SG from 10 to 40% and cells in each gradient were characterized using the vital mitochondrial dye DASPEI (2-(4-dimethylaminostyryl-N- ethylpyridinium iodide and Trichrome Mallory's stain. Both in 20 and 40% SG for gill cells and 30% SG for hepatopancreatic cells, a greater number of cells were colored with DASPEI, indicating a larger number of mitochondria in these cells. It is concluded that the gill cells present in 20% and 40% SG are Thin cells, responsible for respiratory processes and Ionocytes responsible for ion transport, respectively. For hepatopancreatic cells, the 30% SG is composed of Fibrillar cells that possess larger number of membrane ion and nutrient transporters. Moreover, the transport of toxic metal cadmium (Cd by isolated hepatopancreatic cells was performed as a way of following cell physiological integrity after cell separation and to study differences in transport among the cells. All hepatopancreatic cells were able to transport Cd. These findings are the first step for further work on isolated cells of these important exchange epithelia of crabs, using a simple separation method and to further develop successful in vitro cell culture in crabs.

  2. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  3. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  4. Break-down of Losses in High Performing Metal-Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Kromp, Alexander; Nielsen, Jimmi; Blennow Tullmar, Peter;

    2012-01-01

    present the results of performance and stability improvements for a metal supported cell developed within the European project METSOFC and the Danish National Advanced Technology Foundation. The cells consist of a porous metal backbone, a metal / zirconia cermet anode and a 10ScYSZ electrolyte, cofired...... in hydrogen. The electrochemically active parts were applied by infiltrating CGO-Ni precursor solution into the porous metal and anode backbone and screenprinting (La,Sr)(Co,Fe)O3-based cathodes. To prevent a solid state reaction between cathode and zirconia electrolyte, CGO buffer layers were applied...... in between cathode and electrolyte. The detailed electrochemical characterization by means of impedance spectroscopy and a subsequent data analysis by the distribution of relaxation times enabled us to separate the different loss contributions in the cell. Based on an appropriate equivalent circuit model...

  5. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds.

    Science.gov (United States)

    Tan, Cai-Ping; Lu, Yi-Ying; Ji, Liang-Nian; Mao, Zong-Wan

    2014-05-01

    Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.

  6. Fracture of open- and closed-cell metal foams

    NARCIS (Netherlands)

    Onck, P; van Merkerk, R.; Raaijmakers, A; De Hosson, JTM

    2005-01-01

    Two closed cell aluminium foams and one open cell nickel-chromium foam were subjected to microstructural characterization, in situ fracture tests and fractography. The failure process of the open cell foam was observed to be rather ductile, while that of the closed cell foams was found to be brittle

  7. High performance metal/air fuel cells. Part 1. General review. [Li, Al, Ca, Cd, Mg

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J. F.

    1977-08-15

    Metal/air fuel cells are reviewed in terms of their potential application in electric vehicles. Attention is focused on those metals (light alkali and alkaline earth metals, and aluminum) which, in combination with oxygen, have theoretical energy densities (2--13 kWh/kg-metal) exceeding that of gasoline (utilized in automobiles at 2--3 kWh/kg). Lithium and aluminum have yielded 8- and 4 kWh/kg, respectively, in laboratory experimental cells. The slurry Zn/air system achieves 0.85 kWh/kg-Zn in prototype vehicle cells and is reviewed for comparison. Calcium can probably yield 1.8 kWh/kg-Ca, but its potential as a fuel has not yet been fully explored. The remaining metals appear to be unsuitable for use in aqueous electrolyte fuel cells. The discharge characteristics of lithium, aluminum, and (possibly) calcium/air cells indicate the potential for electric vehicles of the highway performance and minimum range (300 miles) of subcompact automobiles, rapid refueling for unlimited range extension, and the storage in the fuel cell of sufficient metal for ranges in excess of 1000 miles. Barriers to the concept are the economic necessity of recycling cell reaction products (except in the case of calcium), the expansion or creation of vast metal production industries, and the change-over of existing service station infrastructures to allow electric vehicle servicing. The energy efficiency of a transportation system using aluminum was estimated using data on the current aluminum production industry. The total estimated cost of ownership and operation of an aluminum/air cell was 3.0--3.6 cents/km. The relative rarity of lithium would complicate its use. 6 tables.

  8. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    Science.gov (United States)

    Xie, Junfeng; Xie, Yi

    2016-03-07

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities.

  9. The metal wrap through solar cell. Developement and characterisation; Die metal wrap through Solarzelle. Entwicklung und Charakterisierung

    Energy Technology Data Exchange (ETDEWEB)

    Clement, Florian

    2009-03-20

    This work focuses on the development and the optimization of the metal wrap through (MWT) solar cell. Primary goal of this work has been the development of an appropriate process flow for MWT solar cells, which generates only insignificant extra costs compared to the conventional process flow, however, achieves a significant efficiency increase for MWT cells compared to conventionally processed cells. The latter was one of the main challenges of this work. For this purpose MWT solar cells have been studied and characterized in detail. Loss mechanisms have been detected and improvements evaluated as well as transferred to the cell process. Furthermore, the assembling process for MWT solar cells in the module has been optimized focusing on less series resistance losses. A comparison with the conventional module assembling process is presented. A process flow similar to the one for the conventional process has been developed for MWT solar cells. Merely two additional laser process steps for hole drilling and rear contact isolation as well as one screen printing step for the through connection turn out to be necessary. It is shown that the additional screen printing process can be omitted without significant efficiency losses, if the through connection and solder pad metallization is done in a single process step. Furthermore, a fast and reliable through connection process has been developed and characterized in detail. Moreover, a gauge mounting block for MWT solar cells has been constructed, analyzed and calibrated for current-voltage-characteristic measurements. With multi crystalline MWT silicon solar cells an efficiency gain up to 0.5% absolute has been achieved compared to conventionally processed solar cells - thereby reaching a maximum cell efficiency of more than 16.7%. Due to a novel MWT module technology developed in this work the efficiency compared to the conventional technology could be improved further by another 0.3% absolute. The primary loss

  10. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    Science.gov (United States)

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  11. Topology optimization: An effective method for designing front metallization patterns of solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2014-01-01

    Optimal front electrode design is one of the approaches to improve the performance of solar cells. This work introduces the application of topology optimization (TO) to design complex front metallization patterns for solar cells. TO optimizes the distribution of electrode material on the front surfa

  12. Absorption Spectroscopy of Rubidium in an Alkali Metal Dispenser Cell and Bleached Wave Analysis

    Science.gov (United States)

    2015-03-26

    resulted in a transmission too low below the detection limit of the photodiodes. When the current ceased, the spectrum almost immediately returned to a...absorption spectrum of a rubidium alkali metal dispenser (AMD) cell was obtained in order to determine the system’s suitability for use in a diode ...18 8. Cell Pressure vs. Required Current .............................................................................. 20 9. Time vs. Rubidium

  13. Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Cao, Yi; Roursgaard, Martin;

    2015-01-01

    The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important...

  14. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells.

    Science.gov (United States)

    Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G

    2011-11-21

    We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.

  15. International Conference on LIght Detection in Noble Elements

    CERN Document Server

    2016-01-01

    The objective of the Light Detection in Noble Elements (LIDINE) 2015 conference is to promote discussion between the members of the particle and nuclear physics communities about light and charge collection in detectors based on liquid or gaseous noble elements, xenon and argon being the most common, but neon and helium also in use, and represented at this conference. The neutrino physics, ultra-cold neutron study, dark matter search, and medical physics communities all utilize noble-based detector technologies, recording UV scintillation and/or ionization. Therefore, this will be an interdisciplinary opportunity for information exchange, and a chance for each of these communities enumerated above, in the U.S. as well as abroad, to expand their technical knowledge bases.

