WorldWideScience

Sample records for cell membrane potentials

  1. Indole prevents Escherichia coli cell division by modulating membrane potential

    Science.gov (United States)

    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane. PMID:22387460

  2. Indole prevents Escherichia coli cell division by modulating membrane potential

    OpenAIRE

    Chimerel, Catalin; Field, Christopher M.; Pi?ero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3?5?mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological proces...

  3. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be

  4. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Science.gov (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  5. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out...

  6. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  7. Hamster oocyte membrane potential and ion permeability vary with preantral cumulus cell attachment and developmental stage

    Directory of Open Access Journals (Sweden)

    Miller Raymond L

    2001-10-01

    Full Text Available Abstract Background In vitro maturation of mammalian oocytes is an area of great interest due to its potential application in the treatment of infertility. The morphological and physiological changes that occur during oocyte development are poorly understood, and further studies are needed investigating the physiological changes associated with oocyte maturation. In this study we evaluated the membrane potential and the sodium/potassium permeability ratio of oocytes acutely isolated, and cumulus-oocyte complexes in metaphase II and preantral follicle stages. Results Intracellular electrical recordings revealed that cumulus-enclosed oocytes have a membrane potential significantly more negative at the preantral follicle stage than at metaphase II stage (-38.4 versus -19.7 mV, p Conclusions These data show a change in the membrane potential and Na+/K+ permeability ratio during ooycte development from the preantral stage oocyte to the metaphase II stage. We have also demonstrated a change in the preantral oocyte membrane potential when surrounding cumulus cells are removed; either due to membrane changes or loss of cumulus cells.

  8. Sweetness-induced activation of membrane dipole potential in STC-1 taste cells.

    Science.gov (United States)

    Chen, Li-Chun; Xie, Ning-Ning; Deng, Shao-Ping

    2016-12-01

    The biological functions of cell membranes strongly influence the binding and transport of molecular species. We developed STC-1 cell line stably expressing the sweet taste receptor (T1R2/T1R3), and explored the possible correlation between sweeteners and membrane dipole potential of STC-1 cells. In this study, sweetener-induced dipole potential activation was elucidated using a fluorescence-based measurement technique, by monitoring the voltage sensitive probe Di-8-ANEPPS using a dual wavelength ratiometric approach. It indicated that the presence of sweeteners resulted in cell membrane dipole potential change, and interaction of artificial sweeteners with taste cells resulted in a greater reduction in potential compared with natural sweeteners. Our work presents a newly developed approach using a fluorescence-based measurement technique to study sweetener-induced dipole potential activation of STC-1 cells. This new approach could be used as a complementary tool to study the function of sweet taste receptors or other GPCRs and helps to understand the basis sweetness mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina.

    Science.gov (United States)

    Shimmen, Teruo; Wakabayashi, Akiko

    2008-10-01

    Internodal cells of Chara corallina form alkaline bands on their surface upon illumination via photosynthesis. In the present study, the effect of KCl on alkaline band formation was analyzed. When the extracellular KCl concentration was increased, alkaline band formation was extensively inhibited. Electrophysiological analysis unequivocally showed the need for inner negative membrane potential for alkaline band formation.

  10. Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential

    Science.gov (United States)

    DeNicola, Milena; Bellucci, Stefano; Traversa, Enrico; DeBellis, Giovanni; Micciulla, Federico; Ghibelli, Lina

    2008-11-01

    Carbon nanotubes (CNT) are one of the most novel attractive materials in nanotechnology for their potential multiple applications, including in the biomedical fields. The biocompatibility and toxicity of these novel nanomaterials are still largely unknown and a systematic study on biological interference is essential. We present a toxicological assessment of different types of CNT on the human tumor lymphocytic Jurkat cells. The carbon nanomaterials examined differ in preparation, size, contaminants and morphology: (1) CNT composed of MWCNT+SWCNT, with no metal contaminants; (2) MWCNT and (3) SWCNT, both with metal contaminants; (4) carbon black as control. The results indicate that CNT exert a dose- and time-dependent cytotoxic effect on Jurkat cells, inducing apoptotic cell death, accelerating the transition to secondary necrosis and increasing the extent of apoptosis induced by damaging agents; interestingly, CNT induce a plasma membrane hyperpolarization. These alterations are produced by all types of CNT, but contaminants and/or the size modulate the extent of such effects. Thus CNT deeply affect cell behavior, suggesting that they might play a role in inflammation, and recommending greater attention in terms of evaluation of exposure risks.

  11. Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential

    International Nuclear Information System (INIS)

    De Nicola, Milena; Ghibelli, Lina; Bellucci, Stefano; Bellis, Giovanni De; Micciulla, Federico; Traversa, Enrico

    2008-01-01

    Carbon nanotubes (CNT) are one of the most novel attractive materials in nanotechnology for their potential multiple applications, including in the biomedical fields. The biocompatibility and toxicity of these novel nanomaterials are still largely unknown and a systematic study on biological interference is essential. We present a toxicological assessment of different types of CNT on the human tumor lymphocytic Jurkat cells. The carbon nanomaterials examined differ in preparation, size, contaminants and morphology: (1) CNT composed of MWCNT+SWCNT, with no metal contaminants; (2) MWCNT and (3) SWCNT, both with metal contaminants; (4) carbon black as control. The results indicate that CNT exert a dose- and time-dependent cytotoxic effect on Jurkat cells, inducing apoptotic cell death, accelerating the transition to secondary necrosis and increasing the extent of apoptosis induced by damaging agents; interestingly, CNT induce a plasma membrane hyperpolarization. These alterations are produced by all types of CNT, but contaminants and/or the size modulate the extent of such effects. Thus CNT deeply affect cell behavior, suggesting that they might play a role in inflammation, and recommending greater attention in terms of evaluation of exposure risks.

  12. Single-cell-based evaluation of sperm progressive motility via fluorescent assessment of mitochondria membrane potential.

    Science.gov (United States)

    Moscatelli, Natalina; Spagnolo, Barbara; Pisanello, Marco; Lemma, Enrico Domenico; De Vittorio, Massimo; Zara, Vincenzo; Pisanello, Ferruccio; Ferramosca, Alessandra

    2017-12-20

    Sperm cells progressive motility is the most important parameter involved in the fertilization process. Sperm middle piece contains mitochondria, which play a critical role in energy production and whose proper operation ensures the reproductive success. Notably, sperm progressive motility is strictly related to mitochondrial membrane potential (MMP) and consequently to mitochondrial functionality. Although previous studies presented an evaluation of mitochondrial function through MMP assessment in entire sperm cells samples, a quantitative approach at single-cell level could provide more insights in the analysis of semen quality. Here we combine laser scanning confocal microscopy and functional fluorescent staining of mitochondrial membrane to assess MMP distribution among isolated spermatozoa. We found that the sperm fluorescence value increases as a function of growing progressive motility and that such fluorescence is influenced by MMP disruptors, potentially allowing for the discrimination of different quality classes of sperm cells in heterogeneous populations.

  13. The generation of resting membrane potentials in an inner ear hair cell system.

    Science.gov (United States)

    Bracho, H; Budelli, R

    1978-01-01

    1. The macula sacculi in the mudpuppy is an inner ear sensory area accessible for intracellular recordings in vitro and in vivo. 2. The resting potentials recorded in vitro can be explained by the electrodiffusion theory assuming a uniform ionic selective in the membranes of the neuroepithelial cells. 3. The resting potentials recorded in vivo are significantly larger than predicted by the electrodiffusion theory, probably because of an electrogenic metabolic process present in the neuroepithelial cells. 4. An equivalent circuit is proposed to explain the resting electrogenesis in the neuroepithelial cells present in the sensory area. Images Plate 1 PMID:702400

  14. SIMULATION OF THE LIGHT-INDUCED OSCILLATIONS OF THE MEMBRANE-POTENTIAL IN POTAMOGETON LEAF-CELLS

    NARCIS (Netherlands)

    MIEDEMA, H; PRINS, HBA

    An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is

  15. [Modelling of pattern formation and oscillations in pH and transmembrane potential near the cell membrane of Chara corallina].

    Science.gov (United States)

    Pliusnina, T Iu; Lavrova, A I; Riznichenko, G Iu; Rubin, A B

    2005-01-01

    A mathematical model of potencial-dependent proton transfer across the membrane of Chara corallina cells is considered. To construct the model, partial differential equations describing the system dynamics in time and in space were used. The variables of the model are the proton concentration and membrane potential. The model describes the experimentally observed inhomogeneous distribution of transmembrane potential and pH along the membrane and oscillations of the potential and pH in time. A mechanism of the distribution of pH and membrane potential along the Chara corallina cell is suggested.

  16. Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application

    Directory of Open Access Journals (Sweden)

    Insausti CL

    2014-03-01

    Full Text Available Carmen L Insausti,1 Miguel Blanquer,1 Ana M García-Hernández,1 Gregorio Castellanos,2 José M Moraleda11Unidad de Trasplante Hematopoyético y Terapia Celular, 2Servicio de Cirugía, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Campus Mare Nostrum, Universidad de Murcia, El Palmar, Murcia, SpainAbstract: Epithelial and mesenchymal cells isolated from the amniotic membrane (AM possess stem cell characteristics, differentiation potential toward lineages of different germ layers, and immunomodulatory properties. While their expansion and differentiation potential have been well studied and characterized, knowledge about their immunomodulatory properties and the mechanisms involved is still incomplete. These mechanisms have been evaluated on various target cells of the innate and the adaptive system and in animal models of different inflammatory diseases. Some results have evidenced that the immunomodulatory effect of AM-derived cells is dependent on cell-cell contact, but many of them have demonstrated that these properties are mediated through the secretion of suppressive molecules. In this review, we present an update on the described immunomodulatory properties of the derived amniotic cells and some of the proposed involved mechanisms. Furthermore, we describe some assays in animal models of different inflammatory diseases which reveal the potential use of these cells to treat such diseases.Keywords: epithelial cells, mesenchymal cells, cell therapy, immunomodulation

  17. Effect of cadmium and lead on the membrane potential and photoelectric reaction of Nitellopsis obtusa cells.

    Science.gov (United States)

    Kurtyka, Renata; Burdach, Zbigniew; Karcz, Waldemar

    2011-03-01

    The effects of Cd and Pb on membrane potential (E(m)) and photoelectric reaction of Nitellopsis obtusa cells were investigated. It was found that Cd and Pb at 1.0 mM caused a depolarization of the E(m), whereas both metals at lower concentrations changed the E(m) in a different way. Pb at 0.1 mM and 0.01 mM hyperpolarized the E(m), whereas Cd at the same concentrations depolarized and did not change the E(m), respectively. In the presence of 0.01 mM Pb, the light-induced hyperpolarization of the E(m) was by 18% higher as compared to the control, whereas at 1.0 mM Pb it was by 40% lower. Pb at 0.1 mM and Cd at 0.01 mM or 5 × 0.01 mM did not change the light-induced membrane hyperpolarization. However, in the presence of Cd at 0.1 mM and 1.0 mM this hyperpolarization was 2-fold lower or was completely abolished, respectively. These results suggest that at high Cd and Pb concentrations both depolarization of the E(m) and decrease of light-induced membrane hyperpolarization in Nitellopsis obtusa cells are probably due to inhibition of the plasma membrane H(+)-ATPase activity, whereas both metals at lower concentrations differ in mechanism of membrane potential changes.

