WorldWideScience

Sample records for cell microscopy segmentation

  1. Segmentation of Individual Cells in Phase Contrast Microscopy Images

    Czech Academy of Sciences Publication Activity Database

    Soukup, Jindřich; Lašan, M.; Šroubek, Filip

    London: City University London, 2014 - (Reyes-Aldasoro, C.; Slabaugh, G.), s. 185-190 ISBN 1-901725-51-0. [Medical Image Understanding and Analysis 2014. London (GB), 09.07.2014-11.07.2014] R&D Projects: GA ČR GA13-29225S Grant ostatní: GA MŠk(CZ) LO1205; GAJU(CZ) 134/2013/Z; GA UK(CZ) 914813/2013; OP VaVpI(CZ) CZ.1.05/2.1.00/ 01.0024 Institutional support: RVO:67985556 Keywords : image segmentation * phase contrast microscopy * time-lapse imaging Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2014/ZOI/soukup-0435026.pdf

  2. Adaptive Cell Segmentation and Tracking for Volumetric Confocal Microscopy Images of a Developing Plant Meristem

    Institute of Scientific and Technical Information of China (English)

    Min Liu; Anirban Chakraborty; Damanpreet Singh; Ram Kishor Yadav; Gopi Meenakshisundaram; G. Venugopala Reddy; Amit Roy-Chowdhury

    2011-01-01

    Automated segmentation and tracking of cells in actively developing tissues can provide high-throughput and quantitative spatiotemporal measurements of a range of cell behaviors; cell expansion and cell-division kinetics leading to a better understanding of the underlying dynamics of morphogenesis.Here,we have studied the problem of constructing cell lineages in time-lapse volumetric image stacks obtained using Confocal Laser Scanning Microscopy (CLSM).The novel contribution of the work lies in its ability to segment and track cells in densely packed tissue,the shoot apical meristem (SAM),through the use of a close-loop,adaptive segmentation,and tracking approach.The tracking output acts as an indicator of the quality of segmentation and,in turn,the segmentation can be improved to obtain better tracking results.We construct an optimization function that minimizes the segmentation error,which is,in turn,estimated from the tracking results.This adaptive approach significantly improves both tracking and segmentation when compared to an open loop framework in which segmentation and tracking modules operate separately.

  3. Cell segmentation for division rate estimation in computerized video time-lapse microscopy

    Science.gov (United States)

    He, Weijun; Wang, Xiaoxu; Metaxas, Dimitris; Mathew, Robin; White, Eileen

    2007-02-01

    The automated estimation of cell division rate plays an important role in the evaluation of a gene function in high throughput biomedical research. Using Computerized Video Time-Lapse (CVTL) microcopy , it is possible to follow a large number of cells in their physiological conditions for several generations. However analysis of this large volume data is complicated due to cell to cell contacts in a high density population. We approach this problem by segmenting out cells or cell clusters through a learning method. The feature of a pixel is represented by the intensity and gradient information in a small surrounding sub-window. Curve evolution techniques are used to accurately find the cell or cell cluster boundary. With the assumption that the average cell size is the same in each frame, we can use the cell area to estimate the cell division rate. Our segmentation results are compared to manually-defined ground truth. Both recall and precision measures for segmentation accuracy are above 95%.

  4. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    Science.gov (United States)

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. PMID:26812020

  5. General Purpose Segmentation for Microorganisms in Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Sebastian H. Nesgaard; Moeslund, Thomas B.; Rankl, Christian

    2014-01-01

    specific segmentation problem using supervised learning. This approach was tested on five different segmentation problems in bright field, differential interference contrast, fluorescence and laser confocal scanning microscopy. In all instance good results were achieved with the segmentation quality...

  6. Microscopy image segmentation tool: Robust image data analysis

    International Nuclear Information System (INIS)

    We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy

  7. Robust supervised segmentation of neuropathology whole-slide microscopy images.

    Science.gov (United States)

    Vandenberghe, Michel E; Balbastre, Yaël; Souedet, Nicolas; Hérard, Anne-Sophie; Dhenain, Marc; Frouin, Frédérique; Delzescaux, Thierry

    2015-08-01

    Alzheimer's disease is characterized by brain pathological aggregates such as Aβ plaques and neurofibrillary tangles which trigger neuroinflammation and participate to neuronal loss. Quantification of these pathological markers on histological sections is widely performed to study the disease and to evaluate new therapies. However, segmentation of neuropathology images presents difficulties inherent to histology (presence of debris, tissue folding, non-specific staining) as well as specific challenges (sparse staining, irregular shape of the lesions). Here, we present a supervised classification approach for the robust pixel-level classification of large neuropathology whole slide images. We propose a weighted form of Random Forest in order to fit nonlinear decision boundaries that take into account class imbalance. Both color and texture descriptors were used as predictors and model selection was performed via a leave-one-image-out cross-validation scheme. Our method showed superior results compared to the current state of the art method when applied to the segmentation of Aβ plaques and neurofibrillary tangles in a human brain sample. Furthermore, using parallel computing, our approach easily scales-up to large gigabyte-sized images. To show this, we segmented a whole brain histology dataset of a mouse model of Alzheimer's disease. This demonstrates our method relevance as a routine tool for whole slide microscopy images analysis in clinical and preclinical research settings. PMID:26737134

  8. Atomic Force Microscopy Based Cell Shape Index

    Science.gov (United States)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  9. Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets.

    Directory of Open Access Journals (Sweden)

    Ilya Belevich

    2016-01-01

    Full Text Available Understanding the structure-function relationship of cells and organelles in their natural context requires multidimensional imaging. As techniques for multimodal 3-D imaging have become more accessible, effective processing, visualization, and analysis of large datasets are posing a bottleneck for the workflow. Here, we present a new software package for high-performance segmentation and image processing of multidimensional datasets that improves and facilitates the full utilization and quantitative analysis of acquired data, which is freely available from a dedicated website. The open-source environment enables modification and insertion of new plug-ins to customize the program for specific needs. We provide practical examples of program features used for processing, segmentation and analysis of light and electron microscopy datasets, and detailed tutorials to enable users to rapidly and thoroughly learn how to use the program.

  10. Color microscopy image segmentation using competitive learning and fuzzy Kohonen networks

    Science.gov (United States)

    Gaddipatti, Ajeetkumar; Vince, David G.; Cothren, Robert M., Jr.; Cornhill, J. Fredrick

    1998-06-01

    Over the past decade, there has been increased interest in quantifying cell populations in tissue sections. Image analysis is now being used for analysis in limited pathological applications, such as PAP smear evaluation, with the dual aim of increasing for accuracy of diagnosis and reducing the review time. These applications primarily used gray scale images and dealt with cytological smears in which cells were well separated. Quantification of routinely stained tissue represented a more difficult problem in that objects could not be separated in gray scale as part of the background could also have the same intensity as the objects of interest. Many of the existing semiautomatic algorithms were specific to a particular application and were computationally expensive. Hence, this paper investigates the general adaptive automated color segmentation approaches, which alleviate these problems. In particular, competitive learning and the fuzzy-kohonen networks are studied. Four adaptive segmentation algorithms are compared using synthetic images and clinical microscopy slide images. Both qualitative and quantitative performance comparisons are performed with the clinical images. A method for finding the optimal number of clusters in the image is also validated. Finally the merits and feasibility of including contextual information in the segmentation are discussed along with future directions.

  11. Toward consistent cell segmentation: quality assessment of cell segments via appearance and geometry features

    Science.gov (United States)

    Brinker, Andrew; Fredrikson, Annika; Zhang, Xiaofan; Sourvenir, Richard; Zhang, Shaoting

    2015-03-01

    Computer-Aided Diagnosis (CAD) systems based on histopathological images rely on quality low-level image processing, including cell segmentation. Many methods for cell segmentation lack in generality and struggle with the wide variety of cell appearance and inter-cell structure present in histopathological images. We present a computationally efficient system to classify segmentation results as the first step toward automatic segment correction. This general method can applied to existing or future cell segmentation methods to provide corrections for low-quality results. Specifically, with a small collection of easy-to-compute features, we can identify incorrect segments with a high degree of accuracy, which then can be used to determine the needed corrections based on the type of segmentation failure present.

  12. Liquid Cell Transmission Electron Microscopy

    Science.gov (United States)

    Liao, Hong-Gang; Zheng, Haimei

    2016-05-01

    Liquid cell transmission electron microscopy (TEM) has attracted significant interest in recent years. With nanofabricated liquid cells, it has been possible to image through liquids using TEM with subnanometer resolution, and many previously unseen materials dynamics have been revealed. Liquid cell TEM has been applied to many areas of research, ranging from chemistry to physics, materials science, and biology. So far, topics of study include nanoparticle growth and assembly, electrochemical deposition and lithiation for batteries, tracking and manipulation of nanoparticles, catalysis, and imaging of biological materials. In this article, we first review the development of liquid cell TEM and then highlight progress in various areas of research. In the study of nanoparticle growth, the electron beam can serve both as the illumination source for imaging and as the input energy for reactions. However, many other research topics require the control of electron beam effects to minimize electron beam damage. We discuss efforts to understand electron beam-liquid matter interactions. Finally, we provide a perspective on future challenges and opportunities in liquid cell TEM.

  13. Adaptive segmentation of nuclei in H&S stained tendon microscopy

    Science.gov (United States)

    Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien

    2015-12-01

    Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.

  14. Large-Scale Electron Microscopy Image Segmentation in Spark

    OpenAIRE

    Plaza, Stephen M.; Berg, Stuart E.

    2016-01-01

    The emerging field of connectomics aims to unlock the mysteries of the brain by understanding the connectivity between neurons. To map this connectivity, we acquire thousands of electron microscopy (EM) images with nanometer-scale resolution. After aligning these images, the resulting dataset has the potential to reveal the shapes of neurons and the synaptic connections between them. However, imaging the brain of even a tiny organism like the fruit fly yields terabytes of data. It can take ye...

  15. Quantifying local heterogeneity of in vivo transport dynamics using stochastic scanning multiphoton multifocal microscopy and segmented spatiotemporal image correlation spectroscopy

    Science.gov (United States)

    Kim, Hee Y.; Jureller, Justin E.; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2008-02-01

    Elucidating the mechanisms of insulin granule trafficking in pancreatic β-cells is a critical step in understanding Type II Diabetes and abnormal insulin secretion. In this paper, rapid-sampling stochastic scanning multiphoton multifocal microscopy (SS-MMM) was developed to capture fast insulin granule dynamics in vivo. Stochastic scanning of (a diffractive optic generated) 10×10 hexagonal array of foci with a galvanometer yields a uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. In addition, segmented spatio-temporal image correlation spectroscopy (Segmented STICS) was developed to extract dynamics of insulin granules from the image sequences. Measurements we conducted on MIN6 cells, which exhibit an order of magnitude lower granule number density, allow comparison of particle tracking with Segmented-STICS. Segmentation of the images into 8×8 pixel segments (similar to a size of one granule) allows some amount of spatial averaging, which can reduce the computation time required to calculate the correlation function, yet retains information about the local spatial heterogeneity of transport. This allows the correlation analysis to quantify the dynamics within each of the segments producing a "map" of the localized properties of the cell. The results obtained from Segmented STICS are compared with dynamics determined from particle tracking analysis of the same images. The resulting range of diffusion coefficients of insulin granules are comparable to previously published values indicating that SS-MMM and segmented- STICS will be useful to address the imaging challenges presented by β-cells, particularly the extremely large number density of granules.

  16. Segmentation and Tracking of Neural Stem Cell

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  17. TRANSMISSION ELECTRON MICROSCOPY OF SEGMENTED POLYURETHANES WITH RUTHENIUM TETROXIDE AS A STAINING AGENT

    Institute of Scientific and Technical Information of China (English)

    XIAO Fengfei; CHEN Shouxi; JIN Yongze; SHI Lianghe; XU Mao

    1991-01-01

    Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes have been investigated by means of transmission electron microscopy with the ruthenium tetroxide staining technique. The results show that the RuO4 staining technique is simpler and may give better image contrast than other staining methods for this polymer. Microphase separation and lamellar structure of segmented polyether- and polyester-polyurethanes were directly observed and discussed.

  18. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  19. An Automatic Indirect Immunofluorescence Cell Segmentation System

    OpenAIRE

    2014-01-01

    Indirect immunofluorescence (IIF) with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA) in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an...

  20. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  1. Confocal diffraction phase microscopy of live cells

    OpenAIRE

    Lue, Niyom; Choi, Wonshik; Badizadegan, Kamran; Dasari, Ramachandra R.; Michael S. Feld; Popescu, Gabriel

    2008-01-01

    We present a new quantitative phase microscopy technique, confocal diffraction phase microscopy, which provides quantitative phase measurements from localized sites on a sample with high sensitivity. The technique combines common-path interferometry with confocal microscopy in a transmission geometry. The capability of the technique for static imaging is demonstrated by imaging polystyrene microspheres and live HT29 cells, while dynamic imaging is demonstrated by quantifying the nanometer sca...

  2. Probe microscopy: Scanning below the cell surface

    Science.gov (United States)

    Sahin, Ozgur

    2008-08-01

    Conventional atomic force microscopy probes only the surface of specimens. A related technique called scanning near-field ultrasonic holography can now image nanoparticles buried below the surfaces of cells, which could prove useful in nanotoxicology.

  3. Automatic segmentation and classification of mycobacterium tuberculosis with conventional light microscopy

    Science.gov (United States)

    Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui

    2015-12-01

    This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.

  4. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.

    Directory of Open Access Journals (Sweden)

    Johannes Stegmaier

    Full Text Available Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.

  5. Improved methods for fluorescence microscopy detection of macromolecules at the axon initial segment

    Directory of Open Access Journals (Sweden)

    Musaad A Alshammari

    2016-02-01

    Full Text Available The axonal initial segment (AIS is the subcellular compartment required for initiation of the action potential in neurons. Scaffolding and regulatory proteins at the AIS cluster with ion channels ensuring the integrity of electrical signaling. Interference with the configuration of this protein network can lead to profound effects on neuronal polarity, excitability, cell-to-cell connectivity and brain circuit plasticity. As such, the ability to visualize AIS components with precision provides an invaluable opportunity for parsing out key molecular determinants of neuronal function. Fluorescence-based immunolabeling is a sensitive method for morphological and molecular characterization of fine structures in neurons. Yet, even when combined with confocal microscopy, detection of AIS elements with immunofluorescence has been limited by the loss of antigenicity caused by fixative materials. This technical barrier has posed significant limitations in detecting AIS components alone or in combination with other markers. Here, we designed improved protocols targeted to confocal immunofluorescence detection of the AIS marker fibroblast growth factor 14 (FGF14 in combination with the cytoskeletal-associated protein Ankyrin-G, the scaffolding protein βIV-spectrin, voltage-gated Na+ (Nav channels (especially the Nav1.6 isoform and critical cell type-specific neuronal markers such as parvalbumin, calbindin, and NeuN in the mouse brain. Notably, we demonstrate that intracardiac perfusion of animals with a commercially available solution containing 1% formaldehyde and 0.5% methanol, followed by brief fixation with cold acetone is an optimal and sensitive protocol for FGF14 and other AIS marker detection that guarantees excellent tissue integrity. With variations in the procedure, we also significantly improved the detection of Nav1.6, a Nav isoform known for its fixative-sensitivity. Overall, this study provides an ensemble of immunohistochemical recipes that

  6. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment.

    Science.gov (United States)

    Alshammari, Musaad A; Alshammari, Tahani K; Laezza, Fernanda

    2016-01-01

    The axonal initial segment (AIS) is the subcellular compartment required for initiation of the action potential in neurons. Scaffolding and regulatory proteins at the AIS cluster with ion channels ensuring the integrity of electrical signaling. Interference with the configuration of this protein network can lead to profound effects on neuronal polarity, excitability, cell-to-cell connectivity and brain circuit plasticity. As such, the ability to visualize AIS components with precision provides an invaluable opportunity for parsing out key molecular determinants of neuronal function. Fluorescence-based immunolabeling is a sensitive method for morphological and molecular characterization of fine structures in neurons. Yet, even when combined with confocal microscopy, detection of AIS elements with immunofluorescence has been limited by the loss of antigenicity caused by fixative materials. This technical barrier has posed significant limitations in detecting AIS components alone or in combination with other markers. Here, we designed improved protocols targeted to confocal immunofluorescence detection of the AIS marker fibroblast growth factor 14 (FGF14) in combination with the cytoskeletal-associated protein Ankyrin-G, the scaffolding protein βIV-spectrin, voltage-gated Na(+) (Nav) channels (especially the Nav1.6 isoform) and critical cell type-specific neuronal markers such as parvalbumin, calbindin, and NeuN in the mouse brain. Notably, we demonstrate that intracardiac perfusion of animals with a commercially available solution containing 1% formaldehyde and 0.5% methanol, followed by brief fixation with cold acetone is an optimal and sensitive protocol for FGF14 and other AIS marker detection that guarantees excellent tissue integrity. With variations in the procedure, we also significantly improved the detection of Nav1.6, a Nav isoform known for its fixative-sensitivity. Overall, this study provides an ensemble of immunohistochemical recipes that permit

  7. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment

    Science.gov (United States)

    Alshammari, Musaad A.; Alshammari, Tahani K.; Laezza, Fernanda

    2016-01-01

    The axonal initial segment (AIS) is the subcellular compartment required for initiation of the action potential in neurons. Scaffolding and regulatory proteins at the AIS cluster with ion channels ensuring the integrity of electrical signaling. Interference with the configuration of this protein network can lead to profound effects on neuronal polarity, excitability, cell-to-cell connectivity and brain circuit plasticity. As such, the ability to visualize AIS components with precision provides an invaluable opportunity for parsing out key molecular determinants of neuronal function. Fluorescence-based immunolabeling is a sensitive method for morphological and molecular characterization of fine structures in neurons. Yet, even when combined with confocal microscopy, detection of AIS elements with immunofluorescence has been limited by the loss of antigenicity caused by fixative materials. This technical barrier has posed significant limitations in detecting AIS components alone or in combination with other markers. Here, we designed improved protocols targeted to confocal immunofluorescence detection of the AIS marker fibroblast growth factor 14 (FGF14) in combination with the cytoskeletal-associated protein Ankyrin-G, the scaffolding protein βIV-spectrin, voltage-gated Na+ (Nav) channels (especially the Nav1.6 isoform) and critical cell type-specific neuronal markers such as parvalbumin, calbindin, and NeuN in the mouse brain. Notably, we demonstrate that intracardiac perfusion of animals with a commercially available solution containing 1% formaldehyde and 0.5% methanol, followed by brief fixation with cold acetone is an optimal and sensitive protocol for FGF14 and other AIS marker detection that guarantees excellent tissue integrity. With variations in the procedure, we also significantly improved the detection of Nav1.6, a Nav isoform known for its fixative-sensitivity. Overall, this study provides an ensemble of immunohistochemical recipes that permit

  8. Analysis of gene expression levels in individual bacterial cells without image segmentation

    International Nuclear Information System (INIS)

    Highlights: ► We present a method for extracting gene expression data from images of bacterial cells. ► The method does not employ cell segmentation and does not require high magnification. ► Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. ► We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  9. Analysis of gene expression levels in individual bacterial cells without image segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, In Hae; Son, Minjun [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States); Hagen, Stephen J., E-mail: sjhagen@ufl.edu [Physics Department, University of Florida, P.O. Box 118440, Gainesville, FL 32611-8440 (United States)

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer We present a method for extracting gene expression data from images of bacterial cells. Black-Right-Pointing-Pointer The method does not employ cell segmentation and does not require high magnification. Black-Right-Pointing-Pointer Fluorescence and phase contrast images of the cells are correlated through the physics of phase contrast. Black-Right-Pointing-Pointer We demonstrate the method by characterizing noisy expression of comX in Streptococcus mutans. -- Abstract: Studies of stochasticity in gene expression typically make use of fluorescent protein reporters, which permit the measurement of expression levels within individual cells by fluorescence microscopy. Analysis of such microscopy images is almost invariably based on a segmentation algorithm, where the image of a cell or cluster is analyzed mathematically to delineate individual cell boundaries. However segmentation can be ineffective for studying bacterial cells or clusters, especially at lower magnification, where outlines of individual cells are poorly resolved. Here we demonstrate an alternative method for analyzing such images without segmentation. The method employs a comparison between the pixel brightness in phase contrast vs fluorescence microscopy images. By fitting the correlation between phase contrast and fluorescence intensity to a physical model, we obtain well-defined estimates for the different levels of gene expression that are present in the cell or cluster. The method reveals the boundaries of the individual cells, even if the source images lack the resolution to show these boundaries clearly.

  10. A method for the evaluation of thousands of automated 3D stem cell segmentations.

    Science.gov (United States)

    Bajcsy, P; Simon, M; Florczyk, S J; Simon, C G; Juba, D; Brady, M C

    2015-12-01

    There is no segmentation method that performs perfectly with any dataset in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of three-dimensional (3D) image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate 'ground truth' of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations and (3) minimizing human labour needed to create surrogate 'truth' by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial

  11. Cell mechanics measured with Atomic force microscopy

    International Nuclear Information System (INIS)

    Full text: In this contribution, I would like to present recent results about cell mechanics obtained with atomic force microscopy and its relation with basic soft matter science. We will present a novel way to obtain viscoelastic properties (Young modulus, relaxation time and viscosity) of breast cancer cells based on stress relaxation and creep measurements. Additionally we will show the influence of applied stress on red blood cell shape. The importance of such type of measurements on soft matter physics, cell biology, and biomedical science. (author)

  12. A Parallel Distributed-Memory Particle Method Enables Acquisition-Rate Segmentation of Large Fluorescence Microscopy Images.

    Science.gov (United States)

    Afshar, Yaser; Sbalzarini, Ivo F

    2016-01-01

    Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144

  13. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely...... confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection of...

  14. A new level set model for cell image segmentation

    Institute of Scientific and Technical Information of China (English)

    Ma Jing-Feng; Hou Kai; Bao Shang-Lian; Chen Chun

    2011-01-01

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.

  15. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  16. Cell shape identification using digital holographic microscopy

    CERN Document Server

    Zakrisson, Johan; Andersson, Magnus

    2015-01-01

    We present a cost-effective, simple and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld back propagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semi-transparent spherical beads and living red blood cells. Our results show that by only using the real part of the back-reconstructed amplitude the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.

  17. Investigating cell mechanics with atomic force microscopy.

    Science.gov (United States)

    Haase, Kristina; Pelling, Andrew E

    2015-03-01

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. PMID:25589563

  18. Impact of image segmentation on high-content screening data quality for SK-BR-3 cells

    Directory of Open Access Journals (Sweden)

    Li Yizheng

    2007-09-01

    Full Text Available Abstract Background High content screening (HCS is a powerful method for the exploration of cellular signalling and morphology that is rapidly being adopted in cancer research. HCS uses automated microscopy to collect images of cultured cells. The images are subjected to segmentation algorithms to identify cellular structures and quantitate their morphology, for hundreds to millions of individual cells. However, image analysis may be imperfect, especially for "HCS-unfriendly" cell lines whose morphology is not well handled by current image segmentation algorithms. We asked if segmentation errors were common for a clinically relevant cell line, if such errors had measurable effects on the data, and if HCS data could be improved by automated identification of well-segmented cells. Results Cases of poor cell body segmentation occurred frequently for the SK-BR-3 cell line. We trained classifiers to identify SK-BR-3 cells that were well segmented. On an independent test set created by human review of cell images, our optimal support-vector machine classifier identified well-segmented cells with 81% accuracy. The dose responses of morphological features were measurably different in well- and poorly-segmented populations. Elimination of the poorly-segmented cell population increased the purity of DNA content distributions, while appropriately retaining biological heterogeneity, and simultaneously increasing our ability to resolve specific morphological changes in perturbed cells. Conclusion Image segmentation has a measurable impact on HCS data. The application of a multivariate shape-based filter to identify well-segmented cells improved HCS data quality for an HCS-unfriendly cell line, and could be a valuable post-processing step for some HCS datasets.

  19. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  20. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  1. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  2. Progress in the robust automated segmentation of real cell images

    Science.gov (United States)

    Bamford, P.; Jackway, P.; Lovell, Brian

    1999-07-01

    We propose a collection of robust algorithms for the segmentation of cell images from Papanicolaou stained cervical smears (`Pap' smears). This problem is deceptively difficult and often results on laboratory datasets do not carry over to real world data. Our approach is in 3 parts. First, we segment the cytoplasm from the background using a novel method based on the Wilson and Spann multi-resolution framework. Second, we segment the nucleus from the cytoplasm using an active contour method, where the best contour is found by a global minimization method. Third, we implement a method to determine a confidence measure for the segmentation of each object. This uses a stability criterion over the regularization parameter (lambda) in the active contour. We present the results of thorough testing of the algorithms on large numbers of cell images. A database of 20,120 images is used for the segmentation tests and 18,718 images for the robustness tests.

  3. Neural cell image segmentation method based on support vector machine

    Science.gov (United States)

    Niu, Shiwei; Ren, Kan

    2015-10-01

    In the analysis of neural cell images gained by optical microscope, accurate and rapid segmentation is the foundation of nerve cell detection system. In this paper, a modified image segmentation method based on Support Vector Machine (SVM) is proposed to reduce the adverse impact caused by low contrast ratio between objects and background, adherent and clustered cells' interference etc. Firstly, Morphological Filtering and OTSU Method are applied to preprocess images for extracting the neural cells roughly. Secondly, the Stellate Vector, Circularity and Histogram of Oriented Gradient (HOG) features are computed to train SVM model. Finally, the incremental learning SVM classifier is used to classify the preprocessed images, and the initial recognition areas identified by the SVM classifier are added to the library as the positive samples for training SVM model. Experiment results show that the proposed algorithm can achieve much better segmented results than the classic segmentation algorithms.

  4. A new level set model for cell image segmentation

    International Nuclear Information System (INIS)

    In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing. (cross-disciplinary physics and related areas of science and technology)

  5. Quantitative tracking of tumor cells in phase-contrast microscopy exploiting halo artifact pattern

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Tumor cell morphology is closely related to its invasiveness characteristics and migratory behaviors. An invasive tumor cell has a highly irregular shape, whereas a spherical cell is non-metastatic. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use phase-contrast microscopy to analyze single cell morphology and to monitor its change because it enables observation of long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring, among others. Thus, we first applied a local filter to compensate for non-uniform illumination. Then, we used intensity distribution information to detect the cell boundary. In phase-contrast microscopy images, the cell normally appears as a dark region surrounded by a bright halo. As the halo artifact around the cell body is minimal and has an asymmetric diffusion pattern, we calculated the cross-sectional plane that intersected the center of each cell and was orthogonal to the first principal axis. Then, we extracted the dark cell region by level set. However, a dense population of cultured cells still rendered single-cell analysis difficult. Finally, we measured roundness and size to classify tumor cells into malignant and benign groups. We validated segmentation accuracy by comparing our findings with manually obtained results.

  6. Track segment studies with Chinese hamster cells

    International Nuclear Information System (INIS)

    Survival curves of near-diploid and near-tetraploid Chinese hamster cell cultures following irradiation by an 241Am α source indicate different growth rates for the two clones. Possible reasons for the difference are discussed

  7. A combined spatial-spectral method for automated white blood cells segmentation

    Science.gov (United States)

    Li, Qingli; Wang, Yiting; Liu, Hongying; Wang, Jianbiao; Guo, Fangmin

    2013-12-01

    To overcome the shortcomings in the traditional white blood cells (WBCs) identification methods based on the color or gray images captured by light microscopy, a microscopy hyperspectral imaging system was used to analyze the blood smears. The system was developed by coupling an acousto-optic tunable filter (AOTF) adapter to a microscopy and driven by a SPF Model AOTF controller, which can capture hyperspectral images from 550 nm to 1000 nm with the spectral resolution 2-5 nm. Moreover, a combined spatial-spectral algorithm is proposed to segment the nuclei and cytoplasm of WBCs from the microscopy hyperspectral images. The proposed algorithm is based on the pixel-wise improved spectral angle mapper (ISAM) segmentation, followed by the majority voting within the active contour model regions. Experimental results show that the accuracy of the proposed algorithm is 91.06% (nuclei) and 85.59% (cytoplasm), respectively, which is higher than that of the spectral information divergence (SID) algorithm because the new method can jointly use both the spectral and spatial information of blood cells.

  8. Photoelectron microscopy and immunofluorescence microscopy of cytoskeletal elements in the same cells.

    OpenAIRE

    Nadakavukaren, K K; Chen, L. B.; Habliston, D L; Griffith, O. H.

    1983-01-01

    Pt K2 rat kangaroo epithelial cells and Rat-1 fibroblasts were grown on conductive glass discs, fixed, and permeabilized, and the cytoskeletal elements actin, keratin, and vimentin were visualized by indirect immunofluorescence. After the fluorescence microscopy, the cells were postfixed and dehydrated for photoelectron microscopy. The contrast in these photoelectron micrographs is primarily topographical in origin, and the presence of fluorescent dyes at low density does not contribute signi...

  9. Integrative analysis of T cell motility from multi-channel microscopy data using TIAM.

    Science.gov (United States)

    Mayya, Viveka; Neiswanger, Willie; Medina, Ricardo; Wiggins, Chris H; Dustin, Michael L

    2015-01-01

    Integrative analytical approaches are needed to study and understand T cell motility as it is a highly coordinated and complex process. Several computational algorithms and tools are available to track motile cells in time-lapse microscopy images. In contrast, there has only been limited effort towards the development of tools that take advantage of multi-channel microscopy data and facilitate integrative analysis of cell-motility. We have implemented algorithms for detecting, tracking, and analyzing cell motility from multi-channel time-lapse microscopy data. We have integrated these into a MATLAB-based toolset we call TIAM (Tool for Integrative Analysis of Motility). The cells are detected by a hybrid approach involving edge detection and Hough transforms from transmitted light images. Cells are tracked using a modified nearest-neighbor association followed by an optimization routine to join shorter segments. Cell positions are used to perform local segmentation for extracting features from transmitted light, reflection and fluorescence channels and associating them with cells and cell-tracks to facilitate integrative analysis. We found that TIAM accurately captures the motility behavior of T cells and performed better than DYNAMIK, Icy, Imaris, and Volocity in detecting and tracking motile T cells. Extraction of cell-associated features from reflection and fluorescence channels was also accurate with less than 10% median error in measurements. Finally, we obtained novel insights into T cell motility that were critically dependent on the unique capabilities of TIAM. We found that 1) the CD45RO subset of human CD8 T cells moved faster and exhibited an increased propensity to attach to the substratum during CCL21-driven chemokinesis when compared to the CD45RA subset; and 2) attachment area and arrest coefficient during antigen-induced motility of the CD45A subset is correlated with surface density of integrin LFA1 at the contact. PMID:25445324

  10. Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images

    Science.gov (United States)

    Morales, Juan; Alonso-Nanclares, Lidia; Rodríguez, José-Rodrigo; DeFelipe, Javier; Rodríguez, Ángel; Merchán-Pérez, Ángel

    2011-01-01

    The synapses in the cerebral cortex can be classified into two main types, Gray's type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes. PMID:21633491

  11. Basal Cell Carcinoma in Type 2 Segmental Darier's Disease

    Directory of Open Access Journals (Sweden)

    Lynne Robertson

    2012-01-01

    Full Text Available Background. Darier's disease (DD, also known as Keratosis Follicularis or Darier-White disease, is a rare disorder of keratinization. DD can present as a generalized autosomal dominant condition as well as a localized or segmental postzygotic condition (Vázquez et al., 2002. Clinical features of DD include greasy, warty papules and plaques on seborrheic areas, dystrophic nails, palmo-plantar pits, and papules on the dorsum of the hands and feet. Objective. We report a case of basal cell carcinoma developing in a patient with type 2 segmental DD. Conclusion. According to the current literature, Type 2 segmental disease is a rare presentation of Darier's disease with only 8 previous cases reported to date. In addition, nonmelanoma skin cancer (NMSC arising from DD is rarely reported; however, there may be an association between DD and risk of carcinogenesis.

  12. Super-resolution Microscopy in Plant Cell Imaging.

    Science.gov (United States)

    Komis, George; Šamajová, Olga; Ovečka, Miroslav; Šamaj, Jozef

    2015-12-01

    Although the development of super-resolution microscopy methods dates back to 1994, relevant applications in plant cell imaging only started to emerge in 2010. Since then, the principal super-resolution methods, including structured-illumination microscopy (SIM), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), and stimulated emission depletion microscopy (STED), have been implemented in plant cell research. However, progress has been limited due to the challenging properties of plant material. Here we summarize the basic principles of existing super-resolution methods and provide examples of applications in plant science. The limitations imposed by the nature of plant material are reviewed and the potential for future applications in plant cell imaging is highlighted. PMID:26482957

  13. Nuclear microscopy of sperm cell elemental structure

    International Nuclear Information System (INIS)

    Theories suggest there is a link between protamine concentrations in individual sperm and male fertility. Previously, biochemical analyses have used pooled samples containing millions of sperm to determine protamine concentrations. These methods have not been able to determine what percentage of morphologically normal sperm are biochemically defective and potentially infertile. Nuclear microscopy has been utilized to measure elemental profiles at the single sperm level. By measuring the amount of phosphorus and sulfur, the total DNA and protamine content in individual sperm from fertile bull and mouse semen have been determined. These values agree with results obtained from other biochemical analyses. Nuclear microscopy shows promise for measuring elemental profiles in the chromatin of individual sperm. The technique may be able to resolve theories regarding the importance of protamines to male fertility and identify biochemical defects responsible for certain types of male infertility. (orig.)

  14. Exploring Neural Cell Dynamics with Digital Holographic Microscopy

    KAUST Repository

    Marquet, Pierre

    2013-04-21

    In this talk, I will present how digital holographic microscopy, as a powerful quantitative phase technique, can non-invasively measure cell dynamics and especially resolve local neuronal network activity through simultaneous multiple site optical recording.

  15. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  16. Segmentation of Time-Lapse Images with Focus on Microscopic Images of Cells

    Czech Academy of Sciences Publication Activity Database

    Soukup, Jindřich; Císař, P.; Šroubek, Filip

    Berlin: Springer-Verlag, 2013 - (Petrosino, A.), s. 71-80. (Lecture Notes in Computer Science. Image Processing , Computer Vision, Pattern Recognition, and Graphics. 8157). ISBN 978-3-642-41183-0. [International Conference on Image Analysis and Processing . Naples (IT), 11.09.2013-13.09.2013] R&D Projects: GA ČR GA13-29225S Grant ostatní: Grantová agentura UK(CZ) GAUK 914813/2013; GA MŠk(CZ) ED2.1.00/01.0024 Institutional support: RVO:67985556 Keywords : segmentation * time-lapse * microscopy imaging * phase constrast Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2013/ZOI/soukup-segmentation of time-lapse image s with focus on microscopic image s of cells.pdf

  17. An evolutionary tabu search for cell image segmentation.

    Science.gov (United States)

    Jiang, Tianzi; Yang, Faguo

    2002-01-01

    Many engineering problems can be formulated as optimization problems. It has become more and more important to develop an efficient global optimization technique for solving these problems. In this paper, we propose an evolutionary tabu search (ETS) for cell image segmentation. The advantages of genetic algorithms (GA) and TS algorithms are incorporated into the proposed method. More precisely, we incorporate "the survival of the fittest" from evolutionary algorithms into TS. The method has been applied to the segmentation of several kinds of cell images. The experimental results show that the new algorithm is a practical and effective one for global optimization; it can yield good, near-optimal solutions and has better convergence and robustness than other global optimization approaches. PMID:18244872

  18. [Polar coordinates representation based leukocyte segmentation of microscopic cell images].

    Science.gov (United States)

    Gu, Guanghua; Cui, Dong; Hao, Lianwang

    2010-12-01

    We propose an algorithm for segmentation of the overlapped leukocyte in the microscopic cell image. The histogram of the saturation channel in the cell image is smoothed to obtain the meaningful global valley point by the fingerprint smoothing method, and then the nucleus can be segmented. A circular region, containing the entire regions of the leukocyte, is marked off according to the equivalent sectional radius of the nucleus. Then, the edge of the overlapped leukocyte is represented by polar coordinates. The overlapped region by the change of the polar angle of the edge pixels is determined, and the closed edge of the leukocyte integrating the gradient information of the overlapped region is reconstructed. Finally, the leukocyte is exactly extracted. The experimental results show that our method has good performance in terms of recall ratio, precision ratio and pixel error ratio. PMID:21374971

  19. Analysis of mixed cell cultures with quantitative digital holographic phase microscopy

    Science.gov (United States)

    Kemper, Björn; Wibbeling, Jana; Ketelhut, Steffi

    2014-05-01

    In order to study, for example, the influence of pharmaceuticals or pathogens on different cell types under identical measurement conditions and to analyze interactions between different cellular specimens a minimally-invasive quantitative observation of mixed cell cultures is of particular interest. Quantitative phase microscopy (QPM) provides high resolution detection of optical path length changes that is suitable for stain-free minimally-invasive live cell analysis. Due to low light intensities for object illumination, QPM minimizes the interaction with the sample and is in particular suitable for long term time-lapse investigations, e.g., for the detection of cell morphology alterations due to drugs and toxins. Furthermore, QPM has been demonstrated to be a versatile tool for the quantification of cellular growth, the extraction morphological parameters and cell motility. We studied the feasibility of QPM for the analysis of mixed cell cultures. It was explored if quantitative phase images provide sufficient information to distinguish between different cell types and to extract cell specific parameters. For the experiments quantitative phase imaging with digital holographic microscopy (DHM) was utilized. Mixed cell cultures with different types of human pancreatic tumor cells were observed with quantitative DHM phase contrast up to 35 h. The obtained series of quantitative phase images were evaluated by adapted algorithms for image segmentation. From the segmented images the cellular dry mass and the mean cell thickness were calculated and used in the further analysis as parameters to quantify the reliability the measurement principle. The obtained results demonstrate that it is possible to characterize the growth of cell types with different morphologies in a mixed cell culture separately by consideration of specimen size and cell thickness in the evaluation of quantitative DHM phase images.

  20. Thermal microscopy of single biological cells

    Science.gov (United States)

    Legrand, R.; Abi Ghanem, M.; Plawinski, L.; Durrieu, M.-C.; Audoin, B.; Dehoux, T.

    2015-12-01

    Techniques that can probe the thermal properties of cells are used in many applications ranging from cryogenic preservation to hyperthermia therapy, and provide powerful tools to investigate diseased conditions. The structural complexity of cells, however, requires innovative modalities operating at a subcell scale. We developed a label-free, non-ionizing technique based on a thermoelastic lens. With this device, we captured images of single cells with a ˜2 μm resolution based on thermal properties as the contrast mechanism. To investigate the thermorheological behaviour of cells, we present simultaneous acoustic imaging using an inverted opto-acoustic microscope. Acoustic impedances extracted from the acoustic images support the effusivity obtained from the thermal images. This technique should provide diagnostic tools at the single cell scale.

  1. Segmentation, Reconstruction, and Analysis of Blood Thrombus Formation in 3D 2-Photon Microscopy Images

    Directory of Open Access Journals (Sweden)

    Xu Zhiliang

    2010-01-01

    Full Text Available We study the problem of segmenting, reconstructing, and analyzing the structure growth of thrombi (clots in blood vessels in vivo based on 2-photon microscopic image data. First, we develop an algorithm for segmenting clots in 3D microscopic images based on density-based clustering and methods for dealing with imaging artifacts. Next, we apply the union-of-balls (or alpha-shape algorithm to reconstruct the boundary of clots in 3D. Finally, we perform experimental studies and analysis on the reconstructed clots and obtain quantitative data of thrombus growth and structures. We conduct experiments on laser-induced injuries in vessels of two types of mice (the wild type and the type with low levels of coagulation factor VII and analyze and compare the developing clot structures based on their reconstructed clots from image data. The results we obtain are of biomedical significance. Our quantitative analysis of the clot composition leads to better understanding of the thrombus development, and is valuable to the modeling and verification of computational simulation of thrombogenesis.

  2. Correlative Fluorescence Microscopy and Scanning Transmission Electron Microscopy of Quantum Dot Labeled Proteins in Whole Cells in Liquid

    OpenAIRE

    Dukes, Madeline J.; Peckys, Diana B.; de Jonge, Niels

    2010-01-01

    Correlative fluorescence microscopy and transmission electron microscopy (TEM) is a state-of-the-art microscopy methodology to study cellular function, combining the functionality of light microscopy with the high resolution of electron microscopy. However, this technique involves complex sample preparation procedures due to its need for either thin sections or frozen samples for TEM imaging. Here, we introduce a novel correlative approach capable of imaging whole eukaryotic cells in liquid w...

  3. Unstained viable cell recognition in phase-contrast microscopy

    Science.gov (United States)

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-09-01

    Individual cell recognition is a relevant task to be accomplished when single-ion microbeam irradiations are performed. At INFN-LNL facility cell visualization system is based on a phase-contrast optical microscope, without the use of any cell dye. Unstained cells are seeded in the special designed Petri dish, between two mylar foils, and at present the cell recognition is achieved manually by an expert operator. Nevertheless, this procedure is time consuming and sometimes it could be not practical if the amount of living cells to be irradiated is large. To reduce the time needed to recognize unstained cells on the Petri dish, it has been designed and implemented an automated, parallel algorithm. Overlapping ROIs sliding in steps over the captured grayscale image are firstly pre-classified and potential cell markers for the segmentation are obtained. Segmented objects are additionally classified to categorize cell bodies from other structures considered as sample dirt or background. As a result, cell coordinates are passed to the dedicated CELLView program that controls all the LNL single-ion microbeam irradiation protocol, including the positioning of individual cells in front of the ion beam. Unstained cell recognition system was successfully tested in experimental conditions with two different mylar surfaces. The recognition time and accuracy was acceptable, however, improvements in speed would be useful.

  4. Osteoblast Adhesion of Breast Cancer Cells with Scanning Acoustic Microscopy

    Science.gov (United States)

    Miyasaka, C.; Mercer, R. R.; Mastro, A. M.

    Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adhere in a different way to the substrate and to each other. To characterize cellular adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days. With mechanical scanning acoustic reflection microscopy, we were able to detect a change in the adhesive condition of the interface between the cell and the substrate, but not with optical microscopy

  5. Exploring neural cell dynamics with digital holographic microscopy

    KAUST Repository

    Marquet, Pierre

    2013-07-11

    In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological ormation provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach. Copyright © 2013 by Annual Reviews.

  6. Silicon Nitride Windows for Electron Microscopy of Whole Cells

    OpenAIRE

    Ring, E. A.; Peckys, D. B.; Dukes, M. J.; Baudoin, J. P.; de Jonge, N.

    2011-01-01

    Silicon microchips with thin electron transparent silicon nitride windows provide a sample support that accommodates both light-, and electron microscopy of whole eukaryotic cells in vacuum or liquid, with minimum sample preparation steps. The windows are robust enough that cellular samples can be cultured directly onto them, with no addition of a supporting film, and no need to embed or section the sample, as is typically required in electron microscopy. By combining two microchips, a microf...

  7. RBCs and Parasites Segmentation from Thin Smear Blood Cell Images

    Directory of Open Access Journals (Sweden)

    Vishal V. Panchbhai

    2012-09-01

    Full Text Available Manually examine the blood smear for the detection of malaria parasite consumes lot of time for trend pathologists. As the computational power increases, the role of automatic visual inspection becomes more important. An automated system is therefore needed to complete as much work as possible for the identification of malaria parasites. The given scheme based on used of RGB color space, G layer processing, and segmentation of Red Blood Cells (RBC as well as cell parasites by auto-thresholding with offset value and use of morphological processing. The work compare with the manual results obtained from the pathology lab, based on total RBC count and cells parasite count. The designed system successfully detects malaria parasites and RBC cells in thin smear image.

  8. Correlative Cryo-electron Tomography and Optical Microscopy of Cells

    OpenAIRE

    Zhang, Peijun

    2013-01-01

    The biological processes occurring in a cell are complex and dynamic, and to achieve a comprehensive understanding of the molecular mechanisms underlying these processes, both temporal and spatial information is required. While cryo-electron tomography (cryoET) provides three-dimensional (3D) still pictures of near-native state cells and organelles at molecular resolution, fluorescence light microscopy (fLM) offers movies of dynamic cellular processes in living cells. Combining and integratin...

  9. Characterisation of cell-wall polysaccharides from mandarin segment membranes.

    Science.gov (United States)

    Coll-Almela, Luis; Saura-López, Domingo; Laencina-Sánchez, José; Schols, Henk A; Voragen, Alfons G J; Ros-García, José María

    2015-05-15

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble pectin fraction (DASS), a 1M sodium hydroxide-soluble hemicellulose fraction (1MASS), a 4M sodium hydroxide-soluble hemicellulose fraction (4MASS) and a cellulose-rich residue (3.1, 0.9, 0.4, 0.7 and 1.6%w/w of fresh membrane, respectively). The ChSS pectin consisted mainly of galacturonic acid followed by arabinose and galactose. The DASS fraction contained less galacturonic acid and more neutral sugars than ChSS. Eighty-nine percent of the galacturonic acid present in the segment membranes was recovered in the above two pectin fractions. The two hemicellulosic fractions consisted of two different molecular weight populations, which also differed in their sugar composition. Arabinose, xylose, mannose, galactose and glucose were the main sugar constituents of these hemicellulose fractions. In addition to an (arabino)xylan and a xyloglucan, the presence of an arabinogalactan is suggested by the sugar composition of both hemicelluloses. The pectin fractions were also characterised by their degradability by the pectic enzymes polygalacturonase, pectinmethylesterase and rhamnogalacturonan hydrolase. However the degree of degradation of the pectin fractions by enzymes differed, and the amount of the polymeric materials resistant to further degradation and the oligomeric products also differed. Using pectic enzymes it is possible to obtain peeled mandarin segments ready to eat or for canning. PMID:25577048

  10. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    International Nuclear Information System (INIS)

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM

  11. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)

    2014-08-01

    Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.

  12. Analysis of Immunolabeled Cells by Atomic Force Microscopy, Optical Microscopy, and Flow Cytometry

    OpenAIRE

    Neagu, C.; Werf, van der, W.; Putman, C.A.J.; Kraan, Y.M.; Grooth, de, B.G.; Hulst, van der, R.W.M.; Greve, J de

    1994-01-01

    In this study we investigated the applicability of the (silver- enhanced) immunogold labeling method for atomic force microscopy. Human lymphocytes were labeled with anti-CD3 conjugated to fluorescein isothiocyanate and a secondary antibody (goat anti-mouse) linked with 1- or 30-nm colloidal gold particles. Silver enhancement was applied o­n these labeled cells to increase the size of the labels. In a setup combining an inverted optical microscope and a stand-alone atomic force microscope, a ...

  13. Development of Cell Staining Technique for X-Ray Microscopy

    International Nuclear Information System (INIS)

    We report a technique for detection of sub-cellular organelles and proteins with hard x-ray microscopy. Several metals were used for enhancing contrast for x-ray microscopy. Osmium tetroxide provides an excellent stain for lipid and can delineate cell membrane. Uranyl acetate has high affinity for nucleotide and can stain nucleus. Immunolocalization of specific proteins and sub-cellular organelles was achieved by 3'3 diaminobenzidine (DAB) with nickel enhancement and nanogold-conjugated secondary antibody with silver enhancement. The x-rays emitted from synchrotron source was monochromatized by double crystal monochromator, the photon energy was fixed at 8 keV to optimize the focusing efficiency of the zone plates. The estimated resolution is about 60 nm. When compared with visible light and conventional confocal microscopy, the X-ray microscopy provides a superior resolution to both conventional optical microscopes

  14. Automated counting of morphologically normal red blood cells by using digital holographic microscopy and statistical methods

    Science.gov (United States)

    Moon, Inkyu; Yi, Faliu

    2015-09-01

    In this paper we overview a method to automatically count morphologically normal red blood cells (RBCs) by using off-axis digital holographic microscopy and statistical methods. Three kinds of RBC are used as training and testing data. All of the RBC phase images are obtained with digital holographic microscopy (DHM) that is robust to transparent or semitransparent biological cells. For the determination of morphologically normal RBCs, the RBC's phase images are first segmented with marker-controlled watershed transform algorithm. Multiple features are extracted from the segmented cells. Moreover, the statistical method of Hotelling's T-square test is conducted to show that the 3D features from 3D imaging method can improve the discrimination performance for counting of normal shapes of RBCs. Finally, the classifier is designed by using statistical Bayesian algorithm and the misclassification rates are measured with leave-one-out technique. Experimental results show the feasibility of the classification method for calculating the percentage of each typical normal RBC shape.

  15. Automated Segmentation of Skin Strata in Reflectance Confocal Microscopy Depth Stacks.

    Science.gov (United States)

    Hames, Samuel C; Ardigò, Marco; Soyer, H Peter; Bradley, Andrew P; Prow, Tarl W

    2016-01-01

    Reflectance confocal microscopy (RCM) is a powerful tool for in-vivo examination of a variety of skin diseases. However, current use of RCM depends on qualitative examination by a human expert to look for specific features in the different strata of the skin. Developing approaches to quantify features in RCM imagery requires an automated understanding of what anatomical strata is present in a given en-face section. This work presents an automated approach using a bag of features approach to represent en-face sections and a logistic regression classifier to classify sections into one of four classes (stratum corneum, viable epidermis, dermal-epidermal junction and papillary dermis). This approach was developed and tested using a dataset of 308 depth stacks from 54 volunteers in two age groups (20-30 and 50-70 years of age). The classification accuracy on the test set was 85.6%. The mean absolute error in determining the interface depth for each of the stratum corneum/viable epidermis, viable epidermis/dermal-epidermal junction and dermal-epidermal junction/papillary dermis interfaces were 3.1 μm, 6.0 μm and 5.5 μm respectively. The probabilities predicted by the classifier in the test set showed that the classifier learned an effective model of the anatomy of human skin. PMID:27088865

  16. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  17. Raman microscopy of individual living human embryonic stem cells

    DEFF Research Database (Denmark)

    Novikov, Sergey M.; Beermann, Jonas; Bozhevolnyi, Sergey I.;

    2010-01-01

    We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing...... cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal...

  18. Fast and accurate automated cell boundary determination for fluorescence microscopy

    Science.gov (United States)

    Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider

    2013-07-01

    Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.

  19. High resolution scanning electron microscopy of cells using dielectrophoresis.

    Directory of Open Access Journals (Sweden)

    Shi-Yang Tang

    Full Text Available Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment.

  20. Quantification of plant cell coupling with live-cell microscopy

    DEFF Research Database (Denmark)

    Liesche, Johannes; Schulz, Alexander

    2015-01-01

    Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule’s capacity to pass a specific...... cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely...... determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells. The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged by...

  1. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  2. High-speed synthetic aperture microscopy for live cell imaging

    OpenAIRE

    Kim, Moonseok; Choi, Youngwoon; Fang-Yen, Christopher; Sung, Yongjin; Dasari, Ramachandra R.; Michael S. Feld; Choi, Wonshik

    2011-01-01

    We present a high-speed synthetic aperture microscopy for quantitative phase imaging of live biological cells. We measure 361 complex amplitude images of an object with various directions of illumination covering an NA of 0.8 in less than one-thirteenth of a second and then combine the images with a phase-referencing method to create a synthesized phase image. Because of the increased depth selectivity, artifacts from diffraction that are typically present in coherent imaging are significantl...

  3. Immunogold labels: cell-surface markers in atomic force microscopy

    OpenAIRE

    Putman, Constant A.J.; Grooth, de, B.G.; Hansma, Paul K.; Hulst, van der, R.W.M.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect immunolabeling method using the monoclonal antibody anti-CD3 and a secondary antibody (Goat-anti-Mouse) linked to 30 nm colloidal gold particles. Some of the samples were enhanced by silver deposition...

