WorldWideScience

Sample records for cell metabolism growth

  1. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Scott, Andrew J.; Wilkinson, Amanda S.; Wilkinson, John C.

    2016-01-01

    Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. Altogether these data indicate that AIF supports the growth and survival of metabolically defined

  2. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  3. Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures.

    Science.gov (United States)

    Yin, Yuling; Matsui, Ayu; Sakuta, Masaaki; Ashihara, Hiroshi

    2008-12-01

    Changes in the profile of pyridine metabolism during growth of cells were investigated using trigonelline-forming suspension-cultured cells of Lotus japonicus. Activity of the de novo and salvage pathways of NAD biosynthesis was estimated from the in situ metabolism of [(3)H] quinolinic acid and [(14)C] nicotinamide. Maximum activity of the de novo pathway for NAD synthesis was found in the exponential growth phase, whereas activity of the salvage pathway was increased in the lag phase of cell growth. Expression profiles of some genes related to pyridine metabolism were examined using the expression sequence tags obtained from the L. japonicus database. Transcript levels of NaPRT and NIC, encoding salvage enzymes, were enhanced in the lag phase of cell growth, whereas the maximum expression of NADS was found in the exponential growth phase. Correspondingly, the activities of the salvage enzymes, nicotinate phosphoribosyltransferase (EC 2.4.2.11) and nicotinamidase (EC 3.5.1.19), increased one day after transfer of the stationary phase cells to the fresh medium. The greatest in situ trigonelline synthesis, both from [(3)H] quinolinic acid and [(14)C] nicotinamide, was found in the stationary phase of cell growth. The role of trigonelline in leguminous plants is discussed.

  4. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  5. Protocols to Study Growth and Metabolism in Drosophila.

    Science.gov (United States)

    Strassburger, Katrin; Teleman, Aurelio A

    2016-01-01

    Signaling pathways such as the insulin/insulin-like growth factor pathway concurrently regulate organismal growth and metabolism. Drosophila has become a popular model system for studying both organismal growth and metabolic regulation. Care must be taken, however, when assessing such phenotypes because they are quantitative in nature, and influenced by environment. This chapter first describes how to control animal age and nutrient availability, since growth and metabolism are sensitive to these parameters. It then provides protocols for measuring tissue growth, cell size, and metabolic parameters such as stored lipids and glycogen, and circulating sugars.

  6. Cancer cell metabolism: one hallmark, many faces.

    Science.gov (United States)

    Cantor, Jason R; Sabatini, David M

    2012-10-01

    Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such changes within the metabolic program of a cancer cell can dictate by what means proliferative rewiring is driven, and can also impart heterogeneity in the metabolic dependencies of the cell. A better understanding of this heterogeneity may enable the development and optimization of therapeutic strategies that target tumor metabolism.

  7. Cancer Cell Metabolism: One Hallmark, Many Faces

    OpenAIRE

    Cantor, Jason R.; Sabatini, David M.

    2012-01-01

    Cancer cells must rewire cellular metabolism to satisfy the demands of growth and proliferation. Although many of the metabolic alterations are largely similar to those in normal proliferating cells, they are aberrantly driven in cancer by a combination of genetic lesions and nongenetic factors such as the tumor microenvironment. However, a single model of altered tumor metabolism does not describe the sum of metabolic changes that can support cell growth. Instead, the diversity of such chang...

  8. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth.

    Science.gov (United States)

    Kentner, David; Martano, Giuseppe; Callon, Morgane; Chiquet, Petra; Brodmann, Maj; Burton, Olga; Wahlander, Asa; Nanni, Paolo; Delmotte, Nathanaël; Grossmann, Jonas; Limenitakis, Julien; Schlapbach, Ralph; Kiefer, Patrick; Vorholt, Julia A; Hiller, Sebastian; Bumann, Dirk

    2014-07-08

    Shigella flexneri proliferate in infected human epithelial cells at exceptionally high rates. This vigorous growth has important consequences for rapid progression to life-threatening bloody diarrhea, but the underlying metabolic mechanisms remain poorly understood. Here, we used metabolomics, proteomics, and genetic experiments to determine host and Shigella metabolism during infection in a cell culture model. The data suggest that infected host cells maintain largely normal fluxes through glycolytic pathways, but the entire output of these pathways is captured by Shigella, most likely in the form of pyruvate. This striking strategy provides Shigella with an abundant favorable energy source, while preserving host cell ATP generation, energy charge maintenance, and survival, despite ongoing vigorous exploitation. Shigella uses a simple three-step pathway to metabolize pyruvate at high rates with acetate as an excreted waste product. The crucial role of this pathway for Shigella intracellular growth suggests targets for antimicrobial chemotherapy of this devastating disease.

  9. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. The phosphorylation-dependent regulation of nuclear SREBP1 during mitosis links lipid metabolism and cell growth

    Science.gov (United States)

    Bengoechea-Alonso, Maria Teresa; Ericsson, Johan

    2016-01-01

    ABSTRACT The SREBP transcription factors are major regulators of lipid metabolism. Disturbances in lipid metabolism are at the core of several health issues facing modern society, including cardiovascular disease, obesity and diabetes. In addition, the role of lipid metabolism in cancer cell growth is receiving increased attention. Transcriptionally active SREBP molecules are unstable and rapidly degraded in a phosphorylation-dependent manner by Fbw7, a ubiquitin ligase that targets several cell cycle regulatory proteins for degradation. We have previously demonstrated that active SREBP1 is stabilized during mitosis. We have now delineated the mechanisms involved in the stabilization of SREBP1 in mitotic cells. This process is initiated by the phosphorylation of a specific serine residue in nuclear SREBP1 by the mitotic kinase Cdk1. The phosphorylation of this residue creates a docking site for a separate mitotic kinase, Plk1. Plk1 interacts with nuclear SREBP1 in mitotic cells and phosphorylates a number of residues in the C-terminal domain of the protein, including a threonine residue in close proximity of the Fbw7 docking site in SREBP1. The phosphorylation of these residues by Plk1 blocks the interaction between SREBP1 and Fbw7 and attenuates the Fbw7-dependent degradation of nuclear SREBP1 during cell division. Inactivation of SREBP1 results in a mitotic defect, suggesting that SREBP1 could regulate cell division. We propose that the mitotic phosphorylation and stabilization of nuclear SREBP1 during cell division provides a link between lipid metabolism and cell proliferation. Thus, the current study provides additional support for the emerging hypothesis that SREBP-dependent lipid metabolism may be important for cell growth. PMID:27579997

  11. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    Science.gov (United States)

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  12. Reprogramming One-Carbon Metabolic Pathways To Decouple l-Serine Catabolism from Cell Growth in Corynebacterium glutamicum.

    Science.gov (United States)

    Zhang, Yun; Shang, Xiuling; Lai, Shujuan; Zhang, Yu; Hu, Qitiao; Chai, Xin; Wang, Bo; Liu, Shuwen; Wen, Tingyi

    2018-02-16

    l-Serine, the principal one-carbon source for DNA biosynthesis, is difficult for microorganisms to accumulate due to the coupling of l-serine catabolism and microbial growth. Here, we reprogrammed the one-carbon unit metabolic pathways in Corynebacterium glutamicum to decouple l-serine catabolism from cell growth. In silico model-based simulation showed a negative influence on glyA-encoding serine hydroxymethyltransferase flux with l-serine productivity. Attenuation of glyA transcription resulted in increased l-serine accumulation, and a decrease in purine pools, poor growth and longer cell shapes. The gcvTHP-encoded glycine cleavage (Gcv) system from Escherichia coli was introduced into C. glutamicum, allowing glycine-derived 13 CH 2 to be assimilated into intracellular purine synthesis, which resulted in an increased amount of one-carbon units. Gcv introduction not only restored cell viability and morphology but also increased l-serine accumulation. Moreover, comparative proteomic analysis indicated that abundance changes of the enzymes involved in one-carbon unit cycles might be responsible for maintaining one-carbon unit homeostasis. Reprogramming of the one-carbon metabolic pathways allowed cells to reach a comparable growth rate to accumulate 13.21 g/L l-serine by fed-batch fermentation in minimal medium. This novel strategy provides new insights into the regulation of cellular properties and essential metabolite accumulation by introducing an extrinsic pathway.

  13. Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.

    Science.gov (United States)

    Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun

    2018-05-16

    Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.

  14. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients

    DEFF Research Database (Denmark)

    Pereira, Sara; Kildegaard, Helene F.; Andersen, Mikael R.

    2018-01-01

    and process optimization and monitoring to perform efficiently. One of the main reasons for this is the production and accumulation of toxic and growth-inhibiting metabolites during culture. Lactate and ammonium are the most known, but many more have been identified. In this review, we present an overview...... of metabolites that deplete and accumulate throughout the course of cultivations with toxic and growth inhibitory effects to the cells. We further provide an overview of the CHO metabolism with emphasis to metabolic pathways of amino acids, glutathione (GSH), and related compounds which have growth...... of resources that describe the cellular mechanisms of CHO and are available on-line. Finally, we discuss the application of this knowledge for bioprocess and medium development and cell line engineering....

  15. Effects of HIF-1 and HIF2 on Growth and Metabolism of Clear-Cell Renal Cell Carcinoma 786-0 Xenografts

    Directory of Open Access Journals (Sweden)

    Swethajit Biswas

    2010-01-01

    Full Text Available In cultured clear-cell renal carcinoma (CCRCC 786-0 cells transfected with HIF1 (HIF-1+, HIF-2 (HIF-2+, or empty vector (EV, no significant differences were observed in the growth rates in vitro, but when grown in vivo as xenografts HIF-2 significantly increased, and HIF-1 significantly decreased growth rates, compared to EV tumors. Factors associated with proliferation were increased and factors associated with cell death were decreased in HIF-2+ tumors. Metabolite profiles showed higher glucose and lower lactate and alanine levels in the HIF-2+ tumors whilst immunostaining demonstrated higher pyruvate dehydrogenase and lower pyruvate dehydrogenase kinase 1, compared to control tumors. Taken together, these results suggest that overexpression of HIF-2 in CCRCC 786-0 tumors regulated growth both by maintaining a low level of glycolysis and by allowing more mitochondrial metabolism and tolerance to ROS induced DNA damage. The growth profiles observed may be mediated by adaptive changes to a more oxidative phenotype.

  16. In silico-based identification of human α-enolase inhibitors to block cancer cell growth metabolically

    Science.gov (United States)

    Lung, Jrhau; Chen, Kuan-Liang; Hung, Chien-Hui; Chen, Chih-Cheng; Hung, Ming-Szu; Lin, Yu-Ching; Wu, Ching-Yuan; Lee, Kuan-Der; Shih, Neng-Yao; Tsai, Ying Huang

    2017-01-01

    Unlimited growth of cancer cells requires an extensive nutrient supply. To meet this demand, cancer cells drastically upregulate glucose uptake and metabolism compared to normal cells. This difference has made the blocking of glycolysis a fascinating strategy to treat this malignant disease. α-enolase is not only one of the most upregulated glycolytic enzymes in cancer cells, but also associates with many cellular processes or conditions important to cancer cell survival, such as cell migration, invasion, and hypoxia. Targeting α-enolase could simultaneously disturb cancer cells in multiple ways and, therefore, is a good target for anticancer drug development. In the current study, more than 22 million chemical structures meeting the criteria of Lipinski’s rule of five from the ZINC database were docked to α-enolase by virtual screening. Twenty-four chemical structures with docking scores better than that of the enolase substrate, 2-phosphoglycerate, were further screened by the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties prediction. Four of them were classified as non-mutagenic, non-carcinogenic, and capable of oral administration where they showed steady interactions to α-enolase that were comparable, even superior, to the currently available inhibitors in molecular dynamics (MD) simulation. These compounds may be considered promising leads for further development of the α-enolase inhibitors and could help fight cancer metabolically. PMID:29180852

  17. Evidence for a transketolase-mediated metabolic checkpoint governing biotrophic growth in rice cells by the blast fungus Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Jessie Fernandez

    2014-09-01

    Full Text Available The blast fungus Magnaporthe oryzae threatens global food security through the widespread destruction of cultivated rice. Foliar infection requires a specialized cell called an appressorium that generates turgor to force a thin penetration hypha through the rice cuticle and into the underlying epidermal cells, where the fungus grows for the first days of infection as a symptomless biotroph. Understanding what controls biotrophic growth could open new avenues for developing sustainable blast intervention programs. Here, using molecular genetics and live-cell imaging, we dismantled M. oryzae glucose-metabolizing pathways to reveal that the transketolase enzyme, encoded by TKL1, plays an essential role in facilitating host colonization during rice blast disease. In the absence of transketolase, Δtkl1 mutant strains formed functional appressoria that penetrated rice cuticles successfully and developed invasive hyphae (IH in rice cells from primary hyphae. However, Δtkl1 could not undertake sustained biotrophic growth or cell-to-cell movement. Transcript data and observations using fluorescently labeled histone H1:RFP fusion proteins indicated Δtkl1 mutant strains were alive in host cells but were delayed in mitosis. Mitotic delay could be reversed and IH growth restored by the addition of exogenous ATP, a metabolite depleted in Δtkl1 mutant strains. We show that ATP might act via the TOR signaling pathway, and TOR is likely a downstream target of activation for TKL1. TKL1 is also involved in controlling the migration of appressorial nuclei into primary hyphae in host cells. When taken together, our results indicate transketolase has a novel role in mediating--via ATP and TOR signaling--an in planta-specific metabolic checkpoint that controls nuclear migration from appressoria into primary hyphae, prevents mitotic delay in early IH and promotes biotrophic growth. This work thus provides new information about the metabolic strategies employed by M

  18. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.

    Science.gov (United States)

    Wairagu, Peninah M; Phan, Ai N H; Kim, Min-Kyu; Han, Jeongwoo; Kim, Hyun-Won; Choi, Jong-Whan; Kim, Ki Woo; Cha, Seung-Kuy; Park, Kwang Hwa; Jeong, Yangsik

    2015-01-01

    Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.

  19. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman

    2016-11-23

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.

  20. Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield.

    Directory of Open Access Journals (Sweden)

    Meike T Wortel

    2018-02-01

    Full Text Available Microbes may maximize the number of daughter cells per time or per amount of nutrients consumed. These two strategies correspond, respectively, to the use of enzyme-efficient or substrate-efficient metabolic pathways. In reality, fast growth is often associated with wasteful, yield-inefficient metabolism, and a general thermodynamic trade-off between growth rate and biomass yield has been proposed to explain this. We studied growth rate/yield trade-offs by using a novel modeling framework, Enzyme-Flux Cost Minimization (EFCM and by assuming that the growth rate depends directly on the enzyme investment per rate of biomass production. In a comprehensive mathematical model of core metabolism in E. coli, we screened all elementary flux modes leading to cell synthesis, characterized them by the growth rates and yields they provide, and studied the shape of the resulting rate/yield Pareto front. By varying the model parameters, we found that the rate/yield trade-off is not universal, but depends on metabolic kinetics and environmental conditions. A prominent trade-off emerges under oxygen-limited growth, where yield-inefficient pathways support a 2-to-3 times higher growth rate than yield-efficient pathways. EFCM can be widely used to predict optimal metabolic states and growth rates under varying nutrient levels, perturbations of enzyme parameters, and single or multiple gene knockouts.

  1. Metabolic Plasticity of Stem Cells and Macrophages in Cancer

    Directory of Open Access Journals (Sweden)

    Jelena Krstic

    2017-08-01

    Full Text Available In addition to providing essential molecules for the overall function of cells, metabolism plays an important role in cell fate and can be affected by microenvironmental stimuli as well as cellular interactions. As a specific niche, tumor microenvironment (TME, consisting of different cell types including stromal/stem cells and immune cells, is characterized by distinct metabolic properties. This review will be focused on the metabolic plasticity of mesenchymal stromal/stem cells (MSC and macrophages in TME, as well as on how the metabolic state of cancer stem cells (CSC, as key drivers of oncogenesis, affects their generation and persistence. Namely, heterogenic metabolic phenotypes of these cell populations, which include various levels of dependence on glycolysis or oxidative phosphorylation are closely linked to their complex roles in cancer progression. Besides well-known extrinsic factors, such as cytokines and growth factors, the differentiation and activation states of CSC, MSC, and macrophages are coordinated by metabolic reprogramming in TME. The significance of mutual metabolic interaction between tumor stroma and cancer cells in the immune evasion and persistence of CSC is currently under investigation.

  2. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  3. Dynamic metabolic flux analysis using B-splines to study the effects of temperature shift on CHO cell metabolism

    Directory of Open Access Journals (Sweden)

    Verónica S. Martínez

    2015-12-01

    Full Text Available Metabolic flux analysis (MFA is widely used to estimate intracellular fluxes. Conventional MFA, however, is limited to continuous cultures and the mid-exponential growth phase of batch cultures. Dynamic MFA (DMFA has emerged to characterize time-resolved metabolic fluxes for the entire culture period. Here, the linear DMFA approach was extended using B-spline fitting (B-DMFA to estimate mass balanced fluxes. Smoother fits were achieved using reduced number of knots and parameters. Additionally, computation time was greatly reduced using a new heuristic algorithm for knot placement. B-DMFA revealed that Chinese hamster ovary cells shifted from 37 °C to 32 °C maintained a constant IgG volume-specific productivity, whereas the productivity for the controls peaked during mid-exponential growth phase and declined afterward. The observed 42% increase in product titer at 32 °C was explained by a prolonged cell growth with high cell viability, a larger cell volume and a more stable volume-specific productivity. Keywords: Dynamic, Metabolism, Flux analysis, CHO cells, Temperature shift, B-spline curve fitting

  4. A transcription factor links growth rate and metabolism in the hypersaline adapted archaeon Halobacterium salinarum.

    Science.gov (United States)

    Todor, Horia; Dulmage, Keely; Gillum, Nicholas; Bain, James R; Muehlbauer, Michael J; Schmid, Amy K

    2014-09-01

    Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea. In the model archaeon Halobacterium salinarum, the transcription factor TrmB regulates enzyme-coding genes in diverse metabolic pathways in response to glucose. However, H. salinarum is thought not to catabolize glucose. To resolve this discrepancy, we demonstrate that TrmB regulates the gluconeogenic production of sugars incorporated into the cell surface S-layer glycoprotein. Additionally, we show that TrmB-DNA binding correlates with instantaneous growth rate, likely because S-layer glycosylation is proportional to growth. This suggests that TrmB transduces a growth rate signal to co-regulated metabolic pathways including amino acid, purine, and cobalamin biosynthesis. Remarkably, the topology and function of this growth homeostatic network appear conserved across domains despite extensive alterations in protein components. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  5. Metabolism of murine TH 17 cells: Impact on cell fate and function.

    Science.gov (United States)

    Wang, Ran; Solt, Laura A

    2016-04-01

    An effective adaptive immune response relies on the ability of lymphocytes to rapidly act upon a variety of insults. In T lymphocytes, this response includes cell growth, clonal expansion, differentiation, and cytokine production, all of which place a significant energy burden on the cell. Recent evidence shows that T-cell metabolic reprogramming is an essential component of the adaptive immune response and specific metabolic pathways dictate T-cell fate decisions, including the development of TH 17 versus T regulatory (Treg) cells. TH 17 cells have garnered significant attention due to their roles in the pathology of immune-mediated inflammatory diseases. Attempts to characterize TH 17 cells have demonstrated that they are highly dynamic, adjusting their function to environmental cues, which dictate their metabolic program. In this review, we highlight recent data demonstrating the impact of cellular metabolism on the TH 17/Treg balance and present factors that mediate TH 17-cell metabolism. Some examples of these include the differential impact of the mTOR signaling complexes on T-helper-cell differentiation, hypoxia inducible factor 1 alpha (HIF1α) promotion of glycolysis to favor TH 17-cell development, and ACC1-dependent de novo fatty acid synthesis favoring TH 17-cell development over Treg cells. Finally, we discuss the potential therapeutic options and the implications of modulating TH 17-cell metabolism for the treatment of TH 17-mediated diseases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A quantitative theory of solid tumor growth, metabolic rate and vascularization.

    Directory of Open Access Journals (Sweden)

    Alexander B Herman

    Full Text Available The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately. Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto's paradox. Various implications for potential therapeutic strategies and further research are discussed.

  7. DESHARKY: automatic design of metabolic pathways for optimal cell growth.

    Science.gov (United States)

    Rodrigo, Guillermo; Carrera, Javier; Prather, Kristala Jones; Jaramillo, Alfonso

    2008-11-01

    The biological solution for synthesis or remediation of organic compounds using living organisms, particularly bacteria and yeast, has been promoted because of the cost reduction with respect to the non-living chemical approach. In that way, computational frameworks can profit from the previous knowledge stored in large databases of compounds, enzymes and reactions. In addition, the cell behavior can be studied by modeling the cellular context. We have implemented a Monte Carlo algorithm (DESHARKY) that finds a metabolic pathway from a target compound by exploring a database of enzymatic reactions. DESHARKY outputs a biochemical route to the host metabolism together with its impact in the cellular context by using mathematical models of the cell resources and metabolism. Furthermore, we provide the sequence of amino acids for the enzymes involved in the route closest phylogenetically to the considered organism. We provide examples of designed metabolic pathways with their genetic load characterizations. Here, we have used Escherichia coli as host organism. In addition, our bioinformatic tool can be applied for biodegradation or biosynthesis and its performance scales with the database size. Software, a tutorial and examples are freely available and open source at http://soft.synth-bio.org/desharky.html

  8. Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose.

    Science.gov (United States)

    Soma, Yuki; Fujiwara, Yuri; Nakagawa, Takuya; Tsuruno, Keigo; Hanai, Taizo

    2017-09-01

    γ-aminobutyric acid (GABA) is a drug and functional food additive and is used as a monomer for producing the biodegradable plastic, polyamide 4. Recently, direct GABA fermentation from glucose has been developed as an alternative to glutamate-based whole cell bioconversion. Although total productivity in fermentation is determined by the specific productivity and cell amount responsible for GABA production, the optimal metabolic state for GABA production conflicts with that for bacterial cell growth. Herein, we demonstrated metabolic state switching from the cell growth mode based on the metabolic pathways of the wild type strain to a GABA production mode based on a synthetic metabolic pathway in Escherichia coli through rewriting of the metabolic regulatory network and pathway engineering. The GABA production mode was achieved by multiple strategies such as conditional interruption of the TCA and glyoxylate cycles, engineering of GABA production pathway including a bypass for precursor metabolite supply, and upregulation of GABA transporter. As a result, we achieved 3-fold improvement in total GABA production titer and yield (4.8g/L, 49.2% (mol/mol glucose)) in batch fermentation compared to the case without metabolic state switching (1.6g/L, 16.4% (mol/mol glucose)). This study reports the highest GABA production performance among previous reports on GABA fermentation from glucose using engineered E. coli. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts.

    Science.gov (United States)

    Koukourakis, Michael I; Kalamida, Dimitra; Mitrakas, Achilleas G; Liousia, Maria; Pouliliou, Stamatia; Sivridis, Efthimios; Giatromanolaki, Alexandra

    2017-11-01

    Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.

  10. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome?

    Science.gov (United States)

    Rocic, Petra

    2012-01-01

    Type II diabetes and the metabolic syndrome are strong predictors of severity of occlusive coronary disease and poorer outcomes of coronary revascularization therapies. Coronary collateral growth can provide an alternative or accessory pathway of revascularization. However, collateral growth is impaired in type II diabetes and the metabolic syndrome. Although many factors necessary for collateral growth are known and many interventions have shown promising results in animal studies, not a single attempt to induce coronary collateral growth in human clinical trials has led to satisfactory results. Accordingly, the first part of this review outlines the known deleterious effects of diabetes and the metabolic syndrome on factors necessary for collateral growth, including pro-angiogenic growth factors, endothelial function, the redox state of the coronary circulation, intracellular signaling, leukocytes and bone marrow-derived progenitors cells. The second section highlights the gaps in our current knowledge of how these factors interact with the radically altered environment of the coronary circulation in diabetes and the metabolic syndrome. The interplay between these pathologies and inadequately explored areas related to the temporal regulation of collateral remodeling and the roles of the extracellular matrix, vascular cell phenotype and pro-inflammatory cytokines are emphasized with implications to development of efficient therapies. PMID:22342811

  11. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Science.gov (United States)

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  12. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  13. Pluripotent Stem Cell Metabolism and Mitochondria: Beyond ATP

    Directory of Open Access Journals (Sweden)

    Jarmon G. Lees

    2017-01-01

    Full Text Available Metabolism is central to embryonic stem cell (ESC pluripotency and differentiation, with distinct profiles apparent under different nutrient milieu, and conditions that maintain alternate cell states. The significance of altered nutrient availability, particularly oxygen, and metabolic pathway activity has been highlighted by extensive studies of their impact on preimplantation embryo development, physiology, and viability. ESC similarly modulate their metabolism in response to altered metabolite levels, with changes in nutrient availability shown to have a lasting impact on derived cell identity through the regulation of the epigenetic landscape. Further, the preferential use of glucose and anaplerotic glutamine metabolism serves to not only support cell growth and proliferation but also minimise reactive oxygen species production. However, the perinuclear localisation of spherical, electron-poor mitochondria in ESC is proposed to sustain ESC nuclear-mitochondrial crosstalk and a mitochondrial-H2O2 presence, to facilitate signalling to support self-renewal through the stabilisation of HIFα, a process that may be favoured under physiological oxygen. The environment in which a cell is grown is therefore a critical regulator and determinant of cell fate, with metabolism, and particularly mitochondria, acting as an interface between the environment and the epigenome.

  14. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  15. Vitamin K metabolism in Chinese Hamster Ovary cells

    International Nuclear Information System (INIS)

    Hoffman, H.S.

    1986-01-01

    Recent investigations suggest that vitamin K may have functions other than in blood coagulation and calcification. The present study was undertaken to investigate this hypothesis using cells in culture. Chinese Hamster Ovary (CHO) cells were chosen due to their active metabolism and growth and lack of similarity to liver and bone cells, in which vitamin K metabolism is well known. Cells were adapted to serum-free media, incubated in media containing the appropriate concentrations of vitamin K for specified times, scraped from plates, pelleted, extensively washed to remove adhering vitamin K, extracted with chloroform:methanol (2:1, v/v) and analyzed on C18 HPLC columns. Uptake of vitamin K by CHO cells follows saturation kinetics at vitamin K concentrations up to 25 μ M and is transported into cells at the rate of 10 pmol/min. 10 6 cells. After 24 hours, 3 H vitamin K is metabolized by CHO cells to several compounds, the major of which was isolated and identified as vitamin K epoxide. In 3 experiments, after 24 hours, the average cellular uptake of vitamin K was 8% with approximately half being metabolized to vitamin K epoxide. These results demonstrate that vitamin K is metabolized in cells with widely different functions and suggest a generalized function for vitamin K which has yet to be elucidated

  16. Nutritional demands and metabolic characteristics of the DSIR-HA-1179 insect cell line during growth and infection with the Oryctes nudivirus.

    Science.gov (United States)

    Pushparajan, Charlotte; Claus, Juan Daniel; Marshall, Sean D G; Visnovsky, Gabriel

    2017-12-01

    The DSIR-HA-1179 coleopteran cell line has been identified as a susceptible and permissive host for the in vitro replication of the Oryctes nudivirus, which can be used as a biopesticide against the coconut rhinoceros beetle, pest of palms. The major challenge to in vitro large-scale Oryctes nudivirus production is ensuring process economy. This rests, among other requisites, on the use of low-cost culture media tailored to the nutritional and metabolic needs of the cell line, both in uninfected and infected cultures. The aim of the present study was to characterize the nutritional demands and the metabolic characteristics of the DSIR-HA-1179 cell line during growth and subsequent infection with Oryctes nudivirus in the TC-100 culture medium. Serum-supplementation of the culture medium was found to be critical for cell growth, and addition of 10% fetal bovine serum v/v led to a maximum viable cell density (16.8 × 10 5 cells ml -1 ) with a population doubling time of 4.2 d. Nutritional and metabolic characterization of the cell line revealed a trend of glucose and glutamine consumption but minimal uptake of other amino acids, negligible production of lactate and ammonia, and the accumulation of alanine, both before and after infection. The monitoring of virus production kinetics showed that the TC-100 culture medium was nutritionally sufficient to give a peak yield of 7.38 × 10 7 TCID 50 ml -1 of OrNV at the 6th day post-infection in attached cultures of DSIR-HA-1179 cells in 25 cm 2 T-flasks. Knowledge of the cell line's nutritional demands and virus production kinetics will aid in the formulation of a low-cost culture medium and better process design for large-scale OrNV production in future.

  17. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    International Nuclear Information System (INIS)

    Sasajima, Toshio; Miyagawa, Tadashi; Oku, Takamitsu; Gelovani, Juri G.; Finn, Ronald; Blasberg, Ronald

    2004-01-01

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [ 3 H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([ 14 C]aminocyclopentane carboxylic acid (ACPC) and [ 14 C]aminoisobutyric acid (AIB)), and [ 18 F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K 1 ) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (V d ) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K 1 and V d for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  18. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

    Science.gov (United States)

    Cheng, Tzuling; Sudderth, Jessica; Yang, Chendong; Mullen, Andrew R.; Jin, Eunsook S.; Matés, José M.; DeBerardinis, Ralph J.

    2011-01-01

    Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how “glutamine-addicted” cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis. PMID:21555572

  19. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  20. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia Coli

    Science.gov (United States)

    Brown, Robert B.

    1999-01-01

    Previous experiments have shown that space flight stimulates bacterial growth and metabolism. An explanation for these results is proposed, which may eventually lead to improved terrestrial pharmaceutical production efficiency. It is hypothesized that inertial acceleration affects bacterial growth and metabolism by altering the transport phenomena in the cells external fluid environment. It is believed that this occurs indirectly through changes in the sedimentation rate acting on the bacteria and buoyancy-driven convection acting on their excreted by-products. Experiments over a broad range of accelerations consistently supported this theory. Experiments at I g indicated that higher concentrations of excreted by products surrounding bacterial cells result in a shorter lag phase. Nineteen additional experiments simulated 0 g and 0.5 g using a clinostat, and achieved 50 g, 180 g, and 400 g using a centrifuge. These experiments showed that final cell density is inversely related to the level of acceleration. The experiments also consistently showed that acceleration affects the length of the lag phase in a non-monotonic, yet predictable, manner. Additional data indicated that E. coli metabolize glucose less efficiently at hypergravity, and more efficiently at hypogravity. A space-flight experiment was also performed. Samples on orbit had a statistically significant higher final cell density and more efficient metabolism than did ground controls. These results. which were similar to simulations of 0 g using a clinostat, support the theory that gravity only affects bacterial growth and metabolism indirectly, through changes in the bacteria's fluid environment.

  1. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism

    Science.gov (United States)

    Zielinski, Daniel C.; Jamshidi, Neema; Corbett, Austin J.; Bordbar, Aarash; Thomas, Alex; Palsson, Bernhard O.

    2017-01-01

    Malignant transformation is often accompanied by significant metabolic changes. To identify drivers underlying these changes, we calculated metabolic flux states for the NCI60 cell line collection and correlated the variance between metabolic states of these lines with their other properties. The analysis revealed a remarkably consistent structure underlying high flux metabolism. The three primary uptake pathways, glucose, glutamine and serine, are each characterized by three features: (1) metabolite uptake sufficient for the stoichiometric requirement to sustain observed growth, (2) overflow metabolism, which scales with excess nutrient uptake over the basal growth requirement, and (3) redox production, which also scales with nutrient uptake but greatly exceeds the requirement for growth. We discovered that resistance to chemotherapeutic drugs in these lines broadly correlates with the amount of glucose uptake. These results support an interpretation of the Warburg effect and glutamine addiction as features of a growth state that provides resistance to metabolic stress through excess redox and energy production. Furthermore, overflow metabolism observed may indicate that mitochondrial catabolic capacity is a key constraint setting an upper limit on the rate of cofactor production possible. These results provide a greater context within which the metabolic alterations in cancer can be understood.

  2. Cell longevity and sustained primary growth in palm stems.

    Science.gov (United States)

    Tomlinson, P Barry; Huggett, Brett A

    2012-12-01

    Longevity, or organismal life span, is determined largely by the period over which constituent cells can function metabolically. Plants, with modular organization (the ability continually to develop new organs and tissues) differ from animals, with unitary organization (a fixed body plan), and this difference is reflected in their respective life spans, potentially much longer in plants than animals. We draw attention to the observation that palm trees, as a group of monocotyledons without secondary growth comparable to that of lignophytes (plants with secondary growth from a bifacial cambium), retain by means of sustained primary growth living cells in their trunks throughout their organismal life span. Does this make palms the longest-lived trees because they can grow as individuals for several centuries? No conventional lignophyte retains living metabolically active differentiated cell types in its trunk for this length of time, even though the tree as a whole can exist for millennia. Does this contrast also imply that the long-lived cells in a palm trunk have exceptional properties, which allows this seeming immortality? We document the long-life of many tall palm species and their inherent long-lived stem cell properties, comparing such plants to conventional trees. We provide a summary of aspects of cell age and life span in animals and plants. Cell replacement is a feature of animal function, whereas conventional trees rely on active growth centers (meristems) to sustain organismal development. However, the long persistence of living cells in palm trunks is seen not as evidence for unique metabolic processes that sustain longevity, but is a consequence of unique constructional features. This conclusion suggests that the life span of plant cells is not necessarily genetically determined.

  3. Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues

    Science.gov (United States)

    Golomb, Benjamin L.

    2014-01-01

    Lactic acid bacteria have been isolated from living, harvested, and fermented plant materials; however, the adaptations these bacteria possess for growth on plant tissues are largely unknown. In this study, we investigated plant habitat-specific traits of Lactococcus lactis during growth in an Arabidopsis thaliana leaf tissue lysate (ATL). L. lactis KF147, a strain originally isolated from plants, exhibited a higher growth rate and reached 7.9-fold-greater cell densities during growth in ATL than the dairy-associated strain L. lactis IL1403. Transcriptome profiling (RNA-seq) of KF147 identified 853 induced and 264 repressed genes during growth in ATL compared to that in GM17 laboratory culture medium. Genes induced in ATL included those involved in the arginine deiminase pathway and a total of 140 carbohydrate transport and metabolism genes, many of which are involved in xylose, arabinose, cellobiose, and hemicellulose metabolism. The induction of those genes corresponded with L. lactis KF147 nutrient consumption and production of metabolic end products in ATL as measured by gas chromatography-time of flight mass spectrometry (GC-TOF/MS) untargeted metabolomic profiling. To assess the importance of specific plant-inducible genes for L. lactis growth in ATL, xylose metabolism was targeted for gene knockout mutagenesis. Wild-type L. lactis strain KF147 but not an xylA deletion mutant was able to grow using xylose as the sole carbon source. However, both strains grew to similarly high levels in ATL, indicating redundancy in L. lactis carbohydrate metabolism on plant tissues. These findings show that certain strains of L. lactis are well adapted for growth on plants and possess specific traits relevant for plant-based food, fuel, and feed fermentations. PMID:25384484

  4. Dysregulation of Iron Metabolism in Cholangiocarcinoma Stem-like Cells

    DEFF Research Database (Denmark)

    Raggi, Chiara; Gammella, Elena; Correnti, Margherita

    2017-01-01

    Cholangiocarcinoma (CCA) is a devastating liver tumour arising from malignant transformation of bile duct epithelial cells. Cancer stem cells (CSC) are a subset of tumour cells endowed with stem-like properties, which play a role in tumour initiation, recurrence and metastasis. In appropriate con...... compartment as a novel metabolic factor involved in CCA growth, may have implications for a better therapeutic approach....

  5. Ovarian tumor-initiating cells display a flexible metabolism

    International Nuclear Information System (INIS)

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L FFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth

  6. Ovarian tumor-initiating cells display a flexible metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Angela S. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Roberts, Paul C. [Biomedical Science and Pathobiology, Virginia Tech, Blacksburg, VA (United States); Frisard, Madlyn I. [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Hulver, Matthew W., E-mail: hulvermw@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States); Schmelz, Eva M., E-mail: eschmelz@vt.edu [Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA (United States)

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  7. Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes

    International Nuclear Information System (INIS)

    Zhang, Min; Chai, Yang D; Brumbaugh, Jeffrey; Liu, Xiaojun; Rabii, Ramin; Feng, Sizhe; Misuno, Kaori; Messadi, Diana; Hu, Shen

    2014-01-01

    Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment

  8. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism.

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-02-27

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions.

  9. Lead perturbs epidermal growth factor (EGF) modulation of intracellular calcium metabolism in clonal rat osteoblastic (ROS 17/2.8) cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.

    1991-01-01

    EGF, a single chain polypeptide growth factor important for many cellular functions including glycolysis and protein phophorylation, is known to modulate calcium metabolism in several cell systems. It has been shown that EGF causes an increase in Ca 2+ influx and accumulation of inositol triphosphate, and probably exhibits many, if not all, of its effects via the calcium messenger system. Lead is known to interact with and perturb normal calcium signaling pathways; hence, the purpose of this work was to determine if lead perturbs EGF modulation of calcium metabolism in ROS 17/2.8 cells and if cell functions controlled by EGF were impaired. Cells were labelled with 45 Ca (1.87 mM Ca) for 20 hr in the presence of 5 μM Pb, 50 ng/ml EGF or μM Pb and 50 ng/ml EGF. Following an EGTA rinse, kinetic parameters were determined from 45 Ca efflux curves. Three kinetic compartments described the intracellular metabolism of 45 Ca. 5 μM Pb significantly altered the effect of EGF on intracellular calcium metabolism. Calcium distribution was shifted from the fast exchanging, quantitatively small calcium pools, S 1 and S 2 to the slow exchanging, quantitatively large S 2 . There was also a 50% increase in total cell calcium in cells treated with 5 μM Pb and 50 ng/ml EGF over cells treated with 50 ng/ml EGF alone. There was also a 25% decrease in the half-time for calcium exchange from S 3 to S 1 was also decreased. These data show that Pb impairs the normal modulation of intracellular calcium homeostasis by EGF and may therefore perturb functions that are modulated by EGF via the calcium messenger system

  10. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  11. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  12. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    Science.gov (United States)

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  13. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris.

    Science.gov (United States)

    Nezammahalleh, Hassan; Ghanati, Faezeh; Adams, Thomas A; Nosrati, Mohsen; Shojaosadati, Seyed Abbas

    2016-10-01

    An electric field (EF) generator device was fabricated and applied to the treatment of Chlorella vulgaris ISC33 at three distinct concentrations before cultivation. The EF of moderate intensity (2.7kVcm(-1)) has a hormetic effect on algal growth. The highest growth stimulation of 51% was observed after 50min treatment of 0.4gL(-1) algal suspension. The influence of EF on the system was then studied from both theoretical and experimental perspectives. The growth rate increased with treatment time up to a maximum because of improved membrane permeability, and then declined afterwards due to peroxide accumulation in the medium. The contents of chlorophylls, carotenoids, soluble carbohydrates, lipids, and proteins were also measured to understand possible changes on algal metabolism. The EF treatment of algal suspension has no observable effect on the cell metabolism while both algal growth and metabolism was significantly affected by the inoculum size. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  15. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    Science.gov (United States)

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  16. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death

    International Nuclear Information System (INIS)

    Cheng, Gang; Zielonka, Jacek; McAllister, Donna M; Mackinnon, A Craig Jr; Joseph, Joy; Dwinell, Michael B; Kalyanaraman, Balaraman

    2013-01-01

    Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect

  17. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].

    Science.gov (United States)

    Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan

    2015-03-04

    We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.

  18. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    Science.gov (United States)

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  19. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  20. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  1. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle.

    Science.gov (United States)

    Zhang, Zheng; Milias-Argeitis, Andreas; Heinemann, Matthias

    2018-02-01

    Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.

  2. Regulation of glucose metabolism in T cells; new insight into the role of Phosphoinositide 3-kinases

    Directory of Open Access Journals (Sweden)

    David K Finlay

    2012-08-01

    Full Text Available Naïve T cells are relatively quiescent cells that only require energy to prevent atrophy and for survival and migration. However, in response to developmental or extrinsic cues T cells can engage in rapid growth and robust proliferation, produce of a range of effector molecules and migrate through peripheral tissues. To meet the significantly increased metabolic demands of these activities, T cells switch from primarily metabolizing glucose to carbon dioxide through oxidative phosphorylation to utilizing glycolysis to convert glucose to lactate (termed aerobic glycolysis. This metabolic switch allows glucose to be used as a source of carbon to generate biosynthetic precursors for the production of protein, DNA and phospholipids, and is crucial for T cells to meet metabolic demands. Phosphoinositide 3-kinases (PI3K are a family of inositol lipid kinases linked with a broad range of cellular functions in T lymphocytes that include cell growth, proliferation, metabolism, differentiation, survival and migration. Initial research described a critical role for PI3K signaling through Akt (also called Protein kinase B for the increased glucose uptake and glycolysis that accompanies T cell activation. This review article relates this original research with more recent data and discusses the evidence for and against a role for PI3K in regulating the metabolic switch to aerobic glycolysis in T cells.

  3. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans.

    Science.gov (United States)

    Qiu, W; Zheng, X; Wei, Y; Zhou, X; Zhang, K; Wang, S; Cheng, L; Li, Y; Ren, B; Xu, X; Li, Y; Li, M

    2016-10-01

    Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Modeling metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle.

    Science.gov (United States)

    Fang, Xin; Reifman, Jaques; Wallqvist, Anders

    2014-10-01

    The human malaria parasite Plasmodium falciparum goes through a complex life cycle, including a roughly 48-hour-long intraerythrocytic developmental cycle (IDC) in human red blood cells. A better understanding of the metabolic processes required during the asexual blood-stage reproduction will enhance our basic knowledge of P. falciparum and help identify critical metabolic reactions and pathways associated with blood-stage malaria. We developed a metabolic network model that mechanistically links time-dependent gene expression, metabolism, and stage-specific growth, allowing us to predict the metabolic fluxes, the biomass production rates, and the timing of production of the different biomass components during the IDC. We predicted time- and stage-specific production of precursors and macromolecules for P. falciparum (strain HB3), allowing us to link specific metabolites to specific physiological functions. For example, we hypothesized that coenzyme A might be involved in late-IDC DNA replication and cell division. Moreover, the predicted ATP metabolism indicated that energy was mainly produced from glycolysis and utilized for non-metabolic processes. Finally, we used the model to classify the entire tricarboxylic acid cycle into segments, each with a distinct function, such as superoxide detoxification, glutamate/glutamine processing, and metabolism of fumarate as a byproduct of purine biosynthesis. By capturing the normal metabolic and growth progression in P. falciparum during the IDC, our model provides a starting point for further elucidation of strain-specific metabolic activity, host-parasite interactions, stress-induced metabolic responses, and metabolic responses to antimalarial drugs and drug candidates.