  18. Mesenchymal stem cells with osteogenic potential in human maxillary sinus membrane: an in vitro study.

    Science.gov (United States)

    Berbéri, Antoine; Al-Nemer, Fatima; Hamade, Eva; Noujeim, Ziad; Badran, Bassam; Zibara, Kazem

    2017-06-01

    The aim of our study is to prove and validate the existence of an osteogenic progenitor cell population within the human maxillary Schneiderian sinus membrane (hMSSM) and to demonstrate their potential for bone formation. Ten hMSSM samples of approximately 2 × 2 cm were obtained during a surgical nasal approach for treatment of chronic rhinosinusitis and were retained for this study. The derived cells were isolated, cultured, and assayed at passage 3 for their osteogenic potential using the expression of Alkaline phosphatase, alizarin red and Von Kossa staining, flow cytometry, and quantitative real-time polymerase chain reaction. hMSSM-derived cells were isolated, showed homogenous spindle-shaped fibroblast-like morphology, characteristic of mesenchymal progenitor cells (MPCs), and demonstrated very high expression of MPC markers such as STRO-1, CD44, CD90, CD105, and CD73 in all tested passages. In addition, von Kossa and Alizarin red staining showed significant mineralization, a typical feature of osteoblasts. Moreover, alkaline phosphatase (ALP) activity was significantly increased at days 7, 14, 21, and 28 of culture in hMSSM-derived cells grown in osteogenic medium, in comparison to controls. Furthermore, osteogenic differentiation significantly upregulated the transcriptional expression of osteogenic markers such as ALP, Runt-related transcription factor 2 (Runx-2), bone morphogenetic protein (BMP)-2, osteocalcin (OCN), osteonectin (ON), and osteopontin (OPN), confirming that hMSSM-derived cells are of osteoprogenitor origin. Finally, hMSSM-derived cells were also capable of producing OPN proteins upon culturing in an osteogenic medium. Our data showed that hMSSM holds mesenchymal osteoprogenitor cells capable of differentiating to the osteogenic lineage. hMSSM contains potentially multipotent postnatal stem cells providing a promising clinical application in preimplant and implant therapy.

  19. Sensory transduction at the frog semicircular canal: how hair cell membrane potential controls junctional transmission

    Science.gov (United States)

    Martini, Marta; Canella, Rita; Rubbini, Gemma; Fesce, Riccardo; Rossi, Maria Lisa

    2015-01-01

    At the frog semicircular canals, the afferent fibers display high spontaneous activity (mEPSPs), due to transmitter release from hair cells. mEPSP and spike frequencies are modulated by stimulation that activates the hair cell receptor conductance. The relation between receptor current and transmitter release cannot be studied at the intact semicircular canal. To circumvent the problem, we combined patch-clamp recordings at the isolated hair cell and electrophysiological recordings at the cytoneural junction in the intact preparation. At isolated hair cells, the K channel blocker tetraethylammonium (TEA) is shown to block a fraction of total voltage-dependent K-conductance (IKD) that depends on TEA concentration but not on membrane potential (Vm). Considering the bioelectric properties of the hair cell, as previously characterized by this lab, a fixed fractional block of IKD is shown to induce a relatively fixed shift in Vm, provided it lies in the range −30 to −10 mV. The same concentrations of TEA were applied to the intact labyrinth while recording from single afferent fibers of the posterior canal, at rest and during mechanical stimulation. At the peak of stimulation, TEA produced increases in mEPSP rate that were linearly related to the shifts produced by the same TEA concentrations (0.1–3 mM) in hair cell Vm (0.7–5 mV), with a slope of 29.8 Hz/mV. The membrane potential of the hair cell is not linearly related to receptor conductance, so that the slope of quantal release vs. receptor conductance depends on the prevailing Vm (19.8 Hz/nS at −20 mV; 11 Hz/nS at −10 mV). Changes in mEPSP peak size were negligible at rest as well as during stimulation. Since ample spatial summation of mEPSPs occurs at the afferent terminal and threshold-governed spike firing is intrinsically nonlinear, the observed increases in mEPSP frequency, though not very large, may suffice to trigger afferent spike discharge. PMID:26157360

  20. Enhancement of membrane stability on magnetic responsive hydrogel microcapsules for potential on-demand cell separation.

    Science.gov (United States)

    Wen, Huiyun; Gao, Ting; Fu, Zizhen; Liu, Xing; Xu, Jiatong; He, Yishu; Xu, Ningxia; Jiao, Ping; Fan, An; Huang, Saipeng; Xue, Weiming

    2017-02-10

    It is of high interest to obtain hydrogel membranes with optimum mechanical stability, which is a prerequisite to the successful fabrication of hydrogel microcapsules for cell separation. In this work, we developed magnetic responsive alginate/chitosan (MAC) hydrogel microcapsules by co-encapsulation of microbial cells and superparamagnetic iron oxide nanoparticles (SPIONs) reacting under a high voltage electrostatic field. We investigated the influence of the molecular weight of chitosan, microcapsules size, and membrane crosslinking time on the swelling behavior of microcapsules as an indicator of stability of the membranes. The results demonstrated that the suitable membrane stability conditions were obtained by a crosslinking of the microspheres with a chitosan presenting a molecular weight of 70kDa for 15-30min resulting in a membrane thickness of approximately 30mm. Considering the need of maintaining the cells inside the microcapsules, fermentation at 37°C and at neutral pH was favorable. Moreover, the MAC microcapsules sizing between 300 and 380μm were suitable for immobilizing Bacillus licheniformis in a 286h multiple fed-bath operation with no leakage of the SPIONs and cells. Overall, the results of this study provided strategies for the rational design of magnetic microcapsules exhibiting suitable mechanical stable membranes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Amnion and Chorion Membranes: Potential Stem Cell Reservoir with Wide Applications in Periodontics

    Directory of Open Access Journals (Sweden)

    Akanksha Gupta

    2015-01-01

    Full Text Available The periodontal therapy usually aims at elimination of disease causing bacteria and resolution of inflammation. It involves either resective or regenerative surgery to resolve the inflammation associated defects. Over the years, several methods have been used for achievement of periodontal regeneration. One of the oldest biomaterials used for scaffolds is the fetal membrane. The amniotic membranes of developing embryo, that is, amnion (innermost lining and chorion (a layer next to it, have the properties with significant potential uses in dentistry. This paper reviews the properties, mechanism of action, and various applications of these placental membranes in general and specifically in Periodontics.

  2. Cell Membrane Coating Nanotechnology.

    Science.gov (United States)

    Fang, Ronnie H; Kroll, Ashley V; Gao, Weiwei; Zhang, Liangfang

    2018-03-27

    Nanoparticle-based therapeutic, prevention, and detection modalities have the potential to greatly impact how diseases are diagnosed and managed in the clinic. With the wide range of nanomaterials available, the rational design of nanocarriers on an application-specific basis has become increasingly commonplace. Here, a comprehensive overview is provided on an emerging platform: cell-membrane-coating nanotechnology. As a fundamental unit of biology, cells carry out a wide range of functions, including the remarkable ability to interface and interact with their surrounding environment. Instead of attempting to replicate such functions via synthetic techniques, researchers are now directly leveraging naturally derived cell membranes as a means of bestowing nanoparticles with enhanced biointerfacing capabilities. This top-down technique is facile, highly generalizable, and has the potential to greatly augment existing nanocarriers. Further, the introduction of a natural membrane substrate onto nanoparticles surfaces has enabled additional applications beyond those traditionally associated with nanomedicine. Despite its relative youth, there exists an impressive body of literature on cell membrane coating, which is covered here in detail. Overall, there is still significant room for development, as researchers continue to refine existing workflows while finding new and exciting applications that can take advantage of this developing technology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Role of the Na+/K+-ATPase in regulating the membrane potential in rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Friis, U G; Praetorius, Birger Hans; Knudsen, T

    1997-01-01

    of Sylgard-coated patch pipettes (3-6 M[omega]). High-resolution membrane currents were recorded with an EPC-9 patch-clamp amplifier controlled by the 'E9SCREEN' software. In addition, a charting programme on another computer synchronously recorded at low resolution (2 Hz) membrane potential and holding...... current (low-pass filtered at 500 Hz). 3. Na+/K+-ATPase activity was measured as the ouabain-sensitive change in the zero-current potential. The zero-current potential in rat peritoneal mast cells measured 2 min after obtaining whole-cell configuration amounted to 1.7 +/- 2.5 mV (n = 21). Ouabain (5 m...... preincubated in nominal calcium-free external solution for 12 +/- 1.6 min before whole-cell configuration, the membrane potential amounted to -53.7 +/- 9.8 mV (n = 8). A subsequent superfusion with ouabain (5 mM) depolarized the membrane potential (ouabain-sensitive hyperpolarization (delta mV): 23.0 +/- 8.4 m...

  4. Streaming potential investigations of polymer membranes developed for direct methanol fuel cell application

    Czech Academy of Sciences Publication Activity Database

    Richau, K.; Mohr, R.; Kůdela, Vlastimil; Schauer, Jan

    2003-01-01

    Roč. 14, - (2003), s. 201-204 ISSN 0915-860X. [International Conference on Ion Exchange. Kanazawa, 14.07.2003-18.07.2003] R&D Projects: GA MŠk ME 366 Institutional research plan: CEZ:AV0Z4050913 Keywords : streaming potential * ion-exchange membranes * specific conductivity Subject RIV: CG - Electrochemistry

  5. 60 Hz electric field changes the membrane potential during burst phase in pancreatic β-cells: in silico analysis.

    Science.gov (United States)

    Neves, Gesilda F; Silva, José R F; Moraes, Renato B; Fernandes, Thiago S; Tenorio, Bruno M; Nogueira, Romildo A

    2014-06-01

    The production, distribution and use of electricity can generate low frequency electric and magnetic fields (50-60 Hz). Considering that some studies showed adverse effects on pancreatic β-cells exposed to these fields; the present study aimed to analyze the effects of 60 Hz electric fields on membrane potential during the silent and burst phases in pancreatic β-cells using a mathematical model. Sinusoidal 60 Hz electric fields with amplitude ranging from 0.5 to 4 mV were applied on pancreatic β-cells model. The sinusoidal electric field changed burst duration, inter-burst intervals (silent phase) and spike sizes. The parameters above presented dose-dependent response with the voltage amplitude applied. In conclusion, theoretical analyses showed that a 60 Hz electric field with low amplitudes changes the membrane potential in pancreatic β-cells.

  6. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  7. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry.

    Science.gov (United States)

    Logan, Angela; Pell, Victoria R; Shaffer, Karl J; Evans, Cameron; Stanley, Nathan J; Robb, Ellen L; Prime, Tracy A; Chouchani, Edward T; Cochemé, Helena M; Fearnley, Ian M; Vidoni, Sara; James, Andrew M; Porteous, Carolyn M; Partridge, Linda; Krieg, Thomas; Smith, Robin A J; Murphy, Michael P

    2016-02-09

    The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by "click" chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ion channel regulation of the dynamical instability of the resting membrane potential in saccular hair cells of the green frog (Rana esculenta)

    NARCIS (Netherlands)

    Jorgensen, F; Kroese, ABA

    2005-01-01

    Aims: We investigated the ion channel regulation of the resting membrane potential of hair cells with the aim to determine if the resting membrane potential is poised close to instability and thereby a potential cause of the spontaneous afferent spike activity. Methods: The ionic mechanism and the

  9. Hyperthermic potentiation of cisplatin by magnetic nanoparticle heaters is correlated with an increase in cell membrane fluidity

    Science.gov (United States)

    Alvarez-Berríos, Merlis P; Castillo, Amalchi; Mendéz, Janet; Soto, Orlando; Rinaldi, Carlos; Torres-Lugo, Madeline

    2013-01-01

    be a factor contributing to the increase of cDDP uptake in magnetic fluid hyperthermia-treated cells. Overall, our data provide convincing evidence that cell membrane permeability induced by magnetic fluid hyperthermia is significantly greater than that induced by hot water hyperthermia under similar temperature conditions, and is at least one of the mechanisms responsible for potentiation of cDDP by magnetic fluid hyperthermia in Caco-2 cells. PMID:23493492

  10. Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling.