  4. Fluorescence cell imaging and manipulation using conventional halogen lamp microscopy.

    Directory of Open Access Journals (Sweden)

    Kazuo Yamagata

    Full Text Available Technologies for vitally labeling cells with fluorescent dyes have advanced remarkably. However, to excite fluorescent dyes currently requires powerful illumination, which can cause phototoxic damage to the cells and increases the cost of microscopy. We have developed a filter system to excite fluorescent dyes using a conventional transmission microscope equipped with a halogen lamp. This method allows us to observe previously invisible cell organelles, such as the metaphase spindle of oocytes, without causing phototoxicity. Cells remain healthy even after intensive manipulation under fluorescence observation, such as during bovine, porcine and mouse somatic cell cloning using nuclear transfer. This method does not require expensive epifluorescence equipment and so could help to reduce the science gap between developed and developing countries.

  5. Development, Implementation and Evaluation of Segmentation Algorithms for the Automatic Classification of Cervical Cells

    Science.gov (United States)

    Macaulay, Calum Eric

    Cancer of the uterine cervix is one of the most common cancers in women. An effective screening program for pre-cancerous and cancerous lesions can dramatically reduce the mortality rate for this disease. In British Columbia where such a screening program has been in place for some time, 2500 to 3000 slides of cervical smears need to be examined daily. More than 35 years ago, it was recognized that an automated pre-screening system could greatly assist people in this task. Such a system would need to find and recognize stained cells, segment the images of these cells into nucleus and cytoplasm, numerically describe the characteristics of the cells, and use these features to discriminate between normal and abnormal cells. The thrust of this work was (1) to research and develop new segmentation methods and compare their performance to those in the literature, (2) to determine dependence of the numerical cell descriptors on the segmentation method used, (3) to determine the dependence of cell classification accuracy on the segmentation used, and (4) to test the hypothesis that using numerical cell descriptors one can correctly classify the cells. The segmentation accuracies of 32 different segmentation procedures were examined. It was found that the best nuclear segmentation procedure was able to correctly segment 98% of the nuclei of a 1000 and a 3680 image database. Similarly the best cytoplasmic segmentation procedure was found to correctly segment 98.5% of the cytoplasm of the same 1000 image database. Sixty-seven different numerical cell descriptors (features) were calculated for every segmented cell. On a database of 800 classified cervical cells these features when used in a linear discriminant function analysis could correctly classify 98.7% of the normal cells and 97.0% of the abnormal cells. While some features were found to vary a great deal between segmentation procedures, the classification accuracy of groups of features was found to be independent of the

  6. Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using Convolutional Neural Networks.

    Science.gov (United States)

    Shkolyar, Anat; Gefen, Amit; Benayahu, Dafna; Greenspan, Hayit

    2015-08-01

    We propose a semi-automated pipeline for the detection of possible cell divisions in live-imaging microscopy and the classification of these mitosis candidates using a Convolutional Neural Network (CNN). We use time-lapse images of NIH3T3 scratch assay cultures, extract patches around bright candidate regions that then undergo segmentation and binarization, followed by a classification of the binary patches into either containing or not containing cell division. The classification is performed by training a Convolutional Neural Network on a specially constructed database. We show strong results of AUC = 0.91 and F-score = 0.89, competitive with state-of-the-art methods in this field. PMID:26736369

  7. A software solution for recording circadian oscillator features in time-lapse live cell microscopy

    Directory of Open Access Journals (Sweden)

    Salmon Patrick

    2010-07-01

    Full Text Available Abstract Background Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. Results In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Conclusions Our software solution, Circadian Gene Express (CGE, is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and

  8. Electron microscopy study of antioxidant interaction with bacterial cells

    Science.gov (United States)

    Plotnikov, Oleg P.; Novikova, Olga V.; Konnov, Nikolai P.; Korsukov, Vladimir N.; Gunkin, Ivan F.; Volkov, Uryi P.

    2000-10-01

    To maintain native microorganisms genotype and phenotype features a lyophylization technique is widely used. However in this case cells are affected by influences of vacuum and low temperature that cause a part of the cells population to be destruction. Another factor reduced microorganisms vitality is formation of reactive oxygen forms that damage certain biological targets (such as DNA, membranes etc.) Recently to raise microorganism's resistance against adverse condition natural and synthetic antioxidants are used. Antioxidant- are antagonists of free radicals. Introduction of antioxidants in protective medium for lyophylization increase bacteria storage life about 2,0-4,8 fold in comparison with reference samples. In the article the main results of our investigation of antioxidants interaction with microorganism cells is described. As bacteria cells we use vaccine strain yersinia pestis EV, that were grown for 48 h at 28 degree(s)C on the Hottinger agar (pH 7,2). Antioxidants are inserted on the agar surface in specimen under test. To investigate a localization of antioxidants for electron microscopy investigation, thallium organic antioxidants were used. The thallium organic compounds have an antioxidant features if thallium is in low concentration (about 1(mu) g/ml). The localization of the thallium organic antioxidants on bacteria Y. pestis EV is visible in electron microscopy images, thallium being heavy metal with high electron density. The negatively stained bacteria and bacteria thin sections with thallium organic compounds were investigated by means of transmission electron microscopy. The localization of the thallium organic compounds is clearly visible in electron micrographs as small dark spots with size about 10-80nm. Probably mechanisms of interaction of antioxidants with bacteria cells are discussed.

  9. Early cell death detection with digital holographic microscopy.

    Directory of Open Access Journals (Sweden)

    Nicolas Pavillon

    Full Text Available BACKGROUND: Digital holography provides a non-invasive measurement of the quantitative phase shifts induced by cells in culture, which can be related to cell volume changes. It has been shown previously that regulation of cell volume, in particular as it relates to ionic homeostasis, is crucially involved in the activation/inactivation of the cell death processes. We thus present here an application of digital holographic microscopy (DHM dedicated to early and label-free detection of cell death. METHODS AND FINDINGS: We provide quantitative measurements of phase signal obtained on mouse cortical neurons, and caused by early neuronal cell volume regulation triggered by excitotoxic concentrations of L-glutamate. We show that the efficiency of this early regulation of cell volume detected by DHM, is correlated with the occurrence of subsequent neuronal death assessed with the widely accepted trypan blue method for detection of cell viability. CONCLUSIONS: The determination of the phase signal by DHM provides a simple and rapid optical method for the early detection of cell death.

  10. On measuring cell confluence in phase contrast microscopy

    Science.gov (United States)

    Dempsey, K. P.; Richardson, J. B.; Lam, K. P.

    2014-03-01

    A principal focus highlighting recent advances in cell based therapies concerns the development of effective treatments for osteoarthritis. Earlier clinicaltrials have shown that 80% of patients receiving mesenchymal stem cell(MSC) based treatment have improved their quality of life by alleviating pain whilst extending the life of their natural joints. The current challenge facing researchers is to identify the biological differences between the treatments that have worked and those which have shown little improvement. One possible candidate for the difference in treatment prognosis is an examination of the proliferation of the ( type) cells as they grow. To further understanding of the proliferation and differentiation of MSC, non-invasive live cell imaging techniques have been developed which capture important cell events and dynamics in cell divisions over an extended period of time. An automated image analysis procedure capable of tracking cell confluence over time has also been implemented, providing an objective and realistic estimation of cell growth within continuous live cell cultures. The proposed algorithm accounts for the halo artefacts that occur in phase microscopy. In addition to a favourable run-time performance, the method was also validated using continuous live MSC cultures, with consistent and meaningful results.

  11. Correlating intravital multi-photon microscopy to 3D electron microscopy of invading tumor cells using anatomical reference points.

    Directory of Open Access Journals (Sweden)

    Matthia A Karreman

    Full Text Available Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electron microscopy. To investigate tumor cell behavior in vivo with ultrastructural accuracy, a reliable approach is needed to retrieve single tumor cells imaged deep within the tissue. For this purpose, fluorescently labeled tumor cells were subcutaneously injected into a mouse ear and imaged using two-photon-excitation microscopy. Using near-infrared branding, the position of the imaged area within the sample was labeled at the skin level, allowing for its precise recollection. Following sample preparation for electron microscopy, concerted usage of the artificial branding and anatomical landmarks enables targeting and approaching the cells of interest while serial sectioning through the specimen. We describe here three procedures showing how three-dimensional (3D mapping of structural features in the tissue can be exploited to accurately correlate between the two imaging modalities, without having to rely on the use of artificially introduced markers of the region of interest. The methods employed here facilitate the link between intravital and nanoscale imaging of invasive tumor cells, enabling correlating function to structure in the study of tumor invasion and metastasis.

  12. Practical fabrication of microfluidic platforms for live-cell microscopy.

    Science.gov (United States)

    Lorusso, Daniel; Nikolov, Hristo N; Milner, Jaques S; Ochotny, Noelle M; Sims, Stephen M; Dixon, S Jeffrey; Holdsworth, David W

    2016-10-01

    We describe a simple fabrication technique - targeted towards non-specialists - that allows for the production of leak-proof polydimethylsiloxane (PDMS) microfluidic devices that are compatible with live-cell microscopy. Thin PDMS base membranes were spin-coated onto a glass-bottom cell culture dish and then partially cured via microwave irradiation. PDMS chips were generated using a replica molding technique, and then sealed to the PDMS base membrane by microwave irradiation. Once a mold was generated, devices could be rapidly fabricated within hours. Fibronectin pre-treatment of the PDMS improved cell attachment. Coupling the device to programmable pumps allowed application of precise fluid flow rates through the channels. The transparency and minimal thickness of the device enabled compatibility with inverted light microscopy techniques (e.g. phase-contrast, fluorescence imaging, etc.). The key benefits of this technique are the use of standard laboratory equipment during fabrication and ease of implementation, helping to extend applications in live-cell microfluidics for scientists outside the engineering and core microdevice communities. PMID:27523472

  13. Autonomous Image Segmentation using Density-Adaptive Dendritic Cell Algorithm

    Directory of Open Access Journals (Sweden)

    Vishwambhar Pathak

    2013-08-01

    Full Text Available Contemporary image processing based applications like medical diagnosis automation and analysis of satellite imagery include autonomous image segmentation as inevitable facility. The research done shows the efficiency of an adaptive evolutionary algorithm based on immune system dynamics for the task of autonomous image segmentation. The recognition dynamics of immune-kernels modeled with infinite Gaussian mixture models exhibit the capability to automatically determine appropriate number of segments in presence of noise. In addition, the model using representative density-kernel-parameters processes the information with much reduced space requirements. Experiments conducted with synthetic images as well as real images recorded assured convergence and optimal autonomous model estimation. The segmentation results tested in terms of PBM-index values have been found comparable to those of the Fuzzy C-Means (FCM for the same number of segments as generated by our algorithm.

  14. [High resolution scanning electron microscopy of isolated outer hair cells].

    Science.gov (United States)

    Koitschev, A; Müller, H

    1996-11-01

    Isolated hair cell preparations have gained wide acceptance as a model for studying physiological and molecular properties of the sensory cells involved in the hearing process. Ultrastructural details, such as stereocilia links, lateral membrane substructure or synaptic links are of crucial importance for normal sensory transduction. For this reason, we developed a high-resolution scanning electron microscopy (SEM) procedure to study the surface of isolated hair cells. Cells were mechanically and/or enzymatically separated, isolated and immobilized on cover slips by alcian blue and fixed by 2% glutardialdehyde or 1% OsO4. After dehydration, preparations were critical point-dried and sputter-coated with gold-palladium (2-4 nm). Up to 5 nm resolution was achieved. Optimal fixation kept the cells in their typical cylindrical forms. Preservation of the stereocilia and the apical plates of the outer hair cells depended strongly on the fixation process. Tip- and side-links were observed only sporadically because of the aggressive preparation procedure. The lateral plasma membranes of the cell bodies showed regular granular structures of 5-7 nm diameter at maximal magnification. The granular structure of the cell membrane seemed to correspond to putative transmembrane proteins believed to generate membrane-based motility. The remnants of the nerve endings and/or supporting cells usually covered the cell base. The preservation of the cells was better when enzymatic isolation was omitted. The technique used allowed for high resolution ultrastructural examination of isolated hair cells and, when combined with immunological labeling, may permit the identification of proteins at a molecular level. PMID:9064297

  15. Time-resolved local strain tracking microscopy for cell mechanics

    Science.gov (United States)

    Aydin, O.; Aksoy, B.; Akalin, O. B.; Bayraktar, H.; Alaca, B. E.

    2016-02-01

    A uniaxial cell stretching technique to measure time-resolved local substrate strain while simultaneously imaging adherent cells is presented. The experimental setup comprises a uniaxial stretcher platform compatible with inverted microscopy and transparent elastomer samples with embedded fluorescent beads. This integration enables the acquisition of real-time spatiotemporal data, which is then processed using a single-particle tracking algorithm to track the positions of fluorescent beads for the subsequent computation of local strain. The present local strain tracking method is demonstrated using polydimethylsiloxane (PDMS) samples of rectangular and dogbone geometries. The comparison of experimental results and finite element simulations for the two sample geometries illustrates the capability of the present system to accurately quantify local deformation even when the strain distribution is non-uniform over the sample. For a regular dogbone sample, the experimentally obtained value of local strain at the center of the sample is 77%, while the average strain calculated using the applied cross-head displacement is 48%. This observation indicates that considerable errors may arise when cross-head measurement is utilized to estimate strain in the case of non-uniform sample geometry. Finally, the compatibility of the proposed platform with biological samples is tested using a unibody PDMS sample with a well to contain cells and culture media. HeLa S3 cells are plated on collagen-coated samples and cell adhesion and proliferation are observed. Samples with adherent cells are then stretched to demonstrate simultaneous cell imaging and tracking of embedded fluorescent beads.

  16. Reactor cell assembly for use in spectroscopy and microscopy applications

    Science.gov (United States)

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  17. Label-Free Digital Quantification of Lipid Droplets in Single Cells by Stimulated Raman Microscopy on a Microfluidic Platform.

    Science.gov (United States)

    Cao, Chen; Zhou, Dong; Chen, Tao; Streets, Aaron M; Huang, Yanyi

    2016-05-01

    Quantitative characterization of a single-cell phenotype remains challenging. We combined a scalable microfluidic array of parallel cell culture chambers and stimulated Raman scattering (SRS) microscopy to quantitatively characterize the response of lipid droplet (LD) formation to free-fatty-acid stimuli with single-LD resolution at the single-cell level. By enabling the systematic live-cell imaging with SRS microscopy in a microfluidic device, we were able to quantify the morphology of over a thousand live cells in 10 different chemical environments and with 8 replicates for each culture condition, in a single experiment, and without relying on fluorescent labeling. We developed an image processing pipeline for cell segmentation and LD morphology quantification using dual-channel SRS images. This allows us to construct distributions of the morphological parameters of LDs in the cellular population and expose the vast phenotypic heterogeneity among genetically similar cells. Specifically, this approach provides an analytical tool for quantitatively investigating LD morphology in live cells in situ. With this high-throughput, high-resolution, and label-free method, we found that LD growth dynamics showed considerable cell to cell variation. Lipid accumulation in nonadipocyte cells is mainly reflected in the increase of LD number, as opposed to an increase in their size or lipid concentration. Our method allows statistical single-cell quantification of the LD distribution for further investigation of lipid metabolism and dynamic behavior, and also extends the possibility to couple with other "omics" technologies in the future. PMID:27041129

  18. Cell imaging by transient fluorescence detected infrared microscopy

    Science.gov (United States)

    Ohmori, Tsutomu; Sakai, Makoto; Ishihara, Miya; Kikuchi, Makoto; Fujii, Masaaki

    2008-02-01

    Transient fluorescence detected infrared (TFD-IR) microscopy was developed to overcome the diffraction limit of infrared (IR) light without a near-field system. This microscopic technique is based on TFD-IR spectroscopy, which converts information on IR absorption to fluorescence intensity by further electronic excitation of vibrationally excited molecules by a probing UV/visible light. Roots of Arabidopsis thaliana and living A549 cells with fluorescent dyes were chosen as samples. In the measurements using the TFD-IR microscope, tunable IR picosecond laser pulses were used in the wavelength range from 2700 to 3700 nm, corresponding to CH, NH, and OH stretching modes. Fluorescence images of the root cells of A. thaliana by the TFD-IR scheme were obtained with super-resolution compared with the resolution of conventional IR microscopy. The resolution is estimated to be less than 2.6 μm by fitting of a gaussian function. However, the TFD-IR images were dominated mainly by the fluorescent dyes because they were almost the same as a conventional fluorescence image. To investigate other contributions hidden by that of fluorescent dyes, we plotted the fluorescence intensity in several 5 μm squares at various IR wavelengths, called a TFD-IR spectrum. For root cells of A. thaliana, the TFD-IR spectra show shapes similar to those of a conventional IR absorption spectrum of the fluorescent dye. Therefore, the TFD-IR images are not due to the cellular components. For an A549 cell, the TFD-IR spectra were different from a conventional IR absorption spectrum of fluorescent dyes in the wavelength region shorter than 3100 nm. We speculate that the spectral difference is due to the cellular components, possibly assigned to the combination band related to amino groups of cellular components bonded covalently to the fluorescent dyes.

  19. Segmentation of neuronal-cell images from stained fields and monomodal histograms.

    Science.gov (United States)

    Pham, Tuan D; Crane, Denis I

    2005-01-01

    Information from images taken of cells being grown in culture with oxidative agents allows life science researchers to compare changes in neurons from the Zellweger mice to those from normal mice. Image segmentation is the major and first step for the study of these different types of processes in cells. In this paper we develop an innovative strategy for the segmentation of neuronal-cell images which are subjected to stains and whose histograms are monomodal. Such nontrival images make it a challenging task for many existing image segmentation methods. We show that the proposed method is an effective and simple procedure for the subsequent quantitative analysis of neuronal images. PMID:17281705

  20. Wood adhesion cell segmentation scheme based on GVF-Snake model

    Science.gov (United States)

    Zhao, Lei; Ma, Yan

    2010-08-01

    In order to extract the characteristic parameters of the wood cells accurately, this paper presents an efficient scheme for wood cell segmentation. This scheme is mainly based on GVF-Snake model and the method of image thinning. Firstly, computing the Category Roundness of every connectivity domain is done in order to get the degree of adhesion. Secondly, image thinning helps to get the skeleton of the cell. Finally, according to the location coordinates of skeleton and contour, it can determine the location of segmentation. Experimental results demonstrate the scheme for precise extraction with limited human intervention; it can also determine the correct edge of segmentation. Comparatively speaking, the inaccuracy is rather limited.

  1. Segmental Neurofibromatosis

    Directory of Open Access Journals (Sweden)

    Yesudian Devakar

    1997-01-01

    Full Text Available Segmental neurofibromatosis is a rare variant of neurofibromatosis in which the lesions are confined to one segment or dermatome of the body. They resemble classical neurofibromas in their morphology, histopathology and electron microscopy. However, systemic associations are usually absent. We report one such case with these classical features.

  2. Integrating Real-Time Analysis With The Dendritic Cell Algorithm Through Segmentation

    CERN Document Server

    Gu, Feng; Aickelin, Uwe

    2010-01-01

    As an immune inspired algorithm, the Dendritic Cell Algorithm (DCA) has been applied to a range of problems, particularly in the area of intrusion detection. Ideally, the intrusion detection should be performed in real-time, to continuously detect misuses as soon as they occur. Consequently, the analysis process performed by an intrusion detection system must operate in real-time or near-to real-time. The analysis process of the DCA is currently performed offline, therefore to improve the algorithm's performance we suggest the development of a real-time analysis component. The initial step of the development is to apply segmentation to the DCA. This involves segmenting the current output of the DCA into slices and performing the analysis in various ways. Two segmentation approaches are introduced and tested in this paper, namely antigen based segmentation (ABS) and time based segmentation (TBS). The results of the corresponding experiments suggest that applying segmentation produces different and significantl...

  3. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    Science.gov (United States)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  4. Image segmentation of em bryonic plant cell using pulse-coupled neural networks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Traditional image segmentation algorithms exhibit weak performance for plant cells which have complex structure. On the other hand, pulse-coupled neural network (PCNN) based on Eckhorn's model of the cat visual cortex should be suitable to the segmentation of plant cell image.But the present theories cannot explain the relationship between the parameters of PCNN mathematical model and the effect of segmentation. Satisfactory results usually require time-consuming selection of experimental parameters. Meanwhile, in a proper, selected parametric model, the number of iteration determines the segmented effect evaluated by visual judgment, which decreases the efficiency of image segmentation. To avoid these flaws, this note proposes a new PCNN algorithm for automatically segmenting plant embryonic cell image based on the maximum entropy principle. The algorithm produces a desirable result. In addition, a model with proper parameters can automatically determine the number of iteration, avoid visual judgment, enhance the speed of segmentation and will be utilized subsequently by accurate quantitative analysis of micro-molecules of plant cell. So this algorithm is valuable for theoretical investigation and application of PCNN.``

  5. Subventricular zone cell migration: lessons from quantitative 2-photon microscopy

    Directory of Open Access Journals (Sweden)

    Rachel eJames

    2011-03-01

    Full Text Available Neuroblasts born in the adult subventricular zone (SVZ migrate long distances in the rostral migratory stream (RMS to the olfactory bulbs where they integrate into circuitry as functional interneurons. As very little was known about the dynamic parameters of SVZ neuroblast migration, we used two-photon time-lapse microscopy to analyze migration in acute slices. This involved analyzing 3-dimensional stacks of images over time and uncovered several novel aspects of SVZ migration: chains remain stable, cells can be immotile for extensive periods, morphology does not necessarily correlate with motility, neuroblasts exhibit local exploratory motility, dorsoventral migration occurs throughout the striatal SVZ and neuroblasts turn at distinctive angles. We investigated these novel findings in the SVZ and RMS from the population to the single cell level. In this review we also discuss some technical considerations when setting up a two-photon microscopic imaging system. Throughout the review we identify several unsolved questions about SVZ neuroblast migration that might be addressed with current or emerging techniques.

  6. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy

    OpenAIRE

    Peckys, Diana B.; Jean-Pierre Baudoin; Magdalena Eder; Ulf Werner; Niels de Jonge

    2013-01-01

    Imaging single epidermal growth factor receptors (EGFR) in intact cells is presently limited by the available microscopy methods. Environmental scanning electron microscopy (ESEM) of whole cells in hydrated state in combination with specific labeling with gold nanoparticles was used to localize activated EGFRs in the plasma membranes of COS7 and A549 cells. The use of a scanning transmission electron microscopy (STEM) detector yielded a spatial resolution of 3 nm, sufficient to identify the l...

  7. Auxin-induced modifications of cell wall polysaccharides in cat coleoptile segments. Effect of galactose

    International Nuclear Information System (INIS)

    Galactose inhibits auxin-induced cell elongation in oat coleoptile segments. Cell elongation induced by exogenously applied auxin is controlled by factors such as auxin uptake, cell wall loosening, osmotic concentration of sap and hydraulic conductivity. However, galactose does not have any effect on these factors. The results discussed in this paper led to the conclusion that galactose does not affect cell wall loosening which controls rapid growth, but inhibits cell wall synthesis which is required to maintain long-term growth

  8. Absence of the interstitial cells of Cajal in a neonate with segmental dilatation of ileum

    Directory of Open Access Journals (Sweden)

    Tatsuma Sakaguchi

    2016-02-01

    Full Text Available Segmental dilatation of intestine (SD is a congenital disease characterized by localized bowel dilation with normal ganglion cells. Clinically, small intestinal type of SD frequently occurs in the neonatal period with pseudo-obstruction. Though many theories have been proposed regarding the pathogenesis, the disease etiology is unclear. Interstitial cells of Cajal (ICCs have been ascribed as the pacemaker cells that coordinate peristaltic behavior and its disorder is the possible cause of intestinal pseudo-obstruction. Here, we report a rare case of SD observed the absence of ICCs in the dilated segment. A male neonate suffered abdominal distention and vomiting underwent segmental resection of the dilated ileum on the third day after birth. He was diagnosed with SD and his clinical course after surgery was uneventful. Immunohistochemically, c-kit positive cell was not identified around the ganglion cells in the resected specimen.

  9. Segmenting and counting of wall-pasted cells based on gabor filter.

    Science.gov (United States)

    Sun, Nongliang; Xu, Saicong; Cao, Maoyong; Li, Jing

    2005-01-01

    Correctly counting the live cells plays a great role in the ectogenetic anti-virus experiment. According to the irregular shape and arbitrary size of the wall pasted Hela cells overlapping each other, we propose a scheme to segment and count the cells using Gabor filter with different parameters and Morphological operation. Experiments reveal that filters with different parameters will lead to different results and a better segmentation will be achieved based on the characteristics of cells and optimal parameters. Large amount of experiment results show that this algorithm can successfully segment the cells and the accuracy arrives at 99.3%. This scheme based on image analysis and pattern recognition can overcome some disadvantages of traditional approaches, shortening anti-virus experimental period and reducing experimental cost. PMID:17282957

  10. Hybrid Confocal Raman Fluorescence Microscopy on Single Cells Using Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Manen, van Henk-Jan; Otto, Cees

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We sh

  11. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    Science.gov (United States)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  12. A Framework for White Blood Cell Segmentation in Microscopic Blood Images Using Digital Image Processing

    OpenAIRE

    Seman Zainina; Abdul Kahar Badrul; Sadeghian Farnoosh; Ramli Abdul; Saripan M-Iqbal

    2009-01-01

    Abstract Evaluation of blood smear is a commonly clinical test these days. Most of the time, the hematologists are interested on white blood cells (WBCs) only. Digital image processing techniques can help them in their analysis and diagnosis. For example, disease like acute leukemia is detected based on the amount and condition of the WBC. The main objective of this paper is to segment the WBC to its two dominant elements: nucleus and cytoplasm. The segmentation is conducted using a proposed ...

  13. Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting.

    Science.gov (United States)

    Kong, Hui; Gurcan, Metin; Belkacem-Boussaid, Kamel

    2011-09-01

    For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the

  14. Live-cell fluorescent microscopy platforms for real-time monitoring of polyplex-cell interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Wu, LinPing; Andersen, Helene;

    2014-01-01

    A myriad of cationic polymeric delivery vehicles are currently being developed with the aim of transporting various forms of nucleic acids to mammalian cells. The complexes between polycations and nucleic acids are referred to as polyplexes. The screening for successful polyplex candidates requir...... of performance and intracellular trafficking of polyplexes as well as for assessing cell functionality. This review highlights the application of some of the most promising fluorescent microscopy platforms in relation to polyplex-mediated transfection processes....

  15. Locally resolved measurements in a segmented HTPEM fuel cell with straight flow-fields

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, C. [Zentrum fuer BrennstoffzellenTechnik (ZBT), GmbH (Centre for Fuel Cell Technology), Carl-Benz-Str. 201, D-47057 Duisburg (Germany); University of Duisburg-Essen, Institut fuer Energie- und Umweltverfahrenstechnik, Lotharstr. 1, D-47048 Duisburg (Germany); Siegel Schleimer Ingenieurs-Conseils s.a r.l. - Engineering and research, 2A, rue d' Ehlerange, L-3918 Mondercange (Luxembourg); Bandlamudi, G.; Heinzel, A. [Zentrum fuer BrennstoffzellenTechnik (ZBT), GmbH (Centre for Fuel Cell Technology), Carl-Benz-Str. 201, D-47057 Duisburg (Germany); University of Duisburg-Essen, Institut fuer Energie- und Umweltverfahrenstechnik, Lotharstr. 1, D-47048 Duisburg (Germany); Filusch, F. [Zentrum fuer BrennstoffzellenTechnik (ZBT), GmbH (Centre for Fuel Cell Technology), Carl-Benz-Str. 201, D-47057 Duisburg (Germany)

    2011-08-15

    Significant advances have been reported in building and testing of high-temperature polymer electrolyte membrane (HTPEM) fuel cells and stacks during recent years. Quantity distribution measurement techniques (e.g. current density, temperature and electrochemical impedance spectroscopy (EIS)) using segmented cells are commonly used to characterise low-temperature PEM (LTPEM) fuel cells. Performing these measurements at higher temperatures is more difficult and a relatively new process. For this study, a fully operational segmented HTPEM fuel cell using a straight flow-field configuration was designed, constructed and tested. The cathode side bipolar half-plate consisted of 36 exchangeable segments, whereas, the anode side bipolar half-plate was not segmented. The cell was operated at various operating temperatures with various anode gas compositions and air (no backpressure). In addition to the experimental results, a simple computational fluid dynamics model based on COMSOL Multiphysics {sup registered} 3.5a was used to support the observed behaviour during segmented measurements. The computational domain consisted of the cathode side gas channels and the porous media. All of the boundary conditions and gas properties were defined in a manner similar to the experimental investigations. Some of the theoretical results were compared to the experimental results and conclusions were drawn. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Cytosolic pH gradients in cultured neuronal cell lines studied by laser scanning confocal microscopy, real-time confocal microscopy, and spectral imaging microscopy

    Science.gov (United States)

    Sanchez-Armass, Sergio; Sennoune, Souad; Martinez, Gloria M.; Ortega, Filiberta; Martinez-Zaguilan, Raul

    2002-06-01

    Changes in intracellular pH are important for the regulation of many physiological processes including: cell growth and differentiation, exocytosis, synaptic transmission, cell motility and invasion, to name a few. In pathological states such as cancer and diabetes, pH regulation is known to be altered. Nevertheless the physiological and pathological significance of this ion, there are still many gaps in our knowledge. The advent of fluorescent pH probes to monitor this ion, has substantially accelerated its study. New advances in the methods of detection of this ion by fluorescence-based approaches have also helped us to understand more about the regulation of cytosolic pH. This study evaluates the usefulness of real time confocal imaging microscopy, laser scanning confocal microscopy, and spectral imaging microscopy to the study of pH. These approaches exhibit unsurpassed temporal, spatial, and spectral resolution and are complementary. We employed cell lines derived from the brain exhibiting soma and dendrites. The existence of cell polarity suggests that the different protein composition/micro environment in discrete subcellular domains may affect the properties of fluorescent ion indicators. We performed in situ calibration of pH probes in discrete cellular regions of the neuronal cell lines to eliminate any bias in data interpretation because of differences in cell thickness/micro environment. We show that there are distinct in situ calibration parameters in different cellular domains. These indicate that in situ titrations in discrete cellular domains are needed to assign pH values. We concluded that there are distinct pH micro domains in discrete cellular regions of neuronal cell lines.

  17. Quantitative detection of gold nanoparticles on individual, unstained cancer cells by scanning electron microscopy

    NARCIS (Netherlands)

    L. Hartsuiker; P. van Es; W. Petersen; T.G. van Leeuwen; L.W.M.M. Terstappen; C. Otto

    2011-01-01

    Gold nanoparticles are rapidly emerging for use in biomedical applications. Characterization of the interaction and delivery of nanoparticles to cells through microscopy is important. Scanning electron microscopes have the intrinsic resolution to visualize gold nanoparticles on cells. A novel sample

  18. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    NARCIS (Netherlands)

    Krause, M.; Riet, J. te; Wolf, K. van der

    2013-01-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness toge

  19. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Despite cell wall reinforcement being a well-known defence mechanism of plants, it remains poorly characterized from a physical point of view. The objective of this work was to further describe this mechanism. Vitis vinifera cv Gamay cells were treated with UV-light (254 nm), a well-known elicitor of defence mechanisms in grapevines, and physical cell wall modifications were observed using the atomic force microscopy (AFM) under native conditions. The grapevine cell suspensions were continuously observed in their culture medium from 30 min to 24 h after elicitation. In the beginning, cellulose fibrils covered by a matrix surrounded the control and treated cells. After 3 h, the elicited cells displayed sprouted expansions around the cell wall that correspond to pectin chains. These expansions were not observed on untreated grapevine cells. The AFM tip was used to determine the average surface elastic modulus of cell wall that account for cell wall mechanical properties. The elasticity is diminished in UV-treated cells. In a comparative study, grapevine cells showed the same decrease in cell wall elasticity when treated with a fungal biotic elicitor of defence response. These results demonstrate cell wall strengthening by UV stress

  20. Effect of auxin on Golgi-mediated cell wall synthesis in pea stem segments

    Energy Technology Data Exchange (ETDEWEB)

    Brummell, D.A.; Maclachlan, G.A.

    1986-04-01

    Stem segments of 7 day-old etiolated Pisum sativum seedlings were abraded using carborundum powder. Batches of segments were pulsed in (/sup 3/H) glucose followed by a chase in cold glucose in the presence or absence of 1AA, then homogenized by chopping with a razor blade. A rate-zonal centrifugation on a linear sucrose gradient was used to separate dictyosomes and secretory vesicles, and membrane-bound radioactivity determined as a measure of Golgi material in the cytoplasm. The amount of membrane-bound radioactivity was increased in tissues treated with 1AA for 30 min, indicative of an enhanced Golgi content in such segments. This increase thus precedes the sustained increase in auxin-stimulated growth of stem segments which occurs around 35-45 min after exposure to auxin and which is thought to be due to increased cell wall synthesis.

  1. The Influence of Physical and Physiological Cues on Atomic Force Microscopy-Based Cell Stiffness Assessment

    OpenAIRE

    Yu-Wei Chiou; Hsiu-Kuan Lin; Ming-Jer Tang; Hsi-Hui Lin; Ming-Long Yeh

    2013-01-01

    Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All...

  2. 3D Imaging of mammalian cells with ion-abrasion scanning electron microscopy

    OpenAIRE

    Heymann, Jurgen A. W.; Shi, Dan; Kim, Sang; Bliss, Donald; Milne, Jacqueline L. S.; Subramaniam, Sriram

    2008-01-01

    Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and mela...

  3. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Millaku, Agron, E-mail: agron.mi@hotmail.com [Limnos-Company for Applied Ecology Ltd, Podlimbarskega 31, 1000 Ljubljana (Slovenia); Drobne, Damjana [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Centre of Excellence, Advanced Materials and Technologies for the Future (CO NAMASTE), Jamova cesta 39, 1000 Ljubljana (Slovenia); Centre of Excellence, Nanoscience and Nanotechnology (Nanocentre), Jamova cesta 39, 1000 Ljubljana (Slovenia); Torkar, Matjaz [Institute of Metals and Technology IMT, Lepi pot 11, 1000 Ljubljana (Slovenia); Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Novak, Sara [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia); Remškar, Maja [Jožef Stefan Institute, Condensed Matter Physics Department, Jamova cesta 39, 1000 Ljubljana (Slovenia); Pipan-Tkalec, Živa [University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana (Slovenia)

    2013-09-15

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  4. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells

    International Nuclear Information System (INIS)

    Graphical abstract: Scanning electron microscopy is particularly well suited to the observation of nanofibre/cell interaction in the endothelial cells lining the hepatopancreas. (a) Tungsten oxide nanofibres, (b) test organism Porcellio scaber and schematic appearance of digestive tubes, (c) digestive tube (hepatopancreas) prepared for SEM investigation, (d) digestive gland cells (C) with nanofibres (NF) embedded in the cell membrane and (e) nanofibres inserted deeply in the cells and damaged nanofibres due to peristalsis. -- Highlights: • Tungsten oxide nanofibres react physically with digestive gland epithelial cells in Porcellio scaber. • Physical peristaltic forces of lead to insertion of nanofibres into the cells. • No toxic responses as measured by conventional toxicity biomarkers were detected. • Physical interactions were observed in a majority of the investigated animals. -- Abstract: We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells

  5. A multi-cell, multi-scale model of vertebrate segmentation and somite formation.

    Directory of Open Access Journals (Sweden)

    Susan D Hester

    2011-10-01

    Full Text Available Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length.

  6. Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering.

    Science.gov (United States)

    Liu, Zhi; Liu, Jing; Xiao, Xiaoyan; Yuan, Hui; Li, Xiaomei; Chang, Jun; Zheng, Chengyun

    2015-01-01

    This paper presents a novel method for segmentation of white blood cells (WBCs) in peripheral blood and bone marrow images under different lights through mean shift clustering, color space conversion and nucleus mark watershed operation (NMWO). The proposed method focuses on obtaining seed points. First, color space transformation and image enhancement techniques are used to obtain nucleus groups as inside seeds. Second, mean shift clustering, selection of the C channel component in the CMYK model, and illumination intensity adjustment are employed to acquire WBCs as outside seeds. Third, the seeds and NMWO are employed to precisely determine WBCs and solve the cell adhesion problem. Morphological operations are further used to improve segmentation accuracy. Experimental results demonstrate that the algorithm exhibits higher segmentation accuracy and robustness compared with traditional methods. PMID:26370995

  7. Particle-in-cell modeling of Dual Segmented Langmuir Probe on PROBA2

    Science.gov (United States)

    Imtiaz, Nadia; Marchand, Richard

    2015-11-01

    We model the current characteristics of the Dual Segmented Langmuir Probe (DSLP), which is a part of the scientific payload of the ESA satellite PROBA2. It is used for the directional measurement of plasma parameters in the ionosphere at an altitude of approximately 725 km. The DSLP consists of two independent segmented Langmuir probes. Each probe is partitioned into eight collectors: seven electrically insulated spherical segments and a Guard electrode (the rest of the sphere and a small post). The current characteristics of the DSLP are computed by using the 3D particle-in-cell code PTetra. The model is electrostatic and it accounts for a uniform background magnetic field. The computed characteristics of different probe segments exhibit significant variation which depends on their orientation with respect to the ram direction. The floating potential and ion current branch of the I-V curves of each segment illustrate the directional sensitivity of the DSLP. It is found that the magnetic field also affects the electron current branch of the I-V curves of certain segments on the DSLP. The I-V curves computed with and without the ambient magnetic field are then used to estimate the electron temperature. This study will be helpful to understand the floating potential and electron temperature anisotropies measured by the DSLP.

  8. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. PMID:23742956

  9. Method for semi-automated microscopy of filtration-enriched circulating tumor cells

    OpenAIRE

    Pailler, Emma; Oulhen, Marianne; Billiot, Fanny; Galland, Alexandre; Auger, Nathalie; Faugeroux, Vincent; Laplace-Builhé, Corinne; Besse, Benjamin; Loriot, Yohann; Ngo-Camus, Maud; Hemanda, Merouan; Colin R. Lindsay; Soria, Jean-Charles; Vielh, Philippe; Farace, Françoise

    2016-01-01

    Background Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. Methods Spiked cell l...

  10. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana

    OpenAIRE

    Kim Myung K; Hao Huaiqin; Fan Lusheng; Ash William M; Wan Yinglang; Lin Jinxing

    2011-01-01

    Abstract Background Total internal reflection fluorescence microscopy (TIRFM) is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM) was developed to circumvent this problem. However, the ...

  11. Segmentation of breast cancer cells positive 1+ and 3+ immunohistochemistry

    Science.gov (United States)

    Labellapansa, Ause; Muhimmah, Izzati; Indrayanti

    2016-03-01

    Breast cancer is a disease occurs as a result of uncontrolled cells growth. One examination method of breast cancer cells is using Immunohistochemistry (IHC) to determine status of Human Epidermal Growth Factor Receptor2 (HER2) protein. This study helps anatomic pathologist to determine HER2 scores using image processing techniques to obtain HER2 overexpression positive area percentages of 1+ and 3+ scores. This is done because the score of 0 is HER2 negative cells and 2+ scores have equivocal results, which means it could not be determined whether it is necessary to give targeted therapy or not. HER2 overexpression positive area percentage is done by dividing the area with a HER2 positive tumor area. To obtain better tumor area, repair is done by eliminating lymphocytes area which is not tumor area using morphological opening. Results of 10 images IHC scores of 1+ and 3+ and 10 IHC images testing without losing lymphocytes area in tumor area, has proven that the system has been able to provide an overall correct classification in accordance with the experts analysis. However by doing operation to remove non-tumor areas, classification can be done correctly 100% for scores of 3+ and 65% for scores of 1+.

  12. Carbon black nanoparticles and vascular dysfunction in cultured endothelial cells and artery segments

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Mikkelsen, Lone; Folkmann, Janne K; Sheykhzade, Majid; Cao, Yi; Roursgaard, Martin; Loft, Steffen; Møller, Peter

    2012-01-01

    Exposure to small size particulates is regarded as a risk factor for cardiovascular disease. We investigated effects of exposure to nanosized carbon black (CB) in human umbilical vein endothelial cells (HUVECs) and segments of arteries from rodents. The CB exposure was associated with increased...

  13. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tittmann, B. R. [Penn State; Xi, X. [Penn State

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property

  14. Spatial Modulation Microscopy for Real-Time Imaging of Plasmonic Nanoparticles and Cells

    CERN Document Server

    Fairbairn, N; Carter, R; Fernandes, R; Kanaras, A G; Elliott, T J; Somekh, M G; Pitter, M C; Muskens, O L

    2012-01-01

    Spatial modulation microscopy is a technique originally developed for quantitative spectroscopy of individual nano-objects. Here, a parallel implementation of the spatial modulation microscopy technique is demonstrated based on a line detector capable of demodulation at kHz frequencies. The capabilities of the imaging system are shown using an array of plasmonic nanoantennas and dendritic cells incubated with gold nanoparticles.

  15. Comparative methods for PET image segmentation in pharyngolaryngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Several methods have been proposed for the segmentation of 18F-FDG uptake in PET. In this study, we assessed the performance of four categories of 18F-FDG PET image segmentation techniques in pharyngolaryngeal squamous cell carcinoma using clinical studies where the surgical specimen served as the benchmark. Nine PET image segmentation techniques were compared including: five thresholding methods; the level set technique (active contour); the stochastic expectation-maximization approach; fuzzy clustering-based segmentation (FCM); and a variant of FCM, the spatial wavelet-based algorithm (FCM-SW) which incorporates spatial information during the segmentation process, thus allowing the handling of uptake in heterogeneous lesions. These algorithms were evaluated using clinical studies in which the segmentation results were compared to the 3-D biological tumour volume (BTV) defined by histology in PET images of seven patients with T3-T4 laryngeal squamous cell carcinoma who underwent a total laryngectomy. The macroscopic tumour specimens were collected ''en bloc'', frozen and cut into 1.7- to 2-mm thick slices, then digitized for use as reference. The clinical results suggested that four of the thresholding methods and expectation-maximization overestimated the average tumour volume, while a contrast-oriented thresholding method, the level set technique and the FCM-SW algorithm underestimated it, with the FCM-SW algorithm providing relatively the highest accuracy in terms of volume determination (-5.9 ± 11.9%) and overlap index. The mean overlap index varied between 0.27 and 0.54 for the different image segmentation techniques. The FCM-SW segmentation technique showed the best compromise in terms of 3-D overlap index and statistical analysis results with values of 0.54 (0.26-0.72) for the overlap index. The BTVs delineated using the FCM-SW segmentation technique were seemingly the most accurate and approximated closely the 3-D BTVs defined using the surgical specimens

  16. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    Science.gov (United States)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  17. IMAGING RED BLOOD CELL DYNAMICS BY QUANTITATIVE PHASE MICROSCOPY

    OpenAIRE

    Popescu, Gabriel; Park, YoungKeun; Choi, Wonshik; Dasari, Ramachandra R.; Michael S. Feld; Badizadegan, Kamran

    2008-01-01

    Red blood cells (RBCs) play a crucial role in health and disease, and structural and mechanical abnormalities of these cells have been associated with important disorders such as Sickle cell disease and hereditary cytoskeletal abnormalities. Although several experimental methods exist for analysis of RBC mechanical properties, optical methods stand out as they enable collecting mechanical and dynamic data from live cells without physical contact and without the need for exogenous contrast age...

  18. Live cell microscopy of DNA damage response in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Pinela da Silva, Sonia Cristina; Gallina, Irene; Eckert-Boulet, Nadine Valerie; Lisby, Michael

    Fluorescence microscopy of the DNA damage response in living cells stands out from many other DNA repair assays by its ability to monitor the response to individual DNA lesions in single cells. This is particularly true in yeast, where the frequency of spontaneous DNA lesions is relatively low...... live cell imaging allows for multiple cellular markers to be monitored over several hours. This chapter reviews useful fluorescent markers and genotoxic agents for studying the DNA damage response in living cells and provides protocols for live cell imaging, time-lapse microscopy, and for induction of...

  19. Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-01-01

    Full Text Available We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentation part, a dual-threshold method is proposed for improving the conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs. The proposed method was tested in segmenting the lymphoblasts on a public Acute Lymphoblastic Leukemia (ALL image dataset. The results show that the performance of the proposed method is better than single-threshold approach independently performed in RGB and HSV color space and the overall single WBC segmentation accuracy reaches 97.85%, showing a good prospect in subsequent lymphoblast classification and ALL diagnosis.

  20. Concomitant use of polarization and positive phase contrast microscopy for the study of microbial cells

    Czech Academy of Sciences Publication Activity Database

    Žižka, Zdeněk; Gabriel, Jiří

    2014-01-01

    Roč. 60, č. 6 (2014), s. 545-550. ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : microbial cells * microscopy * microorganism Subject RIV: EE - Microbiology, Virology Impact factor: 1.000, year: 2014

  1. Voltammetric scanning electrochemical cell microscopy: dynamic imaging of hydrazine electro-oxidation on platinum electrodes

    NARCIS (Netherlands)

    Chen, C.-H.; Jacobse, L.; McKelvey, K.; Lai, S.C.S.; Koper, M.T.M.; Unwin, P.R.

    2015-01-01

    Voltammetric scanning electrochemical cell microscopy (SECCM) incorporates cyclic voltammetry measurements in the SECCM imaging protocol, by recording electrochemical currents in a wide potential window at each pixel in a map. This provides much more information compared to traditional fixed potenti

  2. Coherent anti-Stokes Raman scattering microscopy of human smooth muscle cells in bioengineered tissue scaffolds

    Science.gov (United States)

    Brackmann, Christian; Esguerra, Maricris; Olausson, Daniel; Delbro, Dick; Krettek, Alexandra; Gatenholm, Paul; Enejder, Annika

    2011-02-01

    The integration of living, human smooth muscle cells in biosynthesized cellulose scaffolds was monitored by nonlinear microscopy toward contractile artificial blood vessels. Combined coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy was applied for studies of the cell interaction with the biopolymer network. CARS microscopy probing CH2-groups at 2845 cm-1 permitted three-dimensional imaging of the cells with high contrast for lipid-rich intracellular structures. SHG microscopy visualized the fibers of the cellulose scaffold, together with a small signal obtained from the cytoplasmic myosin of the muscle cells. From the overlay images we conclude a close interaction between cells and cellulose fibers. We followed the cell migration into the three-dimensional structure, illustrating that while the cells submerge into the scaffold they extrude filopodia on top of the surface. A comparison between compact and porous scaffolds reveals a migration depth of <10 μm for the former, whereas the porous type shows cells further submerged into the cellulose. Thus, the scaffold architecture determines the degree of cell integration. We conclude that the unique ability of nonlinear microscopy to visualize the three-dimensional composition of living, soft matter makes it an ideal instrument within tissue engineering.

  3. Confocal supercritical angle fluorescence microscopy for cell membrane imaging

    CERN Document Server

    Sivankutty, Siddharth; Mayet, Céline; Dupuis, Guillaume; Fort, Emmanuel; Lévêque-Fort, Sandrine

    2013-01-01

    We demonstrate sub-wavelength sectioning on biological samples with a conventional confocal microscope. This optical sectioning is achieved by the phenomenon of supercritical angle fuorescence, wherein only a fluorophore next to the interface of a refractive index discontinuity can emit propagating components of radiation into the so-called forbidden angles. The simplicity of this technique allows it to be integrated with a high numerical aperture confocal scanning microscope by only a simple modi?cation on the detection channel. Confocal-SAF microscopy would be a powerful tool to achieve high resolution surface imaging, especially for membrane imaging in biological samples

  4. OSTEOBLAST ADHESION OF BREAST CANCER CELLS WITH SCANNING ACOUSTIC MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Chiaki Miyasaka; Robyn R. Mercer; Andrea M. Mastro; Ken L. Telschow

    2005-03-01

    Breast cancer frequently metastasizes to the bone. Upon colonizing bone tissue, the cancer cells stimulate osteoclasts (cells that break bone down), resulting in large lesions in the bone. The breast cancer cells also affect osteoblasts (cells that build new bone). Conditioned medium was collected from a bone-metastatic breast cancer cell line, MDA-MB-231, and cultured with an immature osteoblast cell line, MC3T3-E1. Under these conditions the osteoblasts acquired a changed morphology and appeared to adherer in a different way to the substrate and to each other. To characterize cell adhesion, MC3T3-E1 osteoblasts were cultured with or without MDA-MB-231 conditioned medium for two days, and then assayed with a mechanical scanning acoustic reflection microscope (SAM). The SAM indicated that in normal medium the MC3T3-E1 osteoblasts were firmly attached to their plastic substrate. However, MC3T3-E1 cells cultured with MDA-MB-231 conditioned medium displayed both an abnormal shape and poor adhesion at the substrate interface. The cells were fixed and stained to visualize cytoskeletal components using optical microscopic techniques. We were not able to observe these differences until the cells were quite confluent after 7 days of culture. However, using the SAM, we were able to detect these changes within 2 days of culture with MDA-MB-231 conditioned medium

  5. In Situ Ecophysiology of Microbial Biofilm Communities Analyzed by CMEIAS Computer-Assisted Microscopy at Single-Cell Resolution

    Directory of Open Access Journals (Sweden)

    Youssef G. Yanni

    2013-06-01

    Full Text Available This paper describes the utility of CMEIAS (Center for Microbial Ecology Image Analysis System computer-assisted microscopy to extract data from accurately segmented images that provide 63 different insights into the ecophysiology of microbial populations and communities within biofilms and other habitats. Topics include quantitative assessments of: (i morphological diversity as an indicator of impacts that substratum physicochemistries have on biofilm community structure and dominance-rarity relationships among populations; (ii morphotype-specific distributions of biovolume body size that relate microbial allometric scaling, metabolic activity and growth physiology; (iii fractal geometry of optimal cellular positioning for efficient utilization of allocated nutrient resources; (iv morphotype-specific stress responses to starvation, environmental disturbance and bacteriovory predation; (v patterns of spatial distribution indicating positive and negative cell–cell interactions affecting their colonization behavior; and (vi significant methodological improvements to increase the accuracy of color-discriminated ecophysiology, e.g., differentiation of cell viability based on cell membrane integrity, cellular respiratory activity, phylogenetically differentiated substrate utilization, and N-acyl homoserine lactone-mediated cell–cell communication by bacteria while colonizing plant roots. The intensity of these ecophysiological attributes commonly varies at the individual cell level, emphasizing the importance of analyzing them at single-cell resolution and the proper spatial scale at which they occur in situ.

  6. Planar patch-clamp force microscopy on living cells

    Energy Technology Data Exchange (ETDEWEB)

    Pamir, Evren [Center for Nano Science, Ludwig-Maximilians University, Amalienstr 54, 80799 Munich (Germany); George, Michael; Fertig, Niels [Nanion Technologies GmbH, Erzgiessereistr. 4, 80335 Munich (Germany); Benoit, Martin [Center for Nano Science, Ludwig-Maximilians University, Amalienstr 54, 80799 Munich (Germany)], E-mail: martin.benoit@physik.uni-muenchen.de

    2008-05-15

    Here we report a new combination of the patch-clamp technique with the atomic force microscope (AFM). A planar patch-clamp chip microstructured from borosilicate glass was used as a support for mechanical probing of living cells. The setup not only allows for immobilizing even a non-adherent cell for measurements of its mechanical properties, but also for simultaneously measuring the electrophysiological properties of a single cell. As a proof of principle experiment we measured the voltage-induced membrane movement of HEK293 and Jurkat cells in the whole-cell voltage clamp configuration. The results of these measurements are in good agreement with previous studies. By using the planar patch-clamp chip for immobilization, the AFM not only can image non-adhering cells, but also gets easily access to an electrophysiologically controlled cellular probe at low vibrational noise.

  7. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  8. Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells

    OpenAIRE

    1981-01-01

    Cells were prepared for indirect immunofluorescence microscopy after paraformaldehyde fixation of multicellular root apices and brief incubation in cell wall-digesting enzymes. This allowed subsequent separation of the tissue into individual cells or short files of cells which were put onto coverslips coated with polylysine. Unlike spherical protoplasts made from living tissues, these preparations retain the same polyhedral shape as the cells from which they are derived. Cellular contents, in...