  6. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody.

    Science.gov (United States)

    Kunisawa, Jun

    2017-04-01

    To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.

  7. Estrogen-induced disruption of intracellular iron metabolism leads to oxidative stress, membrane damage, and cell cycle arrest in MCF-7 cells.

    Science.gov (United States)

    Bajbouj, Khuloud; Shafarin, Jasmin; Abdalla, Maher Y; Ahmad, Iman M; Hamad, Mawieh

    2017-10-01

    It is well established that several forms of cancer associate with significant iron overload. Recent studies have suggested that estrogen (E2) disrupts intracellular iron homeostasis by reducing hepcidin synthesis and maintaining ferroportin integrity. Here, the ability of E2 to alter intracellular iron status and cell growth potential was investigated in MCF-7 cells treated with increasing concentrations of E2. Treated cells were assessed for intracellular iron status, the expression of key proteins involved in iron metabolism, oxidative stress, cell survival, growth, and apoptosis. E2 treatment resulted in a significant reduction in hepcidin expression and a significant increase in hypoxia-inducible factor 1 alpha, ferroportin, transferrin receptor, and ferritin expression; a transient decrease in labile iron pool; and a significant increase in total intracellular iron content mainly at 20 nM/48 h E2 dose. Treated cells also showed increased total glutathione and oxidized glutathione levels, increased superoxide dismutase activity, and increased hemoxygenase 1 expression. Treatment with E2 at 20 nM for 48 h resulted in a significant reduction in cell growth (0.35/1 migration rate) and decreased cell survival (iron metabolism and precipitates adverse effects concerning cell viability, membrane integrity, and growth potential.

  8. Mapping cancer cell metabolism with 13 C flux analysis: Recent progress and future challenges

    Directory of Open Access Journals (Sweden)

    Casey Scott Duckwall

    2013-01-01

    Full Text Available The reprogramming of energy metabolism is emerging as an important molecular hallmark of cancer cells. Recent discoveries linking specific metabolic alterations to cancer development have strengthened the idea that altered metabolism is more than a side effect of malignant transformation, but may in fact be a functional driver of tumor growth and progression in some cancers. As a result, dysregulated metabolic pathways have become attractive targets for cancer therapeutics. This review highlights the application of 13 C metabolic flux analysis (MFA to map the flow of carbon through intracellular biochemical pathways of cancer cells. We summarize several recent applications of MFA that have identified novel biosynthetic pathways involved in cancer cell proliferation and shed light on the role of specific oncogenes in regulating these pathways. Through such studies, it has become apparent that the metabolic phenotypes of cancer cells are not as homogeneous as once thought, but instead depend strongly on the molecular alterations and environmental factors at play in each case.

  9. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  10. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Skauli, K.S.

    1996-08-01

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  11. Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    Science.gov (United States)

    Priesnitz, Christian; Niklas, Jens; Rose, Thomas; Sandig, Volker; Heinzle, Elmar

    2012-03-01

    This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Choline Phospholipid Metabolites of Human Vascular Endothelial Cells Altered by Cyclooxygenase Inhibition, Growth Factor Depletion, and Paracrine Factors Secreted by Cancer Cells

    Directory of Open Access Journals (Sweden)

    Noriko Mori

    2003-04-01

    Full Text Available Magnetic resonance studies have previously shown that solid tumors and cancer cells in culture typically exhibit high phosphocholine and total choline. Treatment of cancer cells with the anti-inflammatory agent, indomethacin (INDO, reverted the phenotype of choline phospholipid metabolites in cancer cells towards a less malignant phenotype. Since endothelial cells form a key component of tumor vasculature, in this study, we used MR spectroscopy to characterize the phenotype of choline phospholipid metabolites in human umbilical vein endothelial cells (HUVECs. We determined the effect of growth factors, the anti-inflammatory agent INDO, and conditioned media obtained from a malignant cell line, on choline phospholipid metabolites. Growth factor depletion or treatment with INDO induced similar changes in the choline phospholipid metabolites of HUVECs. Treatment with conditioned medium obtained from MDA-MB-231 cancer cells induced changes similar to the presence of growth factor supplements. These results suggest that cancer cells secrete growth factors and/or other molecules that influence the choline phospholipid metabolism of HUVECs. The ability of INDO to alter choline phospholipid metabolism in the presence of growth factor supplements suggests that the inflammatory response pathways of HUVECs may play a role in cancer cell-HUVEC interaction and in the response of HUVECs to growth factors.

  13. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate long-lasting memory cells.

    Directory of Open Access Journals (Sweden)

    Shan He

    Full Text Available BACKGROUND: Cellular metabolism plays a critical role in regulating T cell responses and the development of memory T cells with long-term protections. However, the metabolic phenotype of antigen-activated T cells that are responsible for the generation of long-lived memory cells has not been characterized. DESIGN AND METHODS: Using lymphocytic choriomeningitis virus (LCMV peptide gp33-specific CD8(+ T cells derived from T cell receptor transgenic mice, we characterized the metabolic phenotype of proliferating T cells that were activated and expanded in vitro in the presence or absence of rapamycin, and determined the capability of these rapamycin-treated T cells to generate long-lived memory cells in vivo. RESULTS: Antigen-activated CD8(+ T cells treated with rapamycin gave rise to 5-fold more long-lived memory T cells in vivo than untreated control T cells. In contrast to that control T cells only increased glycolysis, rapamycin-treated T cells upregulated both glycolysis and oxidative phosphorylation (OXPHOS. These rapamycin-treated T cells had greater ability than control T cells to survive withdrawal of either glucose or growth factors. Inhibition of OXPHOS by oligomycin significantly reduced the ability of rapamycin-treated T cells to survive growth factor withdrawal. This effect of OXPHOS inhibition was accompanied with mitochondrial hyperpolarization and elevation of reactive oxygen species that are known to be toxic to cells. CONCLUSIONS: Our findings indicate that these rapamycin-treated T cells may represent a unique cell model for identifying nutrients and signals critical to regulating metabolism in both effector and memory T cells, and for the development of new methods to improve the efficacy of adoptive T cell cancer therapy.

  14. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis.

    Science.gov (United States)

    Jameson, Eleanor; Fu, Tiantian; Brown, Ian R; Paszkiewicz, Konrad; Purdy, Kevin J; Frank, Stefanie; Chen, Yin

    2016-09-01

    Gammaproteobacteria are important gut microbes but only persist at low levels in the healthy gut. The ecology of Gammaproteobacteria in the gut environment is poorly understood. Here, we demonstrate that choline is an important growth substrate for representatives of Gammaproteobacteria. Using Proteus mirabilis as a model, we investigate the role of choline metabolism and demonstrate that the cutC gene, encoding a choline-trimethylamine lyase, is essential for choline degradation to trimethylamine by targeted mutagenesis of cutC and subsequent complementation experiments. Proteus mirabilis can rapidly utilize choline to enhance growth rate and cell yield in broth culture. Importantly, choline also enhances swarming-associated colony expansion of P. mirabilis under anaerobic conditions on a solid surface. Comparative transcriptomics demonstrated that choline not only induces choline-trimethylamine lyase but also genes encoding shell proteins for the formation of bacterial microcompartments. Subsequent analyses by transmission electron microscopy confirmed the presence of such novel microcompartments in cells cultivated in liquid broth and hyper-flagellated swarmer cells from solid medium. Together, our study reveals choline metabolism as an adaptation strategy for P. mirabilis and contributes to better understand the ecology of this bacterium in health and disease. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Protein metabolism in marine animals: the underlying mechanism of growth.

    Science.gov (United States)

    Fraser, Keiron P P; Rogers, Alex D

    2007-01-01

    Growth is a fundamental process within all marine organisms. In soft tissues, growth is primarily achieved by the synthesis and retention of proteins as protein growth. The protein pool (all the protein within the organism) is highly dynamic, with proteins constantly entering the pool via protein synthesis or being removed from the pool via protein degradation. Any net change in the size of the protein pool, positive or negative, is termed protein growth. The three inter-related processes of protein synthesis, degradation and growth are together termed protein metabolism. Measurement of protein metabolism is vital in helping us understand how biotic and abiotic factors affect growth and growth efficiency in marine animals. Recently, the developing fields of transcriptomics and proteomics have started to offer us a means of greatly increasing our knowledge of the underlying molecular control of protein metabolism. Transcriptomics may also allow us to detect subtle changes in gene expression associated with protein synthesis and degradation, which cannot be detected using classical methods. A large literature exists on protein metabolism in animals; however, this chapter concentrates on what we know of marine ectotherms; data from non-marine ectotherms and endotherms are only discussed when the data are of particular relevance. We first consider the techniques available to measure protein metabolism, their problems and what validation is required. Protein metabolism in marine organisms is highly sensitive to a wide variety of factors, including temperature, pollution, seasonality, nutrition, developmental stage, genetics, sexual maturation and moulting. We examine how these abiotic and biotic factors affect protein metabolism at the level of whole-animal (adult and larval), tissue and cellular protein metabolism. Available gene expression data, which help us understand the underlying control of protein metabolism, are also discussed. As protein metabolism appears to

  16. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    Directory of Open Access Journals (Sweden)

    Steffen Borchers

    Full Text Available Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN. We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell

  17. Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods.

    Science.gov (United States)

    Borchers, Steffen; Freund, Susann; Rath, Alexander; Streif, Stefan; Reichl, Udo; Findeisen, Rolf

    2013-01-01

    Production of bio-pharmaceuticals in cell culture, such as mammalian cells, is challenging. Mathematical models can provide support to the analysis, optimization, and the operation of production processes. In particular, unstructured models are suited for these purposes, since they can be tailored to particular process conditions. To this end, growth phases and the most relevant factors influencing cell growth and product formation have to be identified. Due to noisy and erroneous experimental data, unknown kinetic parameters, and the large number of combinations of influencing factors, currently there are only limited structured approaches to tackle these issues. We outline a structured set-based approach to identify different growth phases and the factors influencing cell growth and metabolism. To this end, measurement uncertainties are taken explicitly into account to bound the time-dependent specific growth rate based on the observed increase of the cell concentration. Based on the bounds on the specific growth rate, we can identify qualitatively different growth phases and (in-)validate hypotheses on the factors influencing cell growth and metabolism. We apply the approach to a mammalian suspension cell line (AGE1.HN). We show that growth in batch culture can be divided into two main growth phases. The initial phase is characterized by exponential growth dynamics, which can be described consistently by a relatively simple unstructured and segregated model. The subsequent phase is characterized by a decrease in the specific growth rate, which, as shown, results from substrate limitation and the pH of the medium. An extended model is provided which describes the observed dynamics of cell growth and main metabolites, and the corresponding kinetic parameters as well as their confidence intervals are estimated. The study is complemented by an uncertainty and outlier analysis. Overall, we demonstrate utility of set-based methods for analyzing cell growth and

  18. Ptpmt1 induced by HIF-2α regulates the proliferation and glucose metabolism in erythroleukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin-Qin [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China); Qinghai Provincial People' s Hospital, Xining (China); Xiao, Feng-Jun; Sun, Hui-Yan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Shi, Xue-Feng [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China); Qinghai Provincial People' s Hospital, Xining (China); Wang, Hua; Yang, Yue-Feng; Li, Yu-Xiang [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Wang, Li-Sheng, E-mail: wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850 (China); Ge, Ri-Li, E-mail: geriligao@hotmail.com [High Altitude Medicine of Ministry of Chinese Education and Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 (China)

    2016-03-18

    Hypoxia provokes metabolism misbalance, mitochondrial dysfunction and oxidative stress in both human and animal cells. However, the mechanisms which hypoxia causes mitochondrial dysfunction and energy metabolism misbalance still remain unclear. In this study, we presented evidence that mitochondrial phosphatase Ptpmt1 is a hypoxia response molecule that regulates cell proliferation, survival and glucose metabolism in human erythroleukemia TF-1 cells. Exposure to hypoxia or DFO treatment results in upregulation of HIF1-α, HIF-2α and Ptpmt1. Only inhibition of HIF-2α by shRNA transduction reduces Ptpmt1 expression in TF-1 cells under hypoxia. Ptpmt1 inhibitor suppresses the growth and induces apoptosis of TF-1 cells. Furthermore, we demonstrated that Ptpmt1 inhibition reduces the Glut1 and Glut3 expression and decreases the glucose consumption in TF-1 cells. In additional, Ptpmt1 knockdown also results in the mitochondrial dysfunction determined by JC1 staining. These results delineate a key role for HIF-2α-induced Ptpmt1 upregulation in proliferation, survival and glucose metabolism of erythroleukemia cells. It is indicated that Ptpmt1 plays important roles in hypoxia-induced cell metabolism and mitochondrial dysfunction. - Highlights: • Hypoxia induces upregulation of HIF-1α, HIF-2α and Ptpmt1; HIF-2a induces Ptpmt1 upregulation in TF-1 cells. • PTPMT-1 inhibition reduces growth and induces apoptosis of TF-1 cells. • PTPMT1 inhibition downregulates Glut-1, Glut-3 expression and reduces glucose consumption.

  19. Exogenous proline relieves growth inhibition caused by NaCl in petunia cells: Metabolism of L-[15M]-proline followed by 15N NMR

    International Nuclear Information System (INIS)

    Heyser, J.W.; Chacon, M.J.

    1989-01-01

    Exogenous proline stimulated the growth of Petunia hybrida cells on 195 mM NaCl 10-fold as compared with cells grown on 195 mM CaCl medium minus proline. L-[ 15 N]-proline was fed to cells growing on 0 and 195 mM CaCl, and its metabolism was followed by 15 N NMR analysis of cell extracts. Total proline and amino acids were determined by ninhydrin assay. Proline and primary amino acids were easily resolved in NMR spectra and the amount of 15 N-label which remained in proline was determined. Reduced catabolism of proline in cells grown on NaCl was evident. The role of exogenous proline in conferring increased NaCl tolerance in this nonhalophyte will be discussed

  20. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  1. Predicting growth of the healthy infant using a genome scale metabolic model.

    Science.gov (United States)

    Nilsson, Avlant; Mardinoglu, Adil; Nielsen, Jens

    2017-01-01

    An estimated 165 million children globally have stunted growth, and extensive growth data are available. Genome scale metabolic models allow the simulation of molecular flux over each metabolic enzyme, and are well adapted to analyze biological systems. We used a human genome scale metabolic model to simulate the mechanisms of growth and integrate data about breast-milk intake and composition with the infant's biomass and energy expenditure of major organs. The model predicted daily metabolic fluxes from birth to age 6 months, and accurately reproduced standard growth curves and changes in body composition. The model corroborates the finding that essential amino and fatty acids do not limit growth, but that energy is the main growth limiting factor. Disruptions to the supply and demand of energy markedly affected the predicted growth, indicating that elevated energy expenditure may be detrimental. The model was used to simulate the metabolic effect of mineral deficiencies, and showed the greatest growth reduction for deficiencies in copper, iron, and magnesium ions which affect energy production through oxidative phosphorylation. The model and simulation method were integrated to a platform and shared with the research community. The growth model constitutes another step towards the complete representation of human metabolism, and may further help improve the understanding of the mechanisms underlying stunting.

  2. Actionable Metabolic Pathways in Heart Failure and Cancer—Lessons From Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Anja Karlstaedt

    2018-06-01

    Full Text Available Recent advances in cancer cell metabolism provide unprecedented opportunities for a new understanding of heart metabolism and may offer new approaches for the treatment of heart failure. Key questions driving the cancer field to understand how tumor cells reprogram metabolism and to benefit tumorigenesis are also applicable to the heart. Recent experimental and conceptual advances in cancer cell metabolism provide the cardiovascular field with the unique opportunity to target metabolism. This review compares cancer cell metabolism and cardiac metabolism with an emphasis on strategies of cellular adaptation, and how to exploit metabolic changes for therapeutic benefit.

  3. Metabolic regulation of mycobacterial growth and antibiotic sensitivity.

    Directory of Open Access Journals (Sweden)

    Seung-Hun Baek

    2011-05-01

    Full Text Available Treatment of chronic bacterial infections, such as tuberculosis (TB, requires a remarkably long course of therapy, despite the availability of drugs that are rapidly bacteriocidal in vitro. This observation has long been attributed to the presence of bacterial populations in the host that are "drug-tolerant" because of their slow replication and low rate of metabolism. However, both the physiologic state of these hypothetical drug-tolerant populations and the bacterial pathways that regulate growth and metabolism in vivo remain obscure. Here we demonstrate that diverse growth-limiting stresses trigger a common signal transduction pathway in Mycobacterium tuberculosis that leads to the induction of triglyceride synthesis. This pathway plays a causal role in reducing growth and antibiotic efficacy by redirecting cellular carbon fluxes away from the tricarboxylic acid cycle. Mutants in which this metabolic switch is disrupted are unable to arrest their growth in response to stress and remain sensitive to antibiotics during infection. Thus, this regulatory pathway contributes to antibiotic tolerance in vivo, and its modulation may represent a novel strategy for accelerating TB treatment.

  4. Evaluation of Rhodiola crenulata on growth and metabolism of NB-1691, an MYCN-amplified neuroblastoma cell line.

    Science.gov (United States)

    Wong, Kaitlyn E; Mora, Maria C; Sultana, Nazneen; Moriarty, Kevin P; Arenas, Richard B; Yadava, Nagendra; Schneider, Sallie S; Tirabassi, Michael V

    2018-06-01

    Outcomes of children with high grade neuroblastoma remain poor despite multi-agent chemotherapy regimens. Rhodiola crenulata extracts display anti-neoplastic properties against several cancers including breast cancer, melanoma, and glioblastoma. In this study, we evaluated the anti-neoplastic potential of Rhodiola crenulata extracts on human neuroblastoma cells. Through this work, cell viability and proliferation were evaluated following treatments with ethanol (vehicle control) or Rhodiola crenulata extract in neuroblastoma, NB-1691 or SK-N-AS cells, in vitro. HIF-1 transcriptional activity was evaluated using a dual luciferase assay. Quantitative real-time polymerase chain reaction was utilized to assess the expression of HIF-1 targets. Selected metabolic intermediates were evaluated for their ability to rescue cells from Rhodiola crenulata extract-induced death. Lactate dehydrogenase, pyruvate kinase, and pyruvate dehydrogenase activities and NAD + /NADH levels were assayed in vehicle and Rhodiola crenulata extract-treated cells. The effects of Rhodiola crenulata extracts on metabolism were assessed by respirometry and metabolic phenotyping/fingerprinting. Our results revealed striking cytotoxic effects upon Rhodiola crenulata extract treatment, especially prominent in NB-1691 cells. As a greater response was observed in NB-1691 cells therefore it was used for remaining experiments. Upon Rhodiola crenulata extract treatment, HIF-1 transcriptional activity was increased. This increase in activity correlated with changes in HIF-1 targets involved in cellular metabolism. Serendipitously, we observed that addition of pyruvate protected against the cytotoxic effects of Rhodiola crenulata extracts. Therefore, we focused on the metabolic effects of Rhodiola crenulata extracts on NB-1691 cells. We observed that while the activities of pyruvate kinase and pyruvate dehydrogenase activities were increased, the activity of lactate dehydrogenase activity was decreased upon

  5. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2014-03-01

    Full Text Available During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA, which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi.

  6. Metabolic flux analysis of heterotrophic growth in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Nanette R Boyle

    Full Text Available Despite the wealth of knowledge available for C. reinhardtii, the central metabolic fluxes of growth on acetate have not yet been determined. In this study, 13C-metabolic flux analysis (13C-MFA was used to determine and quantify the metabolic pathways of primary metabolism in C. reinhardtii cells grown under heterotrophic conditions with acetate as the sole carbon source. Isotopic labeling patterns of compartment specific biomass derived metabolites were used to calculate the fluxes. It was found that acetate is ligated with coenzyme A in the three subcellular compartments (cytosol, mitochondria and plastid included in the model. Two citrate synthases were found to potentially be involved in acetyl-coA metabolism; one localized in the mitochondria and the other acting outside the mitochondria. Labeling patterns demonstrate that Acetyl-coA synthesized in the plastid is directly incorporated in synthesis of fatty acids. Despite having a complete TCA cycle in the mitochondria, it was also found that a majority of the malate flux is shuttled to the cytosol and plastid where it is converted to oxaloacetate providing reducing equivalents to these compartments. When compared to predictions by flux balance analysis, fluxes measured with 13C-MFA were found to be suboptimal with respect to biomass yield; C. reinhardtii sacrifices biomass yield to produce ATP and reducing equivalents.

  7. Vascular endothelial growth factors: multitasking functionality in metabolism, health and disease.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Harrison, Michael A; Tomlinson, Darren C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-07-01

    Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.

  8. Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings.

    Science.gov (United States)

    Väisänen, Enni E; Smeds, Annika I; Fagerstedt, Kurt V; Teeri, Teemu H; Willför, Stefan M; Kärkönen, Anna

    2015-09-01

    Externally added coniferyl alcohol at high concentrations reduces the growth of Nicotiana cells and seedlings. Coniferyl alcohol is metabolized by BY-2 cells to several compounds. Coniferyl alcohol (CA) is a common monolignol and a building block of lignin. The toxicity of monolignol alcohols has been stated in the literature, but there are only few studies suggesting that this is true. We investigated the physiological effects of CA on living plant cells in more detail. Tobacco (Nicotiana tabacum) Bright yellow-2 cells (BY-2) and Nicotiana benthamiana seedlings both showed concentration-dependent growth retardation in response to 0.5-5 mM CA treatment. In some cases, CA addition caused cell death in BY-2 cultures, but this response was dependent on the growth stage of the cells. Based on LC-MS/MS analysis, BY-2 cells did not accumulate the externally supplemented CA, but metabolized it to ferulic acid, ferulic acid glycoside, coniferin, and to some other phenolic compounds. In addition to growth inhibition, CA caused the formation of a lignin-like compound detected by phloroglucinol staining in N. benthamiana roots and occasionally in BY-2 cells. To prevent this, we added potassium iodide (KI, at 5 mM) to overcome the peroxidase-mediated CA polymerization to lignin. KI had, however, toxic effects on its own: in N. benthamiana seedlings, it caused reduction in growth; in BY-2 cells, reduction in growth and cell viability. Surprisingly, CA restored the growth of KI-treated BY-2 cells and N. benthamiana seedlings. Our results suggest that CA at high concentrations is toxic to plant cells.

  9. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    Science.gov (United States)

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  10. THE ROLE OF GROWTH HORMONE IN LIPID METABOLISM

    Directory of Open Access Journals (Sweden)

    I Gusti Ayu Dewi Ratnayanti

    2013-04-01

    Full Text Available Growth hormone (GH is one of the hormones that regulate metabolism, including lipid metabolism. GH can regulate the amount of fat in the tissue and also the level of lipid profile. Growth hormone affects the lipid in the tissue and blood by modulating the lipid metabolism, especially through the regulation of synthesis, excretion and breakdown of internal lipids. Research showed that GH could consistently lower the level of total cholesterol and LDL, whereas its effect on triglyceride and HDL level showed varying results. Growth hormone induces lypolisis by stimulating the activity of HSL and LPL and thereby influenced the triglyceride level and tissue fat storage. Cholesterol and lipoprotein levels are controlled by regulating the synthesis of cholesterol by lowering the activity of HMGCoA reductase. The excretion of cholesterol through the bile is also enhanced by stimulating the activity of enzymes C7?OH. The breakdown of VLDL and LDL are enhanced by increasing the expression of LDL receptor and ApoE as well as affecting the editing of mRNA ApoB100. Increase activity of LPL is also known to be the important factor in the HDL metabolism

  11. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  12. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  13. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    Science.gov (United States)

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Real-time metabolome profiling of the metabolic switch between starvation and growth.

    Science.gov (United States)

    Link, Hannes; Fuhrer, Tobias; Gerosa, Luca; Zamboni, Nicola; Sauer, Uwe

    2015-11-01

    Metabolic systems are often the first networks to respond to environmental changes, and the ability to monitor metabolite dynamics is key for understanding these cellular responses. Because monitoring metabolome changes is experimentally tedious and demanding, dynamic data on time scales from seconds to hours are scarce. Here we describe real-time metabolome profiling by direct injection of living bacteria, yeast or mammalian cells into a high-resolution mass spectrometer, which enables automated monitoring of about 300 compounds in 15-30-s cycles over several hours. We observed accumulation of energetically costly biomass metabolites in Escherichia coli in carbon starvation-induced stationary phase, as well as the rapid use of these metabolites upon growth resumption. By combining real-time metabolome profiling with modeling and inhibitor experiments, we obtained evidence for switch-like feedback inhibition in amino acid biosynthesis and for control of substrate availability through the preferential use of the metabolically cheaper one-step salvaging pathway over costly ten-step de novo purine biosynthesis during growth resumption.

  15. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production

    OpenAIRE

    Nuno Carinhas; Daniel A. M. Pais; Alexey Koshkin; Paulo Fernandes; Ana S. Coroadinha; Manuel J. T. Carrondo; Paula M. Alves; Ana P. Teixeira

    2016-01-01

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-13C]glucose and [U-13C]glutamine, we apply for the first time 13C-Metabolic flux analysis (13C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells meta...

  16. Effects of Peptone Supplementation in Different Culture Media on Growth, Metabolic Pathway and Productivity of CHO DG44 Cells; a New Insight into Amino Acid Profiles.

    Science.gov (United States)

    Davami, Fatemeh; Eghbalpour, Farnaz; Nematollahi, Leila; Barkhordari, Farzaneh; Mahboudi, Fereidoun

    2015-01-01

    The optimization of bioprocess conditions towards improved growth profile and productivity yield is considered of great importance in biopharmaceutical manufacturing. Peptones as efficient sources of nutrients have been studied for their effect on media development; however, their role on metabolic pathway is not well understood. In the present study, the effect of different concentration of peptones on a recombinant Chinese hamster ovary (CHO) cell line grown in three serum-free suspension cultures was determined. Six peptones of different origins and available amino acid profiles were investigated regarding their impact on cell growth, productivity, and metabolic pathways changes. In optimized feeding strategies, increases of 136% and 159% in volumetric productivity (for a low-nutrient culture media) and 55% (for a high-nutrient culture media) were achieved. Furthermore, particular sources of peptones with specific amino acid profile developed preferential results for each different culture medium. Two peptones, SoyA2SC and SoyE-110, were the only hydrolysates that showed production improvement in all three media. Casein Peptone plus Tryptone N1 and SoyA3SC showed different improved results based on their implemented concentration for each individual basal medium. The amino acid profile of peptones may provide clues to identify the most effective feeding strategies for recombinant CHO cells.

  17. [Pattern of growth and metabolism of thermotolerant microorganisms on media containing carbohydrates and hydrocarbons].

    Science.gov (United States)

    Kvasnikov, E I; Isakova, D M; Eliseeva, G S; Loiko, Z I

    1977-01-01

    Experiments were carried out to examine the growth and metabolism of thermotolerant yeast Candida tropicalis K-41 and bacteria Micrococcus freudenreichii that do not have a single temperature point but instead have an optimal temperature plateau at which the growth rate and biosynthetic activity remain unaltered or change insignificantly. Upon transition from the carbohydrate to the hydrocarbon pattern of nutrition these microorganisms show significant changes in metabolic processes: optimal concentration of biotin in the medium decreases significantly; the synthesis of riboflavin, nicotinic and pantothenic acids increases in yeast; the synthesis of nicotinic acid, biotin and vitamin B12 increases in bacteria. During microbial cultivation on hydrocarbons the content of cell lipids grows; yeast accumulate actively phospholipids and free fatty acids; bacteria build up intensively waxes and phospholipids. With the near-maximal growth rate the total synthesis of lipids decreases on carbohydrates and increases drastically on hydrocarbons, primarily at the expense of the above fractions.

  18. Covariation of metabolic rates and cell size in coccolithophores

    Science.gov (United States)

    Aloisi, G.

    2015-08-01

    Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment-metabolism-size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I

  19. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. © 2013 Published by Elsevier Inc.

  20. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence

    Science.gov (United States)

    Li, Yaqing; Li, Xiaoran; Li, Xiaoli; Zhong, Yali; Ji, Yasai; Yu, Dandan; Zhang, Mingzhi; Wen, Jian-Guo; Zhang, Hongquan; Goscinski, Mariusz Adam; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Alternative pathways of metabolism endowed cancer cells with metabolic stress. Inhibiting the related compensatory pathways might achieve synergistic anticancer results. This study demonstrated that pyruvate dehydrogenase E1α gene knockout (PDHA1 KO) resulted in alterations in tumor cell metabolism by rendering the cells with increased expression of glutaminase1 (GLS1) and glutamate dehydrogenase1 (GLUD1), leading to an increase in glutamine-dependent cell survival. Deprivation of glutamine induced cell growth inhibition, increased reactive oxygen species and decreased ATP production. Pharmacological blockade of the glutaminolysis pathway resulted in massive tumor cells apoptosis and dysfunction of ROS scavenge in the LNCaP PDHA1 KO cells. Further examination of the key glutaminolysis enzymes in human prostate cancer samples also revealed that higher levels of GLS1 and GLUD1 expression were significantly associated with aggressive clinicopathological features and poor clinical outcome. These insights supply evidence that glutaminolysis plays a compensatory role for cell survival upon alternative energy metabolism and targeting the glutamine anaplerosis of energy metabolism via GLS1 and GLUD1 in cancer cells may offer a potential novel therapeutic strategy. PMID:27462778

  1. Connecting Mitochondria, Metabolism, and Stem Cell Fate

    Science.gov (United States)

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha

    2015-01-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases. PMID:26134242

  2. A Two-Layer Gene Circuit for Decoupling Cell Growth from Metabolite Production.

    Science.gov (United States)

    Lo, Tat-Ming; Chng, Si Hui; Teo, Wei Suong; Cho, Han-Saem; Chang, Matthew Wook

    2016-08-01

    We present a synthetic gene circuit for decoupling cell growth from metabolite production through autonomous regulation of enzymatic pathways by integrated modules that sense nutrient and substrate. The two-layer circuit allows Escherichia coli to selectively utilize target substrates in a mixed pool; channel metabolic resources to growth by delaying enzymatic conversion until nutrient depletion; and activate, terminate, and re-activate conversion upon substrate availability. We developed two versions of controller, both of which have glucose nutrient sensors but differ in their substrate-sensing modules. One controller is specific for hydroxycinnamic acid and the other for oleic acid. Our hydroxycinnamic acid controller lowered metabolic stress 2-fold and increased the growth rate 2-fold and productivity 5-fold, whereas our oleic acid controller lowered metabolic stress 2-fold and increased the growth rate 1.3-fold and productivity 2.4-fold. These results demonstrate the potential for engineering strategies that decouple growth and production to make bio-based production more economical and sustainable. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Effects of ionizing radiation on the metabolism and longitudinal growth of cartilaginous embryonic chick tibiae in vitro

    International Nuclear Information System (INIS)

    Ridder, L. de; Thierens, H.; Cornelissen, M.; Segaert, O.

    1988-01-01

    The effect of ionizing radiation on the metabolism and longitudinal growth of cartilaginous tibiae of 6.5-day-old chick embryos was studied in vitro over a 3-day period. Before being cultured, tibiae received absorbed doses of 2 to 200 Gy. Of each pair, the counterpart served as control. Compared to the strong inhibition of [ 3 H]thymidine incorporation, already 50% at 10 Gy, the effects of ionizing radiation on [ 3 H]uridine and [ 3 H]proline incorporation were limited: 20 and 40% respectively at 150 Gy. Metabolism of the cartilage cells in our organ culture was almost completely arrested at 200 Gy. Light and electron microscopy showed no morphological differences between irradiated and sham-irradiated tibiae until 150 Gy. At 200 Gy necrosis of most of the cells was observed. No differences in form and arrangement of extracellular fibers were noticed. The results of the metabolic studies and the morphological observations were correlated with the effects of ionizing radiation on the longitudinal growth. In contrast to DNA synthesis, RNA transcription and synthesis of collagen fibres were radioresistant processes. (author)

  4. Effects of ionizing radiation on the metabolism and longitudinal growth of cartilaginous embryonic chick tibiae in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, L. de; Thierens, H.; Cornelissen, M.; Segaert, O.

    1988-06-01

    The effect of ionizing radiation on the metabolism and longitudinal growth of cartilaginous tibiae of 6.5-day-old chick embryos was studied in vitro over a 3-day period. Before being cultured, tibiae received absorbed doses of 2 to 200 Gy. Of each pair, the counterpart served as control. Compared to the strong inhibition of (/sup 3/H)thymidine incorporation, already 50% at 10 Gy, the effects of ionizing radiation on (/sup 3/H)uridine and (/sup 3/H)proline incorporation were limited: 20 and 40% respectively at 150 Gy. Metabolism of the cartilage cells in our organ culture was almost completely arrested at 200 Gy. Light and electron microscopy showed no morphological differences between irradiated and sham-irradiated tibiae until 150 Gy. At 200 Gy necrosis of most of the cells was observed. No differences in form and arrangement of extracellular fibers were noticed. The results of the metabolic studies and the morphological observations were correlated with the effects of ionizing radiation on the longitudinal growth. In contrast to DNA synthesis, RNA transcription and synthesis of collagen fibres were radioresistant processes.

  5. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  6. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Hou, Jin; Martinez Ruiz, José Luis

    2013-01-01

    .g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner...... turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h−1 that influences protein production. Thus, for lower specific growth rates, the α-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas......With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e...

  7. Growth and nutritional status of children with homozygous sickle cell disease

    NARCIS (Netherlands)

    Al-Saqladi, A.-W. M.; Cipolotti, R.; Fijnvandraat, K.; Brabin, B. J.

    2008-01-01

    Background: Poor growth and under-nutrition are common in children with sickle cell disease (SCD). This review summarises evidence of nutritional status in children with SCD in relation to anthropometric status, disease severity, body composition, energy metabolism, micronutrient deficiency and

  8. Metabolism of dinosaurs as determined from their growth

    Science.gov (United States)

    Lee, Scott A.

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  9. Metabolism of dinosaurs as determined from their growth.

    Science.gov (United States)

    Lee, Scott A

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  10. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis.

    Science.gov (United States)

    Goto, Mineaki; Miwa, Hiroshi; Shikami, Masato; Tsunekawa-Imai, Norikazu; Suganuma, Kazuto; Mizuno, Shohei; Takahashi, Miyuki; Mizutani, Motonori; Hanamura, Ichiro; Nitta, Masakazu

    2014-07-01

    Some cancer cells depend on glutamine despite of pronounced glycolysis. We examined the glutamine metabolism in leukemia cells, and found that HL-60 cells most depended on glutamine in the 4 acute myelogenous leukemia (AML) cell lines examined: growth of HL-60 cells was most suppressed by glutamine deprivation and by inhibition of glutaminolysis, which was rescued by tricarboxylic acid (TCA) cycle intermediate, oxaloacetic acid. Glutamine is also involved in antioxidant defense function by increasing glutathione. Glutamine deprivation suppressed the glutathione content and elevated reactive oxygen species most evidently in HL-60 cells. Glutamine metabolism might be a therapeutic target in some leukemia.

  11. Modulation of the growth and metabolic response of cyanobacteria by the multifaceted activity of naringenin.

    Directory of Open Access Journals (Sweden)

    Beata Żyszka

    Full Text Available The interactions between the plant-derived bioflavonoid, naringenin, and prokaryotic microalgae representatives (cyanobacteria, were investigated with respect to its influence on the growth and metabolic response of these microorganisms. To achieve reliable results, the growth of cyanobacteria was determined based on measurements of chlorophyll content, morphological changes were assessed through microscopic observations, and the chemical response of cells was determined using liquid and gas chromatography (HPLC; GC-FID. The results show that micromolar levels of naringenin stimulated the growth of cyanobacteria. Increased growth was observed for halophilic strains at naringenin concentrations below 40 mg L-1, and in freshwater strains at concentrations below 20 mg L-1. The most remarkable stimulation was observed for the freshwater species Nostoc muscorum, which had a growth rate that was up to 60% higher than in the control. When naringenin was examined at concentrations above 40 mg L-1, the growth of the tested microorganisms was inhibited. Simultaneously, an intensive excretion of exopolysaccharides was observed. Microscopic observations strongly suggest that these effects resulted from a structural disturbance of cyanobacterial cell walls that was exerted by naringenin. This phenomenon, in combination with the absorption of naringenin into cell wall structures, influenced cell permeability and thus the growth of bacteria. Fortunately, almost all the naringenin added to the culture was incorporated into to cell substructures and could be recovered through extraction, raising the possibility that this modulator could be recycled.

  12. Dysregulated choline metabolism in T-cell lymphoma: role of choline kinase-α and therapeutic targeting

    International Nuclear Information System (INIS)

    Xiong, J; Bian, J; Wang, L; Zhou, J-Y; Wang, Y; Zhao, Y; Wu, L-L; Hu, J-J; Li, B; Chen, S-J; Yan, C; Zhao, W-L

    2015-01-01

    Cancer cells have distinct metabolomic profile. Metabolic enzymes regulate key oncogenic signaling pathways and have an essential role on tumor progression. Here, serum metabolomic analysis was performed in 45 patients with T-cell lymphoma (TCL) and 50 healthy volunteers. The results showed that dysregulation of choline metabolism occurred in TCL and was related to tumor cell overexpression of choline kinase-α (Chokα). In T-lymphoma cells, pharmacological and molecular silencing of Chokα significantly decreased Ras-GTP activity, AKT and ERK phosphorylation and MYC oncoprotein expression, leading to restoration of choline metabolites and induction of tumor cell apoptosis/necropotosis. In a T-lymphoma xenograft murine model, Chokα inhibitor CK37 remarkably retarded tumor growth, suppressed Ras-AKT/ERK signaling, increased lysophosphatidylcholine levels and induced in situ cell apoptosis/necropotosis. Collectively, as a regulatory gene of aberrant choline metabolism, Chokα possessed oncogenic activity and could be a potential therapeutic target in TCL, as well as other hematological malignancies with interrupted Ras signaling pathways

  13. Oral Gingival Cell Cigarette Smoke Exposure Induces Muscle Cell Metabolic Disruption

    Directory of Open Access Journals (Sweden)

    Andrea C. Baeder

    2016-01-01

    Full Text Available Cigarette smoke exposure compromises health through damaging multiple physiological systems, including disrupting metabolic function. The purpose of this study was to determine the role of oral gingiva in mediating the deleterious metabolic effects of cigarette smoke exposure on skeletal muscle metabolic function. Using an in vitro conditioned medium cell model, skeletal muscle cells were incubated with medium from gingival cells treated with normal medium or medium containing suspended cigarette smoke extract (CSE. Following incubation of muscle cells with gingival cell conditioned medium, muscle cell mitochondrial respiration and insulin signaling and action were determined as an indication of overall muscle metabolic health. Skeletal muscle cells incubated with conditioned medium of CSE-treated gingival cells had a profound reduction in mitochondrial respiration and respiratory control. Furthermore, skeletal muscle cells had a greatly reduced response in insulin-stimulated Akt phosphorylation and glycogen synthesis. Altogether, these results provide a novel perspective on the mechanism whereby cigarette smoke affects systemic metabolic function. In conclusion, we found that oral gingival cells treated with CSE create an altered milieu that is sufficient to both disrupted skeletal muscle cell mitochondrial function and insulin sensitivity.

  14. Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK

    DEFF Research Database (Denmark)

    Nicastro, Raffaele; Tripodi, Farida; Guzzi, Cinzia

    2015-01-01

    when grown with glucose excess. We show that loss of Snf1 in cells growing in 2% glucose induces an extensive transcriptional reprogramming, enhances glycolytic activity, fatty acid accumulation and reliance on amino acid utilization for growth. Strikingly, we demonstrate that Snf1/AMPK-deficient cells...... remodel their metabolism fueling mitochondria and show glucose and amino acids addiction, a typical hallmark of cancer cells....

  15. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.

    Science.gov (United States)

    Tong, Hongning; Xiao, Yunhua; Liu, Dapu; Gao, Shaopei; Liu, Linchuan; Yin, Yanhai; Jin, Yun; Qian, Qian; Chu, Chengcai

    2014-11-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. © 2014 American Society of Plant Biologists. All rights reserved.

  16. Metabolic impact of anti-angiogenic agents on U87 glioma cells.

    Directory of Open Access Journals (Sweden)

    Tanja Mesti

    Full Text Available BACKGROUND: Glioma cells not only secrete high levels of vascular endothelial growth factor (VEGF but also express VEGF receptors (VEGFR, supporting the existence of an autocrine loop. The direct impact on glioma cells metabolism of drugs targeting the VEGF pathway, such as Bevacizumab (Bev or VEGFR Tyrosine Kinase Inhibitor (TKI, is poorly known. MATERIAL AND METHODS: U87 cells were treated with Bev or SU1498, a selective VEGFR2 TKI. VEGFR expression was checked with FACS flow cytometry and Quantitative Real-Time PCR. VEGF secretion into the medium was assessed with an ELISA kit. Metabolomic studies on cells were performed using High Resolution Magic Angle Spinning Spectroscopy (HR-MAS. RESULTS: U87 cells secreted VEGF and expressed low level of VEGFR2, but no detectable VEGFR1. Exposure to SU1498, but not Bev, significantly impacted cell proliferation and apoptosis. Metabolomic studies with HR MAS showed that Bev had no significant effect on cell metabolism, while SU1498 induced a marked increase in lipids and a decrease in glycerophosphocholine. Accordingly, accumulation of lipid droplets was seen in the cytoplasm of SU1498-treated U87 cells. CONCLUSION: Although both drugs target the VEGF pathway, only SU1498 showed a clear impact on cell proliferation, cell morphology and metabolism. Bevacizumab is thus less likely to modify glioma cells phenotype due to a direct therapeutic pressure on the VEGF autocrine loop. In patients treated with VEGFR TKI, monitoring lipids with magnetic resonance spectroscopic (MRS might be a valuable marker to assess drug cytotoxicity.