    Science.gov (United States)

    Silver, Kristopher; Littlejohn, Alaina; Thomas, Laurel; Marsh, Elizabeth; Lillich, James D

    2015-12-15

    Clinical use of non-steroidal anti-inflammatory drugs (NSAIDs) is well known to cause gastrointestinal ulcer formation via several mechanisms that include inhibiting epithelial cell migration and mucosal restitution. The drug-affected signaling pathways that contribute to inhibition of migration by NSAIDs are poorly understood, though previous studies have shown that NSAIDs depolarize membrane potential and suppress expression of calpain proteases and voltage-gated potassium (Kv) channel subunits. Kv channels play significant roles in cell migration and are targets of NSAID activity in white blood cells, but the specific functional effects of NSAID-induced changes in Kv channel expression, particularly on cell migration, are unknown in intestinal epithelial cells. Accordingly, we investigated the effects of NSAIDs on expression of Kv1.3, 1.4, and 1.6 in vitro and/or in vivo and evaluated the functional significance of loss of Kv subunit expression. Indomethacin or NS-398 reduced total and plasma membrane protein expression of Kv1.3 in cultured intestinal epithelial cells (IEC-6). Additionally, depolarization of membrane potential with margatoxin (MgTx), 40mM K(+), or silencing of Kv channel expression with siRNA significantly reduced IEC-6 cell migration and disrupted calpain activity. Furthermore, in rat small intestinal epithelia, indomethacin and NS-398 had significant, yet distinct, effects on gene and protein expression of Kv1.3, 1.4, or 1.6, suggesting that these may be clinically relevant targets. Our results show that inhibition of epithelial cell migration by NSAIDs is associated with decreased expression of Kv channel subunits, and provide a mechanism through which NSAIDs inhibit cell migration and may contribute to NSAID-induced gastrointestinal (GI) toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Nonlinear dynamics of the membrane potential of a bursting pacemaker cell

    Science.gov (United States)

    González-Miranda, J. M.

    2012-03-01

    This article presents the results of an exploration of one two-parameter space of the Chay model of a cell excitable membrane. There are two main regions: a peripheral one, where the system dynamics will relax to an equilibrium point, and a central one where the expected dynamics is oscillatory. In the second region, we observe a variety of self-sustained oscillations including periodic oscillation, as well as bursting dynamics of different types. These oscillatory dynamics can be observed as periodic oscillations with different periodicities, and in some cases, as chaotic dynamics. These results, when displayed in bifurcation diagrams, result in complex bifurcation structures, which have been suggested as relevant to understand biological cell signaling.

  12. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  13. Amniotic membrane-derived mesenchymal cells and their conditioned media: potential candidates for uterine regenerative therapy in the horse.

    Directory of Open Access Journals (Sweden)

    Bruna Corradetti

    Full Text Available Amniotic membrane-derived mesenchymal cells (AMCs are considered suitable candidates for a variety of cell-based applications. In view of cell therapy application in uterine pathologies, we studied AMCs in comparison to cells isolated from the endometrium of mares at diestrus (EDCs being the endometrium during diestrus and early pregnancy similar from a hormonal standpoint. In particular, we demonstrated that amnion tissue fragments (AM shares the same transcriptional profile with endometrial tissue fragments (ED, expressing genes involved in early pregnancy (AbdB-like Hoxa genes, pre-implantation conceptus development (Erα, PR, PGRMC1 and mPR and their regulators (Wnt7a, Wnt4a. Soon after the isolation, only AMCs express Wnt4a and Wnt7a. Interestingly, the expression levels of prostaglandin-endoperoxide synthase 2 (PTGS2 were found greater in AM and AMCs than their endometrial counterparts thus confirming the role of AMCs as mediators of inflammation. The expression of nuclear progesterone receptor (PR, membrane-bound intracellular progesterone receptor component 1 (PGRMC1 and membrane-bound intracellular progesterone receptor (mPR, known to lead to improved endometrial receptivity, was maintained in AMCs over 5 passages in vitro when the media was supplemented with progesterone. To further explore the potential of AMCs in endometrial regeneration, their capacity to support resident cell proliferation was assessed by co-culturing them with EDCs in a transwell system or culturing in the presence of AMC-conditioned medium (AMC-CM. A significant increase in EDC proliferation rate exhibited the crucial role of soluble factors as mediators of stem cells action. The present investigation revealed that AMCs, as well as their derived conditioned media, have the potential to improve endometrial cell replenishment when low proliferation is associated to pregnancy failure. These findings make AMCs suitable candidates for the treatment of endometrosis in

  14. Potassium currents induced by hydrostatic pressure modulate membrane potential and transmitter release in vestibular type II hair cells.

    Science.gov (United States)

    Duong Dinh, Thien An; Haasler, Thorsten; Homann, Georg; Jüngling, Eberhard; Westhofen, Martin; Lückhoff, Andreas

    2009-06-01

    Vestibular type II hair cells respond to increases in the hydrostatic pressure with pressure-dependent K(+) currents. We examined whether such currents may modulate transmitter release (assessed as membrane capacitance increments) by altering membrane potentials and voltage-gated Ca(2+) currents. Capacitance increments were dependent on voltage-gated Ca(2+) influx. Stimulating currents (0.7 nA) in current clamp induced depolarisations that were more negative by 8.7 +/- 2.1 mV when the bath height was elevated from 0.2 to 0.5 cm. In voltage clamp, protocols were used that simulated the time course of the membrane potential in current clamp at either low (control) or high hydrostatic pressure (high bath). The low bath protocol induced significantly larger Ca(2+) currents and increases in capacitance than the high bath protocol. We conclude that pressure-dependent K(+) currents may alter the voltage response of vestibular hair cells to an extent critical for Ca(2+) currents and transmitter release. This mechanism may contribute to vestibular dysfunction in Meniere's disease.

  15. Cell-Based Phenotyping Reveals QTL for Membrane Potential Maintenance Associated with Hypoxia and Salinity Stress Tolerance in Barley

    Directory of Open Access Journals (Sweden)

    Muhammad B. Gill

    2017-11-01

    Full Text Available Waterlogging and salinity are two major abiotic stresses that hamper crop production world-wide resulting in multibillion losses. Plant abiotic stress tolerance is conferred by many interrelated mechanisms. Amongst these, the cell’s ability to maintain membrane potential (MP is considered to be amongst the most crucial traits, a positive relationship between the ability of plants to maintain highly negative MP and its tolerance to both salinity and waterlogging stress. However, no attempts have been made to identify quantitative trait loci (QTL conferring this trait. In this study, the microelectrode MIFE technique was used to measure the plasma membrane potential of epidermal root cells of 150 double haploid (DH lines of barley (Hordeum vulgare L. from a cross between a Chinese landrace TX9425 and Japanese malting cultivar Naso Nijo under hypoxic conditions. A major QTL for the MP in the epidermal root cells in hypoxia-exposed plants was identified. This QTL was located on 2H, at a similar position to the QTL for waterlogging and salinity tolerance reported in previous studies. Further analysis confirmed that MP showed a significant contribution to both waterlogging and salinity tolerance. The fact that the QTL for MP was controlled by a single major QTL illustrates the power of the single-cell phenotyping approach and opens prospects for fine mapping this QTL and thus being more effective in marker assisted selection.

  16. Membrane potential of cells and its regulation during aging. 1. Report: the role of energetic metabolism and plasma membrane phospholipid contents.

    Science.gov (United States)

    Frolkis, V V; Tanin, S A; Gorban, E N; Bogatskaya, L N; Sabko, V E

    1987-01-01

    Age-dependent changes in the polarization of the plasma membranes (PM) of various cell types and the mechanisms responsible for its regulation were studied in the experiments on the adult (6-8 months) and old (28-32 months) Wistar male rats. The relationship was found between the specificity of cellular function and the pattern of changes in resting potential (RP) and action potential (AP). In senility, changes occur in the ratio of different pathways of energy provision of the ionic transport: the contribution made by enzymic reactions to the mechanism of maintenance of the PM polarization level is diminished. Changes in the PM phospholipid composition influences considerably the character of the PM electric reactions in aging. An anti-oxidant, dibunol (butilated hydroxytoluene, BHT) has appeared to restore many reactions of the cellular PM in the old animals.

  17. Aging Yeast Cells Undergo a Sharp Entry into Senescence Unrelated to the Loss of Mitochondrial Membrane Potential

    Directory of Open Access Journals (Sweden)

    Steffen Fehrmann

    2013-12-01

    Full Text Available In budding yeast, a mother cell can produce a finite number of daughter cells before it stops dividing and dies. Such entry into senescence is thought to result from a progressive decline in physiological function, including a loss of mitochondrial membrane potential (ΔΨ. Here, we developed a microfluidic device to monitor the dynamics of cell division and ΔΨ in real time at single-cell resolution. We show that cells do not enter senescence gradually but rather undergo an abrupt transition to a slowly dividing state. Moreover, we demonstrate that the decline in ΔΨ, which is observed only in a fraction of cells, is not responsible for entry into senescence. Rather, the loss of ΔΨ is an age-independent and heritable process that leads to clonal senescence and is therefore incompatible with daughter cell rejuvenation. These results emphasize the importance of quantitative single-cell measurements to decipher the causes of cellular aging.

  18. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy.

    Science.gov (United States)

    Kim, Eun Young; Lee, Kyung-Bon; Kim, Min Kyu

    2014-03-01

    The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

  19. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells.

    Science.gov (United States)

    Lorent, Joseph H; Quetin-Leclercq, Joëlle; Mingeot-Leclercq, Marie-Paule

    2014-11-28

    Saponins, amphiphiles of natural origin with numerous biological activities, are widely used in the cosmetic and pharmaceutical industry. Some saponins exhibit relatively selective cytotoxic effects on cancer cells but the tendency of saponins to induce hemolysis limits their anticancer potential. This review focused on the effects of saponin activity on membranes and consequent implications for red blood and cancer cells. This activity seems to be strongly related to the amphiphilic character of saponins that gives them the ability to self-aggregate and interact with membrane components such as cholesterol and phospholipids. Membrane interactions of saponins with artificial membrane models, red blood and cancer cells are reviewed with respect to their molecular structures. The review considered the mechanisms of these membrane interactions and their consequences including the modulation of membrane dynamics, interaction with membrane rafts, and membrane lysis. We summarized current knowledge concerning the mechanisms involved in the interactions of saponins with membrane lipids and examined the structure activity relationship of saponins regarding hemolysis and cancer cell death. A critical analysis of these findings speculates on their potential to further develop new anticancer compounds.

  20. Membrane Cells for Brine Electrolysis.

    Science.gov (United States)

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  1. Relating membrane potential to impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Eugen Gheorghiu

    2011-12-01

    Full Text Available Non-invasive, label-free assessment of membrane potential of living cells is still a challenging task. The theory linking membrane potential to the low frequency α dispersion exhibited by suspensions of spherical shelled particles (presenting a net charge distribution on the inner side of the shell has been pioneered in our previous studies with emphasis on the permittivity spectra. Whereas α dispersion is related to a rather large variation exhibited by the permittivity spectrum, we report that the related decrement presented by the impedance magnitude spectrum is either extremely small, or occurs (for large cells at very small frequencies (~mHz explaining the lack of experimental bioimpedance data on the matter. We stress that appropriate choice of the parameters (as revealed by the microscopic model may enable access to membrane potential as well as to other relevant parameters when investigating living cells and charged lipid vesicles. We analyse the effect on the low frequency of the permittivity and impedance spectra of: I. Parameters pertaining to cell membrane i.e. (i membrane potential (through the amount of the net charge on the inner side of the membrane, (ii size of the cells/vesicles, (iii conductivity of the membrane; II. Parameters of the extra cellular medium (viscosity and conductivity. The applicability of the study has far reaching implications for basic (life sciences (providing non-invasive access to the dynamics of relevant cell parameters as well as for biosensing applications, e.g. assessment of cytotoxicity of a wide range of stimuli. doi:10.5617/jeb.214 J Electr Bioimp, vol. 2, pp. 93-97, 2011

  2. Plasma-stimulated medium kills TRAIL-resistant human malignant cells by promoting caspase-independent cell death via membrane potential and calcium dynamics modulation.