  9. Label-free characterization of living human induced pluripotent stem cells by subcellular topographic imaging technique using full-field quantitative phase microscopy coupled with interference reflection microscopy

    OpenAIRE

    Sugiyama, Norikazu; Asai, Yasuyuki; Yamauchi, Toyohiko; Kataoka, Takuji; Ikeda, Takahiro; Iwai, Hidenao; Sakurai, Takashi; Mizuguchi, Yoshinori

    2012-01-01

    There is a need for a noninvasive technique to monitor living pluripotent stem cell condition without any labeling. We present an optical imaging technique that is able to capture information about optical path difference through the cell and cell adhesion properties simultaneously using a combination of quantitative phase microscopy (QPM) and interference reflection microscopy (IRM) techniques. As a novel application of QPM and IRM, this multimodal imaging technique demonstrated its ability ...

  10. Cell volume and geometric parameters determination in living cells using confocal microscopy and 3D reconstruction

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: David Hevia, Aida Rodriguez-Garcia, Marta Alonso-Gervós, Isabel Quirós-González, Henar M Cimadevilla, Carmen Gómez-Cordovés, Rosa M Sainz & Juan C Mayo ### Abstract The protocol reported here describes a simple, easy, fast and reproducible method aimed to know the geometric parameters of living cells based on confocal laser scanning microscopy combined with 3D reconstruction software. Briefly, the method is based on intrinsic fluorescence properties of acridine orange (AO...

  11. Live Cell Microscopy-Based RNAi Screening in the Moss Physcomitrella patens.

    Science.gov (United States)

    Miki, Tomohiro; Nakaoka, Yuki; Goshima, Gohta

    2016-01-01

    RNA interference (RNAi) is a powerful technique enabling the identification of the genes involved in a certain cellular process. Here, we discuss protocols for microscopy-based RNAi screening in protonemal cells of the moss Physcomitrella patens, an emerging model system for plant cell biology. Our method is characterized by the use of conditional (inducible) RNAi vectors, transgenic moss lines in which the RNAi vector is integrated, and time-lapse fluorescent microscopy. This method allows for effective and efficient screening of >100 genes involved in various cellular processes such as mitotic cell division, organelle distribution, or cell growth. PMID:27581297

  12. Regulatory T Cells Vary over Bleeding Segments in Asthmatic and non-Asthmatic Women

    OpenAIRE

    Wegienka, Ganesa; Bobbitt, Kevin R.; Woodcroft, Kimberley J.; Havstad, Suzanne

    2011-01-01

    Sex hormones may play an important role in observed gender differences in asthma incidence and severity. Regulatory T cells (Treg cells) are presumed to be involved in asthma and may vary with hormone levels. To investigate the effects of sex hormones on levels of Treg cells (percentage of CD4+CD25+Foxp3+ lymphocytes that are CD127), a cohort of 13 women (6 with and 7 without an asthma diagnosis) had blood drawn multiple times over the course of a bleeding segment (bleeding interval plus the ...

  13. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    Science.gov (United States)

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. PMID:26133185

  14. Full Field Supercritical Angle Fluorescence Microscopy for live cell imaging

    CERN Document Server

    Barroca, Thomas; Delahaye, Julie; Lévêque-Fort, Sandrine; Fort, Emmanuel

    2013-01-01

    We introduce a full field fluorescence imaging technique with axial confinement of about 100 nm at the sample/substrate interface. Contrary to standard surface imaging techniques, this confinement is obtained through emission filtering. This technique is based on supercritical emission selectivity. It can be implemented on any epifluorescence microscope with a commercial high numerical aperture objective and offers a real time surface imaging capability. This technique is of particular interest for live cell membrane and adhesion studies. Using HEK cells, we show that one can observe simultaneously the surface and in-depth cell phenomena.

  15. Scanning electrochemical microscopy of living cells. 3. Rhodobacter sphaeroides.

    Science.gov (United States)

    Cai, Chenxin; Liu, Biao; Mirkin, Michael V; Frank, Harry A; Rusling, James F

    2002-01-01

    The scanning electrochemical microscope (SECM) was used to probe the redox activity of individual purple bacteria (Rhodobacter sphaeroides). The approaches developed in our previous studies of mammalian cells were expanded to measure the rates and investigate the pathway of transmembrane charge transfer in bacteria. The two groups of redox mediators (i.e., hydrophilic and hydrophobic redox species) were used to shuttle the electrons between the SECM tip electrode in solution and the redox centers inside the cell. The analysis of the dependencies of the measured rate constant on formal potential and concentration of mediator species in solution yielded information about the permeability of the outer cell membrane to different ionic species and intracellular redox properties. The maps of redox reactivity of the cell surface were obtained with a micrometer or submicrometer spatial resolution. PMID:11795778

  16. Pancreas++: Automated Quantification of Pancreatic Islet Cells in Microscopy Images

    OpenAIRE

    StuartMaudsley; BronwenMartin; JenniferLFiori

    2013-01-01

    The microscopic image analysis of pancreatic Islet of Langerhans morphology is crucial for the investigation of diabetes and metabolic diseases. Besides the general size of the islet, the percentage and relative position of glucagon-containing alpha-, and insulin-containing beta-cells is also important for pathophysiological analyses, especially in rodents. Hence, the ability to identify, quantify and spatially locate peripheral, and “involuted” alpha-cells in the islet core is an important a...

  17. Cystine uptake by cultured cells originating from dog proximal tubule segments

    International Nuclear Information System (INIS)

    Large numbers of kidney epithelial cells were cultured successfully from isolated dog proximal tubule segments. Cells in primary culture and in first passage retained the cystine-dibasic amino acid co-transporter system which is found in vivo and in freshly isolated proximal tubule segments. In contrast to other cultured cells, the cystine-glutamate anti-porter was absent in primary cultures. However, this anti-porter system seemed to be developing in cells in first passage. The intracellular ratio of cysteine:reduced glutathione (CSH:GSH) was maintained at 1:36 in both primary cultures and in low passage cells. Incubation of cells in primary culture for 5 min at 37 degrees C with 0.025 mM [35S]L-cystine resulted in incorporation of approximately 36 and 8.5% of the label into intracellular CSH and GSH, respectively. These cultured cells, therefore, seem to be an excellent model system for the eventual elucidation of (a) the inticacies of cystine metabolism and (b) regulation of (1) the cystine-dibasic amino acid co-transporter system and (2) the development of the cysteine-glutamate anti-porter system

  18. Pancreas++ : Automated Quantification of Pancreatic Islet Cells in Microscopy Images

    Directory of Open Access Journals (Sweden)

    StuartMaudsley

    2013-01-01

    Full Text Available The microscopic image analysis of pancreatic Islet of Langerhans morphology is crucial for the investigation of diabetes and metabolic diseases. Besides the general size of the islet, the percentage and relative position of glucagon-containing alpha-, and insulin-containing beta-cells is also important for pathophysiological analyses, especially in rodents. Hence, the ability to identify, quantify and spatially locate peripheral and ‘involuted’ alpha-cells in the islet core is an important analytical goal. There is a dearth of software available for the automated and sophisticated positional-quantification of multiple cell types in the islet core. Manual analytical methods for these analyses, while relatively accurate, can suffer from a slow throughput rate as well as user-based biases. Here we describe a newly developed pancreatic islet analytical software program, Pancreas++, which facilitates the fully-automated, non-biased, and highly reproducible investigation of islet area and alpha- and beta-cell quantity as well as position within the islet for either single or large batches of fluorescent images. We demonstrate the utility and accuracy of Pancreas++ by comparing its performance to other pancreatic islet size and cell type (alpha, beta quantification methods. Our Pancreas++ analysis was significantly faster than other methods, while still retaining low error rates and a high degree of result correlation with the manually generated reference standard.

  19. Enhanced endocytosis of nano-curcumin in nasopharyngeal cancer cells: An atomic force microscopy study

    Science.gov (United States)

    Prasanth, R.; Nair, Greshma; Girish, C. M.

    2011-10-01

    Recent studies in drug development have shown that curcumin can be a good competent due to its improved anticancer, antioxidant, anti-proliferative, and anti-inflammatory activities. A detailed real time characterization of drug (curcumin)-cell interaction is carried out in human nasopharyngeal cancer cells using atomic force microscopy. Nanocurcumin shows an enhanced uptake over micron sized drugs attributed to the receptor mediated route. Cell membrane stiffness plays a critical role in the drug endocytosis in nasopharyngeal cancer cells.

  20. Glycoproteins of coated pits, cell junctions, and the entire cell surface revealed by monoclonal antibodies and immunoelectron microscopy

    OpenAIRE

    1983-01-01

    Topographical descriptions of three major plasma membrane glycoproteins of murine 3T3 cells were obtained by immunoelectron microscopy with monoclonal antibodies. A glycoprotein of Mr 80,000 was distributed throughout the total cell surface. A second of Mr 90,000 was concentrated in coated pits, and a third of Mr 100,000 was localized at cell junctions.

  1. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    Science.gov (United States)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  2. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    Science.gov (United States)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  3. Interfacial energetics approach for analysis of endothelial cell and segmental polyurethane interactions.

    Science.gov (United States)

    Hill, Michael J; Cheah, Calvin; Sarkar, Debanjan

    2016-08-01

    Understanding the physicochemical interactions between endothelial cells and biomaterials is vital for regenerative medicine applications. Particularly, physical interactions between the substratum interface and spontaneously deposited biomacromolecules as well as between the induced biomolecular interface and the cell in terms of surface energetics are important factors to regulate cellular functions. In this study, we examined the physical interactions between endothelial cells and segmental polyurethanes (PUs) using l-tyrosine based PUs to examine the structure-property relations in terms of PU surface energies and endothelial cell organization. Since, contact angle analysis used to probe surface energetics provides incomplete interpretation and understanding of the physical interactions, we sought a combinatorial surface energetics approach utilizing water contact angle, Zisman's critical surface tension (CST), Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT), and applied to both substrata and serum adsorbed matrix to correlate human umbilical vein endothelial cell (HUVEC) behavior with surface energetics of l-tyrosine based PU surfaces. We determined that, while water contact angle of substratum or adsorbed matrix did not correlate well with HUVEC behavior, overall higher polarity according to the numerical method as well as Lewis base character of the substratum explained increased HUVEC interaction and monolayer formation as opposed to organization into networks. Cell interaction was also interpreted in terms of the combined effects of substratum and adsorbed matrix polarity and Lewis acid-base character to determine the effect of PU segments. PMID:27065449

  4. Imaging immune response of skin mast cells in vivo with two-photon microscopy

    Science.gov (United States)

    Li, Chunqiang; Pastila, Riikka K.; Lin, Charles P.

    2012-02-01

    Intravital multiphoton microscopy has provided insightful information of the dynamic process of immune cells in vivo. However, the use of exogenous labeling agents limits its applications. There is no method to perform functional imaging of mast cells, a population of innate tissue-resident immune cells. Mast cells are widely recognized as the effector cells in allergy. Recently their roles as immunoregulatory cells in certain innate and adaptive immune responses are being actively investigated. Here we report in vivo mouse skin mast cells imaging with two-photon microscopy using endogenous tryptophan as the fluorophore. We studied the following processes. 1) Mast cells degranulation, the first step in the mast cell activation process in which the granules are released into peripheral tissue to trigger downstream reactions. 2) Mast cell reconstitution, a procedure commonly used to study mast cells functioning by comparing the data from wild type mice, mast cell-deficient mice, and mast-cell deficient mice reconstituted with bone marrow-derived mast cells (BMMCs). Imaging the BMMCs engraftment in tissue reveals the mast cells development and the efficiency of BMMCs reconstitution. We observed the reconstitution process for 6 weeks in the ear skin of mast cell-deficient Kit wsh/ w-sh mice by two-photon imaging. Our finding is the first instance of imaging mast cells in vivo with endogenous contrast.

  5. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    International Nuclear Information System (INIS)

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  6. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  7. Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-Soo; Torelli, Marco; Hamers, Robert J.; Murphy, Catherine; Orr, Galya; Haynes, Christy L.

    2014-01-01

    A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.

  8. Two-photon microscopy and spectral detection for ex vivo imaging of individual stem cells

    OpenAIRE

    sprotocols

    2015-01-01

    This protocol describes the use of two-photon microscopy to image the dynamic behavior of hematopoietic stem cells interacting with their niche. To distinguish the eGFP expressing cells from auto-fluorescent background, we use spectral finger-printing. We include image processing steps to visualize the results and extract quantitative information.

  9. Correlating Intravital Multi-Photon Microscopy to 3D Electron Microscopy of Invading Tumor Cells Using Anatomical Reference Points

    OpenAIRE

    Karreman, Matthia A.; Mercier, Luc; Schieber, Nicole L.; Shibue, Tsukasa; Schwab, Yannick; Goetz, Jacky G.

    2014-01-01

    Correlative microscopy combines the advantages of both light and electron microscopy to enable imaging of rare and transient events at high resolution. Performing correlative microscopy in complex and bulky samples such as an entire living organism is a time-consuming and error-prone task. Here, we investigate correlative methods that rely on the use of artificial and endogenous structural features of the sample as reference points for correlating intravital fluorescence microscopy and electr...

  10. Dual interference channel quantitative phase microscopy of live cell dynamics

    OpenAIRE

    Shaked, Natan T.; Rinehart, Matthew T.; Wax, Adam

    2009-01-01

    We introduce and experimentally demonstrate a new fast and accurate method for quantitative imaging of the dynamics of live biological cells. Using a dual-channel interferometric setup, two phase-shifted interferograms of nearly-transparent biological samples are acquired in a single digital camera exposure, and digitally processed into the phase profile of the sample. Since two interferograms of the same sample are acquired simultaneously, most of the common phase noise is eliminated, enabli...

  11. Super-Resolution Microscopy Using Standard Fluorescent Proteins in Intact Cells under Cryo-Conditions

    OpenAIRE

    Kaufmann, Rainer; Schellenberger, Pascale; Seiradake, Elena; Dobbie, Ian M.; Jones, E. Yvonne; Davis, Ilan; Hagen, Christoph; Grünewald, Kay

    2014-01-01

    We introduce a super-resolution technique for fluorescence cryo-microscopy based on photoswitching of standard genetically encoded fluorescent marker proteins in intact mammalian cells at low temperature (81 K). Given the limit imposed by the lack of cryo-immersion objectives, current applications of fluorescence cryo-microscopy to biological specimens achieve resolutions between 400–500 nm only. We demonstrate that the single molecule characteristics of reversible photobleaching of mEGFP and...

  12. 2. Brazilian Congress on Cell Biology and 7. Brazilian Colloquium on Electron Microscopy - Abstracts

    International Nuclear Information System (INIS)

    Immunology, virology, bacteriology, genetics and protozoology are some of the subjects treated in the 2. Brazilian Congress on Cell Biology. Studies using radioisotopic techniques and ultrastructural cytological studies are presented. Use of optical - and electron microscopy in some of these studies is discussed. In the 7. Brazilian Colloquium on Electron Microscopy, the application of this technique to materials science is discussed (failure analysis in metallurgy, energy dispersion X-ray analysis, etc). (I.C.R.)

  13. Cell lineage analysis of the mandibular segment of the amphipod Orchestia cavimana reveals that the crustacean paragnaths are sternal outgrowths and not limbs

    Directory of Open Access Journals (Sweden)

    Scholtz Gerhard

    2006-12-01

    Full Text Available Abstract The question of arthropod head segmentation has become one of the central issues in Evolutionary Developmental Biology. The number of theories pertaining to head segments progressively enlarges, old concepts have been revitalized, and nearly every conceivable composition of the arthropod head has at some point received discussion. One contentious issue involves a characteristic mouthpart in crustaceans – the lower lips or the so-called paragnaths. The paragnaths build the posterior border of the mouth region antagonistic to the upper lip – the labrum. We show here the development of the appendage-like structures in the mandibular region of the amphipod crustacean Orchestia cavimana at a high level of cellular resolution. The embryos are examined during development of the mouthparts using in vivo labeling. An invariant cell division pattern of the mandibular segment was detected by 4D-microscopy and a preliminary model for pattern of the first cleavages in the mandibular region created. With this indispensable precondition single ectodermal cells of the grid-like pattern were labeled with DiI – a lipophilic fluorescent dye – to trace cell lineages and determine the clonal composition of the developing mouthparts, especially the mandibular segment. From our data it is evident that the paragnaths are sternal outgrowths of the mandible segment. The assumption of the limb nature of paragnaths and the presence of an additional head segment between the mandibular and the second antennal segments are clearly refuted by our data. Our results show the power of cell lineage and clonal analyses for inferences on the nature, origin and thus homology of morphological structures. With this kind of investigation morphological and gene expression data can be complemented. We discuss notable similarities of paragnath anlagen to those of the hypopharynx complex in myriapods and hexapods. The fact that both structures grow out as two lateral buds

  14. Multimodal label-free growth and morphology characterization of different cell types in a single culture with quantitative digital holographic phase microscopy

    Science.gov (United States)

    Kemper, Björn; Wibbeling, Jana; Kastl, Lena; Schnekenburger, Jürgen; Ketelhut, Steffi

    2015-03-01

    For the analysis of the impact of pharmaceuticals or pathogens on different cellular phenotypes under identical measurement conditions and to analyze interactions between different cellular specimens a minimally-invasive quantitative observation of different cell types in a single culture is of particular interest. Digital holographic microscopy (DHM), a var-iant of quantitative phase microscopy (QPM), provides high resolution detection of optical path length changes that is suitable for stain-free minimally-invasive live cell analysis. Due to low light intensities for object illumination, QPM minimizes the interaction with the sample and has been demonstrated in particular to be suitable for long-term time-lapse investigations, e.g., for the detection of cell morphology alterations due to drugs and toxins. Furthermore, QPM has been demonstrated to be a versatile tool for the quantification of cellular growth and motility. Thus, we studied the feasibility of QPM for the analysis of mixed cell cultures and explored if quantitative phase images provide sufficient information to distinguish between different cell types and to extract cell specific parameters. For the experiments quantitative phase imaging with DHM was utilized. Mixed cell cultures with different cell types were observed with quantitative DHM phase contrast up to 35 h. The obtained series of quantitative phase images were evaluated by adapted algorithms for image segmentation. From the segmented images the area covered by the cells, the cellular dry mass and the mean cell thickness were calculated and used in the further analysis as parameters to quantify the reliability of the measurement principle. The obtained results demonstrate that it is possible to characterize the growth of cell types with different mor-phology features separately in a single culture.

  15. Confocal Raman microscopy of pathologic cells in cerebrospinal fluid

    International Nuclear Information System (INIS)

    In this work, the spatial localization of leucocytes, bacteria, and erythrocytes in the crystal pattern of a dried droplet of cerebrospinal fluid (CSF) is established. Characteristic lines are detected and identified in the Raman spectrum of the CSF that point to the presence of pathologic cells therein and can be used in a timely way to diagnose meningitis, the spectroscopic sample preparation procedure being simple enough. A dry CSF sample retains its characteristic spectral features for no less than three days, which is important for its safe keeping and transportation, and also for the computer processing of its spectra. (letter)

  16. Spatial proton exchange membrane fuel cell performance under carbon monoxide poisoning at a low concentration using a segmented cell system

    Science.gov (United States)

    Reshetenko, Tatyana V.; Bethune, Keith; Rocheleau, Richard

    2012-11-01

    The impact of the fuel contaminant CO, which was intentionally injected in to the hydrogen stream at a concentration of 2 ppm, on proton exchange membrane fuel cell (PEMFC) performance distribution was studied using a segmented cell system and spatial electrochemical impedance spectroscopy (EIS). The cell was operated under a galvanostatic control of the overall cell current at 0.8 A cm-2, and tests were carried out under H2/O2, H2/air, and H2/H2 gas configurations. Upon CO injection the voltage decreased by 0.080, 0.300, and 0.320 V for O2, air, and H2 cathode gases, respectively. The voltage drop was accompanied by changes in the current density distributions. Inlet segments 1-4 showed a decrease in current due to CO adsorption on Pt, while, downstream segments 7-10 exhibited an increase in current. The performance completely recovered within 1-2 h after CO injection was stopped. The conversion of CO proceeds through a combination of catalytic and electrochemical oxidation reactions; however, the catalytic oxidation of CO is likely the dominant process. It was found that an increased membrane gas permeability can mitigate the impact of CO, mainly due to the catalytic oxidation of adsorbed CO on the Pt anode by the permeated O2.

  17. The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)

    OpenAIRE

    Zheng, Guoan; Lee, Seung Ah; Antebi, Yaron; Elowitz, Michael B.; Yang, Changhuei

    2011-01-01

    We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap availability of high performance image sensor chips to provide a low-cost and automated microscopy soluti...

  18. Cell morphology classification in phase contrast microscopy image reducing halo artifact

    Science.gov (United States)

    Kang, Mi-Sun; Song, Soo-Min; Lee, Hana; Kim, Myoung-Hee

    2012-03-01

    Since the morphology of tumor cells is a good indicator of their invasiveness, we used time-lapse phase-contrast microscopy to examine the morphology of tumor cells. This technique enables long-term observation of the activity of live cells without photobleaching and phototoxicity which is common in other fluorescence-labeled microscopy. However, it does have certain drawbacks in terms of imaging. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we examined cell morphology to classify tumor cells as malignant and benign.

  19. A simple way to identify non-viable cells within living plant tissue using confocal microscopy

    Directory of Open Access Journals (Sweden)

    Truernit Elisabeth

    2008-06-01

    Full Text Available Abstract Background Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. Results Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy. The dyes were selective for non-viable cells and showed very little background staining in living cells. Simultaneous detection of SYTOX dye and fluorescent protein (e.g. GFP fluorescence was possible. Conclusion The fluorescent SYTOX dyes are useful for an easy and quick first assay of plant cell viability in living plant samples using fluorescence and confocal laser-scanning microscopy.

  20. A simple way to identify non-viable cells within living plant tissue using confocal microscopy

    OpenAIRE

    Truernit Elisabeth; Haseloff Jim

    2008-01-01

    Abstract Background Plant cell death is a normal process during plant development. Mutant plants may exhibit misregulation of this process, which can lead to severe growth defects. Simple ways of visualising cell death in living plant tissues can aid the study of plant development and physiology. Results Spectral variants of the fluorescent SYTOX dyes were tested for their usefulness for the detection of non-viable cells within plant embryos and roots using confocal laser-scanning microscopy....

  1. Cytopathogenicity of Naegleria fowleri for rat neuroblastoma cell cultures: scanning electron microscopy study.

    OpenAIRE

    Marciano-Cabral, F; John, D. T.

    1983-01-01

    Neuroblastoma cells were inoculated with Naegleria fowleri Lee and examined for cytopathology at various periods post-inoculation by scanning electron microscopy. By 18 h post-inoculation, approximately 50% of neuroblastoma cells were nonviable, as evidenced by trypan blue exclusion and light microscopic examination. This cytopathology resulted from piecemeal consumption of target cells mediated by a sucker apparatus extending from the surface of N. fowleri.

  2. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system....

  3. Cellular mechanisms of alpha herpesvirus egress: live cell fluorescence microscopy of pseudorabies virus exocytosis.

    OpenAIRE

    Hogue, Ian B.; Jens B Bosse; Jiun-Ruey Hu; Thiberge, Stephan Y.; Enquist, Lynn W.

    2014-01-01

    Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluo...

  4. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes. PMID:27515076

  5. Computational modeling of STED microscopy through multiple biological cells under one- and two-photon excitation

    Science.gov (United States)

    Mark, Andrew E.; Davis, Mitchell A.; Starosta, Matthew S.; Dunn, Andrew K.

    2015-03-01

    While superresolution optical microscopy techniques afford enhanced resolution for biological applications, they have largely been used to study structures in isolated cells. We use the FDTD method to simulate the propagation of focused beams for STED microscopy through multiple biological cells. We model depletion beams that provide 2D and 3D confinement of the fluorescence spot and assess the effective PSF of the system as a function of focal depth. We compare the relative size of the STED effective PSF under one- and two-photon excitation. PSF calculations suggest that imaging is possible up to the maximum simulation depth if the fluorescence emission remains detectable.

  6. Dental pulp stem cells (DPSCs) differentiation study by confocal Raman microscopy

    Science.gov (United States)

    Salehi, H.; Collart-Dutilleul, P.-Y.; Gergely, C.; Cuisinier, F. J. G.

    2014-03-01

    Regenerative medicine brings a huge application for Mesenchymal stem cells such as Dental Pulp Stem Cells (DPSCs). Confocal Raman microscopy, a non-invasive, label free , real time and high spatial resolution imaging technique is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800-3000 cm-1 region (C-H stretching) and 960 cm-1 peak (phosphate PO4 3-) were collected. In Dental Pulp Stem Cells 21st day differentiated in buffer solution, phosphate peaks ν1 PO4 3- (first vibrational mode) at 960cm-1 and ν2 PO4 3- at 430cm-1 and ν4 PO4 3- at 585cm-1 are obviously present. Confocal Raman microscopy enables the detection of cell differentiation and it can be used to investigate clinical stem cell research.

  7. Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes.

    Science.gov (United States)

    Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei

    2016-08-16

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. In particular, fluorescence microscopy with the expanding choices of fluorescent probes has provided a comprehensive toolkit to tag and visualize various molecules of interest with exquisite specificity and high sensitivity. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because common fluorescent labels, which are relatively bulky, could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, a bioorthogonal chemical imaging platform has recently been introduced. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes and stable isotopes), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, and biocompatibility for imaging small biomolecules in live systems. In this Account, we review recent technical achievements for visualizing a broad spectrum of small biomolecules, including ribonucleosides and deoxyribonucleosides, amino acids, fatty acids, choline, glucose, cholesterol, and small-molecule drugs in live biological systems ranging from individual cells to animal tissues and model organisms. Importantly, this platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, we discuss further chemical and spectroscopic strategies for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". As a unique tool for biological discovery, this platform has been applied to

  8. Morphological Measurement of Living Cells in Methanol with Digital Holographic Microscopy

    Directory of Open Access Journals (Sweden)

    Yunxin Wang

    2013-01-01

    Full Text Available Cell morphology is the research foundation in many applications related to the estimation of cell status, drug response, and toxicity screening. In biomedical field, the quantitative phase detection is an inevitable trend for living cells. In this paper, the morphological change of HeLa cells treated with methanol of different concentrations is detected using digital holographic microscopy. The compact image-plane digital holographic system is designed based on fiber elements. The quantitative phase image of living cells is obtained in combination with numerical analysis. The statistical analysis shows that the area and average optical thickness of HeLa cells treated with 12.5% or 25% methanol reduce significantly, which indicates that the methanol with lower concentration could cause cellular shrinkage. The area of HeLa cells treated with 50% methanol is similar to that of normal cells (P>0.05, which reveals the fixative effect of methanol with higher concentration. The maximum optical thickness of the cells treated with 12.5%, 25%, and 50% methanol is greater than that of untreated cells, which implies the pyknosis of HeLa cells under the effect of methanol. All of the results demonstrate that digital holographic microscopy has supplied a noninvasive imaging alternative to measure the morphological change of label-free living cells.

  9. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    Science.gov (United States)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  10. Segmental pairs of giant insect cells discharge presumptive immune proteins at each larval molt.

    Science.gov (United States)

    Nardi, James B; Bee, Charles M; Miller, Lou Ann; Imai, Brian S; Yau, Peter M

    2016-05-15

    A pair of massive secretory cells exists within each thoracic and the nine abdominal segments of Manduca larvae. Each of these cells is nestled between the dorsal integument and underlying muscles. Contents of large vacuoles in these cells are abruptly discharged at each molt and have always been considered to contribute to shedding and/or formation of cuticle. Peanut agglutinin is a specific lectin label for these secretory vacuoles; vacuoles label intensely immediately before each molt as vacuoles attain their maximal size. Contents of vacuoles are restored after each molt and throughout most of each intermolt. During the molt cycle these cells secrete contents of their vacuoles into the interior hemocoel rather than onto the exterior cuticle. Vacuoles discharge via a distinctive mechanism involving partitioning of contents into numerous vesicles that move to the cell surface. Dermal secretory cells were dissected from larvae before and after the 4th-5th instar molt. Proteins from pre-molt and post-molt secretory cells were separated by two-dimensional electrophoresis to establish which proteins are discharged at the molt. While secreted proteins are novel, all have presumptive roles in immune responses. Dermal secretory cells may represent a new, unsuspected component of the innate immune system that release their proteins during the vulnerable molting period of an insect's life. PMID:27039264

  11. Advantages of indium-tin oxide-coated glass slides in correlative scanning electron microscopy applications of uncoated cultured cells.

    NARCIS (Netherlands)

    Pluk, H.; Stokes, D.J.; Lich, B.; Wieringa, B.; Fransen, J.A.M.

    2009-01-01

    A method of direct visualization by correlative scanning electron microscopy (SEM) and fluorescence light microscopy of cell structures of tissue cultured cells grown on conductive glass slides is described. We show that by growing cells on indium-tin oxide (ITO)-coated glass slides, secondary elect

  12. Observations of xenon gas-treated barley cells in solution by atomic force microscopy.

    Science.gov (United States)

    Yoshino, T; Sotome, I; Ohtani, T; Isobe, S; Oshita, S; Maekawa, T

    2000-01-01

    Barley cells cut from a sprout were exposed to either air or high-pressure xenon gas for 3 days and the surface of those cells was observed by atomic force microscopy (AFM) to examine the effect of the gas treatment. This method enabled the direct observation of the fresh surface of the barley cells in solution at high resolution. The cuticle layer was preserved on the primary cell wall of 0.48 MPa xenon gas-treated barley cells, while air-treated barley cells lost the cuticle layer from the primary cell wall. These findings indicate that the high-pressure xenon gas treatment is effective to preserve the cuticle layer attached to the primary cell wall. AFM is a powerful tool for the observation of the surface structure of living plant cells in solution. PMID:11108038

  13. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy.

    Science.gov (United States)

    Shao, Manjun; Jiang, Lei; Cong, Wei; Ouyang, Fan

    2002-04-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage. PMID:18763074

  14. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy

    Institute of Scientific and Technical Information of China (English)

    邵曼君; 姜蕾; 丛威; 欧阳藩

    2002-01-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage.

  15. Single Molecule Localization Microscopy of Mammalian Cell Nuclei on the Nanoscale.

    Science.gov (United States)

    Szczurek, Aleksander; Xing, Jun; Birk, Udo J; Cremer, Christoph

    2016-01-01

    Nuclear texture analysis is a well-established method of cellular pathology. It is hampered, however, by the limits of conventional light microscopy (ca. 200 nm). These limits have been overcome by a variety of super-resolution approaches. An especially promising approach to chromatin texture analysis is single molecule localization microscopy (SMLM) as it provides the highest resolution using fluorescent based methods. At the present state of the art, using fixed whole cell samples and standard DNA dyes, a structural resolution of chromatin in the 50-100 nm range is obtained using SMLM. We highlight how the combination of localization microscopy with standard fluorophores opens the avenue to a plethora of studies including the spatial distribution of DNA and associated proteins in eukaryotic cell nuclei with the potential to elucidate the functional organization of chromatin. These views are based on our experience as well as on recently published research in this field. PMID:27446198

  16. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions.

    Science.gov (United States)

    Kaufmann, Rainer; Schellenberger, Pascale; Seiradake, Elena; Dobbie, Ian M; Jones, E Yvonne; Davis, Ilan; Hagen, Christoph; Grünewald, Kay

    2014-07-01

    We introduce a super-resolution technique for fluorescence cryo-microscopy based on photoswitching of standard genetically encoded fluorescent marker proteins in intact mammalian cells at low temperature (81 K). Given the limit imposed by the lack of cryo-immersion objectives, current applications of fluorescence cryo-microscopy to biological specimens achieve resolutions between 400-500 nm only. We demonstrate that the single molecule characteristics of reversible photobleaching of mEGFP and mVenus at liquid nitrogen temperature are suitable for the basic concept of single molecule localization microscopy. This enabled us to perform super-resolution imaging of vitrified biological samples and to visualize structures in unperturbed fast frozen cells for the first time with a structural resolution of ∼125 nm (average single molecule localization accuracy ∼40 nm), corresponding to a 3-5 fold resolution improvement. PMID:24884378

  17. Darkfield-Confocal Microscopy detection of nanoscale particle internalization by human lung cells

    Directory of Open Access Journals (Sweden)

    Samet James M

    2011-01-01

    Full Text Available Abstract Background Concerns over the health effects of nanomaterials in the environment have created a need for microscopy methods capable of examining the biological interactions of nanoparticles (NP. Unfortunately, NP are beyond the diffraction limit of resolution for conventional light microscopy (~200 nm. Fluorescence and electron microscopy techniques commonly used to examine NP interactions with biological substrates have drawbacks that limit their usefulness in toxicological investigation of NP. EM is labor intensive and slow, while fluorescence carries the risk of photobleaching the sample and has size resolution limits. In addition, many relevant particles lack intrinsic fluorescence and therefore can not be detected in this manner. To surmount these limitations, we evaluated the potential of a novel combination of darkfield and confocal laser scanning microscopy (DF-CLSM for the efficient 3D detection of NP in human lung cells. The DF-CLSM approach utilizes the contrast enhancements of darkfield microscopy to detect objects below the diffraction limit of 200 nm based on their light scattering properties and interfaces it with the power of confocal microscopy to resolve objects in the z-plane. Results Validation of the DF-CLSM method using fluorescent polystyrene beads demonstrated spatial colocalization of particle fluorescence (Confocal and scattered transmitted light (Darkfield along the X, Y, and Z axes. DF-CLSM imaging was able to detect and provide reasonable spatial locations of 27 nm TiO2 particles in relation to the stained nuclei of exposed BEAS 2B cells. Statistical analysis of particle proximity to cellular nuclei determined a significant difference between 5 min and 2 hr particle exposures suggesting a time-dependant internalization process. Conclusions DF-CLSM microscopy is an alternative to current conventional light and electron microscopy methods that does not rely on particle fluorescence or contrast in electron

  18. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    International Nuclear Information System (INIS)

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development. (special issue article)

  19. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    Science.gov (United States)

    Shevchuk, A. I.; Novak, P.; Velazquez, M. A.; Fleming, T. P.; Korchev, Y. E.

    2013-09-01

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development.

  20. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    Science.gov (United States)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  1. Chip-based optical microscopy for imaging membrane sieve plates of liver scavenger cells

    Science.gov (United States)

    Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Ahluwalia, Balpreet S.

    2015-08-01

    The evanescent field on top of optical waveguides is used to image membrane network and sieve-plates of liver endothelial cells. In waveguide excitation, the evanescent field is dominant only near the surface (~100-150 nm) providing a default optical sectioning by illuminating fluorophores in close proximity to the surface and thus benefiting higher signal-to-noise ratio. The sieve plates of liver sinusoidal endothelial cells are present on the cell membrane, thus near-field waveguide chip-based microscopy configuration is preferred over epi-fluorescence. The waveguide chip is compatible with optical fiber components allowing easy multiplexing to different wavelengths. In this paper, we will discuss the challenges and opportunities provided by integrated optical microscopy for imaging cell membranes.

  2. LOCALIZATION OF BRANCHING ENZYME IN POTATO-TUBER CELLS WITH THE USE OF IMMUNOELECTRON MICROSCOPY

    NARCIS (Netherlands)

    KRAM, AM; OOSTERGETEL, GT; VANBRUGGEN, EFJ

    1993-01-01

    Potato branching enzyme, a key enzyme in the biosynthesis of starch, was localized in amyloplasts in starch-storage cells of potato (Solanum tuberosum L) with the use of immunogold electron microscopy. Branching enzyme was found in the amyloplast stroma, concentrated at the interface of the stroma a

  3. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    Science.gov (United States)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43‑ symmetric stretch vibrations at 959 cm‑1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.

  4. Autophagic myelin destruction by schwann cells during wallerian degeneration and segmental demyelination.

    Science.gov (United States)

    Jang, So Young; Shin, Yoon Kyung; Park, So Young; Park, Joo Youn; Lee, Hye Jeong; Yoo, Young Hyun; Kim, Jong Kuk; Park, Hwan Tae

    2016-05-01

    As lysosomal hydrolysis has long been suggested to be responsible for myelin clearance after peripheral nerve injury, in this study, we investigated the possible role of autophagolysosome formation in myelin phagocytosis by Schwann cells and its final contribution to nerve regeneration. We found that the canonical formation of autophagolysosomes was induced in demyelinating Schwann cells after injury, and the inhibition of autophagy via Schwann cell-specific knockout of the atg7 gene or pharmacological intervention of lysosomal function caused a significant delay in myelin clearance. However, Schwann cell dedifferentiation, as demonstrated by extracellular signal-regulated kinase activation and c-Jun induction, and redifferentiation were not significantly affected, and thus the entire repair program progressed normally in atg7 knockout mice. Finally, autophagic Schwann cells were also found during segmental demyelination in a mouse model of inflammatory peripheral neuropathy. Together, our findings suggest that autophagy is the self-myelin destruction mechanism of Schwann cells, but mechanistically, it is a process distinct from Schwann cell plasticity for nerve repair. GLIA 2016;64:730-742. PMID:26712109

  5. Hierarchical Mergence Approach to Cell Detection in Phase Contrast Microscopy Images

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available Phase contrast microscope is one of the most universally used instruments to observe long-term cell movements in different solutions. Most of classic segmentation methods consider a homogeneous patch as an object, while the recorded cell images have rich details and a lot of small inhomogeneous patches, as well as some artifacts, which can impede the applications. To tackle these challenges, this paper presents a hierarchical mergence approach (HMA to extract homogeneous patches out and heuristically add them up. Initially, the maximum region of interest (ROI, in which only cell events exist, is drawn by using gradient information as a mask. Then, different levels of blurring based on kernel or grayscale morphological operations are applied to the whole image to produce reference images. Next, each of unconnected regions in the mask is applied with Otsu method independently according to different reference images. Consequently, the segmentation result is generated by the combination of usable patches in all informative layers. The proposed approach is more than simply a fusion of the basic segmentation methods, but a well-organized strategy that integrates these basic methods. Experiments demonstrate that the proposed method outperforms previous methods within our datasets.

  6. Confocal microscopy study of pertussis toxin and toxoids on CHO-cells

    OpenAIRE

    Tan, Yajun; Fleck, Roland A.; Asokanathan, Catpagavalli; Yuen, Chun-Ting; Xing, Dorothy; Zhang, Shumin; Wang, Junzhi

    2013-01-01

    Pertussis toxin in its detoxified form is a major component of all current acellular pertussis vaccines. Here we report the membrane translocation and internalization activities of pertussis toxin and various pertussis toxoids using Chinese hamster ovary cells and confocal microscopy based on indirect immunofluorescence labeling. Chemically detoxified pertussis toxoids were able to translocate/internalize into cells at the concentration about 1,000 times higher than the native toxin. Pertussi...

  7. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells

    OpenAIRE

    Mauzeroll, Janine; Bard, Allen J.

    2004-01-01

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV–visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution,...

  8. Label-free detection of anticancer drug paclitaxel in living cells by confocal Raman microscopy

    Science.gov (United States)

    Salehi, H.; Derely, L.; Vegh, A.-G.; Durand, J.-C.; Gergely, C.; Larroque, C.; Fauroux, M.-A.; Cuisinier, F. J. G.

    2013-03-01

    Confocal Raman microscopy, a non-invasive, label-free, and high spatial resolution imaging technique is employed to trace the anticancer drug paclitaxel in living Michigan Cancer Foundation-7 (MCF-7) cells. The Raman images were treated by K-mean cluster analysis to detect the drug in cells. Distribution of paclitaxel in cells is verified by calculating the correlation coefficient between the reference spectrum of the drug and the whole Raman image spectra. A time dependent gradual diffusion of paclitaxel all over the cell is observed suggesting a complementary picture of the pharmaceutical action of this drug based on rapid binding of free tubulin to crystallized paclitaxel.

  9. Characterization of Combinatorial Effects of Toxic Substances by Cell Cultivation in Micro Segmented Flow

    Science.gov (United States)

    Cao, J.; Kürsten, D.; Funfak, A.; Schneider, S.; Köhler, J. M.

    This chapter reviews the application of micro segmented flow for the screening of toxic effects on bacteria, eukaryotic microorganisms, human cells and multicellular systems. Besides, the determination of complete dose/response functions of toxic substances with a minimum of cells and chemicals, it is reviewed how two- and multi-dimensional concentration spaces can be screened in order to evaluate combinatorial effects of chemicals on cells. The challenge for the development of new and miniaturized methods is derived from the increase of the number of different used substances in technique, agriculture and medicine, from the increasing release of new substances and nanomaterials into our environment and from the improvement of the insight of toxicity of natural substances and the interferences between different substances resulting in toxic effects on different organisms, cells and tissues. The application of two-dimensional toxicological screenings on selected examples of effector combinations is described. Examples for the detection of an independent, an additive and a synergistic interference between two substances are given. In addition, it is shown that the screening for toxicological effects in complete two-dimensional concentration spaces allows the detection of complex response behaviour—for example, the formation of tolerances and stimulation peaks—which thereby can be characterized. The characterization of interference of toxic organic substances with silver nanoparticles is reported as an example for the potential of micro segmented-flow technique for evaluating the toxicological impact of new materials. Finally, it is demonstrated that the technique can be applied for different organisms like simple bacteria, single cell alga such as Chlorella vulgaris and multicellular systems up to the development of complete organisms beginning from eggs.

  10. Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy.

    Science.gov (United States)

    Wildt, Bridget E; Celedon, Alfredo; Maurer, Elizabeth I; Casey, Brendan J; Nagy, Amber M; Hussain, Saber M; Goering, Peter L

    2016-08-01

    Cytotoxicity assessments of nanomaterials, such as silver nanoparticles, are challenging due to interferences with test reagents and indicators as well uncertainties in dosing as a result of the complex nature of nanoparticle intracellular accumulation. Furthermore, current theories suggest that silver nanoparticle cytotoxicity is a result of silver nanoparticle dissolution and subsequent ion release. This study introduces a novel technique, nanoparticle associated cytotoxicity microscopy analysis (NACMA), which combines fluorescence microscopy detection using ethidium homodimer-1, a cell permeability marker that binds to DNA after a cell membrane is compromised (a classical dead-cell indicator dye), with live cell time-lapse microscopy and image analysis to simultaneously investigate silver nanoparticle accumulation and cytotoxicity in L-929 fibroblast cells. Results of this method are consistent with traditional methods of assessing cytotoxicity and nanoparticle accumulation. Studies conducted on 10, 50, 100 and 200 nm silver nanoparticles reveal size dependent cytotoxicity with particularly high cytotoxicity from 10 nm particles. In addition, NACMA results, when combined with transmission electron microscopy imaging, reveal direct evidence of intracellular silver ion dissolution and possible nanoparticle reformation within cells for all silver nanoparticle sizes. PMID:26643278

  11. Live cell imaging with chemical specificity using dual frequency CARS microscopy.

    Science.gov (United States)

    Pope, Iestyn; Langbein, Wolfgang; Borri, Paola; Watson, Peter

    2012-01-01

    Live cell microscopy using fluorescent proteins and small fluorescent probes is a well-established and essential tool for cell biology; however, there is a considerable need for noninvasive techniques able to study tissue and cell dynamics without the need to introduce chemical or genetically encoded probes. Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging tool for cell biologists to examine live cell dynamics with chemical specificity in a label-free, noninvasive way. CARS is a multiphoton process offering intrinsic three-dimensional submicron resolution, where the image contrast is obtained from light inelastically scattered by the vibrations of endogenous chemical bonds. CARS is particularly well suited to study lipid biology, since the CARS signal of localized lipids (exhibiting a large amount of identical bonds in the focal volume) is very strong. Conversely, photostable, lipid-specific markers for fluorescence microscopy are difficult to produce and the process of labeling often affects lipid localization and function, making imaging lipids in live cells challenging, and accurate quantification often impossible. Here, we describe in detail the principles behind our experimental setup for performing CARS microscopy of lipid droplets on live cells. Since typical vibrational resonances in liquid have coherence times in the picosecond range, CARS is preferably implemented with picosecond lasers which are however expensive and less efficient than femtosecond lasers, which could also be used for other multiphoton techniques such as two-photon fluorescence. In our setup, we show that femtosecond lasers can be spectrally focused in a simple, alignment insensitive, and cost-effective way to achieve a vibrational excitation similar to picosecond lasers. This opens the way to integrate CARS and two-photon fluorescence in a single multimodal instrument for its widespread application. We also describe our dual frequency CARS system which eliminates

  12. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    Science.gov (United States)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  13. Correlative 3D imaging of Whole Mammalian Cells with Light and Electron Microscopy

    OpenAIRE

    Murphy, Gavin E.; Narayan, Kedar; Lowekamp, Bradley C.; Hartnell, Lisa M.; Heymann, Jurgen A. W.; Fu, Jing; Subramaniam, Sriram

    2011-01-01

    We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA–SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ~10 to 20 nm at high contrast and with minimal artifacts from the foc...

  14. Parallel Monitoring of Living Cell Cultures by Means of Digital-Holography and Fluorescent Microscopy

    Science.gov (United States)

    Murav'eva, M. S.; Dudenkova, V. V.; Rybnikov, A. I.; Zakharov, Yu. N.

    2015-01-01

    We propose using the method of holographic microscopy to detect fine morphologic changes in living cells. An "LSM 510" laser confocal scanning microscope is modified to allow recording digital microholograms which can be used to reconstruct the amplitude and phase of the radiation transmitting through the sample. Measuring the phase increment of the object beam in cells and the intercellular space yields information on the optical length of the ray path in the cells (spatial dimensions and the refractive index), which in turn contains information on changes in the morphology and intracellular contents. Calcium activity is studied by means of fluorescent microscopy which makes it possible to detect minor variations in the intracellular concentration of calcium ions. By studying the dynamics of calcium oscillations and variations in the optical thickness, conclusions are made about the interrelation of functional and morphological variations, and comparative analysis of these variations is performed.

  15. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy

    Science.gov (United States)

    Miller, Mark J.; Wei, Sindy H.; Cahalan, Michael D.; Parker, Ian

    2003-03-01

    The recirculation of T cells between the blood and secondary lymphoid organs requires that T cells are motile and sensitive to tissue-specific signals. T cell motility has been studied in vitro, but the migratory behavior of individual T cells in vivo has remained enigmatic. Here, using intravital two-photon laser microscopy, we imaged the locomotion and trafficking of naïve CD4+ T cells in the inguinal lymph nodes of anesthetized mice. Intravital recordings deep within the lymph node showed T cells flowing rapidly in the microvasculature and captured individual homing events. Within the diffuse cortex, T cells displayed robust motility with an average velocity of 11 μm·min1. T cells cycled between states of low and high motility roughly every 2 min, achieving peak velocities >25 μm·min1. An analysis of T cell migration in 3D space revealed a default trafficking program analogous to a random walk. Our results show that naïve T cells do not migrate collectively, as they might under the direction of pervasive chemokine gradients. Instead, they appear to migrate as autonomous agents, each cell taking an independent trafficking path. Our results call into question the role of chemokine gradients for basal T cell trafficking within T cell areas and suggest that antigen detection may result from a stochastic process through which a random walk facilitates contact with antigen-presenting dendritic cells.

  16. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification

    Science.gov (United States)

    Boube, Muriel; Faucher, Christian; Joulia, Laurent; Cribbs, David L.; Bourbon, Henri-Marc

    2000-01-01

    The origins of specificity in gene expression are a central concern in understanding developmental control. Mediator protein complexes regulate transcriptional initiation, acting as modular adaptors linking specific transcription factors to core RNA polymerase II. Here, we identified the Drosophila homologs of 23 human mediator genes and mutations of two, dTRAP240 and of dTRAP80 (the putative fly homolog of yeast SRB4). Clonal analysis indicates a general role for dTRAP80 necessary for cell viability. The dTRAP240 gene is also essential, but cells lacking its function are viable and proliferate normally. Clones reveal localized developmental activities including a sex comb cell identity function. This contrasts with the ubiquitous nuclear accumulation of dTRAP240 protein in imaginal discs. Synergistic genetic interactions support shared developmental cell and segment identity functions of dTRAP240 and dTRAP80, potentially within a common complex. Further, they identify the homeotic Sex combs reduced product, required for the same cell/tissue identities, as a functional partner of these mediator proteins. PMID:11090137

  17. Microrheology of human lung epithelial cells measured by atomic force microscopy

    OpenAIRE

    Alcaraz, Jordi; Buscemi, Lara; Grabulosa, Mireia; Trepat, Xavier; Fabry, Ben; Farré, Ramon; Navajas, Daniel

    2003-01-01

    Lung epithelial cells are subjected to large cyclic forces from breathing. However, their response to dynamic stresses is poorly defined. We measured the complex shear modulus (G*(ω)) of human alveolar (A549) and bronchial (BEAS-2B) epithelial cells over three frequency decades (0.1–100 Hz) and at different loading forces (0.1–0.9 nN) with atomic force microscopy. G*(ω) was computed by correcting force-indentation oscillatory data for the tip-cell contact geometry and for the hydrodynamic vis...