  17. Controlling cell-free metabolism through physiochemical perturbations.

    Science.gov (United States)

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  18. Sexual dimorphism of growth plate prehypertrophic and hypertrophic chondrocytes in response to testosterone requires metabolism to dihydrotestosterone (DHT) by steroid 5-alpha reductase type 1.

    Science.gov (United States)

    Raz, P; Nasatzky, E; Boyan, B D; Ornoy, A; Schwartz, Z

    2005-05-01

    Rat costochondral growth plate chondrocytes exhibit sex-specific and cell maturation dependent responses to testosterone. Only male cells respond to testosterone, although testosterone receptors are present in both male and female cells, suggesting other mechanisms are involved. We examined the hypothesis that the sex-specific response of rat costochondral cartilage cells to testosterone requires further metabolism of the hormone to dihydrotestosterone (DHT). Resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) chondrocytes from male and female Sabra strain rats exhibited sex-specific responses to testosterone and DHT: only male cells were responsive. Testosterone and DHT treatment for 24 h caused a comparable dose-dependent increase in [3H]-thymidine incorporation in quiescent preconfluent cultures of male GC cells, and a comparable increase in alkaline phosphatase specific activity in confluent cultures. RC cells responded in a differential manner to testosterone and DHT. Testosterone decreased DNA synthesis in male RC cells but DHT had no effect and alkaline phosphatase specific activity of male RC cells was unaffected by either hormone. Inhibition of steroid 5alpha-reductase activity with finasteride (1, 5, or 10 microg/ml), reduced the response of male GC cells to testosterone in a dose-dependent manner, indicating that metabolism to DHT was required. RT-PCR showed that both male and female cells expressed mRNAs for steroid 5alpha-reductase type 1 but lacked mRNAs for the type 2 form of the enzyme. Male cells also exhibited 5alpha-reductase activity but activity of this enzyme was undetectable in female cells. These observations show that sex-specific responses of rat growth zone chondrocytes to testosterone requires the further metabolism of the hormone to DHT and that the effect of DHT in the male growth plate is maturation-state dependent. Failure of female chondrocytes to respond to testosterone may reflect differences in

  19. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Directory of Open Access Journals (Sweden)

    Zuzana Starostová

    Full Text Available While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  20. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths.

    Science.gov (United States)

    Starostová, Zuzana; Konarzewski, Marek; Kozłowski, Jan; Kratochvíl, Lukáš

    2013-01-01

    While metabolism is a fundamental feature of all organisms, the causes of its scaling with body mass are not yet fully explained. Nevertheless, observations of negative correlations between red blood cell (RBC) size and the rate of metabolism suggest that size variation of these cells responsible for oxygen supply may play a crucial role in determining metabolic rate scaling in vertebrates. Based on a prediction derived from the Cell Metabolism Hypothesis, metabolic rate should increase linearly with body mass in species with RBC size invariance, and slower than linearly when RBC size increases with body mass. We found support for that prediction in five species of eyelid geckos (family Eublepharidae) with different patterns of RBC size variation during ontogenetic growth. During ontogeny, metabolic rate increases nearly linearly with body mass in those species of eyelid geckos where there is no correlation between RBC size and body mass, whereas non-linearity of metabolic rate scaling is evident in those species with ontogenetic increase of RBC size. Our findings provide evidence that ontogenetic variability in RBC size, possibly correlating with sizes of other cell types, could have important physiological consequences and can contribute to qualitatively different shape of the intraspecific relationship between metabolic rate and body mass.

  1. Effect of selenodiglutathione on the metabolism of canine mammary tumor cells

    International Nuclear Information System (INIS)

    Fico-Santoro, M.; Lebowitz, A.; Milner, J.A.

    1986-01-01

    Selenodiglutathione (SDG) has been shown to be an effective inhibitor of tumor growth. The present studies were designed to evaluate altered metabolism in canine mammary tumor cells (CMT-13) exposed to various concentrations of SDG. Addition of SDG at 0.025 μg Se/ml did not inhibit growth of CMT-13 cells after 24 h of incubation. At this concentration of SDG, approximately 25% of 75 Se- 35 S-SDG was retained in these tumor cells after 24 h of incubation. The nuclear fraction contained 96% of the 75 Se and 35 S radioactivity. The ratio of 75 Se to 35 S was 1 to 4.5 in the whole cell and in the nuclear fraction. SDG increased glutathione peroxidase activity by 40% compared to CMT-13 cells not exposed to SDG. Glutathione reductase activity was decreased by 63% by the addition of SDG. In addition, supplemental SDG resulted in a 55% decrease in GSH content but did not alter GSSG concentrations. After 4d of incubation, SDG at 0.1 and 0.5 μg Se/ml caused a 43 and 58% inhibition of growth of CMT-13 cells. Addition of GSH (100μM) partially prevented, 68% and 54%, the growth inhibition caused by SDG at concentrations of 0.1 and 0.5 μg Se per ml respectively during the 4d incubation period. Preincubation of CMT-13 cells with GSH for 48 h before addition of SDG (0.5 μg Se/ml) completely prevented the growth inhibition caused by this seleno-compound

  2. Sexual dimorphism in epigenomicresponses of stem cells to extreme fetal growth

    Science.gov (United States)

    Delahaye, Fabien; Wijetunga, N. Ari; Heo, Hye J.; Tozour, Jessica N.; Zhao, Yong Mei; Greally, John M.; Einstein, Francine H.

    2014-01-01

    Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life. PMID:25300954

  3. Glutamate/glutamine metabolism coupling between astrocytes and glioma cells: neuroprotection and inhibition of glioma growth.

    Science.gov (United States)

    Yao, Pei-Sen; Kang, De-Zhi; Lin, Ru-Ying; Ye, Bing; Wang, Wei; Ye, Zu-Cheng

    2014-07-18

    Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca(2+) response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.

    Science.gov (United States)

    Joseph, Gregory; Soler, Amanda; Hutcheson, Rebecca; Hunter, Ian; Bradford, Chastity; Hutcheson, Brenda; Gotlinger, Katherine H; Jiang, Houli; Falck, John R; Proctor, Spencer; Schwartzman, Michal Laniado; Rocic, Petra

    2017-03-01

    Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO ·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS. NEW & NOTEWORTHY

  5. Raman Microspectroscopic Evidence for the Metabolism of a Tyrosine Kinase Inhibitor, Neratinib, in Cancer Cells.

    Science.gov (United States)

    Aljakouch, Karim; Lechtonen, Tatjana; Yosef, Hesham K; Hammoud, Mohamad K; Alsaidi, Wissam; Kötting, Carsten; Mügge, Carolin; Kourist, Robert; El-Mashtoly, Samir F; Gerwert, Klaus

    2018-06-11

    Tyrosine kinase receptors are one of the main targets in cancer therapy. They play an essential role in the modulation of growth factor signaling and thereby inducing cell proliferation and growth. Tyrosine kinase inhibitors such as neratinib bind to EGFR and HER2 receptors and exhibit antitumor activity. However, little is known about their detailed cellular uptake and metabolism. Here, we report for the first time the intracellular spatial distribution and metabolism of neratinib in different cancer cells using label-free Raman imaging. Two new neratinib metabolites were detected and fluorescence imaging of the same cells indicate that neratinib accumulates in lysosomes. The results also suggest that both EGFR and HER2 follow the classical endosome lysosomal pathway for degradation. A combination of Raman microscopy, DFT calculations, and LC-MS was used to identify the chemical structure of neratinib metabolites. These results show the potential of Raman microscopy to study drug pharmacokinetics. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    OpenAIRE

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells c...

  7. Genome scale metabolic modeling of cancer

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2017-01-01

    of metabolism which allows simulation and hypotheses testing of metabolic strategies. It has successfully been applied to many microorganisms and is now used to study cancer metabolism. Generic models of human metabolism have been reconstructed based on the existence of metabolic genes in the human genome......Cancer cells reprogram metabolism to support rapid proliferation and survival. Energy metabolism is particularly important for growth and genes encoding enzymes involved in energy metabolism are frequently altered in cancer cells. A genome scale metabolic model (GEM) is a mathematical formalization...

  8. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2014-01-01

    Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  9. DRUM: a new framework for metabolic modeling under non-balanced growth. Application to the carbon metabolism of unicellular microalgae.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    Full Text Available Metabolic modeling is a powerful tool to understand, predict and optimize bioprocesses, particularly when they imply intracellular molecules of interest. Unfortunately, the use of metabolic models for time varying metabolic fluxes is hampered by the lack of experimental data required to define and calibrate the kinetic reaction rates of the metabolic pathways. For this reason, metabolic models are often used under the balanced growth hypothesis. However, for some processes such as the photoautotrophic metabolism of microalgae, the balanced-growth assumption appears to be unreasonable because of the synchronization of their circadian cycle on the daily light. Yet, understanding microalgae metabolism is necessary to optimize the production yield of bioprocesses based on this microorganism, as for example production of third-generation biofuels. In this paper, we propose DRUM, a new dynamic metabolic modeling framework that handles the non-balanced growth condition and hence accumulation of intracellular metabolites. The first stage of the approach consists in splitting the metabolic network into sub-networks describing reactions which are spatially close, and which are assumed to satisfy balanced growth condition. The left metabolites interconnecting the sub-networks behave dynamically. Then, thanks to Elementary Flux Mode analysis, each sub-network is reduced to macroscopic reactions, for which simple kinetics are assumed. Finally, an Ordinary Differential Equation system is obtained to describe substrate consumption, biomass production, products excretion and accumulation of some internal metabolites. DRUM was applied to the accumulation of lipids and carbohydrates of the microalgae Tisochrysis lutea under day/night cycles. The resulting model describes accurately experimental data obtained in day/night conditions. It efficiently predicts the accumulation and consumption of lipids and carbohydrates.

  10. The cell biology of bone growth.

    Science.gov (United States)

    Price, J S; Oyajobi, B O; Russell, R G

    1994-02-01

    The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from

  11. Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo

    Directory of Open Access Journals (Sweden)

    Tasleem Arif

    2014-01-01

    Full Text Available Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1, a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA. A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF. VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs.

  12. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  13. Single-cell tracking reveals antibiotic-induced changes in mycobacterial energy metabolism.

    Science.gov (United States)

    Maglica, Željka; Özdemir, Emre; McKinney, John D

    2015-02-17

    ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. New antimicrobials are urgently needed to stem the rising tide of antibiotic-resistant bacteria. All antibiotics are expected to affect bacterial energy metabolism, directly or indirectly, yet tools to assess the impact of antibiotics on the ATP content of individual bacterial cells are lacking. The

  14. Metabolic rate determines haematopoietic stem cell self-renewal.

    Science.gov (United States)

    Sastry, P S R K

    2004-01-01

    The number of haematopoietic stem cells (HSCs) per animal is conserved across species. This means the HSCs need to maintain hematopoiesis over a longer period in larger animals. This would result in the requirement of stem cell self-renewal. At present the three existing models are the stochastic model, instructive model and the third more recently proposed is the chiaro-scuro model. It is a well known allometric law that metabolic rate scales to the three quarter power. Larger animals have a lower metabolic rate, compared to smaller animals. Here it is being hypothesized that metabolic rate determines haematopoietic stem cell self-renewal. At lower metabolic rate the stem cells commit for self-renewal, where as at higher metabolic rate they become committed to different lineages. The present hypothesis can explain the salient features of the different models. Recent findings regarding stem cell self-renewal suggest an important role for Wnt proteins and their receptors known as frizzleds, which are an important component of cell signaling pathway. The role of cGMP in the Wnts action provides further justification for the present hypothesis as cGMP is intricately linked to metabolic rate. One can also explain the telomere homeostasis by the present hypothesis. One prediction of the present hypothesis is with reference to the limit of cell divisions known as Hayflick limit, here it is being suggested that this is the result of metabolic rate in laboratory conditions and there can be higher number of cell divisions in vivo if the metabolic rate is lower. Copyright 2004 Elsevier Ltd.

  15. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  16. The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth

    Directory of Open Access Journals (Sweden)

    Suam Gonzalez

    2017-06-01

    Full Text Available Cell size is amenable by genetic and environmental factors. The highly conserved nutrient-responsive Target of Rapamycin (TOR signaling pathway regulates cellular metabolic status and growth in response to numerous inputs. Timing and duration of TOR pathway activity is pivotal for both cell mass built up as well as cell cycle progression and is controlled and fine-tuned by the abundance and quality of nutrients, hormonal signals, growth factors, stress, and oxygen. TOR kinases function within two functionally and structurally discrete multiprotein complexes, TORC1 and TORC2, that are implicated in temporal and spatial control of cell size and growth respectively; however, recent data indicate that such functional distinctions are much more complex. Here, we briefly review roles of the two complexes in cellular growth and cytoarchitecture in various experimental model systems.

  17. Stem cell metabolism in tissue development and aging

    Science.gov (United States)

    Shyh-Chang, Ng; Daley, George Q.; Cantley, Lewis C.

    2013-01-01

    Recent advances in metabolomics and computational analysis have deepened our appreciation for the role of specific metabolic pathways in dictating cell fate. Once thought to be a mere consequence of the state of a cell, metabolism is now known to play a pivotal role in dictating whether a cell proliferates, differentiates or remains quiescent. Here, we review recent studies of metabolism in stem cells that have revealed a shift in the balance between glycolysis, mitochondrial oxidative phosphorylation and oxidative stress during the maturation of adult stem cells, and during the reprogramming of somatic cells to pluripotency. These insights promise to inform strategies for the directed differentiation of stem cells and to offer the potential for novel metabolic or pharmacological therapies to enhance regeneration and the treatment of degenerative disease. PMID:23715547

  18. Studies on growth, nitrogen and energy metabolism in rats

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Eggum, B O

    1982-01-01

    Feed intake, growth, nitrogen retention and energy metabolism were measured in 12 male Wistar rats fed ad lib. for 14 weeks with non-purified diets. The feed intake increased rapidly in 4 weeks time from 16 g/d to 25 g/d, and then it was constant in the following 10 weeks. In relation to metabolic...

  19. Early metabolic defects in dexamethasone-exposed and undernourished intrauterine growth restricted rats.

    Directory of Open Access Journals (Sweden)

    Emmanuel Somm

    Full Text Available Poor fetal growth, also known as intrauterine growth restriction (IUGR, is a worldwide health concern. IUGR is commonly associated with both an increased risk in perinatal mortality and a higher prevalence of developing chronic metabolic diseases later in life. Obesity, type 2 diabetes or metabolic syndrome could result from noxious "metabolic programming." In order to better understand early alterations involved in metabolic programming, we modeled IUGR rat pups through either prenatal exposure to synthetic glucocorticoid (dams infused with dexamethasone 100 µg/kg/day, DEX or prenatal undernutrition (dams feeding restricted to 30% of ad libitum intake, UN. Physiological (glucose and insulin tolerance, morphometric (automated tissue image analysis and transcriptomic (quantitative PCR approaches were combined during early life of these IUGR pups with a special focus on their endocrine pancreas and adipose tissue development. In the absence of catch-up growth before weaning, DEX and UN IUGR pups both presented basal hyperglycaemia, decreased glucose tolerance, and pancreatic islet atrophy. Other early metabolic defects were model-specific: DEX pups presented decreased insulin sensitivity whereas UN pups exhibited lowered glucose-induced insulin secretion and more marked alterations in gene expression of pancreatic islet and adipose tissue development regulators. In conclusion, these results show that before any catch-up growth, IUGR rats present early physiologic, morphologic and transcriptomic defects, which can be considered as initial mechanistic basis of metabolic programming.

  20. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    Science.gov (United States)

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  1. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    Science.gov (United States)

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  2. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth.

    Science.gov (United States)

    Ríos, M; Foretz, M; Viollet, B; Prieto, A; Fraga, M; García-Caballero, T; Costoya, J A; Señarís, R

    2014-12-01

    Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.

    Science.gov (United States)

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-04-18

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy.

  4. Metabolism modifications and apoptosis induction after Cellfood™ administration to leukemia cell lines.

    Science.gov (United States)

    Catalani, Simona; Carbonaro, Valentina; Palma, Francesco; Arshakyan, Marselina; Galati, Rossella; Nuvoli, Barbara; Battistelli, Serafina; Canestrari, Franco; Benedetti, Serena

    2013-09-09

    Cellfood™ (CF) is a nutritional supplement containing deuterium sulphate, minerals, amino acids, and enzymes, with well documented antioxidant properties. Its organic and inorganic components are extracted from the red algae Lithothamnion calcareum, whose mineral extract has shown growth-inhibitory effect both on in vitro and in vivo models. The purpose of this study was to evaluate the antiproliferative effects of CF on leukemic cells. In fact, according to its capacity to modulate O2 availability and to improve mitochondrial respiratory metabolism, we wondered if CF could affect cancer cell metabolism making cells susceptible to apoptosis. Three leukemic cell lines, Jurkat, U937, and K562, were treated with CF 5 μl/ml up to 72 hours. Cell viability, apoptosis (i.e. caspase-3 activity and DNA fragmentation), hypoxia inducible factor 1 alpha (HIF-1α) concentration, glucose transporter 1 (GLUT-1) expression, lactate dehydrogenase (LDH) activity and lactate release in the culture medium were detected and compared with untreated cells. CF significantly inhibited leukemic cell viability by promoting cell apoptosis, as revealed by caspase-3 activation and DNA laddering. In particular, CF treated cells showed lower HIF-1α levels and lower GLUT-1 expression as compared to untreated cells. At the same time, CF was able to reduce LDH activity and, consequently, the amount of lactate released in the extracellular environment. We supplied evidence for an antiproliferative effect of CF on leukemia cell lines by inducing cell death through an apoptotic mechanism and by altering cancer cell metabolism through HIF-1α and GLUT-1 regulation. Thanks to its antioxidative and proapoptotic properties, CF might be a good candidate for cancer prevention.

  5. Host-Polarized Cell Growth in Animal Symbionts.

    Science.gov (United States)

    Pende, Nika; Wang, Jinglan; Weber, Philipp M; Verheul, Jolanda; Kuru, Erkin; Rittmann, Simon K-M R; Leisch, Nikolaus; VanNieuwenhze, Michael S; Brun, Yves V; den Blaauwen, Tanneke; Bulgheresi, Silvia

    2018-04-02

    To determine the fundamentals of cell growth, we must extend cell biological studies to non-model organisms. Here, we investigated the growth modes of the only two rods known to widen instead of elongating, Candidatus Thiosymbion oneisti and Thiosymbion hypermnestrae. These bacteria are attached by one pole to the surface of their respective nematode hosts. By incubating live Ca. T. oneisti and T. hypermnestrae with a peptidoglycan metabolic probe, we observed that the insertion of new cell wall starts at the poles and proceeds inward, concomitantly with FtsZ-based membrane constriction. Remarkably, in Ca. T. hypermnestrae, the proximal, animal-attached pole grows before the distal, free pole, indicating that the peptidoglycan synthesis machinery is host oriented. Immunostaining of the symbionts with an antibody against the actin homolog MreB revealed that it was arranged medially-that is, parallel to the cell long axis-throughout the symbiont life cycle. Given that depolymerization of MreB abolished newly synthesized peptidoglycan insertion and impaired divisome assembly, we conclude that MreB function is required for symbiont widening and division. In conclusion, our data invoke a reassessment of the localization and function of the bacterial actin homolog. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Yearly growth and metabolic changes in earthen pond-cultured meagre Argyrosomus regius

    Directory of Open Access Journals (Sweden)

    Luis Vargas-Chacoff

    2014-06-01

    Full Text Available Metabolic modifications associated with natural environmental conditions were assessed in the meagre Argyrosomus regius cultured in earthen ponds under natural photoperiod and temperature. Juvenile specimens (90-100 g initial weight were sampled (plasma, liver and muscle every two months for 18 months (between December 2004 and May 2006. Specimens showed seasonal variations in growth rate, with the highest values in spring and summer. Plasmatic, hepatic and muscular metabolite levels and hepatic and muscular metabolic enzymes also showed significant variations throughout the year. Enzymatic activity related to carbohydrate metabolism in the liver (HK, FBPase and G6PDH showed great modifications in summer, increasing glycogenogenic pathways, while amino acid metabolism (GDH and GOT activity was enhanced in spring and summer. However lipid-related (G3PDH activity metabolic enzymes did not show a clear seasonal pattern. In muscle, enzymatic activity related to amino acid, lipid and lactate metabolism (LDH-O activity, but not carbohydrate metabolism, showed seasonal changes in parallel with changes in growth rate. Thus A. regius specimens showed a trend to grow in summer months and mobilize their energy reserves in winter. Differences in the hepatic level were observed between the first and the second year of the study, suggesting the possible existence of metabolic changes related to specimen age or size. Our results indicate that growth and metabolic responses in A. regius are environmentally dependent and that this species is a very good candidate for diversification in aquaculture.

  7. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-05-01

    Full Text Available Trichloroethylene (TCE is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL, initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE/mg (biomass and 5.1 μg (TCE/mg (phenol, respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%. When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively. This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  8. Shifts in growth strategies reflect tradeoffs in cellular economics

    Science.gov (United States)

    Molenaar, Douwe; van Berlo, Rogier; de Ridder, Dick; Teusink, Bas

    2009-01-01

    The growth rate-dependent regulation of cell size, ribosomal content, and metabolic efficiency follows a common pattern in unicellular organisms: with increasing growth rates, cell size and ribosomal content increase and a shift to energetically inefficient metabolism takes place. The latter two phenomena are also observed in fast growing tumour cells and cell lines. These patterns suggest a fundamental principle of design. In biology such designs can often be understood as the result of the optimization of fitness. Here we show that in basic models of self-replicating systems these patterns are the consequence of maximizing the growth rate. Whereas most models of cellular growth consider a part of physiology, for instance only metabolism, the approach presented here integrates several subsystems to a complete self-replicating system. Such models can yield fundamentally different optimal strategies. In particular, it is shown how the shift in metabolic efficiency originates from a tradeoff between investments in enzyme synthesis and metabolic yields for alternative catabolic pathways. The models elucidate how the optimization of growth by natural selection shapes growth strategies. PMID:19888218

  9. Regulation of Cell Wall Plasticity by Nucleotide Metabolism in Lactococcus lactis*

    Science.gov (United States)

    Solopova, Ana; Formosa-Dague, Cécile; Courtin, Pascal; Furlan, Sylviane; Veiga, Patrick; Péchoux, Christine; Armalyte, Julija; Sadauskas, Mikas; Kok, Jan; Hols, Pascal; Dufrêne, Yves F.; Kuipers, Oscar P.; Chapot-Chartier, Marie-Pierre; Kulakauskas, Saulius

    2016-01-01

    To ensure optimal cell growth and separation and to adapt to environmental parameters, bacteria have to maintain a balance between cell wall (CW) rigidity and flexibility. This can be achieved by a concerted action of peptidoglycan (PG) hydrolases and PG-synthesizing/modifying enzymes. In a search for new regulatory mechanisms responsible for the maintenance of this equilibrium in Lactococcus lactis, we isolated mutants that are resistant to the PG hydrolase lysozyme. We found that 14% of the causative mutations were mapped in the guaA gene, the product of which is involved in purine metabolism. Genetic and transcriptional analyses combined with PG structure determination of the guaA mutant enabled us to reveal the pivotal role of the pyrB gene in the regulation of CW rigidity. Our results indicate that conversion of l-aspartate (l-Asp) to N-carbamoyl-l-aspartate by PyrB may reduce the amount of l-Asp available for PG synthesis and thus cause the appearance of Asp/Asn-less stem peptides in PG. Such stem peptides do not form PG cross-bridges, resulting in a decrease in PG cross-linking and, consequently, reduced PG thickness and rigidity. We hypothesize that the concurrent utilization of l-Asp for pyrimidine and PG synthesis may be part of the regulatory scheme, ensuring CW flexibility during exponential growth and rigidity in stationary phase. The fact that l-Asp availability is dependent on nucleotide metabolism, which is tightly regulated in accordance with the growth rate, provides L. lactis cells the means to ensure optimal CW plasticity without the need to control the expression of PG synthesis genes. PMID:27022026

  10. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  11. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  12. Population FBA predicts metabolic phenotypes in yeast.

    Directory of Open Access Journals (Sweden)

    Piyush Labhsetwar

    2017-09-01

    Full Text Available Using protein counts sampled from single cell proteomics distributions to constrain fluxes through a genome-scale model of metabolism, Population flux balance analysis (Population FBA successfully described metabolic heterogeneity in a population of independent Escherichia coli cells growing in a defined medium. We extend the methodology to account for correlations in protein expression arising from the co-regulation of genes and apply it to study the growth of independent Saccharomyces cerevisiae cells in two different growth media. We find the partitioning of flux between fermentation and respiration predicted by our model agrees with recent 13C fluxomics experiments, and that our model largely recovers the Crabtree effect (the experimentally known bias among certain yeast species toward fermentation with the production of ethanol even in the presence of oxygen, while FBA without proteomics constraints predicts respirative metabolism almost exclusively. The comparisons to the 13C study showed improvement upon inclusion of the correlations and motivated a technique to systematically identify inconsistent kinetic parameters in the literature. The minor secretion fluxes for glycerol and acetate are underestimated by our method, which indicate a need for further refinements to the metabolic model. For yeast cells grown in synthetic defined (SD medium, the calculated broad distribution of growth rates matches experimental observations from single cell studies, and we characterize several metabolic phenotypes within our modeled populations that make use of diverse pathways. Fast growing yeast cells are predicted to perform significant amount of respiration, use serine-glycine cycle and produce ethanol in mitochondria as opposed to slow growing cells. We use a genetic algorithm to determine the proteomics constraints necessary to reproduce the growth rate distributions seen experimentally. We find that a core set of 51 constraints are essential but

  13. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    Science.gov (United States)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  14. In vitro culture of oocytes and granulosa cells collected from normal, obese, emaciated and metabolically stressed ewes.

    Science.gov (United States)

    Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish

    2016-07-01

    not different in normal and obese ewes. Estrogen and progesterone secretions were less from granulosa cells recovered from metabolically stressed and emaciated ewes. The results suggested that oocyte morphology, fertilizing capacity and granulosa cell growth were dependent on body condition and feeding status of the animals. Copyright © 2016. Published by Elsevier B.V.

  15. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  16. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5

    OpenAIRE

    Mitra, Ranjana; Le, Thuc T.; Gorjala, Priyatham; Goodman Jr., Oscar B.

    2017-01-01

    Background Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prosta...

  17. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    Science.gov (United States)

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    International Nuclear Information System (INIS)

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru

    1989-01-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U- 14 C]glucose and [U- 14 C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  19. Danazol alters mitochondria metabolism of fibrocystic breast Mcf10A cells.

    Science.gov (United States)

    Irgebay, Zhazira; Yeszhan, Banu; Sen, Bhaswati; Tuleukhanov, Sultan; Brooks, Ari D; Sensenig, Richard; Orynbayeva, Zulfiya

    2017-10-01

    Fibrocystic Breast Disease (FBD) or Fibrocystic change (FC) affects about 60% of women at some time during their life. Although usually benign, it is often associated with pain and tenderness (mastalgia). The synthetic steroid danazol has been shown to be effective in reducing the pain associated with FBD, but the cellular and molecular mechanisms for its action have not been elucidated. We investigated the hypothesis that danazol acts by affecting energy metabolism. Effects of danazol on Mcf10A cells homeostasis, including mechanisms of oxidative phosphorylation, cytosolic calcium signaling and oxidative stress, were assessed by high-resolution respirometry and flow cytometry. In addition to fast physiological responses the associated genomic modulations were evaluated by Affimetrix microarray analysis. The alterations of mitochondria membrane potential and respiratory activity, downregulation of energy metabolism transcripts result in suppression of energy homeostasis and arrest of Mcf10A cells growth. The data obtained in this study impacts the recognition of direct control of mitochondria by cellular mechanisms associated with altered energy metabolism genes governing the breast tissue susceptibility and response to medication by danazol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Impact of sodium butyrate and mild hypothermia on metabolic and physiological behaviour of CHO TF 70R cells

    Directory of Open Access Journals (Sweden)

    Veronica Avello

    2017-05-01

    Conclusions: The combination of NaBu addition and mild hypothermic condition causes an impact on physiological and metabolic state of CHO TF 70R cells, decreasing cell growth rate and improving glucose consumption efficiency. These results therefore provide a promising strategy to increase specific productivity of rh-tPA.

  1. Metabolic reprogramming for producing energy and reducing power in fumarate hydratase null cells from hereditary leiomyomatosis renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Youfeng Yang

    Full Text Available Fumarate hydratase (FH-deficient kidney cancer undergoes metabolic remodeling, with changes in mitochondrial respiration, glucose, and glutamine metabolism. These changes represent multiple biochemical adaptations in glucose and fatty acid metabolism that supports malignant proliferation. However, the metabolic linkages between altered mitochondrial function, nucleotide biosynthesis and NADPH production required for proliferation and survival have not been elucidated. To characterize the alterations in glycolysis, the Krebs cycle and the pentose phosphate pathways (PPP that either generate NADPH (oxidative or do not (non-oxidative, we utilized [U-(13C]-glucose, [U-(13C,(15N]-glutamine, and [1,2- (13C2]-glucose tracers with mass spectrometry and NMR detection to track these pathways, and measured the oxygen consumption rate (OCR and extracellular acidification rate (ECAR of growing cell lines. This metabolic reprogramming in the FH null cells was compared to cells in which FH has been restored. The FH null cells showed a substantial metabolic reorganization of their intracellular metabolic fluxes to fulfill their high ATP demand, as observed by a high rate of glucose uptake, increased glucose turnover via glycolysis, high production of glucose-derived lactate, and low entry of glucose carbon into the Krebs cycle. Despite the truncation of the Krebs cycle associated with inactivation of fumarate hydratase, there was a small but persistent level of mitochondrial respiration, which was coupled to ATP production from oxidation of glutamine-derived α-ketoglutarate through to fumarate. [1,2- (13C2]-glucose tracer experiments demonstrated that the oxidative branch of PPP initiated by glucose-6-phosphate dehydrogenase activity is preferentially utilized for ribose production (56-66% that produces increased amounts of ribose necessary for growth and NADPH. Increased NADPH is required to drive reductive carboxylation of α-ketoglutarate and fatty acid

  2. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  3. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  4. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK and FOXO1.

    Directory of Open Access Journals (Sweden)

    Tamás Fodor

    Full Text Available Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK jointly with methotrexate (MTX, a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  5. Cholesterol metabolism in blood cells of irradiated rats

    International Nuclear Information System (INIS)

    Novoselova, E.G.; Kulagina, T.P.; Potekhina, N.I.

    1985-01-01

    Cholesterol metabolism in blood erythrocytes and lymphocytes of irradiated rats has been investigated. It has been found that at all terms and doses of irradiation, a suppression of the synthesis of erythrocyte cholesterol is observed. The increase of cholesterol quantiy in erythrocytes upon total gamma irradiation in the 10 Gr dose possibly is the result of growth of cholesterol transfer from plasma into erythrocyte cells. The study of the cholesterol synthesis in suspension of lymphocytes elminated from peripheral blood of control and irradiated rats has shown that at irradiation doses of 4 and 10 Gr in an hour acivation of cholesterol synthesis in vitro takes places

  6. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    International Nuclear Information System (INIS)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-01-01

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.

  7. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments.

    Directory of Open Access Journals (Sweden)

    Krzysztof Wrzesinski

    Full Text Available INTRODUCTION: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures and the other by a dynamic equilibrium (in 3D cultures. We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. RESULTS: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. SUMMARY: We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.

  8. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments.

    Science.gov (United States)

    Wrzesinski, Krzysztof; Rogowska-Wrzesinska, Adelina; Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J

    2014-01-01

    Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell--along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance.

  9. From gametogenesis and stem cells to cancer: common metabolic themes.

    Science.gov (United States)

    Pereira, Sandro L; Rodrigues, Ana Sofia; Sousa, Maria Inês; Correia, Marcelo; Perestrelo, Tânia; Ramalho-Santos, João

    2014-01-01

    Both pluripotent stem cells (PSCs) and cancer cells have been described as having similar metabolic pathways, most notably a penchant for favoring glycolysis even under aerobiosis, suggesting common themes that might be explored for both stem cell differentiation and anti-oncogenic purposes. A search of the scientific literature available in the PubMed/Medline was conducted for studies on metabolism and mitochondrial function related to gametogenesis, early development, stem cells and cancers in the reproductive system, notably breast, prostate, ovarian and testicular cancers. Both PSCs and some types of cancer cells, particularly reproductive cancers, were found to obtain energy mostly by glycolysis, often reducing mitochondrial activity and oxidative phosphorylation. This strategy links proliferating cells, allowing for the biosynthesis reactions necessary for cell division. Interventions that affect metabolic pathways, and force cells to change their preferences, can lead to shifts in cell status, increasing either pluripotency or differentiation of stem cells, and causing cancer cells to become more or less aggressive. Interestingly metabolic changes in many cases seemed to lead to cell transformation, not necessarily follow it, suggesting a direct role of metabolic choices in influencing the (epi)genetic program of different cell types. There are uncanny similarities between PSCs and cancer cells at the metabolic level. Furthermore, metabolism may also play a direct role in cell status and targeting metabolic pathways could therefore be a promising strategy for both the control of cancer cell proliferation and the regulation of stem cell physiology, in terms of manipulating stem cells toward relevant phenotypes that may be important for tissue engineering, or making cancer cells become less tumorigenic. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  10. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates

    Directory of Open Access Journals (Sweden)

    Arike Liisa

    2011-02-01

    Full Text Available Abstract Background Lactococcus lactis is recognised as a safe (GRAS microorganism and has hence gained interest in numerous biotechnological approaches. As it is fastidious for several amino acids, optimization of processes which involve this organism requires a thorough understanding of its metabolic regulations during multisubstrate growth. Results Using glucose limited continuous cultivations, specific growth rate dependent metabolism of L. lactis including utilization of amino acids was studied based on extracellular metabolome, global transcriptome and proteome analysis. A new growth medium was designed with reduced amino acid concentrations to increase precision of measurements of consumption of amino acids. Consumption patterns were calculated for all 20 amino acids and measured carbon balance showed good fit of the data at all growth rates studied. It was observed that metabolism of L. lactis became more efficient with rising specific growth rate in the range 0.10 - 0.60 h-1, indicated by 30% increase in biomass yield based on glucose consumption, 50% increase in efficiency of nitrogen use for biomass synthesis, and 40% reduction in energy spilling. The latter was realized by decrease in the overall product formation and higher efficiency of incorporation of amino acids into biomass. L. lactis global transcriptome and proteome profiles showed good correlation supporting the general idea of transcription level control of bacterial metabolism, but the data indicated that substrate transport systems together with lower part of glycolysis in L. lactis were presumably under allosteric control. Conclusions The current study demonstrates advantages of the usage of strictly controlled continuous cultivation methods combined with multi-omics approach for quantitative understanding of amino acid and energy metabolism of L. lactis which is a valuable new knowledge for development of balanced growth media, gene manipulations for desired product

  11. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab.

    Science.gov (United States)

    Luo, Jingtao; Hong, Yun; Lu, Yang; Qiu, Songbo; Chaganty, Bharat K R; Zhang, Lun; Wang, Xudong; Li, Qiang; Fan, Zhen

    2017-01-01

    Cetuximab inhibits HIF-1-regulated glycolysis in cancer cells, thereby reversing the Warburg effect and leading to inhibition of cancer cell metabolism. AMP-activated protein kinase (AMPK) is activated after cetuximab treatment, and a sustained AMPK activity is a mechanism contributing to cetuximab resistance. Here, we investigated how acetyl-CoA carboxylase (ACC), a downstream target of AMPK, rewires cancer metabolism in response to cetuximab treatment. We found that introduction of experimental ACC mutants lacking the AMPK phosphorylation sites (ACC1_S79A and ACC2_S212A) into head and neck squamous cell carcinoma (HNSCC) cells protected HNSCC cells from cetuximab-induced growth inhibition. HNSCC cells with acquired cetuximab resistance contained not only high levels of T172-phosphorylated AMPK and S79-phosphorylated ACC1 but also an increased level of total ACC. These findings were corroborated in tumor specimens of HNSCC patients treated with cetuximab. Cetuximab plus TOFA (an allosteric inhibitor of ACC) achieved remarkable growth inhibition of cetuximab-resistant HNSCC xenografts. Our data suggest a novel paradigm in which cetuximab-mediated activation of AMPK and subsequent phosphorylation and inhibition of ACC is followed by a compensatory increase in total ACC, which rewires cancer metabolism from glycolysis-dependent to lipogenesis-dependent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  13. Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism

    Science.gov (United States)

    Shinoda, Gen; Shyh-Chang, Ng; de Soysa, T. Yvanka; Zhu, Hao; Seligson, Marc T.; Shah, Samar P.; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P.; Gregory, Richard I.; Asara, John M.; Cantley, Lewis C.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO can be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling. PMID:23666760

  14. The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome.

    Science.gov (United States)

    Ren, Jun; Anversa, Piero

    2015-02-15

    Metabolic syndrome is a cluster of risk factors including obesity, dyslipidemia, hypertension, and insulin resistance. A number of theories have been speculated for the pathogenesis of metabolic syndrome including impaired glucose and lipid metabolism, lipotoxicity, oxidative stress, interrupted neurohormonal regulation and compromised intracellular Ca(2+) handling. Recent evidence has revealed that adults with severe growth hormone (GH) and insulin-like growth factor I (IGF-1) deficiency such as Laron syndrome display increased risk of stroke and cardiovascular diseases. IGF-1 signaling may regulate contractility, metabolism, hypertrophy, apoptosis, autophagy, stem cell regeneration and senescence in the heart to maintain cardiac homeostasis. An inverse relationship between plasma IGF-1 levels and prevalence of metabolic syndrome as well as associated cardiovascular complications has been identified, suggesting the clinical promises of IGF-1 analogues or IGF-1 receptor activation in the management of metabolic and cardiovascular diseases. However, the underlying pathophysiological mechanisms between IGF-1 and metabolic syndrome are still poorly understood. This mini-review will discuss the role of IGF-1 signaling cascade in the prevalence of metabolic syndrome in particular the susceptibility to overnutrition and sedentary life style-induced obesity, dyslipidemia, insulin resistance and other features of metabolic syndrome. Special attention will be dedicated in IGF-1-associated changes in cardiac responses in various metabolic syndrome components such as insulin resistance, obesity, hypertension and dyslipidemia. The potential risk of IGF-1 and IGF-1R stimulation such as tumorigenesis is discussed. Therapeutic promises of IGF-1 and IGF-1 analogues including mecasermin, mecasermin rinfabate and PEGylated IGF-1 will be discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The relationship of metabolic burden to productivity levels in CHO cell lines.

    Science.gov (United States)

    Zou, Wu; Edros, Raihana; Al-Rubeai, Mohamed

    2018-03-01

    The growing demand for recombinant therapeutics has driven biotechnologists to develop new production strategies. One such strategy for increasing the expression of heterologous proteins has focused on enhancing cell-specific productivity through environmental perturbations. In this work, the effects of hypothermia, hyperosmolarity, high shear stress, and sodium butyrate treatment on growth and productivity were studied using three (low, medium, and high producing) CHO cell lines that differed in their specific productivities of monoclonal antibody. In all three cell lines, the inhibitory effect of these parameters on proliferation was demonstrated. Additionally, compared to the control, specific productivity was enhanced under all conditions and exhibited a consistent cell line specific pattern, with maximum increases (50-290%) in the low producer, and minimum increases (7-20%) in the high producer. Thus, the high-producing cell line was less responsive to environmental perturbations than the low-producing cell line. We hypothesize that this difference is most likely due to the bottleneck associated with a higher metabolic burden caused by higher antibody expression. Increased recombinant mRNA levels and pyruvate carboxylase activities due to low temperature and hyperosmotic stress were found to be positively associated with the metabolic burden. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  16. New paradigms for metabolic modeling of human cells

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally......, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented.......Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we...

  17. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase

    Directory of Open Access Journals (Sweden)

    Kosuke Toda

    2016-11-01

    Full Text Available A number of clinical trials have shown that KRAS mutations of colorectal cancer (CRC can predict a lack of responses to anti-epidermal growth factor receptor–based therapy. Recently, there have been several studies to elucidate metabolism reprogramming in cancer. However, it remains to be investigated how mutated KRAS can coordinate the metabolic shift to sustain CRC tumor growth. In this study, we found that KRAS mutation in CRC caused alteration in amino acid metabolism. KRAS mutation causes a marked decrease in aspartate level and an increase in asparagine level in CRC. Using several human CRC cell lines and clinical specimens of primary CRC, we demonstrated that the expression of asparagine synthetase (ASNS, an enzyme that synthesizes asparagine from aspartate, was upregulated by mutated KRAS and that ASNS expression was induced by KRAS-activated signaling pathway, in particular PI3K-AKT-mTOR pathway. Importantly, we demonstrated that KRAS-mutant CRC cells could become adaptive to glutamine depletion through asparagine biosynthesis by ASNS and that asparagine addition could rescue the inhibited growth and viability of cells grown under the glutamine-free condition in vitro. Notably, a pronounced growth suppression of KRAS-mutant CRC was observed upon ASNS knockdown in vivo. Furthermore, combination of L-asparaginase plus rapamycin markedly suppressed the growth of KRAS-mutant CRC xenografts in vivo, whereas either L-asparaginase or rapamycin alone was not effective. These results indicate ASNS might be a novel therapeutic target against CRCs with mutated KRAS.

  18. Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties.