    Science.gov (United States)

    Tokunaga, Tomohiko; Ando, Takashi; Suzuki-Karasaki, Miki; Ito, Tomohisa; Onoe-Takahashi, Asuka; Ochiai, Toyoko; Soma, Masayoshi; Suzuki-Karasaki, Yoshihiro

    2018-03-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cold plasma-stimulated medium (PSM) have been shown to exhibit tumor-selective cytotoxicity and have emerged as promising new tools for cancer treatment. However, to date, at least to the best of our knowledge, no data are available as to which substance is more potent in killing cancer cells. Thus, in this study, we systematically compared their abilities to kill human malignant cells from different origins. We found that PSM dose-dependently killed TRAIL-resistant melanoma, osteosarcoma and neuroblastoma cells. Moreover, PSM had little cytotoxicity toward osteoblasts. PSM was more potent than TRAIL in inducing caspase-3/7 activation, mitochondrial network aberration and caspase-independent cell death. We also found that PSM was more potent in inducing plasma membrane depolarization (PMD) and disrupting endoplasmic-mitochondrial Ca2+ homeostasis. Moreover, persistent PMD was caused by different membrane-depolarizing agents; the use of the anti-type II diabetes drug, glibenclamide, alone caused mitochondrial fragmentation and enhanced TRAIL-induced Ca2+ modulation, mitochondrial network abnormalities and caspase-independent cell killing. These results demonstrate that PSM has a therapeutic advantage over TRAIL owing to its greater capacity to evoke caspase-independent cell death via mitochondrial network aberration by disrupting membrane potential and Ca2+ homeostasis. These findings may provide a strong rationale for developing PSM as a novel approach for the treatment of TRAIL-resistant malignant cells.

  3. Studies on the biocidal and cell membrane disruption potentials of stem bark extracts of Afzelia africana (Smith

    Directory of Open Access Journals (Sweden)

    DAVID A AKINPELU

    2009-01-01

    Full Text Available We had recently reported antibacterial activity in the crude extract of the stem bark of Afzelia africana (Akinpelu et al., 2008. In this study, we assessed the biocidal and cell membrane disruption potentials of fractions obtained from the crude extract of the plant. The aqueous (AQ and butanol (BL fractions exhibited appreciable antibacterial activities against the test bacteria. The minimum inhibitory concentrations of the AQ and BL fractions ranged between 0.313 and 2.5 mg/ml, while their minimum bactericidal concentrations varied between 0.625 and 5.0 mg/ml. Also, the AQ fraction killed about 95.8% of E. coli cells within 105 min at a concentration of 5 mg/ml, while about 99.1% of Bacillus pumilus cells were killed by this fraction at the same concentration and exposure time. A similar trend was observed for the BL fraction. At a concentration of 5 mg/ml, the butanol fraction leaked 9.8 μg/ml of proteins from E. coli cells within 3 h, while the aqueous fraction leaked 6.5 μg/ml of proteins from the same organisms at the same concentration and exposure time. We propose that the stem bark of Afzelia africana is a potential source of bioactive compounds of importance to the pharmaceutical industry.

  4. Identifying Stem-like Cells Using Mitochondrial Membrane Potential | Center for Cancer Research

    Science.gov (United States)

    Therapies that are based on living cells promise to improve treatments for metastatic cancer and for many degenerative diseases. Lasting treatment of these maladies may require the durable persistence of cells. Long-term engraftment of cells – for months or years – and the generation of large numbers of progeny are characteristics of stem cells. Most approaches to isolate viable hematopoetic stem cells and therapeutically active T cells are based on immunophenotyping using highly multicolored flow cytometry. However, these methods do not directly measure the metabolic features of cells, which are known to be important in predicting cell fate.

  5. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  6. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  7. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  8. Levetiracetam differentially alters CD95 expression of neuronal cells and the mitochondrial membrane potential of immune and neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Susannah K Rogers

    2014-02-01

    Full Text Available Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of Levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side effects. The current study examined the effects of Levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if Levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if Levetiracetam alters the expression of immune receptor-ligand pairs. The results show that Levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that Levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, Levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of Levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action.

  9. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body.

    Science.gov (United States)

    Duchen, M R; Biscoe, T J

    1992-05-01

    1. In the accompanying paper (Duchen & Biscoe, 1992) we have described graded changes in autofluorescence derived from mitochondrial NAD(P)H in type I cells of the carotid body in response to changes of PO2 over a physiologically significant range. These observations suggest that mitochondrial function in these cells is unusually sensitive to oxygen and could play a role in oxygen sensing. We have now explored further the relationships between hypoxia, mitochondrial membrane potential (delta psi m) and [Ca2+]i. 2. The fluorescence of Rhodamine 123 (Rh 123) accumulated within mitochondria is quenched by delta psi m. Mitochondrial depolarization thus increases the fluorescence signal. Blockade of electron transport (CN-, anoxia, rotenone) and uncoupling agents (e.g. carbonyl cyanide p-trifluoromethoxy-phenylhydrazone; FCCP) increased fluorescence by up to 80-120%, while fluorescence was reduced by blockade of the F0 proton channel of the mitochondrial ATP synthase complex (oligomycin). 3. delta psi m depolarized rapidly with anoxia, and was usually completely dissipated within 1-2 min. The depolarization of delta psi m with anoxia (or CN-) and repolarization on reoxygenation both followed a time course well characterized as the sum of two exponential processes. Oligomycin (0.2-2 micrograms/ml) hyperpolarized delta psi m and abolished the slower components of both the depolarization with anoxia and of the subsequent repolarization. These data (i) illustrate the role of the F1-F0 ATP synthetase in slowing the rate of dissipation of delta psi m on cessation of electron transport, (ii) confirm blockade of the ATP synthetase by oligomycin at these concentrations, and (iii) indicate significant accumulation of intramitochondrial ADP during 1-2 min of anoxia. 4. Depolarization of delta psi m was graded with graded changes in PO2 below about 60 mmHg. The stimulus-response curves thus constructed strongly resemble those for [Ca2+]i and NAD(P)H with PO2. The change in delta

  10. Membrane potential of cells and its regulation during aging. 2. Report: the effect of hormones on the level of the cellular plasma membrane polarization.

    Science.gov (United States)

    Frolkis, V V; Tanin, S A; Gorban, E N; Bogatskaya, L N; Sabko, V E

    1987-01-01

    Age-dependent changes in the polarization of plasma membranes (PM) of various cell types and the mechanisms responsible for its regulation were studied in the experiments on the adult (6-8 and old (28-32 months) Wistar male rats. It was found that the effect of the hormones on the PM polarization level is altered during aging. This being related to shifts in the number and affinity of the hormonal receptors, energetic processes and protein synthesis in the cell.

  11. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  12. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies

    Science.gov (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2012-06-01

    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  13. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  14. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  15. Herbal extract of Artemisia vulgaris (mugwort) induces antitumor effects in HCT-15 human colon cancer cells via autophagy induction, cell migration suppression and loss of mitochondrial membrane potential.

    Science.gov (United States)

    Lian, Guanghui; Li, Fujun; Yin, Yani; Chen, Linlin; Yang, Junwen

    2018-01-01

    Artemisia vulgaris (A.vulgaris) belonging to family Compositae, commonly known as mugwort, has been used as a medicinal herb in Chinese traditional medicine for treatment of diseases. Studies have reported a diversity of activities for this plant which include antiseptic, antispasmodic, antigastric, anticancer and nervous system diseases. However, the anticancer activity of A.vulgaris in HCT-15 human colon cancer cells has not been scientifically validated. Therefore the present study aimed at evaluating the anticancer activity of methanolic extract of A.vulgaris against HCT-15 human colon cancer cell line. Cell cytotoxicity effects of the extract were evaluated by MTT cell viability assay, while clonogenic assay assessed the effects on cancer cell colony formation. Effects on reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) were evaluated by flow cytometry. In vitro wound healing assay was used to evaluate the effects on cell migration. To confirm autophagy, we evaluated the expression of several autophagy-associated proteins using Western blot assay. Results indicated that the methanolic extract of A.vulgaris exhibited an IC50 value of 50 μg/ml and exerted its cytotoxic effects in a dose-dependent manner. Moreover, it was observed that the extract inhibits colony formation and induces autophagy dose-dependently. The underlying mechanism for the induction of autophagy was found to be ROS-mediated MMP and significant inhibition of cell migration potential of colon cancer cells at the IC50 was observed. These results strongly stress that the methanolic extract may prove a source for the isolation of novel anticancer lead molecules for the management of colon cancer.

  16. The effect of membrane diffusion potential change on anionic drugs ...

    African Journals Online (AJOL)

    The effect of membrane potential change on anionic drugs Indomethacin and barbitone induced human erythrocyte shape change and red cell uptake of drug has been studied using microscopy and spectrophotometry techniques respectively. The membrane potential was changed by reducing the extracellular chloride ...

  17. Cell invasion through basement membrane

    OpenAIRE

    Morrissey, Meghan A; Hagedorn, Elliott J; Sherwood, David R

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recent...

  18. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  19. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  20. Phase separation of the plasma membrane in human red blood cells as a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maulucci

    Full Text Available Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins can alter lipid density, packing and interactions, and are considered an important factor that affects fluidity variation in membranes. Red blood cells (RBC membrane physical state, showing pronounced alterations in Type 1 diabetes mellitus (T1DM, could be the ideal candidate for monitoring the disease progression and the effects of therapies. On these grounds, the measurement of RBC membrane fluidity alterations can furnish a more sensitive index in T1DM diagnosis and disease progression than Glycosylated hemoglobin (HbA1c, which reflects only the information related to glycosylation processes. Here, through a functional two-photon microscopy approach we retrieved fluidity maps at submicrometric scale in RBC of T1DM patients with and without complications, detecting an altered membrane equilibrium. We found that a phase separation between fluid and rigid domains occurs, triggered by systemic effects on membranes fluidity of glycation and oxidation. The phase separation patterns are different among healthy, T1DM and T1DM with complications patients. Blood cholesterol and LDL content are positively correlated with the extent of the phase separation patterns. To quantify this extent a machine learning approach is employed to develop a Decision-Support-System (DSS able to recognize different fluidity patterns in RBC. Preliminary analysis shows significant differences(p<0.001 among healthy, T1DM and T1DM with complications patients. The development of an assay based on Phase separation of the plasma membrane of the Red Blood cells is a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus, and could allow customization and the selection of medical treatments in T1DM in clinical settings, and enable the early detection of complications.

  1. Phase separation of the plasma membrane in human red blood cells as a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus.

    Science.gov (United States)

    Maulucci, Giuseppe; Cordelli, Ermanno; Rizzi, Alessandro; De Leva, Francesca; Papi, Massimiliano; Ciasca, Gabriele; Samengo, Daniela; Pani, Giovambattista; Pitocco, Dario; Soda, Paolo; Ghirlanda, Giovanni; Iannello, Giulio; De Spirito, Marco

    2017-01-01

    Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins can alter lipid density, packing and interactions, and are considered an important factor that affects fluidity variation in membranes. Red blood cells (RBC) membrane physical state, showing pronounced alterations in Type 1 diabetes mellitus (T1DM), could be the ideal candidate for monitoring the disease progression and the effects of therapies. On these grounds, the measurement of RBC membrane fluidity alterations can furnish a more sensitive index in T1DM diagnosis and disease progression than Glycosylated hemoglobin (HbA1c), which reflects only the information related to glycosylation processes. Here, through a functional two-photon microscopy approach we retrieved fluidity maps at submicrometric scale in RBC of T1DM patients with and without complications, detecting an altered membrane equilibrium. We found that a phase separation between fluid and rigid domains occurs, triggered by systemic effects on membranes fluidity of glycation and oxidation. The phase separation patterns are different among healthy, T1DM and T1DM with complications patients. Blood cholesterol and LDL content are positively correlated with the extent of the phase separation patterns. To quantify this extent a machine learning approach is employed to develop a Decision-Support-System (DSS) able to recognize different fluidity patterns in RBC. Preliminary analysis shows significant differences(pBlood cells is a potential tool for diagnosis and progression monitoring of type 1 diabetes mellitus, and could allow customization and the selection of medical treatments in T1DM in clinical settings, and enable the early detection of complications.

  2. Hybrid membranes for fuel cells

    Science.gov (United States)

    Bochkareva, S. S.; Shashkina, S. S.