  16. Genetic Structure Analysis of Human Remains from Khitan Noble Necropolis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ancient DNA was extracted from 13 skeletal remains from the burial groups of Khitan nobles, which were excavated in northeast China. The hypervariable segment I sequences ( HVS Ⅰ ) of the mitochondrial DNA control region, in the 13 individuals, were used as genetic markers to determine the genetic relationships between the individuals and the genetic affinity to other interrelated populations by using the known database of mtDNA. Based on the phylogenetic analysis of these ancient DNA sequences, the genetic structures of two Khitan noble kindreds were obtained, including the Yel Yuzhi's kindred and the Xiao He's kindred. Furthermore, the relationships between the Khitan nobles and some modern interrelated populations were analyzed. On the basis of the result of the analysis, the gene flows of the ancient Khitans and their demographic expansion in history was deduced.

  17. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a

  18. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells.

    Science.gov (United States)

    Dymshits, Alex; Henning, Alex; Segev, Gideon; Rosenwaks, Yossi; Etgar, Lioz

    2015-03-03

    Cross-sections of a hole-conductor-free CH3NH3PbI3 perovskite solar cell were characterized with Kelvin probe force microscopy. A depletion region width of about 45 nm was determined from the measured potential profiles at the interface between CH3NH3PbI3 and nanocrystalline TiO2, whereas a negligible depletion was measured at the CH3NH3PbI3/Al2O3 interface. A complete solar cell can be realized with the CH3NH3PbI3 that functions both as light harvester and hole conductor in combination with a metal oxide. The band diagrams were estimated from the measured potential profile at the interfaces, and are critical findings for a better understanding and further improvement of perovskite based solar cells.

  19. Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity.

    Science.gov (United States)

    Gai, Feng; Zhang, Cheng; Zhan, Yaohui; Li, Xiaofeng

    2016-12-26

    Single-nanowire solar cells (SNSCs) are attracting increasing interest due to their unique optical antenna effect beneficial for achieving higher light-trapping capability. However, for conventional circular-cross-sectional SNSCs, the light-trapping performance is still far from the expectation. Here we demonstrate that integrating a silicon single nanowire into a metallic slit can dramatically enhance the absorption efficiency over almost the whole spectral band due to strengthened optical antenna effect. Especially, it is found that by using finite-size metallic blocks to form a nanoscale metallic cavity, the light-trapping performance of the SNSCs can be further improved. Through examining the detailed optical spectral response, electric field distribution, and cavity dispersion characteristics, the metallic-coupled SNSC system is optimized and the underlying physics are provided. Simulation results indicate that the photocurrent density of the SNSCs coupled with the designed metallic cavity can be enhanced by 44.4% than that of the conventional bare SNSCs.

  20. Isotopic mass-dependence of noble gas diffusion coefficients inwater

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Sposito, G.

    2007-06-25

    Noble gas isotopes are used extensively as tracers inhydrologic and paleoclimatic studies. These applications requireknowledge of the isotopic mass (m) dependence of noble gas diffusioncoefficients in water (D), which has not been measured but is estimatedusing experimental D-values for the major isotopes along with an untestedrelationship from kinetic theory, D prop m-0.5. We applied moleculardynamics methods to determine the mass dependence of D for four noblegases at 298 K, finding that D prop m-beta with beta<0.2, whichrefutes the kinetic theory model underlying all currentapplications.

  1. Engineered metal nanoparticles in the sub-nanomolar levels kill cancer cells

    Directory of Open Access Journals (Sweden)

    Vodyanoy V

    2016-04-01

    Full Text Available Vitaly Vodyanoy,1 Yasmine Daniels,2 Oleg Pustovyy,1 William A MacCrehan,2 Shin Muramoto,2 Gheorghe Stan21Department of Anatomy, Physiology and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, AL, 2Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MA, USA Background: Small metal nanoparticles obtained from animal blood were observed to be toxic to cultured cancer cells, whereas noncancerous cells were much less affected. In this work, engineered zinc and copper metal nanoparticles were produced from bulk metal rods by an underwater high-voltage discharge method. The metal nanoparticles were characterized by atomic force microscopy and X-ray photoelectron spectroscopy. The metal nanoparticles, with estimated diameters of 1 nm–2 nm, were determined to be more than 85% nonoxidized. A cell viability assay and high-resolution light microscopy showed that exposure of RG2, cultured rat brain glioma cancer cells, to the zinc and copper nanoparticles resulted in cell morphological changes, including decreased cell adherence, shrinking/rounding, nuclear condensation, and budding from cell bodies. The metal-induced cell injuries were similar to the effects of staurosporine, an active apoptotic reagent. The viability experiments conducted for zinc and copper yielded values of dissociation constants of 0.22±0.08 nmol/L (standard error [SE] and 0.12±0.02 nmol/L (SE, respectively. The noncancerous astrocytes were not affected at the same conditions. Because metal nanoparticles were lethal to the cancer cells at sub-nanomolar concentrations, they are potentially important as nanomedicine.Purpose: Lethal concentrations of synthetic metal nanoparticles reported in the literature are a few orders of magnitude higher than the natural, blood-isolated metal nanoparticles; therefore, in this work, engineered metal nanoparticles were examined to mimic the properties of endogenous metal

  2. Electrochemical analysis of transparent oxide-less photovoltaic cell with perforation patterned metal substrate

    Science.gov (United States)

    Kim, Myoung; You, In-Kyu; Lee, Kyoung-Won; Lee, In-Hwan; Yun, Ho-Gyeong

    2013-05-01

    In terms of electrochemical behaviour, a transparent conductive oxide (TCO)-less dye-sensitized solar cell (DSSC) with two metal foils was compared with those of a metal foil-based DSSC with a TCO-coated substrate. By virtue of electrochemical impedance spectroscopy, intensity modulated photocurrent spectroscopy, intensity modulated photovoltage spectroscopy, open-circuit voltage decay, and photocurrent transient measurements, it was clearly confirmed that the limited performance of the TCO-less DSSC was caused by the restricted transport of ion species in the electrolyte due to the perforation patterned metal foil.

  3. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.

    Science.gov (United States)

    Chang, Ting-Hsiang; Kung, Chung-Wei; Chen, Hsin-Wei; Huang, Tzu-Yen; Kao, Sheng-Yuan; Lu, Hsin-Che; Lee, Min-Han; Boopathi, Karunakara Moorthy; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-11-25

    Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell.

  4. Cell overcharge testing inside sodium metal halide battery

    Science.gov (United States)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  5. In vitro embryotoxicity testing of metals for dental use by differentiation of embryonic stem cell test.