    Science.gov (United States)

    de Medina, Philippe; Paillasse, Michael R; Segala, Gregory; Voisin, Maud; Mhamdi, Loubna; Dalenc, Florence; Lacroix-Triki, Magali; Filleron, Thomas; Pont, Frederic; Saati, Talal Al; Morisseau, Christophe; Hammock, Bruce D; Silvente-Poirot, Sandrine; Poirot, Marc

    2013-01-01

    We previously synthesized dendrogenin A and hypothesized that it could be a natural metabolite occurring in mammals. Here we explore this hypothesis and report the discovery of dendrogenin A in mammalian tissues and normal cells as an enzymatic product of the conjugation of 5,6α-epoxy-cholesterol and histamine. Dendrogenin A was not detected in cancer cell lines and was fivefold lower in human breast tumours compared with normal tissues, suggesting a deregulation of dendrogenin A metabolism during carcinogenesis. We established that dendrogenin A is a selective inhibitor of cholesterol epoxide hydrolase and it triggered tumour re-differentiation and growth control in mice and improved animal survival. The properties of dendrogenin A and its decreased level in tumours suggest a physiological function in maintaining cell integrity and differentiation. The discovery of dendrogenin A reveals a new metabolic pathway at the crossroads of cholesterol and histamine metabolism and the existence of steroidal alkaloids in mammals.

  19. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    Science.gov (United States)

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  20. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  1. The bifunctional autophagic flux by 2-deoxyglucose to control survival or growth of prostate cancer cells

    International Nuclear Information System (INIS)

    Jeon, Jeong Yong; Kim, Seung Won; Park, Ki Cheong; Yun, Mijin

    2015-01-01

    Recent reports using metabolism regulating drugs showed that nutrient deprivation was an efficient tool to suppress cancer progression. In addition, autophagy control is emerging to prevent cancer cell survival. Autophagy breaks down the unnecessary cytoplasmic components into anabolic units and energy sources, which are the most important sources for making the ATP that maintains homeostasis in cancer cell growth and survival. Therefore, the glucose analog 2-deoxyglucose (2DG) has been used as an anticancer reagent due to its inhibition of glycolysis. Prostate cancer cells (PC3) were treated with 2DG for 6 h or 48 h to analyze the changing of cell cycle and autophagic flux. Rapamycin and LC3B overexpressing vectors were administered to PC3 cells for autophagy induction and chloroquine and shBeclin1 plasmid were used to inhibit autophagy in PC3 cells to analyze PC3 cells growth and survival. The samples for western blotting were prepared in each culture condition to confirm the expression level of autophagy related and regulating proteins. We demonstrated that 2DG inhibits PC3 cells growth and had discriminating effects on autophagy regulation based on the different time period of 2DG treatment to control cell survival. Short-term treatment of 2DG induced autophagic flux, which increased microtubule associated protein 1 light chain 3B (LC3B) conversion rates and reduced p62 levels. However, 2DG induced autophagic flux is remarkably reduced over an extended time period of 2DG treatment for 48 h despite autophagy inducing internal signaling being maintained. The relationship between cell growth and autophagy was proved. Increased autophagic flux by rapamycin or LC3B overexpression powerfully reduced cell growth, while autophagy inhibition with shBeclin1 plasmid or chloroquine had no significant effect on regulating cell growth. Given these results, maintaining increased autophagic flux was more effective at inhibiting cancer cell progression than inhibition of

  2. Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice[C][W][OPEN

    Science.gov (United States)

    Tong, Hongning; Xiao, Yunhua; Liu, Dapu; Gao, Shaopei; Liu, Linchuan; Yin, Yanhai; Jin, Yun; Qian, Qian; Chu, Chengcai

    2014-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. PMID:25371548

  3. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Louise von Stechow

    Full Text Available The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.

  4. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5.

    Science.gov (United States)

    Mitra, Ranjana; Le, Thuc T; Gorjala, Priyatham; Goodman, Oscar B

    2017-09-06

    Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prostate cancer-specific modifications in lipid storage pathways so that these modified gene products can be identified and therapeutically targeted. To identify genes that promote lipid droplet formation and storage, the expression profiles of candidate genes were assessed and compared between peripheral blood mononuclear cells and prostate cancer cells. Subsequently, differentially expressed genes were inhibited and growth assays performed to elucidate their role in the growth of the cancer cells. Cell cycle, apoptosis and autophagy assays were performed to ascertain the mechanism of growth inhibition. Our results indicate that DGAT1, ABHD5, ACAT1 and ATGL are overexpressed in prostate cancer cells compared to PBMCs and of these overexpressed genes, DGAT1 and ABHD5 aid in the growth of the prostate cancer cells. Blocking the expression of both DGAT1 and ABHD5 results in inhibition of growth, cell cycle block and cell death. DGAT1 siRNA treatment inhibits lipid droplet formation and leads to autophagy where as ABHD5 siRNA treatment promotes accumulation of lipid droplets and leads to apoptosis. Both the siRNA treatments reduce AMPK phosphorylation, a key regulator of lipid metabolism. While DGAT1 siRNA reduces phosphorylation of ACC, the rate limiting enzyme in de novo fat synthesis and triggers phosphorylation of raptor and ULK-1 inducing autophagy and cell death, ABHD5 siRNA decreases P70S6 phosphorylation, leading to PARP cleavage, apoptosis and cell death. Interestingly, DGAT-1 is involved

  5. A fundamental research of growth, metabolism and product formation of tobacco suspension cells at different scales

    OpenAIRE

    Ullisch, David

    2012-01-01

    For over two decades, plant cell cultures have been promising hosts for the expression of recombinant proteins such as hormones, growth factors, full-size antibodies and antigens. So far, over 700 different plant cell cultures are stored in the German Collection of Microorganisms and Cell Cultures (DSMZ) in Braunschweig. Among these plant cell cultures, the tobacco cell line Nicotiana tabacum Bright Yellow 2 (BY-2) was chosen as a good host cell line for the production of recombinant proteins...

  6. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  7. Extracellular pH Modulates Neuroendocrine Prostate Cancer Cell Metabolism and Susceptibility to the Mitochondrial Inhibitor Niclosamide

    Science.gov (United States)

    Ippolito, Joseph E.; Brandenburg, Matthew W.; Ge, Xia; Crowley, Jan R.; Kirmess, Kristopher M.; Som, Avik; D’Avignon, D. Andre; Arbeit, Jeffrey M.; Achilefu, Samuel; Yarasheski, Kevin E.; Milbrandt, Jeffrey

    2016-01-01

    Neuroendocrine prostate cancer is a lethal variant of prostate cancer that is associated with castrate-resistant growth, metastasis, and mortality. The tumor environment of neuroendocrine prostate cancer is heterogeneous and characterized by hypoxia, necrosis, and numerous mitoses. Although acidic extracellular pH has been implicated in aggressive cancer features including metastasis and therapeutic resistance, its role in neuroendocrine prostate cancer physiology and metabolism has not yet been explored. We used the well-characterized PNEC cell line as a model to establish the effects of extracellular pH (pH 6.5, 7.4, and 8.5) on neuroendocrine prostate cancer cell metabolism. We discovered that alkalinization of extracellular pH converted cellular metabolism to a nutrient consumption-dependent state that was susceptible to glucose deprivation, glutamine deprivation, and 2-deoxyglucose (2-DG) mediated inhibition of glycolysis. Conversely, acidic pH shifted cellular metabolism toward an oxidative phosphorylation (OXPHOS)-dependent state that was susceptible to OXPHOS inhibition. Based upon this mechanistic knowledge of pH-dependent metabolism, we identified that the FDA-approved anti-helminthic niclosamide depolarized mitochondrial potential and depleted ATP levels in PNEC cells whose effects were enhanced in acidic pH. To further establish relevance of these findings, we tested the effects of extracellular pH on susceptibility to nutrient deprivation and OXPHOS inhibition in a cohort of castrate-resistant prostate cancer cell lines C4-2B, PC-3, and PC-3M. We discovered similar pH-dependent toxicity profiles among all cell lines with these treatments. These findings underscore a potential importance to acidic extracellular pH in the modulation of cell metabolism in tumors and development of an emerging paradigm that exploits the synergy of environment and therapeutic efficacy in cancer. PMID:27438712

  8. [Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].

    Science.gov (United States)

    Manhylova, T A; Gafarova, N H

    2015-01-01

    Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered.

  9. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress.

    Science.gov (United States)

    Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang

    2015-01-01

    Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.

  10. Effects of Nicotinamide N-Methyltransferase on PANC-1 Cells Proliferation, Metastatic Potential and Survival Under Metabolic Stress

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2015-01-01

    Full Text Available Background: Aberrant expression of Nicotinamide N-methyltransferase (NNMT has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Methods: Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. Results: NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. Conclusions: These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress.

  11. Dietary fat modulation of mammary tumor growth and metabolism demonstrated by 31P-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Erickson, K.L.; Buckman, D.K.; Hubbard, N.E.; Ross, B.

    1986-01-01

    The relationship of dietary fat concentration and saturation on the growth and metabolic activity of line 168 was studied using syngeneic mice fed 6 experimental diets before and during tumor growth. Tumor latency was significantly greater for mice fed a diet containing the minimum of essential fatty acids (EFA, 0.5% corn oil) or 8% coconut oil (SF) than for mice fed 8 or 20% safflower oil (PUF) or 20% SF. Changes in dietary fat resulted in alterations of tumor cell and serum fatty acid composition but not the number of inflammatory cells infiltrating the tumor. 31 P-surface coil NMR was used to measure possible changes in tumor metabolism in vivo. Although pH decreased from 7.2 to 6.6 as the tumor volume increased, there was no difference in pH among dietary groups. There was an inverse relationship between both sugar phosphate (SP)/Pi and ATP/Pi ratios and tumor volume; those ratios for mice fed an EFA deficient or minimal EFA diet decreased at a different rate than ratios for mice fed diets with additional fat. Tumors of mice fed diets containing no or a low level (0.3%) of 18:2 had higher SP/ATP ratios than mice fed diets containing a moderate level (∼ 4%) of 18:2. Thus, high levels of dietary fat had a significant effect on promotion of mammary tumors during early stages of tumor growth. Differences in tumor volume associated with dietary fat may be related to changes in the levels of high energy phosphate metabolites

  12. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    Science.gov (United States)

    Heinzelmann, Sandra M.; Villanueva, Laura; Sinke-Schoen, Danielle; Sinninghe Damsté, Jaap S.; Schouten, Stefan; van der Meer, Marcel T. J.

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids enriched in deuterium (D) while photoautotrophic and chemoautotrophic microorganisms produce fatty acids depleted in D compared to the water in the culture medium (growth water). However, the impact of factors other than metabolism have not been investigated. Here, we evaluate the impact of growth phase compared to metabolism on the hydrogen isotopic composition of fatty acids of different environmentally relevant microorganisms with heterotrophic, photoautotrophic and chemoautotrophic metabolisms. Fatty acids produced by heterotrophs are enriched in D compared to growth water with εlipid/water between 82 and 359‰ when grown on glucose or acetate, respectively. Photoautotrophs (εlipid/water between −149 and −264‰) and chemoautotrophs (εlipid/water between −217 and −275‰) produce fatty acids depleted in D. Fatty acids become, in general, enriched by between 4 and 46‰ with growth phase which is minor compared to the influence of metabolisms. Therefore, the D/H ratio of fatty acids is a promising tool to investigate community metabolisms in nature. PMID:26005437

  13. CIRCADIAN REGULATION METABOLIC SIGNALING MECHANISMS OF HUMAN BREAST CANCER GROWTH BY THE NOCTURNAL MELATONIN SIGNAL AND THE CONSEQUENCES OF ITS DISRUPTION BY LIGHT AT NIGHT

    Science.gov (United States)

    Blask, David E.; Hill, Steven M.; Dauchy, Robert T.; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu; Dauchy, Erin; Sauer, Leonard A.

    2011-01-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light-at-night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT1-induced activation of Gαi2 signaling and reduction of cAMP levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT1-mediated suppression of cAMP leading to blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN. PMID:21605163

  14. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  15. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    Science.gov (United States)

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  16. Physical activity counteracts tumor cell growth in colon carcinoma C26-injected muscles: an interim report

    Directory of Open Access Journals (Sweden)

    Charlotte Hiroux

    2016-06-01

    Full Text Available Skeletal muscle tissue is a rare site of tumor metastasis but is the main target of the degenerative processes occurring in cancer-associated cachexia syndrome. Beneficial effects of physical activity in counteracting cancer-related muscle wasting have been described in the last decades. Recently it has been shown that, in tumor xeno-transplanted mouse models, physical activity is able to directly affect tumor growth by modulating inflammatory responses in the tumor mass microenvironment. Here, we investigated the effect of physical activity on tumor cell growth in colon carcinoma C26 cells injected tibialis anterior muscles of BALB/c mice. Histological analyses revealed that 4 days of voluntary wheel running significantly counteracts tumor cell growth in C26-injected muscles compared to the non-injected sedentary controls. Since striated skeletal muscle tissue is the site of voluntary contraction, our results confirm that physical activity can also directly counteract tumor cell growth in a metabolically active tissue that is usually not a target for metastasis.

  17. Metabolic characterization of isocitrate dehydrogenase (IDH) mutant and IDH wildtype gliomaspheres uncovers cell type-specific vulnerabilities.

    Science.gov (United States)

    Garrett, Matthew; Sperry, Jantzen; Braas, Daniel; Yan, Weihong; Le, Thuc M; Mottahedeh, Jack; Ludwig, Kirsten; Eskin, Ascia; Qin, Yue; Levy, Rachelle; Breunig, Joshua J; Pajonk, Frank; Graeber, Thomas G; Radu, Caius G; Christofk, Heather; Prins, Robert M; Lai, Albert; Liau, Linda M; Coppola, Giovanni; Kornblum, Harley I

    2018-01-01

    There is considerable interest in defining the metabolic abnormalities of IDH mutant tumors to exploit for therapy. While most studies have attempted to discern function by using cell lines transduced with exogenous IDH mutant enzyme, in this study, we perform unbiased metabolomics to discover metabolic differences between a cohort of patient-derived IDH1 mutant and IDH wildtype gliomaspheres. Using both our own microarray and the TCGA datasets, we performed KEGG analysis to define pathways differentially enriched in IDH1 mutant and IDH wildtype cells and tumors. Liquid chromatography coupled to mass spectrometry analysis with labeled glucose and deoxycytidine tracers was used to determine differences in overall cellular metabolism and nucleotide synthesis. Radiation-induced DNA damage and repair capacity was assessed using a comet assay. Differences between endogenous IDH1 mutant metabolism and that of IDH wildtype cells transduced with the IDH1 (R132H) mutation were also investigated. Our KEGG analysis revealed that IDH wildtype cells were enriched for pathways involved in de novo nucleotide synthesis, while IDH1 mutant cells were enriched for pathways involved in DNA repair. LC-MS analysis with fully labeled 13 C-glucose revealed distinct labeling patterns between IDH1 mutant and wildtype cells. Additional LC-MS tracing experiments confirmed increased de novo nucleotide synthesis in IDH wildtype cells relative to IDH1 mutant cells. Endogenous IDH1 mutant cultures incurred less DNA damage than IDH wildtype cultures and sustained better overall growth following X-ray radiation. Overexpression of mutant IDH1 in a wildtype line did not reproduce the range of metabolic differences observed in lines expressing endogenous mutations, but resulted in depletion of glutamine and TCA cycle intermediates, an increase in DNA damage following radiation, and a rise in intracellular ROS. These results demonstrate that IDH1 mutant and IDH wildtype cells are easily distinguishable

  18. The consequences of chronic kidney disease on bone metabolism and growth in children.

    Science.gov (United States)

    Bacchetta, Justine; Harambat, Jérôme; Cochat, Pierre; Salusky, Isidro B; Wesseling-Perry, Katherine

    2012-08-01

    Growth retardation, decreased final height and renal osteodystrophy (ROD) are common complications of childhood chronic kidney disease (CKD), resulting from a combination of abnormalities in the growth hormone (GH) axis, vitamin D deficiency, hyperparathyroidism, hypogonadism, inadequate nutrition, cachexia and drug toxicity. The impact of CKD-associated bone and mineral disorders (CKD-MBD) may be immediate (serum phosphate/calcium disequilibrium) or delayed (poor growth, ROD, fractures, vascular calcifications, increased morbidity and mortality). In 2012, the clinical management of CKD-MBD in children needs to focus on three main objectives: (i) to provide an optimal growth in order to maximize the final height with an early management with recombinant GH therapy when required, (ii) to equilibrate calcium/phosphate metabolism so as to obtain acceptable bone quality and cardiovascular status and (iii) to correct all metabolic and clinical abnormalities that can worsen bone disease, growth and cardiovascular disease, i.e. metabolic acidosis, anaemia, malnutrition and 25(OH)vitamin D deficiency. The aim of this review is to provide an overview of the mineral, bone and vascular abnormalities associated with CKD in children in terms of pathophysiology, diagnosis and clinical management.

  19. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    International Nuclear Information System (INIS)

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E 2 (PGE 2 ) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  20. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Chitcholtan, Kenny, E-mail: kenny.chitcholtan@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Asselin, Eric, E-mail: Eric.Asselin@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Parent, Sophie, E-mail: Sophie.Parent@uqtr.ca [Department of Chemistry and Biology, University of Quebec, at Trois-Rivières, C.P. 500, Trois-Rivières, Quebec, Canada G9A 5H7 (Canada); Sykes, Peter H., E-mail: peter.sykes@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Evans, John J., E-mail: john.evans@otago.ac.nz [Department of Obstetrics and Gynaecology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand); Centre of Neuroendocrinology and The MacDiarmid Institute of Advanced Materials and Nanotechnology, University of Otago, Christchurch, 2 Riccarton Avenue, Christchurch 8011 (New Zealand)

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  1. In vitro lipid metabolism, growth and metabolic hormone concentrations in hyperthyroid chickens.

    Science.gov (United States)

    Rosebrough, R W; McMurtry, J P; Vasilatos-Younken, R

    1992-11-01

    Indian River male broiler chickens growing from 7 to 28 d of age were fed on diets containing energy:protein values varying from 43 to 106 MJ/kg protein and containing 0 or 1 mg triiodothyronine (T3)/kg diet to study effects on growth, metabolic hormone concentrations and in vitro lipogenesis. In vitro lipid synthesis was determined in liver explants in the presence and absence of ouabain (Na+, K(+)-transporting ATPase (EC 3.6.1.37) inhibitor) to estimate the role of enzyme activity in explants synthesizing lipid. Growth and feed consumption increased (P 53 MJ/kg protein) and dietary T3 lowered (P 53 MJ/kg protein) increased (P < 0.01) lipogenesis, plasma growth hormone (GH) and decreased plasma insulin-like growth factor 1 (IGF-1). Also, T3 decreased plasma GH, IGF-1 in vitro lipogenesis. Ouabain inhibited a greater proportion of in vitro lipogenesis in those explants synthesizing fat at a high rate. Both dietary T3 and in vitro ouabain decrease lipogenesis, but, when combined, the effects are not cumulative.

  2. Glycolysis is governed by growth regime and simple enzyme regulation in adherent MDCK cells.

    Science.gov (United States)

    Rehberg, Markus; Ritter, Joachim B; Reichl, Udo

    2014-10-01

    Due to its vital importance in the supply of cellular pathways with energy and precursors, glycolysis has been studied for several decades regarding its capacity and regulation. For a systems-level understanding of the Madin-Darby canine kidney (MDCK) cell metabolism, we couple a segregated cell growth model published earlier with a structured model of glycolysis, which is based on relatively simple kinetics for enzymatic reactions of glycolysis, to explain the pathway dynamics under various cultivation conditions. The structured model takes into account in vitro enzyme activities, and links glycolysis with pentose phosphate pathway and glycogenesis. Using a single parameterization, metabolite pool dynamics during cell cultivation, glucose limitation and glucose pulse experiments can be consistently reproduced by considering the cultivation history of the cells. Growth phase-dependent glucose uptake together with cell-specific volume changes generate high intracellular metabolite pools and flux rates to satisfy the cellular demand during growth. Under glucose limitation, the coordinated control of glycolytic enzymes re-adjusts the glycolytic flux to prevent the depletion of glycolytic intermediates. Finally, the model's predictive power supports the design of more efficient bioprocesses.

  3. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  4. Effects of water turbulence on variations in cell ultrastructure and metabolism of amino acids in the submersed macrophyte, Elodea nuttallii (Planch.) H. St. John.

    Science.gov (United States)

    Atapaththu, K S S; Miyagi, A; Atsuzawa, K; Kaneko, Y; Kawai-Yamada, M; Asaeda, T

    2015-09-01

    The interactions between macrophytes and water movement are not yet fully understood, and the causes responsible for the metabolic and ultrastructural variations in plant cells as a consequence of turbulence are largely unknown. In the present study, growth, metabolism and ultrastructural changes were evaluated in the aquatic macrophyte Elodea nuttallii, after exposure to turbulence for 30 days. The turbulence was generated with a vertically oscillating horizontal grid. The turbulence reduced plant growth, plasmolysed leaf cells and strengthened cell walls, and plants exposed to turbulence accumulated starch granules in stem chloroplasts. The size of the starch granules increased with the magnitude of the turbulence. Using capillary electrophoresis-mass spectrometry (CE-MS), analysis of the metabolome found metabolite accumulation in response to the turbulence. Asparagine was the dominant amino acid that was concentrated in stressed plants, and organic acids such as citrate, ascorbate, oxalate and γ-amino butyric acid (GABA) also accumulated in response to turbulence. These results indicate that turbulence caused severe stress that affected plant growth, cell ultrastructure and some metabolic functions of E. nuttallii. Our findings offer insights to explain the effects of water movement on the functions of aquatic plants. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae

    Science.gov (United States)

    Fernandez, Jessie; Yang, Kuan Ting; Cornwell, Kathryn M.; Wright, Janet D.; Wilson, Richard A.

    2013-01-01

    Increasing incidences of human disease, crop destruction and ecosystem perturbations are attributable to fungi and threaten socioeconomic progress and food security on a global scale. The blast fungus Magnaporthe oryzae is the most devastating pathogen of cultivated rice, but its metabolic requirements in the host are unclear. Here we report that a purine-requiring mutant of M. oryzae could develop functional appressoria, penetrate host cells and undergo the morphogenetic transition to elaborate bulbous invasive hyphae from primary hyphae, but further in planta growth was aborted. Invasive hyphal growth following rice cell ingress is thus dependent on de novo purine biosynthesis by the pathogen and, moreover, plant sources of purines are neither available to the mutant nor required by the wild type during the early biotrophic phase of infection. This work provides new knowledge about the metabolic interface between fungus and host that might be applicable to other important intracellular fungal pathogens. PMID:23928947

  6. Human platelet lysate as a promising growth-stimulating additive for culturing of stem cells and other cell types.

    Science.gov (United States)

    Shanskii, Ya D; Sergeeva, N S; Sviridova, I K; Kirakozov, M S; Kirsanova, V A; Akhmedova, S A; Antokhin, A I; Chissov, V I

    2013-11-01

    We compared the composition and biological activity of fetal calf serum and platelet lysate from donor platelet concentrate. In platelet lysate, the concentrations of alkaline phosphatase, lactate dehydrogenase, creatinine, and mineral metabolism parameters were lower, while parameters of lipid and protein metabolism were higher than in fetal calf serum. The concentrations of growth factors (platelet-derived (AA, AB, BB), vascular endothelial, insulin-like, and transforming growth factor β) in platelet lysate 1.7-148.7-fold surpassed the corresponding parameters in fetal calf serum. After replacement of fetal calf serum with platelet lysate in the culture medium (0, 25, 50, 75, and 100%), the count of multipotent mesenchymal stromal cells on day 7 (in comparison with day 1) increased by 154.8, 206.6, 228.2, 367.7, and 396.5%, respectively. Thus, platelet lysate can be an adequate non-xenogenic alternative for fetal calf serum.

  7. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  8. Cell-selective metabolic labeling of biomolecules with bioorthogonal functionalities.

    Science.gov (United States)

    Xie, Ran; Hong, Senlian; Chen, Xing

    2013-10-01

    Metabolic labeling of biomolecules with bioorthogonal functionalities enables visualization, enrichment, and analysis of the biomolecules of interest in their physiological environments. This versatile strategy has found utility in probing various classes of biomolecules in a broad range of biological processes. On the other hand, metabolic labeling is nonselective with respect to cell type, which imposes limitations for studies performed in complex biological systems. Herein, we review the recent methodological developments aiming to endow metabolic labeling strategies with cell-type selectivity. The cell-selective metabolic labeling strategies have emerged from protein and glycan labeling. We envision that these strategies can be readily extended to labeling of other classes of biomolecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Towards high resolution analysis of metabolic flux in cells and tissues.

    Science.gov (United States)

    Sims, James K; Manteiga, Sara; Lee, Kyongbum

    2013-10-01

    Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Metabolic basis of ethanol-induced cytotoxicity in recombinant HepG2 cells: Role of nonoxidative metabolism

    International Nuclear Information System (INIS)

    Wu Hai; Cai Ping; Clemens, Dahn L.; Jerrells, Thomas R.; Ansari, G.A. Shakeel; Kaphalia, Bhupendra S.

    2006-01-01

    Chronic alcohol abuse, a major health problem, causes liver and pancreatic diseases and is known to impair hepatic alcohol dehydrogenase (ADH). Hepatic ADH-catalyzed oxidation of ethanol is a major pathway for the ethanol disposition in the body. Hepatic microsomal cytochrome P450 (CYP2E1), induced in chronic alcohol abuse, is also reported to oxidize ethanol. However, impaired hepatic ADH activity in a rat model is known to facilitate a nonoxidative metabolism resulting in formation of nonoxidative metabolites of ethanol such as fatty acid ethyl esters (FAEEs) via a nonoxidative pathway catalyzed by FAEE synthase. Therefore, the metabolic basis of ethanol-induced cytotoxicity was determined in HepG2 cells and recombinant HepG2 cells transfected with ADH (VA-13), CYP2E1 (E47) or ADH + CYP2E1 (VL-17A). Western blot analysis shows ADH deficiency in HepG2 and E47 cells, compared to ADH-overexpressed VA-13 and VL-17A cells. Attached HepG2 cells and the recombinant cells were incubated with ethanol, and nonoxidative metabolism of ethanol was determined by measuring the formation of FAEEs. Significantly higher levels of FAEEs were synthesized in HepG2 and E47 cells than in VA-13 and VL-17A cells at all concentrations of ethanol (100-800 mg%) incubated for 6 h (optimal time for the synthesis of FAEEs) in cell culture. These results suggest that ADH-catalyzed oxidative metabolism of ethanol is the major mechanism of its disposition, regardless of CYP2E1 overexpression. On the other hand, diminished ADH activity facilitates nonoxidative metabolism of ethanol to FAEEs as found in E47 cells, regardless of CYP2E1 overexpression. Therefore, CYP2E1-mediated oxidation of ethanol could be a minor mechanism of ethanol disposition. Further studies conducted only in HepG2 and VA-13 cells showed lower ethanol disposition and ATP concentration and higher accumulation of neutral lipids and cytotoxicity (apoptosis) in HepG2 cells than in VA-13 cells. The apoptosis observed in HepG2 vs

  11. Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes.

    Directory of Open Access Journals (Sweden)

    Caroline Baroukh

    2017-06-01

    Full Text Available Microalgae are promising microorganisms for the production of numerous molecules of interest, such as pigments, proteins or triglycerides that can be turned into biofuels. Heterotrophic or mixotrophic growth on fermentative wastes represents an interesting approach to achieving higher biomass concentrations, while reducing cost and improving the environmental footprint. Fermentative wastes generally consist of a blend of diverse molecules and it is thus crucial to understand microalgal metabolism in such conditions, where switching between substrates might occur. Metabolic modeling has proven to be an efficient tool for understanding metabolism and guiding the optimization of biomass or target molecule production. Here, we focused on the metabolism of Chlorella sorokiniana growing heterotrophically and mixotrophically on acetate and butyrate. The metabolism was represented by 172 metabolic reactions. The DRUM modeling framework with a mildly relaxed quasi-steady-state assumption was used to account for the switching between substrates and the presence of light. Nine experiments were used to calibrate the model and nine experiments for the validation. The model efficiently predicted the experimental data, including the transient behavior during heterotrophic, autotrophic, mixotrophic and diauxic growth. It shows that an accurate model of metabolism can now be constructed, even in dynamic conditions, with the presence of several carbon substrates. It also opens new perspectives for the heterotrophic and mixotrophic use of microalgae, especially for biofuel production from wastes.

  12. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Science.gov (United States)

    Cappelletti, Martina; Presentato, Alessandro; Milazzo, Giorgio; Turner, Raymond J.; Fedi, Stefano; Frascari, Dario; Zannoni, Davide

    2015-01-01

    Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane) were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from n-butane metabolism. Two gene clusters, prmABCD and smoABCD—coding for Soluble Di-Iron Monooxgenases (SDIMOs) involved in gaseous n-alkanes oxidation—were detected in the BCP1 genome. By means of Reverse Transcriptase-quantitative PCR (RT-qPCR) analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids, or during the cell growth on rich medium (Luria–Bertani broth). The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane) and/or liquid (n-hexane) short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step. PMID:26029173

  13. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  14. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells.

    Science.gov (United States)

    Veyrat, Mathieu; Durand, Sylvère; Classe, Marion; Glavan, Tanja Matijevic; Oker, Natalie; Kapetanakis, Nikiforos-Ioannis; Jiang, Xiaojun; Gelin, Aurore; Herman, Philippe; Casiraghi, Odile; Zagzag, David; Enot, David; Busson, Pierre; Vérillaud, Benjamin

    2016-12-13

    In this study, a possible link between the innate immune recognition receptor TLR3 and metabolic reprogramming in Head and Neck carcinoma (HNC) cells was investigated. The effects of TLR3 stimulation/knock-down were assessed under several culture conditions in 4 HNC cell-lines by cell growth assays, targeted metabolomics, and glycolysis assays based on time-resolved analysis of proton release (Seahorse analyzer). The stimulation of TLR3 by its synthetic agonist Poly(A:U) resulted in a faster growth of HNC cells under low foetal calf serum conditions. Targeted analysis of glucose metabolism pathways demonstrated a tendency towards a shift from tricarboxylic acid cycle (Krebs cycle) to glycolysis and anabolic reactions in cells treated with Poly(A:U). Glycolysis assays confirmed that TLR3 stimulation enhanced the capacity of malignant cells to switch from oxidative phosphorylation to extra-mitochondrial glycolysis. We found evidence that HIF-1α is involved in this process: addition of the TLR3 agonist resulted in a higher cell concentration of the HIF-1α protein, even in normoxia, whereas knocking-down TLR3 resulted in a lower concentration, even in hypoxia. Finally, we assessed TLR3 expression by immunohistochemistry in a series of 7 HNSCC specimens and found that TLR3 was detected at higher levels in tumors displaying a hypoxic staining pattern. Overall, our results demonstrate that TLR3 stimulation induces the Warburg effect in HNC cells in vitro, and suggest that TLR3 may play a role in tumor adaptation to hypoxia.

  15. Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies

    DEFF Research Database (Denmark)

    Kucuk, Can; Iqbal, Javeed; J. deLeeuw, Ronald

    in cell proliferation, growth and energy metabolic processes important for the neoplastic cells. In deleted regions, genes showing decreased expression included transcription factors or repressors (e.g. SP4, PRDM1, NCOR1 and ZNF10), tumor suppressors or negative regulators of the cell cycle (e.g. CDKN2C...

  16. INSULIN LIKE GROWTH FACTOR 1 POSSIBLE DEPENDENCE IN PATIENTS WITH METABOLIC SYNDROME OF NODULAR PATHOLOGY OF THE THYROID GLAND.

    Science.gov (United States)

    Rekvava, M; Dundua, T; Kobulia, M; Javashvili, L; Giorgadze, E

    2017-09-01

    Metabolic syndrome and nodular pathology of the thyroid gland is a widespread problem nowadays. Recently there has been a notable coincidence between metabolic syndrome and nodular pathology of thyroid gland. Hence, it is interesting to reveal the connection between these two diseases. It is possible that insulin-like growth factor system (IGF), namely IGF 1 is connecting link between metabolic syndrome and nodular pathology of thyroid gland, because IGF1 stimulates growth and proliferation of cells in the body. We have investigated18-82 years of age 71 patients. group 1 n27- subjects with thyroid nodular disease, and metabolic syndrome, group 2 n31- subjects with thyroid nodular disease and without metabolic syndrome. group 3 n13 - subjects with metabolic syndrome and no thyroid pathology. In all groups were assessed thyroid structural data, defined parameters of carbohydrate metabolism, thyroid function and blood concentration of IGF1. In patients with hyperinsulinemia IGF 1 was noted in normal or reduced concentration. In I group IGF1 was normal in 70,4% (n=19), decreased in 29,6% (n=8), In II group was normal in 77,4 % (n=24), decreased in 22,6% (n=7) and in III group was normal in 76,9% (n=10), decreased in 23,1% (n=3). Increase of IGF 1 in patients with thyroid nodular disease patients was not noted. Statistically significant connection between IGF1 and thyroid nodules was not revealed. For the further investigation of this connection we plan to measure IGF1 in the thyroid histological samples in the future studies.

  17. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  18. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Science.gov (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  19. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health

    Science.gov (United States)

    Brown, Laura D.

    2014-01-01

    Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or “catch up” postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life. PMID:24532817

  20. Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

    DEFF Research Database (Denmark)

    Ley, Daniel; Pereira, Sara; Pedersen, Lasse Ebdrup

    2017-01-01

    CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 dierent catabolic pathways, to increase synthesis of biomass and recombinant protein, while red...... reducing production of growth-inhibiting metabolic by-products from amino acid catabolism....

  1. Phosphorylated and nucleotide sugar metabolism in relation to cell wall production in Avena coleoptiles treated with fluoride and peroxyacetyl nitrate

    International Nuclear Information System (INIS)

    Gordon, W.C.; Ordin, L.

    1972-01-01

    Coleoptile sections of Avena sativa L. were pretreated with sodium fluoride or peroxyacetyl nitrate at levels which inhibit auxin-induced growth but did not affect glucose-uptake or CO production when postincubated for 30 minutes in a 14 C-glucose medium without auxin. Labeling of metabolites involved in cell wall synthesis was measured. Peroxyacetyl nitrate decreased labeling, and it was concluded that the pool size of uridine diphosphoglucose, sucrose, and cell wall polysaccharides decreased compared to control. The changes suggest that peroxyacetyl nitrate inactivated sucrose and cell wall synthesizing enzymes including cellulose synthetase and decreased cell growth by inhibiting production of cell wall constituents. Fluoride treatment had no effect on production of cell wall polysaccharides, with or without indoleacetic acid stimulation of growth. The only change after fluoride treatment was a decrease in uridine diphosphoglucose during incubation without indoleacetic acid, a decrease that disappeared when indoleacetic acid was present. It was concluded that some other aspect of cell wall metabolism, not determined here, was involved in fluoride-induced inhibition of growth. 16 references, 3 figures, 2 tables

  2. Growth and nitrogen metabolism changes in NaCl-stressed tobacco ...

    African Journals Online (AJOL)

    Growth and nitrogen metabolism changes in NaCl-stressed tobacco (Nicotiana rustica L. var. Souffi) seedlings. Chokri Zaghdoud, Houda Maâroufi-Dguimi, Youssef Ouni, Mokhtar Guerfel, Houda Gouia, Kamel-Eddine Negaz, Ali Ferchichi, Mohamed Debouba ...

  3. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  4. Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2.

    Science.gov (United States)

    Sørensen, Sebastian R; Ronen, Zeev; Aamand, Jens

    2002-07-01

    Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the beta-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of (14)C-labeled isoproturon to (14)CO(2) and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.

  5. Larval developmental rate, metabolic rate and future growth performance in Atlantic salmon

    DEFF Research Database (Denmark)

    Serrano, Jonathan Vaz; Åberg, Madelene; Gjoen, Hans Magnus

    2009-01-01

    , quantified as time to first feeding, and growth in later stages was demonstrated in Atlantic salmon (Salmo salar L.). The observed relationship between future growth and larval developmental rate suggests that sorting larvae by time to first feeding can be a potential tool to optimize feeding strategies...... and growth in commercial rearing of Atlantic salmon. Furthermore, the link between larval standard metabolic rate and developmental rate and future growth is discussed in the present study....

  6. Effect of an insecticide on growth and metabolism of some non-target soil micro-organisms

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Nilakantan, Gita

    1975-01-01

    Aldicarb, a systemic insecticide, enhanced the growth of Rhizobium japonicum in vitro at 1 ppm concentration but inhibited it at 5 ppm level. The cell yields of Azotobacter chroococcum and Pseudomonas solanacearum were reduced by both the concentrations of the chemical. 1 and 5 ppm levels of the insecticide the incorporation of 14 C-glucose by R. japonicum, but it was stimulated in the case of R. chroococcum. In the case of P. solanacearum, however, 1 ppm level of the insecticide enhanced the incorporation of the label. Uptake of 32 P-di-potassium hydrogen phosphate by the cells was also significantly reduced indicating that the metabolic activities of these non-target soil micro-organisms are altered by the insecticide treatment. (author)

  7. Predicting growth of the healthy infant using a genome scale metabolic model

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Mardinoglu, Adil; Nielsen, Jens

    2017-01-01

    to simulate the mechanisms of growth and integrate data about breast-milk intake and composition with the infant's biomass and energy expenditure of major organs. The model predicted daily metabolic fluxes from birth to age 6 months, and accurately reproduced standard growth curves and changes in body...

  8. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    Science.gov (United States)

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  9. SYSTEMS BIOLOGY AND METABOLIC ENGINEERING OF ARTHROSPIRA CELL FACTORIES

    Directory of Open Access Journals (Sweden)

    Amornpan Klanchui

    2012-10-01

    Full Text Available Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented.

  10. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

    Science.gov (United States)

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-01-01

    Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001

  11. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-01-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ( 18 F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm 3 ) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ((micro)mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 (micro)mol/100 g per minute; mean difference, 2.4 (95% confidence interval, 0.67-4.2); P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone

  12. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    Science.gov (United States)

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where

  13. Relation between presence-absence of a visible nucleoid and metabolic activity in bacterioplankton cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joon, W.; Sherr, E.B.; Sherr, B.F. [Oregon State Univ., Corvallis, OR (United States)

    1996-09-01

    We investigated the report of Zweifel and Hagstroem that only a portion of marine bacteria contain nucleoids--the DNA-containing regions of procaryotic cells-- and that such bacteria correspond to the active or viable fraction of bacterioplankton. In Oregon coastal waters, 21-64% of bacteria had visible nucleoids; number of nucleoid-visible (NV) bacteria were greater than numbers of metabolically active bacteria, based on cells with active electron transport systems (ETS) and intact cell membranes. During log growth of a marine isolate, proportions of NV and ETS-active cells approached 100%. In stationary growth phase, the fraction of ETS-active cells decreased rapidly, while that of NV cells remained high for 7 d. When starved cells of the isolate were resupplied with nutrient (50 mg liter{sup -1} peptone), total cell number did not increase during the initial 6 h, but the proportion of NV cells increased from 27 to 100%, and that of ETS-active cells from 6 to 75%. In an analogous experiment with a bacterioplankton assemblage, a similar trend was observed: the number of NV cells double during the initial 6 h prior to an increase in total cell counts. These results show that some bacteria without visible nucleoids are capable of becoming NV cells, and thus have DNa in a nucleoid region not detectable with the method used here. 18 refs., 4 figs., 1 tab.

  14. INO80 Chromatin Remodeling Coordinates Metabolic Homeostasis with Cell Division

    Directory of Open Access Journals (Sweden)

    Graeme J. Gowans

    2018-01-01

    Full Text Available Adaptive survival requires the coordination of nutrient availability with expenditure of cellular resources. For example, in nutrient-limited environments, 50% of all S. cerevisiae genes synchronize and exhibit periodic bursts of expression in coordination with respiration and cell division in the yeast metabolic cycle (YMC. Despite the importance of metabolic and proliferative synchrony, the majority of YMC regulators are currently unknown. Here, we demonstrate that the INO80 chromatin-remodeling complex is required to coordinate respiration and cell division with periodic gene expression. Specifically, INO80 mutants have severe defects in oxygen consumption and promiscuous cell division that is no longer coupled with metabolic status. In mutant cells, chromatin accessibility of periodic genes, including TORC1-responsive genes, is relatively static, concomitant with severely attenuated gene expression. Collectively, these results reveal that the INO80 complex mediates metabolic signaling to chromatin to restrict proliferation to metabolically optimal states.

  15. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    Science.gov (United States)

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  16. Phenotypic diversity of diploid and haploid Emiliania huxleyi cells and of cells in different growth phases revealed by comparative metabolomics.

    Science.gov (United States)

    Mausz, Michaela A; Pohnert, Georg

    2015-01-01

    In phytoplankton a high species diversity of microalgae co-exists at a given time. But diversity is not only reflected by the species composition. Within these species different life phases as well as different metabolic states can cause additional diversity. One important example is the coccolithophore Emiliania huxleyi. Diploid cells play an important role in marine ecosystems since they can form massively abundant algal blooms but in addition the less abundant haploid life phase of E. huxleyi occurs in lower quantities. Both life phases may fulfill different functions in the plankton. We hypothesize that in addition to the functional diversity caused by this life phase transition the growth stage of cells can also influence the metabolic composition and thus the ecological impact of E. huxleyi. Here we introduce a metabolomic survey in dependence of life phases as well as different growth phases to reveal such changes. The comparative metabolomic approach is based on the extraction of intracellular metabolites from intact microalgae, derivatization and analysis by gas chromatography coupled to mass spectrometry (GC-MS). Automated data processing and statistical analysis using canonical analysis of principal coordinates (CAP) revealed unique metabolic profiles for each life phase. Concerning the correlations of metabolites to growth phases, complex patterns were observed. As for example the saccharide mannitol showed its highest concentration in the exponential phase, whereas fatty acids were correlated to stationary and sterols to declining phase. These results are indicative for specific ecological roles of these stages of E. huxleyi and are discussed in the context of previous physiological and ecological studies. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Cyclin G Functions as a Positive Regulator of Growth and Metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Patrick Fischer

    2015-08-01

    Full Text Available In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP. Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E, is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb, the B'-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila.