  18. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chiou

    Full Text Available Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  19. Investigation of multi-junction solar cells using electrostatic force microscopy methods

    Energy Technology Data Exchange (ETDEWEB)

    Moczała, M., E-mail: magdalena.moczala@pwr.wroc.pl [Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Division of Metrology of Micro- and Nanostructures, ul. Z. Janiszewskiego 11/17, 50-372 Wrocław (Poland); Sosa, N.; Topol, A. [IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Gotszalk, T. [Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Division of Metrology of Micro- and Nanostructures, ul. Z. Janiszewskiego 11/17, 50-372 Wrocław (Poland)

    2014-06-01

    Multi-junction III–V solar cells are designed to have a much broader absorption of the solar spectrum than Si-based or single junctions, thus yield the highest conversion. The conversion efficiency can be further scaled with sun concentration. The ability of high conversion efficiencies makes multi-junction prime candidates for fine-tuning explorations aimed at getting closer to the theoretical efficiencies. In this paper, we report on electrostatic force microscopy (EFM) measurements of the built-in potential of multi-junction III–V semiconductor-based solar cells. Kelvin probe force microscopy (KPFM) was employed to qualitatively study the width and electrical properties of individual junctions, i.e., built-in potential, activity, and thickness of the p–n junctions. In addition, the voltage drops across individual solar cell p–n junctions were measured using Kelvin probe microscopy under various operation conditions: dark; illuminated; short-circuit; and biased. We present a method which enables the measurement of a working structure, while focusing on the electrical characteristics of an individual junction by virtue of selecting the spectral range of the illumination used. We show that these pragmatic studies can provide a feedback to improve photovoltaic device design, particularly of operation under a current mismatched situation. This new analysis technique offers additional insights into behavior of the multi-junction solar cell and shows promise for further progress in this field. - Highlights: • We explore the electronic structure of III–V based high efficiency solar cells. • Qualitative study of the solar cell operation characteristics is presented. • Quantitative study of the electrostatic landscape of operational high efficiency devices is presented. • Precise identification of the epitaxially grown p–n and tunnel junctions in the multi-junction solar cell. • Influence of illumination conditions and cell biasing on each p

  20. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  1. Investigation of multi-junction solar cells using electrostatic force microscopy methods

    International Nuclear Information System (INIS)

    Multi-junction III–V solar cells are designed to have a much broader absorption of the solar spectrum than Si-based or single junctions, thus yield the highest conversion. The conversion efficiency can be further scaled with sun concentration. The ability of high conversion efficiencies makes multi-junction prime candidates for fine-tuning explorations aimed at getting closer to the theoretical efficiencies. In this paper, we report on electrostatic force microscopy (EFM) measurements of the built-in potential of multi-junction III–V semiconductor-based solar cells. Kelvin probe force microscopy (KPFM) was employed to qualitatively study the width and electrical properties of individual junctions, i.e., built-in potential, activity, and thickness of the p–n junctions. In addition, the voltage drops across individual solar cell p–n junctions were measured using Kelvin probe microscopy under various operation conditions: dark; illuminated; short-circuit; and biased. We present a method which enables the measurement of a working structure, while focusing on the electrical characteristics of an individual junction by virtue of selecting the spectral range of the illumination used. We show that these pragmatic studies can provide a feedback to improve photovoltaic device design, particularly of operation under a current mismatched situation. This new analysis technique offers additional insights into behavior of the multi-junction solar cell and shows promise for further progress in this field. - Highlights: • We explore the electronic structure of III–V based high efficiency solar cells. • Qualitative study of the solar cell operation characteristics is presented. • Quantitative study of the electrostatic landscape of operational high efficiency devices is presented. • Precise identification of the epitaxially grown p–n and tunnel junctions in the multi-junction solar cell. • Influence of illumination conditions and cell biasing on each p

  2. Light sheet microscopy for tracking single molecules on the apical surface of living cells.

    Science.gov (United States)

    Li, Yu; Hu, Ying; Cang, Hu

    2013-12-12

    Single particle tracking is a powerful tool to study single molecule dynamics in living biological samples. However, current tracking techniques, which are based mainly on epifluorescence, confocal, or TIRF microscopy, have difficulties in tracking single molecules on the apical surface of a cell. We present here a three-dimensional (3D) single particle tracking technique that is based on prism coupled light-sheet microscopy (PCLSM). This novel design provides a signal-to-noise ratio comparable to confocal microscopy while it has the capability of illuminating at arbitrary depth. We demonstrate tracking of single EGF molcules on the apical surface of live cell membranes from their binding to EGF receptors until they are internalized or photobleached. We found that EGF exhibits multiple diffusion behaviors on live A549 cell membranes. At room temperature, the average diffusion coefficient of EGF on A549 cells was measured to be 0.13 μm(2)/s. Depletion of cellular cholesterol with methyl-β-cyclodextrin leads to a broader distribution of diffusion coefficients and an increase of the average diffusion coefficient at room temperature. This light-sheet based 3D single particle tracking technique solves the technique difficulty of tracking single particles on apical membranes and is able to document the whole "lifetime" of a particle from binding till photobleaching or internalization. PMID:23895420

  3. Atomic force microscopy analysis of progenitor corneal epithelial cells fractionated by a rapid centrifugation isolation technique.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available PURPOSE: To investigate the use of atomic force microscopy (AFM to image the three groups of corneal epithelial cells fractionated by a novel rapid centrifugation isolation technique. METHODS: Epithelial cells harvested from primary cultures of rabbit limbal rings were centrifuged onto uncoated dishes, first at 1400 rpm and then at 1800 rpm. The adherent cells after centrifugation at 1400 rpm (ATC1, the adherent cells at 1800 rpm (ATC2 and the non-adherent cells at 1800 rpm (NAC were investigated for BrdU retention and were subjected to contact mode AFM and Transmission Electron Microscopy (TEM. RESULTS: Compared with unfractionated cells, the ATC1 group, accounting for about 10% of the whole population, was enriched in BrdU label-retaining cells. There were dramatic overall shape, surface membrane and intra-cellular ultrastructure differences noted among ATC1, ATC2 and NAC populations. The whole cell roughness measurements were 21.1±1.5 nm, 79.5±3.4 nm and 103±4.6 nm for the ATC1, ATC2 and NAC groups, respectively. The mero-nucleus roughness measurements were 34.2±1.7 nm, 13.0±0.8 nm and 8.5±0.5 nm in the ATC1, ATC2 and NAC populations, respectively. CONCLUSIONS: AFM was found to be a good tool for distinguishing among the three groups of cells. BrdU label retention, the AFM parameters and TEM together suggest that the ATC1, ATC2 and NAC populations may be progenitor corneal epithelial cells, transit amplifying cells and terminal differentiation cells, respectively.

  4. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kim Myung K

    2011-09-01

    Full Text Available Abstract Background Total internal reflection fluorescence microscopy (TIRFM is a powerful tool for observing fluorescently labeled molecules on the plasma membrane surface of animal cells. However, the utility of TIRFM in plant cell studies has been limited by the fact that plants have cell walls, thick peripheral layers surrounding the plasma membrane. Recently, a new technique known as variable-angle epifluorescence microscopy (VAEM was developed to circumvent this problem. However, the lack of a detailed analysis of the optical principles underlying VAEM has limited its applications in plant-cell biology. Results Here, we present theoretical and experimental evidence supporting the use of variable-angle TIRFM in observations of intact plant cells. We show that when total internal reflection occurs at the cell wall/cytosol interface with an appropriate angle of incidence, an evanescent wave field of constant depth is produced inside the cytosol. Results of experimental TIRFM observations of the dynamic behaviors of phototropin 1 (a membrane receptor protein and clathrin light chain (a vesicle coat protein support our theoretical analysis. Conclusions These findings demonstrate that variable-angle TIRFM is appropriate for quantitative live imaging of cells in intact tissues of Arabidopsis thaliana.

  5. Localization of bleomycin in a single living cell using three-photon excitation microscopy

    Science.gov (United States)

    Abraham, Anil T.; Brautigan, David L.; Hecht, Sidney M.; Periasamy, Ammasi

    2001-04-01

    Bleomycin has been used in the clinic as a chemotherapeutic agent for the treatment of several neoplasms, including non-Hodgkins lymphomas, squamous cell carcinomas, and testicular tumors. The effectiveness of bleomycin is believed to be derived from its ability to bind and oxidatively cleave DNA in the presence of a iron cofactor in vivo. A substantial amount of data on BLM has been collected, there is little information concerning the effects of bleomycin in living cells. In order to obtain data pertinent to the effects of BLM in intact cells, we have exploited the intrinsic fluorescence property of bleomycin to monitor the uptake of the drug in mammalian cells. We employed two light microscopy techniques, a wide-field and three-photon excitation (760 nm) fluorescence microscopy. Treatment of HeLa cells with bleomycin resulted in rapid to localization within the cells. In addition data collected from the wide field experiments, three-photon excitation of BLM which considerably reduced the phototoxic effect compared with UV light excitation in the wide-field microscopy indicated co-localization of the drug to regions of the cytoplasm occupied by the endoplasmic reticulum probe, DiOC5. The data clearly indicates that the cellular uptake of bleomycin after one minute includes the nucleus as well as in cytoplasm. Contrary to previous studies, which indicate chromosomal DNA as the target of bleomycin, the current findings suggest that the drug is distributed to many areas within the cell, including the endoplasmic reticulum, an organelle that is known to contain ribonucleic acids.

  6. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    International Nuclear Information System (INIS)

    The transforming growth factor β1 (TGF-β1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-β1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the β1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-β1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the β1 integrin subunit was enhanced by TGF-β1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-β1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  7. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation.

    Science.gov (United States)

    Coceano, G; Yousafzai, M S; Ma, W; Ndoye, F; Venturelli, L; Hussain, I; Bonin, S; Niemela, J; Scoles, G; Cojoc, D; Ferrari, E

    2016-02-12

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young's modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines' elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM. PMID:26683826

  8. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    Science.gov (United States)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  9. Total 3D imaging of phase objects using defocusing microscopy: application to red blood cells

    CERN Document Server

    Roma, P M S; Amaral, F T; Agero, U; Mesquita, O N

    2014-01-01

    We present Defocusing Microscopy (DM), a bright-field optical microscopy technique able to perform total 3D imaging of transparent objects. By total 3D imaging we mean the determination of the actual shapes of the upper and lower surfaces of a phase object. We propose a new methodology using DM and apply it to red blood cells subject to different osmolality conditions: hypotonic, isotonic and hypertonic solutions. For each situation the shape of the upper and lower cell surface-membranes (lipid bilayer/cytoskeleton) are completely recovered, displaying the deformation of RBCs surfaces due to adhesion on the glass-substrate. The axial resolution of our technique allowed us to image surface-membranes separated by distances as small as 300 nm. Finally, we determine volume, superficial area, sphericity index and RBCs refractive index for each osmotic condition.

  10. Observation of Insulin Exocytosis by a Pancreatic (3 Cell Line with Total Internal Reflection Fluorescence Microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhao-ying Fu; Ya-ping Wang; Yu Chen

    2011-01-01

    @@ INSULIN secretion was traditionally measured with biochemical and immunological methods such as enzyme linked immunosorbant assay and radio-immunoassay.However,these methods can only tell the amount of insulin secreted; they give no information about the secretion process or mechanism of exocytosis.In recent years,an imaging technique known as total internal reflection fluorescence (TIRF) microscopy has been employed to study insulin secretion.1-4 This imaging technique can explore events taking place near or on live cell membrane,such as secretory granule movement,exocytosis,vesicle content release,and membrane fusion.5-10 In the present paper,we applied TIRF microscopy to the observation of insulin exocytosis by the pancreatic β cell line Ins-1.

  11. Imaging Gold Nanoparticles in Living Cells Environments using Heterodyne Digital Holographic Microscopy

    CERN Document Server

    Warnasooriya, Nilanthi; Bun, Philippe; Tessier, Gilles; Coppey-Moisan, Maite; Desbiolles, Pierre; Atlan, Michael; Abboud, Marie; Gross, Michel

    2009-01-01

    This paper describes an imaging microscopic technique based on heterodyne digital holography where subwavelength-sized gold colloids can be imaged in cell environment. Surface cellular receptors of 3T3 mouse fibroblasts are labeled with 40 nm gold nanoparticles, and the biological specimen is imaged in a total internal reflection configuration with holographic microscopy. Due to a higher scattering efficiency of the gold nanoparticles versus that of cellular structures, accurate localization of a gold marker is obtained within a 3D mapping of the entire sample's scattered field, with a lateral precision of 5 nm and 100 nm in the x,y and in the z directions respectively, demonstrating the ability of holographic microscopy to locate nanoparticles in living cells environments.

  12. Comet assay, cloning assay, and light and electron microscopy on one preselected cell

    Science.gov (United States)

    Koenig, Karsten; Oehring, Hartmut; Halbhuber, Karl-Juergen; Fiedler, Ursula; Bauer, Eckhard; Greulich, Karl-Otto

    1998-01-01

    In order to perform long-term studies up to one week on a preselected single cell after micromanipulation (e.g. UVA and NIR microbeam exposure) in comparison with non-treated neighbor cells (control cells) we applied a variety of single cell diagnostic techniques and developed a special comet assay for single preselected cells. For that purpose adherent cells were grown in low concentrations and maintained in special sterile centimeter-sized glass cell chambers. After preselection, a single cell was marked by means of diamond-produced circles on the outer cell chamber window. During exposure to microbeams, NADH-attributed autofluorescence of the chosen cell was detected by fluorescence imaging and spectroscopy. In addition, cell morphology was video-monitored (formation of pseudopodia, membrane blebbing,...). Maintaining the microchamber in the incubator, the irradiated cell was examined 24 h later for cell division (clone formation) and modifications in autofluorescence and morphology (including daughter cells). In the case that no division occurred the vitality of the light-exposed cell and of the control cells were probed by intranuclear propidium iodide accumulation. After fixation, either electron microscopy or single cell gel electrophoresis (comet assay) was performed. To monitor comet formation indicating photoinduced DNA damage in the preselected single cell in comparison with the non-exposed neighbor cells the chamber was filled with low-melting gel and lysis solution and exposed to an electric field. In contrast to the conventional comet assay, where only randomly chosen cells of a suspension are investigated, the novel optimized electrophoresis technique should enhance the possibilities of DNA damage detection to a true single (preselected) cell level. The single cell techniques applied to UVA microexposed Chinese hamster ovary cells (364 nm, 1 mW, 3.5 W/cm2) revealed significant cell damage for J/cm2 fluences such as modifications of intracellular

  13. Scanning probe study on the photovoltaic characteristics of a Si solar cell by using Kelvin force microscopy and photoconductive atomic force microscopy

    International Nuclear Information System (INIS)

    Poly-Si-based solar cells, prepared via conventional Si processes including phosphoryl chloride(POCl3) doping and diffusion, were investigated in this study in terms of their electrical and optical properties, including open-circuit voltage (Voc), short-circuit current (Isc), fill factor, external quantum efficiency and efficiency, employing a few recognized test methods. Also, we compared the experiment results from an identical specimen via Kelvin force microscopy (KFM) and photoconductive atomic force microscopy (PC-AFM), respectively, verifying that the scanning probe technique is very effective both in photovoltaic effect measurement and mechanism establishment. When the results of both conventional and nano-probing techniques are compared, the behavior of the surface potential property is similar to the Voc, and that of the photoinduced current property is similar to the Isc. Through this study, we have demonstrated that the KFM and the PC-AFM are effective tools to monitor and evaluate the properties of solar energy–producing materials and devices. - Highlights: • Silicon solar cells were fabricated and studied by conventional characterization methods. • Characterization of photovoltaic effect and mechanism was performed using scanning probe microscopy. • Kelvin force microscopy (KFM) and photoconductive atomic force microscopy (PC-AFM) were used. • Behavior of KFM result is similar to Voc, and that of PC-AFM is similar to Isc. • KFM and PC-AFM are effective tools to evaluate solar energy materials

  14. Determining the state of non-volatile memory cells with floating gate using scanning probe microscopy

    Science.gov (United States)

    Hanzii, D.; Kelm, E.; Luapunov, N.; Milovanov, R.; Molodcova, G.; Yanul, M.; Zubov, D.

    2013-01-01

    During a failure analysis of integrated circuits, containing non-volatile memory, it is often necessary to determine its contents while Standard memory reading procedures are not applicable. This article considers how the state of NVM cells with floating gate can be determined using scanning probe microscopy. Samples preparation and measuring procedure are described with the example of Microchip microcontrollers with the EPROM memory (PIC12C508) and flash-EEPROM memory (PIC16F876A).

  15. Sample preparation for scanning Kelvin probe microscopy studies on cross sections of organic solar cells

    OpenAIRE

    Michael Scherer; Rebecca Saive; Dominik Daume; Michael Kröger; Wolfgang Kowalsky

    2013-01-01

    We prepared cross sections of P3HT:PCBM bulk heterojunction (BHJ) organic solar cells (OSCs) for the characterization of their potential distribution with scanning Kelvin probe microscopy. We compared results of samples obtained by microtome cutting of OSCs on plastic substrates, cleaving of OSCs on glass substrates, and milling with a focused ion beam. Their potential distributions were in good agreement with each other. Under short circuit conditions, potential gradients were detected in vi...

  16. In Vivo Reflectance Confocal Microscopy of Basal Cell Carcinoma: Feasibility of Preoperative Mapping of Cancer Margins

    OpenAIRE

    Pan, Zhan-Yan; Lin, Jing-Ran; Cheng, Ting-Ting; Wu, Jia-Qiang; Wu, Wen-Yu

    2012-01-01

    Reflectance confocal microscopy (RCM) images skin at cellular resolution and has shown utility for the diagnosis of nonmelanoma skin cancer in vivo. It has the potential to define lesion margins before surgical therapy. Objectives To investigate the feasibility of RCM in defining the margins of basal cell carcinoma before surgery. Methods The margins of 10 lesions were evaluated using RCM. Biopsies of the margins were used to confirm the results. A protocol was constructed to define margins. ...

  17. Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals

    OpenAIRE

    Roberto Weigert; Myo-Pale' Aye; Kamil Rechache; Natalie Porat-Shliom; Andrius Masedunskas

    2012-01-01

    Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. ...

  18. A novel approach for scanning electron microscopy of colloidal gold- labeled cell surfaces

    OpenAIRE

    1984-01-01

    A method is described for the use of scanning electron microscopy on the surface of gold-labeled cells. It includes the use of 45- or 20-nm colloidal gold marker conjugated with Staphylococcal protein A. The marker is best recognized on the basis of its atomic number contrast by using the backscattered electron imaging mode of the scanning electron microscope. When the backscattered electron signal is mixed with the secondary electron signal, an optimum correlation between the distribution of...

  19. Atomic force microscopy reveals differences in cell membrane properties in nuclear myosin I mutant

    Czech Academy of Sciences Publication Activity Database

    Venit, Tomáš; Rohožková, Jana; Kalendová, Alžběta; Hozák, Pavel

    Praha : ČSMS, 2013. s. 25-25. [Mikroskopie 2013. 13.05.2013-14.05.2013, Lednice] R&D Projects: GA ČR GAP305/11/2232; GA TA ČR TE01020118; GA MŠk LH12143 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : atomic force microscopy * cell membrane * myosin 1C * NM1 * nuclear myosin I

  20. Fluorescein Punctate Staining Traced to Superficial Corneal Epithelial Cells by Impression Cytology and Confocal Microscopy

    OpenAIRE

    Mokhtarzadeh, Maryam; Casey, Richard; Glasgow, Ben J.

    2011-01-01

    Punctate fluorescein staining is an important sign in ocular surface disease but its basis is controversial. The common view is that the spots reflect small epithelial defects. In this study, clinicocytologic and histopathologic correlation of punctate stains in dry eye disease was performed. The hyperfluorescent spots were traced from slit lamp examination to confocal microscopy of tissue to reveal that fluorescent superficial epithelial cells are basis of punctate staining.

  1. A novel cell traction force microscopy to study multi-cellular system.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    2014-06-01

    Full Text Available Traction forces exerted by adherent cells on their microenvironment can mediate many critical cellular functions. Accurate quantification of these forces is essential for mechanistic understanding of mechanotransduction. However, most existing methods of quantifying cellular forces are limited to single cells in isolation, whereas most physiological processes are inherently multi-cellular in nature where cell-cell and cell-microenvironment interactions determine the emergent properties of cell clusters. In the present study, a robust finite-element-method-based cell traction force microscopy technique is developed to estimate the traction forces produced by multiple isolated cells as well as cell clusters on soft substrates. The method accounts for the finite thickness of the substrate. Hence, cell cluster size can be larger than substrate thickness. The method allows computing the traction field from the substrate displacements within the cells' and clusters' boundaries. The displacement data outside these boundaries are not necessary. The utility of the method is demonstrated by computing the traction generated by multiple monkey kidney fibroblasts (MKF and human colon cancerous (HCT-8 cells in close proximity, as well as by large clusters. It is found that cells act as individual contractile groups within clusters for generating traction. There may be multiple of such groups in the cluster, or the entire cluster may behave a single group. Individual cells do not form dipoles, but serve as a conduit of force (transmission lines over long distances in the cluster. The cell-cell force can be either tensile or compressive depending on the cell-microenvironment interactions.

  2. Automatic cell detection in bright-field microscopy for microbeam irradiation studies

    International Nuclear Information System (INIS)

    Automatic cell detection in bright-field illumination microscopy is challenging due to cells’ inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system. (paper)

  3. Automatic cell detection in bright-field microscopy for microbeam irradiation studies

    Science.gov (United States)

    Georgantzoglou, A.; Merchant, M. J.; Jeynes, J. C. G.; Wéra, A.-C.; Kirkby, K. J.; Kirkby, N. F.; Jena, R.

    2015-08-01

    Automatic cell detection in bright-field illumination microscopy is challenging due to cells’ inherent optical properties. Applications including individual cell microbeam irradiation demand minimisation of additional cell stressing factors, so contrast-enhancing fluorescence microscopy should be avoided. Additionally, the use of optically non-homogeneous substrates amplifies the problem. This research focuses on the design of a method for automatic cell detection on polypropylene substrate, suitable for microbeam irradiation. In order to fulfil the relative requirements, the Harris corner detector was employed to detect apparent cellular features. These features-corners were clustered based on a dual-clustering technique according to the density of their distribution across the image. Weighted centroids were extracted from the clusters of corners and constituted the targets for irradiation. The proposed method identified more than 88% of the 1,738 V79 Chinese hamster cells examined. Moreover, a processing time of 2.6 s per image fulfilled the requirements for a near real-time cell detection-irradiation system.

  4. Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells.

    Science.gov (United States)

    Bautista, Godofredo; Pfisterer, Simon G; Huttunen, Mikko J; Ranjan, Sanjeev; Kanerva, Kristiina; Ikonen, Elina; Kauranen, Martti

    2014-11-18

    Cells store excess lipids as two major compounds, triacylglycerols (TAGs) and cholesteryl esters (CEs), inside lipid droplets (LDs). The degree of lipid ordering is considered to play a major role in the mobility and enzymatic processing of lipids in LDs. Here, we provide evidence that polarized third-harmonic generation (THG) microscopy distinguishes between native TAG- and CE-enriched LDs in cells due to the different ordering of the two lipid species. We first demonstrate that the responses from synthetic TAG- and CE-enriched LDs using THG microscopy with linear and circular polarizations differ according to their different intrinsic ordering. We then employ simulations to dissect how polarization effects influence the THG from an isotropic LD. Finally, we induce TAG- and CE-enriched LDs in murine macrophages and demonstrate that polarized THG responses increase in a nonlinear fashion with increasing CE/TAG ratio. This suggests that with an increasing CE content, there is a rather sharp transition toward increased LD ordering. Our results demonstrate that polarized THG microscopy enables label-free quantitative analysis of LD ordering and discriminates between compositionally different LDs in intact mammalian cells. PMID:25418291

  5. Label-free imaging of gold nanoparticles in single live cells by photoacoustic microscopy

    Science.gov (United States)

    Tian, Chao; Qian, Wei; Shao, Xia; Xie, Zhixing; Cheng, Xu; Liu, Shengchun; Cheng, Qian; Liu, Bing; Wang, Xueding

    2016-03-01

    Gold nanoparticles (AuNPs) have been extensively explored as a model nanostructure in nanomedicine and have been widely used to provide advanced biomedical research tools in diagnostic imaging and therapy. Due to the necessity of targeting AuNPs to individual cells, evaluation and visualization of AuNPs in the cellular level is critical to fully understand their interaction with cellular environment. Currently imaging technologies, such as fluorescence microscopy and transmission electron microscopy all have advantages and disadvantages. In this paper, we synthesized AuNPs by femtosecond pulsed laser ablation, modified their surface chemistry through sequential bioconjugation, and targeted the functionalized AuNPs with individual cancer cells. Based on their high optical absorption contrast, we developed a novel, label-free imaging method to evaluate and visualize intracellular AuNPs using photoacoustic microscopy (PAM). Preliminary study shows that the PAM imaging technique is capable of imaging cellular uptake of AuNPs in vivo at single-cell resolution, which provide an important tool for the study of AuNPs in nanomedicine.

  6. FLIM-FRET microscopy to visualize transcription factor interactions in the nucleus of the living cell

    Science.gov (United States)

    Day, Richard N.; Demarco, Ignacio A.; Voss, Ty C.; Chen, Ye; Periasamy, Ammasi

    2004-06-01

    Wide-field fluorescence microscopy was used to monitor the co-localization of the homeodomain (HD) transcription factor Pit-1 and the basic-leucine zipper protein CCAAT/enhancer binding protein alpha (C/EBPa), each labeled with fluorescent proteins (FP) in the living cell nucleus. Fluorescence resonance energy transfer (FRET) microscopy was used to resolve the angstrom-scale spatial relationships of these expressed proteins, and the effect of a Pit-1 point mutation on the interaction with C/EBPa was characterized. Two-photon excitation fluorescence lifetime imaging microscopy (2p-FLIM) was then used as an independent method to detect these protein interactions. The excited-state lifetime for the cyan FP (CFP) labeling C/EBPa was determined, and the measurements were repeated in cells co-expressing yellow FP (YFP) labeled-proteins. The CFP lifetime was decreased in the presence of the YFP acceptor, which is consistent with donor quenching by FRET. This was verified by acceptor photobleaching, which caused a shift in the donor lifetime to that similar to the donor alone. However, a significant limitation of this technique was demonstrated by the observation that high-energy 2p-excitation resulted in CFP photobleaching and a parallel decrease in its excited-state lifetime. The key question is whether the sensitivity of this imaging approach will be sufficient to acquire significant data from living cells expressing physiological levels of the labeled proteins.

  7. Segmental bronchoprovocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa

    OpenAIRE

    Braunstahl, Gert-Jan; Overbeek, Shelley; Fokkens, Wytske; KleinJan, Alex; McEuen, A.R.; Walls, A F; Hoogsteden, Henk; Prins, Jan-Bas

    2001-01-01

    textabstractMast cells and basophils are cells that play an important role in the initiation and control of allergic inflammation in asthma and rhinitis. This study was undertaken to determine the presence and dynamics of mast cells and basophils in the nasal and bronchial mucosa of allergic rhinitis patients after segmental bronchial provocation (SBP). Eight nonasthmatic, grass pollen-allergic rhinitis patients and eight healthy controls were included. Bronchial and nasal biopsies, as well a...

  8. Enhanced CellClassifier: a multi-class classification tool for microscopy images

    Directory of Open Access Journals (Sweden)

    Horvath Peter

    2010-01-01

    Full Text Available Abstract Background Light microscopy is of central importance in cell biology. The recent introduction of automated high content screening has expanded this technology towards automation of experiments and performing large scale perturbation assays. Nevertheless, evaluation of microscopy data continues to be a bottleneck in many projects. Currently, among open source software, CellProfiler and its extension Analyst are widely used in automated image processing. Even though revolutionizing image analysis in current biology, some routine and many advanced tasks are either not supported or require programming skills of the researcher. This represents a significant obstacle in many biology laboratories. Results We have developed a tool, Enhanced CellClassifier, which circumvents this obstacle. Enhanced CellClassifier starts from images analyzed by CellProfiler, and allows multi-class classification using a Support Vector Machine algorithm. Training of objects can be done by clicking directly "on the microscopy image" in several intuitive training modes. Many routine tasks like out-of focus exclusion and well summary are also supported. Classification results can be integrated with other object measurements including inter-object relationships. This makes a detailed interpretation of the image possible, allowing the differentiation of many complex phenotypes. For the generation of the output, image, well and plate data are dynamically extracted and summarized. The output can be generated as graphs, Excel-files, images with projections of the final analysis and exported as variables. Conclusion Here we describe Enhanced CellClassifier which allows multiple class classification, elucidating complex phenotypes. Our tool is designed for the biologist who wants both, simple and flexible analysis of images without requiring programming skills. This should facilitate the implementation of automated high-content screening.

  9. Long segmental hyperplasia of interstitial cells of Cajal with giant diverticulum formation.

    Science.gov (United States)

    Xue, Liyan; Qiu, Tian; Song, Ying; Shan, Ling; Liu, Xiuyun; Guo, Lei; Ying, Jianming; Zou, Shuangmei; Shi, Susheng; Polydorides, Alexandros D; Zhao, Xinming; Lu, Ning; Lin, Dongmei

    2013-01-01

    Sporadic gastrointestinal stromal tumors (GISTs) usually form a well-circumscribed mass. In contrast, diffuse interstitial cell of Cajal (ICC) hyperplasia along the Auerbach plexus without a discrete mass may occur in patients with germline mutations in the NF1, c-KIT or PDGFRA genes. However, sporadic, diffuse ICC hyperplasia without c-KIT or PDGFRA mutations has not been reported. We describe herein one such case, forming a giant diverticulum. A 63-year-old woman with no features of Neurofibromatosis 1 (NF1) presented with increasing abdominal pain for more than 30 years. A large, diverticulum-like mass in the ileum was resected. Microscopically, a diffuse proliferation of bland spindle cells was seen extending for 12 cm, replacing the muscularis propria and lined by intact mucosa. The spindle cells were CD117+/CD34+/DOG1+/SMA+/Desmin-/S100-. Mutation analyses did not reveal any mutations in c-KIT or PDGFRA. The lesion had two silent mutations in the NF1 gene. It is rare of the diffuse form of sporadic ICC hyperplasia showing diffuse longitudinal microscopic growth completely replacing the muscularis propria, mimicking diffuse ICC hyperplasia in hereditary GIST syndromes, but without solid components and no c-KIT or PDGFRA gene mutations. This peculiar form of sporadic ICC hyperplasia may be related to intestinal dysmotility in this ileal segment and giant diverticulum formation. PMID:24294389

  10. Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell

    OpenAIRE

    Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; Lima, Enju; Marchesini, Stefano; Miao, Huijie; Neiman, Aaron M.; Shapiro, David; Steinbrener, Jan; Stewart, Andrew; Turner, Joshua J.; Jacobsen, Chris

    2009-01-01

    We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below −170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstr...

  11. Time-lapse contact microscopy of cell cultures based on non-coherent illumination

    Science.gov (United States)

    Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R.; Chatelain, François; Picollet-D'Hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent

    2015-10-01

    Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell.

  12. Time-lapse contact microscopy of cell cultures based on non-coherent illumination.

    Science.gov (United States)

    Gabriel, Marion; Balle, Dorothée; Bigault, Stéphanie; Pornin, Cyrille; Gétin, Stéphane; Perraut, François; Block, Marc R; Chatelain, François; Picollet-D'hahan, Nathalie; Gidrol, Xavier; Haguet, Vincent

    2015-01-01

    Video microscopy offers outstanding capabilities to investigate the dynamics of biological and pathological mechanisms in optimal culture conditions. Contact imaging is one of the simplest imaging architectures to digitally record images of cells due to the absence of any objective between the sample and the image sensor. However, in the framework of in-line holography, other optical components, e.g., an optical filter or a pinhole, are placed underneath the light source in order to illuminate the cells with a coherent or quasi-coherent incident light. In this study, we demonstrate that contact imaging with an incident light of both limited temporal and spatial coherences can be achieved with sufficiently high quality for most applications in cell biology, including monitoring of cell sedimentation, rolling, adhesion, spreading, proliferation, motility, death and detachment. Patterns of cells were recorded at various distances between 0 and 1000 μm from the pixel array of the image sensors. Cells in suspension, just deposited or at mitosis focalise light into photonic nanojets which can be visualised by contact imaging. Light refraction by cells significantly varies during the adhesion process, the cell cycle and among the cell population in connection with every modification in the tridimensional morphology of a cell. PMID:26459014

  13. [Comparison of cell elasticity analysis methods based on atomic force microscopy indentation].

    Science.gov (United States)

    Wang, Zhe; Hao, Fengtao; Chen, Xiaohu; Yang, Zhouqi; Ding, Chong; Shang, Peng

    2014-10-01

    In order to investigate in greater detail the two methods based on Hertz model for analyzing force-distance curve obtained by atomic force microscopy, we acquired the force-distance curves of Hela and MCF-7 cells by atomic force microscopy (AFM) indentation in this study. After the determination of contact point, Young's modulus in different indentation depth were calculated with two analysis methods of "two point" and "slope fitting". The results showed that the Young's modulus of Hela cell was higher than that of MCF-7 cell,which is in accordance with the F-actin distribution of the two types of cell. We found that the Young's modulus of the cells was decreased with increasing indentation depth and the curve trends by "slope fitting". This indicated that the "slope fitting" method could reduce the error caused by the miscalculation of contact point. The purpose of this study was to provide a guidance for researcher to choose an appropriate method for analyzing AFM indentation force-distance curve. PMID:25764725

  14. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  15. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide.

    Science.gov (United States)

    Rodighiero, Simona; Torre, Bruno; Sogne, Elisa; Ruffilli, Roberta; Cagnoli, Cinzia; Francolini, Maura; Di Fabrizio, Enzo; Falqui, Andrea

    2015-06-01

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. PMID:25810353

  16. Shape reconstruction and height fluctuations of red blood cells using defocusing microscopy

    CERN Document Server

    Siman, L; Amaral, F T; Agero, U; Mesquita, O N

    2014-01-01

    In this paper the bright-field defocusing microscopy (DM) technique is presented. DM is able to obtain quantitative information of each plane/surface of pure phase objects, as live unlabeled cells, and its application to red blood cells (RBCs) is demonstrated. Based on contrast, simple methods to obtain thickness profile and three dimensional (3D) total reconstruction of RBCs are proposed and the actual height profiles of upper and lower surface-membranes (lipid bilayer$/$cytoskeleton) of discocyte and stomatocyte red cells are presented as examples. In addition, using the mean square contrast fluctuation and modeling the RBC membranes fluctuations spectra as dependent of a bending modulus $(\\kappa_c)$, a surface tension $(\\sigma)$ and a confining potential $(\\gamma)$ term, slowly varying quantities along the cell radius, a genetic algorithm (GA) is used and the radial height fluctuations of each surface-membrane are accessed, separately. The radial behaviors of $\\kappa_c$, $\\sigma$ and $\\gamma$ are also obta...

  17. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis

    Directory of Open Access Journals (Sweden)

    Ludovico eSilvestri

    2015-05-01

    Full Text Available Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all Purkinje cells are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent Purkinje cells. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of Purkinje cells, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of Purkinje cells with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments.

  18. Segmental basal cell naevus syndrome caused by an activating mutation in smoothened.

    Science.gov (United States)

    Khamaysi, Z; Bochner, R; Indelman, M; Magal, L; Avitan-Hersh, E; Sarig, O; Sprecher, E; Bergman, R

    2016-07-01

    Aberrant sonic hedgehog signalling, mostly due to PTCH1 mutations, has been shown to play a central role in the pathogenesis of basal cell carcinoma (BCC), as well as in basal cell naevus syndrome (BCNS). Mutations in smoothened (SMO) encoding a receptor for sonic hedgehog have been reported in sporadic BCCs but not in BCNS. We report a case with multiple BCCs, pits and comedones in a segmental distribution over the upper part of the body, along with other findings compatible with BCNS. Histopathologically, there were different types of BCC. A heterozygous mutation (c.1234C>T, p.L412F) in SMO was detected in three BCCs but not in peripheral blood lymphocytes or the uninvolved skin. These were compatible with the type 1 mosaic form of BCNS. The p.L412F mutation was found experimentally to result in increased SMO transactivating activity, and the patient responded to vismodegib therapy. Activating mutations in SMO may cause BCNS. The identification of a gain-of-function mutation in SMO causing a type 1 mosaic form of BCNS further expands our understanding of the pathogenesis of BCC, with implications for the treatment of these tumours, whether sporadic or inherited. PMID:26822128

  19. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

    DEFF Research Database (Denmark)

    Ma, Shuang; Solterbeck, Claus Henning; Odgaard, Madeleine;

    2009-01-01

    Proton Exchange Membrane (PEM) fuel cell electrodes with different ionomer contents were studied with various microscopic techniques. The morphology and surface potential were examined by Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM), respectively. The particulate nature of the...... electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30-40 nm and 20-30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed...... in high ionomer content electrodes. The surface potential images showed distinct difference to the topography images. The overall grain size was seen to increase, the pore volume to decrease, the surface roughness to decrease, and the surface potential variation to increase with the increase of...

  20. Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy.

    Science.gov (United States)

    Park, Jungwon; Park, Hyesung; Ercius, Peter; Pegoraro, Adrian F; Xu, Chen; Kim, Jin Woong; Han, Sang Hoon; Weitz, David A

    2015-07-01

    Recent development of liquid phase transmission electron microscopy (TEM) enables the study of specimens in wet ambient conditions within a liquid cell; however, direct structural observation of biological samples in their native solution using TEM is challenging since low-mass biomaterials embedded in a thick liquid layer of the host cell demonstrate low contrast. Furthermore, the integrity of delicate wet samples is easily compromised during typical sample preparation and TEM imaging. To overcome these limitations, we introduce a graphene liquid cell (GLC) using multilayer graphene sheets to reliably encapsulate and preserve biological samples in a liquid for TEM observation. We achieve nanometer scale spatial resolution with high contrast using low-dose TEM at room temperature, and we use the GLC to directly observe the structure of influenza viruses in their native buffer solution at room temperature. The GLC is further extended to investigate whole cells in wet conditions using TEM. We also demonstrate the potential of the GLC for correlative studies by TEM and fluorescence light microscopy imaging. PMID:26065925

  1. Experimental validation of atomic force microscopy-based cell elasticity measurements

    Science.gov (United States)

    Harris, Andrew R.; Charras, G. T.

    2011-08-01

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than ~ 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  2. Experimental validation of atomic force microscopy-based cell elasticity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Andrew R; Charras, G T, E-mail: g.charras@ucl.ac.uk [London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2011-08-26

    Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than {approx} 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.

  3. Structural Insight into Cell Wall Architecture of Micanthus sinensis cv. using Correlative Microscopy Approaches.

    Science.gov (United States)

    Ma, Jianfeng; Lv, Xunli; Yang, Shumin; Tian, Genlin; Liu, Xing'e

    2015-10-01

    Structural organization of the plant cell wall is a key parameter for understanding anisotropic plant growth and mechanical behavior. Four imaging platforms were used to investigate the cell wall architecture of Miscanthus sinensis cv. internode tissue. Using transmission electron microscopy with potassium permanganate, we found a great degree of inhomogeneity in the layering structure (4-9 layers) of the sclerenchymatic fiber (Sf). However, the xylem vessel showed a single layer. Atomic force microscopy images revealed that the cellulose microfibrils (Mfs) deposited in the primary wall of the protoxylem vessel (Pxv) were disordered, while the secondary wall was composed of Mfs oriented in parallel in the cross and longitudinal section. Furthermore, Raman spectroscopy images indicated no variation in the Mf orientation of Pxv and the Mfs in Pxv were oriented more perpendicular to the cell axis than that of Sfs. Based on the integrated results, we have proposed an architectural model of Pxv composed of two layers: an outermost primary wall composed of a meshwork of Mfs and inner secondary wall containing parallel Mfs. This proposed model will support future ultrastructural analysis of plant cell walls in heterogeneous tissues, an area of increasing scientific interest particularly for liquid biofuel processing. PMID:26358178

  4. Biomimetic Coating on Porous Alumina for Tissue Engineering: Characterisation by Cell Culture and Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Elizabeth Kolos

    2015-06-01

    Full Text Available In this study porous alumina samples were prepared and then coated using the biomimetic coating technique using a five times Simulated Body Fluid (5.0SBF as the growth solution. A coating was achieved after pre-treatment with concentrated acid. From elemental analysis, the coating contained calcium and phosphorous, but also sodium and chlorine. Halite was identified by XRD, a sodium chloride phase. Sintering was done to remove the halite phase. Once halite was burnt off, the calcium phosphate crystals were not covered with halite and, therefore, the apatite phases can be clearly observed. Cell culturing showed sufficient cell attachment to the less porous alumina, Sample B, that has more calcium phosphate growth, while the porous alumina, Sample A, with minimal calcium phosphate growth attained very little cell attachment. This is likely due to the contribution that calcium phosphate plays in the attachment of bone-like cells to a bioinert ceramic such as alumina. These results were repeated on both SEM and confocal microscopy analysis. Confocal microscopy was a novel characterisation approach which gave useful information and was a visual aid.

  5. TimeLapseAnalyzer: Multi-target analysis for live-cell imaging and time-lapse microscopy

    DEFF Research Database (Denmark)

    Huth, Johannes; Buchholz, Malte; Kraus, Johann M.;

    2011-01-01

    , we developed TimeLapseAnalyzer. Apart from general purpose image enhancements and segmentation procedures, this extensible, self-contained, modular cross-platform package provides dedicated modalities for fast and reliable analysis of multi-target cell tracking, scratch wound healing analysis, cell...

  6. Digital holographic microscopy for imaging biophysical changes in cells during migration (Conference Presentation)

    Science.gov (United States)

    Nham, Kien V.; Hur, Dong; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    It is well known that biochemical changes in cancer cell occur in response to environmental cues and during migration. However, information about changes in the physical properties (e.g., volume, elasticity) of cancer cells during migration and/or in response to physical modulations (confinement and perturbations). We report the use of a near-infrared (NIR) laser microbeam system integrated with a NIR digital holographic microscopy (DHM) to study physical response of cancer cells. The cancer cells were cultured in microfluidic devices and subjected to different physical confinement (controlled by channel geometry), osmolarity changes of extracellular medium and/or laser-induced perturbations. The changes in optical thickness (or phase map) of the cells were monitored with high spatial and temporal resolution during and after the physico-chemical perturbations. A weakly-focused continuous-wave laser microbeam was used to impart radiation pressure on cell membrane and the changes in thickness were monitored using DHM to estimate elasticity. Further, an ultrafast tightly-focused laser microbeam was used to allow extracellular fluid flow into the cell or from the cytoplasm under different osmolarity conditions. Dynamic changes in physical properties of various cells and observed differences in responding to different physical/chemical environment/perturbations will be presented.

  7. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  8. The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy

    Czech Academy of Sciences Publication Activity Database

    Šetlíková, Eva; Šetlík, Ivan; Kupper, H.; Kasalický, Vojtěch; Prášil, Ondřej

    2005-01-01

    Roč. 84, - (2005), s. 113-120. ISSN 0166-8595 R&D Projects: GA MŠk LN00A141; GA MŠk 1P05ME824 Grant ostatní: NATO EST CLG 981009 Institutional research plan: CEZ:AV0Z5020903 Keywords : cell cycle * chlorophyll fluorescence kinetics * fluorescence microscopy Subject RIV: EE - Microbiology, Virology Impact factor: 2.295, year: 2005

  9. Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells

    Science.gov (United States)

    Mitra, Debasis; Boutchko, Rostyslav; Ray, Judhajeet; Nilsen-Hamilton, Marit

    2015-03-01

    In this work we present a time-lapsed confocal microscopy image analysis technique for an automated gene expression study of multiple single living cells. Fluorescence Resonance Energy Transfer (FRET) is a technology by which molecule-to-molecule interactions are visualized. We analyzed a dynamic series of ~102 images obtained using confocal microscopy of fluorescence in yeast cells containing RNA reporters that give a FRET signal when the gene promoter is activated. For each time frame, separate images are available for three spectral channels and the integrated intensity snapshot of the system. A large number of time-lapsed frames must be analyzed to identify each cell individually across time and space, as it is moving in and out of the focal plane of the microscope. This makes it a difficult image processing problem. We have proposed an algorithm here, based on scale-space technique, which solves the problem satisfactorily. The algorithm has multiple directions for even further improvement. The ability to rapidly measure changes in gene expression simultaneously in many cells in a population will open the opportunity for real-time studies of the heterogeneity of genetic response in a living cell population and the interactions between cells that occur in a mixed population, such as the ones found in the organs and tissues of multicellular organisms.

  10. Dual-modality wide-field photothermal quantitative phase microscopy and depletion of cell populations

    Science.gov (United States)

    Turko, Nir A.; Barnea, Itay; Blum, Omry; Korenstein, Rafi; Shaked, Natan T.

    2015-03-01

    We review our dual-modality technique for quantitative imaging and selective depletion of populations of cells based on wide-field photothermal (PT) quantitative phase imaging and simultaneous PT cell extermination. The cells are first labeled by plasmonic gold nanoparticles, which evoke local plasmonic resonance when illuminated by light in a wavelength corresponding to their specific plasmonic resonance peak. This reaction creates changes of temperature, resulting in changes of phase. This phase changes are recorded by a quantitative phase microscope (QPM), producing specific imaging contrast, and enabling bio-labeling in phase microscopy. Using this technique, we have shown discrimination of EGFR over-expressing (EGFR+) cancer cells from EGFR under-expressing (EGFR-) cancer cells. Then, we have increased the excitation power in order to evoke greater temperatures, which caused specific cell death, all under real-time phase acquisition using QPM. Close to 100% of all EGFR+ cells were immediately exterminated when illuminated with the strong excitation beam, while all EGFR- cells survived. For the second experiment, in order to simulate a condition where circulating tumor cells (CTCs) are present in blood, we have mixed the EGFR+ cancer cells with white blood cells (WBCs) from a healthy donor. Here too, we have used QPM to observe and record the phase of the cells as they were excited for selective visualization and then exterminated. The WBCs survival rate was over 95%, while the EGFR+ survival rate was under 5%. The technique may be the basis for real-time detection and controlled treatment of CTCs.

  11. Raman confocal microscopy and AFM combined studies of cancerous cells treated with Paclitaxel

    Science.gov (United States)

    Derely, L.; Collart Dutilleul, P.-Y.; Michotte de Welle, Sylvain; Szabo, V.; Gergely, C.; Cuisinier, F. J. G.

    2011-03-01

    Paclitaxel interferes with the normal function of microtubule breakdown, induces apoptosis in cancer cells and sequesters free tubulin. As this drug acts also on other cell mechanisms it is important to monitor its accumulation in the cell compartments. The intracellular spreading of the drug was followed using a WITEC 300R confocal Raman microscope equipped with a CCD camera. Hence Atomic force microscopy (an MFP3D- Asylum Research AFM) in imaging and force mode was used to determine the morphological and mechanical modifications induced on living cells. These studies were performed on living epithelial MCF-7 breast cancer cells. Paclitaxel was added to cell culture media for 3, 6 and 9 hours. Among the specific paclitaxel Raman bands we selected the one at 1670 cm-1 because it is not superposed by the spectrum of the cells. Confocal Raman images are formed by monitoring this band, the NH2 and the PO4 band. Paclitaxel slightly accumulates in the nucleus forming patches. The drug is also concentrated in the vicinity of the cell membrane and in an area close to the nucleus where proteins accumulate. Our AFM images reveal that the treated cancerous MCF-7 cells keep the same size as the non treated ones, but their shape becomes more oval. Cell's elasticity is also modified: a difference of 2 kPa in the Young Modulus characterizes the treated MCF-7 mammary cancerous cell. Our observations demonstrate that paclitaxel acts not only on microtubules but accumulates also in other cell compartments (nucleus) where microtubules are absent.

  12. Automated identification and location analysis of marked stem cells colonies in optical microscopy images.

    Directory of Open Access Journals (Sweden)

    Vincenzo Paduano

    Full Text Available Embryonic stem cells (ESCs are characterized by two remarkable peculiarities: the capacity to propagate as undifferentiated cells (self-renewal and the ability to differentiate in ectoderm, endoderm, and mesoderm derivatives (pluripotency. Although the majority of ESCs divide without losing the pluripotency, it has become evident that ESC cultures consists of multiple cell populations highlighted by the expression of early germ lineage markers during spontaneous differentiation. Hence, the identification and characterization of ESCs subpopulations represents an efficient approach to improve the comprehension of correlation between gene expression and cell specification status. To study markers of ESCs heterogeneity, we developed an analysis pipeline which can automatically process images of stem cell colonies in optical microscopy. The question we try to address is to find out the statistically significant preferred locations of the marked cells. We tested our algorithm on a set of images of stem cell colonies to analyze the expression pattern of the Zscan4 gene, which was an elite candidate gene to be studied because it is specifically expressed in subpopulation of ESCs. To validate the proposed method we analyzed the behavior of control genes whose pattern had been associated to biological status such as differentiation (EndoA, pluripotency (Pou5f1, and pluripotency fluctuation (Nanog. We found that Zscan4 is not uniformly expressed inside a stem cell colony, and that it tends to be expressed towards the center of the colony, moreover cells expressing Zscan4 cluster each other. This is of significant importance because it allows us to hypothesize a biological status where the cells expressing Zscan4 are preferably associated to the inner of colonies suggesting pluripotent cell status features, and the clustering between themselves suggests either a colony paracrine effect or an early phase of cell specification through proliferation. Also, the

  13. Understanding Alterations in Cell Nano-architecture during Early Carcinogenesis using Optical Microscopy

    Science.gov (United States)

    Damania, Dhwanil

    Carcinogenesis is a complex multi-step process which eventually results in a malignant phenotype that often progresses into a fatal metastatic stage. There are several molecular changes (e.g. DNA methylation, activation of proto-oncogenes, loss of tumor-suppressor genes, histone acetylation) that occur in cells prior to the microscopically detectable morphological alterations. Hence, it is intuitive that these molecular changes should impact various biochemical, biophysical and transport processes within the cell and therefore its nanoscale morphology. Furthermore, recent studies have established that apparently `normal' cells (i.e., away from the actual tumor location) undergo similar genetic/epigenetic changes as the actual cancer cells, giving rise to the phenomenon of field carcinogenesis. Unfortunately, traditional microscopy or histopathology cannot resolve structures below 300 nm due to diffraction-limited resolution. Hence, we developed a novel optical imaging technique, partial wave spectroscopic (PWS) microscopy or optical nanocytology which quantifies the nanoscale refractive-index fluctuations (i.e. mass-density variations such as chromatin compaction) in an optically measured biomarker, disorder strength (Ld). This dissertation proves the nanoscale sensitivity of PWS nanocytology and shows that increase in Ld parallels neoplastic potential of a cell by using standardized cell-lines and animal-models. Based on concept of field carcinogenesis, we employ PWS nanocytology in a multi-center clinical study on approximately 450 patients in four different cancer-types (colon, ovarian, thyroid and lung) and we illustrate that nanoscale disorder increase is a ubiquitous phenomenon across different organs. We further demonstrate the potential of PWS nanocytology in predicting risk for developing future neoplasia. Biologically, we prove that cytoskeletal organization in both nucleus and cytoplasm plays a crucial role in governing L d-differences. Moreover, we

  14. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy.

    Science.gov (United States)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease. PMID:26666911

  15. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy

    Science.gov (United States)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.

  16. A general method to improve fluorophores for live-cell and single-molecule microscopy.

    Science.gov (United States)

    Grimm, Jonathan B; English, Brian P; Chen, Jiji; Slaughter, Joel P; Zhang, Zhengjian; Revyakin, Andrey; Patel, Ronak; Macklin, John J; Normanno, Davide; Singer, Robert H; Lionnet, Timothée; Lavis, Luke D

    2015-03-01

    Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range. PMID:25599551

  17. Atomic Force Microscopy Investigation of Morphological and Nanomechanical Properties of Pseudomonas aeruginosa Cells

    DEFF Research Database (Denmark)

    Mortensen, Ninell Pollas

    2008-01-01

    Atomic Force Microscopy (AFM) is unique in the aspect of studying living biological sample under physiological conditions. AFM was invented in 1986 by Binnig and Gerber and began in the early 1990’s to be implemented in life science. AFM can give a detailed three dimensional image of an intact cell......, but also be used to examine the nanomechanical properties on single cell level. These qualities make AFM a powerful tool in biology and can be used to examine both morphological and nanomechanical response to various liquids environments, such as osmotic pressure, but also the effects of e...... cells and nanostructures such as pili and flagella was obvious. The morphological effect of colistin and ciprofloxacin treatment was examined for dehydrated bacteria, and noticeable effects were observed. It is however, not possible to distinguish between primary effects of the antibiotic treatment and...

  18. Bone Marrow Mononuclear Cell Transplantation Restores Inflammatory Balance of Cytokines after ST Segment Elevation Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Kirsi Alestalo

    Full Text Available Acute myocardial infarction (AMI launches an inflammatory response and a repair process to compensate cardiac function. During this process, the balance between proinflammatory and anti-inflammatory cytokines is important for optimal cardiac repair. Stem cell transplantation after AMI improves tissue repair and increases the ventricular ejection fraction. Here, we studied in detail the acute effect of bone marrow mononuclear cell (BMMNC transplantation on proinflammatory and anti-inflammatory cytokines in patients with ST segment elevation myocardial infarction (STEMI.Patients with STEMI treated with thrombolysis followed by percutaneous coronary intervention (PCI were randomly assigned to receive either BMMNC or saline as an intracoronary injection. Cardiac function was evaluated by left ventricle angiogram during the PCI and again after 6 months. The concentrations of 27 cytokines were measured from plasma samples up to 4 days after the PCI and the intracoronary injection.Twenty-six patients (control group, n = 12; BMMNC group, n = 14 from the previously reported FINCELL study (n = 80 were included to this study. At day 2, the change in the proinflammatory cytokines correlated with the change in the anti-inflammatory cytokines in both groups (Kendall's tau, control 0.6; BMMNC 0.7. At day 4, the correlation had completely disappeared in the control group but was preserved in the BMMNC group (Kendall's tau, control 0.3; BMMNC 0.7.BMMNC transplantation is associated with preserved balance between pro- and anti-inflammatory cytokines after STEMI in PCI-treated patients. This may partly explain the favorable effect of stem cell transplantation after AMI.