    Science.gov (United States)

    Imai, Koichi; Nakamura, Masaaki

    2006-03-01

    We examined embryotoxicity using the embryonic stem cell test (EST) protocol. Tests were conducted using standard reagents for the atomic absorption measurement of 11 metal ions, silver, cobalt, chromium, copper, mercury, nickel, palladium, antimony, tin, vanadium, and zinc from among metals comprising dental alloys. In addition, for four metals like silver, cobalt, chromium, and nickel, the tests were also conducted using a test solution extracted from powder in the cell culture medium. The embryotoxic potential was obtained from a biostatistics-based prediction model, which was calculated from three endpoints, the ID50, IC50ES and IC(50)3T3. Data with the standard reagents showed that chromium and mercury ions corresponded to class 3, that is, having a strong embryotoxicity, while antimony, tin, and vanadium ions exhibited a weak embryotoxicity. The other metal ions demonstrated no embryotoxicity. On the other hand, when extracts of metal powder in cell culture solutions were used, silver exhibited a weak embryotoxicity while all other metals exhibited no embryotoxicity. In the future, it will be important to clarify the embryotoxicity of the many dental materials that are in use today. In addition, it is necessary to develop substances to ensure they have no toxicity before use in dental applications.

  6. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Mehul C. Raval

    2013-01-01

    Full Text Available Given the high percentage of metal cost in cell processing and concerns due to increasing Ag prices, alternative metallization schemes are being considered. Ni-Cu based front side metallization offers potential advantages of finer grid lines, lower series resistance, and reduced costs. A brief overview of various front side patterning techniques is presented. Subsequently, working principle of various plating techniques is discussed. For electroless plated Ni seed layer, fill factor values nearing 80% and efficiencies close to 17.5% have been demonstrated, while for Light Induced Plating deposited layers, an efficiency of 19.2% has been reported. Various methods for qualifying adhesion and long term stability of metal stack are discussed. Adhesion strengths in the range of 1–2.7 N/mm have been obtained for Ni-Cu contacts tabbed with conventional soldering process. Given the significance of metallization properties, different methods for characterization are outlined. The problem of background plating for Ni-Cu based metallization along with the various methods for characterization is summarized. An economic evaluation of front side metallization indicates process cost saving of more than 50% with Ni-Cu-Sn based layers. Recent successful commercialization and demonstration of Ni-Cu based metallization on industrial scale indicate a potential major role of Ni-Cu based contacts in near future.

  7. Effect of noble gas ion pre-irradiation on deuterium retention in tungsten

    NARCIS (Netherlands)

    Cheng, L.; Zhao, Z. H.; De Temmerman, G.; Yuan, Y.; Morgan, T. W.; Guo, L. P.; Wang, B.; Zhang, Y.; Wang, B. Y.; Zhang, P.; Cao, X. Z.; Lu, G. H.

    2016-01-01

    Impurity seeding of noble gases is an effective way of decreasing the heat loads onto the divertor targets in fusion devices. To investigate the effect of noble gases on deuterium retention, tungsten targets have been implanted by different noble gas ions and subsequently exposed to deuterium plasma

  8. Topology optimization of front metallization patterns for solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Barink, M.; Keulen, F. van

    2015-01-01

    This paper presents the application of topology optimization (TO) for designing the front electrode patterns for solar cells. Improving the front electrode design is one of the approaches to improve the performance of the solar cells. It serves to produce the voltage distribution for the front surfa

  9. Summary of the 4th Workshop on Metallization for Crystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Beaucarne, G. [Dow Corning, Parc Industriel, Zone C, Rue Jules Bordet, 7180 Seneffe (Belgium); Schubert, G. [Sunways AG, Macairestrasse 3 - 5, D - 78467 Konstanz (Germany); Hoornstra, J. [Energy research Centre of the Netherlands ECN, POBox 1, 1755 ZG Petten (Netherlands)

    2013-07-01

    The 4th Metallization Workshop held in May 2013 in Constance, Germany, enabled experts in metallization for crystalline silicon solar cells to obtain a clear view on the status of the technology, as well as to exchange and generate new ideas and insights. From the contributions on the workshop, it was clear that the traditional metallization technique of screenprinting Ag paste has been improved in a dramatic way over the last two years, accelerating the decrease of Ag consumption per cell while improving solar cell efficiency. This was achieved through enhanced understanding of screenprinted contacts, improving Ag pastes and evolutionary modifications to the screenprinting technique. Alternatives to screenprinting, including electroplating of Ni and Cu contacts, also continue to progress, though not quite at the same impressive rate of improvement as Ag printing.

  10. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  11. Engineering metal-impurity nanodefects for low-cost solar cells.

    Science.gov (United States)

    Buonassisi, Tonio; Istratov, Andrei A; Marcus, Matthew A; Lai, Barry; Cai, Zhonghou; Heald, Steven M; Weber, Eicke R

    2005-09-01

    As the demand for high-quality solar-cell feedstock exceeds supply and drives prices upwards, cheaper but dirtier alternative feedstock materials are being developed. Successful use of these alternative feedstocks requires that one rigorously control the deleterious effects of the more abundant metallic impurities. In this study, we demonstrate how metal nanodefect engineering can be used to reduce the electrical activity of metallic impurities, resulting in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive synchrotron-based measurements directly confirm that the spatial and size distributions of metal nanodefects regulate the minority-carrier diffusion length, a key parameter for determining the actual performance of solar-cell devices. By engineering the distributions of metal-impurity nanodefects in a controlled fashion, the minority-carrier diffusion length can be increased by up to a factor of four, indicating that the use of lower-quality feedstocks with proper controls may be a viable alternative to producing cost-effective solar cells.

  12. Modified Electrodes Used for Electrochemical Detection of Metal Ions in Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Gregory March

    2015-04-01

    Full Text Available Heavy metal pollution is one of the most serious environmental problems, and regulations are becoming stricter. Many efforts have been made to develop sensors for monitoring heavy metals in the environment. This review aims at presenting the different label-free strategies used to develop electrochemical sensors for the detection of heavy metals such as lead, cadmium, mercury, arsenic etc. The first part of this review will be dedicated to stripping voltammetry techniques, on unmodified electrodes (mercury, bismuth or noble metals in the bulk form, or electrodes modified at their surface by nanoparticles, nanostructures (CNT, graphene or other innovative materials such as boron-doped diamond. The second part will be dedicated to chemically modified electrodes especially those with conducting polymers. The last part of this review will focus on bio-modified electrodes. Special attention will be paid to strategies using biomolecules (DNA, peptide or proteins, enzymes or whole cells.

  13. Anionic chemistry of noble gases: formation of Mg-NG (NG = Xe, Kr, Ar) compounds under pressure.

    Science.gov (United States)

    Miao, Mao-Sheng; Wang, Xiao-Li; Brgoch, Jakoah; Spera, Frank; Jackson, Matthew G; Kresse, Georg; Lin, Hai-Qing

    2015-11-11

    While often considered to be chemically inert, the reactivity of noble gas elements at elevated pressures is an important aspect of fundamental chemistry. The discovery of Xe oxidation transformed the doctrinal boundary of chemistry by showing that a complete electron shell is not inert to reaction. However, the reductive propensity, i.e., gaining electrons and forming anions, has not been proposed or examined for noble gas elements. In this work, we demonstrate, using first-principles electronic structure calculations coupled to an efficient structure prediction method, that Xe, Kr, and Ar can form thermodynamically stable compounds with Mg at high pressure (≥125, ≥250, and ≥250 GPa, respectively). The resulting compounds are metallic and the noble gas atoms are negatively charged, suggesting that chemical species with a completely filled shell can gain electrons, filling their outermost shell(s). Moreover, this work indicates that Mg2NG (NG = Xe, Kr, Ar) are high-pressure electrides with some of the electrons localized at interstitial sites enclosed by the surrounding atoms. Previous predictions showed that such electrides only form in Mg and its compounds at very high pressures (>500 GPa). These calculations also demonstrate strong chemical interactions between the Xe 5d orbitals and the quantized interstitial quasiatom (ISQ) orbitals, including the strong chemical bonding and electron transfer, revealing the chemical nature of the ISQ.