  18. Effects of Growth Hormone and Insulin-Like Growth Factor-1 on Postoperative Muscle and Substrate Metabolism

    Directory of Open Access Journals (Sweden)

    Folke Hammarqvist

    2010-01-01

    To conclude, growth factors influences urea metabolism, protein degradation and protein synthesis. There was no clearcut additional effect when combining GH and IGF-1 but the study was probably underpowered to outrule this and effects on nitrogen balance.

  19. Growth of Rhodococcus sp. strain BCP1 on gaseous n-alkanes: new metabolic insights and transcriptional analysis of two soluble di-iron monooxygenase genes

    Directory of Open Access Journals (Sweden)

    Martina eCappelletti

    2015-05-01

    Full Text Available Rhodococcus sp. strain BCP1 was initially isolated for its ability to grow on gaseous n-alkanes, which act as inducers for the co-metabolic degradation of low-chlorinated compounds. Here, both molecular and metabolic features of BCP1 cells grown on gaseous and short-chain n-alkanes (up to n-heptane were examined in detail. We show that propane metabolism generated terminal and sub-terminal oxidation products such as 1- and 2-propanol, whereas 1-butanol was the only terminal oxidation product detected from butane metabolism. Two gene clusters, prmABCD and smoABCD – coding for soluble di-iron monooxgenases (SDIMOs involved in gaseous n-alkanes oxidation – were detected in the BCP1 genome. By means of reverse transcriptase-quantitative PCR (RT-qPCR analysis, a set of substrates inducing the expression of the sdimo genes in BCP1 were assessed as well as their transcriptional repression in the presence of sugars, organic acids or during the cell growth on rich medium (Luria Bertani broth. The transcriptional start sites of both the sdimo gene clusters were identified by means of primer extension experiments. Finally, proteomic studies revealed changes in the protein pattern induced by growth on gaseous- (n-butane and/or liquid (n-hexane short-chain n-alkanes as compared to growth on succinate. Among the differently expressed protein spots, two chaperonins and an isocytrate lyase were identified along with oxidoreductases involved in oxidation reactions downstream of the initial monooxygenase reaction step.

  20. Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Kye Sook; Kang, Keon Wook; Oh, Soo Jin; Lee, Ki Ho; Kim, Hwan Mook; Ma, Jin Yeul; Kim, Sang Kyum

    2011-01-01

    Although methionine dependency is a phenotypic characteristic of tumor cells, it remains to be determined whether changes in sulfur amino acid metabolism occur in cancer cells resistant to chemotherapeutic medications. We compared expression/activity of sulfur amino acid metabolizing enzymes and cellular levels of sulfur amino acids and their metabolites between normal MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Adr) cells. The S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in MCF-7/Adr cells decreased to ∼ 10% relative to that in MCF-7 cells, which may have resulted from down-regulation of S-adenosylhomocysteine hydrolase. Expression of homocysteine-clearing enzymes, such as cystathionine beta-synthase, methionine synthase/methylene tetrahydrofolate reductase, and betaine homocysteine methyltransferase, was up-regulated in MCF-7/Adr cells, suggesting that acquiring doxorubicin resistance attenuated methionine-dependence and activated transsulfuration from methionine to cysteine. Homocysteine was similar, which is associated with a balance between the increased expressions of homocysteine-clearing enzymes and decreased extracellular homocysteine. Despite an elevation in cysteine, cellular GSH decreased in MCF-7/Adr cells, which was attributed to over-efflux of GSH into the medium and down-regulation of the GSH synthesis enzyme. Consequently, MCF-7/Adr cells were more sensitive to the oxidative stress induced by bleomycin and menadione than MCF-7 cells. In conclusion, our results suggest that regulating sulfur amino acid metabolism may be a possible therapeutic target for chemoresistant cancer cells. These results warrant further investigations to determine the role of sulfur amino acid metabolism in acquiring anticancer drug resistance in cancer cells using chemical and biological regulators involved in sulfur amino acid metabolism. - Research highlights: → MCF-7/Adr cells showed decreases in cellular GSH

  1. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  2. Growth regulation of HeLa cells by 1060 nm photons

    International Nuclear Information System (INIS)

    Torghele, K. F.

    1993-12-01

    Living organisms are open systems dominated by electromagnetic interaction. An essential feature of a living system is its cybernetic process which imply their capability of adaptation and sensitivity to internal and external fluctuations. The experimental results show that coherent and incoherent light of 1060 nm wavelength influences the metabolic processes and consequently the proliferation of cancer cell cultures (HeLa). Light induced regulation of HeLa cell growth depends on the cell density, the state of the cell culture and the amount of light irradiation. Best proliferation inhibiting effects can be obtained by application of 200 J/m 2 on HeLa cells in Lag-Phase and a typical cell density of 5.10 4 cells/cm 2 . Proceeding on the singlet oxygen hypothesis (KLIMA, H. et al.; 1990), it is shown mathematically that the dynamical behaviour of the NADH model is influenced by 1060 nm photons. Both, the experimental and the numerical results support our hypothesis: 1060 nm photons regulate the proliferation of HeLa cells. (author)

  3. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  4. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    Science.gov (United States)

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  5. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  6. The consequences of pediatric renal transplantation on bone metabolism and growth.

    Science.gov (United States)

    Bacchetta, Justine; Ranchin, Bruno; Demède, Delphine; Allard, Lise

    2013-10-01

    During childhood, growth retardation, decreased final height and renal osteodystrophy are common complications of chronic kidney disease (CKD). These problems remain present in patients undergoing renal transplantation, even though steroid-sparing strategies are more widely used. In this context, achieving normal height and growth in children after transplantation is a crucial issue for both quality of life and self-esteem. The aim of this review is to provide an overview of pathophysiology of CKD-mineral bone disorder (MBD) in children undergoing renal transplantation and to propose keypoints for its daily management. In adults, calcimimetics are effective for posttransplant hyperparathyroidism, but data are missing in the pediatric population. Fibroblast growth factor 23 levels are associated with increased risk of rejection, but the underlying mechanisms remain unclear. A recent meta-analysis also demonstrated the effectiveness of rhGH therapy in short transplanted children. In 2013, the daily clinical management of CKD-MBD in transplanted children should still focus on simple objectives: to optimize renal function, to develop and promote steroid-sparing strategies, to provide optimal nutritional support to maximize final height and avoid bone deformations, to equilibrate calcium/phosphate metabolism so as to provide acceptable bone quality and cardiovascular status, to correct all metabolic and clinical abnormalities that can worsen both bone and growth (mainly metabolic acidosis, anemia and malnutrition), promote good lifestyle habits (adequate calcium intake, regular physical activity, no sodas consumption, no tobacco exposure) and eventually to correct native vitamin D deficiency (target of 25-vitamin D >75 nmol/l).

  7. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    Science.gov (United States)

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  8. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Brett A. Morris

    2016-11-01

    Full Text Available Increased breast density attributed to collagen I deposition is associated with a 4–6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  9. Glycogen metabolism in the glucose-sensing and supply-driven β-cell.

    Science.gov (United States)

    Andersson, Lotta E; Nicholas, Lisa M; Filipsson, Karin; Sun, Jiangming; Medina, Anya; Al-Majdoub, Mahmoud; Fex, Malin; Mulder, Hindrik; Spégel, Peter

    2016-12-01

    Glycogen metabolism in β-cells may affect downstream metabolic pathways controlling insulin release. We examined glycogen metabolism in human islets and in the rodent-derived INS-1 832/13 β-cells and found them to express the same isoforms of key enzymes required for glycogen metabolism. Our findings indicate that glycogenesis is insulin-independent but influenced by extracellular glucose concentrations. Levels of glycogen synthase decrease with increasing glucose concentrations, paralleling accumulation of glycogen. We did not find cAMP-elicited glycogenolysis and insulin secretion to be causally related. In conclusion, our results reveal regulated glycogen metabolism in human islets and insulin-secreting cells. Whether glycogen metabolism affects insulin secretion under physiological conditions remains to be determined. © 2016 Federation of European Biochemical Societies.

  10. Detection of Metabolic Fluxes of O and H Atoms into Intracellular Water in Mammalian Cells

    Science.gov (United States)

    Kreuzer, Helen W.; Quaroni, Luca; Podlesak, David W.; Zlateva, Theodora; Bollinger, Nikki; McAllister, Aaron; Lott, Michael J.; Hegg, Eric L.

    2012-01-01

    Metabolic processes result in the release and exchange of H and O atoms from organic material as well as some inorganic salts and gases. These fluxes of H and O atoms into intracellular water result in an isotopic gradient that can be measured experimentally. Using isotope ratio mass spectroscopy, we revealed that slightly over 50% of the H and O atoms in the intracellular water of exponentially-growing cultured Rat-1 fibroblasts were isotopically distinct from growth medium water. We then employed infrared spectromicroscopy to detect in real time the flux of H atoms in these same cells. Importantly, both of these techniques indicate that the H and O fluxes are dependent on metabolic processes; cells that are in lag phase or are quiescent exhibit a much smaller flux. In addition, water extracted from the muscle tissue of rats contained a population of H and O atoms that were isotopically distinct from body water, consistent with the results obtained using the cultured Rat-1 fibroblasts. Together these data demonstrate that metabolic processes produce fluxes of H and O atoms into intracellular water, and that these fluxes can be detected and measured in both cultured mammalian cells and in mammalian tissue. PMID:22848359

  11. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells

    Science.gov (United States)

    Li, Xiaoran; Kan, Quancheng; Fan, Zhirui; Li, Yaqing; Ji, Yasai; Zhao, Jing; Zhang, Mingzhi; Grigalavicius, Mantas; Berge, Viktor; Goscinski, Mariusz Adam; M. Nesland, Jahn; Suo, Zhenhe

    2017-01-01

    One of the remarkable features of cancer cells is aerobic glycolysis, a phenomenon known as the “Warburg Effect”, in which cells rely preferentially on glycolysis instead of oxidative phosphorylation (OXPHOS) as the main energy source even in the presence of high oxygen tension. Cells with dysfunctional mitochondria are unable to generate sufficient ATP from mitochondrial OXPHOS, and then are forced to rely on glycolysis for ATP generation. Here we report our results in a prostate cancer cell line in which the mitochondrial pyruvate carrier 1 (MPC1) gene was knockout. It was discovered that the MPC1 gene knockout cells revealed a metabolism reprogramming to aerobic glycolysis with reduced ATP production, and the cells became more migratory and resistant to both chemotherapy and radiotherapy. In addition, the MPC1 knockout cells expressed significantly higher levels of the stemness markers Nanog, Hif1α, Notch1, CD44 and ALDH. To further verify the correlation of MPC gene function and cell stemness/metabolic reprogramming, MPC inhibitor UK5099 was applied in two ovarian cancer cell lines and similar results were obtained. Taken together, our results reveal that functional MPC may determine the fate of metabolic program and the stemness status of cancer cells in vitro. PMID:28624784

  13. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Natural Compounds as Regulators of the Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Claudia Cerella

    2013-01-01

    Full Text Available Even though altered metabolism is an “old” physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  15. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-10-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  16. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    DEFF Research Database (Denmark)

    Hefzi, Hooman; Ang, Kok Siong; Hanscho, Michael

    2016-01-01

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways...

  17. Food composition influences metabolism, heart rate and organ growth during digestion in Python regius.

    Science.gov (United States)

    Henriksen, Poul Secher; Enok, Sanne; Overgaard, Johannes; Wang, Tobias

    2015-05-01

    Digestion in pythons is associated with a large increase in oxygen consumption (SDA), increased cardiac output and growth in visceral organs assisting in digestion. The processes leading to the large postprandial rise in metabolism in snakes is subject to opposing views. Gastric work, protein synthesis and organ growth have each been speculated to be major contributors to the SDA. To investigate the role of food composition on SDA, heart rate (HR) and organ growth, 48 ball pythons (Python regius) were fed meals of either fat, glucose, protein or protein combined with carbonate. Our study shows that protein, in the absence or presence of carbonate causes a large SDA response, while glucose caused a significantly smaller SDA response and digestion of fat failed to affect metabolism. Addition of carbonate to the diet to stimulate gastric acid secretion did not increase the SDA response. These results support protein synthesis as a major contributor to the SDA response and show that increased gastric acid secretion occurs at a low metabolic cost. The increase in metabolism was supported by tachycardia caused by altered autonomic regulation as well as an increased non-adrenergic, non-cholinergic (NANC) tone in response to all diets, except for the lipid meal. Organ growth only occurred in the small intestine and liver in snakes fed on a high protein diet. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Metabolism during ECM Detachment: Achilles Heel of Cancer Cells?

    Science.gov (United States)

    Mason, Joshua A; Hagel, Kimberly R; Hawk, Mark A; Schafer, Zachary T

    2017-07-01

    Integrin-mediated attachment to the extracellular matrix (ECM) is required to combat the induction of programmed cell death in a variety of distinct cell types. If cells fail to maintain proper ECM attachment, they become subject to elimination via an apoptotic cell death program known as anoikis. However, anoikis inhibition is not sufficient to promote the long-term survival of ECM-detached cells. Several recent studies have unveiled the profound (anoikis-independent) impact of cell metabolism on the viability of ECM-detached cells. Thus, we posit that, during metastatic dissemination (when cancer cells are exposed to periods of ECM detachment), cancer cells must alter their metabolism in a fashion that promotes survival and ultimately contributes to metastatic outgrowth. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate.

    Science.gov (United States)

    Ward, Patrick S; Thompson, Craig B

    2012-03-20

    Cancer metabolism has long been equated with aerobic glycolysis, seen by early biochemists as primitive and inefficient. Despite these early beliefs, the metabolic signatures of cancer cells are not passive responses to damaged mitochondria but result from oncogene-directed metabolic reprogramming required to support anabolic growth. Recent evidence suggests that metabolites themselves can be oncogenic by altering cell signaling and blocking cellular differentiation. No longer can cancer-associated alterations in metabolism be viewed as an indirect response to cell proliferation and survival signals. We contend that altered metabolism has attained the status of a core hallmark of cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  1. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  2. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2009-09-01

    Full Text Available Abstract Background Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide novel opportunities for therapeutic intervention. Results We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and a dynamic cell population growth model, we quantitatively modeled and predicted the dose-response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl adenosine inhibitor in a medium with low-iron concentration. Conclusion The predicted results quantitatively reproduced the experimentally measured dose-response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/constraints, and growth media, our model captured the essential chemical and biological factors that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.

  3. Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate

    OpenAIRE

    Ward, Patrick S.; Thompson, Craig B.

    2012-01-01

    Cancer metabolism has long been equated with aerobic glycolysis, seen by early biochemists as primitive and inefficient. Despite these early beliefs, the metabolic signatures of cancer cells are not passive responses to damaged mitochondria, but result from oncogene-directed metabolic reprogramming required to support anabolic growth. Recent evidence suggests that metabolites themselves can be oncogenic by altering cell signaling and blocking cellular differentiation. No longer can cancer-ass...

  4. Metabolic imaging for breast cancer detection and treatment: a role for mitochondrial Complex I function

    Science.gov (United States)

    Ramanujan, V. Krishnan

    2018-02-01

    Cancer cells are known to display a variety of metabolic reprogramming strategies to fulfill their own growth and proliferative agenda. With the advent of high resolution imaging strategies, metabolomics techniques etc., there is an increasing appreciation of critical role that tumor cell metabolism plays in the overall breast cancer (BC) growth. A recent study from our laboratory demonstrated that the development of invasive cancers could be causally connected to deficits in mitochondrial function. Using this study as a rationale, we hypothesize that the widely accepted multistep tumor growth model might have a strong metabolic component as well. In this study, we explore the possibility of targeting mitochondrial Complex I enzyme system for not only metabolic detection of cancer-associated redox changes but also for modulating breast cancer cell growth characteristics. As a proof-of-principle, we demonstrate two approaches (pharmacological and genetic) for modulating mitochondrial Complex I function so as to achieve breast cancer control.

  5. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  6. In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

    Science.gov (United States)

    González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J

    2014-10-01

    Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.

  7. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation.

    Directory of Open Access Journals (Sweden)

    Jose A Villalobos

    Full Text Available The monosaccharide L-fucose (L-Fuc is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I and rhamnogalacturonan-II (RG-II, arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP, suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis.

  8. Targeting lipid metabolism of cancer cells: A promising therapeutic strategy for cancer.

    Science.gov (United States)

    Liu, Qiuping; Luo, Qing; Halim, Alexander; Song, Guanbin

    2017-08-10

    One of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism. In addition, enhancing de novo fatty acid (FA) synthesis, increasing lipid uptake and lipolysis have also been considered as means of FA acquisition in cancer cells. FAs are involved in various aspects of tumourigenesis and tumour progression. Therefore, targeting lipid metabolism is a promising therapeutic strategy for human cancer. Recent studies have shown that reprogramming lipid metabolism plays important roles in providing energy, macromolecules for membrane synthesis, and lipid signals during cancer progression. Moreover, accumulation of lipid droplets in cancer cells acts as a pivotal adaptive response to harmful conditions. Here, we provide a brief review of the crucial roles of FA metabolism in cancer development, and place emphasis on FA origin, utilization and storage in cancer cells. Understanding the regulation of lipid metabolism in cancer cells has important implications for exploring a new therapeutic strategy for management and treatment of cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines

    International Nuclear Information System (INIS)

    Bronzert, D.A.; Pantazis, P.; Antoniades, H.N.; Kasid, A.; Davidson, N.; Dickson, R.B.; Lippman, M.E.

    1987-01-01

    The authors report that human breast cancer cells secrete a growth factor that is biologically and immunologically similar to platelet-derived growth factor (PDGF). Serum-free medium conditioned by estrogen-independent MDA-MB-231 or estrogen-dependent MCF-7 cells contains a mitogenic or competence activity that is capable of inducing incorporation of [ 3 H] thymidine into quiescent Swiss 3T3 cells in the presence of platelet-poor plasma. Like authentic PDGF, the PDGF-like activity produced by breast cancer cells is stable after acid and heat treatment (95 0 C) and inhibited by reducing agents. The mitogenic activity comigrates with a material of ≅30 kDa on NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with PDGF antiserum of proteins from metabolically labeled cell lysates and conditioned medium followed by analysis on nonreducing NaDodSO 4 /polyacrylamide gels identified proteins of 30 and 34 kDa. Upon reduction, the 30- and 34-kDa bands were converted to 15- and 16-kDa bands suggesting that the immunoprecipitated proteins were made up of two disulfide-linked polypeptides similar to PDGF. Hybridization studies with cDNA probes for the A chain PDGF and the B chain of PDGF/SIS identified transcripts for both PDGF chains in the MCF-7 and MDA-MB-231 cells. The data summarized above provide conclusive evidence for the synthesis and hormonally regulated secretion of a PDGF-like mitogen by breast carcinoma cells. Production of a PDGF-like growth factor by breast cancer cell lines may be important in mediating paracrine stimulation of tumor growth

  10. Three-dimentional growth of liver / stem cells in vitro under simulated microgravity

    Science.gov (United States)

    Feng, Mei Fu

    Liver is a important and largest parenchymatous organ in vivo, and have complex and diverse structures and functions. In the world, there are many peoples suffers from liver injury and dis-ease, especially in Asia, but serious shortage of donor organ, especially for organic pathological changes, is a big problem in the world. Stem cells have the capabilities to self-renew and differ-entiate into multiple lineages, and are very significant in both theoretical research and clinical applications. Compared with traditional cell culture, cells of 3D growth are more close to their situation in vivo. The specific physics environment in space provides a great opportunity for 3D growth of cells and tissues. Due to the chance for entering into the space is so scarce, to mimic microgravity effects using a rotating cell culture system (RCCS) designed by NASA, and some other methods were studied for cellular 3D growth in vitro. Neonatal mouse liver Cells, hepatic progenitor/stem cells from fetal liver and WB-F344 cells were cultured in a 1:1 mixture of DMEM and F-12 supplemented with 10 % FCS and several factors, and seeded into the RCCS, 6-well and 24-well plates. Their growth characteristic, metabolism, differentiation and gene expression were studied by SEM, Histochemistry, Flow Cytometry, RT-PCR and so on. The results showed: 1. Neonatal mouse liver Cells (1day after birth) seem easy to grow for a three-dimentional-like structure, when the cells were cultured in the RCCS, a cell aggregate formed after 1 day of culture and were kept during 10 days culture. The size of aggregate was about 1 2 mm in diameter. 2. Hepatic progenitor/stem cells from fetal liver seem a good cell resource for liver disease'cell therapy. They expressed AFP and CKs, and no mature hepato-cytes marker and bile duct epithelial cells marker were detected. When were transplanted into Nod-Scid mice, they had multi-potential differentiation. 3. WB-F344 cells, a liver epithelial cell line, could grew well on

  11. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight

    Directory of Open Access Journals (Sweden)

    Cyril Corbet

    2018-01-01

    Full Text Available Normal and cancer stem cells (CSCs share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.

  12. Flexibility in metabolic rate confers a growth advantage under changing food availability.

    Science.gov (United States)

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B

    2015-09-01

    1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  13. Alternative Cell Death Pathways and Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2013-01-01

    Full Text Available While necroptosis has for long been viewed as an accidental mode of cell death triggered by physical or chemical damage, it has become clear over the last years that necroptosis can also represent a programmed form of cell death in mammalian cells. Key discoveries in the field of cell death research, including the identification of critical components of the necroptotic machinery, led to a revised concept of cell death signaling programs. Several regulatory check and balances are in place in order to ensure that necroptosis is tightly controlled according to environmental cues and cellular needs. This network of regulatory mechanisms includes metabolic pathways, especially those linked to mitochondrial signaling events. A better understanding of these signal transduction mechanisms will likely contribute to open new avenues to exploit our knowledge on the regulation of necroptosis signaling for therapeutic application in the treatment of human diseases.

  14. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  15. Dysregulated metabolism contributes to oncogenesis

    Science.gov (United States)

    Hirschey, Matthew D.; DeBerardinis, Ralph J.; Diehl, Anna Mae E.; Drew, Janice E.; Frezza, Christian; Green, Michelle F.; Jones, Lee W.; Ko, Young H.; Le, Anne; Lea, Michael A.; Locasale, Jason W.; Longo, Valter D.; Lyssiotis, Costas A.; McDonnell, Eoin; Mehrmohamadi, Mahya; Michelotti, Gregory; Muralidhar, Vinayak; Murphy, Michael P.; Pedersen, Peter L.; Poore, Brad; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Sivanand, Sharanya; Vander Heiden, Matthew G.; Wellen, Kathryn E.

    2015-01-01

    Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review “Hallmarks of Cancer”, where the dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results suggest that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it. PMID:26454069

  16. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei; Tsai, F.-J.

    2009-01-01

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI 50 ) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  17. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16.

    Directory of Open Access Journals (Sweden)

    Lige Wu

    Full Text Available Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but some tumors are resistant to radiation therapy and the underlying mechanism still remains elusive. It is therefore necessary to establish an appropriate working model to study and monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome is the integrated profiling of changes in all metabolites in cells, which can be used to investigate radiation tolerance mechanisms and identify targets for cancer radiation sensibilization. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated changes in metabolites and metabolic network in B16 cells in response to radiation. Principal component analysis and partial least squares discriminant analysis indicated the difference in cellular metabolites between the untreated cells and X-ray radiated cells. In radiated cells, the content of alanine, glutamate, glycine and choline was increased, while the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrichment analysis of metabolic pathway showed that the changes in metabolites were related to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, glycolysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by bioinformatic analysis to profile specific metabolic pathways in response to radiation, we deepened our understanding of radiation-resistant mechanisms and radiation sensibilization in cancer, which may further provide a theoretical and practical basis for personalized cancer therapy.

  18. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  19. In Vivo Analysis of NH4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth

    Science.gov (United States)

    Maleki Seifar, R.; ten Pierick, A.; van Helmond, W.; Pieterse, M. M.; Heijnen, J. J.

    2016-01-01

    ABSTRACT Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h−1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms. IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally

  20. Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase.

    Science.gov (United States)

    Kim, K H; Rodriguez, A M; Carrico, P M; Melendez, J A

    2001-06-01

    Studies from many laboratories have shown that overexpression of manganese superoxide dismutase (MnSOD) inhibits the growth of numerous tumor cell types. The inhibition of tumor cell growth can be attributed to the increase in the steady-state levels of H2O2 as a result of the increased dismuting activity of MnSOD. Here we demonstrate that overexpression of MnSOD enhances the activity of the superoxide (O2*-)-sensitive enzyme aconitase, decreases the intracellular GSH/GSSG ratio, and dose-dependently inhibits pyruvate carboxylase activity. Thus, alterations in the steady-state concentrations of mitochondrial O2*- and H2O2 as a result of MnSOD overexpression can alter the metabolic capacity of the cell leading to inhibition of cell growth. Furthermore, we propose that MnSOD overexpression can modulate the activity of nitric oxide (*NO) by preventing its reaction with O2*-. This hypothesis suggests that the redox environment of the mitochondria can be altered to favor the activity of *NO rather than peroxynitrite (ONOO-) and may explain the enhanced toxicity of *NO-generating compounds toward MnSOD-overexpressing cell lines. These findings indicate that therapeutic strategies targeted at overexpressing MnSOD in tumor tissue may be more effective when used in combination with agents that deplete the oxidant-buffering and enhance the *NO-generating capacity of the tumor and host, respectively.

  1. Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation

    Directory of Open Access Journals (Sweden)

    Nicholas Jones

    2017-11-01

    Full Text Available Linking immunometabolic adaptation to T-cell function provides insight for the development of new therapeutic approaches in multiple disease settings. T-cell activation and downstream effector functions of CD4+ and CD8+ T-cells are controlled by the strength of interaction between the T-cell receptor (TCR and peptides presented by human leukocyte antigens (pHLA. The role of TCR–pHLA interactions in modulating T-cell metabolism is unknown. Here, for the first time, we explore the relative contributions of the main metabolic pathways to functional responses in human CD4+ and CD8+ T-cells. Increased expression of hexokinase II accompanied by higher basal glycolysis is demonstrated in CD4+ T-cells; cytokine production in CD8+ T-cells is more reliant on oxidative phosphorylation. Using antigen-specific CD4+ and CD8+ T-cell clones and altered peptide ligands, we demonstrate that binding affinity tunes the underlying metabolic shift. Overall, this study provides important new insight into how metabolic pathways are controlled during antigen-specific activation of human T-cells.

  2. Robust metabolic responses to varied carbon sources in natural and laboratory strains of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Wayne A Van Voorhies

    Full Text Available Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O₂ consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O₂ consumption or CO₂ production, in the strains used in this study.

  3. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens

    DEFF Research Database (Denmark)

    Pineda, Lane Manalili; Chwalibog, André; Sawosz, Ewa

    2012-01-01

    and intestinal content were collected to evaluate the effects of AgNano on plasma concentration of immunoglobulins and the intestinal microflora, respectively. The provision of water solutions containing different concentrations of AgNano had no effect on postnatal growth performance and the energy metabolism...... (IgG) in the blood plasma of broilers supplemented with AgNano decreased at day 36 (p = 0.012). The results demonstrated that AgNano affects N utilisation and plasma IgG concentration; however, it does not influence the microbial populations in the digestive tract, the energy metabolism and growth...

  4. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC-1.

    Science.gov (United States)

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-05-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC-1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC-1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC-1 cells, metabolome analysis of the invaded PANC-1 compared with the whole cultured PANC-1 was performed using CE-TOFMS, and concentrations of 110 metabolites were measured. In contrast to the whole cultured cells, the invaded PANC-1 was characterized as a population with reduced levels of amino acids and TCA cycle intermediates, and decreased and increased intermediates in glycolysis and nucleic acid metabolism. In particular, the ratio of both adenosine and guanosine energy charge was reduced in the invaded cells, revealing that the consumption of ATP and GTP was high in the invaded cells, and thus suggesting that ATP- or GTP-generating pathways are stimulated. In addition, the GSH/GSSG ratio was low in the invaded cells, but these cells had a higher surviving fraction after exposure to hydrogen peroxide. Thus, the invaded cells were the population resistant to oxidative stress. Furthermore, reduction in intracellular GSH content inhibited PANC-1 invasiveness, indicated that GSH has an important role in PANC-1 invasiveness. Overall, we propose the invaded cells have several unique metabolic profiles. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  6. FvSet2 regulates fungal growth, pathogenicity, and secondary metabolism in Fusarium verticillioides.

    Science.gov (United States)

    Gu, Qin; Wang, Zhenzhong; Sun, Xiao; Ji, Tiantian; Huang, Hai; Yang, Yang; Zhang, Hao; Tahir, Hafiz Abdul Samad; Wu, Liming; Wu, Huijun; Gao, Xuewen

    2017-10-01

    Histone H3 lysine 36 methylation (H3K36me) is generally associated with activation of gene expression in most eukaryotic cells. However, the function of H3K36me in filamentous fungi is largely unknown. Set2 is the sole lysine histone methyltransferase (KHMTase) enzyme responsible for the methylation of H3K36 in Saccharomyces cerevisiae. In the current study, we identified a single ortholog of S. cerevisiae Set2 in Fusarium verticillioides. We report that FvSet2 is responsible for the trimethylation of H3K36 (H3K36me3). The FvSET2 deletion mutant (ΔFvSet2) showed significant defects in vegetative growth, FB 1 biosynthesis, pigmentation, and fungal virulence. Furthermore, trimethylation of H3K36 was found to be important for active transcription of genes involved in FB 1 and bikaverin biosyntheses. These data indicate that FvSet2 plays an important role in the regulation of secondary metabolism, vegetative growth and fungal virulence in F. verticillioides. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Osmotic stress confers enhanced cell integrity to hydrostatic pressure but impairs growth in Alcanivorax borkumensis SK2

    Directory of Open Access Journals (Sweden)

    Alberto eScoma

    2016-05-01

    Full Text Available Alcanivorax is a hydrocarbonoclastic genus dominating oil spills worldwide. While its presence has been detected in oil-polluted seawaters, marine sediment and salt marshes under ambient pressure, its presence in deep-sea contaminated environments is negligible. Recent laboratory evidences highlighted the piezosensitive nature of some Alcanivorax species, whose growth yields are highly impacted by mild hydrostatic pressures (HPs. In the present study, osmotic stress was used as a tool to increase HP resistance in the type strain A. borkumensis SK2. Control cultures grown under standard conditions of salinity and osmotic pressure with respect to seawater (35.6 ppt or 1136 mOsm kg-1, respectively were compared with cultures subjected to hypo- and hyperosmosis (330 and 1720 mOsm kg-1, or 18 and 62 ppt in salinity, equivalent to brackish and brine waters, respectively, under atmospheric or increased HP (0.1 and 10MPa. Osmotic stress had a remarkably positive impact on cell metabolic activity in terms of CO2 production (thus, oil bioremediation and O2 respiration under hyperosmosis, as acclimation to high salinity enhanced cell activity under 10MPa by a factor of 10. Both osmotic shocks significantly enhanced cell protection by reducing membrane damage under HP, with cell integrities close to 100% under hyposmosis. The latter was likely due to intracellular water-reclamation as no trace of the piezolyte ectoine was found, contrary to hyperosmosis. Notably, ectoine production was equivalent at 0.1MPa in hyperosmosis-acclimated cells and at 10MPa under isosmotic conditions, supporting the hypothesis that ectoine synthesis may be primarily triggered by HP rather than osmotic stress. While stimulating cell metabolism and enhancing cell integrity, osmotic stress had always a negative impact on culture growth and performance. No net growth was observed during 4-day incubation tests, and CO2:O2 ratios and pH values indicated that culture performance in

  8. Metformin Decouples Phospholipid Metabolism in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Tim A D Smith

    Full Text Available The antidiabetic drug metformin, currently undergoing trials for cancer treatment, modulates lipid and glucose metabolism both crucial in phospholipid synthesis. Here the effect of treatment of breast tumour cells with metformin on phosphatidylcholine (PtdCho metabolism which plays a key role in membrane synthesis and intracellular signalling has been examined.MDA-MB-468, BT474 and SKBr3 breast cancer cell lines were treated with metformin and [3H-methyl]choline and [14C(U]glucose incorporation and lipid accumulation determined in the presence and absence of lipase inhibitors. Activities of choline kinase (CK, CTP:phosphocholine cytidylyl transferase (CCT and PtdCho-phospholipase C (PLC were also measured. [3H] Radiolabelled metabolites were determined using thin layer chromatography.Metformin-treated cells exhibited decreased formation of [3H]phosphocholine but increased accumulation of [3H]choline by PtdCho. CK and PLC activities were decreased and CCT activity increased by metformin-treatment. [14C] incorporation into fatty acids was decreased and into glycerol was increased in breast cancer cells treated with metformin incubated with [14C(U]glucose.This is the first study to show that treatment of breast cancer cells with metformin induces profound changes in phospholipid metabolism.

  9. Role of UBIAD1 in Intracellular Cholesterol Metabolism and Vascular Cell Calcification.

    Directory of Open Access Journals (Sweden)

    Sha Liu

    Full Text Available Vascular calcification is an important risk factor associated with mortality among patients with chronic kidney disease. Intracellular cholesterol metabolism is involved in the process of vascular cell calcification. In this study, we investigated the role of UbiA prenyltransferase domain containing 1 (UBIAD1 in intracellular cholesterol metabolism and vascular cell calcification, and identified its subcellular location. Primary human umbilical vein smooth muscle cells (HUVSMCs were incubated with either growth medium (1.4 mmol/L Pi or calcification medium (CM (3.0 mmol/L Pi. Under treatment with CM, HUVSMCs were further incubated with exogenous cholesterol, or menaquinone-4, a product of UBIAD1. The plasmid and small interfering RNA were transfected in HUVSMCs to alter the expression of UBIAD1. Matrix calcium quantitation, alkaline phosphatase activity, intracellular cholesterol level and menaquinone-4 level were measured. The expression of several genes involved in cholesterol metabolism were analyzed. Using an anti-UBIAD1 antibody, an endoplasmic reticulum marker and a Golgi marker, the subcellular location of UBIAD1 in HUVSMCs was analyzed. CM increased matrix calcium, alkaline phosphatase activity and intracellular cholesterol level, and reduced UBIAD1 expression and menaquinone-4 level. Addition of cholesterol contributed to increased matrix calcification and alkaline phosphatase activity in a dose-dependent manner. Elevated expression of UBIAD1 or menaquinone-4 in HUVSMCs treated with CM significantly reduced intracellular cholesterol level, matrix calcification and alkaline phosphatase activity, but increased menaquinone-4 level. Elevated expression of UBIAD1 or menaquinone-4 reduced the gene expression of sterol regulatory element-binding protein-2, and increased gene expression of ATP binding cassette transporters A1, which are in charge of cholesterol synthesis and efflux. UBIAD1 co-localized with the endoplasmic reticulum marker and

  10. Immediate metabolic consequences of intrauterine growth restriction and low birthweight.

    Science.gov (United States)

    Bhatia, Jatinder; Gates, Amy

    2013-01-01

    Optimal fetal growth resulting in a 'normally grown' term infant is of paramount importance for assuring a healthy start for postnatal growth and development. Fetal, infant and childhood growth restriction is an important clinical problem for obstetricians, neonatologists, pediatricians and globally, for public health. Worldwide, an estimated 20 million infants are born with low birthweight and a substantial proportion are small for gestational age. Many advances have been made in defining growth restriction by prenatal techniques, thus allowing the recognition of intrauterine growth restriction. Distinguishing infants who are small but have appropriate growth potential from those with growth restriction is important in order to apply obstetric surveillance, anticipate neonatal problems and plan for postneonatal guidance. It is clear that the fetus in growth-restricted pregnancies has limited supply of nutrients and oxygen. The resultant changes, if involving the placenta as well, can lead to circulatory and metabolic changes affecting both short- and long-term survival and development. In this paper, the causes and immediate consequence of being born with low birthweight, intrauterine growth restriction or small for gestational age will be discussed. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  11. Characterization of glucose‐related metabolic pathways in differentiated rat oligodendrocyte lineage cells

    Science.gov (United States)

    Amaral, Ana I.; Hadera, Mussie G.; Tavares, Joana M.

    2015-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope‐labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2‐13C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1‐13C]lactate or [1,2‐13C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2‐13C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2‐13C]acetate and [1,2‐13C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. GLIA 2016;64:21–34 PMID:26352325

  12. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  13. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    Science.gov (United States)

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  14. Glutathione Primes T Cell Metabolism for Inflammation

    DEFF Research Database (Denmark)

    Mak, Tak W.; Grusdat, Melanie; Duncan, Gordon S.

    2017-01-01

    the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc...

  15. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

    Science.gov (United States)

    Martinez-Outschoorn, Ubaldo; Sotgia, Federica; Lisanti, Michael P

    2014-04-01

    Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal

  16. Availability of public goods shapes the evolution of competing metabolic strategies.

    Science.gov (United States)

    Bachmann, Herwig; Fischlechner, Martin; Rabbers, Iraes; Barfa, Nakul; Branco dos Santos, Filipe; Molenaar, Douwe; Teusink, Bas

    2013-08-27

    Tradeoffs provide a rationale for the outcome of natural selection. A prominent example is the negative correlation between the growth rate and the biomass yield in unicellular organisms. This tradeoff leads to a dilemma, where the optimization of growth rate is advantageous for an individual, whereas the optimization of the biomass yield would be advantageous for a population. High-rate strategies are observed in a broad variety of organisms such as Escherichia coli, yeast, and cancer cells. Growth in suspension cultures favors fast-growing organisms, whereas spatial structure is of importance for the evolution of high-yield strategies. Despite this realization, experimental methods to directly select for increased yield are lacking. We here show that the serial propagation of a microbial population in a water-in-oil emulsion allows selection of strains with increased biomass yield. The propagation in emulsion creates a spatially structured environment where the growth-limiting substrate is privatized for populations founded by individual cells. Experimental evolution of several isogenic Lactococcus lactis strains demonstrated the existence of a tradeoff between growth rate and biomass yield as an apparent Pareto front. The underlying mutations altered glucose transport and led to major shifts between homofermentative and heterofermentative metabolism, accounting for the changes in metabolic efficiency. The results demonstrated the impact of privatizing a public good on the evolutionary outcome between competing metabolic strategies. The presented approach allows the investigation of fundamental questions in biology such as the evolution of cooperation, cell-cell interactions, and the relationships between environmental and metabolic constraints.

  17. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  18. Hematopoietic stem cell fate through metabolic control.

    Science.gov (United States)

    Ito, Kyoko; Ito, Keisuke

    2018-05-25

    Hematopoietic stem cells (HSCs) maintain a quiescent state in the bone marrow to preserve their self-renewal capacity, but also undergo cell divisions as required. Organelles such as the mitochondria sustain cumulative damage during these cell divisions, and this damage may eventually compromise the cells' self-renewal capacity. HSC divisions result in either self-renewal or differentiation, with the balance between the two directly impacting hematopoietic homeostasis; but the heterogeneity of available HSC-enriched fractions, together with the technical challenges of observing HSC behavior, has long hindered the analysis of individual HSCs, and prevented the elucidation of this process. However, recent advances in genetic models, metabolomics analyses and single-cell approaches have revealed the contributions made to HSC self-renewal by metabolic cues, mitochondrial biogenesis, and autophagy/mitophagy, which have highlighted mitochondrial quality as a key control factor in the equilibrium of HSCs. A deeper understanding of precisely how specific modes of metabolism control HSC fate at the single cell level is therefore not only of great biological interest, but will have clear clinical implications for the development of therapies for hematological disease. Copyright © 2018. Published by Elsevier Inc.

  19. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  20. Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Heath Murray

    2014-10-01

    Full Text Available In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.

  1. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    Science.gov (United States)

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  2. Metabolic enzymes: key modulators of functionality in cancer stem-like cells.

    Science.gov (United States)

    Dong, Bo-Wen; Qin, Guang-Ming; Luo, Yan; Mao, Jian-Shan

    2017-02-21

    Cancer Stem-like Cells (CSCs) are a subpopulation of cancer cells with self-renewal capacity and are important for the initiation, progression and recurrence of cancer diseases. The metabolic profile of CSCs is consistent with their stem-like properties. Studies have indicated that enzymes, the main regulators of cellular metabolism, dictate functionalities of CSCs in both catalysis-dependent and catalysis-independent manners. This paper reviews diverse studies of metabolic enzymes, and describes the effects of these enzymes on metabolic adaptation, gene transcription and signal transduction, in CSCs.

  3. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro

    Science.gov (United States)

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotransformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two-dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases. PMID:27959388

  4. Effect of Toxicants on Fatty Acid Metabolism in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    David Grünig

    2018-04-01

    Full Text Available Impairment of hepatic fatty acid metabolism can lead to liver steatosis and injury. Testing drugs for interference with hepatic fatty acid metabolism is therefore important. To find out whether HepG2 cells are suitable for this purpose, we investigated the effect of three established fatty acid metabolism inhibitors and of three test compounds on triglyceride accumulation, palmitate metabolism, the acylcarnitine pool and dicarboxylic acid accumulation in the cell supernatant and on ApoB-100 excretion in HepG2 cells. The three established inhibitors [etomoxir, methylenecyclopropylacetic acid (MCPA, and 4-bromocrotonic acid (4-BCA] depleted mitochondrial ATP at lower concentrations than cytotoxicity occurred, suggesting mitochondrial toxicity. They inhibited palmitate metabolism at similar or lower concentrations than ATP depletion, and 4-BCA was associated with cellular fat accumulation. They caused specific changes in the acylcarnitine pattern and etomoxir an increase of thapsic (C18 dicarboxylic acid in the cell supernatant, and did not interfere with ApoB-100 excretion (marker of VLDL export. The three test compounds (amiodarone, tamoxifen, and the cannabinoid WIN 55,212-2 depleted the cellular ATP content at lower concentrations than cytotoxicity occurred. They all caused cellular fat accumulation and inhibited palmitate metabolism at similar or higher concentrations than ATP depletion. They suppressed medium-chain acylcarnitines in the cell supernatant and amiodarone and tamoxifen impaired thapsic acid production. Tamoxifen and WIN 55,212-2 decreased cellular ApoB-100 excretion. In conclusion, the established inhibitors of fatty acid metabolism caused the expected effects in HepG2 cells. HepG cells proved to be useful for the detection of drug-associated toxicities on hepatocellular fatty acid metabolism.