    2018-01-01

    Fuel cells are a very efficient, reliable, durable, and environmentally friendly energy source. Membranes for fuel cells were developed based on nitrogen-containing high-molecular compounds and organic–inorganic composites. Their electrical conductivities were measured. The influence of a silicon block of composites on the proton exchange properties of membranes was proved.The comparative characterization of the studied materials was performed.

  3. Behavioral and neural responses of toads to salt solutions correlate with basolateral membrane potential of epidermal cells of the skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Baula, Victor; Tuttle, Wendy

    2007-01-01

    low, V(b) transiently hyperpolarized to values near the equilibrium potential for K(+) and corresponded with the reduced neural response. These results support the hypothesis that chemosensory function of the skin is analogous to that of mammalian taste cells but utilizes paracellular ion transport...

  4. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    Science.gov (United States)

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A novel bioactive membrane by cell electrospinning.

    Science.gov (United States)

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cell invasion through basement membrane

    Science.gov (United States)

    Morrissey, Meghan A; Hagedorn, Elliott J; Sherwood, David R

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recently discovered that invadopodia breach basement membrane during anchor cell invasion in C. elegans, a genetically and visually tractable in vivo invasion event. Further, we found that the netrin receptor DCC localizes to the initial site of basement membrane breach and directs invasion through a single gap in the matrix. In this commentary, we examine how the dynamics and structure of AC-invadopodia compare with in vitro invadopodia and how the netrin receptor guides invasion through a single basement membrane breach. We end with a discussion of our surprising result that the anchor cell pushes the basement membrane aside, instead of completely dissolving it through proteolysis, and provide some ideas for how proteases and physical displacement may work together to ensure efficient and robust invasion. PMID:24778942

  7. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death.

    Science.gov (United States)

    Valmas, Nicholas; Zuryn, Steven; Ebert, Paul R

    2008-10-30

    Phosphine is the most widely used fumigant for the protection of stored commodities against insect pests, especially food products such as grain. However, pest insects are developing resistance to phosphine and thereby threatening its future use. As phosphine inhibits cytochrome c oxidase (complex IV) of the mitochondrial respiratory chain and reduces the strength of the mitochondrial membrane potential (DeltaPsi(m)), we reasoned that mitochondrial uncouplers should act synergistically with phosphine. The mitochondrial uncouplers FCCP and PCP caused complete mortality in populations of both wild-type and phosphine-resistant lines of Caenorhabditis elegans simultaneously exposed to uncoupler and phosphine at concentrations that were individually nonlethal. Strong synergism was also observed with a third uncoupler DNP. We have also tested an alternative complex IV inhibitor, azide, with FCCP and found that this also caused a synergistic enhancement of toxicity in C. elegans. To investigate potential causes of the synergism, we measured DeltaPsi(m), ATP content, and oxidative damage (lipid hydroperoxides) in nematodes subjected to phosphine-FCCP treatment and found that neither an observed 50% depletion in ATP nor oxidative stress accounted for the synergistic effect. Instead, a synergistic reduction in DeltaPsi(m) was observed upon phosphine-FCCP co-treatment suggesting that this is directly responsible for the subsequent mortality. These results support the hypothesis that phosphine-induced mortality results from the in vivo disruption of normal mitochondrial activity. Furthermore, we have identified a novel pathway that can be targeted to overcome genetic resistance to phosphine.

  8. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  9. The “Funny” Current (If Inhibition by Ivabradine at Membrane Potentials Encompassing Spontaneous Depolarization in Pacemaker Cells

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    2012-07-01

    Full Text Available Recent clinical trials have shown that ivabradine (IVA, a drug that inhibits the funny current (If in isolated sinoatrial nodal cells (SANC, decreases heart rate and reduces morbidity and mortality in patients with cardiovascular diseases. While IVA inhibits If, this effect has been reported at essentially unphysiological voltages, i.e., those more negative than the spontaneous diastolic depolarization (DD between action potentials (APs. We tested the relative potency of IVA to block If over a wide range of membrane potentials, including those that encompass DD governing to the SANC spontaneous firing rate. A clinically relevant IVA concentration of 3 μM to single, isolated rabbit SANC slowed the spontaneous AP firing rate by 15%. During voltage clamp the maximal If was 18 ± 3 pA/pF (at −120 mV and the maximal If reduction by IVA was 60 ± 8% observed at −92 ± 4 mV. At the maximal diastolic depolarization (~−60 mV If amplitude was only −2.9 ± 0.4 pA/pF, and was reduced by only 41 ± 6% by IVA. Thus, If amplitude and its inhibition by IVA at physiologically relevant membrane potentials are substantially less than that at unphysiological (hyperpolarized membrane potentials. This novel finding more accurately describes how IVA affects SANC function and is of direct relevance to numerical modeling of SANC automaticity.

  10. Membrane potentials of membranes with fixed ionic sites

    NARCIS (Netherlands)

    van den Berg, Albert; van der Wal, P.D.; van der Wal, P.D.; Skowronska-ptasinska, M.; Sudhölter, E.J.R.; Sudholter, Ernst; Bergveld, Piet; Reinhoudt, David

    1990-01-01

    A theoretical model has been developed to simulate the formation of a membrane potential as a function of physically accessible parameters. The description is an extension of the well-known Teorell-Meyer-Sievers (TMS) model, now including free and fixed ionic sites and free and fixed neutral

  11. Cell membrane structures during exocytosis.

    Science.gov (United States)

    Savigny, Pascale; Evans, John; McGrath, Kathryn M

    2007-08-01

    Exocytosis is a key biological process that controls the neurotransmission and release of hormones from cells. In endocrine cells, hormones are packed into secretory vesicles and released into the extracellular environment via openings in the plasma membrane, a few hundred nanometers wide, which form as a result of fusion of the membranes of the granule and cell. The complex processes and dynamics that result in the formation of the fusion pore, as well as its structure, remain scantly understood. A number of different exocytosis mechanisms have been postulated. Furthermore, the possibility exists that several mechanisms occur simultaneously. We present here an investigation of the cell membrane dynamics during exocytosis in anterior pituitary cells, especially gonadotropes, which secrete LH, a hormone central to ovulation. Gonadotrope enrichment was achieved using immunolabeled magnetic nanobeads. Three complementary imaging techniques were used to realize a fine structure study of the dynamics of the exocytosis-like sites occurring during secretion. Living pituitary and gonadotrope-enriched cells were imaged with atomic force microscopy, as well as cells that had been fixed to obtain better resolution. Atomic force microscopy, along with scanning and transmission electron microscopy, studies of these cells revealed that there are at least two different site configurations: simple single fusion pores and a complex association of pores consisting of a simple primary site combined with secondary attachments.

  12. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  13. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Au nanoparticles interacting with realistic membranes and explicit solvent using a model system that comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The membrane-AuNP+ binding and membrane reorganization processes are discovered...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement......Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...

  14. Volatile Organic Compound Gamma-Butyrolactone Released upon Herpes Simplex Virus Type -1 Acute Infection Modulated Membrane Potential and Repressed Viral Infection in Human Neuron-Like Cells.

    Science.gov (United States)

    Rochford, Kevin; Chen, Feng; Waguespack, Yan; Figliozzi, Robert W; Kharel, Madan K; Zhang, Qiaojuan; Martin-Caraballo, Miguel; Hsia, S Victor

    2016-01-01

    Herpes Simplex Virus Type -1 (HSV-1) infections can cause serious complications such as keratitis and encephalitis. The goal of this study was to identify any changes in the concentrations of volatile organic compounds (VOCs) produced during HSV-1 infection of epithelial cells that could potentially be used as an indicator of a response to stress. An additional objective was to study if any VOCs released from acute epithelial infection may influence subsequent neuronal infection to facilitate latency. To investigate these hypotheses, Vero cells were infected with HSV-1 and the emission of VOCs was analyzed using two-dimensional gas chromatograph/mass spectrometry (2D GC/MS). It was observed that the concentrations of gamma-butyrolactone (GBL) in particular changed significantly after a 24-hour infection. Since HSV-1 may establish latency in neurons after the acute infection, GBL was tested to determine if it exerts neuronal regulation of infection. The results indicated that GBL altered the resting membrane potential of differentiated LNCaP cells and promoted a non-permissive state of HSV-1 infection by repressing viral replication. These observations may provide useful clues towards understanding the complex signaling pathways that occur during the HSV-1 primary infection and establishment of viral latency.

  15. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor.

    Science.gov (United States)

    Hatanaka, Wataru; Kawaguchi, Miki; Sun, Xizheng; Nagao, Yusuke; Ohshima, Hiroyuki; Hashida, Mitsuru; Higuchi, Yuriko; Kishimura, Akihiro; Katayama, Yoshiki; Mori, Takeshi

    2017-02-15

    We developed a strategy to modify cell membranes with an artificial transmembrane receptor. Coulomb force on the receptor, caused by the membrane potential, was used to achieve membrane penetration. A hydrophobically modified cationic peptide was used as a membrane potential sensitive region that was connected to biotin through a transmembrane oligoethylene glycol (OEG) chain. This artificial receptor gradually disappeared from the cell membrane via penetration despite the presence of a hydrophilic OEG chain. However, when the receptor was bound to streptavidin (SA), it remained on the cell membrane because of the large and hydrophilic nature of SA.

  16. Molecular machines open cell membranes.

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B; Robinson, Jacob T; Wang, Gufeng; Pal, Robert; Tour, James M

    2017-08-30

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  17. Molecular machines open cell membranes

    Science.gov (United States)

    García-López, Víctor; Chen, Fang; Nilewski, Lizanne G.; Duret, Guillaume; Aliyan, Amir; Kolomeisky, Anatoly B.; Robinson, Jacob T.; Wang, Gufeng; Pal, Robert; Tour, James M.

    2017-08-01

    Beyond the more common chemical delivery strategies, several physical techniques are used to open the lipid bilayers of cellular membranes. These include using electric and magnetic fields, temperature, ultrasound or light to introduce compounds into cells, to release molecular species from cells or to selectively induce programmed cell death (apoptosis) or uncontrolled cell death (necrosis). More recently, molecular motors and switches that can change their conformation in a controlled manner in response to external stimuli have been used to produce mechanical actions on tissue for biomedical applications. Here we show that molecular machines can drill through cellular bilayers using their molecular-scale actuation, specifically nanomechanical action. Upon physical adsorption of the molecular motors onto lipid bilayers and subsequent activation of the motors using ultraviolet light, holes are drilled in the cell membranes. We designed molecular motors and complementary experimental protocols that use nanomechanical action to induce the diffusion of chemical species out of synthetic vesicles, to enhance the diffusion of traceable molecular machines into and within live cells, to induce necrosis and to introduce chemical species into live cells. We also show that, by using molecular machines that bear short peptide addends, nanomechanical action can selectively target specific cell-surface recognition sites. Beyond the in vitro applications demonstrated here, we expect that molecular machines could also be used in vivo, especially as their design progresses to allow two-photon, near-infrared and radio-frequency activation.

  18. The MEF2 gene is essential for yeast longevity, with a dual role in cell respiration and maintenance of mitochondrial membrane potential.