  14. The metal to metal interface and its effect on adhesion and friction

    Science.gov (United States)

    Buckley, D. H.

    1976-01-01

    The paper considers the interface between two bulk metals and the effect of this interface on adhesive bonding, resistance to tangential displacements, friction and the interfacial transport from one surface to another. Using Auger emission spectroscopy, field ion microscopy, and low energy electron diffraction techniques, the influence of surface orientation, lattice registry, crystal lattice structure and defects, metal surface chemistry and alloying on the characteristics of the interface was studied for noble, platinum, transition, and Group 4B metals. With dissimilar metals in contact, epitaxial transfer of the cohesively weaker to the cohesively stronger metal has been observed. Surface chemical activity of the noble and platinum metals is shown to affect interfacial behavior as does a valence bonding in the transition metals, and the degree of metallic nature in the Group 4B elements. Alloying elements, e.g., Si and Fe, can alter interfacial behavior by segregation to the surface of metals or by altering bulk properties such as crystal transformation kinetics.

  15. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes.

    Science.gov (United States)

    Misra, Chitra Seetharam; Appukuttan, Deepti; Kantamreddi, Venkata Siva Satyanarayana; Rao, Amara S; Apte, Shree Kumar

    2012-01-01

    The stability and superior metal bioremediation ability of genetically engineered Deinococcus radiodurans cells, expressing a non-specific acid phosphatase, PhoN in high radiation environment has already been established. The lyophilized recombinant DrPhoN cells retained PhoN activity and uranium precipitation ability. Such cells also displayed an extended shelf life of 6 months during storage at room temperature and showed surface associated precipitation of uranium as well as other metals like cadmium. Lyophilized cells, immobilized in polyacrylamide gels could be used for uranium bioprecipitation in a flow through system resulting in 70% removal from 1mM input uranium solution and a loading of 1 g uranium/g dry weight cells. Compared with a batch process which achieved a loading of 5.7 g uranium/g biomass, the efficiency of the column process was low due to clogging of the column by the precipitate.

  16. Consistent measurements comparing the drift features of noble gas mixtures

    CERN Document Server

    Becker, U; Fortunato, E M; Kirchner, J; Rosera, K; Uchida, Y

    1999-01-01

    We present a consistent set of measurements of electron drift velocities and Lorentz deflection angles for all noble gases with methane and ethane as quenchers in magnetic fields up to 0.8 T. Empirical descriptions are also presented. Details on the World Wide Web allow for guided design and optimization of future detectors.

  17. Noble Gases in the Hamlet Meteorite (LL4)

    Science.gov (United States)

    Amari, S.; Sabe, Y.; Shiraishi, T.; Matsuda, J.

    2014-09-01

    We analyzed noble gases in a bulk sample and an HF-HCl residue of Hamlet (LL4). The Xe composition of the residue shows that no diamond is contained in the residue. The 20Ne/22Ne ratio of Hamlet Ne-Q has been determined to be 11.0 ± 0.5.

  18. EOSN: A TOUGH2 module for noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Pruess, Karsten

    2003-03-07

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

  19. Switching Characteristics of Phase Change Memory Cell Integrated with Metal-Oxide Semiconductor Field Effect Transistor

    Institute of Scientific and Technical Information of China (English)

    XU Cheng; CHEN Bomy; LIU Bo; CHEN Yi-Feng; LIANG Shuang; SONG Zhi-Tang; FENG Song-Lin; WAN Xu-Dong; YANG Zuo-Ya; XIE Joseph

    2008-01-01

    A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0.18 μm complementary metal-oxide semiconductor process technology.It shows steady switching characteristics in the dc current-voltage measurement.The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained.These results show the feasibility of integrating phase change memory cell with MOSFET.

  20. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Di Gioacchino, Mario [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)], E-mail: m.digioacchino@unich.it; Petrarca, Claudia; Perrone, Angela [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Medicine and Science of Ageing University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Farina, Massimo; Sabbioni, Enrico; Hartung, Thomas [Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Martino, Simone [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Esposito, Diana L. [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy); Lotti, Lavinia Vittoria [Department of Experimental Medicine, University La Sapienza, Viale Regina Elena 324, 00161 Rome (Italy); Mariani-Costantini, Renato [Aging Research Center, ' G. d' Annunzio' University Foundation, Via Colle dell' Ara, 66100 Chieti (Italy); Oncology and Neurosciences University of Chieti-Pescara, Via dei Vestini 1, 66100 Chieti (Italy)

    2008-03-15

    Stem cells are a key target of environmental toxicants, but little is known about their toxicological responses. We aimed at developing an in-vitro model based on adult human stem cells to identify biomarkers of heavy metal exposure. To this end we investigated the responses of human CD34+ hematopoietic progenitor cells to hexavalent chromium (Cr[VI]) and cadmium (Cd). Parallel cultures of CD34+ cells isolated from umbilical cord blood were exposed for 48 h to 0.1 {mu}M and 10 {mu}M Cr(VI) or Cd. Cultures treated with 10 {mu}M Cr(VI) or Cd showed marked cell loss. Ultrastructural analysis of surviving cells revealed prominent autophagosomes/autophagolysosomes, which is diagnostic of autophagy, associated with mitochondrial damage and replication, dilatation of the rough endoplasmic reticulum and Golgi complex, cytoplasmic lipid droplets and chromatin condensation. Treated cells did not show the morphologic hallmarks of apoptosis. Treatment with 0.1 {mu}M Cr(VI) or Cd did not result in cell loss, but at the ultrastructural level cells showed dilated endoplasmic reticulum and evidence of mitochondrial damage. We conclude that autophagy is implicated in the response of human hematopoietic stem cells to toxic concentrations of Cr(VI) and Cd. Autophagy, which mediates cell survival and death under stress, deserves further evaluation to be established as biomarker of metal exposure.

  1. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, P.; Wang, J.; Li, X.; Zhu, J. E-mail: iamzhu@hotmail.com; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd{sup 3+} by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 {mu}m size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 {mu}m) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  2. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells

    Directory of Open Access Journals (Sweden)

    Fei Zhuge

    2015-05-01

    Full Text Available It has been reported that in chalcogenide-based electrochemical metallization (ECM memory cells (e.g., As2S3:Ag, GeS:Cu, and Ag2S, the metal filament grows from the cathode (e.g., Pt and W towards the anode (e.g., Cu and Ag, whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO2, and SiO2. The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state I–V characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as As2S3:Ag, GeS:Cu, and Ag2S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.

  3. Involvement of Programmed Cell Death in Neurotoxicity of Metallic Nanoparticles: Recent Advances and Future Perspectives

    Science.gov (United States)

    Song, Bin; Zhou, Ting; Liu, Jia; Shao, LongQuan

    2016-11-01

    The widespread application of metallic nanoparticles (NPs) or NP-based products has increased the risk of exposure to NPs in humans. The brain is an important organ that is more susceptible to exogenous stimuli. Moreover, any impairment to the brain is irreversible. Recently, several in vivo studies have found that metallic NPs can be absorbed into the animal body and then translocated into the brain, mainly through the blood-brain barrier and olfactory pathway after systemic administration. Furthermore, metallic NPs can cross the placental barrier to accumulate in the fetal brain, causing developmental neurotoxicity on exposure during pregnancy. Therefore, metallic NPs become a big threat to the brain. However, the mechanisms underlying the neurotoxicity of metallic NPs remain unclear. Programmed cell death (PCD), which is different from necrosis, is defined as active cell death and is regulated by certain genes. PCD can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. It is involved in brain development, neurodegenerative disorders, psychiatric disorders, and brain injury. Given the pivotal role of PCD in neurological functions, we reviewed relevant articles and tried to summarize the recent advances and future perspectives of PCD involvement in the neurotoxicity of metallic NPs, with the purpose of comprehensively understanding the neurotoxic mechanisms of NPs.