  5. The inhibition of superoxide production in EL4 lymphoma cells overexpressing growth hormone.

    Science.gov (United States)

    Arnold, Robyn E; Weigent, Douglas A

    2003-05-01

    A substantial body of research exists to support the production of growth hormone by cells of the immune system. However, the function and mechanism of action of lymphocyte-derived growth hormone remain largely unelucidated. Since, it has been found that exogenous growth hormone (GH) primes neutrophils for the production of reactive oxygen intermediates (ROI) and in particular superoxide (O2-), we investigated the role of GH on the production of O2- in T cells. Furthermore, we examined whether endogenous and exogenous GH act similarly. Our studies show that overexpression of GH in EL4, a T-cell lymphoma cell line, results in a decrease in the production of O2- compared to control cells, as detected using the fluorescent dye, dihydroethidium. O2- production in control cells was not affected by treatment with inhibitors of xanthine oxidase or a non-specific NADPH-oxidase inhibitor. However, treatment with diallyl sulfide, an inhibitor of cytochrome P450 2E1 mimicked the reduction in O2- production seen in cells overexpressing GH. Although no significant change could be detected in CYP2E1 protein levels, CYP2E1 activity was found to be greater in control EL4 than in cells overexpressing GH. Both the decrease in O2- production and the lower CYP2E1 activity in GH overexpressing cells could be abrogated by treatment with N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase. The overexpression of GH protects cells from apoptosis induced by isoniazid, a CYP2E1 inducer, suggesting a role for nitric oxide as a mediator in the regulation of xenobiotic metabolism and apoptosis-protection by lymphocyte GH.

  6. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    Science.gov (United States)

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Selection of metastatic breast cancer cells based on adaptability of their metabolic state.

    Directory of Open Access Journals (Sweden)

    Balraj Singh

    Full Text Available A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis

  8. Selection of Metastatic Breast Cancer Cells Based on Adaptability of Their Metabolic State

    Science.gov (United States)

    Singh, Balraj; Tai, Karen; Madan, Simran; Raythatha, Milan R.; Cady, Amanda M.; Braunlin, Megan; Irving, LaTashia R.; Bajaj, Ankur; Lucci, Anthony

    2012-01-01

    A small subpopulation of highly adaptable breast cancer cells within a vastly heterogeneous population drives cancer metastasis. Here we describe a function-based strategy for selecting rare cancer cells that are highly adaptable and drive malignancy. Although cancer cells are dependent on certain nutrients, e.g., glucose and glutamine, we hypothesized that the adaptable cancer cells that drive malignancy must possess an adaptable metabolic state and that such cells could be identified using a robust selection strategy. As expected, more than 99.99% of cells died upon glutamine withdrawal from the aggressive breast cancer cell line SUM149. The rare cells that survived and proliferated without glutamine were highly adaptable, as judged by additional robust adaptability assays involving prolonged cell culture without glucose or serum. We were successful in isolating rare metabolically plastic glutamine-independent (Gln-ind) variants from several aggressive breast cancer cell lines that we tested. The Gln-ind cells overexpressed cyclooxygenase-2, an indicator of tumor aggressiveness, and they were able to adjust their glutaminase level to suit glutamine availability. The Gln-ind cells were anchorage-independent, resistant to chemotherapeutic drugs doxorubicin and paclitaxel, and resistant to a high concentration of a COX-2 inhibitor celecoxib. The number of cells being able to adapt to non-availability of glutamine increased upon prior selection of cells for resistance to chemotherapy drugs or resistance to celecoxib, further supporting a linkage between cellular adaptability and therapeutic resistance. Gln-ind cells showed indications of oxidative stress, and they produced cadherin11 and vimentin, indicators of mesenchymal phenotype. Gln-ind cells were more tumorigenic and more metastatic in nude mice than the parental cell line as judged by incidence and time of occurrence. As we decreased the number of cancer cells in xenografts, lung metastasis and then primary

  9. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    Science.gov (United States)

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  10. Effect of Galla chinensis on growth and metabolism of microcosm biofilms

    NARCIS (Netherlands)

    Cheng, L.; Exterkate, R.A.M.; Zhou, X.; Li, J.; ten Cate, J.M.

    2011-01-01

    Galla chinensis extract (GCE) interferes with de- and remineralization of dental enamel and the growth and metabolism in planktonic bacteria. However, no information is available on GCE effects on biofilms formed with saliva as inoculum. The aim of the current experiments was to investigate the

  11. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  12. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging

    OpenAIRE

    Palmer, Clovis S.; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M.

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impa...

  13. B-Cell Metabolic Remodeling and Cancer

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Grusdat, Melanie; Brenner, Dirk

    2018-01-01

    Cells of the immune system display varying metabolic profiles to fulfill their functions. B lymphocytes overcome fluctuating energy challenges as they transition from the resting state and recirculation to activation, rapid proliferation, and massive antibody production. Only through a controlled...

  14. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test

    DEFF Research Database (Denmark)

    Pinu, Farhana R.; Granucci, Ninna; Daniell, James

    2018-01-01

    Introduction Microbial cells secrete many metabolites during growth, including important intermediates of the central carbon metabolism. This has not been taken into account by researchers when modeling microbial metabolism for metabolic engineering and systems biology studies. Materials and Meth...

  15. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide

    Science.gov (United States)

    Xiao, Yaruo; Zhang, Enqi; Fu, Ailing

    2017-12-01

    Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.

  16. Metabolic regulation of collagen gel contraction by porcine aortic valvular interstitial cells

    Science.gov (United States)

    Kamel, Peter I.; Qu, Xin; Geiszler, Andrew M.; Nagrath, Deepak; Harmancey, Romain; Taegtmeyer, Heinrich; Grande-Allen, K. Jane

    2014-01-01

    Despite a high incidence of calcific aortic valve disease in metabolic syndrome, there is little information about the fundamental metabolism of heart valves. Cell metabolism is a first responder to chemical and mechanical stimuli, but it is unknown how such signals employed in valve tissue engineering impact valvular interstitial cell (VIC) biology and valvular disease pathogenesis. In this study porcine aortic VICs were seeded into three-dimensional collagen gels and analysed for gel contraction, lactate production and glucose consumption in response to manipulation of metabolic substrates, including glucose, galactose, pyruvate and glutamine. Cell viability was also assessed in two-dimensional culture. We found that gel contraction was sensitive to metabolic manipulation, particularly in nutrient-depleted medium. Contraction was optimal at an intermediate glucose concentration (2 g l−1) with less contraction with excess (4.5 g l−1) or reduced glucose (1 g l−1). Substitution with galactose delayed contraction and decreased lactate production. In low sugar concentrations, pyruvate depletion reduced contraction. Glutamine depletion reduced cell metabolism and viability. Our results suggest that nutrient depletion and manipulation of metabolic substrates impacts the viability, metabolism and contractile behaviour of VICs. Particularly, hyperglycaemic conditions can reduce VIC interaction with and remodelling of the extracellular matrix. These results begin to link VIC metabolism and macroscopic behaviour such as cell–matrix interaction. PMID:25320066

  17. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-10-27

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  18. Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection.

    Directory of Open Access Journals (Sweden)

    Nuno Carinhas

    Full Text Available Baculovirus infection of Spodoptera frugiperda cells is a system of choice to produce a range of recombinant proteins, vaccines and, potentially, gene therapy vectors. While baculovirus genomes are well characterized, the genome of S. frugiperda is not sequenced and the virus-host molecular interplay is sparsely known. Herein, we describe the application of stable isotope labeling by amino acids in cell culture (SILAC to obtain the first comparative proteome quantitation of S. frugiperda cells during growth and early baculovirus infection. The proteome coverage was maximized by compiling a search database with protein annotations from insect species. Of interest were differentially proteins related to energy metabolism, endoplasmic reticulum and oxidative stress, yet not investigated in the scope of baculovirus infection. Further, the reduced expression of key viral-encoded proteins early in the infection cycle is suggested to be related with decreased viral replication at high cell density culture. These findings have implications for virological research and improvement of baculovirus-based bioprocesses.

  19. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    Science.gov (United States)

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    International Nuclear Information System (INIS)

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-01-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E 2 (PGE 2 ) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B 4 (LTB 4 ). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser 241 ), phospho-Akt (Thr 308 ), phospho-Bad (Ser 136 ), and Bcl-x L expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE 2 , LTB 4 and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr 308 ). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in

  1. Effect of two organophosphorus insecticides on the growth, respiration and (14C)-glucose metabolism of Azobacter chroococcum Beij

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Narayanan, R.

    1980-01-01

    The two organophosphorus insecticides, commonly applied to soil, viz., disulfoton (0,0-diethyl S-2-ethyl thio ethyl phosphorodithioate) and fensulfothion (0,0-diethyl 0-4-methyl sulphinyl phenyl phosphorothioate) did not affect the in vitro growth of Azotobacter chroococcum Beij., the free-living, nitrogen fixing soil bacterium, at 2 ppm (lower level), while the normal dose (5 ppm) and the higher level (10 ppm) suppressed the growth. Respiration of the organism (glucose oxidation) was adversely affected by the insecticides in the growth medium and the inhibition increased with the concentration of the chemical. Both the insecticides suppressed the assimilation of ( 14 C)-glucose in the cold-TCA soluble, hot-TCA soluble fractions and insoluble residue of the cells whereas the 14 C-incorporation in the alcohol soluble and alcohol-ether soluble fractions was enhanced indicating that the insecticides considerably altered the glucose metabolism of the bacterium. (author)

  2. High Dose Ascorbate Causes Both Genotoxic and Metabolic Stress in Glioma Cells

    Science.gov (United States)

    Castro, Maria Leticia; Carson, Georgia M.; McConnell, Melanie J.; Herst, Patries M.

    2017-01-01

    We have previously shown that exposure to high dose ascorbate causes double stranded breaks (DSBs) and a build-up in S-phase in glioblastoma (GBM) cell lines. Here we investigated whether or not this was due to genotoxic stress as well as metabolic stress generated by exposure to high dose ascorbate, radiation, ascorbate plus radiation and H2O2 in established and primary GBM cell lines. Genotoxic stress was measured as phosphorylation of the variant histone protein, H2AX, 8-oxo-7,8-dihydroguanine (8OH-dG) positive cells and cells with comet tails. Metabolic stress was measured as a decrease in NADH flux, mitochondrial membrane potential (by CMXRos), ATP levels (by ATP luminescence) and mitochondrial superoxide production (by mitoSOX). High dose ascorbate, ascorbate plus radiation, and H2O2 treatments induced both genotoxic and metabolic stress. Exposure to high dose ascorbate blocked DNA synthesis in both DNA damaged and undamaged cell of ascorbate sensitive GBM cell lines. H2O2 treatment blocked DNA synthesis in all cell lines with and without DNA damage. DNA synthesis arrest in cells with damaged DNA is likely due to both genotoxic and metabolic stress. However, arrest in DNA synthesis in cells with undamaged DNA is likely due to oxidative damage to components of the mitochondrial energy metabolism pathway. PMID:28737676

  3. Genome-scale metabolic model of the fission yeast Schizosaccharomyces pombe and the reconciliation of in silico/in vivo mutant growth

    Science.gov (United States)

    2012-01-01

    Background Over the last decade, the genome-scale metabolic models have been playing increasingly important roles in elucidating metabolic characteristics of biological systems for a wide range of applications including, but not limited to, system-wide identification of drug targets and production of high value biochemical compounds. However, these genome-scale metabolic models must be able to first predict known in vivo phenotypes before it is applied towards these applications with high confidence. One benchmark for measuring the in silico capability in predicting in vivo phenotypes is the use of single-gene mutant libraries to measure the accuracy of knockout simulations in predicting mutant growth phenotypes. Results Here we employed a systematic and iterative process, designated as Reconciling In silico/in vivo mutaNt Growth (RING), to settle discrepancies between in silico prediction and in vivo observations to a newly reconstructed genome-scale metabolic model of the fission yeast, Schizosaccharomyces pombe, SpoMBEL1693. The predictive capabilities of the genome-scale metabolic model in predicting single-gene mutant growth phenotypes were measured against the single-gene mutant library of S. pombe. The use of RING resulted in improving the overall predictive capability of SpoMBEL1693 by 21.5%, from 61.2% to 82.7% (92.5% of the negative predictions matched the observed growth phenotype and 79.7% the positive predictions matched the observed growth phenotype). Conclusion This study presents validation and refinement of a newly reconstructed metabolic model of the yeast S. pombe, through improving the metabolic model’s predictive capabilities by reconciling the in silico predicted growth phenotypes of single-gene knockout mutants, with experimental in vivo growth data. PMID:22631437

  4. Metabolic Plasticity of Metastatic Breast Cancer Cells: Adaptation to Changes in the Microenvironment

    Directory of Open Access Journals (Sweden)

    Rui V. Simões

    2015-08-01

    Full Text Available Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of 13C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells, leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1 provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2 lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.

  5. Metabolic regulation of yeast

    Science.gov (United States)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  6. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

    2003-07-01

    Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival.

  7. Influence of the Tumor Microenvironment on Cancer Cells Metabolic Reprogramming

    Directory of Open Access Journals (Sweden)

    Victoire Gouirand

    2018-04-01

    Full Text Available As with castles, tumor cells are fortified by surrounding non-malignant cells, such as cancer-associated fibroblasts, immune cells, but also nerve fibers and extracellular matrix. In most cancers, this fortification creates a considerable solid pressure which limits oxygen and nutrient delivery to the tumor cells and causes a hypoxic and nutritional stress. Consequently, tumor cells have to adapt their metabolism to survive and proliferate in this harsh microenvironment. To satisfy their need in energy and biomass, tumor cells develop new capacities to benefit from metabolites of the microenvironment, either by their uptake through the macropinocytosis process or through metabolite transporters, or by a cross-talk with stromal cells and capture of extracellular vesicles that are released by the neighboring cells. However, the microenvironments of primary tumor and metastatic niches differ tremendously in their cellular/acellular components and available nutrients. Therefore, cancer cells must develop a metabolic flexibility conferring on them the ability to satisfy their biomass and energetic demands at both primary and metastasis sites. In this review, we propose a brief overview of how proliferating cancer cells take advantage of their surrounding microenvironment to satisfy their high metabolic demand at both primary and metastasis sites.

  8. Metabolism of pharmaceutical and personal care products by carrot cell cultures

    International Nuclear Information System (INIS)

    Wu, Xiaoqin; Fu, Qiuguo; Gan, Jay

    2016-01-01

    With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4–47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3–20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations. - Highlights: • Five phase I metabolites of carbamazepine were identified in carrot cell cultures. • The metabolism potentials of 18 PPCPs were evaluated using carrot cell cultures. • Four PPCPs may partially form glycoside conjugates as phase II

  9. Metabolic interrogation as a tool to optimize chemotherapeutic regimens.

    Science.gov (United States)

    Sandulache, Vlad C; Chen, Yunyun; Feng, Lei; William, William N; Skinner, Heath D; Myers, Jeffrey N; Meyn, Raymond E; Li, Jinzhong; Mijiti, Ainiwaer; Bankson, James A; Fuller, Clifton D; Konopleva, Marina Y; Lai, Stephen Y

    2017-03-14

    Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC).We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines.Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies.

  10. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    International Nuclear Information System (INIS)

    Mandal, Soma; Davie, James R

    2007-01-01

    The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation. Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors. This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors

  11. Advanced nutritional and stem cells approaches to prevent equine metabolic syndrome.

    Science.gov (United States)

    Marycz, Krzysztof; Michalak, Izabela; Kornicka, Katarzyna

    2018-01-31

    Horses metabolic disorders have become an important problem of modern veterinary medicine. Pathological obesity, insulin resistance and predisposition toward laminitis are associated with Equine Metabolic Syndrome (EMS). Based on pathogenesis of EMS, dietary and cell therapy management may significantly reduce development of this disorder. Special attention has been paid to the diet supplementation with highly bioavailable minerals and mesenchymal stem cells (MSC) which increase insulin sensitivity. In nutrition, there is a great interests in natural algae enriched via biosorption process with micro- and macroelements. In the case of cellular therapy, metabolic condition of engrafted cells may be crucial for the effectiveness of the therapy. Although, recent studies indicated on MSC deterioration in EMS individuals. Here, we described the combined nutritional and stem cells therapy for the EMS treatment. Moreover, we specified in details how EMS affects the adipose-derived stem cells (ASC) population. Presented here, combined kind of therapy- an innovative and cutting edge approach of metabolic disorders treatment may become a new gold standard in personalized veterinary medicine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Nucleotide metabolism in Lactococcus lactis: Salvage pathways of exogenous pyrimidines

    DEFF Research Database (Denmark)

    Martinussen, Jan; Andersen, Paal Skytt; Hammer, Karin

    1994-01-01

    By measuring enzyme activities in crude extracts and studying the effect of toxic analogs (5-fluoropyrimidines) on cell growth, the metabolism of pyrimidines in Lactococcus lactis was analyzed. Pathways by which uracil, uridine, deoxyuridine, cytidine, and deoxycytidine are metabolized in L. lact...

  13. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts.

    Science.gov (United States)

    Barbosa, Catarina; Lage, Patrícia; Vilela, Alice; Mendes-Faia, Arlete; Mendes-Ferreira, Ana

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase.

  14. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling.

    Science.gov (United States)

    Corbet, Cyril; Feron, Olivier

    2017-08-01

    Warburg's hypothesis that cancer cells take up a lot of glucose in the presence of ambient oxygen but convert pyruvate into lactate due to impaired mitochondrial function led to the misconception that cancer cells rely on glycolysis as their major source of energy. Most recent 13 C-based metabolomic studies, including in cancer patients, indicate that cancer cells may also fully oxidize glucose. In addition to glucose-derived pyruvate, lactate, fatty acids and amino acids supply substrates to the TCA cycle to sustain mitochondrial metabolism. Here, we discuss how the metabolic flexibility afforded by these multiple mitochondrial inputs allows cancer cells to adapt according to the availability of the different fuels and the microenvironmental conditions such as hypoxia and acidosis. In particular, we focused on the role of the TCA cycle in interconnecting numerous metabolic routes in order to highlight metabolic vulnerabilities that represent attractive targets for a new generation of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Epstein–Barr Virus-Induced Metabolic Rearrangements in Human B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Pier P. Piccaluga

    2018-06-01

    Full Text Available Tumor metabolism has been the object of several studies in the past, leading to the pivotal observation of a consistent shift toward aerobic glycolysis (so-called Warburg effect. More recently, several additional investigations proved that tumor metabolism is profoundly affected during tumorigenesis, including glucose, lipid and amino-acid metabolism. It is noticeable that metabolic reprogramming can represent a suitable therapeutic target in many cancer types. Epstein–Barr virus (EBV was the first virus linked with cancer in humans when Burkitt lymphoma (BL was described. Besides other well-known effects, it was recently demonstrated that EBV can induce significant modification in cell metabolism, which may lead or contribute to neoplastic transformation of human cells. Similarly, virus-induced tumorigenesis is characterized by relevant metabolic abnormalities directly induced by the oncoviruses. In this article, the authors critically review the most recent literature concerning EBV-induced metabolism alterations in lymphomas.

  16. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells

    OpenAIRE

    Yang, Jichun; Chi, Yujing; Burkhardt, Brant R.; Guan, Youfei; Wolf, Bryan A

    2010-01-01

    Leucine, a the branched-chain amino acids that must be supplied in daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic β cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet β cells via both mTOR-dep...

  17. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  18. β-cell function is associated with metabolic syndrome in Mexican subjects

    OpenAIRE

    Baez-Duarte, Blanca G; Sánchez-Guillén, María Del Carmen; Pérez-Fuentes, Ricardo; Zamora-Ginez, Irma; Leon-Chavez, Bertha Alicia; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio

    2010-01-01

    Aims The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS) or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects. Material and methods This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study) with headquarters in ...

  19. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Beta-cell function is associated with metabolic syndrome in Mexican subjects

    Directory of Open Access Journals (Sweden)

    Pérez-Fuentes

    2010-08-01

    Full Text Available Blanca G Baez-Duarte1,3, María Del Carmen Sánchez-Guillén3†, Ricardo Pérez-Fuentes2,3, Irma Zamora-Ginez1,3, Bertha Alicia Leon-Chavez1, Cristina Revilla-Monsalve4, Sergio Islas-Andrade41Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, México; 2Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, México; 3Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México; 4Multidiciplinary Research Group on Diabetes (José Sánchez-Corona, Fernando Guerrero-Romero, Martha Rodriguez-Moran, Agustin Madero, Jorge Escobedo-de-la-Peña, Silvia Flores-Martinez, Esperanza, Martinez-Abundis, Manuel Gonzalez-Ortiz, Alberto Rascon-Pacheco, Margarita Torres-Tamayo, Instituto Mexicano del Seguro Social, México, Distrito Federal, México; †María Del Carmen Sánchez-Guillén passed away on 27 November 2009.Aims: The clinical diagnosis of metabolic syndrome does not find any parameters to evaluate the insulin sensitivity (IS or β-cell function. The evaluation of these parameters would detect early risk of developing metabolic syndrome. The aim of this study is to determine the relationship between β-cell function and presence of metabolic syndrome in Mexican subjects.Material and methods: This study is part of the Mexican Survey on the Prevention of Diabetes (MexDiab Study with headquarters in the city of Puebla, Mexico. The study comprised of 444 subjects of both genders, aged between 18 and 60 years and allocated into two study groups: (1 control group of individuals at metabolic balance without metabolic syndrome and (2 group composed of subjects with metabolic syndrome and diagnosed according to the criteria of the Third Report of the National Cholesterol Education Program Expert Panel on Defection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Anthropometric, biochemical, and clinical assessments were carried out.Results: Average age of the

  1. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    DEFF Research Database (Denmark)

    Wrzesinski, Krzysztof; Rogowska-Wrzesinska, Adelina; Kanlaya, Rattiyaporn

    2014-01-01

    Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dram......Introduction: Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found...... that they are dramatically different. Results: Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  2. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    Directory of Open Access Journals (Sweden)

    Enise Bagci

    Full Text Available Thyroid hormone (TH balance is essential for vertebrate development. Deiodinase type 1 (D1 and type 2 (D2 increase and deiodinase type 3 (D3 decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray, biochemistry, morphology and physiology using morpholino (MO knockdown. Knockdown of D1+D2 (D1D2MO and knockdown of D3 (D3MO both resulted in transcriptional regulation of energy metabolism and (muscle development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct

  3. Inhibition of glycolysis and growth of colon cancer cells by 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO in combination with butyrate, 2-deoxy glucose, 3-bromopyruvate or biguanides

    Directory of Open Access Journals (Sweden)

    Lea MA

    2015-09-01

    Full Text Available Introduction: Glycolysis shows a positive correlation with growth of human colon cancer cells. PFKFB3 is an important enzyme regulating glycolysis in many tumor cells and presents a target for cancer chemotherapy. We studied the action of an inhibitor of PFKFB3, 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO, as a single agent and in combination with other molecules that affect glycolysis. Materials and methods: Effects on growth were studied in four human colon cancer cell lines. Glucose metabolism was monitored by uptake from the incubation medium and lactic acid production was judged by acidification of the medium. Induction of alkaline phosphatase served as a marker of differentiation. Results: Growth of colon cancer cells was inhibited by 3PO and butyrate but only butyrate induced activation of alkaline phosphatase. Although metformin and phenformin can increase glucose metabolism, they inhibit colon cancer cell growth and can exert additive inhibitory effects in combination with 3PO. Additive growth inhibitory effects with 3PO were also observed with two compounds that inhibit glycolysis: 2-deoxyglucose and 3-bromopyruvate. Conclusion: 3PO was an inhibitor of growth of colon cancer cells and may be a useful agent in combination with other drugs that inhibit colon cancer cell proliferation.

  4. Tumor Metabolism of Malignant Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang, E-mail: deliang.guo@osumc.edu [Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center & Arthur G James Cancer Hospital, Columbus, OH 43012 (United States)

    2013-11-08

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation.

  5. Tumor Metabolism of Malignant Gliomas

    International Nuclear Information System (INIS)

    Ru, Peng; Williams, Terence M.; Chakravarti, Arnab; Guo, Deliang

    2013-01-01

    Constitutively activated oncogenic signaling via genetic mutations such as in the EGFR/PI3K/Akt and Ras/RAF/MEK pathways has been recognized as a major driver for tumorigenesis in most cancers. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA and RNA, leading to enhanced growth of human tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. In malignant gliomas, metabolism pathways of glucose, glutamine and lipid are significantly reprogrammed. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. In this review, we will summarize recent studies revealing critical gene alterations that lead to metabolic changes in malignant gliomas, and also discuss promising therapeutic strategies via targeting the key players in metabolic regulation

  6. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    Science.gov (United States)

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  7. Metabolic Control of Dendritic Cell Activation and Function: Recent Advances and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Bart eEverts

    2014-05-01

    Full Text Available Dendritic cells (DCs are key regulators of both immunity and tolerance by controlling activation and polarization of effector T helper cell and regulatory T cell responses. Therefore, there is a major focus on developing approaches to manipulate DC function for immunotherapy. It is well known that changes in cellular activation are coupled to profound changes in cellular metabolism. Over the past decade there is a growing appreciation that these metabolic changes also underlie the capacity of immune cells to perform particular functions. This has led to the concept that the manipulation of cellular metabolism can be used to shape innate and adaptive immune responses. While most of our understanding in this area has been gained from studies with T cells and macrophages, evidence is emerging that the activation and function of DCs are also dictated by the type of metabolism these cells commit to. We here discuss these new insights and explore whether targeting of metabolic pathways in DCs could hold promise as a novel approach to manipulate the functional properties of DCs for clinical purposes.

  8. Regulation of glucose transport and c-fos and egr-1 expression in cells with mutated or endogenous growth hormone receptors

    DEFF Research Database (Denmark)

    Gong, T W; Meyer, D J; Liao, J

    1998-01-01

    To identify mechanisms by which GH receptors (GHR) mediate downstream events representative of growth and metabolic responses to GH, stimulation by GH of c-fos and egr-1 expression and glucose transport activity were examined in Chinese hamster ovary (CHO) cells expressing mutated GHR. In CHO cel...

  9. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  10. Modeling Inborn Errors of Hepatic Metabolism Using Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Pournasr, Behshad; Duncan, Stephen A

    2017-11-01

    Inborn errors of hepatic metabolism are because of deficiencies commonly within a single enzyme as a consequence of heritable mutations in the genome. Individually such diseases are rare, but collectively they are common. Advances in genome-wide association studies and DNA sequencing have helped researchers identify the underlying genetic basis of such diseases. Unfortunately, cellular and animal models that accurately recapitulate these inborn errors of hepatic metabolism in the laboratory have been lacking. Recently, investigators have exploited molecular techniques to generate induced pluripotent stem cells from patients' somatic cells. Induced pluripotent stem cells can differentiate into a wide variety of cell types, including hepatocytes, thereby offering an innovative approach to unravel the mechanisms underlying inborn errors of hepatic metabolism. Moreover, such cell models could potentially provide a platform for the discovery of therapeutics. In this mini-review, we present a brief overview of the state-of-the-art in using pluripotent stem cells for such studies. © 2017 American Heart Association, Inc.

  11. Classical NF-κB Metabolically Reprograms Sarcoma Cells Through Regulation of Hexokinase 2

    Directory of Open Access Journals (Sweden)

    Priya Londhe

    2018-04-01

    Full Text Available BackgroundMetabolic reprogramming has emerged as a cancer hallmark, and one of the well-known cancer-associated metabolic alterations is the increase in the rate of glycolysis. Recent reports have shown that both the classical and alternative signaling pathways of nuclear factor κB (NF-κB play important roles in controlling the metabolic profiles of normal cells and cancer cells. However, how these signaling pathways affect the metabolism of sarcomas, specifically rhabdomyosarcoma (RMS and osteosarcoma (OS, has not been characterized.MethodsClassical NF-κB activity was inhibited through overexpression of the IκBα super repressor of NF-κB in RMS and OS cells. Global gene expression analysis was performed using Affymetrix GeneChip Human Transcriptome Array 2.0, and data were interpreted using gene set enrichment analysis. Seahorse Bioscience XFe24 was used to analyze oxygen consumption rate as a measure of aerobic respiration.ResultsInhibition of classical NF-κB activity in sarcoma cell lines restored alternative signaling as well as an increased oxidative respiratory metabolic phenotype in vitro. In addition, microarray analysis indicated that inhibition of NF-κB in sarcoma cells reduced glycolysis. We showed that a glycolytic gene, hexokinase (HK 2, is a direct NF-κB transcriptional target. Knockdown of HK2 shifted the metabolic profile in sarcoma cells away from aerobic glycolysis, and re-expression of HK2 rescued the metabolic shift induced by inhibition of NF-κB activity in OS cells.ConclusionThese findings suggest that classical signaling of NF-κB plays a crucial role in the metabolic profile of pediatric sarcomas potentially through the regulation of HK2.

  12. Metabolic reprogramming in the tumour microenvironment: a hallmark shared by cancer cells and T lymphocytes.

    Science.gov (United States)

    Allison, Katrina E; Coomber, Brenda L; Bridle, Byram W

    2017-10-01

    Altered metabolism is a hallmark of cancers, including shifting oxidative phosphorylation to glycolysis and up-regulating glutaminolysis to divert carbon sources into biosynthetic pathways that promote proliferation and survival. Therefore, metabolic inhibitors represent promising anti-cancer drugs. However, T cells must rapidly divide and survive in harsh microenvironments to mediate anti-cancer effects. Metabolic profiles of cancer cells and activated T lymphocytes are similar, raising the risk of metabolic inhibitors impairing the immune system. Immune checkpoint blockade provides an example of how metabolism can be differentially impacted to impair cancer cells but support T cells. Implications for research with metabolic inhibitors are discussed. © 2017 John Wiley & Sons Ltd.

  13. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro.

    Science.gov (United States)

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.

  14. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    Science.gov (United States)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-08-01

    We examined how TiO2 nanoparticles ( nTiO2) impact the growth and metabolism of three species of freshwater green algae ( Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration ( R). Population growth rates were consistently reduced by nTiO2, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO2 has potential to alter important community and ecosystem properties of freshwater habitats.

  15. Effects of TiO2 nanoparticles on the growth and metabolism of three species of freshwater algae

    International Nuclear Information System (INIS)

    Cardinale, Bradley J.; Bier, Raven; Kwan, Courtney

    2012-01-01

    We examined how TiO 2 nanoparticles (nTiO 2 ) impact the growth and metabolism of three species of freshwater green algae (Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO 2 (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration (R). Population growth rates were consistently reduced by nTiO 2 , with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO 2 reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO 2 stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO 2 had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO 2 may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO 2 has potential to alter important community and ecosystem properties of freshwater habitats.

  16. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension.

    Science.gov (United States)

    Xu, Weiling; Erzurum, Serpil C

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH. © 2011 American Physiological Society.

  17. Induced pluripotent stem cells show metabolomic differences to embryonic stem cells in polyunsaturated phosphatidylcholines and primary metabolism.

    Directory of Open Access Journals (Sweden)

    John K Meissen

    Full Text Available Induced pluripotent stem cells are different from embryonic stem cells as shown by epigenetic and genomics analyses. Depending on cell types and culture conditions, such genetic alterations can lead to different metabolic phenotypes which may impact replication rates, membrane properties and cell differentiation. We here applied a comprehensive metabolomics strategy incorporating nanoelectrospray ion trap mass spectrometry (MS, gas chromatography-time of flight MS, and hydrophilic interaction- and reversed phase-liquid chromatography-quadrupole time-of-flight MS to examine the metabolome of induced pluripotent stem cells (iPSCs compared to parental fibroblasts as well as to reference embryonic stem cells (ESCs. With over 250 identified metabolites and a range of structurally unknown compounds, quantitative and statistical metabolome data were mapped onto a metabolite networks describing the metabolic state of iPSCs relative to other cell types. Overall iPSCs exhibited a striking shift metabolically away from parental fibroblasts and toward ESCs, suggestive of near complete metabolic reprogramming. Differences between pluripotent cell types were not observed in carbohydrate or hydroxyl acid metabolism, pentose phosphate pathway metabolites, or free fatty acids. However, significant differences between iPSCs and ESCs were evident in phosphatidylcholine and phosphatidylethanolamine lipid structures, essential and non-essential amino acids, and metabolites involved in polyamine biosynthesis. Together our findings demonstrate that during cellular reprogramming, the metabolome of fibroblasts is also reprogrammed to take on an ESC-like profile, but there are select unique differences apparent in iPSCs. The identified metabolomics signatures of iPSCs and ESCs may have important implications for functional regulation of maintenance and induction of pluripotency.

  18. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Iodine metabolism and food needs

    International Nuclear Information System (INIS)

    Mornex, R.

    1992-01-01

    Iodine is an element that is necessary for the growth and mental development of a child and for the maintenance of the activity of all cells at all ages. In this article, the author recalls the iodine sources, its metabolism and the food needs and contributions

  20. Effect of two organophosphorus insecticides on the growth, respiration and (/sup 14/C)-glucose metabolism of Azobacter chroococcum Beij

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, A; Narayanan, R [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1980-01-01

    The two organophosphorus insecticides, commonly applied to soil, viz., disulfoton (0,0-diethyl S-2-ethyl thio ethyl phosphorodithioate) and fensulfothion (0,0-diethyl 0-4-methyl sulphinyl phenyl phosphorothioate) did not affect the in vitro growth of Azotobacter chroococcum Beij., the free-living, nitrogen fixing soil bacterium, at 2 ppm (lower level), while the normal dose (5 ppm) and the higher level (10 ppm) suppressed the growth. Respiration of the organism (glucose oxidation) was adversely affected by the insecticides in the growth medium and the inhibition increased with the concentration of the chemical. Both the insecticides suppressed the assimilation of (/sup 14/C)-glucose in the cold-TCA soluble, hot-TCA soluble fractions and insoluble residue of the cells whereas the /sup 14/C-incorporation in the alcohol soluble and alcohol-ether soluble fractions was enhanced indicating that the insecticides considerably altered the glucose metabolism of the bacterium.

  1. Ruxolitinib combined with vorinostat suppresses tumor growth and alters metabolic phenotype in hematological diseases.

    Science.gov (United States)

    Civallero, Monica; Cosenza, Maria; Pozzi, Samantha; Sacchi, Stefano

    2017-11-28

    JAK-2 dysregulation plays an important role as an oncogenic driver, and is thus a promising therapeutic target in hematological malignancies. Ruxolitinib is a pyrrolo[2.3-d]pyrimidine derivative with inhibitory activity against JAK1 and JAK2, moderate activity against TYK2, and minor activity against JAK3. Vorinostat is an HDAC inhibitor that reduces JAK-2 expression, thus affecting JAK-2 mRNA expression and increasing JAK-2 proteasomal deterioration. Here we hypothesized that the combination of ruxolitinib and vorinostat could have synergistic effects against hematological disease. We tested combinations of low doses of ruxolitinib and vorinostat in 12 cell lines, and observed highly synergistic cytotoxic action in six cell lines, which was maintained for up to 120 h in the presence of stromal cells. The sensitivity of the six cell lines may be explained by the broad effects of the drug combination, which can affect various targets. Treatment with the combination of ruxolitinib and vorinostat appeared to induce a possible reversal of the Warburg effect, with associated ROS production, apoptotic events, and growth inhibition. Decreased glucose metabolism may have markedly sensitized the six more susceptible cell lines to combined treatment. Therapeutic inhibition of the JAK/STAT pathway seems to offer substantial anti-tumor benefit, and combined therapy with ruxolitinib and vorinostat may represent a promising novel therapeutic modality for hematological neoplasms.

  2. Metabolism of fluoranthene in different plant cell cultures and intact plants

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, M.; Harms, H.

    2000-05-01

    The metabolism of fluoranthene was investigated in 11 cell cultures of different plant species using a [{sup 14}C]-labeled standard. Most species metabolized less than 5% of fluoranthene to soluble metabolites and formed less than 5% nonextractable residues during the standardized 48-h test procedure. Higher metabolic rates were observed in lettuce (Lactuca sativa, 6%), wheat (Tricitum aestivum, 9%), and tomato (Lycopersicon esculentum, 15%). A special high metabolic rate of nearly 50% was determined for the rose species Paul's Scarlet. Chromatographic analysis of metabolites extracted from aseptically grown tomato plants proved that the metabolites detected in the cell cultures were also formed in the intact plants. Metabolites produced in tomato and rose cells from [{sup 14}C]-fluoranthene were conjugated with glucose, glucuronic acid, and other cell components. After acid hydrolyses, the main metabolite of both species was 1-hydroxyfluoranthene as identified by gas chromatography-mass spectrometry and high-performance liquid chromatography with diode array detection. The second metabolite formed by both species was 8-hydroxyfluoranthene. A third metabolite in tomatoes was 3-hydroxyfluoranthene.

  3. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  4. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis.

    Science.gov (United States)

    Reimonn, Thomas M; Park, Seo-Young; Agarabi, Cyrus D; Brorson, Kurt A; Yoon, Seongkyu

    2016-09-01

    Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016. © 2016 American Institute of Chemical Engineers.

  5. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  6. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    International Nuclear Information System (INIS)

    Lu, Yi-Yu; Huang, Yu-Jie; Cheng, Kuo-Sheng; Huang, Ji-Jer

    2013-01-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization. (paper)

  7. Metabolomics reveals metabolic changes in male reproductive cells exposed to thirdhand smoke

    Science.gov (United States)

    Xu, Bo; Chen, Minjian; Yao, Mengmeng; Ji, Xiaoli; Mao, Zhilei; Tang, Wei; Qiao, Shanlei; Schick, Suzaynn F.; Mao, Jian-Hua; Hang, Bo; Xia, Yankai

    2015-10-01

    Thirdhand smoke (THS) is a new term for the toxins in cigarette smoke that linger in the environment long after the cigarettes are extinguished. The effects of THS exposure on male reproduction have not yet been studied. In this study, metabolic changes in male germ cell lines (GC-2 and TM-4) were analyzed after THS treatment for 24 h. THS-loaded chromatography paper samples were generated in a laboratory chamber system and extracted in DMEM. At a paper: DMEM ratio of 50 μg/ml, cell viability in both cell lines was normal, as measured by the MTT assay and markers of cytotoxicity, cell cycle, apoptosis and ROS production were normal as measured by quantitative immunofluorescence. Metabolomic analysis was performed on methanol extracts of GC-2 and TM-4 cells. Glutathione metabolism in GC-2 cells, and nucleic acid and ammonia metabolism in TM-4 cells, was changed significantly by THS treatment. RT-PCR analyses of mRNA for enzyme genes Gss and Ggt in GC-2 cells, and TK, SMS and Glna in TM-4 cells reinforced these findings, showing changes in the levels of enzymes involved in the relevant pathways. In conclusion, exposure to THS at very low concentrations caused distinct metabolic changes in two different types of male reproductive cell lines.

  8. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  9. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  10. Metabolic recovery of lipodystrophy, liver steatosis, and pancreatic β cell proliferation after the withdrawal of OSI-906.

    Science.gov (United States)

    Tajima, Kazuki; Shirakawa, Jun; Togashi, Yu; Yamazaki, Shunsuke; Okuyama, Tomoko; Kyohara, Mayu; Konishi, Hiromi; Terauchi, Yasuo

    2017-06-23

    Growth factor signaling via insulin receptor (IR) and IGF-1 receptor (IGF1R) plays several important roles in the pathogenesis of metabolic syndrome and diabetes. OSI-906 (linsitinib), an anti-tumor drug, is an orally bioavailable dual inhibitor of IR and IGF1R. To investigate the recovery from metabolic changes induced by the acute inhibition of IR and IGF1R in adult mice, mice were treated with OSI-906 or a vehicle for 7 days and the results were analyzed on the last day of injection (Day 7) or after 7 or 21 days of withdrawal (Day 14 or Day 28). On day 7, the visceral white fat mass was significantly reduced in mice treated with OSI-906 accompanied by a reduced expression of leptin and an increased expression of the lipolysis-related genes Lpl and Atgl. Interestingly, the lipoatrophy and the observed changes in gene expression were completely reversed on day 14. Similarly, liver steatosis and β cell proliferation were transiently observed on day 7 but had disappeared by day 14. Taken together, these results suggest that this model for the acute inhibition of systemic IR/IGF1R signaling may be useful for investigating the recovery from metabolic disorders induced by impaired growth factor signaling.

  11. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    Directory of Open Access Journals (Sweden)

    Laura ePaixão

    2015-10-01

    Full Text Available Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonised by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonisation to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc on this response at the transcriptional, physiological and metabolic levels. Galactose (Gal, N-acetylglucosamine (GlcNAc and mannose (Man affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s was readily consumed and elicited a metabolic shift towards a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome. In central carbon metabolism (most represented category, Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  12. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism.

    Science.gov (United States)

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G; Kuipers, Oscar P; Vinga, Susana; Neves, Ana R

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo (13)C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence.

  13. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    Science.gov (United States)

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  14. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  15. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    Science.gov (United States)

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  17. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    Science.gov (United States)

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides.

    Directory of Open Access Journals (Sweden)

    Lily Kahsai

    Full Text Available In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a: Drosophila tachykinin (DTK, short neuropeptide F (sNPF and ion transport peptide (ITP. These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.