  19. Scanning electrochemical microscopy of menadione-glutathione conjugate export from yeast cells.

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J

    2004-05-25

    The uptake of menadione (2-methyl-1,4-naphthoquinone), which is toxic to yeast cells, and its expulsion as a glutathione complex were studied by scanning electrochemical microscopy. The progression of the in vitro reaction between menadione and glutathione was monitored electrochemically by cyclic voltammetry and correlated with the spectroscopic (UV-visible) behavior. By observing the scanning electrochemical microscope tip current of yeast cells suspended in a menadione-containing solution, the export of the conjugate from the cells with time could be measured. Similar experiments were performed on immobilized yeast cell aggregates stressed by a menadione solution. From the export of the menadione-glutathione conjugate detected at a 1-microm-diameter electrode situated 10 microm from the cells, a flux of about 30,000 thiodione molecules per second per cell was extracted. Numerical simulations based on an explicit finite difference method further revealed that the observation of a constant efflux of thiodione from the cells suggested the rate was limited by the uptake of menadione and that the efflux through the glutathione-conjugate pump was at least an order of magnitude faster. PMID:15148374

  20. Early responses of human cancer cells upon photodynamic treatment monitored by laser phase microscopy

    Science.gov (United States)

    Roelofs, Theo A.; Graschew, Georgi; Perevedentseva, Elena V.; Rakowsky, Stefan; Dressler, Cathrin; Beuthan, Juergen; Schlag, Peter M.

    2001-04-01

    Photodynamic treatment of cancer cells is known to eventually cause cell death in most cases. The precise pathways and the time course seem to vary among different cell types and modes of photodynamic treatment. In this contribution, the focus was put on the responses of human colon carcinoma cells HCT-116 within the first 15 minutes after laser irradiation in the presence of Photofrin« II (PII). To monitor the cell response in this early time period laser phase microscopic imaging was used, a method sensitive to changes in overall cell shape and intracellular structures, mediated by changes in the local refractive index. Laser irradiation of cells loaded with PII induced a significant reduction of the phase shifts, which probably reflects the induced damage to the different cellular membrane structures. The data suggest that even within the first 30 s after the onset of laser illumination, a significant reduction of the phase shifts can be detected. These results underline that laser phase microscopy is a suitable diagnostic tool for cellular research, also in the early time domain.

  1. Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2016-09-01

    Understanding the physicochemical properties of cell surface signalling molecules is important for us to uncover the underlying mechanisms that guide the cellular behaviors. Atomic force microscopy (AFM) has become a powerful tool for detecting the molecular interactions on individual cells with nanometer resolution. In this paper, AFM peak force tapping (PFT) imaging mode was applied to rapidly locate and visually map the CD20 molecules on human lymphoma cells using biochemically sensitive tips. First, avidin-biotin system was used to test the effectiveness of using PFT imaging mode to probe the specific molecular interactions. The adhesion images obtained on avidin-coated mica using biotin-tethered tips obviously showed the recognition spots which corresponded to the avidins in the simultaneously obtained topography images. The experiments confirmed the specificity and reproducibility of the recognition results. Then, the established procedure was applied to visualize the nanoscale organization of CD20s on the surface of human lymphoma Raji cells using rituximab (a monoclonal anti-CD20 antibody)-tethered tips. The experiments showed that the recognition spots in the adhesion images corresponded to the specific CD20-rituximab interactions. The cluster sizes of CD20s on lymphoma Raji cells were quantitatively analyzed from the recognition images. Finally, under the guidance of fluorescence recognition, the established procedure was applied to cancer cells from a clinical lymphoma patient. The results showed that there were significant differences between the adhesion images obtained on cancer cells and on normal cells (red blood cell). The CD20 distributions on ten cancer cells from the patient were quantified according to the adhesion images. The experimental results demonstrate the capability of applying PFT imaging to rapidly investigate the nanoscale biophysical properties of native membrane proteins on the cell surface, which is of potential significance in

  2. Relationship between cell stiffness and stress fiber amount, assessed by simultaneous atomic force microscopy and live-cell fluorescence imaging.

    Science.gov (United States)

    Gavara, Núria; Chadwick, Richard S

    2016-06-01

    Actomyosin stress fibers, one of the main components of the cell's cytoskeleton, provide mechanical stability to adherent cells by applying and transmitting tensile forces onto the extracellular matrix (ECM) at the sites of cell-ECM adhesion. While it is widely accepted that changes in spatial and temporal distribution of stress fibers affect the cell's mechanical properties, there is no quantitative knowledge on how stress fiber amount and organization directly modulate cell stiffness. We address this key open question by combining atomic force microscopy with simultaneous fluorescence imaging of living cells, and combine for the first time reliable quantitative parameters obtained from both techniques. We show that the amount of myosin and (to a lesser extent) actin assembled in stress fibers directly modulates cell stiffness in adherent mouse fibroblasts (NIH3T3). In addition, the spatial distribution of stress fibers has a second-order modulatory effect. In particular, the presence of either fibers located in the cell periphery, aligned fibers or thicker fibers gives rise to reinforced cell stiffness. Our results provide basic and significant information that will help design optimal protocols to regulate the mechanical properties of adherent cells via pharmacological interventions that alter stress fiber assembly or via micropatterning techniques that restrict stress fiber spatial organization. PMID:26206449

  3. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    International Nuclear Information System (INIS)

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 106-3 x 108 labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 106 cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells. (orig.)

  4. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daldrup-Link, Heike E. [Department of Radiology, UCSF Medical Center, University of California in San Francisco, 513 Parnassus Ave, CA 94143, San Francisco (United States); Rudelius, Martina; Piontek, Guido; Schlegel, Juergen [Institute of Pathology, Technical University, Munich (Germany); Metz, Stephan; Settles, Marcus; Rummeny, Ernst J. [Department of Radiology, Technical University, Munich (Germany); Pichler, Bernd [Department of Biomedical Engineering, University of California Davis, Davis (United States); Heinzmann, Ulrich [National Research Center for Environment and Health, Technical University, Munich (Germany); Oostendorp, Robert A.J. [3. Clinic of Internal Medicine, Laboratory of Stem Cell Physiology, Technical University, Munich (Germany)

    2004-09-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10{sup 6}-3 x 10{sup 8} labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10{sup 6} cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells

  5. Imaging arterial cells, atherosclerosis, and restenosis by multimodal nonlinear optical microscopy

    Science.gov (United States)

    Wang, Han-Wei; Simianu, Vlad; Locker, Matthew J.; Sturek, Michael; Cheng, Ji-Xin

    2008-02-01

    By integrating sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on a coherent anti-Stokes Raman scattering (CARS) microscope platform, multimodal nonlinear optical (NLO) imaging of arteries and atherosclerotic lesions was demonstrated. CARS signals arising from CH II-rich membranes allowed visualization of endothelial cells and smooth muscle cells in a carotid artery. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are rich in CH II bonds in their cross-linking residues. The extracellular matrix organization was further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. The system is capable of identifying different atherosclerotic lesion stages with sub-cellular resolution. The stages of atherosclerosis, such as macrophage infiltration, lipid-laden foam cell accumulation, extracellular lipid distribution, fibrous tissue deposition, plaque establishment, and formation of other complicated lesions could be viewed by our multimodal CARS microscope. Collagen percentages in the region adjacent to coronary artery stents were resolved. High correlation between NLO and histology imaging evidenced the validity of the NLO imaging. The capability of imaging significant components of an arterial wall and distinctive stages of atherosclerosis in a label-free manner suggests the potential application of multimodal nonlinear optical microscopy to monitor the onset and progression of arterial diseases.

  6. Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices

    International Nuclear Information System (INIS)

    Kelvin probe force microscopy allows to determine not only the surface topography as does atomic force microscopy, but in addition also delivers images of the surface work function on a nanometer scale. Operation in ultrahigh vacuum improves the lateral and energy resolution and allows to obtain absolute work function values. In this paper we will introduce the method and give examples for the application to solar cell materials and devices. We review examples where the surface of an oriented CuGaSe2 film showed distinct work function values for differently oriented facets of single grains, with differences as high as 250 meV, possibly affecting the power conversion efficiency of a solar cell. A cross-sectional study of a complete solar cell device based on the CuGaSe2 absorber material revealed the formation of an additional MoSex layer between the Mo back contact and the absorber. We will present results of measurements at individual grain boundaries of the absorber material. Furthermore, band bending effects at these grain boundaries are discussed and compared to results from transport studies

  7. Cross-sectional electrostatic force microscopy of thin-film solar cells

    Science.gov (United States)

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-01

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II-VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO2/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface (±50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  8. The nematode stoma: Homology of cell architecture with improved understanding by confocal microscopy of labeled cell boundaries.

    Science.gov (United States)

    Jay Burr, A H; Baldwin, James G

    2016-09-01

    Nematode stomas vary widely in the cuticular structures evolved for different feeding strategies, yet the arrangement of the epithelial cell classes that form these structures may be conserved. This article addresses several issues that have impeded the full acceptance of this hypothesis including controversies arising from the structure of the Caenorhabditis elegans stoma. We investigated fluorescent antibody labeling of cell boundaries in conjunction with confocal microscopy as an alternative to transmission electron microscopy (TEM), using MH27 to label apical junctions in C. elegans and two other species. Accurately spaced optical sections collected by the confocal microscope provide a three-dimensional array of pixels (voxels) that, using image-processing software, can be rotated and sectioned at accurately chosen thicknesses and locations. Ribbons of fluorescence clearly identify cell boundaries along the luminal cuticle in C. elegans and Zeldia punctata and less clearly in Bunonema sp. The patterns render cell classes and their relationships readily identifiable. In the C. elegans stoma they correct a misreading of serial TEMs that was not congruent with architecture in other nematodes-the row of marginal cells is now seen to be continuous as in other nematodes, rather than being interrupted by encircling pm1 cells. Also impeding understanding, the reference to certain cell classes as 'epithelial' and others as "muscle" in the C. elegans literature is at variance with muscle expression in most other taxa. For consistent comparison among species, we propose that these cell class descriptors based on function be replaced by topological terms. With these and other confusing concepts and terminology removed, the homology of the cellular architecture among taxa becomes obvious. We provide a corrected description of the cell architecture of the C. elegans stoma and examples of how it is modified in other taxa with different feeding strategies. J. Morphol. 277

  9. Correlative microscopy of radial junction nanowire solar cells using nanoindent position markers

    Czech Academy of Sciences Publication Activity Database

    Fejfar, Antonín; Hývl, Matěj; Vetushka, Aliaksi; Pikna, Peter; Hájková, Zdeňka; Ledinský, Martin; Kočka, Jan; Klapetek, P.; Marek, A.; Mašková, A.; Vyskočil, J.; Merkel, J.; Becker, Ch.; Itoh, T.; Misra, S.; Foldyna, M.; Yu, L.; Roca i Cabarrocas, P.

    2015-01-01

    Roč. 135, SI (2015), s. 106-112. ISSN 0927-0248 R&D Projects: GA MŠk 7E10061; GA MŠk(CZ) LM2011026; GA ČR GA13-12386S EU Projects: European Commission(XE) 240826 Grant ostatní: AVČR(CZ) M100101216; AVČR(CZ) M100101217 Institutional support: RVO:68378271 Keywords : radial junction solar cells * silicon nanowires * thin film s * structural disorder * conductive AFM * nanoindentation * correlative microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.337, year: 2014

  10. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy [Corrigendum

    OpenAIRE

    Lee SY; Zaske AM; Novellino T; Danila D; Ferrari M.; Conyers J; Decuzzi P

    2014-01-01

    Lee SY, Zaske AM, Novellino T, et al. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy. Int J Nanomedicine. 2011;6:179–195.The authors apologize that the referencing for Table 1 on page 186 was incorrect, the following corrections should be noted:   8 should be 4240 should be 4318 should be 4442 should be 45  9 should be 4612 should be 4729 should be 4844 should be 4923 should be 5036 should be 1637 should be 18Read th...

  11. Sample preparation for scanning Kelvin probe microscopy studies on cross sections of organic solar cells

    Directory of Open Access Journals (Sweden)

    Michael Scherer

    2013-09-01

    Full Text Available We prepared cross sections of P3HT:PCBM bulk heterojunction (BHJ organic solar cells (OSCs for the characterization of their potential distribution with scanning Kelvin probe microscopy. We compared results of samples obtained by microtome cutting of OSCs on plastic substrates, cleaving of OSCs on glass substrates, and milling with a focused ion beam. Their potential distributions were in good agreement with each other. Under short circuit conditions, potential gradients were detected in vicinity of the electrode/organics interfaces, with negligible electric fields within the bulk. We contacted the OSCs in a defined manner and studied their potential distribution under operating conditions.

  12. Correlative VIS-fluorescence and soft X-ray cryo-microscopy/tomography of adherent cells

    OpenAIRE

    Hagen, Christoph; Guttmann, Peter; Klupp, Barbara; Werner, Stephan; Rehbein, Stefan; Mettenleiter, Thomas C.; Schneider, Gerd; Grünewald, Kay

    2012-01-01

    Soft X-ray cryo-microscopy/tomography of vitreous samples is becoming a valuable tool in structural cell biology. Within the ‘water-window’ wavelength region (2.34–4.37 nm), it provides absorption contrast images with high signal to noise ratio and resolution of a few tens of nanometer. Soft X-rays with wavelengths close to the K-absorption edge of oxygen penetrate biological samples with thicknesses in the micrometer range. Here, we report on the application of a recently established extensi...

  13. Atomic force microscopy reveals differences in cell membrane properties in nuclear myosin I mutant

    Czech Academy of Sciences Publication Activity Database

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Rohožková, Jana; Hozák, Pavel

    Praha : Society for Histochemistry, 2013. [55th Symposium of the Society for Histochemistry. 11.06.2013-14.06.2013, Praha] R&D Projects: GA ČR(CZ) GD204/09/H084; GA ČR GAP305/11/2232; GA TA ČR TE01020118; GA MŠk LH12143 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : atomic force microscopy * cell membrane * myosin 1C * NM1 * nuclear myosin I Subject RIV: EB - Genetics ; Molecular Biology

  14. Voltammetric Scanning Electrochemical Cell Microscopy: Dynamic Imaging of Hydrazine Electro-oxidation on Platinum Electrodes.

    Science.gov (United States)

    Chen, Chang-Hui; Jacobse, Leon; McKelvey, Kim; Lai, Stanley C S; Koper, Marc T M; Unwin, Patrick R

    2015-06-01

    Voltammetric scanning electrochemical cell microscopy (SECCM) incorporates cyclic voltammetry measurements in the SECCM imaging protocol, by recording electrochemical currents in a wide potential window at each pixel in a map. This provides much more information compared to traditional fixed potential imaging. Data can be represented as movies (hundreds of frames) of current (over a surface region) at a series of potentials and are highly revealing of subtle variations in electrode activity. Furthermore, by combining SECCM data with other forms of microscopy, e.g. scanning electron microscopy and electron backscatter diffraction data, it is possible to directly relate the current-voltage characteristics to spatial position and surface structure. In this work we use a "hopping mode", where the SECCM pipet probe is translated toward the surface at a series of positions until meniscus contact. Small amounts of residue left on the surface, upon probe retraction, demark the precise area of each measurement. We use these techniques to study hydrazine oxidation on a polycrystalline platinum substrate both in air and in a deaerated environment. In both cases, the detected faradaic current shows a structural dependence on the surface crystallographic orientation. Significantly, in the presence of oxygen (aerated solution) the electrochemical current decreases strongly for almost all grains (crystallographic orientations). The results highlight the flexibility of voltammetric SECCM for electrochemical imaging and present important implications for hydrazine electroanalysis. PMID:25942527

  15. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    Directory of Open Access Journals (Sweden)

    Xinghua Lou

    2014-03-01

    Full Text Available Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses.

  16. Study on lipid droplet dynamics in live cells and fluidity changes in model bacterial membranes using optical microscopy techniques

    OpenAIRE

    Wong, Christine Shiang Yee

    2014-01-01

    In this thesis optical microscopy techniques are used to consider aspects of viral and bacterial infections. In part 1, the physical effects of cytomegalovirus on lipid droplet dynamics in live cells are studied; in part 2, the effects of an antimicrobial peptide on the fluidity of model bacterial membranes are studied. The optical microscopy techniques used to study the effects of murine-cytomegalovirus (mCMV) on lipid droplets in live NIH/3T3 fibroblast cells in real-time are...

  17. Detection of a Single Genetically Modified Bacterial Cell in Soil by Using Charge Coupled Device-Enhanced Microscopy

    OpenAIRE

    Silcock, Deborah J.; Waterhouse, Rosemary N.; Glover, L. Anne; Prosser, James I.; Killham, Kenneth

    1992-01-01

    Genes encoding bioluminescence from Vibrio harveyi were cloned into Pseudomonas syringae pv. phaseoli-cola, resulting in high levels of bioluminescence. After inoculation of sterile and nonsterile soil slurries with bioluminescent P. syringae, cells could not be identified by conventional light microscopy. However, when we used charge coupled device-enhanced microscopy, bioluminescent single cells were detected easily in dark fields despite masking by soil particulate matter, and in addition,...

  18. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination

    OpenAIRE

    Narchi, Paul; Alvarez, José; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod’homme, Patricia; Kleider, Jean-Paul; i Cabarrocas, Pere Roca

    2016-01-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 10...

  19. Spiral conformation of Vibrio cholerae as determined by scanning electron microscopy of elongated cells induced by cephalexin treatment.

    OpenAIRE

    Konishi, H.; Katayama, A.; Ito, T.; Tanaka, S.; Yoshii, Z

    1986-01-01

    The elongated cells of Vibrio spp. induced by cephalexin treatment were examined by scanning electron microscopy. The results showed that Vibrio cholerae has a twisted cell body and a right-handed spiral conformation and that the cell bodies of V. parahaemolyticus and V. alginolyticus are straight rather than curved.

  20. Proving tumour cells by acute nutritional/energy deprivation as a survival threat: a task for microscopy

    Czech Academy of Sciences Publication Activity Database

    Janečková, H.; Veselý, Pavel; Chmelík, R.

    2009-01-01

    Roč. 29, č. 6 (2009), s. 2339-2345. ISSN 0250-7005 Institutional research plan: CEZ:AV0Z50520514 Keywords : tumour cell * nutritional deprivation * energy deprivation * cell survival * cell death * digital holographic microscopy * dynamic phase difference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.428, year: 2009

  1. Identification and automatic segmentation of multiphasic cell growth using a linear hybrid model.

    Science.gov (United States)

    Hartmann, András; Neves, Ana Rute; Lemos, João M; Vinga, Susana

    2016-09-01

    This article considers a new mathematical model for the description of multiphasic cell growth. A linear hybrid model is proposed and it is shown that the two-parameter logistic model with switching parameters can be represented by a Switched affine AutoRegressive model with eXogenous inputs (SARX). The growth phases are modeled as continuous processes, while the switches between the phases are considered to be discrete events triggering a change in growth parameters. This framework provides an easily interpretable model, because the intrinsic behavior is the same along all the phases but with a different parameterization. Another advantage of the hybrid model is that it offers a simpler alternative to recent more complex nonlinear models. The growth phases and parameters from datasets of different microorganisms exhibiting multiphasic growth behavior such as Lactococcus lactis, Streptococcus pneumoniae, and Saccharomyces cerevisiae, were inferred. The segments and parameters obtained from the growth data are close to the ones determined by the experts. The fact that the model could explain the data from three different microorganisms and experiments demonstrates the strength of this modeling approach for multiphasic growth, and presumably other processes consisting of multiple phases. PMID:27424949

  2. Context based mixture model for cell phase identification in automated fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Zhou Xiaobo

    2007-01-01

    Full Text Available Abstract Background Automated identification of cell cycle phases of individual live cells in a large population captured via automated fluorescence microscopy technique is important for cancer drug discovery and cell cycle studies. Time-lapse fluorescence microscopy images provide an important method to study the cell cycle process under different conditions of perturbation. Existing methods are limited in dealing with such time-lapse data sets while manual analysis is not feasible. This paper presents statistical data analysis and statistical pattern recognition to perform this task. Results The data is generated from Hela H2B GFP cells imaged during a 2-day period with images acquired 15 minutes apart using an automated time-lapse fluorescence microscopy. The patterns are described with four kinds of features, including twelve general features, Haralick texture features, Zernike moment features, and wavelet features. To generate a new set of features with more discriminate power, the commonly used feature reduction techniques are used, which include Principle Component Analysis (PCA, Linear Discriminant Analysis (LDA, Maximum Margin Criterion (MMC, Stepwise Discriminate Analysis based Feature Selection (SDAFS, and Genetic Algorithm based Feature Selection (GAFS. Then, we propose a Context Based Mixture Model (CBMM for dealing with the time-series cell sequence information and compare it to other traditional classifiers: Support Vector Machine (SVM, Neural Network (NN, and K-Nearest Neighbor (KNN. Being a standard practice in machine learning, we systematically compare the performance of a number of common feature reduction techniques and classifiers to select an optimal combination of a feature reduction technique and a classifier. A cellular database containing 100 manually labelled subsequence is built for evaluating the performance of the classifiers. The generalization error is estimated using the cross validation technique. The

  3. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy.

    Science.gov (United States)

    Volle, C B; Ferguson, M A; Aidala, K E; Spain, E M; Núñez, M E

    2008-11-15

    Bacterial biofilms were imaged by atomic force microscopy (AFM), and their elasticity and adhesion to the AFM tip were determined from a series of tip extension and retraction cycles. Though the five bacterial strains studied included both Gram-negative and -positive bacteria and both environmental and laboratory strains, all formed simple biofilms on glass surfaces. Cellular spring constants, determined from the extension portion of the force cycle, varied between 0.16+/-0.01 and 0.41+/-0.01 N/m, where larger spring constants were measured for Gram-positive cells than for Gram-negative cells. The nonlinear regime in the extension curve depended upon the biomolecules on the cell surface: the extension curves for the smooth Gram-negative bacterial strains with the longest lipopolysaccharides on their surface had a larger nonlinear region than the rough bacterial strain with shorter lipopolysaccharides on the surface. Adhesive forces between the retracting silicon nitride tip and the cells varied between cell types in terms of the force components, the distance components, and the number of adhesion events. The Gram-negative cells' adhesion to the tip showed the longest distance components, sometimes more than 1 microm, whereas the shortest distance adhesion events were measured between the two Gram-positive cell types and the tip. Fixation of free-swimming planktonic cells by NHS and EDC perturbed both the elasticity and the adhesive properties of the cells. Here we consider the biochemical meaning of the measured physical properties of simple biofilms and implications to the colonization of surfaces in the first stages of biofilm formation. PMID:18815013

  4. Confocal Raman microscopy for investigation of the level of differentiation in living neuroblastoma tumor cells

    Science.gov (United States)

    Scalfi-Happ, Claudia; Jauss, Andrea; Hollricher, Olaf; Fulda, Simone; Hauser, Carmen; Steiner, Rudolf; Rück, Angelika

    2007-07-01

    The investigation of living cells at physiological conditions requires very sensitive, sophisticated, non invasive methods. In this study, Raman spectral imaging is used to identify different biomolecules inside of cells. Raman spectroscopy, a chemically and structurally sensitive measuring technique, is combined with high resolution confocal microscopy. In Raman spectral imaging mode, a complete Raman spectrum is recorded at every confocal image point, giving insight into the chemical composition of each sample compartment. Neuroblastoma is the most common solid extra-cranial tumor in children. One of the unique features of neuroblastoma cells is their ability to differentiate spontaneously, eventually leading to complete remission. Since differentiation agents are currently used in the clinic for neuroblastoma therapy, there is a special need to develop non-invasive and sensitive new methods to monitor neuroblastoma cell differentiation. Neuroblastoma cells at different degrees of differentiation were analysed with the confocal Raman microscope alpha300 R (WITec GmbH, Germany), using a frequency doubled Nd:YAG laser at 532 nm and 10 mW for excitation. Integration time per spectrum was 80-100 ms. A lateral resolution in submicrometer range was achieved by using a 60x water immersion lens with a numerical aperture of 1,0. Raman images of cells were generated from these sets of data by either integrating over specific Raman bands, by basis analysis using reference spectra or by cluster analysis. The automated evaluation of all spectra results in spectral unmixed images providing insight into the chemical composition of the sample. With these procedures, different cell organelles, cytosol, membranes could be distinguished. Since neuroblastoma cells at high degree of differentiation overproduce noradrenaline, an attempt was made to trace the presence of this neurotransmitter as a marker for differentiation. The results of this work may have applications in the

  5. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Sternberg, Claus; Tolker-Nielsen, Tim

    2009-01-01

    , industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms......Biofilms are agglomerates of microorganisms surrounded by a self-produced extracellular matrix. During the last 10 years, there has been an increasing recognition of biofilms as a highly significant topic in microbiology with relevance for a variety of areas in our society including the environment...... formed in flow-chamber experimental systems by genetically color-coded bacteria have provided detailed knowledge about biofilm developmental processes, cell differentiations, spatial organization, and function of laboratory-grown biofilms, in some cases down to the single cell level. In addition, the...

  6. Local electromechanical properties of different phenotype models of vascular smooth muscle cells using force microscopy

    Science.gov (United States)

    Thompson, Gary; Reukov, Vladimir; Nikiforov, Maxim; Guo, Senli; Ovchinnikov, Oleg; Jesse, Stephen; Kalinin, Sergei; Vertegel, Alexey

    2010-03-01

    Vascular smooth muscle cells (VSMCs) exist as a spectrum of diverse phenotypes raning between contractile and synthetic, the latter being associated with disease states. Different VSMC phenotypes, modeled using serum-starvation, exhibit characteristic electromechanical responses that can be distinguished using band excitation piezoresponse force microscopy (BEPFM), which maps information at the same rate as the atomic force microscope (AFM) scan performed simultaneously. BEPFM image formation mechanism in the culture medium is determined using excitation steps from 1 mV to 100 V. High voltage improves contrast between cells and collagen-coated substrates. Viscoelasticity from AFM stress relaxation experiments and local elasticity from force maps correlate to BEPFM data providing a map of local mechanical properties on different VSMCs.

  7. Intravital Microscopy Reveals Differences in the Kinetics of Endocytic Pathways between Cell Cultures and Live Animals

    Directory of Open Access Journals (Sweden)

    Roberto Weigert

    2012-11-01

    Full Text Available Intravital microscopy has enabled imaging of the dynamics of subcellular structures in live animals, thus opening the door to investigating membrane trafficking under physiological conditions. Here, we sought to determine whether the architecture and the environment of a fully developed tissue influences the dynamics of endocytic processes. To this aim, we imaged endocytosis in the stromal cells of rat salivary glands both in situ and after they were isolated and cultured on a solid surface. We found that the internalization of transferrin and dextran, two molecules that traffic via distinct mechanisms, is substantially altered in cultured cells, supporting the idea that the three dimensional organization of the tissue and the cues generated by the surrounding environment strongly affect membrane trafficking events.

  8. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  9. Surface patterned dielectrics by direct writing of anodic oxides using scanning droplet cell microscopy

    International Nuclear Information System (INIS)

    Highlights: • Scanning droplet cell microscopy was applied for local gate oxide writing. • Sharp lines are obtained at the highest writing speed of 1 mm min−1. • 13.4 kC cm−3 was found as charge per volume for aluminium oxide. • High field constant of 24 nm V−1 and dielectric constant of 12 were determined for Al2O3 by CV and EIS. -- Abstract: Scanning droplet cell microscopy was used for patterning of anodic oxide lines on the surface of Al thin films by direct writing. The structural modifications of the written oxide lines as a function of the writing speed were studied by analyzing the relative error of the line widths. Sharper lines were obtained for writing speeds faster than 1 mm min−1. An increase in sharpness was observed for higher writing speeds. A theoretical model based on the Faraday law is proposed to explain the constant anodisation current measured during the writing process and yielded a charge per volume of 13.4 kC cm−3 for Al2O3. From calculated oxide film thicknesses the high field constant was found to be 24 nm V−1. Electrochemical impedance spectroscopy revealed an increase of the electrical permittivity up to ε = 12 with the decrease of the writing speed of the oxide line. Writing of anodic oxide lines was proven to be an important step in preparing capacitors and gate dielectrics in plastic electronics

  10. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis

    Science.gov (United States)

    Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard

    2014-06-01

    Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.

  11. Intrinsic indicator of photodamage during label-free multiphoton microscopy of cells and tissues.

    Directory of Open Access Journals (Sweden)

    Roberta Galli

    Full Text Available Multiphoton imaging has evolved as an indispensable tool in cell biology and holds prospects for clinical applications. When addressing endogenous signals such as coherent anti-Stokes Raman scattering (CARS or second harmonic generation, it requires intense laser irradiation that may cause photodamage. We report that increasing endogenous fluorescence signal upon multiphoton imaging constitutes a marker of photodamage. The effect was studied on mouse brain in vivo and ex vivo, on ex vivo human brain tissue samples, as well as on glioblastoma cells in vitro, demonstrating that this phenomenon is common to a variety of different systems, both ex vivo and in vivo. CARS microscopy and vibrational spectroscopy were used to analyze the photodamage. The development of a standard easy-to-use model that employs rehydrated cryosections allowed the characterization of the irradiation-induced fluorescence and related it to nonlinear photodamage. In conclusion, the monitoring of endogenous two-photon excited fluorescence during label-free multiphoton microscopy enables to estimate damage thresholds ex vivo as well as detect photodamage during in vivo experiments.

  12. Intravital microscopy

    OpenAIRE

    Masedunskas, Andrius; Milberg, Oleg; Porat-Shliom, Natalie; Sramkova, Monika; Wigand, Tim; Amornphimoltham, Panomwat; Weigert, Roberto

    2012-01-01

    Intravital microscopy is an extremely powerful tool that enables imaging several biological processes in live animals. Recently, the ability to image subcellular structures in several organs combined with the development of sophisticated genetic tools has made possible extending this approach to investigate several aspects of cell biology. Here we provide a general overview of intravital microscopy with the goal of highlighting its potential and challenges. Specifically, this review is geared...

  13. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [Iowa State Univ., Ames, IA (United States)

    2008-12-18

    The purpose of this research was to expand the chemiluminescence microscopy applications in live bacterial/mammalian cell imaging and to improve the detection sensitivity for ATP leaking or release events. We first demonstrated that chemiluminescence (CL) imaging can be used to interrogate single bacterial cells. While using a luminometer allows detecting ATP from cell lysate extracted from at least 10 bacterial cells, all previous cell CL detection never reached this sensitivity of single bacteria level. We approached this goal with a different strategy from before: instead of breaking bacterial cell membrane and trying to capture the transiently diluted ATP with the firefly luciferase CL assay, we introduced the firefly luciferase enzyme into bacteria using the modern genetic techniques and placed the CL reaction substrate D-luciferin outside the cells. By damaging the cell membrane with various antibacterial drugs including antibiotics such as Penicillins and bacteriophages, the D-luciferin molecules diffused inside the cell and initiated the reaction that produces CL light. As firefly luciferases are large protein molecules which are retained within the cells before the total rupture and intracellular ATP concentration is high at the millmolar level, the CL reaction of firefly luciferase, ATP and D-luciferin can be kept for a relatively long time within the cells acting as a reaction container to generate enough photons for detection by the extremely sensitive intensified charge coupled device (ICCD) camera. The result was inspiring as various single bacterium lysis and leakage events were monitored with 10-s temporal resolution movies. We also found a new way of enhancing diffusion D-luciferin into cells by dehydrating the bacteria. Then we started with this novel single bacterial CL imaging technique, and applied it for quantifying gene expression levels from individual bacterial cells. Previous published result in single cell gene expression quantification

  14. Quantitative neuroanatomy of all Purkinje cells with light sheet microscopy and high-throughput image analysis.

    Science.gov (United States)

    Silvestri, Ludovico; Paciscopi, Marco; Soda, Paolo; Biamonte, Filippo; Iannello, Giulio; Frasconi, Paolo; Pavone, Francesco S

    2015-01-01

    Characterizing the cytoarchitecture of mammalian central nervous system on a brain-wide scale is becoming a compelling need in neuroscience. For example, realistic modeling of brain activity requires the definition of quantitative features of large neuronal populations in the whole brain. Quantitative anatomical maps will also be crucial to classify the cytoarchtitectonic abnormalities associated with neuronal pathologies in a high reproducible and reliable manner. In this paper, we apply recent advances in optical microscopy and image analysis to characterize the spatial distribution of Purkinje cells (PCs) across the whole cerebellum. Light sheet microscopy was used to image with micron-scale resolution a fixed and cleared cerebellum of an L7-GFP transgenic mouse, in which all PCs are fluorescently labeled. A fast and scalable algorithm for fully automated cell identification was applied on the image to extract the position of all the fluorescent PCs. This vectorized representation of the cell population allows a thorough characterization of the complex three-dimensional distribution of the neurons, highlighting the presence of gaps inside the lamellar organization of PCs, whose density is believed to play a significant role in autism spectrum disorders. Furthermore, clustering analysis of the localized somata permits dividing the whole cerebellum in groups of PCs with high spatial correlation, suggesting new possibilities of anatomical partition. The quantitative approach presented here can be extended to study the distribution of different types of cell in many brain regions and across the whole encephalon, providing a robust base for building realistic computational models of the brain, and for unbiased morphological tissue screening in presence of pathologies and/or drug treatments. PMID:26074783

  15. The Use of Atomic Force Microscopy as a Technique for the Identification of Cancerous Cells

    International Nuclear Information System (INIS)

    The monograph presents the use of atomic force microscopy (AFM) as a tool for the identification of cancerous cells by studies of the expression of different types of molecules directly on the surface of living cells. The full quantitative description (that is not accessible by other techniques) performed for a given type of molecular interactions has been obtained by using the following quantities: an unbinding force, probability, rupture length and the effective spring constant taking into account the stiffness of a single complex. All, these parameters were extracted from AFM measurements The analysis of the interaction forces performed by AFM allows the quantitative determination of: i) the static properties of a single molecular complex where its strength of interaction and stiffness of the studied complex can be obtained, ii) dynamic properties, on the basis of which the kinetic properties of the unbinding process can be delivered, and iii) properties of adhesion clusters, where the interrelation between single complexes can be characterized, in particular the mechanism of the unbinding can be obtained. The presented characterization of the interaction force between single molecules demonstrates that atomic force microscopy can be used as exceptional technique to study the expression of molecules on a cell surface. Such measurements are not limited to a typical interactions occurring between single molecules but also it is possible to study the interactions between parts of molecules. The results presented in this monograph point to a novel approach to identify cancer-related changes in a quantitative way what can be used for describing and confirming the pathological state of a single cell. (author)

  16. Fast Stiffness Mapping of Cells Using High-Bandwidth Atomic Force Microscopy.

    Science.gov (United States)

    Wang, Andrew; Vijayraghavan, Karthik; Solgaard, Olav; Butte, Manish J

    2016-01-26

    The cytoskeleton controls cellular morphology and mediates the mechanical interactions between a cell and its environment. Atomic force microscopy (AFM) has the unique capability to map cytoskeletal mechanics and structures with nanometer resolution. However, whole-cell cytomechanical imaging with conventional AFM techniques is limited by low imaging speed. Here, we present fast nanomechanical mapping of cells using high-bandwidth AFM (HB-AFM), where >10(6) nanoindentation measurements were acquired in ∼10 min-a task that would take weeks to finish using conventional AFM. High-bandwidth measurements enabled capture of the entire tip-sample interaction for each tap on cells, engendering a new measurement ("force phase") that exceeds the contrast of conventional tapping mode and enabling spectral visualization of >10 harmonics. The abundance of measurements allowed discovery of subtle cytomechanical features, including the stiffness of fibers of the cellular spectrin network in situ. This approach bridges HB-AFM and high-harmonic imaging and opens future opportunities for measuring the dynamic mechanical properties of living cells. PMID:26554581

  17. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  18. Sub-cellular force microscopy in single normal and cancer cells

    International Nuclear Information System (INIS)

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  19. Atomic Force Microscopy Measurements of the Mechanical Properties of Cell Walls on Living Bacterial Cells

    Science.gov (United States)

    Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie

    2014-03-01

    Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.

  20. Poly(urethane-dimethylsiloxane) copolymers displaying a range of soft segment contents, noncytotoxic chemistry, and nonadherent properties toward endothelial cells.

    Science.gov (United States)

    Stefanović, Ivan S; Djonlagić, Jasna; Tovilović, Gordana; Nestorov, Jelena; Antić, Vesna V; Ostojić, Sanja; Pergal, Marija V

    2015-04-01

    Polyurethane copolymers based on α,ω-dihydroxypropyl poly(dimethylsiloxane) (PDMS) with a range of soft segment contents were prepared by two-stage polymerization, and their microstructures, thermal, thermomechanical, and surface properties, as well as in vitro hemo- and cytocompatibility were evaluated. All utilized characterization methods confirmed the existence of moderately microphase separated structures with the appearance of some microphase mixing between segments as the PDMS (i.e., soft segment) content increased. Copolymers showed higher crystallinity, storage moduli, surface roughness, and surface free energy, but less hydrophobicity with decreasing PDMS content. Biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact, an extraction method and after pretreatment of copolymers with multicomponent protein mixture, as well as by a competitive protein adsorption assay. Copolymers showed no toxic effect to endothelial cells and all copolymers, except that with the lowest PDMS content, exhibited resistance to endothelial cell adhesion, suggesting their unsuitability for long-term biomedical devices which particularly require re-endothelialization. All copolymers exhibited excellent resistance to fibrinogen adsorption and adsorbed more albumin than fibrinogen in the competitive adsorption assay, suggesting their good hemocompatibility. The noncytotoxic chemistry of these synthesized materials, combined with their nonadherent properties which are inhospitable to cell attachment and growth, underlie the need for further investigations to clarify their potential for use in short-term biomedical devices. PMID:25046378

  1. Middle segment-preserving pancreatectomy for recurrent metastasis of renal cell carcinoma after pancreatoduodenectomy: a case report.

    Science.gov (United States)

    Takeshi, Aiyama; Mitsuhiro, Inagaki; Hiromitsu, Akabane; Naoyuki, Yanagida; Taiichiro, Shibaki; Hiroki, Shomura; Takeaki, Kudo; Tatsuya, Shonaka; Futoshi, Oikawa; Hiroharu, Sakurai; Shiro, Nakano

    2014-01-01

    Many cases of surgical resection of metastatic pancreatic tumors originating from renal cell carcinoma have been reported; however, cases of reresection of recurrent pancreatic metastasis of renal cell carcinoma in the remnant pancreas are rare. We performed a second resection for recurrent pancreatic metastasis of renal cell carcinoma six years after pancreatoduodenectomy with pancreaticogastrostomy reconstruction. By performing middle segment-preserving pancreatectomy, we were able to successfully spare the exocrine and endocrine pancreatic function compared to that observed after total pancreatectomy, with no signs of recurrence for two years after the surgery. PMID:25061531

  2. Middle Segment-Preserving Pancreatectomy for Recurrent Metastasis of Renal Cell Carcinoma after Pancreatoduodenectomy: A Case Report

    Science.gov (United States)

    Takeshi, Aiyama; Mitsuhiro, Inagaki; Hiromitsu, Akabane; Naoyuki, Yanagida; Taiichiro, Shibaki; Hiroki, Shomura; Takeaki, Kudo; Tatsuya, Shonaka; Futoshi, Oikawa; Hiroharu, Sakurai; Shiro, Nakano

    2014-01-01

    Many cases of surgical resection of metastatic pancreatic tumors originating from renal cell carcinoma have been reported; however, cases of reresection of recurrent pancreatic metastasis of renal cell carcinoma in the remnant pancreas are rare. We performed a second resection for recurrent pancreatic metastasis of renal cell carcinoma six years after pancreatoduodenectomy with pancreaticogastrostomy reconstruction. By performing middle segment-preserving pancreatectomy, we were able to successfully spare the exocrine and endocrine pancreatic function compared to that observed after total pancreatectomy, with no signs of recurrence for two years after the surgery. PMID:25061531

  3. Scanning electrochemical microscopy of living cells: different redox activities of nonmetastatic and metastatic human breast cells.

    Science.gov (United States)

    Liu, B; Rotenberg, S A; Mirkin, M V

    2000-08-29

    Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransformed human breast epithelial cells, breast cells with a high level of motility (engendered by overexpression of protein kinase Calpha), and highly metastatic breast cancer cells. SECM analysis of the three cell lines reveals reproducible differences with respect to the kinetics of charge transfer by several redox mediators. PMID:10963658

  4. Correlative microscopy.

    Science.gov (United States)

    Loussert Fonta, Céline; Humbel, Bruno M

    2015-09-01

    In recent years correlative microscopy, combining the power and advantages of different imaging system, e.g., light, electrons, X-ray, NMR, etc., has become an important tool for biomedical research. Among all the possible combinations of techniques, light and electron microscopy, have made an especially big step forward and are being implemented in more and more research labs. Electron microscopy profits from the high spatial resolution, the direct recognition of the cellular ultrastructure and identification of the organelles. It, however, has two severe limitations: the restricted field of view and the fact that no live imaging can be done. On the other hand light microscopy has the advantage of live imaging, following a fluorescently tagged molecule in real time and at lower magnifications the large field of view facilitates the identification and location of sparse individual cells in a large context, e.g., tissue. The combination of these two imaging techniques appears to be a valuable approach to dissect biological events at a submicrometer level. Light microscopy can be used to follow a labelled protein of interest, or a visible organelle such as mitochondria, in time, then the sample is fixed and the exactly same region is investigated by electron microscopy. The time resolution is dependent on the speed of penetration and fixation when chemical fixatives are used and on the reaction time of the operator for cryo-fixation. Light microscopy can also be used to identify cells of interest, e.g., a special cell type in tissue or cells that have been modified by either transfections or RNAi, in a large population of non-modified cells. A further application is to find fluorescence labels in cells on a large section to reduce searching time in the electron microscope. Multiple fluorescence labelling of a series of sections can be correlated with the ultrastructure of the individual sections to get 3D information of the distribution of the marked proteins: array

  5. Probing the mechanical properties of TNF-α stimulated endothelial cell with atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Sei-Young Lee

    2011-01-01

    Full Text Available Sei-Young Lee1,2, Ana-Maria Zaske3, Tommaso Novellino1,4*, Delia Danila3, Mauro Ferrari1,5*, Jodie Conyers3, Paolo Decuzzi1,6*1Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX, USA; 2Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA; 3CeTIR – Center for Translational Injury Research, The University of Texas Health Science Center at Houston, Houston, TX, USA; 4Department of Biomedical Engineering, Biomedical Campus University of Rome, Italy; 5MD Anderson Cancer Center, Houston, TX, USA; 6BioNEM – Center of Bio-Nanotechnology and Engineering for Medicine, University of Magna Graecia, Catanzaro, Italy; *Currently at Department of Nanomedicine and Biomedical Engineering, The Methodist Hospital Research Institute, Houston, TX, USAAbstract: TNF-α (tumor necrosis factor-α is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1 mechanical properties, employing atomic force microscopy; 2 cytoskeletal organization, through fluorescence microscopy; and 3 membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h, for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells; the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with

  6. Atomic force microscopy analysis of central nervous system cell morphology on silicon carbide and diamond substrates.

    Science.gov (United States)

    Frewin, C L; Jaroszeski, M; Weeber, E; Muffly, K E; Kumar, A; Peters, M; Oliveros, A; Saddow, S E

    2009-01-01

    Brain machine interface (BMI) devices offer a platform that can be used to assist people with extreme disabilities, such as amyotrophic lateral sclerosis (ALS) and Parkinson's disease. Silicon (Si) has been the material of choice used for the manufacture of BMI devices due to its mechanical strength, its electrical properties and multiple fabrication techniques; however, chronically implanted BMI devices have usually failed within months of implantation due to biocompatibility issues and the fact that Si does not withstand the harsh environment of the body. Single crystal cubic silicon carbide (3C-SiC) and nanocrystalline diamond (NCD) are semiconductor materials that have previously shown good biocompatibility with skin and bone cells. Like Si, these materials have excellent physical characteristics, good electrical properties, but unlike Si, they are chemically inert. We have performed a study to evaluate the general biocompatibility levels of all of these materials through the use of in vitro techniques. H4 human neuroglioma and PC12 rat pheochromocytoma cell lines were used for the study, and polystyrene (PSt) and amorphous glass were used as controls or for morphological comparison. MTT [3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide] assays were performed to determine general cell viability with each substrate and atomic force microscopy (AFM) was used to quantify the general cell morphology on the substrate surface along with the substrate permissiveness to lamellipodia extension. 3C-SiC was the only substrate tested to have good viability and superior lamellipodia permissiveness with both cell lines, while NCD showed a good level of viability with the neural H4 line but a poor viability with the PC12 line and lower permissiveness than 3C-SiC. Explanations pertaining to the performance of each substrate with both cell lines are presented and discussed along with future work that must be performed to further evaluate specific cell reactions on

  7. Raman Spectroscopy and Microscopy of Individual Cells andCellular Components

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J; Fore, S; Wachsmann-Hogiu, S; Huser, T

    2008-05-15

    Raman spectroscopy provides the unique opportunity to non-destructively analyze chemical concentrations on the submicron length scale in individual cells without the need for optical labels. This enables the rapid assessment of cellular biochemistry inside living cells, and it allows for their continuous analysis to determine cellular response to external events. Here, we review recent developments in the analysis of single cells, subcellular compartments, and chemical imaging based on Raman spectroscopic techniques. Spontaneous Raman spectroscopy provides for the full spectral assessment of cellular biochemistry, while coherent Raman techniques, such as coherent anti-Stokes Raman scattering is primarily used as an imaging tool comparable to confocal fluorescence microscopy. These techniques are complemented by surface-enhanced Raman spectroscopy, which provides higher sensitivity and local specificity, and also extends the techniques to chemical indicators, i.e. pH sensing. We review the strengths and weaknesses of each technique, demonstrate some of their applications and discuss their potential for future research in cell biology and biomedicine.

  8. Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells.

    Science.gov (United States)

    Nedosekin, Dmitry A; Foster, Stephen; Nima, Zeid A; Biris, Alexandru S; Galanzha, Ekaterina I; Zharov, Vladimir P

    2015-08-01

    Growing biomedical applications of non-fluorescent nanoparticles (NPs) for molecular imaging, disease diagnosis, drug delivery, and theranostics require new tools for real-time detection of nanomaterials, drug nano-carriers, and NP-drug conjugates (nanodrugs) in complex biological environments without additional labeling. Photothermal (PT) microscopy (PTM) has enormous potential for absorption-based identification and quantification of non-fluorescent molecules and NPs at a single molecule and 1.4 nm gold NP level. Recently, we have developed confocal PTM providing three-dimensional (3D) mapping and spectral identification of multiple chromophores and fluorophores in live cells. Here, we summarize recent advances in the application of confocal multicolor PTM for 3D visualization of single and clustered NPs, alone and in individual cells. In particular, we demonstrate identification of functionalized magnetic and gold-silver NPs, as well as graphene and carbon nanotubes in cancer cells and among blood cells. The potential to use PTM for super-resolution imaging (down to 50 nm), real-time NP tracking, guidance of PT nanotherapy, and multiplex cancer markers targeting, as well as analysis of non-linear PT phenomena and amplification of nanodrug efficacy through NP clustering and nano-bubble formation are also discussed. PMID:26133539

  9. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  10. Microscopy of hierarchically organized TiO2 photoelectrode for dye solar cells

    International Nuclear Information System (INIS)

    Research on improving the performance of dye solar cells has various aspects of the device being investigated. This paper analyzes the deliberately hierarchized photoelectrode configuration for DSC applications to improve the performance of DSCs. Multiple layers of differently composed TiO2 particle types namely aggregates and nanoparticles were deposited to form a photoelectrode with thickness of about 12 µm. The photoelectrodes were assembled into working DSCs with an active area of 1 cm2. Measurement for solar power conversion performance was measured under 1 sun at AM1.5 spectrum simulated sunlight. Electron microscopy for photoelectrode analysis was conducted using Field Emission Scattering Electron Microscopy with enhanced resolution. External Quantum Efficiency was measured using a purpose built instrument. Kinetics were investigated using the Electrochemical Impedance Spectroscopy (EIS) measurement with a potentiostat. The best performing DSC is of the hierarchically organized photoelectrode with a photoconversion efficiency of 4.58%, an increase of 14% in comparison to the reference samples with fully aggregates configuration. Short circuit current density, Jsc increases by about 2.223 mA cm−2 relative to the blanks. The electron microscopy confirmed expected thickness at around 10 µm and layers forming the photoelectrode being hierarchically deposited with ∼20 nm TiO2 nanoparticles and 450 nm TiO2 aggregates mixture composition. EQE improved especially for visible region of 500-550 nm light wavelengths with 12 % increase in the response of in that region. Improvement to the diffusion coefficient as measured by the EIS contributed to the performance increase of the photoelectrode configuration under investigation

  11. Microscopy of hierarchically organized TiO{sub 2} photoelectrode for dye solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Eskandar, A., E-mail: aeska07@gmail.com [Department of Electrical and Electronics, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia); Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia)

    2015-07-22

    Research on improving the performance of dye solar cells has various aspects of the device being investigated. This paper analyzes the deliberately hierarchized photoelectrode configuration for DSC applications to improve the performance of DSCs. Multiple layers of differently composed TiO{sub 2} particle types namely aggregates and nanoparticles were deposited to form a photoelectrode with thickness of about 12 µm. The photoelectrodes were assembled into working DSCs with an active area of 1 cm{sup 2}. Measurement for solar power conversion performance was measured under 1 sun at AM1.5 spectrum simulated sunlight. Electron microscopy for photoelectrode analysis was conducted using Field Emission Scattering Electron Microscopy with enhanced resolution. External Quantum Efficiency was measured using a purpose built instrument. Kinetics were investigated using the Electrochemical Impedance Spectroscopy (EIS) measurement with a potentiostat. The best performing DSC is of the hierarchically organized photoelectrode with a photoconversion efficiency of 4.58%, an increase of 14% in comparison to the reference samples with fully aggregates configuration. Short circuit current density, Jsc increases by about 2.223 mA cm{sup −2} relative to the blanks. The electron microscopy confirmed expected thickness at around 10 µm and layers forming the photoelectrode being hierarchically deposited with ∼20 nm TiO{sub 2} nanoparticles and 450 nm TiO{sub 2} aggregates mixture composition. EQE improved especially for visible region of 500-550 nm light wavelengths with 12 % increase in the response of in that region. Improvement to the diffusion coefficient as measured by the EIS contributed to the performance increase of the photoelectrode configuration under investigation.

  12. Microscopy of hierarchically organized TiO2 photoelectrode for dye solar cells

    Science.gov (United States)

    Eskandar, A.; Mohamed, N. M.

    2015-07-01

    Research on improving the performance of dye solar cells has various aspects of the device being investigated. This paper analyzes the deliberately hierarchized photoelectrode configuration for DSC applications to improve the performance of DSCs. Multiple layers of differently composed TiO2 particle types namely aggregates and nanoparticles were deposited to form a photoelectrode with thickness of about 12 µm. The photoelectrodes were assembled into working DSCs with an active area of 1 cm2. Measurement for solar power conversion performance was measured under 1 sun at AM1.5 spectrum simulated sunlight. Electron microscopy for photoelectrode analysis was conducted using Field Emission Scattering Electron Microscopy with enhanced resolution. External Quantum Efficiency was measured using a purpose built instrument. Kinetics were investigated using the Electrochemical Impedance Spectroscopy (EIS) measurement with a potentiostat. The best performing DSC is of the hierarchically organized photoelectrode with a photoconversion efficiency of 4.58%, an increase of 14% in comparison to the reference samples with fully aggregates configuration. Short circuit current density, Jsc increases by about 2.223 mA cm-2 relative to the blanks. The electron microscopy confirmed expected thickness at around 10 µm and layers forming the photoelectrode being hierarchically deposited with ˜20 nm TiO2 nanoparticles and 450 nm TiO2 aggregates mixture composition. EQE improved especially for visible region of 500-550 nm light wavelengths with 12 % increase in the response of in that region. Improvement to the diffusion coefficient as measured by the EIS contributed to the performance increase of the photoelectrode configuration under investigation.