  4. Impact degassing of water and noble gases from silicates

    Science.gov (United States)

    Azuma, S.; Hiyagon, H.; Iijima, Y.; Syono, Y.

    Previous shock experiments by Ahrens and his colleagues show that degassing of H2O and CO2 occurs at 8-65GPa from hydrous minerals such as serpentine. In early solar system, the impact degassing would have played an important part in the formation of primary-atmospheres of the terrestrial planets. However, degassing conditions of noble gases are not well-known because there are few experiments for them. We conducted some shock recovery experiments to investigate the degassing condition and to understand the degassing mechanisms of water and noble gases. We used natural richterites (Ri), amphibolites (Am), serpentines (Sep) and orthoclases (or) as target samples. These, except Sep, contain radiogenic noble gases such as (40)Ar. The samples were put in stainless steel containers, and were show by a rail gun at ISAS or single-stage powder guns at Nagoya or Tohoku University, Japan. We used two kinds of containers: 'open' type containers having a ventilating path for released volatiles for most of samples and 'closed' type ones for some samples for comparison. On Ri and Sep, we made shock experiments for pre-heated (at 400-500 C) and unheated targets, and for powdered and uncrushed samples. Water and noble gases were analyzed both for the recovered shocked samples and the unshocked original samples, and the fractions of the degassed volatiles were calculated by comparing them. Water content in the sample was analyzed by thermo-gravimetry. Noble gases were extracted by heating the samples under high vacuum and analyzed with a sector-type mass spectrometer.

  5. Impact degassing of water and noble gases from silicates

    Science.gov (United States)

    Azuma, S.; Hiyagon, H.; Iijima, Y.; Syono, Y.

    1994-01-01

    Previous shock experiments by Ahrens and his colleagues show that degassing of H2O and CO2 occurs at 8-65GPa from hydrous minerals such as serpentine. In early solar system, the impact degassing would have played an important part in the formation of primary-atmospheres of the terrestrial planets. However, degassing conditions of noble gases are not well-known because there are few experiments for them. We conducted some shock recovery experiments to investigate the degassing condition and to understand the degassing mechanisms of water and noble gases. We used natural richterites (Ri), amphibolites (Am), serpentines (Sep) and orthoclases (or) as target samples. These, except Sep, contain radiogenic noble gases such as (40)Ar. The samples were put in stainless steel containers, and were show by a rail gun at ISAS or single-stage powder guns at Nagoya or Tohoku University, Japan. We used two kinds of containers: 'open' type containers having a ventilating path for released volatiles for most of samples and 'closed' type ones for some samples for comparison. On Ri and Sep, we made shock experiments for pre-heated (at 400-500 C) and unheated targets, and for powdered and uncrushed samples. Water and noble gases were analyzed both for the recovered shocked samples and the unshocked original samples, and the fractions of the degassed volatiles were calculated by comparing them. Water content in the sample was analyzed by thermo-gravimetry. Noble gases were extracted by heating the samples under high vacuum and analyzed with a sector-type mass spectrometer.

  6. A Challenge Beyond Bottom Cells: Top-Illuminated Flexible Organic Solar Cells with Nanostructured Dielectric/Metal/Polymer (DMP) Films.

    Science.gov (United States)

    Ham, Juyoung; Dong, Wan Jae; Park, Jae Yong; Yoo, Chul Jong; Lee, Illhwan; Lee, Jong-Lam

    2015-07-15

    Top-illuminated flexible organic solar cells with a high power conversion efficiency (≈6.75%) are fabricated using a dielectric/metal/polymer (DMP) electrode. Employing a polymer layer (n = 1.49) makes it possible to show the high transmittance, which is insensitive to film thickness, and the excellent haze induced by well-ordered nanopatterns on the DMP electrode, leading to a 28% of enhancement in efficiency compared to bottom cells.

  7. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis.

    Science.gov (United States)

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-12

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion-induced allergic contact dermatitis.

  8. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  9. Selective laser extraction of the Pt group metals

    Energy Technology Data Exchange (ETDEWEB)

    Fadeeva, S.; Krynetsky, B.; Prokhorov, A.; Zhidkov, A. [General Physics Institute, Russian Academy of Science, Moscow (Russian Federation)

    1995-11-15

    The interest to the platinum-group metals extraction from solutions, especially industry waste, is stimulated by their extraordinary chemical inert. The traditional chemical methods of the extraction are uneffective. Have been investigated process of the extraction of metal Pt-group from acid solutions. Discussed processes reduction of noble metals by resonance laser action.

  10. Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells.

    Science.gov (United States)

    Zhu, Xiaojiao; Dou, Xinyu; Dai, Jun; An, Xingda; Guo, Yuqiao; Zhang, Lidong; Tao, Shi; Zhao, Jiyin; Chu, Wangsheng; Zeng, Xiao Cheng; Wu, Changzheng; Xie, Yi

    2016-09-26

    The direct urea fuel cell (DUFC) is an important but challenging renewable energy production technology, it offers great promise for energy-sustainable developments and mitigating water contamination. However, DUFCs still suffer from the sluggish kinetics of the urea oxidation reaction (UOR) owing to a 6 e(-) transfer process, which poses a severe hindrance to their practical use. Herein, taking β-Ni(OH)2 nanosheets as the proof-of-concept study, we demonstrated a surface-chemistry strategy to achieve metallic Ni(OH)2 nanosheets by engineering their electronic structure, representing a first metallic configuration of transition-metal hydroxides. Surface sulfur incorporation successfully brings synergetic effects of more exposed active sites, good wetting behavior, and effective electron transport, giving rise to greatly enhanced performance for UOR. Metallic nanosheets exhibited a much higher current density, smaller onset potential and stronger durability.

  11. Recent Developments of Flexible CdTe Solar Cells on Metallic Substrates: Issues and Prospects

    Directory of Open Access Journals (Sweden)

    M. M. Aliyu

    2012-01-01

    Full Text Available This study investigates the key issues in the fabrication of CdTe solar cells on metallic substrates, their trends, and characteristics as well as effects on solar cell performance. Previous research works are reviewed while the successes, potentials, and problems of such technology are highlighted. Flexible solar cells offer several advantages in terms of production, cost, and application over glass-based types. Of all the metals studied as substrates for CdTe solar cells, molybdenum appears the most favorable candidate, while close spaced sublimation (CSS, electrodeposition (ED, magnetic sputtering (MS, and high vacuum thermal evaporation (HVE have been found to be most common deposition technologies used for CdTe on metal foils. The advantages of these techniques include large grain size (CSS, ease of constituent control (ED, high material incorporation (MS, and low temperature process (MS, HVE, ED. These invert-structured thin film CdTe solar cells, like their superstrate counterparts, suffer from problems of poor ohmic contact at the back electrode. Thus similar strategies are applied to minimize this problem. Despite the challenges faced by flexible structures, efficiencies of up to 13.8% and 7.8% have been achieved in superstrate and substrate cell, respectively. Based on these analyses, new strategies have been proposed for obtaining cheaper, more efficient, and viable flexible CdTe solar cells of the future.