  19. A study on the functions of ubiquitin metabolic system related gene FBG2 in gastric cancer cell line

    Directory of Open Access Journals (Sweden)

    Wu Benyan

    2009-06-01

    Full Text Available Abstract Background FBG2 (F-BOX6 gene is an important member in ubiquitin metabolic system F-BOX family, and forms E3 complex with the other members in the family. But its role in gastric cancer is still not clear. In the present study, we intended to investigate the influence of FBG2 on the growth, proliferation, apoptosis, invasion and cell cycle of the gastric cancer line MKN45 and gastric cell line HFE145. Methods As a critical component of ubiquitin-protein ligase complex, FBG2 cDNA was subcloned into a constitutive vector PCDNA3.1 followed by transfection in MKN45 and HFE145 by using liposome. Then stable transfectants were selected and appraised. The apoptosis and cell cycles of these clones were analyzed by using flow cytometry. The growth and proliferation were analyzed by cell growth curves and colony-forming assay respectively. The invasion of these clones was tested by using cancer cell migration assay. The FBG2 stable expression clones(MKN-FBG2 and HFE-FBG2 and their control groups were detected and compared respectively. Results MKN-FBG2 grew faster than MKN45 and MKN-PC(MKN45 transfected with PCDNA3.1 vector. HFE-FBG2 grew faster than HFE145 and HFE-PC(HFE145 transfected with PCDNA3.1 vector. The cell counts of MKN-FBG2 in the forth, fifth, sixth and seventh days were significantly more than those of others (P Conclusion FBG2 can promote the growth and proliferation of gastric cancer cells and normal gastric cells. It can help tumor cell maintain malignant phenotype too. But it can have a negative influence on the apoptosis or the ability of invasion of gastric cancer cells.

  20. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine?

    Science.gov (United States)

    McConville, Malcolm J; Saunders, Eleanor C; Kloehn, Joachim; Dagley, Michael J

    2015-01-01

    A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus Leishmania, proliferate long-term within mature lysosome compartments.  How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in Leishmania.

  1. Metabolic Control of Redox and Redox Control of Metabolism in Plants

    Science.gov (United States)

    Fernie, Alisdair R.

    2014-01-01

    Abstract Significance: Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. Recent Advances: The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. Critical Issues: It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. Future Directions: Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and

  2. Halofuginone suppresses growth of human uterine leiomyoma cells in a mouse xenograft model.

    Science.gov (United States)

    Koohestani, Faezeh; Qiang, Wenan; MacNeill, Amy L; Druschitz, Stacy A; Serna, Vanida A; Adur, Malavika; Kurita, Takeshi; Nowak, Romana A

    2016-07-01

    Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights

  3. SU-G-TeP3-10: Radiation Induces Prompt Live-Cell Metabolic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Campos, D [University of Wisconsin Madison, Madison, WI (United States); Peeters, W; Bussink, J [Radboud University Medical Center, Nijmegen, GA (United States); Nickel, K [University of Wisconsin - Madison, Madison, Wisconsin (United States); Burkel, B; Kimple, R; Kogel, A van der; Eliceiri, K [University of Wisconsin - Madison, Madison, WI (United States); Kissick, M [University of Wisconsin, Madison, WI (United States)

    2016-06-15

    Purpose: To compare metabolic dynamics and HIF-1α expression following radiation between a cancerous cell line (UM-SCC-22B) and a normal, immortalized cell line, NOK (Normal Oral Keratinocyte). HIF-1 is a key factor in metabolism and radiosensitivity. A better understanding of how radiation affects the interplay of metabolism and HIF-1 might give a better understanding of the mechanisms responsible for radiosensitivity. Methods: Changes in cellular metabolism in response to radiation are tracked by fluorescence lifetime of NADH. Expression of HIF-1α was measured by immunofluorescence for both cell lines with and without irradiation. Radiation response is also monitored with additional treatment of a HIF-1α inhibitor (chrysin) as well as a radical scavenger (glutathione). Changes in oxygen consumption and respiratory capacity are also monitored using the Seahorse XF analyzer. Results: An increase in HIF-1α was found to be in response to radiation for the cancer cell line, but not the normal cell line. Radiation was found to shift metabolism toward glycolytic pathways in cancer cells as measured by oxygen consumption and respiratory capacity. Radiation response was found to be muted by addition of glutathione to cell media. HIF-1α inhibition similarly muted radiation response in cancer. Conclusion: The HIF-1 protein complex is a key regulator cellular metabolism through the regulation of glycolysis and glucose transport enzymes. Moreover, HIF-1 has shown radio-protective effects in tumor vascular endothelia, and has been implicated in metastatic aggression. Monitoring interplay between metabolism and the HIF-1 protein complex can give a more fundamental understanding of radiotherapy response.

  4. SU-G-TeP3-10: Radiation Induces Prompt Live-Cell Metabolic Fluxes

    International Nuclear Information System (INIS)

    Campos, D; Peeters, W; Bussink, J; Nickel, K; Burkel, B; Kimple, R; Kogel, A van der; Eliceiri, K; Kissick, M

    2016-01-01

    Purpose: To compare metabolic dynamics and HIF-1α expression following radiation between a cancerous cell line (UM-SCC-22B) and a normal, immortalized cell line, NOK (Normal Oral Keratinocyte). HIF-1 is a key factor in metabolism and radiosensitivity. A better understanding of how radiation affects the interplay of metabolism and HIF-1 might give a better understanding of the mechanisms responsible for radiosensitivity. Methods: Changes in cellular metabolism in response to radiation are tracked by fluorescence lifetime of NADH. Expression of HIF-1α was measured by immunofluorescence for both cell lines with and without irradiation. Radiation response is also monitored with additional treatment of a HIF-1α inhibitor (chrysin) as well as a radical scavenger (glutathione). Changes in oxygen consumption and respiratory capacity are also monitored using the Seahorse XF analyzer. Results: An increase in HIF-1α was found to be in response to radiation for the cancer cell line, but not the normal cell line. Radiation was found to shift metabolism toward glycolytic pathways in cancer cells as measured by oxygen consumption and respiratory capacity. Radiation response was found to be muted by addition of glutathione to cell media. HIF-1α inhibition similarly muted radiation response in cancer. Conclusion: The HIF-1 protein complex is a key regulator cellular metabolism through the regulation of glycolysis and glucose transport enzymes. Moreover, HIF-1 has shown radio-protective effects in tumor vascular endothelia, and has been implicated in metastatic aggression. Monitoring interplay between metabolism and the HIF-1 protein complex can give a more fundamental understanding of radiotherapy response.

  5. Myrigalone A Inhibits Lepidium sativum Seed Germination by Interference with Gibberellin Metabolism and Apoplastic Superoxide Production Required for Embryo Extension Growth and Endosperm Rupture

    Czech Academy of Sciences Publication Activity Database

    Oracz, K.; Voegele, A.; Tarkowská, Danuše; Jacquemoud, D.; Turečková, Veronika; Urbanová, Terezie; Strnad, Miroslav; Sliwinska, E.; Leubner-Metzger, G.

    2012-01-01

    Roč. 53, č. 1 (2012), s. 81-95 ISSN 0032-0781 R&D Projects: GA AV ČR KAN200380801; GA MŠk ED0007/01/01; GA ČR GD522/08/H003 Keywords : Embryo cell extension growth * Endoreduplication * Endosperm rupture * Gibberellin metabolism * Lepidium sativum * Myrica gale * Phytotoxicity * Reactive oxygen species Subject RIV: EF - Botanics Impact factor: 4.134, year: 2012

  6. Metabonomics-based analysis of Brachyspira pilosicoli's response to tiamulin reveals metabolic activity despite significant growth inhibition.

    Science.gov (United States)

    Le Roy, Caroline Ivanne; Passey, Jade Louise; Woodward, Martin John; La Ragione, Roberto Marcello; Claus, Sandrine Paule

    2017-06-01

    Pathogenic anaerobes Brachyspira spp. are responsible for an increasing number of Intestinal Spirochaetosis (IS) cases in livestock against which few approved treatments are available. Tiamulin is used to treat swine dysentery caused by Brachyspira spp. and recently has been used to handle avian intestinal spirochaetosis (AIS). The therapeutic dose used in chickens requires further evaluation since cases of bacterial resistance to tiamulin have been reported. In this study, we evaluated the impact of tiamulin at varying concentrations on the metabolism of B. pilosicoli using a 1 H-NMR-based metabonomics approach allowing the capture of the overall bacterial metabolic response to antibiotic treatment. Based on growth curve studies, tiamulin impacted bacterial growth even at very low concentration (0.008 μg/mL) although its metabolic activity was barely affected 72 h post exposure to antibiotic treatment. Only the highest dose of tiamulin tested (0.250 μg/mL) caused a major metabolic shift. Results showed that below this concentration, bacteria could maintain a normal metabolic trajectory despite significant growth inhibition by the antibiotic, which may contribute to disease reemergence post antibiotic treatment. Indeed, we confirmed that B. pilosicoli remained viable even after exposition to the highest antibiotic dose. This paper stresses the need to ensure new evaluation of bacterial viability post bacteriostatic exposure such as tiamulin to guarantee treatment efficacy and decrease antibiotic resistance development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Science.gov (United States)

    Kim, Minjoo; Kim, Minkyung; Yoo, Hye Jin; Lee, Jong Ho

    2017-01-01

    The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72) or metabolically unhealthy overweight (MUO, n = 45). The immune response was measured by circulating levels of natural killer (NK) cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant) and 41% lower interleukin (IL)-12 levels (significant). The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05) than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities. PMID:29238351

  8. Natural Killer Cell Activity and Interleukin-12 in Metabolically Healthy versus Metabolically Unhealthy Overweight Individuals

    Directory of Open Access Journals (Sweden)

    Minjoo Kim

    2017-11-01

    Full Text Available The purpose of this study was to determine whether the immune system is involved in the different metabolic circumstances in healthy and unhealthy overweight individuals. We examined the metabolic and immune characteristics of 117 overweight individuals. Subjects were classified as metabolically healthy overweight (MHO, n = 72 or metabolically unhealthy overweight (MUO, n = 45. The immune response was measured by circulating levels of natural killer (NK cell activity and cytokines. Both groups were comparable with regards to age, sex distribution, smoking and drinking status, and body mass index. When compared to the MHO group, the MUO group showed higher systolic and diastolic blood pressure, serum levels of triglyceride, glucose, glucose-related markers, and lower levels of HDL cholesterol. Compared to the MHO group, the MUO group showed 39% lower interferon-γ levels (not significant and 41% lower interleukin (IL-12 levels (significant. The MUO group also showed lower NK cell activity at E:T ratios of 10:1, 5:1, 2.5:1, and 1.25:1 (all Ps < 0.05 than the MHO group. This study indicates that individuals displaying the MUO phenotype present an unfavorable immune system with lower NK cell activities under all assay conditions and lower serum levels of IL-12 than the activities and levels in similarly overweight MHO individuals. This result suggests that the immune system may be altered in overweight individuals who are at risk for overweight/obesity-related comorbidities.

  9. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH...... and activation of the tyrosine kinase JAK2 and the transcription factors STAT1 and 3. The activation of the insulin gene however also requires the distal part of the receptor and activation of calcium uptake and STAT5. In order to identify putative autocrine growth factors or targets for growth factors we have...

  10. Effect of uranium (VI) on the growth of yeast and influence of metabolism of yeast on adsorption of U (VI)

    International Nuclear Information System (INIS)

    Sakamoto, Fuminori; Ohnuki, Toshihiko; Kozai, Naofumi; Wakai, Eiichi; Francis, A.J.

    2005-01-01

    We have carried out the growth experiments of 3 strains of yeast in a medium containing uranium (VI) to elucidate the effect of U (VI) on the growth of microorganisms. Hansenula fabianii J640 grew in the liquid medium containing 0.1 mM U (VI) at lower rate than the control, but Saccharomyces cerevisiae did not grow under this condition. The H. fabianii J640 pre-cultured for 21 h in the liquid medium without U (VI) grew even after the exposure to 1 mM U (VI), but did not grow without pre-cultivation. For the pre-cultured H. fabianii J640, radioactivity of U in the medium was the same as the initial one for 110 h, and then gradually decreased. TEM-EDS analysis of H. fabianii J640 exposed to 1 mM U (VI) for 165 h showed accumulation of U (VI) on the cells. When H. fabianii J640 was not pre-cultured, radioactivity of U in the medium was lower than the initial one. These results indicated that U (VI) inhibits the growth of yeast, and that the adsorption of U (VI) by the cells depends on the metabolism of yeast. (author)

  11. Contrasting growth properties of Nocardioides JS614 on threedifferent vinyl halides.

    Science.gov (United States)

    Taylor, Anne E; Bottomley, Peter J; Semprini, Lewis

    2018-02-01

    Ethene (ETH)-grown inocula of Nocardioides JS614 grow on vinyl chloride (VC), vinyl fluoride (VF), or vinyl bromide (VB) as the sole carbon and energy source, with faster growth rates and higher cell yields on VC and VF than on VB. However, whereas acetate-grown inocula of JS614 grow on VC and VF after a lag period, growth on VB did not occur unless supplemental ethene oxide (EtO) was present in the medium. Despite inferior growth on VB, the maximum rate of VB consumption by ETH-grown cells was ~ 50% greater than the rates of VC and VF consumption, but Br - release during VB consumption was non-stoichiometric with VB consumption (~ 66%) compared to 100% release of Cl - and F - during VC and VF consumption. Evidence was obtained for VB turnover-dependent toxicity of cell metabolism in JS614 with both acetate-dependent respiration and growth being significantly reduced by VB turnover, but no VC or VF turnover-dependent toxicity of growth was detected. Reduced growth rate and cell yield of JS614 on VB probably resulted from a combination of inefficient metabolic processing of the highly unstable VB epoxide (t 0.5  = 45 s), accompanied by growth inhibitory effects of VB metabolites on acetate-dependent metabolism. The exact role(s) of EtO in promoting growth of alkene repressed JS614 on VB remains unresolved, with evidence of EtO inducing epoxide consuming activity prior to an increase in alkene oxidizing activity and supplementing reductant supply when VB is the growth substrate.

  12. Temperature dependences of growth rates and carrying capacities of marine bacteria depart from metabolic theoretical predictions

    KAUST Repository

    Huete-Stauffer, Tamara Megan

    2015-09-11

    Using the metabolic theory of ecology (MTE) framework, we evaluated over a whole annual cycle the monthly responses to temperature of the growth rates (μ) and carrying capacities (K) of heterotrophic bacterioplankton at a temperate coastal site. We used experimental incubations spanning 6oC with bacterial physiological groups identified by flow cytometry according to membrane integrity (live), nucleic acid content (HNA and LNA) and respiratory activity (CTC+). The temperature dependence of μat the exponential phase of growth was summarized by the activation energy (E), which was variable (-0.52 to 0.72 eV) but followed a seasonal pattern, only reaching the hypothesized value for aerobic heterotrophs of 0.65 eV during the spring bloom for the most active bacterial groups (live, HNA, CTC+). K (i.e. maximum experimental abundance) peaked at 4 × 106 cells mL-1 and generally covaried with μbut, contrary to MTE predictions, it did not decrease consistently with temperature. In the case of live cells, the responses of μand K to temperature were positively correlated and related to seasonal changes in substrate availability, indicating that the responses of bacteria to warming are far from homogeneous and poorly explained by MTE at our site. © FEMS 2015.

  13. {sup 13}C dynamic nuclear polarization for measuring metabolic flux in endothelial progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Nathalie; Laustsen, Christoffer; Bertelsen, Lotte Bonde, E-mail: Lotte@clin.au.dk

    2016-11-15

    Endothelial progenitor cells (EPCs) represent a heterogeneous cell population that is believed to be involved in vasculogenesis. With the purpose of enhancing endothelial repair, EPCs could have a potential for future cell therapies. Due to the low amount of EPCs in the peripheral circulating blood, in vitro expansion is needed before administration to recipients and the effects of in vitro culturing is still an under-evaluated field with little knowledge of how the cells change over time in culture. The aim of this study was to use hyperpolarised carbon-13 magnetic resonance spectroscopy to profile important metabolic pathways in a population of progenitor cells and to show that cell culturing in 3D scaffolds seem to block the metabolic processes that leads to cell senescence. The metabolic breakdown of hyperpolarized [1-{sup 13}C]pyruvate was followed after injection of the substrate to a bioreactor system with EPCs either adhered to 3D printed scaffolds or kept in cell suspension. The pyruvate-to-lactate conversion was elevated in suspension of EPCs compared to the EPCs adhered to scaffolds. Furthermore in the setup with EPCs in suspension, an increase in lactate production was seen over time indicating that the older the cultures of EPCs was before using the cells for cell suspension experiments, the more lactate they produce, compared to a constant lactate level in the cells adhered to scaffolds. It could therefore be stated that cells grown first in 2D culture and subsequent prepared for cell suspension show a metabolism with higher lactate production consistent with cells senescence processes compared to cells grown first at 2D culture and subsequent in the 3D printed scaffolds, where metabolism shows no sign of metabolic shifting during the monitored period. - Highlights: • Hyperpolarized 13C MRS detects EPCs metabolic changes associated with ageing and cultivating conditions. • Increased lactate production in EPC’s correlates positively with aging.

  14. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  15. Single Cell Analysis Linking Ribosomal (r)DNA and rRNA Copy Numbers to Cell Size and Growth Rate Provides Insights into Molecular Protistan Ecology.

    Science.gov (United States)

    Fu, Rao; Gong, Jun

    2017-11-01

    Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)-based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single-cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per-cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV 0.14 . The maximum growth rate could be well predicted by a combination of per-cell ribotype CN and temperature. Our empirical data and modeling on single-cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance-based interpretation of quantitative ribotype data in population and community ecology of protists. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  16. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney.

    Science.gov (United States)

    O'Neill, John D; Freytes, Donald O; Anandappa, Annabelle J; Oliver, Juan A; Vunjak-Novakovic, Gordana V

    2013-12-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, and bladder as controls) in three forms: (i) intact sheets of decellularized ECM, (ii) ECM hydrogels, and (iii) solubilized ECM, we investigated how the structure and composition of ECM affect the function of kidney stem cells (with mesenchymal stem cells, MSCs, as controls). All three forms of the ECM regulated KSC function, with differential structural and compositional effects. KSCs cultured on papilla ECM consistently displayed lower proliferation, higher metabolic activity, and differences in cell morphology, alignment, and structure formation as compared to KSCs on cortex and medulla ECM, effects not observed in corresponding MSC cultures. These data suggest that tissue- and region-specific ECM can provide an effective substrate for in vitro studies of therapeutic stem cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Metabolic features of the cell danger response.

    Science.gov (United States)

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental

  18. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  19. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  20. Effects of TiO{sub 2} nanoparticles on the growth and metabolism of three species of freshwater algae

    Energy Technology Data Exchange (ETDEWEB)

    Cardinale, Bradley J., E-mail: bradcard@umich.edu [University of Michigan, School of Natural Resources and Environment (United States); Bier, Raven [Duke University, Department of Biology (United States); Kwan, Courtney [Evolution and Marine Biology, University of California, Department of Ecology (United States)

    2012-08-15

    We examined how TiO{sub 2} nanoparticles (nTiO{sub 2}) impact the growth and metabolism of three species of freshwater green algae (Scenedesmus quadricauda, Chlamydomonas moewusii, and Chlorella vulgaris) that are widespread throughout North America. We exposed laboratory cultures to five initial concentrations of nTiO{sub 2} (0, 50, 100, 200, and 300 ppm) and measured impacts on species population growth rates, as well as on metabolic rates of gross primary production (GPP) and respiration (R). Population growth rates were consistently reduced by nTiO{sub 2}, with reduction ranging from 11 to 27 % depending on the species. But the mechanisms of reduction differed among species. For Chlamydomonas, nTiO{sub 2} reduced both GPP and R, but effects on GPP were stronger. As a consequence, carbon was respired more quickly than it was fixed, leading to reduced growth. In contrast, nTiO{sub 2} stimulated both GPP and R in Chorella. But because R was stimulated to a greater extent than GPP, carbon loss again exceeded fixation, leading to reduced growth. For Scenedesmus, nTiO{sub 2} had no significant impact on R, but reduced GPP. This pattern also caused carbon loss to exceed fixation. Results suggest that nTiO{sub 2} may generally suppress the growth of pelagic algae, but these impacts are manifest through contrasting effects on species-specific metabolic functions. Because growth and metabolism of algae are fundamental to the functioning of ecosystems and the structure of aquatic food-webs, our study suggests nTiO{sub 2} has potential to alter important community and ecosystem properties of freshwater habitats.

  1. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  2. Neurotensin is metabolized by endogenous proteases in prostate cancer cell lines.

    Science.gov (United States)

    Moody, T W; Mayr, C A; Gillespie, T J; Davis, T P

    1998-01-01

    The formation and processing of neurotensin (NT) by three prostate cancer cell lines was investigated. Neurotensin (NT) immunoreactivity was detected in conditioned media and extracts of LNCaP cells. Using HPLC techniques, the immunoreactivity extracted from LNCaP cells coeluted with synthetic NT standard. Metalloendopeptidase 3.4.24.15 activity was detected in PC-3, DU-145 and LNCaP cells, whereas high levels of neutral endopeptidase 3.4.24.1 1 activity was detected only in LNCaP cells. NT was relatively stable when incubated with PC-3 or D-145 cells but was rapidly degraded by LNCaP cells to NT1-11 and NT1-10. Phosphoramidon inhibited the metabolism of NT by LNCaP cells. These data suggest that NT is present in and metabolized by LNCaP cellular enzymes.

  3. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M.

    1990-01-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  4. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  5. Allometric scaling and cell ratios in multi-organ in vitro models of human metabolism

    Directory of Open Access Journals (Sweden)

    Nadia eUcciferri

    2014-12-01

    Full Text Available Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step towards building an integrated picture of systemic metabolism and signalling in physiological or pathological conditions. However the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here we analyse the physiologic relationship between cells, cell metabolism and exchange in the human body using allometric rules, downscaling them to an organ-on-a plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (Cell Number Scaling Model, CNSM, and Metabolic and Surface Scaling model, MSSM are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions which can be extrapolated to the in vivo

  6. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.

    Science.gov (United States)

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  7. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels

    Science.gov (United States)

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie HD

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. DOI: http://dx.doi.org/10.7554/eLife.05896.001 PMID:25647728

  8. Feeding, growth and metabolism of the marine heterotrophic dinoflagellate Gyrodinium dominans

    DEFF Research Database (Denmark)

    Schmoker, Claire; Thor, Peter; Hernández-león, Santiago

    2011-01-01

    may inflict high metabolic costs. Gross growth efficiencies (GGEs), determined for G. dominans in both food availability conditions, were within the range of values reported for other heterotrophic protozoans, and while GGE decreased when concentrations of food were high in organisms fed a single...... pulse of food, the opposite was observed in organisms acclimatized to a constant level of food....

  9. Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody.

    Science.gov (United States)

    Monteleone, Francesca; Rosa, Roberta; Vitale, Monica; D'Ambrosio, Chiara; Succoio, Mariangela; Formisano, Luigi; Nappi, Lucia; Romano, Maria Fiammetta; Scaloni, Andrea; Tortora, Giampaolo; Bianco, Roberto; Zambrano, Nicola

    2013-03-01

    Cetuximab is a chimeric antibody approved for the treatment of metastatic colorectal cancer that selectively targets epidermal growth factor receptor (EGFR) signaling. Treatment efficacy with this drug is often impaired by acquired resistance and poor information has been accumulated on the mechanisms underlying such a phenomenon. By taking advantage of a syngenic cellular system of sensitivity and acquired resistance to anti-EGFR therapy in the colorectal carcinoma GEO cell line, we profiled protein expression differences between Cetuximab-sensitive and -resistant cells. Combined 2D DIGE and MS analyses revealed a main proteomic signature resulting from selective deregulation of various metabolic enzymes, including glucose-6-phosphate dehydrogenase, transketolase, lactate dehydrogenase B, and pyruvate dehydrogenase E1, which was also confirmed by Western blotting experiments. Lactate dehydrogenase B downregulation has been already related to an increased anaerobic utilization of glucose by tumor cells; accordingly, we verified that Cetuximab-resistant cells have a significantly higher production of lactate. Resistant cells also showed decreased nicotinamide adenine dinucleotide phosphate (NADPH) levels. Observed protein deregulations were not related to functional alterations of the hypoxia-inducible factor 1-associated pathways. Our data demonstrate that increased anaerobic metabolism is a prominent feature observed in the GEO syngenic model of acquired resistance to anti-EGFR therapy in colorectal cancer. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells.

    Science.gov (United States)

    Fujimura, Yoshinori; Ikenaga, Naoki; Ohuchida, Kenoki; Setoyama, Daiki; Irie, Miho; Miura, Daisuke; Wariishi, Hiroyuki; Murata, Masaharu; Mizumoto, Kazuhiro; Hashizume, Makoto; Tanaka, Masao

    2014-03-01

    Gemcitabine resistance (GR) is one of the critical issues for therapy for pancreatic cancer, but the mechanism still remains unclear. Our aim was to increase the understanding of GR by metabolic profiling approach. To establish GR cells, 2 human pancreatic cancer cell lines, SUIT-2 and CAPAN-1, were exposed to increasing concentration of gemcitabine. Both parental and chemoresistant cells obtained by this treatment were subjected to metabolic profiling based on liquid chromatography-mass spectrometry. Multivariate statistical analyses, both principal component analysis and orthogonal partial least squares discriminant analysis, distinguished metabolic signature of responsiveness and resistance to gemcitabine in both SUIT-2 and CAPAN-1 cells. Among significantly different (P metabolic pathways such as amino acid, nucleotide, energy, cofactor, and vitamin pathways. Decreases in glutamine and proline levels as well as increases in aspartate, hydroxyproline, creatine, and creatinine levels were observed in chemoresistant cells from both cell lines. These results suggest that metabolic profiling can isolate distinct features of pancreatic cancer in the metabolome of gemcitabine-sensitive and GR cells. These findings may contribute to the biomarker discovery and an enhanced understanding of GR in pancreatic cancer.

  11. Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes

    Directory of Open Access Journals (Sweden)

    Higashi Richard M

    2008-10-01

    Full Text Available Abstract Background The functional status of a cell is expressed in its metabolic activity. We have applied stable isotope tracing methods to determine the differences in metabolic pathways in proliferating Rhabdomysarcoma cells (Rh30 and human primary myocytes in culture. Uniformly 13C-labeled glucose was used as a source molecule to follow the incorporation of 13C into more than 40 marker metabolites using NMR and GC-MS. These include metabolites that report on the activity of glycolysis, Krebs' cycle, pentose phosphate pathway and pyrimidine biosynthesis. Results The Rh30 cells proliferated faster than the myocytes. Major differences in flux through glycolysis were evident from incorporation of label into secreted lactate, which accounts for a substantial fraction of the glucose carbon utilized by the cells. Krebs' cycle activity as determined by 13C isotopomer distributions in glutamate, aspartate, malate and pyrimidine rings was considerably higher in the cancer cells than in the primary myocytes. Large differences were also evident in de novo biosynthesis of riboses in the free nucleotide pools, as well as entry of glucose carbon into the pyrimidine rings in the free nucleotide pool. Specific labeling patterns in these metabolites show the increased importance of anaplerotic reactions in the cancer cells to maintain the high demand for anabolic and energy metabolism compared with the slower growing primary myocytes. Serum-stimulated Rh30 cells showed higher degrees of labeling than serum starved cells, but they retained their characteristic anabolic metabolism profile. The myocytes showed evidence of de novo synthesis of glycogen, which was absent in the Rh30 cells. Conclusion The specific 13C isotopomer patterns showed that the major difference between the transformed and the primary cells is the shift from energy and maintenance metabolism in the myocytes toward increased energy and anabolic metabolism for proliferation in the Rh30 cells

  12. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.

    Science.gov (United States)

    Miazek, Krystian; Kratky, Lukas; Sulc, Radek; Jirout, Tomas; Aguedo, Mario; Richel, Aurore; Goffin, Dorothee

    2017-07-04

    In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

  13. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  14. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  15. Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Vogel Hans J

    2008-01-01

    Full Text Available Abstract Background Opium poppy (Papaver somniferum produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a model system to study plant alkaloid metabolism. The plant is cultivated as the only commercial source of the narcotic analgesics morphine and codeine, but also produces many other alkaloids including the antimicrobial agent sanguinarine. Modulations in plant secondary metabolism as a result of environmental perturbations are often associated with the altered regulation of other metabolic pathways. As a key component of our functional genomics platform for opium poppy we have used proton nuclear magnetic resonance (1H NMR metabolomics to investigate the interplay between primary and secondary metabolism in cultured opium poppy cells treated with a fungal elicitor. Results Metabolite fingerprinting and compound-specific profiling showed the extensive reprogramming of primary metabolic pathways in association with the induction of alkaloid biosynthesis in response to elicitor treatment. Using Chenomx NMR Suite v. 4.6, a software package capable of identifying and quantifying individual compounds based on their respective signature spectra, the levels of 42 diverse metabolites were monitored over a 100-hour time course in control and elicitor-treated opium poppy cell cultures. Overall, detectable and dynamic changes in the metabolome of elicitor-treated cells, especially in cellular pools of carbohydrates, organic acids and non-protein amino acids were detected within 5 hours after elicitor treatment. The metabolome of control cultures also showed substantial modulations 80 hours after the start of the time course, particularly in the levels of amino acids and phospholipid pathway intermediates. Specific flux modulations were detected throughout primary metabolism, including glycolysis, the tricarboxylic acid cycle, nitrogen assimilation, phospholipid/fatty acid synthesis and the shikimate pathway, all of which

  16. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin.

    Science.gov (United States)

    Kapan, Neval; Lushchak, Oleh V; Luo, Jiangnan; Nässel, Dick R

    2012-12-01

    Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in Drosophila. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and Dilp transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of Dilp2 and 5 in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult Drosophila.

  17. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms.

    Science.gov (United States)

    Gales, Grégoire; Penninckx, Michel; Block, Jean-Claude; Leroy, Pierre

    2008-08-01

    The resistance of Saccharomyces cerevisiae to oxidative stress (H(2)O(2) and Cd(2+)) was compared in biofilms and planktonic cells, with the help of yeast mutants deleted of genes related to glutathione metabolism and oxidative stress. Biofilm-forming cells were found predominantly in the G1 stage of the cell cycle. This might explain their higher tolerance to oxidative stress and the young replicative age of these cells in an old culture. The reduced glutathione status of S. cerevisiae was affected by the growth phase and apparently plays an important role in oxidative stress tolerance in cells growing as a biofilm.

  18. Glucose-induced metabolic memory in Schwann cells: prevention by PPAR agonists.

    Science.gov (United States)

    Kim, Esther S; Isoda, Fumiko; Kurland, Irwin; Mobbs, Charles V

    2013-09-01

    A major barrier in reversing diabetic complications is that molecular and pathologic effects of elevated glucose persist despite normalization of glucose, a phenomenon referred to as metabolic memory. In the present studies we have investigated the effects of elevated glucose on Schwann cells, which are implicated in diabetic neuropathy. Using quantitative PCR arrays for glucose and fatty acid metabolism, we have found that chronic (>8 wk) 25 mM high glucose induces a persistent increase in genes that promote glycolysis, while inhibiting those that oppose glycolysis and alternate metabolic pathways such as fatty acid metabolism, the pentose phosphate pathway, and trichloroacetic acid cycle. These sustained effects were associated with decreased peroxisome proliferator-activated receptor (PPAR)γ binding and persistently increased reactive oxygen species, cellular NADH, and altered DNA methylation. Agonists of PPARγ and PPARα prevented select effects of glucose-induced gene expression. These observations suggest that Schwann cells exhibit features of metabolic memory that may be regulated at the transcriptional level. Furthermore, targeting PPAR may prevent metabolic memory and the development of diabetic complications.

  19. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R [Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  20. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    International Nuclear Information System (INIS)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-01-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  1. The impact of metabolism on aging and cell size in single yeast cells

    NARCIS (Netherlands)

    Huberts, Daphne

    2015-01-01

    The aim of this thesis was to determine how metabolism affects yeast aging in single yeast cells using a novel microfluidic device. We first review how cells are able to sense nutrients in their environment and then describe the use of the microfluidic dissection platform that greatly improves our

  2. METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY

    Directory of Open Access Journals (Sweden)

    Paula Jouhten

    2012-10-01

    Full Text Available Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.

  3. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  4. Melatonin redirects carbohydrates metabolism during sugar starvation in plant cells.

    Science.gov (United States)

    Kobylińska, Agnieszka; Borek, Sławomir; Posmyk, Małgorzata M

    2018-05-01

    Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin efficacy eliminates oxidative stress (direct and indirect antioxidant) and moreover induce plant stress reaction and switch on different defence strategies (preventively and interventively actions). In this report, the impact of exogenous melatonin on carbohydrate metabolism in Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells during sugar starvation was examined. We analysed starch concentration, α-amylase and PEPCK activity as well as proteolytic activity in culture media. It has been shown that BY-2 cell treatment with 200 nM of melatonin improved viability of sugar-starved cells. It was correlated with higher starch content and phosphoenolpyruvate carboxykinase (PEPCK) activity. The obtained results revealed that exogenous melatonin under specific conditions (stress) can play regulatory role in sugar metabolism, and it may modulate carbohydrate concentration in etiolated BY-2 cells. Moreover, our results confirmed the hypothesis that if the starch is synthesised even in sugar-starved cells, it is highly probable that melatonin shifts the BY-2 cell metabolism on gluconeogenesis pathway and allows for synthesis of carbohydrates from nonsugar precursors, that is amino acids. These points to another defence strategy that was induced by exogenous melatonin applied in plants to overcome adverse environmental conditions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    Science.gov (United States)

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Effects of carbon dioxide on cell growth and propionic acid production from glycerol and glucose by Propionibacterium acidipropionici.

    Science.gov (United States)

    Zhang, An; Sun, Jianxin; Wang, Zhongqiang; Yang, Shang-Tian; Zhou, Haiying

    2015-01-01

    The effects of CO2 on propionic acid production and cell growth in glycerol or glucose fermentation were investigated in this study. In glycerol fermentation, the volumetric productivity of propionic acid with CO2 supplementation reached 2.94g/L/day, compared to 1.56g/L/day without CO2. The cell growth using glycerol was also significantly enhanced with CO2. In addition, the yield and productivity of succinate, the main intermediate in Wood-Werkman cycle, increased 81% and 280%, respectively; consistent with the increased activities of pyruvate carboxylase and propionyl CoA transferase, two key enzymes in the Wood-Werkman cycle. However, in glucose fermentation CO2 had minimal effect on propionic acid production and cell growth. The carbon flux distributions using glycerol or glucose were also analyzed using a stoichiometric metabolic model. The calculated maintenance coefficient (mATP) increased 100%, which may explain the increase in the productivity of propionic acid in glycerol fermentation with CO2 supplement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Role of growth factors in the growth of normal and transformed cells

    International Nuclear Information System (INIS)

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both 125 I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product

  8. Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands inhibit growth of UACC903 and MCF7 human cancer cell lines

    International Nuclear Information System (INIS)

    Girroir, Elizabeth E.; Hollingshead, Holly E.; Billin, Andrew N.; Willson, Timothy M.; Robertson, Gavin P.; Sharma, Arun K.; Amin, Shantu; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    The development of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) ligands for the treatment of diseases including metabolic syndrome, diabetes and obesity has been hampered due to contradictory findings on their potential safety. For example, while some reports show that ligand activation of PPARβ/δ promotes the induction of terminal differentiation and inhibition of cell growth, other reports suggest that PPARβ/δ ligands potentiate tumorigenesis by increasing cell proliferation. Some of the contradictory findings could be due in part to differences in the ligand examined, the presence or absence of serum in cell cultures, differences in cell lines or differences in the method used to quantify cell growth. For these reasons, this study examined the effect of ligand activation of PPARβ/δ on cell growth of two human cancer cell lines, MCF7 (breast cancer) and UACC903 (melanoma) in the presence or absence of serum using two highly specific PPARβ/δ ligands, GW0742 or GW501516. Culturing cells in the presence of either GW0742 or GW501516 caused upregulation of the known PPARβ/δ target gene angiopoietin-like protein 4 (ANGPTL4). Inhibition of cell growth was observed in both cell lines cultured in the presence of either GW0742 or GW501516, and the presence or absence of serum had little influence on this inhibition. Results from the present studies demonstrate that ligand activation of PPARβ/δ inhibits the growth of both MCF7 and UACC903 cell lines and provide further evidence that PPARβ/δ ligands are not mitogenic in human cancer cell lines

  9. Metabolism of pharmaceutical and personal care products by carrot cell cultures.

    Science.gov (United States)

    Wu, Xiaoqin; Fu, Qiuguo; Gan, Jay

    2016-04-01

    With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4-47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3-20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  11. Metabolic and demographic feedbacks shape the emergent spatial structure and function of microbial communities.

    Directory of Open Access Journals (Sweden)

    Sylvie Estrela

    Full Text Available Microbes are predominantly found in surface-attached and spatially structured polymicrobial communities. Within these communities, microbial cells excrete a wide range of metabolites, setting the stage for interspecific metabolic interactions. The links, however, between metabolic and ecological interactions (functional relationships, and species spatial organization (structural relationships are still poorly understood. Here, we use an individual-based modelling framework to simulate the growth of a two-species surface-attached community where food (resource is traded for detoxification (service and investigate how metabolic constraints of individual species shape the emergent structural and functional relationships of the community. We show that strong metabolic interdependence drives the emergence of mutualism, robust interspecific mixing, and increased community productivity. Specifically, we observed a striking and highly stable emergent lineage branching pattern, generating a persistent lineage mixing that was absent when the metabolic exchange was removed. These emergent community properties are driven by demographic feedbacks, such that aid from neighbouring cells directly enhances focal cell growth, which in turn feeds back to neighbour fecundity. In contrast, weak metabolic interdependence drives conflict (exploitation or competition, and in turn greater interspecific segregation. Together, these results support the idea that species structural and functional relationships represent the net balance of metabolic interdependencies.

  12. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Ravneet K. Boparai

    2015-01-01

    Full Text Available Fibroblast growth factor 21 (FGF21 modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.

  13. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  14. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman; Ang, Kok  Siong; Hanscho, Michael; Bordbar, Aarash; Ruckerbauer, David; Lakshmanan, Meiyappan; Orellana, Camila  A.; Baycin-Hizal, Deniz; Huang, Yingxiang; Ley, Daniel; Martinez, Veronica  S.; Kyriakopoulos, Sarantos; Jimé nez, Natalia  E.; Zielinski, Daniel  C.; Quek, Lake-Ee; Wulff, Tune; Arnsdorf, Johnny; Li, Shangzhong; Lee, Jae  Seong; Paglia, Giuseppe; Loira, Nicolas; Spahn, Philipp  N.; Pedersen, Lasse  E.; Gutierrez, Jahir  M.; King, Zachary  A.; Lund, Anne  Mathilde; Nagarajan, Harish; Thomas, Alex; Abdel-Haleem, Alyaa M.; Zanghellini, Juergen; Kildegaard, Helene  F.; Voldborg, Bjø rn  G.; Gerdtzen, Ziomara  P.; Betenbaugh, Michael  J.; Palsson, Bernhard  O.; Andersen, Mikael  R.; Nielsen, Lars  K.; Borth, Nicole; Lee, Dong-Yup; Lewis, Nathan  E.

    2016-01-01

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess

  15. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    Science.gov (United States)

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  16. Role of innate lymphoid cells in obesity and metabolic disease

    Science.gov (United States)

    Saetang, Jirakrit; Sangkhathat, Surasak

    2018-01-01

    The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti-obese immune regulators by secreting anti-inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon-γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity-associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions. PMID:29138853

  17. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    International Nuclear Information System (INIS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-01-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[ 3 H]glucose convert this glucose analogue to 2-deoxy[ 3 H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O 2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system

  18. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    Science.gov (United States)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  19. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    Science.gov (United States)

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  20. Mechanisms of redox metabolism and cancer cell survival during extracellular matrix detachment.

    Science.gov (United States)

    Hawk, Mark A; Schafer, Zachary T

    2018-01-16

    Non-transformed cells that become detached from the extracellular matrix (ECM) undergo dysregulation of redox homeostasis and cell death. In contrast, cancer cells often acquire the ability to mitigate programmed cell death pathways and recalibrate the redox balance to survive after ECM detachment, facilitating metastatic dissemination. Accordingly, recent studies of the mechanisms by which cancer cells overcome ECM detachment-induced metabolic alterations have focused on mechanisms in redox homeostasis. The insights into these mechanisms may inform the development of therapeutics that manipulate redox homeostasis to eliminate ECM-detached cancer cells. Here, we review how ECM-detached cancer cells balance redox metabolism for survival. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Metabolic shift in lung alveolar cell mitochondria following acrolein exposure.

    Science.gov (United States)

    Agarwal, Amit R; Yin, Fei; Cadenas, Enrique

    2013-11-15

    Acrolein, an α,β unsaturated electrophile, is an environmental pollutant released in ambient air from diesel exhausts and cooking oils. This study examines the role of acrolein in altering mitochondrial function and metabolism in lung-specific cells. RLE-6TN, H441, and primary alveolar type II (pAT2) cells were exposed to acrolein for 4 h, and its effect on mitochondrial oxygen consumption rates was studied by XF Extracellular Flux analysis. Low-dose acrolein exposure decreased mitochondrial respiration in a dose-dependent manner because of alteration in the metabolism of glucose in all the three cell types. Acrolein inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity, leading to decreased substrate availability for mitochondrial respiration in RLE-6TN, H441, and pAT2 cells; the reduced GAPDH activity was compensated in pAT2 cells by an increase in the activity of glucose-6-phosphate dehydrogenase, the regulatory control of the pentose phosphate pathway. The decrease in pyruvate from glucose metabolism resulted in utilization of alternative sources to support mitochondrial energy production: palmitate-BSA complex increased mitochondrial respiration in RLE-6TN and pAT2 cells. The presence of palmitate in alveolar cells for surfactant biosynthesis may prove to be the alternative fuel source for mitochondrial respiration. Accordingly, a decrease in phosphatidylcholine levels and an increase in phospholipase A2 activity were found in the alveolar cells after acrolein exposure. These findings have implications for understanding the decrease in surfactant levels frequently observed in pathophysiological situations with altered lung function following exposure to environmental toxicants.