  13. Visualization of the solubilization process of the plasma membrane of a living cell by waveguide evanescent field fluorescence microscopy

    Science.gov (United States)

    Hassanzadeh, Abdollah; Ma, Heun Kan; Dixon, S. Jeffrey; Mittler, Silvia

    2012-07-01

    Waveguide evanescent field fluorescence microscopy (WEFF) is a novel microscopy technology that allows imaging of a cell's plasma membrane in the vicinity of a glass substrate with high axial resolution, low background and little photobleaching. Time-lapse imaging can be performed to investigate changes in cell morphology in the presence or absence of chemical agents. WEFF microscopy provides a method to investigate plasma membranes of living cells and allows a comparison to simplified model membranes immobilized on planar substrates. The interaction of the nonionic detergent Triton X-100 with plasma membranes of osteoblasts in an aqueous environment was investigated. Solubilization of the membranes very close to the waveguide surface was visualized and related to the three-stage solubilisation model proposed for liposomes and supported lipid bilayers. Findings for the plasma membranes of cells are in excellent agreement with results reported for these artificial model systems.

  14. Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine.

    Science.gov (United States)

    Ravikumar, S

    2016-05-01

    White blood cells (WBCs) or leukocytes are an important part of the body's defense against infectious organisms and foreign substances. WBC segmentation is a challenging issue because of the morphological diversity of WBCs and the complex and uncertain background of blood smear images. The standard ELM classification techniques are used for WBC segmentation. The generalization performance of the ELM classifier has not achieved the maximum nearest accuracy of image segmentation. This paper gives a novel technique for WBC detection based on the fast relevance vector machine (Fast-RVM). Firstly, astonishingly sparse relevance vectors (RVs) are obtained while fitting the histogram by RVM. Next, the relevant required threshold value is directly sifted from these limited RVs. Finally, the entire connective WBC regions are segmented from the original image. The proposed method successfully works for WBC detection, and effectively reduces the effects brought about by illumination and staining. To achieve the maximum accuracy of the RVM classifier, we design a search for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. Therefore, this proposed RVM method effectively works for WBC detection, and effectively reduces the computational time and preserves the images. PMID:25707440

  15. Imaging cytoskeleton--mitochondrial membrane attachments by embedment-free electron microscopy of saponin-extracted cells.

    OpenAIRE

    Lin, A; Krockmalnic, G; Penman, S

    1990-01-01

    Embedment-free electron microscopy images the cytoskeleton and nuclear matrix, which are very difficult to visualize in conventional electron micrographs. However, to be effective, cell structures must be depleted of soluble proteins, which otherwise shroud cell architecture. Nonionic detergents effect this extraction, releasing soluble proteins but also destroying all membranes. Saponin can permeabilize plasma membranes, releasing soluble proteins while preserving many cytoplasmic membranes....

  16. Identification of fluorescent compounds with non-specific binding property via high throughput live cell microscopy.

    Directory of Open Access Journals (Sweden)

    Sangeeta Nath

    Full Text Available INTRODUCTION: Compounds exhibiting low non-specific intracellular binding or non-stickiness are concomitant with rapid clearing and in high demand for live-cell imaging assays because they allow for intracellular receptor localization with a high signal/noise ratio. The non-stickiness property is particularly important for imaging intracellular receptors due to the equilibria involved. METHOD: Three mammalian cell lines with diverse genetic backgrounds were used to screen a combinatorial fluorescence library via high throughput live cell microscopy for potential ligands with high in- and out-flux properties. The binding properties of ligands identified from the first screen were subsequently validated on plant root hair. A correlative analysis was then performed between each ligand and its corresponding physiochemical and structural properties. RESULTS: The non-stickiness property of each ligand was quantified as a function of the temporal uptake and retention on a cell-by-cell basis. Our data shows that (i mammalian systems can serve as a pre-screening tool for complex plant species that are not amenable to high-throughput imaging; (ii retention and spatial localization of chemical compounds vary within and between each cell line; and (iii the structural similarities of compounds can infer their non-specific binding properties. CONCLUSION: We have validated a protocol for identifying chemical compounds with non-specific binding properties that is testable across diverse species. Further analysis reveals an overlap between the non-stickiness property and the structural similarity of compounds. The net result is a more robust screening assay for identifying desirable ligands that can be used to monitor intracellular localization. Several new applications of the screening protocol and results are also presented.

  17. Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging.

    Science.gov (United States)

    Ebejer, Neil; Güell, Aleix G; Lai, Stanley C S; McKelvey, Kim; Snowden, Michael E; Unwin, Patrick R

    2013-01-01

    Scanning electrochemical cell microscopy (SECCM) is a new pipette-based imaging technique purposely designed to allow simultaneous electrochemical, conductance, and topographical visualization of surfaces and interfaces. SECCM uses a tiny meniscus or droplet, at the end of a double-barreled (theta) pipette, for high-resolution functional imaging and nanoscale electrochemical measurements. Here we introduce this technique and provide an overview of its principles, instrumentation, and theory. We discuss the power of SECCM in resolving complex structure-activity problems and provide considerable new information on electrode processes by referring to key example systems, including graphene, graphite, carbon nanotubes, nanoparticles, and conducting diamond. The many longstanding questions that SECCM has been able to answer during its short existence demonstrate its potential to become a major technique in electrochemistry and interfacial science. PMID:23560932

  18. Investigating inhomogeneous electronic properties of radial junction solar cells using correlative microscopy

    Czech Academy of Sciences Publication Activity Database

    Müller, Martin; Hývl, Matěj; Kratzer, M.; Teichert, C.; Misra, S.; Foldyna, M.; Yu, L.; Roca i Cabarrocas, P.; Itoh, T.; Hájková, Zdeňka; Vetushka, Aliaksi; Ledinský, Martin; Kočka, Jan; Fejfar, Antonín

    2015-01-01

    Roč. 54, č. 8 (2015), "08KA08-1"-"08KA08-5". ISSN 0021-4922 R&D Projects: GA ČR GA14-15357S; GA MŠk(CZ) 7AMB14ATE004; GA ČR GA13-25747S; GA ČR GA13-12386S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G Grant ostatní: AVČR(CZ) M100101217 Institutional support: RVO:68378271 Keywords : solar cells * radial junctions * silicon nanowires * correlative microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.127, year: 2014

  19. Microscopy Images as Interactive Tools in Cell Modeling and Cell Biology Education

    Science.gov (United States)

    Araujo-Jorge, Tania C.; Cardona, Tania S.; Mendes, Claudia L. S.; Henriques-Pons, Andrea; Meirelles, Rosane M. S.; Coutinho, Claudia M. L. M.; Aguiar, Luiz Edmundo V.; Meirelles, Maria de Nazareth L.; de Castro, Solange L.; Barbosa, Helene S.; Luz, Mauricio R. M. P.

    2004-01-01

    The advent of genomics, proteomics, and microarray technology has brought much excitement to science, both in teaching and in learning. The public is eager to know about the processes of life. In the present context of the explosive growth of scientific information, a major challenge of modern cell biology is to popularize basic concepts of…

  20. Toward Fourier interferometry fluorescence excitation/emission imaging of malignant cells combined with photoacoustic microscopy

    Science.gov (United States)

    Kohen, Elli; Hirschberg, Joseph G.; Berry, John P.; Ozkutuk, Nuri; Ornek, Ceren; Monti, Marco; Leblanc, Roger M.; Schachtschabel, Dietrich O.; Haroon, Sumaira

    2003-10-01

    Dual excitation fluorescence imaging has been used as a first step towards multi-wavelength excitation/emission fluorescence spectral imaging. Target cells are transformed keratinocytes, and other osteosarcoma, human breast and color cancer cells. Mitochondrial membrane potential probes, e.g. TMRM (tetramethylrhodamine methyl ester), Mitotracker Green (Molecular Probes, Inc., Eugene OR,USA; a recently synthesized mitochondrial oxygen probe, [PRE,P1"- pyrene butyl)-2-rhodamine ester] allow dual excitation in the UV plus in teh blue-green spectral regions. Also, using the natural endogenous probe NAD(P)H, preliminary results indicate mitochondrial responses to metabolic challenges (e.g. glucose addition), plus changes in mitochonrial distribution and morphology. In terms of application to biomedicine (for diagnostiscs, prognostsics and drug trials) three parameters have been selected in addition to the natural probe NAD(P)H, i.e. vital fluorescence probing of mitochondria, lysosomes and Golgi apparatus. It is hoped that such a multiparameter approach will allow malignant cell characterization and grading. A new area being introduced is the use of similar methodology for biotechnical applications such as the study of the hydrogen-producing alga Chlamydomonas Reinhardtii, and possible agricultural applications, such as Saccharomyces yeast for oenology. Complementation by Photoacoustic Microscopy is also contemplated, to study the internal conversion component which follows the excitation by photons.

  1. Localization of Cell Division Protein FtsQ by Immunofluorescence Microscopy in Dividing and Nondividing Cells of Escherichia coli

    Science.gov (United States)

    Buddelmeijer, Nienke; Aarsman, Mirjam E. G.; Kolk, Arend H. J.; Vicente, Miguel; Nanninga, Nanne

    1998-01-01

    The localization of cell division protein FtsQ in Escherichia coli wild-type cells was studied by immunofluorescence microscopy with specific monoclonal antibodies. FtsQ could be localized to the division site in constricting cells. FtsQ could also localize to the division site in ftsQ1(Ts) cells grown at the permissive temperature. A hybrid protein in which the cytoplasmic domain and the transmembrane domain were derived from the γ form of penicillin-binding protein 1B and the periplasmic domain was derived from FtsQ was also able to localize to the division site. This result indicates that the periplasmic domain of FtsQ determines the localization of FtsQ, as has also been concluded by others for the periplasmic domain of FtsN. Noncentral FtsQ foci were found in the area of the cell where the nucleoid resides and were therefore assumed to represent sites where the FtsQ protein is synthesized and simultaneously inserted into the cytoplasmic membrane. PMID:9829918

  2. Dynamics of cell and tissue growth acquired by means of extended field of view lensfree microscopy.

    Science.gov (United States)

    Momey, F; Coutard, J-G; Bordy, T; Navarro, F; Menneteau, M; Dinten, J-M; Allier, C

    2016-02-01

    In this paper, we discuss a new methodology based on lensfree imaging to perform wound healing assay with unprecedented statistics. Our video lensfree microscopy setup is a simple device featuring only a CMOS sensor and a semi coherent illumination system. Yet it is a powerful mean for the real-time monitoring of cultivated cells. It presents several key advantages, e.g. integration into standard incubator, compatibility with standard cell culture protocol, simplicity and ease of use. It can perform the follow-up in a large field of view (25 mm(2)) of several crucial parameters during the culture of cells i.e. their motility, their proliferation rate or their death. Consequently the setup can gather large statistics both in space and time. Here we uses this facility in the context of wound healing assay to perform label-free measurements of the velocities of the fronts of proliferation of the cell layer as a function of time by means of particle image velocimetry (PIV) processing. However, for such tissue growth experiments, the field of view of 25 mm(2) remains not sufficient and results can be biased depending on the position of the device with respect to the recipient of the cell culture. Hence, to conduct exhaustive wound healing assays, we propose to enlarge the field of view up to 10 cm(2) through a raster scan, by moving the source/sensor with respect to the Petri dish. We have performed acquisitions of wound healing assay (keratinocytes HaCaT) both in real-time (25 mm(2)) and in final point (10 cm(2)) to assess the combination of velocimetry measurements and final point wide field imaging. In the future, we aim at combining directly our extended field of view acquisitions (>10 cm(2)) with real time ability inside the incubator. PMID:26977359

  3. Scanning electrochemical microscopy of living cells: Different redox activities of nonmetastatic and metastatic human breast cells

    OpenAIRE

    Liu, Biao; Rotenberg, Susan A.; Mirkin, Michael V.

    2000-01-01

    Electrochemical methods have been widely used to monitor physiologically important molecules in biological systems. This report describes the first application of the scanning electrochemical microscope (SECM) to probe the redox activity of individual living cells. The possibilities of measuring the rate and investigating the pathway of transmembrane charge transfer are demonstrated. By this approach, significant differences are detected in the redox responses given by nonmotile, nontransform...

  4. Dynamic quantitative microscopy and nanoscopy of red blood cells in sickle cell disease

    Science.gov (United States)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2012-03-01

    We have applied wide-field digital interferometric techniques to quantitatively image sickle red blood cells (RBCs) [1] in a noncontact label-free manner, and measure the nanometer-scale fluctuations in their thickness as an indication of their stiffness. The technique can simultaneously measure the fluctuations for multiple spatial points on the RBC and thus yields a map describing the stiffness of each RBC in the field of view. Using this map, the local rigidity regions of the RBC are evaluated quantitatively. Since wide-field digital interferometry is a quantitative holographic imaging technique rather than one-point measurement, it can be used to simultaneously evaluate cell transverse morphology plus thickness in addition to its stiffness profile. Using this technique, we examine the morphology and dynamics of RBCs from individuals who suffer from sickle cell disease, and find that the sickle RBCs are significantly stiffer than healthy RBCs. Furthermore, we show that the technique is sensitive enough to distinguish various classes of sickle RBCs, including sickle RBCs with visibly-normal morphology, compared to the stiffer crescent-shaped sickle RBCs.

  5. Reconstructive procedures for segmental resection of bone in giant cell tumors around the knee

    Directory of Open Access Journals (Sweden)

    Aggarwal Aditya

    2007-01-01

    Full Text Available Background: Segmental resection of bone in Giant Cell Tumor (GCT around the knee, in indicated cases, leaves a gap which requires a complex reconstructive procedure. The present study analyzes various reconstructive procedures in terms of morbidity and various complications encountered. Materials and Methods: Thirteen cases (M-six and F-seven; lower end femur-six and upper end tibia -seven of GCT around the knee, radiologically either Campanacci Grade II, Grade II with pathological fracture or Grade III were included. Mean age was 25.6 years (range 19-30 years. Resection arthrodesis with telescoping (shortening over intramedullary nail ( n=5, resection arthrodesis with an intercalary allograft threaded over a long intramedullary nail ( n=3 and resection arthrodesis with intercalary fibular autograft and simultaneous limb lengthening ( n=5 were the procedure performed. Results: Shortening was the major problem following resection arthrodesis with telescoping (shortening over intramedullary nail. Only two patients agreed for subsequent limb lengthening. The rest continued to walk with shortening. Infection was the major problem in all cases of resection arthrodesis with an intercalary allograft threaded over a long intramedullary nail and required multiple drainage procedures. Fusion was achieved after two years in two patients. In the third patient the allograft sequestrated. The patient underwent sequestrectomy, telescoping of fragments and ilizarov fixator application with subsequent limb lengthening. The patient was finally given an ischial weight relieving orthosis, 54 months after the index procedure. After resection arthrodesis with intercalary autograft and simultaneous lengthening the resultant gap (~15cm was partially bridged by intercalary nonvascularized dual fibular strut graft (6-7cm and additional corticocancellous bone graft from ipsilateral patella. Simultaneous limb lengthening with a distal tibial corticotomy was performed on an

  6. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Moghimi, Seyed Moien

    2012-01-01

    Nanoparticulate systems are widely used for site-specific drug and gene delivery as well as for medical imaging. The mode of nanoparticle-cell interaction may have a significant effect on the pathway of nanoparticle internalization and subsequent intracellular trafficking. Total internal reflecti...... effect by lasers in TIRF microscopy is considerably less when using fluorescent nanoparticles and it reduces photo-induced cytotoxicity during visualization of live-cell events since it only illuminates the specific area near or at the plasma membrane....... fluorescence (TIRF) microscopy allows for real-time monitoring of nanoparticle-membrane interaction events, which can provide vital information in relation to design and surface engineering of therapeutic nanoparticles for cell-specific targeting. In contrast to other microscopy techniques, the bleaching...

  7. Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy

    OpenAIRE

    McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2012-01-01

    Living cells are structured to create a range of microenvironments that support specific chemical reactions and processes. Understanding how cells function therefore requires detailed knowledge of both the subcellular architecture and the location of specific molecules within this framework. Here we review the development of two correlated cellular imaging techniques that fulfill this need. Cells are first imaged using cryogenic fluorescence microscopy to determine the location of molecules o...

  8. Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    William L Rice

    Full Text Available BACKGROUND: The engineering of functional tissues is a complex multi-stage process, the success of which depends on the careful control of culture conditions and ultimately tissue maturation. To enable the efficient optimization of tissue development protocols, techniques suitable for monitoring the effects of added stimuli and induced tissue changes are needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present the quantitative use of two-photon excited fluorescence (TPEF and second harmonic generation (SHG as a noninvasive means to monitor the differentiation of human mesenchymal stem cells (hMSCs using entirely endogenous sources of contrast. We demonstrate that the individual fluorescence contribution from the intrinsic cellular fluorophores NAD(PH, flavoproteins and lipofuscin can be extracted from TPEF images and monitored dynamically from the same cell population over time. Using the redox ratio, calculated from the contributions of NAD(PH and flavoproteins, we identify distinct patterns in the evolution of the metabolic activity of hMSCs maintained in either propagation, osteogenic or adipogenic differentiation media. The differentiation of these cells is mirrored by changes in cell morphology apparent in high resolution TPEF images and by the detection of collagen production via SHG imaging. Finally, we find dramatic increases in lipofuscin levels in hMSCs maintained at 20% oxygen vs. those in 5% oxygen, establishing the use of this chromophore as a potential biomarker for oxidative stress. CONCLUSIONS/SIGNIFICANCE: In this study we demonstrate that it is possible to monitor the metabolic activity, morphology, ECM production and oxidative stress of hMSCs in a non-invasive manner. This is accomplished using generally available multiphoton microscopy equipment and simple data analysis techniques, such that the method can widely adopted by laboratories with a diversity of comparable equipment. This method therefore represents a powerful tool

  9. Do HLA genes play a prominent role in determining T cell receptor V{alpha} segment usage in humans?

    Energy Technology Data Exchange (ETDEWEB)

    Gulwani-Akolkar, B.; Shi, B.; Akolkar, P.N. [Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1995-04-15

    Previous studies in humans have demonstrated that HLA genes can profoundly influence the TCR V{beta} repertoire. To similarly assess the influence of HLA genes on the TCR V{alpha} segment repertoire, the V{alpha} repertoires of 12 individuals from three unrelated families were determined by quantitative PCR. Each family contained at least one pair of HLA-identical and -nonidentical siblings. Repertoire analysis was performed on purified CD4{sup +} and CD8{sup +} cells by using V{alpha}-specific primers. We were unable to demonstrate more similar V{alpha} repertoires between HLA-identical siblings than between HLA-nonidentical siblings. In contrast, when a similar analysis was performed on the same individuals for the V{beta} repertoire, HLA-identical siblings were found to have significantly more similar repertoires than HLA-nonidentical siblings. Furthermore, both the V{alpha} and V{beta} repertoires of monozygotic twins showed striking similarity. Despite our inability to shown an influence of HLA genes on the V{alpha} repertoire, we did observe a very strong skewing in terms of preferential expression on CD4{sup +} or CD8{sup +} cells of several V{alpha} segments, notably TCRAV1, -2, -5, -6, -7, -11, -12, and -13. These studies suggest that HLA genes play less of a role in determining V{alpha} segment usage than V{beta}. Nevertheless, the pronounced skewing of V{alpha} segment expression in the CD4{sup +} or CD8{sup +} populations suggests some role for HLA genes in determining the V{alpha} TCR repertoire. Furthermore, the striking similarity of V{alpha} repertoires of identical twins suggests a major role for non-HLA genes in determining the V{alpha} repertoire. 35 refs., 8 figs., 3 tabs.

  10. Visualizing Nanoscale Distribution of Corrosion Cells by Open-Loop Electric Potential Microscopy.

    Science.gov (United States)

    Honbo, Kyoko; Ogata, Shoichiro; Kitagawa, Takuya; Okamoto, Takahiro; Kobayashi, Naritaka; Sugimoto, Itto; Shima, Shohei; Fukunaga, Akira; Takatoh, Chikako; Fukuma, Takeshi

    2016-02-23

    Corrosion is a traditional problem but still one of the most serious problems in industry. To reduce the huge economic loss caused by corrosion, tremendous effort has been made to understand, predict and prevent it. Corrosion phenomena are generally explained by the formation of corrosion cells at a metal-electrolyte interface. However, experimental verification of their nanoscale distribution has been a major challenge owing to the lack of a method able to visualize the local potential distribution in an electrolytic solution. In this study, we have investigated the nanoscale corrosion behavior of Cu fine wires and a duplex stainless steel by in situ imaging of local corrosion cells by open-loop electric potential microscopy (OL-EPM). For both materials, potential images obtained by OL-EPM show nanoscale contrasts, where areas of higher and lower potential correspond to anodic areas (i.e., corrosion sites) and cathodic areas, respectively. This imaging capability allows us to investigate the real-time transition of local corrosion sites even when surface structures show little change. This is particularly useful for investigating reactions under surface oxide layers or highly corrosion-resistant materials as demonstrated here. The proposed technique should be applicable to the study of other redox reactions on a battery electrode or a catalytic material. The results presented here open up such future applications of OL-EPM in nanoscale electrochemistry. PMID:26811989

  11. Mechanical stimulation of individual stereocilia of living cochlear hair cells by atomic force microscopy.

    Science.gov (United States)

    Langer, M G; Koitschev, A; Haase, H; Rexhausen, U; Hörber, J K; Ruppersberg, J P

    2000-02-01

    This paper describes the investigation of elastical properties and imaging of living cochlear hair bundles of inner (IHC) and outer hair cells (OHC) on the level of individual stereocilia. A custom-made AFM-setup was used, allowing to scan the mechano-sensitive structures of the inner ear under direct control of an upright differential interference contrast (DIC) microscope with a water-immersion objective. Scanning electron microscopy (SEM) images of the identical hair bundles obtained after AFM investigation demonstrated that forces up to 1.5 nanonewton (nN) did not cause obvious damage of the surface morphology of the stereocilia. These are the first images of hair bundles of living sensory cells of the organ of Corti by AFM. They display the tips of individual stereocilia and the typical V-shape of ciliary bundles. Since line scans clearly show that slope and force interaction depend on the elastical properties of stereocilia, quantitative stiffness measurements and stimulation of single transduction channels are suggested. PMID:10741679

  12. Electrochemical characterization of sub-micro-gram amounts of organic semiconductors using scanning droplet cell microscopy.

    Science.gov (United States)

    Gasiorowski, Jacek; Mardare, Andrei I; Sariciftci, Niyazi S; Hassel, Achim Walter

    2013-02-15

    Scanning droplet cell microscopy (SDCM) uses a very small electrolyte droplet at the tip of a capillary which comes in contact with the working electrode. This method is particularly interesting for studies on organic semiconductors since it provides localized electrochemical investigations with high reproducibility. One clear advantage of applying SDCM is represented by the very small amounts of material necessary (less than 1 mg). Organic materials can be investigated quickly and inexpensively in electrochemical studies with a high throughput. In the present study, thin layers of poly(3-hexylthiophene) (P3HT), which is one of the most often used material for organic solar cells, were deposited on ITO/glass as working electrodes in SDCM studies. The redox reactions in 0.1 M tetra(n-butyl)ammonium hexafluorophosphate (TBAPF6) dissolved in propylene carbonate were studied by cyclic voltammetry and by electrochemical impedance spectroscopy. Two reversible, distinct oxidation steps of the P3HT were detected and their kinetics were studied in detail. The doping of P3HT increased due to the electrochemical oxidation and had resulted in a decrease of the film resistance by a few orders of magnitude. Due to localization on the sample various parameter combinations can be studied quantitatively and reproducibly. PMID:24926226

  13. Double minute chromosomes in mouse methotrexate-resistant cells studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Double minute chromosomes (DMs) are acentric, autonomously replicating extra-chromosomes and frequently mediate gene amplification in tumor and drug resistant cells. Atomic force microscopy (AFM) is a powerful tool in microbiology. We used AFM to explore the ultrastructure of DMs in mouse fibroblasts 3T3R500. DMs in various phases of cell cycle were also studied in order to elucidate the mechanisms of their duplication and separation. Metaphase spread and induced premature condensed chromosomes (PCCs) were observed under the AFM. DMs were detected to be composed of two compact spheres linked by fibers. The fibers of DMs directly connected with metaphase chromosomes were observed. Many single-minutes and few DMs were detected in G1 PCCs, while more DMs were detected in S PCCs than in G1 PCCs. Besides, all of the DMs in G2 PCCs were coupled. Our present results suggested that DMs might divide into single-minutes during or before G1-phase, followed by duplication of the single-minutes in S-phase. Moreover, we introduced a new powerful tool to study DMs and got some ideal results

  14. Microelectrical characterizations of junctions in solar cell devices by scanning Kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Scanning Kelvin probe force microscopy was applied to the microelectrical characterizations of junctions in solar cell devices. Surface Fermi-level pinning effects on the surface potential measurement were avoided by applying a bias voltage (Vb) to the device and taking the Vb-induced potential and electric field changes. Two characterizations are presented: the first is a direct measurement of Bi-induced junction shift in GaInNAs(Bi) cells; the second is a junction-uniformity measurement in a-Si:H devices. In the first characterization, using Bi as a surfactant during the molecular beam epitaxy growth of GaInNAs(Bi) makes the epitaxial layer smoother. However, the electrical potential measurement exhibits a clear Bi-induced junction shift to the back side of the absorber layer, which results in significant device degradation. In the second characterization, the potential measurement reveals highly non-uniform electric field distributions across the n-i-p junction of a-Si:H devices; the electric field concentrates much more at both n/i and i/p interfaces than in the middle of the i-layer. This non-uniform electric field is due possibly to high defect concentrations at the interfaces. The potential measurements further showed a significant improvement in the electric field uniformity by depositing buffer layers at the interfaces, and this indeed improved the device performance.

  15. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Science.gov (United States)

    Hitchcock, A. P.; Lee, V.; Wu, J.; West, M. M.; Cooper, G.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  16. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  17. Study of Mast Cells and Granules from Primo Nodes Using Scanning Ionic Conductance Microscopy.

    Science.gov (United States)

    Yoo, Yeong-Yung; Jung, Goo-Eun; Kwon, Hee-Min; Bae, Kyoung-Hee; Cho, Sang-Joon; Soh, Kwang-Sup

    2015-12-01

    Acupuncture points have a notable characteristic in that they have a higher density of mast cells (MCs) compared with nonacupoints in the skin, which is consistent with the augmentation of the immune function by acupuncture treatment. The primo vascular system, which was proposed as the anatomical structure of the acupuncture points and meridians, also has a high density of MCs. We isolated the primo nodes from the surfaces of internal abdominal organs, and the harvested primo nodes were stained with toluidine blue. The MCs were easily recognized by their stained color and their characteristic granules. The MCs were classified into four stages according to the degranulation of histamine granules in the MCs. Using conventional optical microscopes details of the degranulation state of MCs in each stage were not observable. However, we were able to investigate the distribution of the granules on the surfaces of the MCs in each stage, and to demonstrate the height profiles and three-dimensional structures of the MCs without disturbance of the cell membrane by using the scanning ion conductance microscopy. PMID:26742911

  18. In vivo photoacoustic microscopy of human cuticle microvasculature with single-cell resolution

    Science.gov (United States)

    Hsu, Hsun-Chia; Wang, Lidai; Wang, Lihong V.

    2016-05-01

    As a window on the microcirculation, human cuticle capillaries provide rich information about the microvasculature, such as its morphology, density, dimensions, or even blood flow speed. Many imaging technologies have been employed to image human cuticle microvasculature. However, almost none of these techniques can noninvasively observe the process of oxygen release from single red blood cells (RBCs), an observation which can be used to study healthy tissue functionalities or to diagnose, stage, or monitor diseases. For the first time, we adapted single-cell resolution photoacoustic (PA) microscopy (PA flowoxigraphy) to image cuticle capillaries and quantified multiple functional parameters. Our results show more oxygen release in the curved cuticle tip region than in other regions of a cuticle capillary loop, associated with a low of RBC flow speed in the tip region. Further analysis suggests that in addition to the RBC flow speed, other factors, such as the drop of the partial oxygen pressure in the tip region, drive RBCs to release more oxygen in the tip region.

  19. Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy.

    Directory of Open Access Journals (Sweden)

    Jaebum Chung

    Full Text Available White blood cell (WBC count is a valuable metric for assisting with diagnosis or prognosis of various diseases such as coronary heart disease, type 2 diabetes, or infection. Counting WBCs can be done either manually or automatically. Automatic methods are capable of counting a large number of cells to give a statistically more accurate reading of the WBC count of a sample, but the specialized equipment tends to be expensive. Manual methods are inexpensive since they only involve a conventional light microscope setup. However, it is more laborious and error-prone because the small field-of-view (FOV of the microscope necessitates mechanical scanning of a specimen for counting an adequate number of WBCs. Here, we investigate the use of Fourier ptychographic microscopy (FPM to bypass these issues of the manual methods. With a 2x objective, FPM can provide a FOV of 120 mm2 with enhanced resolution comparable to that of a 20x objective, which is adequate for non-differentially counting WBCs in just one FOV. A specialist was able to count the WBCs in FPM images with 100% accuracy compared to the count as determined from conventional microscope images. An automatic counting algorithm was also developed to identify WBCs from FPM's captured images with 95% accuracy, paving the way for a cost-effective WBC counting setup with the advantages of both the automatic and manual counting methods.

  20. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  1. A Soft-Switching Four-Port DC-DC Converter for Segmented PEM Fuel Cell Power Management in Vehicle Application

    OpenAIRE

    FRAPPE,E; DE-BERNARDINIS,A; Coquery, G.; Bethoux, O.; Marchand, C

    2011-01-01

    In transport application, long high power PEM fuel cell stacks could suffer from voltage discrepancy between cells due to severe constraints or appearance of localized faults in case of bad water management, moreover the output power of the stack is limited by the weakest group of cells. This article proposes a three-part segmented fuel cell associated with an isolated four-source DC/DC converter which makes possible a power sharing between the fuel cell segments according to their state-of-h...

  2. Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy

    International Nuclear Information System (INIS)

    We demonstrate the capability of using immunotargeted gold nanoshells as contrast agents for in vitro two-photon microscopy. The two-photon luminescence properties of different-sized gold nanoshells are first validated using near-infrared excitation at 780 nm. The utility of two-photon microscopy as a tool for imaging live HER2-overexpressing breast cancer cells labeled with anti-HER2-conjugated nanoshells is then explored and imaging results are compared to normal breast cells. Five different imaging channels are simultaneously examined within the emission wavelength range of 451-644 nm. Our results indicate that under near-infrared excitation, superior contrast of SK-BR-3 cancer cells labeled with immunotargeted nanoshells occurs at an emission wavelength ranging from 590 to 644 nm. Luminescence from labeled normal breast cells and autofluorescence from unlabeled cancer and normal cells remain imperceptible under the same conditions

  3. Single molecule narrowfield microscopy of protein-DNA binding dynamics in glucose signal transduction of live yeast cells

    CERN Document Server

    Wollman, Adam J M

    2016-01-01

    Single-molecule narrowfield microscopy is a versatile tool to investigate a diverse range of protein dynamics in live cells and has been extensively used in bacteria. Here, we describe how these methods can be extended to larger eukaryotic, yeast cells, which contain sub-cellular compartments. We describe how to obtain single-molecule microscopy data but also how to analyse these data to track and obtain the stoichiometry of molecular complexes diffusing in the cell. We chose glucose mediated signal transduction of live yeast cells as the system to demonstrate these single-molecule techniques as transcriptional regulation is fundamentally a single molecule problem - a single repressor protein binding a single binding site in the genome can dramatically alter behaviour at the whole cell and population level.

  4. Exploring the limits of optical microscopy: live cell and superresolution fluorescence microscopy of HIV-1 Transfer Between T lymphocytes Across the Virological Synapse

    Science.gov (United States)

    McNerney, Gregory Paul

    Human immunodeficiency virus 1 (HIV-1) is a human retrovirus that efficiently, albeit gradually, overruns the immune system. An already infected T lymphocyte can latch onto another T lymphocyte whereby creating a virological synapse (VS); this junction drives viral assembly and transfer to the target cell in batches in an efficient, protective manor. My Ph.D. doctoral thesis focused on studying this transmission mechanism using advanced optical imaging modalities and the fully infectious fluorescent clone HIV Gag-iGFP. T lymphocytes are non-adherent cells (˜10 um thick) and the viral transmission process is fairly dynamic, hence we employed a custom spinning disk confocal microscope that revealed many interesting characteristics of this cooperative event. This methodology has low throughput as cell contact and transfer is at random. Optical tweezers was then added to the microscope to directly initiate cell contact at will. To assess when viral maturation occurs post-transfer, an optical assay based off of Forster resonance energy transfer was developed to monitor maturation. Structured illumination microscopy was further used to image the process at higher resolution and it showed that viral particles are not entering existing degradative compartments. Non-HIV-1 applications of the optical technologies are also reviewed.

  5. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet Biosatellite COSMOS 2044. A study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy)

    Science.gov (United States)

    D'Amelio, F.; Daunton, N. G.

    1992-01-01

    The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.

  6. Unconventional Specimen Preparation Techniques Using High Resolution Low Voltage Field Emission Scanning Electron Microscopy to Study Cell Motility, Host Cell Invasion, and Internal Cell Structures in Toxoplasma gondii

    Science.gov (United States)

    Schatten, Heide; Ris, Hans

    2002-04-01

    Apicomplexan parasites employ complex and unconventional mechanisms for cell locomotion, host cell invasion, and cell division that are only poorly understood. While immunofluorescence and conventional transmission electron microscopy have been used to answer questions about the localization of some cytoskeletal proteins and cell organelles, many questions remain unanswered, partly because new methods are needed to study the complex interactions of cytoskeletal proteins and organelles that play a role in cell locomotion, host cell invasion, and cell division. The choice of fixation and preparation methods has proven critical for the analysis of cytoskeletal proteins because of the rapid turnover of actin filaments and the dense spatial organization of the cytoskeleton and its association with the complex membrane system. Here we introduce new methods to study structural aspects of cytoskeletal motility, host cell invasion, and cell division of Toxoplasma gondii, a most suitable laboratory model that is representative of apicomplexan parasites. The novel approach in our experiments is the use of high resolution low voltage field emission scanning electron microscopy (LVFESEM) combined with two new specimen preparation techniques. The first method uses LVFESEM after membrane extraction and stabilization of the cytoskeleton. This method allows viewing of actin filaments which had not been possible with any other method available so far. The second approach of imaging the parasite's ultrastructure and interactions with host cells uses semithick sections (200 nm) that are resin de-embedded (Ris and Malecki, 1993) and imaged with LVFESEM. This method allows analysis of structural detail in the parasite before and after host cell invasion and interactions with the membrane of the parasitophorous vacuole as well as parasite cell division.

  7. From Dynamic Live Cell Imaging to 3D Ultrastructure: Novel Integrated Methods for High Pressure Freezing and Correlative Light-Electron Microscopy.

    OpenAIRE

    Spiegelhalter, Coralie; Tosch, Valérie; Hentsch, Didier; Koch, Marc; Kessler, Pascal; Schwab, Yannick; Laporte, Jocelyn

    2010-01-01

    BACKGROUND: In cell biology, the study of proteins and organelles requires the combination of different imaging approaches, from live recordings with light microscopy (LM) to electron microscopy (EM). METHODOLOGY: To correlate dynamic events in adherent cells with both ultrastructural and 3D information, we developed a method for cultured cells that combines confocal time-lapse images of GFP-tagged proteins with electron microscopy. With laser micro-patterned culture substrate, we created coo...

  8. Using digital inline holographic microscopy and quantitative phase contrast imaging to assess viability of cultured mammalian cells

    Science.gov (United States)

    Missan, Sergey; Hrytsenko, Olga

    2015-03-01

    Digital inline holographic microscopy was used to record holograms of mammalian cells (HEK293, B16, and E0771) in culture. The holograms have been reconstructed using Octopus software (4Deep inwater imaging) and phase shift maps were unwrapped using the FFT-based phase unwrapping algorithm. The unwrapped phase shifts were used to determine the maximum phase shifts in individual cells. Addition of 0.5 mM H2O2 to cell media produced rapid rounding of cultured cells, followed by cell membrane rupture. The cell morphology changes and cell membrane ruptures were detected in real time and were apparent in the unwrapped phase shift images. The results indicate that quantitative phase contrast imaging produced by the digital inline holographic microscope can be used for the label-free real time automated determination of cell viability and confluence in mammalian cell cultures.

  9. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice.

    Science.gov (United States)

    Zhang, Jingjing; Bedel, Romain; Krovi, S Harsha; Tuttle, Kathryn D; Zhang, Bicheng; Gross, James; Gapin, Laurent; Matsuda, Jennifer L

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology. PMID:27256918

  10. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice

    Science.gov (United States)

    Zhang, Jingjing; Bedel, Romain; Krovi, S. Harsha; Tuttle, Kathryn D.; Zhang, Bicheng; Gross, James; Gapin, Laurent; Matsuda, Jennifer L.

    2016-01-01

    Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology. PMID:27256918

  11. Intravital microscopy: a novel tool to study cell biology in living animals

    OpenAIRE

    Weigert, Roberto; Sramkova, Monika; Parente, Laura; Masedunskas, Andrius

    2010-01-01

    Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to t...

  12. EVENT SEGMENTATION

    OpenAIRE

    Zacks, Jeffrey M.; Swallow, Khena M.

    2007-01-01

    One way to understand something is to break it up into parts. New research indicates that segmenting ongoing activity into meaningful events is a core component of ongoing perception, with consequences for memory and learning. Behavioral and neuroimaging data suggest that event segmentation is automatic and that people spontaneously segment activity into hierarchically organized parts and sub-parts. This segmentation depends on the bottom-up processing of sensory features such as movement, an...

  13. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    Science.gov (United States)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  14. Analysis of mitosis and antimitotic drug responses in tumors by in vivo microscopy and single-cell pharmacodynamics

    NARCIS (Netherlands)

    Orth, James D; Kohler, Rainer H; Foijer, Floris; Sorger, Peter K; Weissleder, Ralph; Mitchison, Timothy J

    2011-01-01

    Cancer relies upon frequent or abnormal cell division, but how the tumor microenvironment affects mitotic processes in vivo remains unclear, largely due to the technical challenges of optical access, spatial resolution, and motion. We developed high-resolution in vivo microscopy methods to visualize

  15. Use of CMEIAS Image Analysis Software to Accurately Compute Attributes of Cell Size, Morphology, Spatial Aggregation and Color Segmentation that Signify in Situ Ecophysiological Adaptations in Microbial Biofilm Communities

    Directory of Open Access Journals (Sweden)

    Frank B. Dazzo

    2015-03-01

    Full Text Available In this review, we describe computational features of computer-assisted microscopy that are unique to the Center for Microbial Ecology Image Analysis System (CMEIAS software, and examples illustrating how they can be used to gain ecophysiological insights into microbial adaptations occurring at micrometer spatial scales directly relevant to individual cells occupying their ecological niches in situ. These features include algorithms that accurately measure (1 microbial cell length relevant to avoidance of protozoan bacteriovory; (2 microbial biovolume body mass relevant to allometric scaling and local apportionment of growth-supporting nutrient resources; (3 pattern recognition rules for morphotype classification of diverse microbial communities relevant to their enhanced fitness for success in the particular habitat; (4 spatial patterns of coaggregation that reveal the local intensity of cooperative vs. competitive adaptations in colonization behavior relevant to microbial biofilm ecology; and (5 object segmentation of complex color images to differentiate target microbes reporting successful cell-cell communication. These unique computational features contribute to the CMEIAS mission of developing accurate and freely accessible tools of image bioinformatics that strengthen microscopy-based approaches for understanding microbial ecology at single-cell resolution.

  16. Meckelin 3 is necessary for photoreceptor outer segment development in rat Meckel syndrome.

    Directory of Open Access Journals (Sweden)

    Sarika Tiwari

    Full Text Available Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3 expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10 and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes.

  17. Meckelin 3 is necessary for photoreceptor outer segment development in rat Meckel syndrome.

    Science.gov (United States)

    Tiwari, Sarika; Hudson, Scott; Gattone, Vincent H; Miller, Caroline; Chernoff, Ellen A G; Belecky-Adams, Teri L

    2013-01-01

    Ciliopathies lead to multiorgan pathologies that include renal cysts, deafness, obesity and retinal degeneration. Retinal photoreceptors have connecting cilia joining the inner and outer segment that are responsible for transport of molecules to develop and maintain the outer segment process. The present study evaluated meckelin (MKS3) expression during outer segment genesis and determined the consequences of mutant meckelin on photoreceptor development and survival in Wistar polycystic kidney disease Wpk/Wpk rat using immunohistochemistry, analysis of cell death and electron microscopy. MKS3 was ubiquitously expressed throughout the retina at postnatal day 10 (P10) and P21. However, in the mature retina, MKS3 expression was restricted to photoreceptors and the retinal ganglion cell layer. At P10, both the wild type and homozygous Wpk mutant retina had all retinal cell types. In contrast, by P21, cells expressing rod- and cone-specific markers were fewer in number and expression of opsins appeared to be abnormally localized to the cell body. Cell death analyses were consistent with the disappearance of photoreceptor-specific markers and showed that the cells were undergoing caspase-dependent cell death. By electron microscopy, P10 photoreceptors showed rudimentary outer segments with an axoneme, but did not develop outer segment discs that were clearly present in the wild type counterpart. At p21 the mutant outer segments appeared much the same as the P10 mutant outer segments with only a short axoneme, while the wild-type controls had developed outer segments with many well-organized discs. We conclude that MKS3 is not important for formation of connecting cilium and rudimentary outer segments, but is critical for the maturation of outer segment processes. PMID:23516626

  18. Segmenting the sepal and shoot apical meristem of Arabidopsis thaliana

    OpenAIRE

    Cunha, Alexandre L.; Roeder, Adrienne H. K.; Meyerowitz, Elliot M.

    2010-01-01

    We present methods for segmenting the sepal and shoot apical meristem of the Arabidopsis thaliana plant. We propose a mathematical morphology pipeline and a modified numerical scheme for the active contours without edges algorithm to extract the geometry and topology of plant cells imaged using confocal laser scanning microscopy. We demonstrate our methods in typical images used in the studies of cell endoreduplication and hormone transport and show that in practice they produce highly accura...

  19. Scanning droplet cell microscopy on a wide range hafnium–niobium thin film combinatorial library

    International Nuclear Information System (INIS)

    Highlights: • A Hf–Nb combinatorial library (14–94 at.% Nb) co-sputtered on Si was investigated. • Thin film alloys’ microstructure and crystallographic properties were analysed. • SDCM was used for the growth and in situ characterisation of anodic oxides on Hf–Nb. • A maximum electrical permittivity close to 75 was found for Hf–33 at.% Nb using EIS. • A mixture of HfO2 and Nb2O5 was identified in the anodic oxides by XPS. -- Abstract: A wide-range thin film Hf–Nb combinatorial library deposited by co-sputtering is studied. The microstructure and crystallographic properties of the thin film alloys locally investigated by SEM and GIXRD are mapped along the entire compositional spread from 14 to 94 at.% Nb. Scanning droplet cell microscopy (SDCM) is used for mapping the electrochemical properties of the naturally oxidised metallic surfaces. Anodisation of the Hf–Nb thin films alloys is achieved with a high throughput due to computer-controlled scanning, made with a composition resolution of 1 at.%. The electrical properties of the anodic oxides are mapped by EIS and a maximum electrical permittivity close to 75 was found for Hf–33 at.% Nb. Semiconducting properties of the mixed anodic oxides are studied using Mott–Schottky analysis and their composition and mixing is investigated by XPS depth profiling

  20. Electrodeposition and Screening of Photoelectrochemical Activity in Conjugated Polymers Using Scanning Electrochemical Cell Microscopy.

    Science.gov (United States)

    Aaronson, Barak D B; Garoz-Ruiz, Jesus; Byers, Joshua C; Colina, Alvaro; Unwin, Patrick R

    2015-11-24

    A number of renewable energy systems require an understanding and correlation of material properties and photoelectrochemical activity on the micro to nanoscale. Among these, conducting polymer electrodes continue to be important materials. In this contribution, an ultrasensitive scanning electrochemical cell microscopy (SECCM) platform is used to electrodeposit microscale thin films of poly(3-hexylthiophene) (P3HT) on an optically transparent gold electrode and to correlate the morphology (film thickness and structural order) with photoactivity. The electrochemical growth of P3HT begins with a thin ordered film up to 10 nm thick, after which a second more disordered film is deposited, as revealed by micro-Raman spectroscopy. A decrease in photoactivity for the thicker films, measured in situ immediately following film deposition, is attributed to an increase in bulk film disorder that limits charge transport. Higher resolution ex situ SECCM phototransient measurements, using a smaller diameter probe, show local variations in photoactivity within a given deposit. Even after aging, thinner, more ordered regions within a deposit exhibit sustained enhanced photocurrent densities compared to areas where the film is thicker and more disordered. The platform opens up new possibilities for high-throughput combinatorial correlation studies, by allowing materials fabrication and high spatial resolution probing of processes in photoelectrochemical materials. PMID:26502089

  1. Characterization of carrier concentration in CIGS solar cells by scanning capacitance microscopy

    International Nuclear Information System (INIS)

    Thin films of copper indium gallium selenide (CIGS) designed for highly efficient solar cell material were investigated to characterize the two-dimensional carrier distribution using scanning capacitance microscopy (SCM). We optimized a preparation method of the cross-section samples and concluded that bevel polishing by 25° to 30° was effective for crumbly polycrystalline materials such as CIGS, so as to provide not the surface property of cracked crystalline grains but the cross-section property of individual cut grains. Because of improvement in this preparation procedure, changes in carrier distribution have been observed directly in the active CIGS layer before and after turning on a 100 W halogen lamp irradiation. A calibration curve between carrier concentration N and SCM's dC/dV signals was applied for qualitatively calculating relative values of N in CIGS. Increased carrier concentration peaks on the grains were estimated to become about three times as high as those with the light on. (paper)

  2. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    OpenAIRE

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma; Melia, Charlotte; Marrison, Jo; Carzaniga, Raffaella; Domart, Marie-Charlotte; O'Toole, Peter; Larijani, Banafshe; Collinson, Lucy M.

    2014-01-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and sc...

  3. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls.

    OpenAIRE

    Akin, D E

    1980-01-01

    Different morphological types of rumen bacteria which degraded cell walls of forage grasses with various in vitro digestibilities were evaluated with electron microscopy. The majority of these bacteria (i.e., about 70% or more) consisted of two distinct types: (i) encapsulated cocci and (ii) irregularly shaped bacteria, resembling major fiber digesters found in the rumen. Each type was capable of degrading structurally intact cell walls. Differences (P less than or equal to 0.02) in the perce...

  4. Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers

    OpenAIRE

    Corinne Berclaz; Christophe Pache; Arno Bouwens; Daniel Szlag; Antonio Lopez; Lieke Joosten; Selen Ekim; Maarten Brom; Martin Gotthardt; Anne Grapin-Botton; Theo Lasser

    2015-01-01

    The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it ...

  5. Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy

    International Nuclear Information System (INIS)

    The viscoelastic properties of human kidney cell lines from different tumor types (carcinoma (A-498) and adenocarcinoma (ACHN)) are compared to a non-tumorigenic cell line (RC-124). Our methodology is based on the mapping of viscoelastic properties (elasticity modulus E and apparent viscosity η) over the surface of tens of individual cells with atomic force microscopy (AFM). The viscoelastic properties are averaged over datasets as large as 15000 data points per cell line. We also propose a model to estimate the apparent viscosity of soft materials using the hysteresis observed in conventional AFM deflection–displacement curves, without any modification to the standard AFM apparatus. The comparison of the three cell lines show that the non-tumorigenic cells are less deformable and more viscous than cancerous cells, and that cancer cell lines have distinctive viscoelastic properties. In particular, we obtained that ERC−124 > EA−498 > EACHN and ηRC−124 > ηA−498 > ηACHN. (paper)

  6. The New Electron Microscopy: Cells and Molecules in Three Dimensions | Poster

    Science.gov (United States)

    NCI recently announced the launch of the new National Cryo-Electron Microscopy Facility (NCEF) at the Frederick National Laboratory for Cancer Research (FNLCR). The launch comes while cryo-electron microscopy (cryo-EM) is enjoying the spotlight as a newly emerging, rapidly evolving technology with the potential to revolutionize the field of structural biology. Read more...

  7. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy.

    Science.gov (United States)

    Ou, Horng D; Deerinck, Thomas J; Bushong, Eric; Ellisman, Mark H; O'Shea, Clodagh C

    2015-11-15

    Structural studies of viral proteins most often use high-resolution techniques such as X-ray crystallography, nuclear magnetic resonance, single particle negative stain, or cryo-electron microscopy (EM) to reveal atomic interactions of soluble, homogeneous viral proteins or viral protein complexes. Once viral proteins or complexes are separated from their host's cellular environment, their natural in situ structure and details of how they interact with other cellular components may be lost. EM has been an invaluable tool in virology since its introduction in the late 1940's and subsequent application to cells in the 1950's. EM studies have expanded our knowledge of viral entry, viral replication, alteration of cellular components, and viral lysis. Most of these early studies were focused on conspicuous morphological cellular changes, because classic EM metal stains were designed to highlight classes of cellular structures rather than specific molecular structures. Much later, to identify viral proteins inducing specific structural configurations at the cellular level, immunostaining with a primary antibody followed by colloidal gold secondary antibody was employed to mark the location of specific viral proteins. This technique can suffer from artifacts in cellular ultrastructure due to compromises required to provide access to the immuno-reagents. Immunolocalization methods also require the generation of highly specific antibodies, which may not be available for every viral protein. Here we discuss new methods to visualize viral proteins and structures at high resolutions in situ using correlated light and electron microscopy (CLEM). We discuss the use of genetically encoded protein fusions that oxidize diaminobenzidine (DAB) into an osmiophilic polymer that can be visualized by EM. Detailed protocols for applying the genetically encoded photo-oxidizing protein MiniSOG to a viral protein, photo-oxidation of the fusion protein to yield DAB polymer staining, and

  8. Segmentation: Identification of consumer segments

    DEFF Research Database (Denmark)

    Høg, Esben

    2005-01-01

    It is very common to categorise people, especially in the advertising business. Also traditional marketing theory has taken in consumer segments as a favorite topic. Segmentation is closely related to the broader concept of classification. From a historical point of view, classification has its...... analysed possible segments in the market. Results show that the statistical model used identified two segments - a segment of so-called "fish lovers" and another segment called "traditionalists". The "fish lovers" are very fond of eating fish and they actually prefer fish to other dishes. The...... origin in other sciences as for example biology, anthropology etc. From an economic point of view, it is called segmentation when specific scientific techniques are used to classify consumers to different characteristic groupings. What is the purpose of segmentation? For example, to be able to obtain a...