  12. Advances in Metal Supported Cells in the METSOFC EU Consortium

    DEFF Research Database (Denmark)

    McKenna, B. J.; Christiansen, N.; Schauperl, R.;

    2013-01-01

    ). Further success was attained with even larger cell areas of 12 × 12 cm2 squares, which facilitated integration into small stacks at Topsoe Fuel Cell having powers approaching 1/2 kW. Development of MSC stacks showed that the MSCs could achieve similar or better performance, compared to most standard...... industrial anode supported ceramic cells. The best stacked MSCs had power densities approaching 275 mW cm–2 (at 680 °C and 0.8 V). Furthermore, extended testing at AVL determined extra stack performance and reliability characteristics, including behavior toward sulfur and simulated diesel reformate......, and tolerance to thermal cycles and load cycles. These and other key outcomes of the METSOFC consortium are covered, along with associated work supported by the Danish National Advanced Technology Foundation....

  13. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation

    Science.gov (United States)

    Bogatskaya, A. V.; Bin, Hou; Popov, A. M.; Smetanin, I. V.

    2016-09-01

    We developed the analytical model of relaxation of a low-density plasma channel produced in noble gases (Xe, Ar) by a femtosecond KrF laser pulse and investigated the temporal evolution of its dielectric permittivity. It was demonstrated that the strong nonequilibrium of the photoelectron energy spectrum and the presence of Ramsauer minimum in transport scattering cross section make such a plasma channel an optically denser medium in comparison with non-ionized gas in the microwave frequency band and consequently such a channel appears to be a waveguide. In xenon this nonequilibrium state of a plasma leads to both transportation and amplification of the microwave signal during the relaxation of the photoelectron energy spectrum. It was also shown that a circular metal waveguide partially filled with such a nonequilibrium Xe plasma provides efficient amplification of the sub-THz microwave signal.

  14. Metal-air cell with performance enhancing additive

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A; Buttry, Daniel

    2015-11-10

    Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.

  15. Metal Phosphates as Proton Conducting Materials for Intermediate Temperature Fuel Cell and Electrolyser Applications

    DEFF Research Database (Denmark)

    Anfimova, Tatiana

    The present thesis presents the results achieved during my ph.d. project on a subject of intermediate temperature proton conducting metal phosphates as electrolyte materials for fuel cells and electrolysers. Fuel cells and electrolysers are electrochemical devices with high energy conversion...... with a proton conductivity of above 10-2S cm-1. Chapter 1 of the thesis is an introduction to basics of fuel cell and electrolyser technologies as well as proton conducting materials. Extended discussion on the proton conducting materials, a particularly phosphates is made in Chapter 2. Three major types...... of phosphates were systematically reviewed including solid acids or alkali hydrogen phosphates, pyrophosphates, and rare earth metal phosphates. Demonstration of the fuel cell technology based on solid acid proton conductor CsH2PO4 has inspired the active research in the area. Based on the literature survey...

  16. Binding of heavy metal ions in aggregates of microbial cells, EPS and biogenic iron minerals measured in-situ using metal- and glycoconjugates-specific fluorophores

    Science.gov (United States)

    Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin

    2016-05-01

    Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic

  17. Development of Li-Metal Battery Cell Chemistries at NASA Glenn Research Center

    Science.gov (United States)

    Lvovich, Vadim F.

    2015-01-01

    State-of-the-Art lithium-ion battery technology is limited by specific energy and thus not sufficiently advanced to support the energy storage necessary for aerospace needs, such as all-electric aircraft and many deep space NASA exploration missions. In response to this technological gap, our research team at NASA Glenn Research Center has been active in formulating concepts and developing testing hardware and components for Li-metal battery cell chemistries. Lithium metal anodes combined with advanced cathode materials could provide up to five times the specific energy versus state-of-the-art lithium-ion cells (1000 Whkg versus 200 Whkg). Although Lithium metal anodes offer very high theoretical capacity, they have not been shown to successfully operate reversibly.

  18. Zinc metal solubilization by Gluconacetobacter diazotrophicus and induction of pleomorphic cells.

    Science.gov (United States)

    Saravanan, Venkatakrishnan Sivaraj; Osborne, Jabez; Madhaiyan, Munusamy; Mathew, Lazar; Chung, Jongbae; Ahn, Kisup; Sa, Tongmin

    2007-09-01

    Gluconacetobacter diazotrophicus strain PAl5 exhibited a minimum inhibitory concentration value of 11 mM in an LGI medium amended with ZnCl2. When an LGI medium was amended with Zn metal, solubilization halos were observed in a plate assay, and further solubilization was confirmed in a broth assay. The maximum solubilization was recorded after 120 h with a 0.1% Zn metal amendment. During solubilization, the culture growth and pH of the broth were indirectly correlated. Using a Fourier Transform Infrared Spectroscopy analysis, one of the agents solubilizing the Zn metal was identified as gluconic acid. When the Zn-amended broth was observed under a bright field microscope, long involution cells were observed, and further analysis with Atomic Force Microscopy revealed highly deformed, pleomorphic, aggregate-like cells.

  19. Effect of embedded metal nanocrystals on the resistive switching characteristics in NiN-based resistive random access memory cells

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok; Hyun Park, Ju; Su Jeon, Dong; Geun Kim, Tae, E-mail: tgkim1@korea.ac.kr [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-03-07

    The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells are formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.

  20. Shock Compression of Liquid Noble Gases to Multi-Mbar Pressures

    Science.gov (United States)

    Root, Seth

    2011-10-01

    The high pressure - high temperature behavior of noble gases is of considerable interest because of their use in z-pinch liners for fusion studies and for understanding astrophysical and planetary evolution. However, our understanding of the equation of state (EOS) of the noble gases at extreme conditions is limited. A prime example of this is the liquid xenon Hugoniot. Previous EOS models rapidly diverged on the Hugoniot above 1 Mbar because of differences in the treatment of the electronic contribution to the free energy. Similar divergences are observed for krypton EOS. Combining shock compression experiments and density functional theory (DFT) simulations, we can determine the thermo-physical behavior of matter under extreme conditions. The experimental and DFT results have been instrumental to recent developments in planetary astrophysics and inertial confinement fusion. Shock compression experiments are performed using Sandia's Z-Accelerator to determine the Hugoniot of liquid xenon and krypton in the Mbar regime. Under strong pressure, krypton and xenon undergo an insulator to metal transition. In the metallic state, the shock front becomes reflective allowing for a direct measurement of the sample's shock velocity using laser interferometry. The Hugoniot state is determined using a Monte Carlo analysis method that accounts for systematic error in the standards and for correlations. DFT simulations at these extreme conditions show good agreement with the experimental data - demonstrating the attention to detail required for dealing with elements with relativistic core states and d-state electrons. The results from shock compression experiments and DFT simulations are presented for liquid xenon to 840 GPa and for liquid krypton to 800 GPa, decidedly increasing the range of known behavior of both gases. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company

  1. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    OpenAIRE

    Ming-Jer Jeng; Zih-Yang Chen; Yu-Ling Xiao; Liann-Be Chang; Jianping Ao; Yun Sun; Ewa Popko; Witold Jacak; Lee Chow

    2015-01-01

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies w...