  2. Cell cycle analysis of brain cells as a growth index in larval cod at different feeding conditions and temperatures

    Directory of Open Access Journals (Sweden)

    Rafael González-Quirós

    2007-09-01

    Full Text Available The percentage of cells dividing in a specific tissue of individual larvae can be estimated by analyzing DNA per cell by flow cytometry. An experimental test was carried out with cod (Gadus morhua larvae, with brain as the target tissue, to validate this technique as an appropriate growth index for larval fish. Standard length (SL, myotome height, and %S-phase (% of cells in the S-phase of the cell-division cycle variability were analyzed, with temperature (6 and 10°C, food level (high- and no-food and larval developmental stage (first feeding, pre-metamorphosis and post-metamorphosis as independent factors. Cod larvae grew faster (in SL and presented a higher %S-phase under high-food conditions. Larval SL increased with temperature in rearing and experimental tanks. However, there was a significant interaction between temperature and food in the %S-phase. There were no significant differences in the %S-phase between 6 and 10°C at high-food levels. We suggest that this result is a consequence of temperature-dependency of the duration of the cell cycle. In the absence of food, larvae at 10ºC had a lower %S-phase than larvae at 6°C, which may be related to increased metabolic costs with increasing temperature. Considering the effect of temperature, the mean % S-phase explained 74% of the variability in the estimated standard growth rate.

  3. Metabolic characterization of invaded cells of the pancreatic cancer cell line, PANC?1

    OpenAIRE

    Fujita, Mayumi; Imadome, Kaori; Imai, Takashi

    2017-01-01

    We previously reported that about 0.4% of cells in the cultured human pancreatic cancer cell line, PANC?1, can invade matrigel during the transwell invasion assay, suggesting that these invaded PANC?1 cells may have specific characteristics to keep their invasive potential. To identify the metabolic characterization specific in the invaded PANC?1 cells, metabolome analysis of the invaded PANC?1 compared with the whole cultured PANC?1 was performed using CE?TOFMS, and concentrations of 110 met...

  4. Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Jørgensen, Anne; Nielsen, John Erik

    2012-01-01

    and express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the VD receptor (VDR) and VD-metabolizing enzymes are expressed in human fetal germ cells, CIS, and invasive......) treatment in vivo. These novel findings show that VD metabolism is involved in the mesodermal transition during differentiation of cancer cells with embryonic stem cell characteristics, which points to a function for VD during early embryonic development and possibly in the pathogenesis of TGCTs.......Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype...

  5. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    International Nuclear Information System (INIS)

    Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti

    2014-01-01

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  6. Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ucciferri, Nadia [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Sbrana, Tommaso [Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy); Ahluwalia, Arti, E-mail: arti.ahluwalia@unipi.it [CNR Institute of Clinical Physiology, Pisa (Italy); Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa (Italy)

    2014-12-17

    Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.

  7. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Directory of Open Access Journals (Sweden)

    Joshua M. Corbin

    2016-07-01

    Full Text Available Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR plays an essential role in the establishment and progression of prostate cancer (PCa, and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.

  8. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Science.gov (United States)

    Corbin, Joshua M.; Ruiz-Echevarría, Maria J.

    2016-01-01

    Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325

  9. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    Science.gov (United States)

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  10. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi

    2016-10-24

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  11. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi; Saito, Toshiyuki; Ohyanagi, Hajime; Okumura, Jun; Ishige, Kentaro; Suzuki, Harukazu; Nakamura, Takuji; Komatsu, Setsuko

    2016-01-01

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  12. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    Science.gov (United States)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  13. Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells

    Science.gov (United States)

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2T, exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state. PMID:24204687

  14. Growth-dependent catalase localization in Exiguobacterium oxidotolerans T-2-2T reflected by catalase activity of cells.

    Science.gov (United States)

    Hanaoka, Yoshiko; Takebe, Fumihiko; Nodasaka, Yoshinobu; Hara, Isao; Matsuyama, Hidetoshi; Yumoto, Isao

    2013-01-01

    A psychrotolerant and H2O2-resistant bacterium, Exiguobacterium oxidotolerans T-2-2(T), exhibits extraordinary H2O2 resistance and produces catalase not only intracellularly but also extracellularly. The intracellular and extracellular catalases exhibited the same enzymatic characteristics, that is, they exhibited the temperature-dependent activity characteristic of a cold-adapted enzyme, their heat stabilities were similar to those of mesophilic enzymes and very high catalytic intensity. In addition, catalase gene analysis indicated that the bacterium possessed the sole clade 1 catalase gene corresponding to intracellular catalase. Hence, intracellular catalase is secreted into the extracellular space. In addition to intracellular and extracellular catalases, the inner circumference of the cells showed the localization of catalase in the mid-stationary growth phase, which was observed by immunoelectron microscopy using an antibody against the intracellular catalase of the strain. The cells demonstrated higher catalase activity in the mid-stationary growth phase than in the exponential growth phase. The catalase localized in the inner circumference can be dissociated by treatment with Tween 60. Thus, the localized catalase is not tightly bound to the inner circumference of the cells and may play a role in the oxidative defense of the cells under low metabolic state.

  15. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    Science.gov (United States)

    Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M

    2018-01-01

    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.

  16. Aging, metabolism and stem cells: Spotlight on muscle stem cells.

    Science.gov (United States)

    García-Prat, Laura; Muñoz-Cánoves, Pura

    2017-04-15

    All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation

    Science.gov (United States)

    Quinn, Kyle P.; Sridharan, Gautham V.; Hayden, Rebecca S.; Kaplan, David L.; Lee, Kyongbum; Georgakoudi, Irene

    2013-12-01

    The non-invasive high-resolution spatial mapping of cell metabolism within tissues could provide substantial advancements in assessing the efficacy of stem cell therapy and understanding tissue development. Here, using two-photon excited fluorescence microscopy, we elucidate the relationships among endogenous cell fluorescence, cell redox state, and the differentiation of human mesenchymal stem cells into adipogenic and osteoblastic lineages. Using liquid chromatography/mass spectrometry and quantitative PCR, we evaluate the sensitivity of an optical redox ratio of FAD/(NADH + FAD) to metabolic changes associated with stem cell differentiation. Furthermore, we probe the underlying physiological mechanisms, which relate a decrease in the redox ratio to the onset of differentiation. Because traditional assessments of stem cells and engineered tissues are destructive, time consuming, and logistically intensive, the development and validation of a non-invasive, label-free approach to defining the spatiotemporal patterns of cell differentiation can offer a powerful tool for rapid, high-content characterization of cell and tissue cultures.

  18. Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells

    Science.gov (United States)

    Betancourt-Mar, J. A.; Llanos-Pérez, J. A.; Cocho, G.; Mansilla, R.; Martin, R. R.; Montero, S.; Nieto-Villar, J. M.

    2017-05-01

    By the use of thermodynamics formalism of irreversible processes, complex systems theory and systems biology, it is derived a relationship between the production of entropy per unit time, the fractal dimension and the tumor growth rate for human tumors cells. The thermodynamics framework developed demonstrates that, the dissipation function is a Landau potential and also the Lyapunov function of the dynamical behavior of tumor growth, which indicate the directional character, stability and robustness of the phenomenon. The entropy production rate may be used as a quantitative index of the metastatic potential of tumors. The current theoretical framework will hopefully provide a better understanding of cancer and contribute to improvements in cancer treatment.

  19. An engineering thermodynamic approach to select the electromagnetic wave effective on cell growth.

    Science.gov (United States)

    Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Silvagno, Francesca

    2017-09-21

    To date, the choice of the characteristics of the extremely low-frequency electromagnetic field beneficial in proliferative disorders is still empirical. In order to make the ELF interaction selective, we applied the thermodynamic and biochemical principles to the analysis of the thermo-chemical output generated by the cell in the environment. The theoretical approach applied an engineering bio-thermodynamic approach recently developed in order to obtain a physical-mathematical model that calculated the frequency of the field able to maximize the mean entropy changes as a function of cellular parameters. The combined biochemical approach envisioned the changes of entropy as a metabolic shift leading to a reduction of cell growth. The proliferation of six human cancer cell lines was evaluated as the output signal able to confirm the correctness of the mathematical model. By considering the cell as a reactive system able to respond to the unbalancing external stimuli, for the first time we could calculate and validate the frequencies of the field specifically effective on distinct cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Investigation of the metabolism of ergot alkaloids in cell culture by fourier transformation mass spectrometry.

    Science.gov (United States)

    Mulac, Dennis; Grote, Anna-Karina; Kleigrewe, Karin; Humpf, Hans-Ulrich

    2011-07-27

    Ergot alkaloids are known toxic secondary metabolites of the fungus Claviceps purpurea occurring in various grains, especially rye products. The liver is responsible for converting the ergot alkaloids into metabolites; however, the toxic impact of these end products of metabolism is still unknown. The aim of this study was to analyze the metabolism of ergot alkaloids in colon and liver cell lines (HT-29, HepG2), as well as in human primary renal cells (RPTEC). It was shown that cells in vitro are able to metabolize ergot alkaloids, forming a variety of metabolic compounds. Significant differences between the used cell types could be identified, and a suitable model system was established using HT-29 cells, performing an intensive metabolism to hydroxylated metabolites. The formed substances were analyzed by coupling of high-performance liquid chromatography with fluorescence detection and Fourier transformation mass spectrometry (HPLC-FLD-FTMS) as a powerful tool to identify known and unknown metabolites.

  1. The role of metabolism in bacterial persistence

    Directory of Open Access Journals (Sweden)

    Stephanie M. Amato

    2014-03-01

    Full Text Available Bacterial persisters are phenotypic variants with extraordinary tolerances toward antibiotics. Persister survival has been attributed to inhibition of essential cell functions during antibiotic stress, followed by reversal of the process and resumption of growth upon removal of the antibiotic. Metabolism plays a critical role in this process, since it participates in the entry, maintenance, and exit from the persister phenotype. Here, we review the experimental evidence that demonstrates the importance of metabolism to persistence, highlight the successes and potential for targeting metabolism in the search for anti-persister therapies, and discuss the current methods and challenges to understand persister physiology.

  2. Glucose metabolism is altered after loss of L cells and α-cells but not influenced by loss of K cells

    DEFF Research Database (Denmark)

    Pedersen, J; Ugleholdt, Randi Kjærsgaard; Jørgensen, Signe Marie

    2013-01-01

    , and glucagon is associated with impaired regulation of metabolism. This study evaluates the consequences of acute removal of Gip- or Gcg-expressing cells on glucose metabolism. Generation of the two diphtheria toxin receptor cellular knockout mice, TgN(GIP.DTR) and TgN(GCG.DTR), allowed us to study effects...... of acute ablation of K and L cells and α-cells. Diphtheria toxin administration reduced the expression of Gip and content of GIP in the proximal jejunum in TgN(GIP.DTR) and expression of Gcg and content of proglucagon-derived peptides in both proximal jejunum and terminal ileum as well as content...

  3. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age.

    Directory of Open Access Journals (Sweden)

    Jacques Beltrand

    Full Text Available BACKGROUND: Fetal growth restriction (FGR followed by rapid weight gain during early life has been suggested to be the initial sequence promoting central adiposity and insulin resistance. However, the link between fetal and early postnatal growth and the associated anthropometric and metabolic changes have been poorly studied. METHODOLOGY/PRINCIPAL FINDINGS: Over the first year of post-natal life, changes in body mass index, skinfold thickness and hormonal concentrations were prospectively monitored in 94 infants in whom the fetal growth velocity had previously been measured using a repeated standardized procedure of ultrasound fetal measurements. 45 infants, thinner at birth, had experienced previous FGR (FGR+ regardless of birth weight. Growth pattern in the first four months of life was characterized by greater change in BMI z-score in FGR+ (+1.26+/-1.2 vs +0.58 +/-1.17 SD in FGR- resulting in the restoration of BMI and of fat mass to values similar to FGR-, independently of caloric intakes. Growth velocity after 4 months was similar and BMI z-score and fat mass remained similar at 12 months of age. At both time-points, fetal growth velocity was an independent predictor of fat mass in FGR+. At one year, fasting insulin levels were not different but leptin was significantly higher in the FGR+ (4.43+/-1.41 vs 2.63+/-1 ng/ml in FGR-. CONCLUSION: Early catch-up growth is related to the fetal growth pattern itself, irrespective of birth weight, and is associated with higher insulin sensitivity and lower leptin levels after birth. Catch-up growth promotes the restoration of body size and fat stores without detrimental consequences at one year of age on body composition or metabolic profile. The higher leptin concentration at one year may reflect a positive energy balance in children who previously faced fetal growth restriction.

  4. The cultural divide: exponential growth in classical 2D and metabolic equilibrium in 3D environments

    DEFF Research Database (Denmark)

    Carvalho, Vasco Botelho

    Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analysed the proteome and cellular architecture at these two extremes and found that they are dramatically...... different. Ultrastructurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate cycle are increased while Krebs cycle and oxidative phosphorylation is unchanged. Enzymes involved...

  5. MCT4 Defines a Glycolytic Subtype of Pancreatic Cancer with Poor Prognosis and Unique Metabolic Dependencies

    Directory of Open Access Journals (Sweden)

    GuemHee Baek

    2014-12-01

    Full Text Available KRAS mutation, which occurs in ∼95% of pancreatic ductal adenocarcinoma (PDA, has been shown to program tumor metabolism. MCT4 is highly upregulated in a subset of PDA with a glycolytic gene expression program and poor survival. Models with high levels of MCT4 preferentially employ glycolytic metabolism. Selectively in such “addicted” models, MCT4 attenuation compromised glycolytic flux with compensatory induction of oxidative phosphorylation and scavenging of metabolites by macropinocytosis and autophagy. In spite of these adaptations, MCT4 depletion induced cell death characterized by elevated reactive oxygen species and metabolic crisis. Cell death induced by MCT4-depletion was augmented by inhibition of compensatory pathways. In xenograft models, MCT4 had a significant impact on tumor metabolism and was required for rapid tumor growth. Together, these findings illustrate the metabolic diversity of PDA described by MCT4, delineate pathways through which this lactate transporter supports cancer growth, and demonstrate that PDA can be rationally targeted based on metabolic addictions.

  6. Metabolic and physiologic studies of nonimmune lymphoid cells cytotoxic for fibroblastic cells in vitro

    International Nuclear Information System (INIS)

    Mayhew, E.; Bennett, M.

    1974-01-01

    An in vitro reaction between mouse lymphoid cells and target fibroblastic cells in wells of microtest plates, which appears to simulate the in vivo rejection of hemopoietic allografts, has been analyzed for metabolic and physiologic requirements. Protein synthesis was required for only the first few hours of culture. Inhibition of RNA synthesis and alteration of cell surface charge with various agents were without obvious effects. Metabolic slowing at 4 0 C or deviation of the pH of the culture medium suppressed the reaction. Thymus cells, which are not cytotoxic in this system, significantly but not completely inhibited the cytotoxicity of lymph node cells. Antiserum directed against target cells specifically protected them from the cytotoxic lymphoid cells in the absence of complement. Precursors of cytotoxic lymphoid cells were radiosensitive, unlike the cytotoxic cells themselves. BALB/c anti-C57BL/6 spleen cell serum and 89 Sr both are able to prevent rejection of marrow allografts in vivo. Lymphoid cells incubated with this antiserum plus complement lost much of their cytotoxicity but were still effective at high ratios of aggressor to target cells. Lymphoid cells of mice treated with 89 Sr were effectively cytotoxic but lost practically all of their cytotoxicity after incubation with the antiserum plus complement. Thus, it appears that this reaction detects two different cytotoxic lymphoid cells, either of which can function in vitro. Both cell types may need to cooperate in vivo during marrow allograft rejections

  7. Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans.

    Science.gov (United States)

    Chen, Yu; Dong, Fengqing; Wang, Yonghong

    2016-09-01

    With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.

  8. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach

    Directory of Open Access Journals (Sweden)

    Poblete-Castro Ignacio

    2012-03-01

    Full Text Available Abstract Background Pseudomonas putida KT2442 is a natural producer of polyhydroxyalkanoates (PHAs, which can substitute petroleum-based non-renewable plastics and form the basis for the production of tailor-made biopolymers. However, despite the substantial body of work on PHA production by P. putida strains, it is not yet clear how the bacterium re-arranges its whole metabolism when it senses the limitation of nitrogen and the excess of fatty acids as carbon source, to result in a large accumulation of PHAs within the cell. In the present study we investigated the metabolic response of KT2442 using a systems biology approach to highlight the differences between single- and multiple-nutrient-limited growth in chemostat cultures. Results We found that 26, 62, and 81% of the cell dry weight consist of PHA under conditions of carbon, dual, and nitrogen limitation, respectively. Under nitrogen limitation a specific PHA production rate of 0.43 (g·(g·h-1 was obtained. The residual biomass was not constant for dual- and strict nitrogen-limiting growth, showing a different feature in comparison to other P. putida strains. Dual limitation resulted in patterns of gene expression, protein level, and metabolite concentrations that substantially differ from those observed under exclusive carbon or nitrogen limitation. The most pronounced differences were found in the energy metabolism, fatty acid metabolism, as well as stress proteins and enzymes belonging to the transport system. Conclusion This is the first study where the interrelationship between nutrient limitations and PHA synthesis has been investigated under well-controlled conditions using a system level approach. The knowledge generated will be of great assistance for the development of bioprocesses and further metabolic engineering work in this versatile organism to both enhance and diversify the industrial production of PHAs.

  9. Cell surface acid-base properties of the cyanobacterium Synechococcus: Influences of nitrogen source, growth phase and N:P ratios

    Science.gov (United States)

    Liu, Yuxia; Alessi, D. S.; Owttrim, G. W.; Kenney, J. P. L.; Zhou, Qixing; Lalonde, S. V.; Konhauser, K. O.

    2016-08-01

    The distribution of many trace metals in the oceans is controlled by biological uptake. Recently, Liu et al. (2015) demonstrated the propensity for a marine cyanobacterium to adsorb cadmium from seawater, suggesting that cell surface reactivity might also play an important role in the cycling of metals in the oceans. However, it remains unclear how variations in cyanobacterial growth rates and nutrient supply might affect the chemical properties of their cellular surfaces. In this study we used potentiometric titrations and Fourier Transform Infrared (FT-IR) spectrometry to profile the key metabolic changes and surface chemical responses of a Synechococcus strain, PCC 7002, during different growth regimes. This included testing various nitrogen (N) to phosphorous (P) ratios (both nitrogen and phosphorous dependent), nitrogen sources (nitrate, ammonium and urea) and growth stages (exponential, stationary, and death phase). FT-IR spectroscopy showed that varying the growth substrates on which Synechococcus cells were cultured resulted in differences in either the type or abundance of cellular exudates produced or a change in the cell wall components. Potentiometric titration data were modeled using three distinct proton binding sites, with resulting pKa values for cells of the various growth conditions in the ranges of 4.96-5.51 (pKa1), 6.67-7.42 (pKa2) and 8.13-9.95 (pKa3). According to previous spectroscopic studies, these pKa ranges are consistent with carboxyl, phosphoryl, and amine groups, respectively. Comparisons between the titration data (for the cell surface) and FT-IR spectra (for the average cellular changes) generally indicate (1) that the nitrogen source is a greater determinant of ligand concentration than growth phase, and (2) that phosphorus limitation has a greater impact on Synechococcus cellular and extracellular properties than does nitrogen limitation. Taken together, these techniques indicate that nutritional quality during cell growth can

  10. Energy metabolism in rat mast cells in relation to histamine secretion

    DEFF Research Database (Denmark)

    Johansen, T

    1987-01-01

    1. The relation between the energy metabolism and the secretory activity of rat peritoneal mast cells has been studied by determination of the cellular content of ATP and the rate of lactate production reflecting the rate of ATP synthesis under various experimental conditions. Secretion...... and the cellular ATP content at the time of cell activation was demonstrated. This may indicate a direct link between ATP and the secretory mechanism. 3. The possibility of an increased utilization of ATP during histamine secretion was explored in mast cells exposed to metabolic inhibitors. Incubation of mast...... cells with 2-deoxyglucose (2-DG) decreased the ATP content of the cells, and a long-lasting and stable level of mast cell ATP was observed. This is explained by a small decrease in the rate of ATP-synthesis by 2-DG. In 2-DG-treated cells secretion of histamine in response to compound 48...

  11. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  12. Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Glazier, Douglas S.; Atkinson, David

    2014-01-01

    Metabolism fuels all of life’s activities, from biochemical reactions to ecological interactions. According to two intensely debated theories, body size affects metabolism via geometrical influences on the transport of resources and wastes. However, these theories differ crucially in whether...... the size dependence of metabolism is derived from material transport across external surfaces, or through internal resource-transport networks. We show that when body shape changes during growth, these models make opposing predictions. These models are tested using pelagic invertebrates, because...... these animals exhibit highly variable intraspecific scaling relationships for metabolic rate and body shape. Metabolic scaling slopes of diverse integument-breathing species were significantly positively correlated with degree of body flattening or elongation during ontogeny, as expected from surface area...

  13. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  14. N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells.

    Science.gov (United States)

    Long, Patrick M; Moffett, John R; Namboodiri, Aryan M A; Viapiano, Mariano S; Lawler, Sean E; Jaworski, Diane M

    2013-09-06

    Metabolic reprogramming is a pathological feature of cancer and a driver of tumor cell transformation. N-Acetylaspartate (NAA) is one of the most abundant amino acid derivatives in the brain and serves as a source of metabolic acetate for oligodendrocyte myelination and protein/histone acetylation or a precursor for the synthesis of the neurotransmitter N-acetylaspartylglutamate (NAAG). NAA and NAAG as well as aspartoacylase (ASPA), the enzyme responsible for NAA degradation, are significantly reduced in glioma tumors, suggesting a possible role for decreased acetate metabolism in tumorigenesis. This study sought to examine the effects of NAA and NAAG on primary tumor-derived glioma stem-like cells (GSCs) from oligodendroglioma as well as proneural and mesenchymal glioblastoma, relative to oligodendrocyte progenitor cells (Oli-Neu). Although the NAA dicarboxylate transporter NaDC3 is primarily thought to be expressed by astrocytes, all cell lines expressed NaDC3 and, thus, are capable of NAA up-take. Treatment with NAA or NAAG significantly increased GSC growth and suppressed differentiation of Oli-Neu cells and proneural GSCs. Interestingly, ASPA was expressed in both the cytosol and nuclei of GSCs and exhibited greatest nuclear immunoreactivity in differentiation-resistant GSCs. Both NAA and NAAG elicited the expression of a novel immunoreactive ASPA species in select GSC nuclei, suggesting differential ASPA regulation in response to these metabolites. Therefore, this study highlights a potential role for nuclear ASPA expression in GSC malignancy and suggests that the use of NAA or NAAG is not an appropriate therapeutic approach to increase acetate bioavailability in glioma. Thus, an alternative acetate source is required.

  15. Exosome-derived microRNAs in cancer metabolism: possible implications in cancer diagnostics and therapy.

    Science.gov (United States)

    Tomasetti, Marco; Lee, Wan; Santarelli, Lory; Neuzil, Jiri

    2017-01-20

    Malignant progression is greatly affected by dynamic cross-talk between stromal and cancer cells. Exosomes are secreted nanovesicles that have key roles in cell-cell communication by transferring nucleic acids and proteins to target cells and tissues. Recently, MicroRNAs (miRs) and their delivery in exosomes have been implicated in physiological and pathological processes. Tumor-delivered miRs, interacting with stromal cells in the tumor microenvironment, modulate tumor progression, angiogenesis, metastasis and immune escape. Altered cell metabolism is one of the hallmarks of cancer. A number of different types of tumor rely on mitochondrial metabolism by triggering adaptive mechanisms to optimize their oxidative phosphorylation in relation to their substrate supply and energy demands. Exogenous exosomes can induce metabolic reprogramming by restoring the respiration of cancer cells and supress tumor growth. The exosomal miRs involved in the modulation of cancer metabolism may be potentially utilized for better diagnostics and therapy.

  16. Molecular Imaging Of Metabolic Reprogramming In Mutant IDH Cells

    Directory of Open Access Journals (Sweden)

    Pavithra eViswanath

    2016-03-01

    Full Text Available Mutations in the metabolic enzyme isocitrate dehydrogenase (IDH have recently been identified as drivers in the development of several tumor types. Most notably, cytosolic IDH1 is mutated in 70-90% of low-grade gliomas and upgraded glioblastomas, and mitochondrial IDH2 is mutated in ~20% of acute myeloid leukemia cases. Wild-type IDH catalyzes the interconversion of isocitrate to α-ketoglutarate (α-KG. Mutations in the enzyme lead to loss of wild-type enzymatic activity and a neomorphic activity that converts α-KG to 2-hydroxyglutarate (2-HG. In turn, 2-HG, which has been termed an oncometabolite, inhibits key α-KG- dependent enzymes, resulting in alterations of the cellular epigenetic profile and, subsequently, inhibition of differentiation and initiation of tumorigenesis. In addition, it is now clear that the IDH mutation also induces a broad metabolic reprogramming that extends beyond 2-HG production, and this reprogramming often differs from what has been previously reported in other cancer types. In this review we will discuss in detail what is known to date about the metabolic reprogramming of mutant IDH cells and how this reprogramming has been investigated using molecular metabolic imaging. We will describe how metabolic imaging has helped shed light on the basic biology of mutant IDH cells and how this information can be leveraged to identify new therapeutic targets and to develop new clinically translatable imaging methods to detect and monitor mutant IDH tumors in vivo.

  17. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    Science.gov (United States)

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [The cancer tumor: a metabolic parasite?].

    Science.gov (United States)

    Icard, Philippe; Lincet, Hubert

    2013-05-01

    Cancer cells activate glycolysis, glutaminolysis and β-oxidation to promote their biosynthesis. The low activity of pyruvate kinase, reexpressed in its embryonic isoform PKM2, generates a bottleneck at the end of glycolysis, which reorients glucose catabolism towards formation of molecules implied in numerous synthesis: ribose for nucleic acids, glycerol for lipid synthesis, etc. However, a part of glucose is transformed in pyruvate, which also comes from aminoacids catabolism. Due to the inhibition of pyruvate dehydrogenase, pyruvate is preferentially transformed into lactate, either in the presence of oxygen (Warburg effect). Lactate dehydrogenase reaction furnishes lactic acid, which acidifies the tumoral microenvironment, a process which favors the cellular growth and regenerates NAD(+), a crucial cofactor for the functioning of various metabolic pathways (glycolysis, DNA synthesis and repair…). Cancer cells consume a lot of glutamine, which replenish Krebs cycle (coupled with ATP production), and/or furnishes aspartate for nucleotides synthesis. This particular metabolism is sustained by activation of oncogenes (Myc, AKT, etc.) and suppressors inactivation (P53, PTEN…). Like a parasite, cells draw on reserves of the host to supply their own biosynthesis, while they secrete waste products (NO, polyamines, ammonia, lactate…) that promote cellular growth. A "symbiotic" cooperation could be established between tumor cells themselves, and/or with environmental cells, to maximize ATP production in relation with resources and oxygen concentration.

  19. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization

    Science.gov (United States)

    Finley, Lydia W.S.; Carracedo, Arkaitz; Lee, Jaewon; Souza, Amanda; Egia, Ainara; Zhang, Jiangwen; Teruya-Feldstein, Julie; Moreira, Paula I.; Cardoso, Sandra M.; Clish, Clary B.; Pandolfi, Pier Paolo; Haigis, Marcia C.

    2011-01-01

    Summary Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression. PMID:21397863

  20. High Glucose-Induced PC12 Cell Death by Increasing Glutamate Production and Decreasing Methyl Group Metabolism

    Directory of Open Access Journals (Sweden)

    Minjiang Chen

    2016-01-01

    Full Text Available Objective. High glucose- (HG- induced neuronal cell death is responsible for the development of diabetic neuropathy. However, the effect of HG on metabolism in neuronal cells is still unclear. Materials and Methods. The neural-crest derived PC12 cells were cultured for 72 h in the HG (75 mM or control (25 mM groups. We used NMR-based metabolomics to examine both intracellular and extracellular metabolic changes in HG-treated PC12 cells. Results. We found that the reduction in intracellular lactate may be due to excreting more lactate into the extracellular medium under HG condition. HG also induced the changes of other energy-related metabolites, such as an increased succinate and creatine phosphate. Our results also reveal that the synthesis of glutamate from the branched-chain amino acids (isoleucine and valine may be enhanced under HG. Increased levels of intracellular alanine, phenylalanine, myoinositol, and choline were observed in HG-treated PC12 cells. In addition, HG-induced decreases in intracellular dimethylamine, dimethylglycine, and 3-methylhistidine may indicate a downregulation of methyl group metabolism. Conclusions. Our metabolomic results suggest that HG-induced neuronal cell death may be attributed to a series of metabolic changes, involving energy metabolism, amino acids metabolism, osmoregulation and membrane metabolism, and methyl group metabolism.

  1. Melphalan metabolism in cultured cells

    International Nuclear Information System (INIS)

    Seagrave, J.C.; Valdez, J.G.; Tobey, R.A.; Gurley, L.R.

    1985-06-01

    Procedures are presented for the adaptation of reversed-phase-HPLC methods to accomplish separation and isolation of the cancer therapeutic drug melphalan (L-phenylalanine mustard) and its metabolic products from whole cells. Five major degradation products of melphalan were observed following its hydrolysis in phosphate buffer in vitro. The two most polar of these products (or modifications of them) were also found in the cytosol of Chinese hamster CHO cells. The amounts of these two polar products (shown not to be mono- or dihydroxymelphalan) were significantly changed by the pretreatment of cells with ZnC1 2 , one being increased in amount while the other was reduced to an insignificant level. In ZnC1 2 -treated cells, there was also an increased binding of melphalan (or its derivatives) to one protein fraction resolved by gel filtration-HPLC. These observations suggest that changes in polar melphalan products, and perhaps their interaction with a protein, may by involved in the reduction of melphalan cytotoxicity observed in ZnC1 2 -treated cells. While ZnC1 2 is also known to increase the level of glutathione in cells, no significant amounts of glutathione-melphalan derivatives of the type formed non-enzymatically in vitro could be detected in ZnC1 2 -treated or untreated cells. Formation of derivatives of melphalan with glutathione catabolic products in ZnC1 2 -treated cells has not yet been eliminated, however. 17 refs., 5 figs., 1 tab

  2. Modification of cell growth rate by irradiation

    International Nuclear Information System (INIS)

    Itoh, Hisao; Takemasa, Kazuhiko; Nishiguchi, Iku; Ka, Wei-Jei; Kutsuki, Shoji; Hashimoto, Shozo

    1993-01-01

    The effect of irradiation on the proliferation kinetics of the monolayer cells has been studied. Two human cell lines with different doubling times (HeLa-P and RMUG) and two clones that have the same radiosensitivity but different doubling times (HeLa-R and HeLa-S) were irradiated with a daily dose of 2 Gy for 6 days. The number of the clonogenic cells/dish was calculated by multiplying the number of total cell/dish by the survival fraction. In the rapidly growing cells (HeLa-P, HeLa-R), the number of the clonogenic cells was not decreased by the first two fractionated irradiations, but decreased thereafter at a similar rate as by single-dose fractionation, whereas the clonogenic cell number decreased from the first fractionated irradiation in the slowly growing cells (RMUG, HeLa-S). When the proliferation of clonogenic cell number increased along with a similar growth rates that was seen in all other types of cells. Further, no correlation was seen between the growth rates of cells without irradiation and cells that received irradiation. This latter result suggests that the slow growth rate of non-irradiated cells may not be the predictive factor of the tumor cure and the interruption of radiotherapy may reduce the beneficial effect of this treatment even in slow growing tumors. (author)

  3. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    Science.gov (United States)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  4. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN-depleted head and neck cancer tumor cells.

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E; Warram, Jason M; Knowles, Joseph A; Sweeny, Larissa; Zhou, Tong; Rosenthal, Eben L

    2011-08-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma-mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer, there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here, we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were cocultured with fibroblasts or inoculated with fibroblasts into severe combined immunodeficient mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Coculture experiments showed fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN-silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN-silenced cells compared with control vector-transfected cells, whereas inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast coculture, suggesting the importance of FGFR2 signaling in fibroblast-mediated tumor growth. Analysis of xenografted tumors revealed that EMMPRIN-silenced tumors had a larger stromal compartment compared with control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast-independent tumor growth.

  5. Fibroblast growth factor receptor mediates fibroblast-dependent growth in EMMPRIN depleted head and neck cancer tumor cells

    Science.gov (United States)

    Liu, Zhiyong; Hartman, Yolanda E.; Warram, Jason M.; Knowles, Joseph A.; Sweeny, Larrisa; Zhou, Tong; Rosenthal, Eben L.

    2011-01-01

    Head and neck squamous cell carcinoma tumors (HNSCC) contain a dense fibrous stroma which is known to promote tumor growth, although the mechanism of stroma mediated growth remains unclear. As dysplastic mucosal epithelium progresses to cancer there is incremental overexpression of extracellular matrix metalloprotease inducer (EMMPRIN) which is associated with tumor growth and metastasis. Here we present evidence that gain of EMMPRIN expression allows tumor growth to be less dependent on fibroblasts by modulating fibroblast growth factor receptor-2 (FGFR2) signaling. We show that silencing EMMPRIN in FaDu and SCC-5 HNSCC cell lines inhibits cell growth, but when EMMPRIN-silenced tumor cells were co-cultured with fibroblasts or inoculated with fibroblasts into SCID mice, the growth inhibition by silencing EMMPRIN was blunted by the presence of fibroblasts. Co-culture experiments demonstrated fibroblast-dependent tumor cell growth occurred via a paracrine signaling. Analysis of tumor gene expression revealed expression of FGFR2 was inversely related to EMMPRIN expression. To determine the role of FGFR2 signaling in EMMPRIN silenced tumor cells, ligands and inhibitors of FGFR2 were assessed. Both FGF1 and FGF2 enhanced tumor growth in EMMPRIN silenced cells compared to control vector transfected cells, while inhibition of FGFR2 with blocking antibody or with a synthetic inhibitor (PD173074) inhibited tumor cell growth in fibroblast co-culture, suggesting the importance of FGFR2 signaling in fibroblast mediated tumor growth. Analysis of xenografted tumors revealed EMMPRIN silenced tumors had a larger stromal compartment compared to control. Taken together, these results suggest that EMMPRIN acquired during tumor progression promotes fibroblast independent tumor growth. PMID:21665938

  6. [The use of growth hormone to treat endocrine-metabolic disturbances in acquired immunodeficiency syndrome (AIDS) patients].

    Science.gov (United States)

    Spinola-Castro, Angela Maria; Siviero-Miachon, Adriana A; da Silva, Marcos Tadeu Nolasco; Guerra-Junior, Gil

    2008-07-01

    Acquired Immunodeficiency Syndrome (Aids) was initially related to HIV-associated wasting syndrome, and its metabolic disturbances to altered body composition. After Highly Active Antiretroviral Therapy (HAART) was started, malnutrition has declined and HIV-associated lipodystrophy syndrome has emerged as an important metabolic disorder. Aids is also characterized by hormonal disturbances, principally in growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis. The use of recombinant human GH (hrGH) was formerly indicated to treat wasting syndrome, in order to increase lean body mass. Even though the use of hrGH in lipodystrophy syndrome has been considered, the decrease in insulin sensitivity is a limitation for its use, which has not been officially approved yet. Diversity in therapeutic regimen is another limitation to its use in Aids patients. The present study has reviewed the main HIV-related endocrine-metabolic disorders as well as the use of hrGH in such conditions.

  7. Immunosuppressive activity enhances central carbon metabolism and bioenergetics in myeloid-derived suppressor cells in vitro models

    Directory of Open Access Journals (Sweden)

    Hammami Ines

    2012-07-01

    Full Text Available Abstract Background The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs. Incubating bone marrow (BM precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-6 (IL-6 generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. Results Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK was activated during MDSC maturation in GM-CSF and IL-6–treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was

  8. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  9. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  10. Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism

    Science.gov (United States)

    Yang, Wei; Bai, Yibing; Xiong, Ying; Zhang, Jin; Chen, Shuokai; Zheng, Xiaojun; Meng, Xiangbo; Li, Lunyi; Wang, Jing; Xu, Chenguang; Yan, Chengsong; Wang, Lijuan; Chang, Catharine C. Y.; Chang, Ta-Yuan; Zhang, Ti; Zhou, Penghui; Song, Bao-Liang; Liu, Wanli; Sun, Shao-cong; Liu, Xiaolong; Li, Bo-liang; Xu, Chenqi

    2016-01-01

    CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy. PMID:26982734

  11. The role of intracellular thyroid hormone metabolism in innate immune cells

    NARCIS (Netherlands)

    van der Spek, A.H.

    2018-01-01

    Innate immune cells have recently been identified as important thyroid hormone target cells. This thesis studies the role of intracellular thyroid hormone metabolism in the function of neutrophils and macrophages, two essential cell types of the innate immune system. Neutrophils, monocytes and

  12. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica.

    Directory of Open Access Journals (Sweden)

    Tamara Kakoschke

    Full Text Available To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.

  13. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  14. Cell-autonomous intracellular androgen receptor signaling drives the growth of human prostate cancer initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; D'Antonio, Jason; Gurel, Bora; Antony, Lizamma; Demarzo, Angelo M; Isaacs, John T

    2010-01-01

    The lethality of prostate cancer is due to the continuous growth of cancer initiating cells (CICs) which are often stimulated by androgen receptor (AR) signaling. However, the underlying molecular mechanism(s) for such AR-mediated growth stimulation are not fully understood. Such mechanisms may involve cancer cell-dependent induction of tumor stromal cells to produce paracrine growth factors or could involve cancer cell autonomous autocrine and/or intracellular AR signaling pathways. We utilized clinical samples, animal models and a series of AR-positive human prostate cancer cell lines to evaluate AR-mediated growth stimulation of prostate CICs. The present studies document that stromal AR expression is not required for prostate cancer growth, since tumor stroma surrounding AR-positive human prostate cancer metastases (N = 127) are characteristically AR-negative. This lack of a requirement for AR expression in tumor stromal cells is also documented by the fact that human AR-positive prostate cancer cells grow equally well when xenografted in wild-type versus AR-null nude mice. AR-dependent growth stimulation was documented to involve secretion, extracellular binding, and signaling by autocrine growth factors. Orthotopic xenograft animal studies documented that the cellautonomous autocrine growth factors which stimulate prostate CIC growth are not the andromedins secreted by normal prostate stromal cells. Such cell autonomous and extracellular autocrine signaling is necessary but not sufficient for the optimal growth of prostate CICs based upon the response to anti-androgen plus/or minus preconditioned media. AR-induced growth stimulation of human prostate CICs requires AR-dependent intracellular pathways. The identification of such AR-dependent intracellular pathways offers new leads for the development of effective therapies for prostate cancer. (c) 2009 Wiley-Liss, Inc.

  15. Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers.

    Science.gov (United States)

    Kang, H J; Lee, I K; Piao, M Y; Gu, M J; Yun, C H; Kim, H J; Kim, K H; Baik, M

    2016-03-01

    Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1) was for four weeks from March 7 to April 3 and period 2 (P2) was four weeks from April 4 to May 1. Mean (8.7°C) and minimum (1.0°C) indoor ambient temperatures during P1 were lower (pambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

  16. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Directory of Open Access Journals (Sweden)

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  17. Metabolism, growth, and the energetic definition of fitness: a quantitative genetic study in the land snail Cornu aspersum.

    Science.gov (United States)

    Bruning, Andrea; Gaitán-Espitia, Juan Diego; González, Avia; Bartheld, José Luis; Nespolo, Roberto F

    2013-01-01

    Life-history evolution-the way organisms allocate time and energy to reproduction, survival, and growth-is a central question in evolutionary biology. One of its main tenets, the allocation principle, predicts that selection will reduce energy costs of maintenance in order to divert energy to survival and reproduction. The empirical support for this principle is the existence of a negative relationship between fitness and metabolic rate, which has been observed in some ectotherms. In juvenile animals, a key function affecting fitness is growth rate, since fast growers will reproduce sooner and maximize survival. In principle, design constraints dictate that growth rate cannot be reduced without affecting maintenance costs. Hence, it is predicted that juveniles will show a positive relationship between fitness (growth rate) and metabolic rate, contrarily to what has been observed in adults. Here we explored this problem using land snails (Cornu aspersum). We estimated the additive genetic variance-covariance matrix for growth and standard metabolic rate (SMR; rate of CO2 production) using 34 half-sibling families. We measured eggs, hatchlings, and juveniles in 208 offspring that were isolated right after egg laying (i.e., minimizing maternal and common environmental variance). Surprisingly, our results showed that additive genetic effects (narrow-sense heritabilities, h(2)) and additive genetic correlations (rG) were small and nonsignificant. However, the nonadditive proportion of phenotypic variances and correlations (rC) were unexpectedly large and significant. In fact, nonadditive genetic effects were positive for growth rate and SMR ([Formula: see text]; [Formula: see text]), supporting the idea that fitness (growth rate) cannot be maximized without incurring maintenance costs. Large nonadditive genetic variances could result as a consequence of selection eroding the additive genetic component, which suggests that past selection could have produced nonadditive

  18. Metabolic Analysis of Medicinal Dendrobium officinale and Dendrobium huoshanense during Different Growth Years.

    Directory of Open Access Journals (Sweden)

    Qing Jin

    Full Text Available Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS. First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA and orthogonal partial least squares discriminant analysis (OPLS-DA. Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05 to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients and metabolic pathways.

  19. Tumor macroenvironment and metabolism.

    Science.gov (United States)

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Effect of exogenous electron shuttles on growth and fermentative metabolism in Clostridium sp. BC1

    Energy Technology Data Exchange (ETDEWEB)

    Yarlagadda V. N.; Francis A.; Gupta, A.; Dodge, C. J.

    2012-03-01

    In this study, the influence exogenous electron shuttles on the growth and glucose fermentative metabolism of Clostridium sp. BC1 was investigated. Bicarbonate addition to mineral salts (MS) medium accelerated growth and glucose fermentation which shifted acidogenesis (acetic- and butyric-acids) towards solventogenesis (ethanol and butanol). Addition of ferrihydrite, anthraquinone disulfonate, and nicotinamide adenine dinucleotide in bicarbonate to growing culture showed no significant influence on fermentative metabolism. In contrast, methyl viologen (MV) enhanced ethanol- and butanol-production by 28- and 12-fold, respectively with concomitant decrease in hydrogen, acetic- and butyric-acids compared to MS medium. The results show that MV addition affects hydrogenase activity with a significant reduction in hydrogen production and a shift in the direction of electron flow towards enhanced production of ethanol and butanol.