  9. A phase-contrast microscopy-based method for modeling the mechanical behavior of mesenchymal stem cells.

    Science.gov (United States)

    Saeed, Mayssam; Sharabani-Yosef, Orna; Weihs, Daphne; Gefen, Amit

    2016-10-01

    We present three-dimensional (3D) finite element (FE) models of single, mesenchymal stem cells (MSCs), generated from images obtained by optical phase-contrast microscopy and used to quantify the structural responses of the studied cells to externally applied mechanical loads. Mechanical loading has been shown to affect cell morphology and structure, phenotype, motility and other biological functions. Cells experience mechanical loads naturally, yet under prolonged or sizable loading, damage and cell death may occur, which motivates research regarding the structural behavior of loaded cells. For example, near the weight-bearing boney prominences of the buttocks of immobile persons, tissues may become highly loaded, eventually leading to massive cell death that manifests as pressure ulcers. Cell-specific computational models have previously been developed by our group, allowing simulations of cell deformations under compressive or stretching loads. These models were obtained by reconstructing specific cell structures from series of 2D fluorescence, confocal image-slices, requiring cell-specific fluorescent-staining protocols and costly (confocal) microscopy equipment. Alternative modeling approaches represent cells simply as half-spheres or half-ellipsoids (i.e. idealized geometries), which neglects the curvature details of the cell surfaces associated with changes in concentrations of strains and stresses. Thus, we introduce here for the first time an optical image-based FE modeling, where loads are simulated on reconstructed 3D geometrical cell models from a single 2D, phase-contrast image. Our novel modeling method eliminates the need for confocal imaging and fluorescent staining preparations (both expensive), and makes cell-specific FE modeling affordable and accessible to the biomechanics community. We demonstrate the utility of this cost-effective modeling method by performing simulations of compression of MSCs embedded in a gel. PMID:26856632

  10. Morphological changes in living cell cultures following α-particle irradiation studied by optical and atomic force microscopy

    International Nuclear Information System (INIS)

    The shape of the cells and the released material (traces) from migrating adherent cells depends on the cell type, the surface coating of the culture plate, the extracellular matrix, and some other parameters. In our studies we investigated the effect of α-exposure (7-28 particle/cell/h) on cell cultures. C6 glioma cells and 3T3 cell-lines were grown on a 20 μm thick, chemically modified polypropylene foil and exposed to α-particles of an 241Am (37 kBq) source through the foil. The average energy of the α particles was calculated by Monte-Carlo simulation of the whole collision cascade through the given pathway in air and in the foil. The α-dose was measured by CR-39 track detectors. Morphological changes of the cells were investigated by phase-contrast optical microscopy and by atomic force microscopy in low force contact mode. The static traces give information about the dynamics of cell migration and about the quality of the extracellular matrix

  11. Biological cell morphology studies by scanning electrochemical microscopy imagery at constant height: Contrast enhancement using biocompatible conductive substrates

    International Nuclear Information System (INIS)

    Scanning ElectroChemical Microscopy (SECM) has emerged as a very attractive method to image living cells activity due to its non invasive character and to the possibility of concomitant electro- and physico-chemical measurements. One of the difficulties when studying morphology of living cells in real time by SECM, using classical constant height mode, is the low contrast of the obtained images due to the insulating character of both the cells and of the underlying substrates. We propose here a technical approach to improve the contrast of SECM imagery obtained at constant height in the feedback mode without the need of Faraday cage. To this aim, a piece of biocompatible transparent conductive substrate (indium tin oxide, ITO coated PET) was attached into the bottom of cell culture well over which the cells were cultured. The transparency of ITO is intended to perform simultaneously SECM and optical microscopy measurements. The concept was applied to the study of endothelial cells, EA.hy926, whose morphology may be altered via an antivascular treatment. Our results show that the differences in the conductivity of the substrate and of the cells enhance the contrast of SECM image in feedback mode at constant height using highly charged redox mediator. In addition, differences in cell morphology are significantly observed by SECM after cell treatment with Combretastatin A4 antivascular agent

  12. High-resolution cryo-electron microscopy on macromolecular complexes and cell organelles.

    Science.gov (United States)

    Hoenger, Andreas

    2014-03-01

    Cryo-electron microscopy techniques and computational 3-D reconstruction of macromolecular assemblies are tightly linked tools in modern structural biology. This symbiosis has produced vast amounts of detailed information on the structure and function of biological macromolecules. Typically, one of two fundamentally different strategies is used depending on the specimens and their environment. A: 3-D reconstruction based on repetitive and structurally identical unit cells that allow for averaging, and B: tomographic 3-D reconstructions where tilt-series between approximately ± 60 and ± 70° at small angular increments are collected from highly complex and flexible structures that are beyond averaging procedures, at least during the first round of 3-D reconstruction. Strategies of group A are averaging-based procedures and collect large number of 2-D projections at different angles that are computationally aligned, averaged together, and back-projected in 3-D space to reach a most complete 3-D dataset with high resolution, today often down to atomic detail. Evidently, success relies on structurally repetitive particles and an aligning procedure that unambiguously determines the angular relationship of all 2-D projections with respect to each other. The alignment procedure of small particles may rely on their packing into a regular array such as a 2-D crystal, an icosahedral (viral) particle, or a helical assembly. Critically important for cryo-methods, each particle will only be exposed once to the electron beam, making these procedures optimal for highest-resolution studies where beam-induced damage is a significant concern. In contrast, tomographic 3-D reconstruction procedures (group B) do not rely on averaging, but collect an entire dataset from the very same structure of interest. Data acquisition requires collecting a large series of tilted projections at angular increments of 1-2° or less and a tilt range of ± 60° or more. Accordingly, tomographic data

  13. Mechanisms of cell-cell adhesion identified by immunofluorescent labelling with quantum dots: A scanning near-field optical microscopy approach

    International Nuclear Information System (INIS)

    Scanning near-field optical microscopy (SNOM) has been employed to simultaneously acquire high-resolution fluorescence images along with shear-force atomic force microscopy from cell membranes. Implementing such a technique overcomes the limits of optical diffraction found in standard fluorescence microscopy and also yields vital topographic information. The application of the technique to investigate cell-cell adhesion has revealed the interactions of filopodia and their functional relationship in establishing adherens junctions. This has been achieved via the selective tagging of the cell adhesion protein, E-cadherin, by immunofluorescence labelling. Two labelling routes were explored; Alexa Fluor 488 and semiconductor quantum dots. The quantum dots demonstrated significantly enhanced photostability and high quantum yield making them a versatile alternative to the conventional organic fluorophores often used in such a study. Analysis of individual cells revealed that E-cadherin is predominantly located along the cell periphery but is also found to extend throughout their filopodia. We have demonstrated that with a fully optimised sample preparation methodology, quantum dot labelling in conjunction with SNOM imaging can be successfully applied to interrogate biomolecular localisation within delicate cellular membranes. -- Research highlights: → Successful development of protocols for the quantum dot tagging of cell membrane proteins. → Successful implementation of scanning near-field optical microscopy to image cell membranes and accurately define the location of the tagged E-cadherin protein. → Compare and contrast data with that in the literature regarding the role of proteins in cell adhesion mechanisms. → Analysis of the data and our experimental experiences have demonstrated the practical benefits of quantum dots over Alexa 488, a conventional fluorophore. → Data highlights the various stages of cell confluency to illustrate the variation in E

  14. Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice

    CERN Document Server

    Kim, Kyoohyun; Park, Inwon; Kim, Pilhan; Park, YongKeun

    2016-01-01

    Intravital microscopy is an essential tool that reveals behaviours of live cells under conditions close to natural physiological states. So far, although various approaches for imaging cells in vivo have been proposed, most require the use of labelling and also provide only qualitative imaging information. Holographic imaging approach based on measuring the refractive index distributions of cells, however, circumvent these problems and offer quantitative and label-free imaging capability. Here, we demonstrate in vivo two- and three-dimensional holographic imaging of circulating blood cells in intact microcapillaries of live mice. The measured refractive index distributions of blood cells provide morphological and biochemical properties including three-dimensional cell shape, haemoglobin concentration, and haemoglobin contents at the individual cell level. With the present method, alterations in blood flow dynamics in live healthy and sepsis-model mouse were also investigated.

  15. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination

    Science.gov (United States)

    Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; i Cabarrocas, Pere Roca

    2016-02-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.

  16. Cross-Sectional Investigations on Epitaxial Silicon Solar Cells by Kelvin and Conducting Probe Atomic Force Microscopy: Effect of Illumination.

    Science.gov (United States)

    Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca

    2016-12-01

    Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements. PMID:26831693

  17. Separation of Normal and Premalignant Cervical Epithelial Cells Using Confocal Light Absorption and Scattering Spectroscopic Microscopy Ex Vivo

    Directory of Open Access Journals (Sweden)

    Ling Yang

    2011-01-01

    Full Text Available Confocal light absorption and scattering spectroscopic (CLASS microscopy can detect changes in biochemicals and the morphology of cells. It is therefore used to detect high-grade cervical squamous intraepithelial lesion (HSIL cells in the diagnosis of premalignant cervical lesions. Forty cervical samples from women with abnormal Pap smear test results were collected, and twenty cases were diagnosed as HSIL; the rest were normal or low-grade cervical squamous intraepithelial lesion (LSIL. The enlarged and condensed nuclei of HSIL cells as viewed under CLASS microscopy were much brighter and bigger than those of non-HSIL cells. Cytological elastic scattered light data was then collected at wavelengths between 400 and 1000 nm. Between 600 nm to 800 nm, the relative elastic scattered light intensity of HSIL cells was higher than that of the non-HSIL. Relative intensity peaks occurred at 700 nm and 800 nm. CLASS sensitivity and specificity results for HSIL and non-HSIL compared to cytology diagnoses were 80% and 90%, respectively. This study demonstrated that CLASS microscopy could effectively detect cervical precancerous lesions. Further study will verify this conclusion before the method is used in clinic for early detection of cervical cancer.

  18. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  19. Resolving protein interactions and organization downstream the T cell antigen receptor using single-molecule localization microscopy: a review

    Science.gov (United States)

    Sherman, Eilon

    2016-06-01

    Signal transduction is mediated by heterogeneous and dynamic protein complexes. Such complexes play a critical role in diverse cell functions, with the important example of T cell activation. Biochemical studies of signalling complexes and their imaging by diffraction limited microscopy have resulted in an intricate network of interactions downstream the T cell antigen receptor (TCR). However, in spite of their crucial roles in T cell activation, much remains to be learned about these signalling complexes, including their heterogeneous contents and size distribution, their complex arrangements in the PM, and the molecular requirements for their formation. Here, we review how recent advancements in single molecule localization microscopy have helped to shed new light on the organization of signalling complexes in single molecule detail in intact T cells. From these studies emerges a picture where cells extensively employ hierarchical and dynamic patterns of nano-scale organization to control the local concentration of interacting molecular species. These patterns are suggested to play a critical role in cell decision making. The combination of SMLM with more traditional techniques is expected to continue and critically contribute to our understanding of multimolecular protein complexes and their significance to cell function.

  20. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices.

    Science.gov (United States)

    Staunton, Jack R; Doss, Bryant L; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion. PMID:26813872

  1. A tubular segmented-flow bioreactor for the infection of insect cells with recombinant baculovirus

    OpenAIRE

    Hu, Yu-Chen; Wang, Ming-Ying; Bentley, William E.

    1997-01-01

    A continuous process of insect cell (S f9) growth and baculovirus infection is tested with the sequential combination of a CSTR and a tubular reactor. A tubular infection reactor enables continuous introduction of baculovirus and therefore avoids the ‘passage effect’ observed in two-stage CSTR systems. Moreover, a tubular reactor can be used to test cell infection kinetics and the subsequent metabolism of infected insect cells. Unlike batch and CSTR culture, cells in a horizontally positioned...

  2. The Potential Impact of Biofield Treatment on Human Brain Tumor Cells: A Time-Lapse Video Microscopy

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Study background: Glioblastoma (GBM) is the most common subtype of primary brain tumor in adults. The aim was to evaluate the impact of biofield treatment potential on human GBM and non-GBM brain cells using two time-lapse video microscopy technique. Methods: The human brain tumor, GBM cultured cells were divided into two groups viz. GBM control and GBM treatment. Similarly, human normal brain cultured cells (non-GBM) were taken and divided into two groups viz. non- GBM control ...

  3. Preservation of protein fluorescence in embedded human dendritic cells for targeted 3D light and electron microscopy.

    Science.gov (United States)

    Höhn, K; Fuchs, J; Fröber, A; Kirmse, R; Glass, B; Anders-Össwein, M; Walther, P; Kräusslich, H-G; Dietrich, C

    2015-08-01

    In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. PMID:25786567

  4. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs

  5. The consequences of reconfiguring the ambisense S genome segment of Rift Valley fever virus on viral replication in mammalian and mosquito cells and for genome packaging.

    Directory of Open Access Journals (Sweden)

    Benjamin Brennan

    2014-02-01

    Full Text Available Rift Valley fever virus (RVFV, family Bunyaviridae is a mosquito-borne pathogen of both livestock and humans, found primarily in Sub-Saharan Africa and the Arabian Peninsula. The viral genome comprises two negative-sense (L and M segments and one ambisense (S segment RNAs that encode seven proteins. The S segment encodes the nucleocapsid (N protein in the negative-sense and a nonstructural (NSs protein in the positive-sense, though NSs cannot be translated directly from the S segment but rather from a specific subgenomic mRNA. Using reverse genetics we generated a virus, designated rMP12:S-Swap, in which the N protein is expressed from the NSs locus and NSs from the N locus within the genomic S RNA. In cells infected with rMP12:S-Swap NSs is expressed at higher levels with respect to N than in cells infected with the parental rMP12 virus. Despite NSs being the main interferon antagonist and determinant of virulence, growth of rMP12:S-Swap was attenuated in mammalian cells and gave a small plaque phenotype. The increased abundance of the NSs protein did not lead to faster inhibition of host cell protein synthesis or host cell transcription in infected mammalian cells. In cultured mosquito cells, however, infection with rMP12:S-Swap resulted in cell death rather than establishment of persistence as seen with rMP12. Finally, altering the composition of the S segment led to a differential packaging ratio of genomic to antigenomic RNA into rMP12:S-Swap virions. Our results highlight the plasticity of the RVFV genome and provide a useful experimental tool to investigate further the packaging mechanism of the segmented genome.

  6. Visualizing Cell Architecture and Molecular Location Using Soft X-Ray Tomography and Correlated Cryo-Light Microscopy

    Science.gov (United States)

    McDermott, Gerry; Le Gros, Mark A.; Larabell, Carolyn A.

    2012-05-01

    Living cells are structured to create a range of microenvironments that support specific chemical reactions and processes. Understanding how cells function therefore requires detailed knowledge of both the subcellular architecture and the location of specific molecules within this framework. Here we review the development of two correlated cellular imaging techniques that fulfill this need. Cells are first imaged using cryogenic fluorescence microscopy to determine the location of molecules of interest that have been labeled with fluorescent tags. The same specimen is then imaged using soft X-ray tomography to generate a high-contrast, 3D reconstruction of the cells. Data from the two modalities are then combined to produce a composite, information-rich view of the cell. This correlated imaging approach can be applied across the spectrum of problems encountered in cell biology, from basic research to biotechnological and biomedical applications such as the optimization of biofuels and the development of new pharmaceuticals.

  7. Immunogold electron microscopy and confocal analyses reveal distinctive patterns of histone H3 phosphorylation during mitosis in MCF-7 cells.

    Science.gov (United States)

    Yan, Yitang; Cummings, Connie A; Sutton, Deloris; Yu, Linda; Castro, Lysandra; Moore, Alicia B; Gao, Xiaohua; Dixon, Darlene

    2016-04-01

    Histone phosphorylation has a profound impact on epigenetic regulation of gene expression, chromosome condensation and segregation, and maintenance of genome integrity. Histone H3 Serine 10 is evolutionally conserved and heavily phosphorylated during mitosis. To examine Histone H3 Serine 10 phosphorylation (H3S10ph) dynamics in mitosis, we applied immunogold labeling and confocal microscopy to visualize H3S10ph expression in MCF-7 cells. Confocal observations showed that MCF-7 cells had abundant H3S10ph expression in prophase and metaphase. In anaphase, the H3S10ph expression was significantly decreased and displayed only sparsely localized staining that mainly associated with the chromatid tips. We showed that immunogold bead density distribution followed the H3S10ph expression patterns observed in confocal analysis. At a higher magnification in metaphase, the immunogold beads were readily visible and the bead distribution along the condensed chromosomes was distinctive, indicating the specificity and reliability of the immunogold staining procedure. In anaphase, the beads were found to distribute focally in specific regions of chromatids, reinforcing the confocal observations of differential H3 phosphorylation. To our knowledge, this is the first report to show the specific H3S10ph expression with an immunogold technique and transmission electron microscopy. Additionally, with confocal microscopy, we analyzed H3S10ph expression in an immortalized cell line derived from benign uterine smooth muscle tumor cells. H3S10ph epitope was expressed more abundantly during anaphase in the benign tumor cells, and there was no dramatic differential expression within the condensed chromatid clusters as observed in MCF-7 cells. The differences in H3S10ph expression pattern and dynamics may contribute to the differential proliferative potential between benign tumor cells and MCF-7 cells. Published 2016. This article is a U.S. Government work and is in the public domain in the

  8. Ultrastructural Analysis of Nanogold-Labeled Cell Surface Microvilli in Liquid by Atmospheric Scanning Electron Microscopy and Their Relevance in Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Mitsuo Suga

    2013-10-01

    Full Text Available The adhesion of leukocytes circulating in the blood to vascular endothelium is critical for their trafficking in the vasculature, and CD44 is an important cell surface receptor for rolling adhesion. In this study, we demonstrate the correlative observation of CD44 distribution at the lymphocyte cell surface in liquid by fluorescence optical microscopy and immuno-electron microscopy using an atmospheric scanning electron microscope (ASEM. The ultrastructure of the cell surface was clearly imaged by ASEM using positively charged Nanogold particles. ASEM analysis demonstrated microvilli projections around the cell surface and the localization of CD44 on the microvilli. Treatment of cells with cytochalasin D resulted in a loss of the microvilli projections and concomitantly abrogated CD44-mediated adhesion to its ligand hyaluronan. These results suggest the functional relevance of microvilli in CD44-mediated rolling adhesion under shear flow.

  9. Segmental neurofibromatosis

    OpenAIRE

    Galhotra, Virat; Sheikh, Soheyl; Jindal, Sanjeev; Singla, Anshu

    2014-01-01

    Segmental neurofibromatosis is a rare disorder, characterized by neurofibromas or cafι-au-lait macules limited to one region of the body. Its occurrence on the face is extremely rare and only few cases of segmental neurofibromatosis over the face have been described so far. We present a case of segmental neurofibromatosis involving the buccal mucosa, tongue, cheek, ear, and neck on the right side of the face.

  10. Atomic force microscopy analysis of enveloped and non-enveloped viral entry into, and egress from, cultured cells

    International Nuclear Information System (INIS)

    Since its invention, the atomic force microscope has been used to image a wide variety of biological samples, including viruses. Viral entry into, and egress from, cultured cells has been extensively studied using numerous scientific techniques and to a limited extent using atomic force microscopy. One of the main structural differences that can exist between viruses is the absence, or presence, of an envelope and this factor has consequences for the mode of viral entry and egress. In this study, the entry into, and egress from, cultured cells of enveloped and non-enveloped viruses were investigated using atomic force microscopy. No significant cell surface changes were observed following infection with enveloped or non-enveloped viruses. Although roughness analysis of viral entry revealed cell smoothing post-infection, no differences between the roughness values of enveloped and non-enveloped viral entry were observed. Line analysis of viral entry revealed minor differences between cells infected with an enveloped rather than a non-enveloped virus. These differences may represent a distinction between the uptake processes of enveloped and non-enveloped viruses. Studies of viral egress revealed that infected cells were undergoing cytopathic changes. Whilst topographic, height and roughness differences clearly occurred between virally- and mock-infected cells, no significant differences were elucidated between enveloped and non-enveloped viral egress

  11. Sipunculans and segmentation

    DEFF Research Database (Denmark)

    Wanninger, Andreas; Kristof, Alen; Brinkmann, Nora

    2009-01-01

    Comparative molecular, developmental and morphogenetic analyses show that the three major segmented animal groups- Lophotrochozoa, Ecdysozoa and Vertebrata-use a wide range of ontogenetic pathways to establish metameric body organization. Even in the life history of a single specimen, different...... mechanisms may act on the level of gene expression, cell proliferation, tissue differentiation and organ system formation in individual segments. Accordingly, in some polychaete annelids the first three pairs of segmental peripheral neurons arise synchronously, while the metameric commissures of the ventral...... nervous system form in anterior-posterior progression. Contrary to traditional belief, loss of segmentation may have occurred more often than commonly assumed, as exemplified in the sipunculans, which show remnants of segmentation in larval stages but are unsegmented as adults. The developmental...

  12. Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments.

    Science.gov (United States)

    Nowak, L G; Bullier, J

    1998-02-01

    The results presented in the companion paper showed that extracellular electrical stimulation of the gray matter directly activates axons, but not cell bodies. The second set of experiments presented here was designed to separate the contribution of the axon initial segments and cell bodies from that of the axonal branches to the pool of presynaptic neuronal elements activated by electrical stimulation. For that purpose, N-methyl-D-aspartate (NMDA) iontophoresis was used to induce a selective inactivation of the cell body and of the adjoining portion of the axon by depolarization block, without affecting axonal branches that lack NMDA receptors. After NMDA iontophoresis, the neurons located near the iontophoresis electrode became unable to generate action potentials in an irreversible manner. When the NMDA-induced depolarization block was performed at the site of electrical stimulation, an unexpected increase in the amplitude of the orthodromic responses was observed. Several control experiments suggested that the field potential increase was due to changes of the local environment in the vicinity of the iontophoresis pipette, which led to an increased excitability of the axons. After the period of superexcitability, the orthodromic responses displayed an amplitude that was 15-20% lower than that observed before the NMDA-induced depolarization block, even though cell bodies and axon initial segment at the site of stimulation could not be activated by electrical stimulation. This result shows a low contribution for axon initial segments to the pool of neuronal elements activated by the electrical stimulation. Altogether, these experiments demonstrate that the postsynaptic responses obtained after electrical stimulation of the cortical gray matter result almost exclusively from the activation of axonal branches. Since the neocortex is organised as a network of local and long-range reciprocal connections, great attention must be paid to the interpretation of data

  13. 3D Plant Cell Architecture of Arabidopsis thaliana (Brassicaceae Using Focused Ion Beam–Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Bhawana

    2014-06-01

    Full Text Available Premise of the study: Focused ion beam–scanning electron microscopy (FIB-SEM combines the ability to sequentially mill the sample surface and obtain SEM images that can be used to create 3D renderings with micron-level resolution. We have applied FIB-SEM to study Arabidopsis cell architecture. The goal was to determine the efficacy of this technique in plant tissue and cellular studies and to demonstrate its usefulness in studying cell and organelle architecture and distribution. Methods: Seed aleurone, leaf mesophyll, stem cortex, root cortex, and petal lamina from Arabidopsis were fixed and embedded for electron microscopy using protocols developed for animal tissues and modified for use with plant cells. Each sample was sectioned using the FIB and imaged with SEM. These serial images were assembled to produce 3D renderings of each cell type. Results: Organelles such as nuclei and chloroplasts were easily identifiable, and other structures such as endoplasmic reticula, lipid bodies, and starch grains were distinguishable in each tissue. Discussion: The application of FIB-SEM produced 3D renderings of five plant cell types and offered unique views of their shapes and internal content. These results demonstrate the usefulness of FIB-SEM for organelle distribution and cell architecture studies.

  14. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy

    Science.gov (United States)

    Okada, Tomoko; Ogura, Toshihiko

    2016-07-01

    Imaging of untreated living cells in a medium at a nanometre-scale resolution under physiological conditions is a significant challenge. Scanning electron microscopy (SEM) is widely used to observe cells in various atmospheric holders or special equipment. However, untreated biological specimens in aqueous solution generally incur heavy radiation damage from the direct electron beam (EB); and these images exhibit very poor contrast. Therefore, a new method for generating high-contrast images of living cells under physiological conditions without radiation damage has been strongly desired. Here, we demonstrate the first nanoscale observation of living cultured mammalian cells using our newly developed scanning-electron assisted dielectric microscopy (SE-ADM) method with a culture dish holder. Using the difference in relative permittivity between water and specimens, our SE-ADM system aids in the visualisation of untreated biological samples in aqueous solution. In addition, specimens incurred only a low level of radiation damage because the tungsten (W)-coated silicon nitride (SiN) film absorbs irradiated electrons. Untreated cells and organelles are clearly visible in high-contrast and high-resolution images without staining and fixation. Furthermore, our method enables the detection of changes in organelle structures within cells via time-lapse imaging with minimal radiation damage.

  15. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy

    Science.gov (United States)

    Okada, Tomoko; Ogura, Toshihiko

    2016-01-01

    Imaging of untreated living cells in a medium at a nanometre-scale resolution under physiological conditions is a significant challenge. Scanning electron microscopy (SEM) is widely used to observe cells in various atmospheric holders or special equipment. However, untreated biological specimens in aqueous solution generally incur heavy radiation damage from the direct electron beam (EB); and these images exhibit very poor contrast. Therefore, a new method for generating high-contrast images of living cells under physiological conditions without radiation damage has been strongly desired. Here, we demonstrate the first nanoscale observation of living cultured mammalian cells using our newly developed scanning-electron assisted dielectric microscopy (SE-ADM) method with a culture dish holder. Using the difference in relative permittivity between water and specimens, our SE-ADM system aids in the visualisation of untreated biological samples in aqueous solution. In addition, specimens incurred only a low level of radiation damage because the tungsten (W)-coated silicon nitride (SiN) film absorbs irradiated electrons. Untreated cells and organelles are clearly visible in high-contrast and high-resolution images without staining and fixation. Furthermore, our method enables the detection of changes in organelle structures within cells via time-lapse imaging with minimal radiation damage. PMID:27375121

  16. Local variations of HER2 dimerization in breast cancer cells discovered by correlative fluorescence and liquid electron microscopy.

    Science.gov (United States)

    Peckys, Diana B; Korf, Ulrike; de Jonge, Niels

    2015-07-01

    The formation of HER2 homodimers plays an important role in breast cancer aggressiveness and progression; however, little is known about its localization. We have studied the intra- and intercellular variation of HER2 at the single-molecule level in intact SKBR3 breast cancer cells. Whole cells were visualized in hydrated state with correlative fluorescence microscopy and environmental scanning electron microscopy (ESEM). The locations of individual HER2 receptors were detected using an anti-HER2 affibody in combination with a quantum dot (QD), a fluorescent nanoparticle. Fluorescence microscopy revealed considerable differences of HER2 membrane expression between individual cells and between different membrane regions of the same cell (that is, membrane ruffles and flat areas). Subsequent ESEM of the corresponding cellular regions provided images of individually labeled HER2 receptors. The high spatial resolution of 3 nm and the close proximity between the QD and the receptor allowed quantifying the stoichiometry of HER2 complexes, distinguishing between monomers, dimers, and higher-order clusters. Downstream data analysis based on calculating the pair correlation function from receptor positions showed that cellular regions exhibiting membrane ruffles contained a substantial fraction of HER2 in homodimeric state. Larger-order clusters were also present. Membrane areas with homogeneous membrane topography, on the contrary, displayed HER2 in random distribution. Second, HER2 homodimers appeared to be absent from a small subpopulation of cells exhibiting a flat membrane topography, possibly resting cells. Local differences in homodimer presence may point toward functional differences with possible relevance for studying metastasis and drug response. PMID:26601217

  17. Investigation of dynamic morphological changes of cancer cells during photoimmuno therapy (PIT) by low-coherence quantitative phase microscopy

    Science.gov (United States)

    Ogawa, Mikako; Yamauchi, Toyohiko; Iwai, Hidenao; Magata, Yasuhiro; Choyke, Peter L.; Kobayashi, Hisataka

    2014-03-01

    We have reported a new molecular-targeted cancer phototherapy, photoimmunotherapy (PIT), which killed implanted tumors in mice without side-effects. To understand the mechanism of cell killing with PIT, three-dimentional dynamic low-coherence quantitative phase microscopy (3D LC-QPM), a device developed by Hamamatsu Photonics K.K, was used to detect morphologic changes in cancer cells during PIT. 3T3/HER2 cells were incubated with anti-HER2 trastuzumab-IR700 (10 μg/mL, 0.1 μM as IR700) for 24 hours, then, three-dimensionally imaged with the LC-QPM during the exposure of two different optically filtered lights for excitation of IR700 (500-780 nm) and imaging (780-950 nm). For comparison with traditional PDT, the same experiments were performed with Photofrin (10 and 1 μM). Serial changes in the cell membrane were readily visualized on 3D LC-QPM. 3T3/HER2 cells began to swell rapidly after exposure to 500-780 nm light excitation. The cell volume reached a maximum within 1 min after continuous exposure, and then the cells appeared to burst. This finding suggests that PIT damages the cell membrane by photo-reaction inducing an influx of water into the cell causing swelling and bursting of the cells. Interestingly, even after only 5 seconds of light exposure, the cells demonstrated swelling and bursting albeit more slowly, implying that sufficient cumulative damage occurs on the cell membrane to induce lethal damage to cells even at minimal light exposure. Similar but non-selective membrane damage was shown in PDT-treated cells Photofrin. Thus, PIT induces sufficient damage to the cell membrane within 5 seconds to induce rapid necrotic cell death which can be observed directly with 3D LC-QPM. Further investigation is needed to evaluate the biochemical mechanisms underlying PIT-induced cellular membrane damage.

  18. The CS1 segment of fibronectin is involved in human OSCC pathogenesis by mediating OSCC cell spreading, migration, and invasion

    International Nuclear Information System (INIS)

    The alternatively spliced V region or type III connecting segment III (IIICS) of fibronectin is important in early development, wound healing, and tumorigenesis, however, its role in oral cancer has not been fully investigated. Thus, we investigated the role of CS-1, a key site within the CSIII region of fibronectin, in human oral squamous cell carcinoma (OSCC). To determine the expression of CS-1 in human normal and oral SCC tissue specimens immunohistochemical analyses were performed. The expression of CS1 was then associated with clinicopathological factors. To investigate the role of CS-1 in regulating OSCC cell spreading, migration and invasion, OSCC cells were assayed for spreading and migration in the presence of a CS-1 peptide or a CS-1 blocking peptide, and for invasion using Matrigel supplemented with these peptides. In addition, integrin α4siRNA or a focal adhesion kinase (FAK) anti-sense oligonucleotide was transfected into OSCC cells to examine the mechanistic role of integrin α4 or FAK in CS1-mediated cell spreading and migration, respectively. CS-1 expression levels were significantly higher in OSCC tissues compared to normal tissues (p < 0.05). Also, although, high levels of CS-1 expression were present in all OSCC tissue samples, low-grade tumors stained more intensely than high grade tumors. OSCC cell lines also expressed higher levels of CS-1 protein compared to normal human primary oral keratinocytes. There was no significant difference in total fibronectin expression between normal and OSCC tissues and cells. Inclusion of CS-1 in the in vitro assays enhanced OSCC cell spreading, migration and invasion, whereas the CS1 blocking peptide inhibited these processes. Suppression of integrin α4 significantly inhibited the CS1-mediated cell spreading. Furthermore, this migration was mediated by focal adhesion kinase (FAK), since FAK suppression significantly blocked the CS1-induced cell migration. These data indicate that the CS-1 site of

  19. Adaptive geometric tessellation for 3D reconstruction of anisotropically developing cells in multilayer tissues from sparse volumetric microscopy images.

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    Full Text Available The need for quantification of cell growth patterns in a multilayer, multi-cellular tissue necessitates the development of a 3D reconstruction technique that can estimate 3D shapes and sizes of individual cells from Confocal Microscopy (CLSM image slices. However, the current methods of 3D reconstruction using CLSM imaging require large number of image slices per cell. But, in case of Live Cell Imaging of an actively developing tissue, large depth resolution is not feasible in order to avoid damage to cells from prolonged exposure to laser radiation. In the present work, we have proposed an anisotropic Voronoi tessellation based 3D reconstruction framework for a tightly packed multilayer tissue with extreme z-sparsity (2-4 slices/cell and wide range of cell shapes and sizes. The proposed method, named as the 'Adaptive Quadratic Voronoi Tessellation' (AQVT, is capable of handling both the sparsity problem and the non-uniformity in cell shapes by estimating the tessellation parameters for each cell from the sparse data-points on its boundaries. We have tested the proposed 3D reconstruction method on time-lapse CLSM image stacks of the Arabidopsis Shoot Apical Meristem (SAM and have shown that the AQVT based reconstruction method can correctly estimate the 3D shapes of a large number of SAM cells.

  20. Toll-Like Receptor 4 (TLR4) of Retinal Pigment Epithelial Cells Participates in Transmembrane Signaling in Response to Photoreceptor Outer Segments

    OpenAIRE

    Kindzelskii, Andrei L.; Elner, Victor M.; Elner, Susan G.; Yang, Dongli; Hughes, Bret A.; Petty, Howard R.

    2004-01-01

    Retinal pigment epithelial (RPE) cells mediate the recognition and clearance of effete photoreceptor outer segments (POS), a process central to the maintenance of normal vision. Given the emerging importance of Toll-like receptors (TLRs) in transmembrane signaling in response to invading pathogens as well as endogenous substances, we hypothesized that TLRs are associated with RPE cell management of POS. TLR4 clusters on human RPE cells in response to human, but not bovine, POS. However, TLR4 ...

  1. Segmental Neurofibromatosis: Atypical Localisation

    OpenAIRE

    Filiz Topaloğlu Demir; Burçe Can; Berkant Oman; İlkin Zindancı; Tülay Zenginkinet; Mukaddes Kavala

    2015-01-01

    Neurofibromatosis (NF) is a genetic disease leading pathological findings in skin, soft tissue, bone and nervous system by affecting neural crest cells. Due to its heterogeneity neurofibromatosis was divided into eight different subgroups (NF-I NF-VIII) by Riccardi. Segmental neurofibromatosis (NF type V) is characterized by cutaneous neurofibromas and Café-au-lait spots limited with a segment of dermatome. Here we report this case with numerous, painless cutaneous nodules showing extension f...

  2. Synthesis and properties of segmented block copolymers of functionalised polybenzimidazoles for high-temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mader, J.A.; Benicewicz, B.C. [Department of Chemistry and Biochemistry and USC Nanocenter, University of South Carolina, 631 Sumter St., Columbia, SC 29208 (United States)

    2011-04-15

    A series of novel segmented block copolymers of sulphonated polybenzimidazole (PBI) (s-PBI) and p-PBI were prepared with various polymer ratios (10-90 mol% s-PBI; 90-10 mol% p-PBI). A two-step synthesis of oligomeric species, followed by combination and further polymerisation was used via the polyphosphoric acid (PPA) process. The membranes showed improved high-temperature proton conductivities and fuel cell performance over previous literature reports, with moderate incorporation of s-PBI into the copolymer showing the best results. The non-humidified fuel cell performance was extensively studied with various fuels and oxidants and showed excellent properties. Block copolymers that incorporated 40, 50 or 60 mol% s-PBI and the corresponding 60, 50 or 40 mol% p-PBI, at 0.2 A cm{sup -2} and 160 C, had hydrogen-air performances of 0.661-0.666 V, depending on composition. The performance was improved using hydrogen-oxygen, with voltages between 0.734 and 0.742 V at 0.2 A cm{sup -2} and 160 C. Fuel cells operating on a reformed hydrocarbon gas showed decreased performance (0.622-0.627 V, same conditions), especially at lower temperatures, but was significantly improved over previous literature reports of sulphonated PBI membranes operating at high temperatures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Hybrid Rayleigh, Raman and two-photon excited fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, Vishnu Vardhan; Lenferink, Aufried; Otto, Cees

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging. Thi

  4. Complete staining of human spermatozoa and immature germ cells combined with phase contrast microscopy

    DEFF Research Database (Denmark)

    Michael, A Y; Drejer, J O; Bagger, P V;

    1987-01-01

    A method combining Janus green B and Thymol blue stains the anterior part of the head, the nuclear membrane, middle piece, and tail of spermatozoa light green and the nucleus deep purple. The method provides excellent stained preparations for the evaluation of sperm morphology by phase contrast...... microscopy. It produces significantly less abnormal spermatozoa compared with the Papanicolaou stain....

  5. Sonic hedgehog enhances somite cell viability and formation of primary slow muscle fibers in avian segmented mesoderm.

    Science.gov (United States)

    Cann, G M; Lee, J W; Stockdale, F E

    1999-09-01

    Primary skeletal muscle fibers first form in the segmented portions of paraxial mesoderm called somites. Although the neural tube and notochord are recognized as crucial in patterning myogenic cell lineages during avian and mammalian somitic myogenesis, the source, identities, and actions of the signals governing this process remain controversial. It has been shown that signals emanating from the ventral neural tube and/or notochord alone or Shh alone serve to activate MyoD expression in somites. However, beyond a role in initiating MyoD expression, little is known about the effects of Shh on primary muscle fiber formation in somites of higher vertebrates. The studies reported here investigate how the ventral neural tube promotes myogenesis and compare the effects of the ventral neural tube with those of purified Shh protein on fiber formation in somites. We show that purified Shh protein mimics actions of the ventral neural tube on somites including initiation of muscle fiber formation, enhancement of numbers of primary muscle fibers, and particularly, the formation of primary fibers that express slow myosin. There is a marked increase in slow myosin expression in fibers in response to Shh as somites mature. The effects of ventral neural tube on fiber formation can be blocked by disrupting the Shh signaling pathway by increasing the activity of somitic cyclic AMP-dependent protein kinase A. Furthermore, it was demonstrated that apoptosis is a dominant fate of somite cells, but not somitic muscle fibers, when cultured in the absence of the neural tube, and that application of Shh protein to somites reduced apoptosis. The block to apoptosis by Shh is a manifestation of the maturity of the somite with a progressive increase in the block as somites are displaced rostrally from somite III forward. We conclude that purified Shh protein in mimicking the effects of the ventral neural tube on segmented mesoderm can exert pleiotropic effects during primary myogenesis

  6. MARKET SEGMENTATION

    Directory of Open Access Journals (Sweden)

    Munaga Ramakrishna Mohan Rao

    2015-01-01

    Full Text Available Market segmentation is a marketing strategy that involves dividing a broad target market into subsets of consumers, businesses, or countries who have common needs and priorities, and then designing and implementing strategies to target them. Market segmentation strategies may be used to identify the target customers, and provide supporting data for positioning to achieve a marketing plan objective. Businesses may develop product differentiation strategies, or an undifferentiated approach, involving specific products or product lines depending on the specific demand and attributes of the target segment.

  7. Regulation of Schwann cell proliferation in cultured segments of the adult rat sciatic nerve

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Kanje, M

    1998-01-01

    of Schwann cells. Removal of extracellular Ca2+ by addition of EGTA to the culture medium suppressed [3H] thymidine incorporation as did the calmodulin inhibitor 48/80. The Ca2+ ionophore A23187 increased incorporation. Staurosporin, an inhibitor of protein kinase C (PKC), suppressed [3H] thymidine...

  8. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2013-01-01

    Full Text Available Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.

  9. White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization

    Science.gov (United States)

    Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo

    2013-01-01

    Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713

  10. CARS and SHG microscopy to follow the collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin gel 3D cultures

    CERN Document Server

    Mortati, Leonardo; Sassi, Maria Paola

    2011-01-01

    Coherent anti-Stokes Raman scattering (CARS) microscopy is combined with second harmonic generation (SHG) technique in order to follow the early stage of stem cell differentiation within a 3D scaffold. CARS microscopy can detect lipid membranes and droplet compartments in living cells and SHG microscopy enables a strong imaging contrast for molecules with a non-centrosymmetric ordered structure like collagen. One of the first evidence of hMSCs differentiation is the formation of an extracellular matrix (ECM) where the collagen protein is its main component. This work demonstrated the multimodal CARS and SHG microscopy as a powerful non-invasive label free technique to investigate the collagen production dynamic in living cell 3D cultures. Its ability to image the cell morphology and the produced collagen distribution on a long term (4 weeks) experiment allowed to obtain important information about the cell-scaffold interaction and the ECM production. The very low limit reached in detecting collagen has permit...

  11. Development of confocal immunofluorescence FRET microscopy to Investigate eNOS and GSNOR localization and interaction in pulmonary endothelial cells

    Science.gov (United States)

    Rehman, Shagufta; Brown-Steinke, Kathleen; Palmer, Lisa; Periasamy, Ammasi

    2015-03-01

    Confocal FRET microscopy is a widely used technique for studying protein-protein interactions in live or fixed cells. Endothelial nitric oxide synthase (eNOS) and S-nitrosoglutathione reductase (GSNOR) are enzymes involved in regulating the bioavailability of S-nitrosothiols (SNOs) in the pulmonary endothelium and have roles in the development of pulmonary arterial hypertension. Labeling of endogenous proteins to better understand a disease process can be challenging. We have used immunofluorescence to detect endogenous eNOS and GSNOR in primary pulmonary endothelial cells to co-localize these proteins as well as to study their interaction by FRET. The challenge has been in selecting the right immunofluorescence labeling condition, right antibody, the right blocking reagent, the right FRET pair and eliminating cross-reactivity of secondary antibodies. We have used Alexa488 and Alexa568 as a FRET pair. After a series of optimizations, the data from Confocal Laser Scanning Microscopy (CLSM) demonstrate co-localization of eNOS and GSNOR in the perinuclear region of the pulmonary endothelial cell primarily within the cis-Golgi with lower levels of co-localization seen within the trans-Golgi. FRET studies demonstrate, for the first time, interaction between eNOS and GSNOR in both murine and bovine pulmonary endothelial cells. Further characterization of eNOSGSNOR interaction and the subcellular location of this interaction will provide mechanistic insight into the importance of S-nitrosothiol signaling in pulmonary biology, physiology and pathology.

  12. Functional imaging of a single cell: far-field infrared super-resolution microscopy using autofluorescence detection

    Science.gov (United States)

    Ohmori, Tsutomu; Inoue, Keiichi; Sakai, Makoto; Fujii, Masaaki; Ishihara, Miya; Kikuchi, Makoto

    2009-02-01

    We demonstrated cell imaging without any stain by far-field 2-color infrared (IR) super-resolution microscopy, combining laser fluorescence microscope and picosecond transient fluorescence detected IR (TFD-IR) spectroscopy. TFD-IR spectroscopy detects IR absorption by monitoring fluorescence due to an electronic transition from a vibrational excited level by an additional visible light. By using the IR microscopy based on TFD-IR spectroscopy, the spatial resolution of the image can be increased to the visible diffraction limit of sub-μm, i.e., the IR is super-resolved. Cell auto-fluorescence due to flavin molecules was monitored for label-free detection of the cellular components. The fluorescence image of an A549 cell was obtained by introducing both an IR light at 3300 nm and a visible light at 560 nm. The spatial resolution of the image was estimated to be 1.6 μm. This is about 2.5-times higher resolution than the diffraction limit of IR light. The fluorescence intensity of the images at 3448 nm was smaller than that at 3300 nm, corresponding to the smaller IR absorption. Therefore, IR spectral imaging of a single cell was achieved with superresolution.

  13. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy

    Science.gov (United States)

    Goldmann, W. H.; Galneder, R.; Ludwig, M.; Xu, W.; Adamson, E. D.; Wang, N.; Ezzell, R. M.; Ingber, D. E. (Principal Investigator)

    1998-01-01

    We have investigated a mouse F9 embryonic carcinoma cell line, in which both vinculin genes were inactivated by homologous recombination, that exhibits defective adhesion and spreading [Coll et al. (1995) Proc. Natl. Acad. Sci. USA 92, 9161-9165]. Using a magnetometer and RGD-coated magnetic microbeads, we measured the local effect of loss and replacement of vinculin on mechanical force transfer across integrins. Vinculin-deficient F9Vin(-/-) cells showed a 21% difference in relative stiffness compared to wild-type cells. This was restored to near wild-type levels after transfection and constitutive expression of increasing amounts of vinculin into F9Vin(-/-) cells. In contrast, the transfection of vinculin constructs deficient in amino acids 1-288 (containing the talin- and alpha-actinin-binding site) or substituting tyrosine for phenylalanine (phosphorylation site, amino acid 822) in F9Vin(-/-) cells resulted in partial restoration of stiffness. Using atomic force microscopy to map the relative elasticity of entire F9 cells by 128 x 128 (n = 16,384) force scans, we observed a correlation with magnetometer measurements. These findings suggest that vinculin may promote cell adhesions and spreading by stabilizing focal adhesions and transferring mechanical stresses that drive cytoskeletal remodeling, thereby affecting the elastic properties of the cell.

  14. Real-time in vivo confocal laser scanning microscopy of melanin-containing cells: A promising diagnostic intervention.

    Science.gov (United States)

    Xiang, Wenzhong; Song, Xiuzu; Peng, Jianzhong; Xu, Aie; Bi, Zhigang

    2015-12-01

    The use of noninvasive imaging techniques to evaluate different types of skin lesions is increasing popular. In vivo confocal laser scanning microscopy (CLSM) is a new method for high resolution non-invasive imaging of intact skin in situ and in vivo. Although many studies have investigated melanin-containing cells in lesions by in vivo CLSM, few studies have systematically characterized melanin-containing cells based on their morphology, size, arrangement, density, borders, and brightness. In this study, the characteristics of melanin-containing cells were further investigated by in vivo CLSM. A total of 130 lesions, including common nevi, giant congenital pigmented nevi, vitiligo, melasma, melanoma, and chronic eczema, were imaged by in vivo CLSM. This research helps dermatologists understand the characteristics of melanin-containing cells and facilitate the clinical application of melanin-containing cells in the investigation of dermatological disease. In summary, melanin-containing cells include keratinocytes, melanocytes, macrophages, and melanocytic skin tumor cells. Our study presents the CLSM characteristics of melanin-containing cells to potentially facilitate in vivo diagnosis based on shape, size, arrangement, density, borders, and brightness. PMID:26515646

  15. Drosophila homologs of transcriptional mediator complex subunits are required for adult cell and segment identity specification

    OpenAIRE

    Boube, Muriel; Faucher, Christian; Joulia, Laurent; Cribbs, David L.; Bourbon, Henri-Marc

    2000-01-01

    The origins of specificity in gene expression are a central concern in understanding developmental control. Mediator protein complexes regulate transcriptional initiation, acting as modular adaptors linking specific transcription factors to core RNA polymerase II. Here, we identified the Drosophila homologs of 23 human mediator genes and mutations of two, dTRAP240 and of dTRAP80 (the putative fly homolog of yeast SRB4). Clonal analysis indicates a general role for dTRAP80 necessary for cell v...

  16. Long segmental hyperplasia of interstitial cells of Cajal with giant diverticulum formation

    OpenAIRE

    Xue, Liyan; Qiu, Tian; Song, Ying; Shan, Ling; Liu, Xiuyun; Guo, Lei; Ying, Jianming; Zou, Shuangmei; Shi, Susheng; Polydorides, Alexandros D.; Zhao, Xinming; Lu, Ning; Lin, Dongmei

    2013-01-01

    Sporadic gastrointestinal stromal tumors (GISTs) usually form a well-circumscribed mass. In contrast, diffuse interstitial cell of Cajal (ICC) hyperplasia along the Auerbach plexus without a discrete mass may occur in patients with germline mutations in the NF1, c-KIT or PDGFRA genes. However, sporadic, diffuse ICC hyperplasia without c-KIT or PDGFRA mutations has not been reported. We describe herein one such case, forming a giant diverticulum. A 63-year-old woman with no features of Neurofi...

  17. Glucose and Lactate Biosensors for Scanning Electrochemical Microscopy Imaging of Single Live Cells

    OpenAIRE

    Ciobanu, Madalina; Taylor, Dale E.; Wilburn, Jeremy P.; Cliffel, David E

    2008-01-01

    We have developed glucose and lactate ultramicroelectrode (UME) biosensors based on glucose oxidase and lactate oxidase (with enzymes immobilized onto Pt UMEs by either electropolymerization or casting) for scanning electrochemical microscopy (SECM), and have determined their sensitivity to glucose and lactate, respectively. The results of our evaluations reveal different advantages for sensors constructed by each method: improved sensitivity and shorter manufacturing time for hand-casting, a...

  18. Multidendritic sensory neurons in the adult Drosophila abdomen: origins, dendritic morphology, and segment- and age-dependent programmed cell death

    Directory of Open Access Journals (Sweden)

    Sugimura Kaoru

    2009-10-01

    Full Text Available Abstract Background For the establishment of functional neural circuits that support a wide range of animal behaviors, initial circuits formed in early development have to be reorganized. One way to achieve this is local remodeling of the circuitry hardwiring. To genetically investigate the underlying mechanisms of this remodeling, one model system employs a major group of Drosophila multidendritic sensory neurons - the dendritic arborization (da neurons - which exhibit dramatic dendritic pruning and subsequent growth during metamorphosis. The 15 da neurons are identified in each larval abdominal hemisegment and are classified into four categories - classes I to IV - in order of increasing size of their receptive fields and/or arbor complexity at the mature larval stage. Our knowledge regarding the anatomy and developmental basis of adult da neurons is still fragmentary. Results We identified multidendritic neurons in the adult Drosophila abdomen, visualized the dendritic arbors of the individual neurons, and traced the origins of those cells back to the larval stage. There were six da neurons in abdominal hemisegment 3 or 4 (A3/4 of the pharate adult and the adult just after eclosion, five of which were persistent larval da neurons. We quantitatively analyzed dendritic arbors of three of the six adult neurons and examined expression in the pharate adult of key transcription factors that result in the larval class-selective dendritic morphologies. The 'baseline design' of A3/4 in the adult was further modified in a segment-dependent and age-dependent manner. One of our notable findings is that a larval class I neuron, ddaE, completed dendritic remodeling in A2 to A4 and then underwent caspase-dependent cell death within 1 week after eclosion, while homologous neurons in A5 and in more posterior segments degenerated at pupal stages. Another finding is that the dendritic arbor of a class IV neuron, v'ada, was immediately reshaped during post

  19. MARKET SEGMENTATION

    OpenAIRE

    Munaga Ramakrishna Mohan Rao

    2015-01-01

    Market segmentation is a marketing strategy that involves dividing a broad target market into subsets of consumers, businesses, or countries who have common needs and priorities, and then designing and implementing strategies to target them. Market segmentation strategies may be used to identify the target customers, and provide supporting data for positioning to achieve a marketing plan objective. Businesses may develop product differentiation strategies, or an undifferentiated approach, inv...

  20. Fingerprint Segmentation

    OpenAIRE

    Jomaa, Diala

    2009-01-01

    In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve th...

  1. Atomic force microscopy of 3T3 and SW-13 cell lines: An investigation of cell elasticity changes due to fixation

    International Nuclear Information System (INIS)

    Mechanical properties of single cells are of increasing interest both from a fundamental cell biological perspective and in the context of disease diagnostics. In this respect, atomic force microscopy (AFM) has become a powerful tool for imaging and assessing mechanical properties of biological samples. However, while these tests are typically carried out on chemically fixed cells, the most important data is that on living cells. The present study applies AFM technique to assess the Young's modulus of two cell lines: mouse embryonic fibroblasts (NIH/3T3) and human epithelial cancer cells (SW-13). Both living cells and those fixed with paraformaldehyde were investigated. This analysis quantifies the difference between Young's modulus for these two conditions and provides a coefficient to relate them. Knowing the relation between Young's modulus of living and fixed cells, allows carrying out and comparing data obtained during steady-state measurements on fixed cells that are more frequently available in the clinical and research settings and simpler to maintain and probe. - Highlights: • The influence of fixation process on NIH/3T3 and SW13 cell elasticity was studied. • The two cell lines have been chosen for their different cytoskeletal structures. • There is a difference between AFM data collected at 37 °C and room temperature. • At RT, the longer the time out of the incubator the softer the cells appear. • A coefficient to relate elasticity between fixed and leaving cells is provided

  2. Comparison between power-law rheological parameters of living cells in frequency and time domains measured by atomic force microscopy

    Science.gov (United States)

    Takahashi, Ryosuke; Okajima, Takaharu

    2016-08-01

    We investigated how stress relaxation mapping is quantified compared with the force modulation mapping of confluent epithelial cells using atomic force microscopy (AFM). Using a multi-frequency AFM technique, we estimated the power-law rheological behaviors of cells simultaneously in time and frequency domains. When the power-law exponent α was low ( 0.1), α in the time domain was underestimated relative to that in the frequency domain, and the difference increased with α, whereas the cell modulus was overestimated in the time domain. These results indicate that power-law rheological parameters estimated by stress relaxation are sensitive to lag time during initial indentation, which is inevitable in time-domain AFM experiments.

  3. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    International Nuclear Information System (INIS)

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G*. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods

  4. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  5. Similar GABAA receptor subunit composition in somatic and axon initial segment synapses of hippocampal pyramidal cells.