    Science.gov (United States)

    Callegari, Sylvie; McKinnon, Ross A; Andrews, Stuart; de Barros Lopes, Miguel A

    2011-04-20

    The Saccharomyces cerevisiae MEF2 gene is a mitochondrial protein translation factor. Formerly believed to catalyze peptide elongation, evidence now suggests its involvement in ribosome recycling. This study confirms the role of the MEF2 gene for cell respiration and further uncovers a slow growth phenotype and reduced chronological lifespan. Furthermore, in comparison with cytoplasmic ρ(0) strains, mef2Δ strains have a marked reduction of the inner mitochondrial membrane potential and mitochondria show a tendency to aggregate, suggesting an additional role for the MEF2 gene in maintenance of mitochondrial health, a role that may also be shared by other mitochondrial protein synthesis factors. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    performance properties of experimental membranes, 9) fabrication and FC performance testing of membrane electrode assemblies (MEA) from experimental membranes, and 10) measurement of ex situ and in situ membrane durability of experimental membranes. Although none of the experimental hydrocarbon membranes that issued from the project displayed proton conductivities that met DOE requirements, the project contributed to our basic understanding of membrane structure-property relationships in a number of key respects. An important finding of the benchmark studies is that physical degradation associated with humidity and temperature variations in the FC tend to open new fuel crossover pathways and act synergistically with chemical degradation to accelerate overall membrane degradation. Thus, for long term membrane survival and efficient fuel utilization, membranes must withstand internal stresses due to humidity and temperature changes. In this respect, rigid aromatic hydrocarbon fuel cell membranes, e.g. PAES, offer an advantage over un-modified Nafion membranes. The benchmark studies also showed that broadband dielectric spectroscopy is a potentially powerful tool in assessing shifts in the fundamental macromolecular dynamics caused by Nafion chemical degradation, and thus, this technique is of relevance in interrogating proton exchange membrane durability in fuel cells and macromolecular dynamics as coupled to proton migration, which is of fundamental relevance in proton exchange membranes in fuel cells. A key finding from the hydrocarbon membrane synthesis effort was that rigid aromatic polymers containing isolated ion exchange groups tethered tightly to the backbone (short tether), such as HPPS, provide excellent mechanical and durability properties but do not provide sufficient conductivity, in either random or block configuration, when used as the sole ion exchange monomer. However, we continue to hypothesize that longer tethers, and tethered groups spaced more closely

  20. Fuel-Cell Structure Prevents Membrane Drying

    Science.gov (United States)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  1. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential.

    Science.gov (United States)

    Zhang, Y-X; Yu, P-F; Gao, Z-M; Yuan, J; Zhang, Z

    2017-04-01

    The aim of the present study was to evaluate the anticancer activity of caffeic acid n-butyl ester against lung cancer cell line A549 and to investigate the underlying mechanism. IC50 was determined by MTT assay. Fluorescent probes DCFH-DA, Indo 1/AM, DiOC6 were used to determine ROS, Ca2+, and mitochondrial membrane potential (ΔΨm). ATP levels were determined by using ATP liteTM kit. DNA damage was investigated by DAPI and comet assays. Protein expression was investigated by Western blotting. Caffeic acid n-butyl ester exhibited lowest IC50 of 25 µM against lung A549 cell line. Caffeic acid n-butyl ester reduced the cell viability of A549 cells concentration and time-dependently. It also augmented the discharge of ROS and Ca2+ and lessened the mitochondrial membrane potential (ΔΨm) and ATP levels in A549 cells. Additionally, caffeic acid n-butyl ester also prompted DNA damage in A549 cell line. Notably, caffeic acid n-butyl ester-stimulated the cytochrome c release only and exhibited no effect on the expression of apoptosis-related protein levels such as caspase-3, caspase-8, and Apaf-1. Caffeic acid n-butyl ester exhibited significant anticancer activity against lung cancer cell line A549. However, the anticancer activity was not due to apoptosis as no significant change was observed in the expression of apoptosis-related proteins. The anticancer activity of caffeic acid n-butyl ester may be attributed to necrosis-like cell death prompted by ROS-mediated alterations in ΔΨm. Taken together, we conclude that caffeic acid n-butyl ester-induced A549 cells death displayed a cellular pattern characteristic of necrotic cell death and not of apoptosis.

  2. X-radiation effects on muscle cell membrane electrical parameters

    International Nuclear Information System (INIS)

    Portela, A.; Vaccari, J.G.; Llobera, O.; Campi, M.; Delbue, M.A.; Perez, J.C.; Stewart, P.A.; Gosztonyi, A.E.; Brown Univ., Providence, R.I.

    1975-01-01

    Early effects of 100 Kilorads of X-rays on muscle cell membrane properties have been measured in sartorius muscles from Leptodactylus ocellatus. Threshold strength for rectangular current pulses increased 10% after irradiation, and action potential propagation velocity decreased 10%. Passive membrane parameters were calculated from potential responses to sub-threshold current pulses, assuming conventional cable theory. Specific membrane conductance increased to 18% after irradiation, membrane capacitance increased 14%, and length constant decreased 10% but membrane time constant was unchanged. Cell diameter decreased 5%, and resting membrane potential decreased 8%. Membrane parameters during an action potential were also evaluated by the phase-plane and current-voltage plot techniques. Irradiation significantly decreased the action potential amplitude, the excitation potential, and the maximum rates of rise and fall of membrane potential. Increases were observed in dynamic sodium and potassium conductances, peak sodium current, and net charge accumulation per action potential. This X-ray dose also produced signficant changes in the timing of peak events during the action potential; in general the whole action potential process is slower after irradiation

  3. Caenorhabditis elegans ATPase inhibitor factor 1 (IF1 MAI-2 preserves the mitochondrial membrane potential (Δψm and is important to induce germ cell apoptosis.

    Directory of Open Access Journals (Sweden)

    L P Fernández-Cárdenas

    Full Text Available When the electrochemical proton gradient is disrupted in the mitochondria, IF1 (Inhibitor Factor-1 inhibits the reverse hydrolytic activity of the F1Fo-ATP synthase, thereby allowing cells to conserve ATP at the expense of losing the mitochondrial membrane potential (Δψm. The function of IF1 has been studied mainly in different cell lines, but these studies have generated contrasting results, which have not been helpful to understand the real role of this protein in a whole organism. In this work, we studied IF1 function in Caenorhabditis elegans to understand IF1´s role in vivo. C. elegans has two inhibitor proteins of the F1Fo-ATPase, MAI-1 and MAI-2. To determine their protein localization in C. elegans, we generated translational reporters and found that MAI-2 is expressed ubiquitously in the mitochondria; conversely, MAI-1 was found in the cytoplasm and nuclei of certain tissues. By CRISPR/Cas9 genome editing, we generated mai-2 mutant alleles. Here, we showed that mai-2 mutant animals have normal progeny, embryonic development and lifespan. Contrasting with the results previously obtained in cell lines, we found no evident defects in the mitochondrial network, dimer/monomer ATP synthase ratio, ATP concentration or respiration. Our results suggest that some of the roles previously attributed to IF1 in cell lines could not reflect the function of this protein in a whole organism and could be attributed to specific cell lines or methods used to silence, knockout or overexpress this protein. However, we did observe that animals lacking IF1 had an enhanced Δψm and lower physiological germ cell apoptosis. Importantly, we found that mai-2 mutant animals must be under stress to observe the role of IF1. Accordingly, we observed that mai-2 mutant animals were more sensitive to heat shock, oxidative stress and electron transport chain blockade. Furthermore, we observed that IF1 is important to induce germ cell apoptosis under certain types of

  4. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  5. The Amniotic Membrane: Development and Potential Applications - A Review.

    Science.gov (United States)

    Favaron, P O; Carvalho, R C; Borghesi, J; Anunciação, A R A; Miglino, M A

    2015-12-01

    Foetal membranes are essential tissues for embryonic development, playing important roles related to protection, breathing, nutrition and excretion. The amnion is the innermost extraembryonic membrane, which surrounds the foetus, forming an amniotic sac that contains the amniotic fluid (AF). In recent years, the amniotic membrane has emerged as a potential tool for clinical applications and has been primarily used in medicine in order to stimulate the healing of skin and corneal diseases. It has also been used in vaginal reconstructive surgery, repair of abdominal hernia, prevention of surgical adhesions and pericardium closure. More recently, it has been used in regenerative medicine because the amniotic-derived stem cells as well as AF-derived cells exhibit cellular plasticity, angiogenic, cytoprotective, immunosuppressive properties, antitumoural potential and the ability to generate induced pluripotent stem cells. These features make them a promising source of stem cells for cell therapy and tissue engineering. In this review, we discussed the development of the amnion, AF and amniotic cavity in different species, as well as the applicability of stem cells from the amnion and AF in cellular therapy. © 2015 Blackwell Verlag GmbH.

  6. Ionic fluxes in erythrocyte membranes of sickle cell anaemia ...

    African Journals Online (AJOL)

    Ionic fluxes in erythrocyte membranes of sickle cell anaemia subjects at different tonicities. ... Journal of African Association of Physiological Sciences ... The aim of this study was to investigate ionic fluxes in membrane of erythrocytes at different tonicities with a view to highlighting any selective ionic-fluxing potential of ...

  7. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  8. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  9. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.

    1978-01-01

    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  10. Plasma membrane changes during programmed cell deaths.

    Science.gov (United States)

    Zhang, Yingying; Chen, Xin; Gueydan, Cyril; Han, Jiahuai

    2018-01-01

    Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.

  11. A cell culture technique for human epiretinal membranes to describe cell behavior and membrane contraction in vitro.

    Science.gov (United States)

    Wertheimer, Christian; Eibl-Lindner, Kirsten H; Compera, Denise; Kueres, Alexander; Wolf, Armin; Docheva, Denitsa; Priglinger, Siegfried G; Priglinger, Claudia; Schumann, Ricarda G

    2017-11-01

    To introduce a human cell culture technique for investigating in-vitro behavior of primary epiretinal cells and membrane contraction of fibrocellular tissue surgically removed from eyes with idiopathic macular pucker. Human epiretinal membranes were harvested from ten eyes with idiopathic macular pucker during standard vitrectomy. Specimens were fixed on cell culture plastic using small entomological pins to apply horizontal stress to the tissue, and then transferred to standard cell culture conditions. Cell behavior of 400 epiretinal cells from 10 epiretinal membranes was observed in time-lapse microscopy and analyzed in terms of cell migration, cell velocity, and membrane contraction. Immunocytochemistry was performed for cell type-specific antigens. Cell specific differences in migration behavior were observed comprising two phenotypes: (PT1) epiretinal cells moving fast, less directly, with small round phenotype and (PT2) epiretinal cells moving slowly, directly, with elongated large phenotype. No mitosis, no outgrowth and no migration onto the plastic were seen. Horizontal contraction measurements showed variation between specimens. Masses of epiretinal cells with a myofibroblast-like phenotype expressed cytoplasmatic α-SMA stress fibers and correlated with cell behavior characteristics (PT2). Fast moving epiretinal cells (PT1) were identified as microglia by immunostaining. This in-vitro technique using traction application allows for culturing surgically removed epiretinal membranes from eyes with idiopathic macular pucker, demonstrating cell behavior and membrane contraction of primary human epiretinal cells. Our findings emphasize the abundance of myofibroblasts, the presence of microglia and specific differences of cell behavior in these membranes. This technique has the potential to improve the understanding of pathologies at the vitreomacular interface and might be helpful in establishing anti-fibrotic treatment strategies.

  12. Coating nanoparticles with cell membranes for targeted drug delivery.

    Science.gov (United States)

    Gao, Weiwei; Zhang, Liangfang

    2015-01-01

    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  13. Signaling mechanism by the Staphylococcus aureus two-component system LytSR: role of acetyl phosphate in bypassing the cell membrane electrical potential sensor LytS [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Kevin Patel

    2016-03-01

    Full Text Available The two-component system LytSR has been linked to the signal transduction of cell membrane electrical potential perturbation and is involved in the adaptation of Staphylococcus aureus to cationic antimicrobial peptides. It consists of a membrane-bound histidine kinase, LytS, which belongs to the family of multiple transmembrane-spanning domains receptors, and a response regulator, LytR, which belongs to the novel family of non-helix-turn-helix DNA-binding domain proteins. LytR regulates the expression of cidABC and lrgAB operons, the gene products of which are involved in programmed cell death and lysis. In vivo studies have demonstrated involvement of two overlapping regulatory networks in regulating the lrgAB operon, both depending on LytR. One regulatory network responds to glucose metabolism and the other responds to changes in the cell membrane potential. Herein, we show that LytS has autokinase activity and can catalyze a fast phosphotransfer reaction, with 50% of its phosphoryl group lost within 1 minute of incubation with LytR. LytS has also phosphatase activity. Notably, LytR undergoes phosphorylation by acetyl phosphate at a rate that is 2-fold faster than the phosphorylation by LytS. This observation is significant in lieu of the in vivo observations that regulation of the lrgAB operon is LytR-dependent in the presence of excess glucose in the medium. The latter condition does not lead to perturbation of the cell membrane potential but rather to the accumulation of acetate in the cell. Our study provides insights into the molecular basis for regulation of lrgAB in a LytR-dependent manner under conditions that do not involve sensing by LytS.