  2. Quantification of Power Losses of the Interdigitated Metallization of Crystalline Silicon Thin-Film Solar Cells on Glass

    OpenAIRE

    Gress, Peter J.; Sergey Varlamov

    2012-01-01

    The metallization grid pattern is one of the most important design elements for high-efficiency solar cells. This paper presents a model based on the unit cell approach to accurately quantify the power losses of a specialized interdigitated metallization scheme for polycrystalline silicon thin-film solar cells on glass superstrates. The sum of the power losses can be minimized to produce an optimized grid-pattern design for a cell with specific parameters. The model is simulated with the stan...

  3. The microstructural origin of strain hardening in two-dimensional open-cell metal foams

    NARCIS (Netherlands)

    Mangipudi, K. R.; van Buuren, S. W.; Onck, P. R.

    2010-01-01

    This paper aims at elucidating the microstructural origin of strain hardening in open-cell metal foams. We have developed a multiscale model that allows to study the development of plasticity at two length scales: (i) the development of plastic zones inside individual struts (microscopic scale) and

  4. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  5. Absorption enhancement in metal nanoparticles for photoemission current for solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Novitsky, Andrey; Malureanu, Radu

    2012-01-01

    In order to improve the photoconversion efficiency, we consider the possibility of increasing the photocurrent in solar cells exploiting the electron photoemission from small metal nanoparticles into a semiconductor. The effect is caused by the absorption of photons and generation of local surfac...

  6. Fabrication of Polymer Solar Cells Using Aqueous Processing for All Layers Including the Metal Back Electrode

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Helgesen, Martin; Jørgensen, Mikkel;

    2011-01-01

    The challenges of printing all layers in polymer solar cells from aqueous solution are met by design of inks for the electron-, hole-, active-, and metallic back electrode-layers. The conversion of each layer to an insoluble state after printing enables multilayer formation from the same solvent...

  7. Photoselective Metal Deposition on Amorphous Silicon p-i-n Solar Cells

    NARCIS (Netherlands)

    Kooij, E.S.; Hamoumi, M.; Kelly, J.J.; Schropp, R.E.I.

    1997-01-01

    A novel method is described for the patternwise metallization of amorphous silicon solar cells, based on photocathodic deposition. The electric field of the p-i-n structure is used for the separation of photogenerated charge carriers. The electrons are driven to the interface of the n+-layer with th

  8. Dual-color encoded DNAzyme nanostructures for multiplexed detection of intracellular metal ions in living cells.

    Science.gov (United States)

    Zhou, Wenjiao; Liang, Wenbing; Li, Daxiu; Yuan, Ruo; Xiang, Yun

    2016-11-15

    The detection of intracellular metal ions is of great importance in understanding metal homeostasis in cells and related diseases, and yet it remains a significant challenge to achieve this goal. Based on a new self-assembled and dual-color encoded DNAzyme nanostructure, we describe here an approach for multiplexed sensing of UO2(2+) and Pb(2+) in living cells. The fluorescently quenched nanoprobes can be prepared by simple thermal annealing of four ssDNAs containing the metal ion-dependent enzymatic and substrate sequences. The self-assembly formation of the nanostructures are verified by native polyacrylamide gel electrophoresis. The target metal ions can cleave the substrate sequences in the DNAzyme nanostructures to recover fluorescent emissions at different wavelengths for sensitive and selective in vitro multiplexed detection of UO2(2+) and Pb(2+) with the detection limits of 0.6nM and 3.9nM, respectively. Importantly, we demonstrate that these nanoprobes are stable in cell lysates and can enter cells without the aid of any transfection agents for simultaneous imaging intracellular UO2(2+) and Pb(2+). Moreover, the nanoprobes offer excellent biocompatibility and non-cytotoxicity. With these unique features, the dual-color encoded nanostructures presented here can thus offer new opportunities for multiplexed detection of specific intracellular species.

  9. Investigation of Novel Electrocatalysts for Metal Supported Solid Oxide Fuel Cells - Ru:GDC

    DEFF Research Database (Denmark)

    Sudireddy, Bhaskar Reddy; Nielsen, Jimmy; Thydén, Karl Tor Sune;

    2015-01-01

    The electrochemical performance and stability of the planar metal supported solid oxide fuel cells (MS-SOFC) with two different electrocatalytically active materials, namely, Ni:GDC and Ru:GDC were investigated. Ru:GDC with an ASR of 0.322 Ωcm2 performed better than Ni:GDC with an ASR of 0.453 Ωc...

  10. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    Science.gov (United States)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  11. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells.

    Science.gov (United States)

    Li, Zhen; Kulkarni, Sneha A; Boix, Pablo P; Shi, Enzheng; Cao, Anyuan; Fu, Kunwu; Batabyal, Sudip K; Zhang, Jun; Xiong, Qihua; Wong, Lydia Helena; Mathews, Nripan; Mhaisalkar, Subodh G

    2014-07-22

    Organic-inorganic metal halide perovskite solar cells were fabricated by laminating films of a carbon nanotube (CNT) network onto a CH3NH3PbI3 substrate as a hole collector, bypassing the energy-consuming vacuum process of metal deposition. In the absence of an organic hole-transporting material and metal contact, CH3NH3PbI3 and CNTs formed a solar cell with an efficiency of up to 6.87%. The CH3NH3PbI3/CNTs solar cells were semitransparent and showed photovoltaic output with dual side illuminations due to the transparency of the CNT electrode. Adding spiro-OMeTAD to the CNT network forms a composite electrode that improved the efficiency to 9.90% due to the enhanced hole extraction and reduced recombination in solar cells. The interfacial charge transfer and transport in solar cells were investigated through photoluminescence and impedance measurements. The flexible and transparent CNT network film shows great potential for realizing flexible and semitransparent perovskite solar cells.

  12. Compatibility of copper-electroplated cells with Metal Wrap Through module materials

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Geerligs, L.J.; Olson, C.L.; Goris, M.J.A.A. [ECN Solar Energy, Petten (Netherlands)

    2013-10-16

    As part of the European FP7 RandD project 'Cu-PV', the compatibility of copper-electroplated metal wrapthrough (MWT) cells with conductive adhesives has been investigated. The objectives of this project include to reduce, by the use of copper plating, the amount of silver utilized in cell manufacturing, and to demonstrate the compatibility of high-power n-type back-contact module technology with copper-plated cells. The overall goal is to reduce the impact on the environment of cell and module manufacture. MWT module technology as developed by ECN uses conductive adhesive to make the interconnection between cells and a conductive backsheet foil. These adhesives have been proved to result in very reliable modules in the case of cells with fired silver metallization. To determine the compatibility of conductive adhesive with copper-plated cells, component tests were performed, followed by the manufacture of modules with copperplated cells and conductive adhesive interconnections. Climate chamber testing of these modules showed that the adhesive is compatible with the copper-plated cells. The next steps include further optimization of the plating process and additional testing at the module level.

  13. Corrosion Monitoring of Flexible Metallic Substrates for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Trystan Watson

    2013-01-01

    Full Text Available Two techniques for monitoring corrosion within a dye-sensitized solar cell (DSC system are presented, which enable continuous, high sensitivity, in situ measurement of electrolyte breakdown associated with DSCs fabricated on metals. The first method uses UV/Vis reflectance spectrophotometry in conjunction with encapsulation cells, which incorporate a 25 μm thick electrolyte layer, to provide highly resolved triiodide absorption data. The second method uses digital image capture to extract colour intensity data. Whilst the two methods provide very similar kinetic data on corrosion, the photographic method has the advantage that it can be used to image multiple samples in large arrays for rapid screening and is also relatively low cost. This work shows that the triiodide electrolyte attacks most metals that might be used for structural applications. Even a corrosion resistant metal, such as aluminium, can be induced to corrode through surface abrasion. This result should be set in the context with the finding reported here that certain nitrogen containing heterocyclics used in the electrolyte to enhance performance also act as corrosion inhibitors with significant stabilization for metals such as iron. These new techniques will be important tools to help develop corrosion resistant metal surfaces and corrosion inhibiting electrolytes for use in industrial scale devices.