    Science.gov (United States)

    Kerti-Szigeti, Katalin; Nusser, Zoltan

    2016-01-01

    Hippocampal pyramidal cells (PCs) express many GABAAR subunit types and receive GABAergic inputs from distinct interneurons. Previous experiments revealed input-specific differences in α1 and α2 subunit densities in perisomatic synapses, suggesting distinct IPSC decay kinetics. However, IPSC decays evoked by axo-axonic, parvalbumin- or cholecystokinin-expressing basket cells were found to be similar. Using replica immunogold labeling, here we show that all CA1 PC somatic and AIS synapses contain the α1, α2, β1, β2, β3 and γ2 subunits. In CA3 PCs, 90% of the perisomatic synapses are immunopositive for the α1 subunit and all synapses are positive for the remaining five subunits. Somatic synapses form unimodal distributions based on their immunoreactivity for these subunits. The α2 subunit densities in somatic synapses facing Cav2.1 (i.e. parvalbumin) or Cav2.2 (cholecystokinin) positive presynaptic active zones are comparable. We conclude that perisomatic synapses made by three distinct interneuron types have similar GABAA receptor subunit content. PMID:27537197

  6. Calibrated complex impedance of CHO cells and E. coli bacteria at GHz frequencies using scanning microwave microscopy

    Science.gov (United States)

    Tuca, Silviu-Sorin; Badino, Giorgio; Gramse, Georg; Brinciotti, Enrico; Kasper, Manuel; Oh, Yoo Jin; Zhu, Rong; Rankl, Christian; Hinterdorfer, Peter; Kienberger, Ferry

    2016-04-01

    The application of scanning microwave microscopy (SMM) to extract calibrated electrical properties of cells and bacteria in air is presented. From the S 11 images, after calibration, complex impedance and admittance images of Chinese hamster ovary cells and E. coli bacteria deposited on a silicon substrate have been obtained. The broadband capabilities of SMM have been used to characterize the bio-samples between 2 GHz and 20 GHz. The resulting calibrated cell and bacteria admittance at 19 GHz were Y cell = 185 μS + j285 μS and Y bacteria = 3 μS + j20 μS, respectively. A combined circuitry-3D finite element method EMPro model has been developed and used to investigate the frequency response of the complex impedance and admittance of the SMM setup. Based on a proposed parallel resistance-capacitance model, the equivalent conductance and parallel capacitance of the cells and bacteria were obtained from the SMM images. The influence of humidity and frequency on the cell conductance was experimentally studied. To compare the cell conductance with bulk water properties, we measured the imaginary part of the bulk water loss with a dielectric probe kit in the same frequency range resulting in a high level of agreement.

  7. Quantitative measurement of absolute cell volume and intracellular integral refractive index (RI) with dual-wavelength digital holographic microscopy (DHM)

    Science.gov (United States)

    Boss, Daniel; Kühn, Jonas; Depeursinge, Christian; Magistretti, Pierre J.; Marquet, Pierre

    2012-06-01

    Quantitative Phase Imaging techniques including DHM have been applied recently in the field of cell imaging to monitor and quantify non-invasively dynamic cellular processes modifying cell morphology and/or content . Concretely, the DHM phase signal is highly sensitive to cell thickness and intracellular integral RI variations associated with transmembrane water movements. As net water flow across the cell membrane leads at the same time to changes in cell thickness and intracellular RI, the interpretation of phase signal variations remains difficult. To overcome this drawback, we have developed a Dual-wavelength Digital Holographic Microscopy (DHM) setup allowing to separately measure, with a single CCD camera acquisition, thickness and integral RI of living cells. The method is based on the use of an absorbing dye that enhances the refractive index dispersion of the extracellular medium. Practically, two significantly different phase signals can be obtained when measuring at two appropriate wavelengths. From the two phase measurements, both cell RI and thickness can be univocally determined.

  8. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Peddie, Christopher J.; Blight, Ken; Wilson, Emma [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Melia, Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Department of Molecular Cell Biology, Leiden University Medical Centre, 2300 RC Leiden (Netherlands); Marrison, Jo [Department of Biology, The University of York, Heslington, York (United Kingdom); Carzaniga, Raffaella [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Domart, Marie-Charlotte [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); O' Toole, Peter [Department of Biology, The University of York, Heslington, York (United Kingdom); Larijani, Banafshe [Cell Biophysics Laboratory, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom); Cell Biophysics Laboratory, Unidad de Biofísica (CSIC-UPV/EHU),Sarriena s/n, 48940 Leioa (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Collinson, Lucy M. [Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY (United Kingdom)

    2014-08-01

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol.

  9. Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells

    International Nuclear Information System (INIS)

    Fluorescence microscopy of GFP-tagged proteins is a fundamental tool in cell biology, but without seeing the structure of the surrounding cellular space, functional information can be lost. Here we present a protocol that preserves GFP and mCherry fluorescence in mammalian cells embedded in resin with electron contrast to reveal cellular ultrastructure. Ultrathin in-resin fluorescence (IRF) sections were imaged simultaneously for fluorescence and electron signals in an integrated light and scanning electron microscope. We show, for the first time, that GFP is stable and active in resin sections in vacuo. We applied our protocol to study the subcellular localisation of diacylglycerol (DAG), a modulator of membrane morphology and membrane dynamics in nuclear envelope assembly. We show that DAG is localised to the nuclear envelope, nucleoplasmic reticulum and curved tips of the Golgi apparatus. With these developments, we demonstrate that integrated imaging is maturing into a powerful tool for accurate molecular localisation to structure. - Highlights: • GFP and mCherry fluorescence are preserved in heavy-metal stained mammalian cells embedded in resin • Fluorophores are stable and intensity is sufficient for detection in ultrathin sections • Overlay of separate LM and EM images from the same ultrathin section improves CLEM protein localisation precision • GFP is stable and active in the vacuum of an integrated light and scanning EM • Integrated light and electron microscopy shows new subcellular locations of the lipid diacylglycerol

  10. In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles

    Science.gov (United States)

    Sutter, E.; Jungjohann, K.; Bliznakov, S.; Courty, A.; Maisonhaute, E.; Tenney, S.; Sutter, P.

    2014-09-01

    Galvanic replacement reactions provide an elegant way of transforming solid nanoparticles into complex hollow morphologies. Conventionally, galvanic replacement is studied by stopping the reaction at different stages and characterizing the products ex situ. In situ observations by liquid-cell electron microscopy can provide insight into mechanisms, rates and possible modifications of galvanic replacement reactions in the native solution environment. Here we use liquid-cell electron microscopy to investigate galvanic replacement reactions between silver nanoparticle templates and aqueous palladium salt solutions. Our in situ observations follow the transformation of the silver nanoparticles into hollow silver-palladium nanostructures. While the silver-palladium nanocages have morphologies similar to those obtained in ex situ control experiments the reaction rates are much higher, indicating that the electron beam strongly affects the galvanic-type process in the liquid-cell. By using scavengers added to the aqueous solution we identify the role of radicals generated via radiolysis by high-energy electrons in modifying galvanic reactions.

  11. Wavelet-SVM classification and automatic recognition of unstained viable cells in phase-contrast microscopy

    International Nuclear Information System (INIS)

    Irradiation of individual cultured mammalian cells with a pre-selected number of ions down to one ion per single cell is a useful experimental approach to investigating the low-dose ionising radiation exposure effects and thus contributing to a more realistic human cancer risk assessment. One of the crucial tasks of all the microbeam apparatuses is the visualisation, recognition and positioning of every individual cell of the cell culture to be irradiated. Before irradiations, mammalian cells (specifically, Chinese hamster V79 cells) are seeded and grown as a monolayer on a mylar surface used as the bottom of a specially designed holder. Manual recognition of unstained cells in a bright-field microscope is a time-consuming procedure; therefore, a parallel algorithm has been conceived and developed in order to speed up this irradiation protocol step. Many technical problems have been faced to overcome the complexity of the images to be analysed: cell discrimination in an inhomogeneous background, among many disturbing bodies mainly due to the mylar surface roughness and culture medium bodies; cell shapes, depending on how they attach to the surface, which phase of the cell cycle they are in and on cell density. Preliminary results of the recognition and classification based on a method of wavelet kernels for the support vector machine classifier will be presented. (authors)

  12. Reflectance confocal microscopy of red blood cells: simulation and experiment (Conference Presentation)

    Science.gov (United States)

    Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir

    2016-03-01

    The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.

  13. Combined reflectance confocal microscopy-optical coherence tomography for delineation of basal cell carcinoma margins: an ex vivo study

    Science.gov (United States)

    Iftimia, Nicusor; Peterson, Gary; Chang, Ernest W.; Maguluri, Gopi; Fox, William; Rajadhyaksha, Milind

    2016-01-01

    We present a combined reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) approach, integrated within a single optical layout, for diagnosis of basal cell carcinomas (BCCs) and delineation of margins. While RCM imaging detects BCC presence (diagnoses) and its lateral spreading (margins) with measured resolution of ˜1 μm, OCT imaging delineates BCC depth spreading (margins) with resolution of ˜7 μm. When delineating margins in 20 specimens of superficial and nodular BCCs, depth could be reliably determined down to ˜600 μm, and agreement with histology was within about ±50 μm.

  14. Fluorescence lifetime imaging microscopy (FLIM) to quantify protein-protein interactions inside cells.

    Science.gov (United States)

    Duncan, R R

    2006-11-01

    Recent developments in cellular imaging spectroscopy now permit the minimally invasive study of protein dynamics inside living cells. These advances are of interest to cell biologists, as proteins rarely act in isolation, but rather in concert with others in forming cellular machinery. Until recently, all protein interactions had to be determined in vitro using biochemical approaches: this biochemical legacy has provided cell biologists with the basis to test defined protein-protein interactions not only inside cells, but now also with high spatial resolution. These techniques can detect and quantify protein behaviours down to the single-molecule level, all inside living cells. More recent developments in TCSPC (time-correlated single-photon counting) imaging are now also driving towards being able to determine protein interaction rates with similar spatial resolution, and together, these experimental advances allow investigators to perform biochemical experiments inside living cells. PMID:17052173

  15. A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy

    Science.gov (United States)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Netti, P. A.; Ferraro, P.

    2014-03-01

    A method for 3D tracking has been developed exploiting Digital Holography features in Microscopy (DHM). In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of samples with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the amplitude refocusing in traditional tracking processes. Moreover, in biology and biomedical research fields one of the main topic is the understanding of morphology and mechanics of cells and microorganisms. Biological samples present low amplitude contrast that limits the information that can be retrieved through optical bright-field microscope measurements. The main effect on light propagating in such objects is in phase. This is known as phase-retardation or phase-shift. DHM is an innovative and alternative approach in microscopy, it's a good candidate for no-invasive and complete specimen analysis because its main characteristic is the possibility to discern between intensity and phase information performing quantitative mapping of the Optical Path Length. In this paper, the flexibility of DH is employed to analyze cell mechanics of unstained cells subjected to appropriate stimuli. DHM is used to measure all the parameters useful to understand the deformations induced by external and controlled stresses on in-vitro cells. Our configuration allows 3D tracking of micro-particles and, simultaneously, furnish quantitative phase-contrast maps. Experimental results are presented and discussed for in vitro cells.

  16. In Situ Confocal Raman Microscopy of Hydrated Early Stages of Bacterial Biofilm Formation on Various Surfaces in a Flow Cell.

    Science.gov (United States)

    Smith-Palmer, Truis; Lin, Sicheng; Oguejiofor, Ikenna; Leng, Tianyang; Pustam, Amanda; Yang, Jin; Graham, Lori L; Wyeth, Russell C; Bishop, Cory D; DeMont, M Edwin; Pink, David

    2016-02-01

    Bacterial biofilms are precursors to biofouling by other microorganisms. Understanding their initiation may allow us to design better ways to inhibit them, and thus to inhibit subsequent biofouling. In this study, the ability of confocal Raman microscopy to follow the initiation of biofouling by a marine bacterium, Pseudoalteromonas sp. NCIMB 2021 (NCIMB 2021), in a flow cell, using optical and confocal Raman microscopy, was investigated. The base of the flow cell comprised a cover glass. The cell was inoculated and the bacteria attached to, and grew on, the cover glass. Bright field images and Raman spectra were collected directly from the hydrated biofilms over several days. Although macroscopically the laser had no effect on the biofilm, within the first 24 h cells migrated away from the position of the laser beam. In the absence of flow, a buildup of extracellular substances occurred at the base of the biofilm. When different coatings were applied to cover glasses before they were assembled into the flow cells, the growth rate, structure, and composition of the resulting biofilm was affected. In particular, the ratio of Resonance Raman peaks from cytochrome c (CC) in the extracellular polymeric substances, to the Raman phenylalanine (Phe) peak from protein in the bacteria, depended on both the nature of the surface and the age of the biofilm. The ratios were highest for 24 h colonies on a hydrophobic surface. Absorption of a surfactant with an ethyleneoxy chain into the hydrophobic coating created a surface similar to that given with a simple PEG coating, where bacteria grew in colonies away from the surface rather than along the surface, and CC:Phe ratios were initially low but increased at least fivefold in the first 48 h. PMID:26903564

  17. Estimation of local built-in potential of amorphous silicon thin-film solar cells by Kelvin force microscopy

    Science.gov (United States)

    Itoh, Takashi; Ito, Takanori; Kuriyama, Hiroshi; Nonomura, Shuichi

    2016-04-01

    The local surface potential of pin-type hydrogenated amorphous silicon (a-Si:H) thin-film solar cells has been evaluated by Kelvin force microscopy (KFM). We have also estimated the local built-in potential of the solar cells by KFM. In the surface morphology image of the solar cells, large convex grains related to the textured structure of the substrate were found. The surface potential distribution related to the surface morphology was observed in the solar cells. A similar surface potential distribution was also found in an n-type hydrogenated microcrystalline Si (µc-Si:H) film. The surface potential of the solar cells was not the same as that of the n-type film. The difference in average surface potential between the n-type hydrogenated microcrystalline Si (µc-Si:H) film and the solar cells increased with increasing built-in potential. The difference in local surface potential on large convex grains was smaller than that in the region between the large convex grains.

  18. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    Science.gov (United States)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  19. A New cell design for Potentiostatically Controlled In Situ Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Madsen, Lars Lithen; Friis, Esben P.; Andersen, Jens Enevold Thaulov; Møller, Per; Ulstrup, Jens

    We describe the design and construction of a new type of AFM cell for in situ imaging under potentiostatic control. The cell is specifically designed for a Rasterscope 4000TM AFM instrument with no need for instrumental modification, but can easily be adapted to other commercial instruments. The...... cell is a closed system with insignificant sample evaporation. It is a chemically and mechanically robust two-component system which enables fast assembly and testing prior to insertion and minimizes leakage problems. The cell is also laterally flexible, facilitating scanning of large areas, holds...

  20. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells

    Czech Academy of Sciences Publication Activity Database

    Havrdová, M.; Poláková, K.; Skopalík, J.; Vůjtek, M.; Mokdad, A.; Homolková, M.; Tuček, J.; Nebesářová, Jana; Zbořil, R.

    2014-01-01

    Roč. 67, DEC 2014 (2014), s. 149-154. ISSN 0968-4328 Institutional support: RVO:60077344 Keywords : Field emission scanning electronmicroscopy (FE-SEM) * Stem cells * Iron oxide nanoparticles * Cellular morphology * Endosomes * Cell uptake Subject RIV: FD - Oncology ; Hematology Impact factor: 1.988, year: 2014

  1. Deformable Graph Model for Tracking Epithelial Cell Sheets in Fluorescence Microscopy.

    Science.gov (United States)

    Zou, Roger S; Tomasi, Carlo

    2016-07-01

    We propose a novel method for tracking cells that are connected through a visible network of membrane junctions. Tissues of this form are common in epithelial cell sheets and resemble planar graphs where each face corresponds to a cell. We leverage this structure and develop a method to track the entire tissue as a deformable graph. This coupled model in which vertices inform the optimal placement of edges and vice versa captures global relationships between tissue components and leads to accurate and robust cell tracking. We compare the performance of our method with that of four reference tracking algorithms on four data sets that present unique tracking challenges. Our method exhibits consistently superior performance in tracking all cells accurately over all image frames, and is robust over a wide range of image intensity and cell shape profiles. This may be an important tool for characterizing tissues of this type especially in the field of developmental biology where automated cell analysis can help elucidate the mechanisms behind controlled cell-shape changes. PMID:26829784

  2. Analyzing the effect of absorption and refractive index on image formation in high numerical aperture transmission microscopy of single cells

    Science.gov (United States)

    Coe, Ryan L.; Seibel, Eric J.

    2013-02-01

    Transmission bright-field microscopy is the clinical mainstay for disease diagnosis where image contrast is provided by absorptive and refractive index differences between tissue and the surrounding media. Different microscopy techniques often assume one of the two contrast mechanisms is negligible as a means to better understand the tissue scattering processes. This particular work provides better understanding of the role of refractive index and absorption within Optical Projection Tomographic Microscopy (OPTM) through the development of a generalized computational model based upon the Finite-Difference Time-Domain method. The model mimics OPTM by simulating axial scanning of the objective focal plane through the cell to produce projection images. These projection images, acquired from circumferential positions around the cell, are reconstructed into isometric three-dimensional images using the filtered backprojection normally employed in Computed Tomography (CT). The model provides a platform to analyze all aspects of bright-field microscopes, such as the degree of refractive index matching and the numerical aperture, which can be varied from air-immersion to high NA oil-immersion. In this preliminary work, the model is used to understand the effects of absorption and refraction on image formation using micro-shells and idealized nuclei. Analysis of absorption and refractive index separately provides the opportunity to better assess their role together as a complex refractive index for improved interpretation of bright-field scattering, essential for OPTM image reconstruction. This simulation, as well as ones in the future looking at other effects, will be used to optimize OPTM imaging parameters and triage efforts to further improve the overall system design.

  3. Segmental neurofibromatosis and malignancy.

    Science.gov (United States)

    Dang, Julie D; Cohen, Philip R

    2010-01-01

    Segmental neurofibromatosis is an uncommon variant of neurofibromatosis type I characterized by neurofibromas and/or café-au-lait macules localized to one sector of the body. Although patients with neurofibromatosis type I have an associated increased risk of certain malignancies, malignancy has only occasionally been reported in patients with segmental neurofibromatosis. The published reports of patients with segmental neurofibromatosis who developed malignancy were reviewed and the characteristics of these patients and their cancers were summarized. Ten individuals (6 women and 4 men) with segmental neurofibromatosis and malignancy have been reported. The malignancies include malignant peripheral nerve sheath tumor (3), malignant melanoma (2), breast cancer (1), colon cancer (1), gastric cancer (1), lung cancer (1), and Hodgkin lymphoma (1). The most common malignancies in patients with segmental neurofibromatosis are derived from neural crest cells: malignant peripheral nerve sheath tumor and malignant melanoma. The incidence of malignancy in patients with segmental neurofibromatosis may approach that of patients with neurofibromatosis type I. PMID:21137621

  4. Simultaneous multi-parameter observation of Harring-tonine-treating HL-60 cells with both two-photon and confo-cal laser scanning microscopy

    Institute of Scientific and Technical Information of China (English)

    张春阳; 李艳平; 马辉; 李素文; 薛绍白; 陈瓞延

    2001-01-01

    Harringtonine (HT), a kind of anticancer drug isolated from Chinese herb-Cephalotaxus hainanensis Li, can induce apoptosis in promyelocytic leukemia HL-60 cells. With both two-photon laser scanning microscopy and confocal laser scanning microscopy in combination with the fluores-cent probe Hoechst 33342, tetramethyrhodamine ethyl ester (TMRE) and Fluo 3-AM, we simulta-neously observed HT-induced changes in nuclear morphology, mitochondrial membrane potential and intracellular calcium concentration ([Ca2+]i) in HL-60 cells, and developed a real-time, sensitive and invasive method for simultaneous multi-parameter observation of drug- treating living cells at the level of single cell.

  5. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  6. Automatic segmentation and classification of tendon nuclei from IHC stained images

    Science.gov (United States)

    Kuok, Chan-Pang; Wu, Po-Ting; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien

    2015-12-01

    Immunohistochemical (IHC) staining is commonly used for detecting cells in microscopy. It is used for analyzing many types of diseases, e.g. breast cancer. Dispersion problem often exist at cell staining which will affect the accuracy of automatic counting. In this paper, we introduce a new method to overcome this problem. Otsu's thresholding method is first applied to exclude the background, so that only cells with dispersed staining are left at foreground, and then refinement will be applied by local adaptive thresholding method according to the irregularity index of the segmented shape at foreground. The segmentation results are also compared to the refinement results using Otsu's thresholding method. Cell classification based on the shape and color indices obtained from the segmentation result is applied to determine the cell condition into normal, abnormal and suspected abnormal cases.

  7. Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy.

    Science.gov (United States)

    Weiss, Eike C; Anastasiadis, Pavlos; Pilarczyk, Götz; Lemor, Robert M; Zinin, Pavel V

    2007-11-01

    In this paper, we describe a new, high-frequency, time-resolved scanning acoustic microscope developed for studying dynamical processes in biological cells. The new acoustic microscope operates in a time-resolved mode. The center frequency is 0.86 GHz, and the pulse duration is 5 ns. With such a short pulse, layers thicker than 3 microm can be resolved. For a cell thicker than 3 microm, the front echo and the echo from the substrate can be distinguished in the signal. Positions of the first and second pulses are used to determine the local impedance of the cell modeled as a thin liquid layer that has spatial variations in its elastic properties. The low signal-to-noise ratio in the acoustical images is increased for image generation by averaging the detected radio frequency signal over 10 measurements at each scanning point. In conducting quantitative measurements of the acoustic parameters of cells, the signal can be averaged over 2000 measurements. This approach enables us to measure acoustical properties of a single HeLa cell in vivo and to derive elastic parameters of subcellular structures. The value of the sound velocity inside the cell (1534.5 +/- 33.6 m/s) appears to be only slightly higher than that of the cell medium (1501 m/s). PMID:18051160

  8. The measurement of red blood cell volume change induced by Ca2+ based on full field quantitative phase microscopy

    Science.gov (United States)

    Lee, Seungrag; Lee, Ji Yong; Yang, Wenzhong; Kim, Dug Young

    2009-02-01

    We present the measurement of red blood cell (RBC) volume change induced by Ca2+ for a live cell imaging with full field quantitative phase microscopy (FFQPM). FFQPM is based on the Mach-Zehnder interferometer combined with an inverted microscopy system. We present the effective method to obtain a clear image and an accurate volume of the cells. An edge detection technique is used to accurately resolve the boundary between the cell line and the suspension medium. The measurement of the polystyrene bead diameter and volume has been demonstrated the validity of our proposed method. The measured phase profile can be easily converted into thickness profile. The measured polystyrene bead volume and the simulated result are about 14.74 μm3 and 14.14 μm3, respectively. The experimental results of our proposed method agree well with the simulated results within less than 4 %. We have also measured the volume variation of a single RBC on a millisecond time scale. Its mean volume is 54.02 μm3 and its standard deviation is 0.52 μm3. With the proposed system, the shape and volume changes of RBC induced by the increased intracellular Ca2+ are measured after adding ionophore A23187. A discocyte RBC is deformed to a spherocyte due to the increased intracellular Ca2+ in RBC. The volume of the spherocyte is 47.88 μm3 and its standard deviation is 0.19 μm3. We have demonstrated that the volume measurement technique is easy, accurate, and robust method with high volume sensitivity (<0.0000452 μm3) and this provides the ability to study a biological phenomenon in Hematology.

  9. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy

    CERN Document Server

    Park, HyunJoo; Kim, Kyoohyun; Cho, Shin-Hyeong; Lee, Won-Ja; Kim, Youngchan; Lee, SangEun; Park, YongKeun

    2015-01-01

    Babesia microti causes emergency human babesiosis. However, little is known about the alterations in B. microti invaded red blood cells (Bm-RBCs) at the individual cell level. Through quantitative phase imaging techniques based on laser interferometry, we present the simultaneous measurements of structural, chemical, and mechanical modifications in individual mouse Bm-RBCs. 3-D refractive index maps of individual RBCs and in situ parasite vacuoles are imaged, from which total contents and concentration of dry mass are also precisely quantified. In addition, we examine the dynamic membrane fluctuation of Bm-RBCs, which provide information on cell membrane deformability.

  10. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering microscopy (Conference Presentation)

    Science.gov (United States)

    Hu, Fanghao; Chen, Zhixing; Zhang, Luyuan; Shen, Yihui; Wei, Lu; Min, Wei

    2016-03-01

    Glucose is consumed as an energy source by virtually all living organisms, from bacteria to humans. Its uptake activity closely reflects the cellular metabolic status in various pathophysiological transformations, such as diabetes and cancer. Extensive efforts such as positron emission tomography, magnetic resonance imaging and fluorescence microscopy have been made to specifically image glucose uptake activity but all with technical limitations. Here, we report a new platform to visualize glucose uptake activity in live cells and tissues with subcellular resolution and minimal perturbation. A novel glucose analogue with a small alkyne tag (carbon-carbon triple bond) is developed to mimic natural glucose for cellular uptake, which can be imaged with high sensitivity and specificity by targeting the strong and characteristic alkyne vibration on stimulated Raman scattering (SRS) microscope to generate a quantitative three dimensional concentration map. Cancer cells with differing metabolic characteristics can be distinguished. Heterogeneous uptake patterns are observed in tumor xenograft tissues, neuronal culture and mouse brain tissues with clear cell-cell variations. Therefore, by offering the distinct advantage of optical resolution but without the undesirable influence of bulky fluorophores, our method of coupling SRS with alkyne labeled glucose will be an attractive tool to study energy demands of living systems at the single cell level.

  11. Fibered confocal fluorescence microscopy for imaging apoptotic DNA fragmentation at the single-cell level in vivo

    International Nuclear Information System (INIS)

    The major characteristic of cell death by apoptosis is the loss of nuclear DNA integrity by endonucleases, resulting in the formation of small DNA fragments. The application of confocal imaging to in vivo monitoring of dynamic cellular events, like apoptosis, within internal organs and tissues has been limited by the accessibility to these sites. Therefore, the aim of the present study was to test the feasibility of fibered confocal fluorescence microscopy (FCFM) to image in situ apoptotic DNA fragmentation in surgically exteriorized sheep corpus luteum in the living animal. Following intra-luteal administration of a fluorescent DNA-staining dye, YO-PRO-1, DNA cleavage within nuclei of apoptotic cells was serially imaged at the single-cell level by FCFM. This imaging technology is sufficiently simple and rapid to allow time series in situ detection and visualization of cells undergoing apoptosis in the intact animal. Combined with endoscope, this approach can be used for minimally invasive detection of fluorescent signals and visualization of cellular events within internal organs and tissues and thereby provides the opportunity to study biological processes in the natural physiological environment of the cell in living animals

  12. Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wu Wang; Seung-Hwan Lee; James G.Elkins; Yongchao Li; Scott Hamilton-Brehm; Jennifer L.Morrell-Falvey

    2013-01-01

    Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets.In the bioenergy field,much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however,little effort is dedicated to the development of imaging tools to monitor this dynamic biological process.This is,in part,due to the experimental challenges of imaging ceils under both anaerobic and thermophilic conditions.Here an imaging system is described that integrates confocal microscopy,a flow cell device,and a lipophilic dye to visualize cells.Solutions to technical obstacles regarding suitable fluorescent markers,photodamage during imaging,and maintenance of environmental conditions during imaging are presented.This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60℃.This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.

  13. In Situ Chemical Imaging of Plant Cell Walls Using CARS/SRS Microscopy (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Y.; Liu, Y. S.; Saar, B. G.; Xie, X. S.; Chen, F.; Dixon, R. A.; Himmel, M. E.; Ding S. Y.

    2009-06-01

    This poster demonstrates coherent anti-Stokes Raman scattering and stimulated Raman scattering of plant cell walls. It includes simultaneous chemical imaging of lignin and cellulose (corn stover) during acidic pretreatment.

  14. Counting White Blood Cells from a Blood Smear Using Fourier Ptychographic Microscopy

    OpenAIRE

    Chung, Jaebum; Ou, Xiaoze; Kulkarni, Rajan P.; Yang, Changhuei

    2015-01-01

    White blood cell (WBC) count is a valuable metric for assisting with diagnosis or prognosis of various diseases such as coronary heart disease, type 2 diabetes, or infection. Counting WBCs can be done either manually or automatically. Automatic methods are capable of counting a large number of cells to give a statistically more accurate reading of the WBC count of a sample, but the specialized equipment tends to be expensive. Manual methods are inexpensive since they only involve a convention...

  15. Incubator embedded cell culture imaging system (EmSight) based on Fourier ptychographic microscopy

    OpenAIRE

    Kim, Jinho; Henley, Beverley M.; Kim, Charlene H.; Lester, Henry A.; Yang, Changhuei

    2016-01-01

    Multi-day tracking of cells in culture systems can provide valuable information in bioscience experiments. We report the development of a cell culture imaging system, named EmSight, which incorporates multiple compact Fourier ptychographic microscopes with a standard multiwell imaging plate. The system is housed in an incubator and presently incorporates six microscopes. By using the same low magnification objective lenses as the objective and the tube lens, the EmSight is configured as a 1:1...

  16. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

    Directory of Open Access Journals (Sweden)

    Wang Xueying

    2008-10-01

    Full Text Available Abstract Background Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. Results The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. Conclusion New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.

  17. Dissecting eukaryotic cells by coherent phase microscopy: quantitative analysis of quiescent and activated T lymphocytes

    Science.gov (United States)

    Tychinsky, Vladimir P.; Kretushev, Alexander V.; Vyshenskaya, Tatiana V.; Shtil, Alexander A.

    2012-07-01

    We present a concept for quantitative characterization of a functional state of an individual eukaryotic cell based on interference imaging. The informative parameters of the phase images of quiescent and mitogen-activated T lymphocytes included the phase thickness, phase volume, the area, and the size of organelles. These parameters were obtained without a special hypothesis about cell structure. Combinations of these parameters generated a ``phase portrait'' of the cell. A simplified spherical multilayer optic model of a T lymphocyte was used to calculate the refractivity profile, to identify structural elements of the image with the organelles, and to interpret the parameters of the phase portrait. The values of phase image parameters underwent characteristic changes in the course of mitogenic stimulation of T cells; thereby, the functional state of individual cells can be described using these parameters. Because the values of the components of the phase portrait are measured in absolute units, it is possible to compare the parameters of images obtained with different interference microscopes. Thus, the analysis of phase portraits provides a new and perspective approach for quantitative, real-time analysis of subcellular structure and physiologic state of an individual cell.

  18. Investigation of prostate cancer cells using NADH and Tryptophan as biomarker: multiphoton FLIM-FRET microscopy

    Science.gov (United States)

    Rehman, Shagufta; O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Chandra, Dhyan; Periasamy, Ammasi

    2016-03-01

    Fluorescence Lifetime Imaging (FLIM) can be used to understand the metabolic activity in cancer. Prostate cancer is one of the leading cancers in men in the USA. This research focuses on FLIM measurements of NAD(P)H and Tryptophan, used as biomarkers to understand the metabolic activity in prostate cancer cells. Two prostate cancers and one normal cell line were used for live-cell FLIM measurements on Zeiss780 2P confocal microscope with SPCM FLIM board. Glucose uptake and glycolysis proceeds about ten times faster in cancer than in non-cancerous tissues. Therefore, we assessed the glycolytic activity in the prostate cancer in comparison to the normal cells upon glucose stimulation by analyzing the NAD(P)H and Trp lifetime distribution and efficiency of energy transfer (E%). Furthermore, we treated the prostate cancer cells with 1μM Doxorubicin, a commonly used anti-cancer chemotherapeutic. Increase in NADH a2%, an indicator of increased glycolysis and increased E% between Trp and NAD(P)H were seen upon glucose stimulation for 30min. The magnitude of shift to the right for NAD(P)H a2% and E% distribution was higher in prostate cancer versus the normal cells. Upon treatment with Doxorubicin decrease in cellular metabolism was seen at 15 and 30 minutes. The histogram for NAD(P)H a2% post-treatment for prostate cancer cells showed a left shift compared to the untreated control suggesting decrease in glycolysis and metabolic activity opposite to what was observed after glucose stimulation. Hence, NAD(P)H and Trp lifetimes can be used biomarkers to understand metabolic activity in prostate cancer and upon chemotherapeutic interventions.

  19. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing.

    Science.gov (United States)

    Pesl, Martin; Pribyl, Jan; Acimovic, Ivana; Vilotic, Aleksandra; Jelinkova, Sarka; Salykin, Anton; Lacampagne, Alain; Dvorak, Petr; Meli, Albano C; Skladal, Petr; Rotrekl, Vladimir

    2016-11-15

    Cardiomyocyte contraction and relaxation are important parameters of cardiac function altered in many heart pathologies. Biosensing of these parameters represents an important tool in drug development and disease modeling. Human embryonic stem cells and especially patient specific induced pluripotent stem cell-derived cardiomyocytes are well established as cardiac disease model.. Here, a live stem cell derived embryoid body (EB) based cardiac cell syncytium served as a biorecognition element coupled to the microcantilever probe from atomic force microscope thus providing reliable micromechanical cellular biosensor suitable for whole-day testing. The biosensor was optimized regarding the type of cantilever, temperature and exchange of media; in combination with standardized protocol, it allowed testing of compounds and conditions affecting the biomechanical properties of EB. The studied effectors included calcium , drugs modulating the catecholaminergic fight-or-flight stress response such as the beta-adrenergic blocker metoprolol and the beta-adrenergic agonist isoproterenol. Arrhythmogenic effects were studied using caffeine. Furthermore, with EBs originating from patient's stem cells, this biosensor can help to characterize heart diseases such as dystrophies. PMID:27266660

  20. Evaluation of β1-integrin expression on chondrogenically differentiating human adipose-derived stem cells using atomic force microscopy.

    Science.gov (United States)

    Quisenberry, Chrystal R; Nazempour, Arshan; Van Wie, Bernard J; Abu-Lail, Nehal I

    2016-06-01

    The expression of β1-integrin on human adipose-derived stem cells, differentiating toward a chondrogenic lineage, is hypothesized to decrease when cells are grown under in vivo-like environments due to sufficient extracellular matrix (ECM) buildup in the engineered tissues. The opposite is true when cells are grown in static cultures such as in pellet or micromass. To probe β1-integrin distribution on cellular surfaces, atomic force microscopy cantilevers modified with anti-β1-integrin antibodies were used. Specific antibody-antigen adhesion forces were identified and indicated the locations of β1-integrins on cells. ECM properties were assessed by estimating the Young's modulus of the matrix. Specific single antibody-antigen interactions averaged 78 ± 10 pN with multiple bindings occurring at approximate multiples of 78 pN. The author's results show that upregulated β1-integrin expression coincided with a less robust ECM as assessed by mechanical properties of tissues. In micromass and pellet cultures, transforming growth factor β3(TGF-β3) elicited a decrease in Young's modulus by 3.7- and 4.4-fold while eliciting an increase in β1-integrin count by 1.1- and 1.3-fold, respectively. β1-integrin counts on cells grown in the presence of TGF-β3 with oscillating hydrostatic pressure decreased by a 1.1-fold while the Young's modulus increased by a 1.9-fold. Collectively, our results suggest that cells in insufficiently robust ECM express more integrin perhaps to facilitate cell-ECM adhesion and compensate for a looser less robust ECM. PMID:27106564

  1. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.; Müller, Torsten; Meyer, Rikke Louise

    (ethylene glycol) (PEG) coatings on titanium. We investigate the ability of a high density poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating to resist bacterial adhesion and biofilm formation from three clinically relevant bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus...... cultures. The high density PLL-g-PEG coatings completely resisted bacterial colonization, whereas conventional coatings couldn’t resist colonization by S. epidermidis. The unique ability of S. epidermidis to colonize conventional PLL-g-PEG coatings was investigated by looking into the composition of S......Bacteria initiate attachment to the surfaces with the aid of different extracellular polymers. To quantitatively study how these polymers mediate bacterial adhesion and possibly their interactions, it is essential to go down to single cell level, with in mind that cell-to-cell variation should be...

  2. Atomic force microscopy observation on nuclear reassembly in a cell-free system

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; CHEN Zhongcai; ZHANG Zhaohui; ZHU Xing; ZHAI Zhonghe; TANG Xiaowei

    2003-01-01

    Cell-free system is interesting and useful for studying nuclear assembly in mitosis. Atomic force micro- scopy (AFM), which is a simple way for imaging fixed reassemble nuclei with high resolution, has not been used in the cell-free system. In this paper, we put forward an air-drying sample preparation for AFM. Using AFM, we observed nuclear reassembly process within 100 nm resolution ina cell-free system. As a result, we found that the images were artifact-free, and with higher resolution compared with fluorescent optical microscope images. Furthermore, the morphology of membrane vesicles was obtained clearly, and a dynamic change of morphology during the vesicles' approaching to nuclear envelope was also observed, which is enlightened to understand the mechanism of nuclear envelope assembly.

  3. Investigations of cell morphology and reproduction in Macrochloris radiosa Ettl & Gärtner (Stephano-sphaerinia, Chlorophyta) by light- and WUDQVPLVVLRQ electron microscopy

    OpenAIRE

    Holzinger, Andreas; Dablander, Andrea; Gärtner, Georg

    2014-01-01

    Cell division and reproduction of a cultivated strain of Macrochloris radiosa (Stephanosphaerinia clade) were studied by light- and transmission electron microscopy. Multinucleate cells were frequently observed allowing description of the cell structure and details of the reproduction process. Nuclear staining revealed the position of the multiple polymorphic nuclei between the chloroplast lobes. Ultrastructure of coenocytic cells showed no signs of cleavage of the protoplast in the cytoplasm...

  4. Label-free assessment of adipose-derived stem cell differentiation using coherent anti-Stokes Raman scattering and multiphoton microscopy

    OpenAIRE

    Mouras, Rabah; Bagnaninchi, Pierre O.; Downes, Andrew R; Elfick, Alistair P D

    2012-01-01

    ABSTRACT. Adult stem cells (SCs) hold great potential as likely candidates for disease therapy but also as sources of differentiated human cells in vitro models of disease. In both cases, the label-free assessment of SC differentiation state is highly desirable, either as a quality-control technology ensuring cells to be used clinically are of the desired lineage or to facilitate in vitro time-course studies of cell differentiation. We investigate the potential of nonlinear optical microscopy...

  5. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    Science.gov (United States)

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions. PMID:26567131

  6. Solving the mysteries of the bacterial cell – application of novel techniques in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Magdalena Donczew

    2011-01-01

    Full Text Available We have reviewed how the development of fluorescent markers, triggered by the discovery of green fluorescence protein and its other color variants leading to the establishment of methods for studies of protein interactions with application of fluorescent proteins, affected the view of bacterial cell organization. Application of the new microscopic methods allowed localization of proteins and chromosomal regions, and observation of their migration in real time. These studies revealed the spatial organization of bacterial cells which includes specific subcellular localization of proteins, the presence of dynamic cytoskeletal structures, orchestrated and active segregation of chromosomes, and spatiotemporal gene regulation.

  7. A self-contained, programmable microfluidic cell culture system with real-time microscopy access

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Hemmingsen, Mette; Sabourin, David; Blaga, Felician Stefan; Bruus, Henrik; Dufva, Martin

    2011-01-01

    Utilizing microfluidics is a promising way for increasing the throughput and automation of cell biology research. We present a complete self-contained system for automated cell culture and experiments with real-time optical read-out. The system offers a high degree of user-friendliness, stability...... due to simple construction principles and compactness for integration with standard instruments. Furthermore, the self-contained system is highly portable enabling transfer between work stations such as laminar flow benches, incubators and microscopes. Accommodation of 24 individual inlet channels...

  8. Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers.

    Science.gov (United States)

    Berclaz, Corinne; Pache, Christophe; Bouwens, Arno; Szlag, Daniel; Lopez, Antonio; Joosten, Lieke; Ekim, Selen; Brom, Maarten; Gotthardt, Martin; Grapin-Botton, Anne; Lasser, Theo

    2015-01-01

    The identification of a beta-cell tracer is a major quest in diabetes research. However, since MRI, PET and SPECT cannot resolve individual islets, optical techniques are required to assess the specificity of these tracers. We propose to combine Optical Coherence Microscopy (OCM) with fluorescence detection in a single optical platform to facilitate these initial screening steps from cell culture up to living rodents. OCM can image islets and vascularization without any labeling. Thereby, it alleviates the need of both genetically modified mice to detect islets and injection of external dye to reveal vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide 1 receptor (GLP1R), for which other imaging modalities have been used and can serve as a reference. Cultured cells transfected with GLP1R and incubated with Cy5.5-exendin-3 show full tracer internalization. We determined that a dose of 1 μg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer in islets with a high specificity. In a next step, time-lapse OCM imaging was used to monitor the rapid and specific tracer accumulation in murine islets and its persistence over hours. This optical platform represents a versatile toolbox for selecting beta-cell specific markers for diabetes research and future clinical diagnosis. PMID:25988507

  9. Changes in plasma membrane surface potential of PC12 cells as measured by Kelvin probe force microscopy.

    Directory of Open Access Journals (Sweden)

    Chia-Chang Tsai

    Full Text Available The plasma membrane of a cell not only works as a physical barrier but also mediates the signal relay between the extracellular milieu and the cell interior. Various stimulants may cause the redistribution of molecules, like lipids, proteins, and polysaccharides, on the plasma membrane and change the surface potential (Φ(s. In this study, the Φ(ss of PC12 cell plasma membranes were measured by atomic force microscopy in Kelvin probe mode (KPFM. The skewness values of the Φ(ss distribution histogram were found to be mostly negative, and the incorporation of negatively charged phosphatidylserine shifted the average skewness values to positive. After being treated with H(2O(2, dopamine, or Zn(2+, phosphatidylserine was found to be translocated to the membrane outer leaflet and the averaged skewness values were changed to positive values. These results demonstrated that KPFM can be used to monitor cell physiology status in response to various stimulants with high spatial resolution.

  10. Dual-wavelength optical-resolution photoacoustic microscopy for cells with gold nanoparticle bioconjugates in three-dimensional cultures

    Science.gov (United States)

    Lee, Po-Yi; Liu, Wei-Wen; Chen, Shu-Ching; Li, Pai-Chi

    2016-03-01

    Three-dimensional (3D) in vitro models bridge the gap between typical two-dimensional cultures and in vivo conditions. However, conventional optical imaging methods such as confocal microscopy and two-photon microscopy cannot accurately depict cellular processing in 3D models due to limited penetration of photons. We developed a dualwavelength optical-resolution photoacoustic microscopy (OR-PAM), which provides sufficient penetration depth and spatial resolution, for studying CD8+ cytotoxic T lymphocytes (CTLs) trafficking in an in vitro 3D tumor microenvironment. CTLs play a cardinal role in host defense against tumor. Efficient trafficking of CTLs to the tumor microenvironment is a critical step for cancer immunotherapy. For the proposed system, gold nanospheres and indocyanine green (ICG) have been remarkable choices for contrast agents for photoacoustic signals due to their excellent biocompatibility and high optical absorption. With distinct absorption spectrums, targeted cells with gold nanospheres and ICG respectively can be identified by switching 523-nm and 800-nm laser irradiation. Moreover, we use an x-y galvanometer scanner to obtain high scanning rate. In the developed system, lateral and axial resolutions were designed at 1.6 μm and 5 μm, respectively. We successfully showed that dual-spectral OR-PAM can map either the distribution of CTLs with gold nanospheres at a visible wavelength of 523 nm or the 3D structure of tumor spheres with ICG in an in vitro 3D microenvironment. Our OR-PAM can provide better biological relevant information in cellular interaction and is potential for preclinical screening of anti-cancer drugs.

  11. Segmental Neurofibromatosis: Atypical Localisation

    Directory of Open Access Journals (Sweden)

    Filiz Topaloğlu Demir

    2015-06-01

    Full Text Available Neurofibromatosis (NF is a genetic disease leading pathological findings in skin, soft tissue, bone and nervous system by affecting neural crest cells. Due to its heterogeneity neurofibromatosis was divided into eight different subgroups (NF-I NF-VIII by Riccardi. Segmental neurofibromatosis (NF type V is characterized by cutaneous neurofibromas and Café-au-lait spots limited with a segment of dermatome. Here we report this case with numerous, painless cutaneous nodules showing extension from the shoulder to the dorsal aspect of the right hand, since it a rare case.

  12. Comparative atomic force and scanning electron microscopy: an investigation on fenestrated endothelial cells in vitro

    NARCIS (Netherlands)

    Braet, F.; Kalle, W.H.J.; Zanger, de R.B.; Grooth, de B.G.; Raap, A.K.; Tanke, H.J.; Wisse, E.

    1996-01-01

    Rat liver sinusoidal endothelial cells (LEC) contain fenestrae, which are clustered in sieve plates. Fenestrae control the exchange of fluids, solutes and particles between the sinusoidal blood and the space of Disse, which at its back side is flanked by the microvillous surface of the parenchymal c

  13. ASSESSMENT OF SYNAPSE FORMATION IN RAT PRIMARY NEURAL CELL CULTURE USING HIGH CONTENT MICROSCOPY.

    Science.gov (United States)

    Cell-based assays can model neurodevelopmental processes including neurite growth and synaptogenesis, and may be useful for screening and evaluation of large numbers of chemicals for developmental neurotoxicity. This work describes the use of high content screening (HCS) to dete...

  14. Correlating Viscoelasticity with Metabolism in Single Cells using Atomic Force Microscopy

    Science.gov (United States)

    Caporizzo, Matthew; Roco, Charles; Coll-Ferrer, Carme; Eckmann, David; Composto, Russell

    2015-03-01

    Variable indentation-rate rheometric analysis by Laplace transform (VIRRAL), is developed to evaluate Dex-Gel drug carriers as biocompatible delivery agents. VIRRAL provides a general platform for the rapid characterization of the health of single cells by viscoelasticity to promote the self-consistent comparison between cells paramount to the development of early diagnosis and treatment of disease. By modelling the frequency dependence of elastic modulus, VIRRAL provides three metrics of cytoplasmic viscoelasticity: low frequency stiffness, high frequency stiffness, and a relaxation time. THP-1 cells are found to exhibit a frequency dependent elastic modulus consistent with the standard linear solid model of viscoelasticity. VIRRAL indicates that dextran-lysozyme drug carriers are biocompatible and deliver concentrated toxic material (rhodamine or silver nanoparticles) to the cytoplasm of THP-1 cells. The signature of cytotoxicity by rhodamine or silver exposure is a frequency independent 2-fold increase in elastic modulus and cytoplasmic viscosity while the cytoskeletal relaxation time remains unchanged independent of cytoplasmic stiffness. This is consistent with the known toxic mechanism of silver nanoparticles, where mitochondrial injury leads to ATP depletion and metabolic stress causes a decrease of mobility within cytoplasm. NSF DMR08-32802, NIH T32-HL007954, and ONR N000141410538.

  15. The structure, rearrangement, and ontogenic expression of DB and JB gene segments of the Mexican axolotl T-cell antigen receptor beta chain (TCRB).

    Science.gov (United States)

    Kerfourn, F; Charlemagne, J; Fellah, J S

    1996-01-01

    We sequenced a total of 189 independent rearrangements in which the VB7.1 element is associated with CB1 (99 clones) or CB2 (90 clones) isotypes of the T-cell receptor (TCR) beta chain in the Mexican axolotl. Three stages of development were analyzed: 2.5 months, 10 months, and 25 months. Three JB1 segments were associated with the VB-CB1 rearrangements and six JB2 segments with VB-CB2. As in other vertebrates, some amino acid positions were conserved in all Jbetas (e. g., Phe-108, Gly-109, Gly-111, Thr-112, and Val-116). Two 11 nucleotides DB-like sequences, differed by one (A or T) central residue and could be productively read in the three putative reading frames. Most of the DB1 and JB1 segments were in the VB-CB1 clones, and most of the DB2 and JB2 segments were in the VB-CB2 clones, suggesting that the TCRB locus is organized into independent DB-JB-CB clusters that used the same collection of VB segments. About 40% of the beta-chain VDJ junctions in 2.5-month-old larvae had N nucleotides, compared with about 73% in 10 - 25-month old animals. The beta-chain VDJ junctions had about 30% of defective rearrangements at all stages of development, which could be due to the slow rate of cell division in the axolotl lymphoid organs, and the large genome in this urodele. Many of the axolotl CDRbeta3 sequences deduced for in frame VDJ rearrangements are the same in animals of different origins. Such redundancy could be a statistical effect due to the small number of thymocytes in the developing axolotl, rather than to some bias due to junctional preferences. PMID:8753858

  16. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography.

    Directory of Open Access Journals (Sweden)

    Marianne Sandvold Beckwith

    Full Text Available Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoroethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D.

  17. Intracellular boron localization and uptake in cell cultures using imaging secondary ion mass spectrometry (ion microscopy) for neutron capture therapy for cancer.

    Science.gov (United States)

    Bennett, B D; Zha, X; Gay, I; Morrison, G H

    1992-01-01

    Quantitative ion microscopy of freeze-fractured, freeze-dried cultured cells is a technique for single cell and subcellular elemental analysis. This review describes the technique and its usefulness in determining the uptake and subcellular distribution of the boron from boron neutron capture therapy drugs. PMID:1511239

  18. Enhanced detection with spectral imaging fluorescence microscopy reveals tissue- and cell-type-specific compartmentalization of surface-modified polystyrene nanoparticles

    OpenAIRE

    Kenesei, Kata; Murali, Kumarasamy; Czéh, Árpád; Piella, Jordi; Puntes, Victor; Madarász, Emília

    2016-01-01

    Background Precisely targeted nanoparticle delivery is critically important for therapeutic applications. However, our knowledge on how the distinct physical and chemical properties of nanoparticles determine tissue penetration through physiological barriers, accumulation in specific cells and tissues, and clearance from selected organs has remained rather limited. In the recent study, spectral imaging fluorescence microscopy was exploited for precise and rapid monitoring of tissue- and cell-...

  19. Covisualization by computational optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts

    Science.gov (United States)

    Gens, J. S.; Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)

    1996-01-01

    Using higher-resolution wide-field computational optical-sectioning fluorescence microscopy, the distribution of antigens recognized by antibodies against animal beta 1 integrin, fibronectin, and vitronectin has been visualized at the outer surface of enzymatically protoplasted onion epidermis cells and in depectinated cell wall fragments. On the protoplast all three antigens are colocalized in an array of small spots, as seen in raw images, in Gaussian filtered images, and in images restored by two different algorithms. Fibronectin and vitronectin but not beta 1 integrin antigenicities colocalize as puncta in comparably prepared and processed images of the wall fragments. Several control visualizations suggest considerable specifity of antibody recognition. Affinity purification of onion cell extract with the same anti-integrin used for visualization has yielded protein that separates in SDS-PAGE into two bands of about 105-110 and 115-125 kDa. These bands are again recognized by the visualization antibody, which was raised against the extracellular domain of chicken beta 1 integrin, and are also recognized by an antibody against the intracellular domain of chicken beta 1 integrin. Because beta 1 integrin is a key protein in numerous animal adhesion sites, it appears that the punctate distribution of this protein in the cell membranes of onion epidermis represents the adhesion sites long known to occur in cells of this tissue. Because vitronectin and fibronection are matrix proteins that bind to integrin in animals, the punctate occurrence of antigenically similar proteins both in the wall (matrix) and on enzymatically prepared protoplasts reinforces the concept that onion cells have adhesion sites with some similarity to certain kinds of adhesion sites in animals.

  20. The effect of bone allografts combined with bone marrow stromal cells on the healing of segmental bone defects in a sheep model

    OpenAIRE

    Fernandes, Marco Bernardo C; Guimarães, João Antônio Matheus; Casado, Priscila Ladeira; Cavalcanti, Amanda dos Santos; Gonçalves, Natalia N; Carlos E. Ambrósio; Rodrigues, Fernando; Pinto, Ana Carolina F; Miglino, Maria Angélica; Duarte, Maria Eugênia L.

    2014-01-01

    Background The repair of large bone defects is a major orthopedic challenge because autologous bone grafts are not available in large amounts and because harvesting is often associated with donor-site morbidity. Considering that bone marrow stromal cells (BMSC) are responsible for the maintenance of bone turnover throughout life, we investigated bone repair at a site of a critically sized segmental defect in sheep tibia treated with BMSCs loaded onto allografts. The defect was created in the ...