  14. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  15. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  16. Assessment of the Blood-Brain Barrier Permeability of Potential Neuroprotective Aurones in Parallel Artificial Membrane Permeability Assay and Porcine Brain Endothelial Cell Models.

    Science.gov (United States)

    Liew, Kok-Fui; Hanapi, Nur Aziah; Chan, Kit-Lam; Yusof, Siti R; Lee, Chong-Yew

    2017-02-01

    Previously, several aurone derivatives were identified with promising neuroprotective activities. In developing these compounds to target the central nervous system (CNS), an assessment of their blood-brain barrier (BBB) permeability was performed using in vitro BBB models: parallel artificial membrane permeability assay-BBB which measures passive permeability and primary porcine brain endothelial cell model which enables determination of the involvement of active transport mechanism. Parallel artificial membrane permeability assay-BBB identified most compounds with high passive permeability, with 3 aurones having exceptional P e values highlighting the importance of basic amine moieties and optimal lipophilicity for good passive permeability. Bidirectional permeability assays with porcine brain endothelial cell showed a significant net influx permeation of the aurones indicating a facilitated uptake mechanism in contrast to donepezil, a CNS drug included in the evaluation which only displayed passive permeation. From pH-dependent permeability assay coupled with data analysis using pCEL-X software, intrinsic transcellular permeability (P o ) of a representative aurone 4-3 was determined, considering factors such as the aqueous boundary layer that may hinder accurate in vitro to in vivo correlation. The P o  value determined supported the in vivo feasibility of the aurone as a CNS-active compound. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Poulsen, Allan K; Brasen, Jens Christian

    2007-01-01

    We employed the fluorescent cyanine dye DiOC(2)(3) to measure membrane potential in semi-anaerobic yeast cells under conditions where glycolysis was oscillating. Oscillations in glycolysis were studied by means of the naturally abundant nicotinamide adenine dinucleotide (NADH). We found...... studies showed that glycolytic oscillations perturb the mitochondrial membrane potential and that the mitochondria do not have any controlling effect on the dynamics of glycolysis under these conditions. Depolarization of the mitochondrial membrane by addition of FCCP quenched mitochondrial membrane...... potential oscillations and delocalized DiOC(2)(3), while glycolysis continued to oscillate unaffected....

  18. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  19. Versatile membrane deformation potential of activated pacsin.

    Directory of Open Access Journals (Sweden)

    Shih Lin Goh

    Full Text Available Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1 has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3 domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties.

  20. Amphipathic beta-strand mimics as potential membrane disruptive antibiotics.

    Science.gov (United States)

    Watson, Jessica L; Gillies, Elizabeth R

    2009-08-21

    In recent years, there have been increasing numbers of bacterial strains emerging that are resistant to the currently available antibiotics. In the search for new antibiotics, attention has been focused on natural antimicrobial peptides that act by selectively disrupting the membranes of bacterial cells, a mechanism that is thought to be nonconducive to the development of resistance. It is desirable to mimic the structures and activities of these peptides while introducing properties such as resistance to proteolytic degradation, which make molecules more ideal for development as drugs. Described here is the design and synthesis of beta-strand mimetic oligomers based on alternating alpha-amino acids and azacyclohexenone units that segregate cationic lysine and hydrophobic valine side chains on opposite faces of the beta-strand. (1)H NMR dilution studies demonstrated that despite the incorporation of alternating d- and l-amino acids in order to obtain facial amphiphilicity, these oligomers are capable of dimerizing to beta-sheet mimics in a manner similar to the oligomers containing all l-amino acids. The ability of the molecules to disrupt phospholipid vesicles mimicking the membranes of both bacterial and mammalian cells was investigated using a fluorescent dye leakage assay. Several of the oligomers were found to exhibit activity and selectivity for the bacterial over mammalian membranes. Overall, these studies demonstrate the promise of this class of molecules for the development of new potential antibiotics and provide information on the structural features that are important for activity.

  1. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    Science.gov (United States)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  2. Cooperative tumour cell membrane targeted phototherapy

    Science.gov (United States)

    Kim, Heegon; Lee, Junsung; Oh, Chanhee; Park, Ji-Ho

    2017-06-01

    The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer.

  3. Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: A chronological study.

    Science.gov (United States)

    Datta, Satabdi; Choudhury, Diptiman; Das, Amlan; Das Mukherjee, Dipanwita; Das, Nabanita; Roy, Sib Sankar; Chakrabarti, Gopal

    2017-02-01

    Paclitaxel (Tx) is one of the first-line chemotherapeutic drugs used against lung cancer, but acquired resistance to this drug is a major challenge against successful chemotherapy. In this work, we have focused on the chronological changes of various cellular parameters and associated effect on Tx (10 nM) resistance development in A549 cell line. It was observed, at initial stage, the cell death percentage due to drug treatment had increased up to 20 days, and thereafter, it started declining and became completely resistant by 40 days. Expressions of βIII tubulin and drug efflux pumps also increased over the period of resistance development. Changes in cellular autophagy and reactive oxygen species generation showed a biphasic pattern and increased gradually over the course of upto 20 days, thereafter declined gradually; however, their levels remained higher than untreated cells when resistance was acquired. Increase in extracellular acidification rates and oxygen consumption rates was found to be directly correlated with acquisition of resistance. The depolarisation of mitochondrial membrane potential was also biphasic; first, it increased with increase of cell death up to 20 days, thereafter, it gradually decreased to normal level along with resistance development. Increase in activity of catalase, glutathione peroxidase and glutathione content over these periods may attribute in bringing down the reactive oxygen species levels and normalisation of mitochondrial membrane potential in spite of comparatively higher reactive oxygen species production by the Tx-resistant cells.

  4. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential

    International Nuclear Information System (INIS)

    Koppikar, Soumya J; Choudhari, Amit S; Suryavanshi, Snehal A; Kumari, Shweta; Chattopadhyay, Samit; Kaul-Ghanekar, Ruchika

    2010-01-01

    Chemoprevention, which includes the use of synthetic or natural agents (alone or in combination) to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa. The aqueous cinnamon extract (ACE-c) was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-c was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-c were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2) expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-c treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψ m ) in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS. Cinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-c exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-c. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential. Cinnamon could be used as a potent chemopreventive drug in cervical cancer

  5. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    Science.gov (United States)

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  6. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  7. Probing glycolytic and membrane potential oscillations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Poulsen, Allan K.; Andersen, Ann Zahle; Brasen, Jens Christian

    2008-01-01

    , while mitochondrial membrane potential was measured using the fluorescent dye DiOC(2)(3). The results show that, as opposed to NADH and other intermediates in glycolysis, intracellular glucose is not oscillating. Furthermore, oscillations in NADH and membrane potential are inhibited by the ATP...

  8. Membrane potential change effects on cationic and neutral drug ...

    African Journals Online (AJOL)

    Membrane potential change effects on cationic and neutral drug - induced erythrocyte shape change and cellular uptake of drugs. A Nwafor, WT Coakley. Abstract. The effect of membrane potential change of the human erythrocytes on cationic drugs tetracaine and chlorpromazine and neutral drug benzyl alcohol induced ...

  9. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    Harper, Jeffrey F.

    2004-01-01

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  10. Membrane Targeting of P-type ATPases in Plant Cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  11. Structure and properties of cell membranes. Volume 3: Methodology and properties of membranes

    International Nuclear Information System (INIS)

    Benga, G.

    1985-01-01

    This book covers the topics: Quantum chemical approach to study the mechanisms of proton translocation across membranes through protein molecules; monomolecular films as biomembrane models; planar lipid bilayers in relation to biomembranes; relation of liposomes to cell membranes; reconstitution of membrane transport systems; structure-function relationships in cell membranes as revealed by X-ray techniques; structure-function relationships in cell membranes as revealed by spin labeling ESR; structure and dynamics of cell membranes as revealed by NMR techniques; the effect of dietary lipids on the composition and properties of biological membranes and index

  12. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    NARCIS (Netherlands)

    Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

  13. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    Science.gov (United States)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  14. Advanced nanocomposite membranes for fuel cell applications: a comprehensive review

    Directory of Open Access Journals (Sweden)

    Kolsoum Pourzare

    2016-12-01

    Full Text Available Combination of inorganic fillers into organic polymer membranes (organic–inorganic hybrid membranes has drawn a significant deal of attention over the last few decades. This is because of the incorporated influence of the organic and inorganic phases towards proton conductivity and membrane stability, in addition to cost decline, improved water retention property, and also suppressing fuel crossover by increasing the transport pathway tortuousness. The preparation methods of the composite membranes and the intrinsic characteristics of the used particles as filler, such as size, type, surface acidity, shape, and their interactions with the polymer matrix can significantly affect the properties of the resultant matrix. The membranes currently used in proton exchange membrane fuel cells (PEMFCs are perfluorinated polymers containing sulfonic acid, such as Nafion®. Although these membranes possess superior properties, such as high proton conductivity and acceptable chemical, mechanical, and thermal stability, they suffer from several disadvantages such as water management, CO poisoning, and fuel crossover. Organic-inorganic nanocomposite PEMs offer excellent potentials for overcoming these shortcomings in order to achieve improved FC performance. Various inorganic fillers for the fabrication of composite membranes have been comprehensively reviewed in the present article. Moreover, the properties of polymer composites containing different nanoparticles have been thoroughly discussed.

  15. Membrane phosphorylation and nerve cell function

    International Nuclear Information System (INIS)

    Baer, P.R.

    1982-01-01

    This thesis deals with the phosphorylation of membrane components. In part I a series of experiments is described using the hippocampal slice as a model system. In part II a different model system - cultured hybrid cells - is used to study protein and lipid phosphorylation, influenced by incubation with neuropeptides. In part III in vivo and in vitro studies are combined to study protein phosphorylation after neuroanatomical lesions. In a section of part II (Page 81-90) labelling experiments of the membrane inositol-phospholipids are described. 32 P-ATP was used to label phospholipids in intact hybrid cells, and short incubations were found to be the most favourable. (C.F.)

  16. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse Biological Functions.

    Science.gov (United States)

    Martínez-Reyes, Inmaculada; Diebold, Lauren P; Kong, Hyewon; Schieber, Michael; Huang, He; Hensley, Christopher T; Mehta, Manan M; Wang, Tianyuan; Santos, Janine H; Woychik, Richard; Dufour, Eric; Spelbrink, Johannes N; Weinberg, Samuel E; Zhao, Yingming; DeBerardinis, Ralph J; Chandel, Navdeep S

    2016-01-21

    Mitochondrial metabolism is necessary for the maintenance of oxidative TCA cycle function and mitochondrial membrane potential. Previous attempts to decipher whether mitochondria are necessary for biological outcomes have been hampered by genetic and pharmacologic methods that simultaneously disrupt multiple functions linked to mitochondrial metabolism. Here, we report that inducible depletion of mitochondrial DNA (ρ(ο) cells) diminished respiration, oxidative TCA cycle function, and the mitochondrial membrane potential, resulting in diminished cell proliferation, hypoxic activation of HIF-1, and specific histone acetylation marks. Genetic reconstitution only of the oxidative TCA cycle function specifically in these inducible ρ(ο) cells restored metabolites, resulting in re-establishment of histone acetylation. In contrast, genetic reconstitution of the mitochondrial membrane potential restored ROS, which were necessary for hypoxic activation of HIF-1 and cell proliferation. These results indicate that distinct mitochondrial functions associated with respiration are necessary for cell proliferation, epigenetics, and HIF-1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  18. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng

    2013-01-01

    confirmed by the post TEM and XRD analysis. A strong dependence of the fuel cell performance degradation on the catalyst supports was observed. Graphitization of the carbon blacks improved the stability and catalyst durability though at the expense of a significant decrease in the specific surface area......Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...