  14. Ink jet printable silver metallization with zinc oxide for front side metallization for micro crystalline silicon solar cells

    Science.gov (United States)

    Jurk, Robert; Fritsch, Marco; Eberstein, Markus; Schilm, Jochen; Uhlig, Florian; Waltinger, Andreas; Michaelis, Alexander

    2015-12-01

    Ink jet printable water based inks are prepared by a new silver nanoparticle synthesis and the addition of nanoscaled ZnO particles. For the formation of front side contacts the inks are ink jet printed on the front side of micro crystalline silicon solar cells, and contact the cell directly during the firing step by etching through the wafers’ anti-reflection coating (ARC). In terms of Ag dissolution and precipitation the mechanism of contact formation can be compared to commercial glass containing thick film pastes. This avoids additional processing steps, like laser ablation, which are usually necessary to open the ARC prior to ink jet printing. As a consequence process costs can be reduced. In order to optimize the ARC etching and contact formation during firing, zinc oxide nanoparticles are investigated as an ink additive. By utilization of in situ contact resistivity measurements the mechanism of contacting was explored. Our results show that silver inks containing ZnO particles realize a specific contact resistance below 10 mΩṡcm2. By using a multi-pass ink jet printing and plating process a front side metallization of commercial 6  ×  6 inch2 standard micro crystalline silicone solar cells with emitter resistance of 60 Ω/◽ was achieved and showed an efficiency of 15.7%.

  15. Selective Conversion of Lignin-Derivable 4-Alkylguaiacols to 4-Alkylcyclohexanols over Noble and Non-Noble-Metal Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schutyser, Wouter; Van den Bossche, Gil; Raaffels, Anton; Van den Bosch, Sander; Koelewijn, Steven-Friso; Renders, Tom; Sels, Bert F.

    2016-10-03

    Recent lignin-first catalytic lignocellulosic biorefineries produce large quantities of two potential platform chemicals, 4-n-propylguaiacol (PG) and 4-n-propylsyringol. Because conversion into 4-n-propylcyclohexanol (PCol), a precursor for novel polymer building blocks, presents a promising valorization route, reductive demethoxylation of PG was examined here in the liquid-phase over three commercial hydrogenation catalysts, viz. 5 wt % Ru/C, 5 wt % Pd/C and 65 wt % Ni/SiO2-Al2O3, at elevated temperatures ranging from 200 to 300 degrees C under hydrogen atmosphere. Kinetic profiles suggest two parallel conversion pathways: Pathway I involves PG hydrogenation to 4-n-propyl-2-methoxycyclohexanol (PMCol), followed by its demethoxylation to PCol, whereas Pathway II constitutes PG hydrodemethoxylation to 4-n-propylphenol (PPh), followed by its hydrogenation into PCol. The slowest step in the catalytic formation of PCol is the reductive methoxy removal from PMCol. Moreover, under the applied reaction conditions, PCol may react further into hydrocarbons. The following criteria are therefore essential to reach a high PCol yield: (i) catalytic pathway II is preferred as this route does not involve stable intermediates; (ii) reactivity of PMCol should be higher than that of PCol, and (iii) the overall carbon balance should be high. Both the catalyst type and the reaction conditions have a substantial impact on the PCol yield. Only the commercial Ni catalyst meets the three criteria, provided the reaction is performed at 250 degrees C in hexadecane. Additional advantages of this solvent choice are a high boiling point (low operational pressure in closed reactor systems), high solubility of PG and derived products, high thermal, reductive stability, and easy derivability from fatty biomass feedstock. This Ni catalyst also showed an excellent stability in recycling runs and is capable of converting highly concentrated (up to 20 wt %) PG in hexadecane. Ru and Pd on carbon showed a low PCol yield, as they are not conform the three criteria. Low hydrogen pressure favors Pathway II, resulting in a very high PCol yield of 85% at 10 bar. Catalytic conversion of guaiacol, 4-methyl- and 4-ethylguaiacol in comparable circumstances showed similarly high yields of the corresponding cyclohexanols.

  16. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10to20mA/cm2. The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150mA/cm2, respectively.

  17. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    Science.gov (United States)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  18. A Review of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cells: Materials and Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Shahram Karimi

    2012-01-01

    Full Text Available The proton exchange membrane fuel cell offers an exceptional potential for a clean, efficient, and reliable power source. The bipolar plate is a key component in this device, as it connects each cell electrically, supplies reactant gases to both anode and cathode, and removes reaction products from the cell. Bipolar plates have been fabricated primarily from high-density graphite, but in recent years, much attention has been paid to developing cost-effective and feasible alternative materials. Two different classes of materials have attracted attention: metals and composites. This paper offers a comprehensive review of the current research being carried out on metallic bipolar plates, covering materials and fabrication methods.

  19. [Cytogenetic effects of toxic metal salts on apical meristem cells of Allium cepa L. seed roots].

    Science.gov (United States)

    Dovgaliuk, A I; Kaliniak, T B; Blium, Ia B

    2001-01-01

    Comparative analysis of the influence of the salts of Cd, Pb, Ni, Al, Cu and Zn at concentrations 10(-6)-10(-3) M on cytogenetic parameters of Allium cepa apical meristem cells was carried out. It was shown that these metal compounds could induce both the clastogenic and the aneugenic effects (including mitosis and cytokinesis disturbances). Based on ability to cause the chromosome aberrations the metal salts were arranged in such row of genotoxicity: ZnSO4 > Pb(CH3COO)2 > Al(NO3)3 approximately NiSO4 > CdCl2 > CuSO4. The investigated compounds of cadmium, lead, nickel and aluminum were found to be more effective aneugens than clastogens. According to our data NiSO4 had the strongest antimitotic activity (it increased the percentage of chromosome lagging of, multipolar anaphases, C-mitoses in 69.6 times, compared to the control). The ability of other metal salts to induce such abnormalities decreased in the range: CdCl2 > Al(NO3)3 > Pb(CH3COO)2 > CuSO4 > ZnSO4. Increasing of binuclear cells on the slides was revealed after treatment by all tested substances, however Ni sulfate was found as the strongest inducer of cytokinesis abnormalities. Presented results allowed to suggest that cytoskeleton could be a cell target for salts of some metals (especially for NiSO4).

  20. Multiple carriers of Q noble gases in primitive meteorites

    CERN Document Server

    Marrocchi, Yves; Estrade, Nicolas

    2015-01-01

    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed of two subphases, one of them associated with sulfide. Here we provide experimental evidence that noble gases trapped within meteoritic sulfides present chemically- and thermally-driven behavior patterns that are similar to Q-gases. We therefore suggest that phase Q is likely composed of two subcomponents: carbonaceous phases and sulfides. In situ decay of iodine at concentrations levels consistent with those reported for meteoritic sulfides can reproduce the 129Xe excess observed for Q-gases relative to fractionated Solar Wind. We suggest that the Q-bearing sulfides formed at high temperature and could have recorded the conditions that prevailed in the chondrule-forming region(s).