  19. Zeta-potential of fouled thin film composite membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Hachisuka, H.; Nakamura, T. [Nitto denko Corp., Ibaraki, (Japan); Kimura, S. [Kogakuin University, Tokyo (Japan). Dept. of Environ. Chemical Engineering; Ueyama, K. [Osaka University, Osaka (Japan). Dept. of Chemical Engineering

    1999-10-01

    The surface zeta-potential of a cross-linked polyamide thin film composite reverse osmosis membrane was measured using an electrophoresis method. It was confirmed that this method could be effectively applied to analyze the fouling of such membranes. It is known that the water flux of membranes drastically decreases as a result of fouling by surfactants. Although the surfactants adsorbed on reverse osmosis membranes could not be detected by conventional methods such as SEM, EDX and FT-IR, their presence could be clarified by the profile measurements of the surface zeta-potential. The profiles of the membrane surface zeta-potentials changed to more positive values in the measured pH range as a result of fouling by cationic or amphoteric surfactants. This measuring method of surface zeta-potentials allowed us to analyze a very small amount of fouling of a thin film composite reverse osmosis membrane. This method could be used to analyze the fouled surface of the thin film composite reverse osmosis membrane which is used for production of ultrapure water and shows a remarkable decrease in flux. It also became clear that this method is easy and effective for the reverse osmosis membrane surface analysis of adsorbed materials such as surfactants. (author)

  20. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  1. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  2. Fouling mitigation of anion exchange membrane by zeta potential control.

    Science.gov (United States)

    Park, Jin-Soo; Lee, Hong-Joo; Choi, Seok-Ju; Geckeler, Kurt E; Cho, Jaeweon; Moon, Seung-Hyeon

    2003-03-15

    The feasibility of fouling mitigation of anion exchange membranes (AEMs) in the presence of humate was studied by adding three different types of water-soluble polymers, i.e., poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(ethylene imine) (PEI), during electrodialysis (ED) desalination. Measurement of zeta potential of the humate used in this study showed highly negative potential (about -30 mV), implying that the humate had a strong fouling potential on the AEMs in ED. Of the three water-soluble polymers, PEI showed a positive zeta potential (about +14 mV) and is able to form an interpolymer complex with the humate. PAA and PVA hardly formed interpolymer complexes with humate due to electrostatic repulsion. The PEI-humate mixture with a volume ratio of 1:20 (PEI:humate) showed zero zeta potential, and a complexed humate with zero surface charge was formed, resulting in no fouling effects on the AEMs. Accordingly, the desalting ED experiments with PEI showed improved ED performance. Further, black colloids formed in the mixture did not cause the cell resistance to increase.

  3. Potential of membrane processes in management of radioactive liquid waste

    International Nuclear Information System (INIS)

    Kumar, Surender; Jain, Savita; Raj, Kanwar

    2010-01-01

    Various categories of radioactive liquid waste are generated during operations and maintenance of nuclear installations. The potential of membrane processes for the treatment of low-level radioactive liquids is discussed in this paper

  4. Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation

    KAUST Repository

    Zuo, Jian

    2015-09-26

    The potential of utilizing polyethylene (PE) membranes in membrane distillation (MD) for sea water desalination has been explored in this study. The advantages of using PE membranes are (1) their intrinsic hydrophobicity with low surface energy of 28-33×10N/m, (2) good chemical stability and low thermal conductivity and (3) their commercial availability that may expedite the MD commercialization process. Several commercial PE membranes with different physicochemical properties are employed to study the capability and feasibility of PE membrane application in an MD process. The effect of membrane pore size, porosity, thickness and wetting resistance on MD performance and energy efficiency have been investigated. The PE membranes demonstrate impressive separation performance with permeation fluxes reaching 123.0L/mh for a 3.5wt% sodium chloride (NaCl) feed solution at 80°C. This superior performance surpasses most of the prior commercial and lab-made flat sheet and hollow fiber membranes. A long term MD testing of 100h is also performed to evaluate the durability of PE membranes, and a relatively stable performance is observed during the entire experiment. This long term stability signifies the suitability of PE membranes for MD applications.

  5. Selectivity of Direct Methanol Fuel Cell Membranes.

    Science.gov (United States)

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  6. Selectivity of Direct Methanol Fuel Cell Membranes

    Science.gov (United States)

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  7. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  8. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  9. Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI

    DEFF Research Database (Denmark)

    Reveles Jensen, Kristian; Rekling, Jens C

    2010-01-01

    in CHO cells exposed to cobalt (mimicking hypoxia) and in PC12 cells exposed to amyloid ß, demonstrating that the assay can be used in cellular models of hypoxia and Alzheimer's disease. The assay needs no washing steps, has a Z' value >0.5, can be used on standard fluorometers, has good post liquid......, which is a suspected mitochondrial toxicant. CCCP and DNP have short-term depolarizing effects, and thioridazine has long-term hyperpolarizing effects on the mitochondrial membrane potential of Chinese hamster ovary (CHO) cells. The assay also detected changes of the mitochondrial membrane potential...

  10. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  11. Aqueous Cinnamon Extract (ACE-c from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa through loss of mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Samit

    2010-05-01

    Full Text Available Abstract Background Chemoprevention, which includes the use of synthetic or natural agents (alone or in combination to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa. Methods The aqueous cinnamon extract (ACE-c was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-c was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-c were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2 expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-c treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψm in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS. Results Cinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-c exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-c. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential. Conclusion Cinnamon could be used as a

  12. Optical Trapping Techniques Applied to the Study of Cell Membranes

    Science.gov (United States)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  13. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate.

    Science.gov (United States)

    von Erlach, Thomas C; Bertazzo, Sergio; Wozniak, Michele A; Horejs, Christine-Maria; Maynard, Stephanie A; Attwood, Simon; Robinson, Benjamin K; Autefage, Hélène; Kallepitis, Charalambos; Del Río Hernández, Armando; Chen, Christopher S; Goldoni, Silvia; Stevens, Molly M

    2018-03-01

    Cell size and shape affect cellular processes such as cell survival, growth and differentiation 1-4 , thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

  14. Interactions of Model Cell Membranes with Nanoparticles

    Science.gov (United States)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  15. A study for the research trends of membranes for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Sener, T.

    2004-01-01

    'Full text:' A single PEM fuel cell is comprised of a membrane electrode assembly, two bipolar plates and two fields. Membrane electrode assembly is the basic component of PEM fuel cell due to its cost and function, and it consists a membrane sandwiched between two electrocatalyst layers/electrodes and two gas diffusion layers. Increasing the PEM fuel cell operation temperature from 80 o C to 150-200 o C will prevent electrocatalysts CO poisoning and increase the fuel cell performance. Therefore, membranes must have chemical and mechanical resistance and must keep enough water at high temperatures. The aim of membrane studies through fuel cell commercialization is to produce a less expensive thin membrane with high operation temperature, chemical and mechanical resistance and water adsorption capacity. Within this frame, alternative membrane materials, membrane electrode assembly manufacture and evaluation methods are being studied. In this paper, recent studies are reviewed to give a conclusion for research trends. (author)

  16. Energy-producing system of the membrane potential generation in γ-irradiated Streptococcus faecalis

    International Nuclear Information System (INIS)

    Fomenko, B.S.

    1976-01-01

    γ-irradiated (20-100 krads) Str. faecalis cells exhibited increased glycolytic and ATPase activity whereas the ATP level remained unaffected by radiation. It is concluded that the radiation-induced reduction of the membrane potential in Str. faecalis, that has been earlier described, is not connected with the impairment of the energy-producing system of the potential generation

  17. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I [Champaign, IL; York, Cynthia A [Newington, CT; Waszczuk, Piotr [White Bear Lake, MN; Wieckowski, Andrzej [Champaign, IL

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  18. Durability aspects of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  19. Membrane and MEA Development in Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    Trogadas, Panagiotis; Ramani, Vijay

    The polymer electrolyte fuel cell (PEFC) is based on Nafion polymer membranes operating at a temperature of 80°C. The main characteristics (structure and properties) and problems of Nafion-based PEFC technology are discussed. The primary drawbacks of Nafion membranes are poor conductivity at low relative humidities (and consequently at temperatures >100°C and ambient pressure) and large crossover of methanol in direct methanol fuel cell (DMFC) applications. These drawbacks have prompted an extensive effort to improve the properties of Nafion and identify alternate materials to replace Nafion. Polymer electrolyte membranes (PEMs) are classified in modified Nafion, membranes based on functionalized non-fluorinated backbones and acid-base polymer systems. Perhaps the most widely employed approach is the addition of inorganic additives to Nafion membranes to yield organic/inorganic composite membranes. Four major types of inorganic additives that have been studied (zirconium phosphates, heteropolyacids, metal hydrogen sulfates, and metal oxides) are reviewed in the following. DMFC and H2/O2 (air) cells based on modified Nafion membranes have been successfully operated at temperatures up to 120°C under ambient pressure and up to 150°C under 3-5 atm. Membranes based on functionalized non-fluorinated backbones are potentially promising for high-temperature operation. High conductivities have been obtained at temperatures up to 180°C. The final category of polymeric PEMs comprises non-functionalized polymers with basic character doped with proton-conducting acids such as phosphoric acid. The advanced features include high CO tolerance and thermal management. The advances made in the fabrication of electrodes for PEM fuel cells from the PTFE-bound catalyst layers of almost 20 years ago to the present technology are briefly discussed. There are two widely employed electrode designs: (1) PTFE-bound, and (2) thin-film electrodes. Emerging methods include those featuring

  20. Influence of membrane potential on conductance sublevels of chloride channels activated by GABA.

    Science.gov (United States)

    Gage, P W; Chung, S H

    1994-02-22

    Single-channel chloride currents activated by 0.5 microM GABA were recorded in cell-attached and inside-out membrane patches from rat cultured hippocampal neurons. The currents displayed multiple conductance states and outward rectification. The number and amplitude of conductance levels were determined over a range of potentials by using digital signal-processing techniques. It was found that, except for a level close to zero, subconductance levels were regularly spaced. There were fewer sublevels at hyperpolarized than at depolarized potentials, and the spacing between levels varied linearly with potential giving an incremental conductance of 8-10 pS that was independent of membrane potential. Outward rectification is related to the change in the number of conductance levels with potential. One hypothesis that is consistent with these observations is that a channel is composed of a number of synchronized, non-rectifying, conducting pores, and that the number of pores activated changes with membrane potential.

  1. Cultured epithelial grafting using human amniotic membrane: the potential for using human amniotic epithelial cells as a cultured oral epithelium sheet.

    Science.gov (United States)

    Koike, Takeshi; Yasuo, Masanari; Shimane, Tetsu; Kobayashi, Hiroichi; Nikaido, Toshio; Kurita, Hiroshi

    2011-10-01

    Human amniotic cells are a valuable source of functional cells that can be used in various fields, including regenerative medicine and tissue engineering. The aim of this study was to investigate the utility of human amniotic epithelial (hAE) cells as a new cell source for culturing stratified epithelium sheets for intraoral grafting. Enzymatically isolated hAE cells were submerged in a serum-free, low-calcium-supplemented MCDB 153 medium without a feeder layer. The hAE cells were seeded onto a Millicell cell culture plate insert and cultured while submerged in a high-calcium medium for 4 days. Then, they were cultured at an air-liquid interface for 3 weeks. Cultures of hAE cells proliferated at the air-liquid interface. After 3 weeks, the hAE cells cultivated using the air-liquid interface method lead to almost 10 continuous layers of stratified epithelium without parakeratinization or keratinization. It confirmed immunohistochemically that the presence of CK10/13 and Ki-67 positive cells were spread throughout almost all the epithelial layer, and that CK19 positive cells were expressed throughout the entire epithelial layer in the cultured hAE cell sheets. Cultured hAE cells sheets showed a staining pattern similar to that of uncultured oral mucosa: ZO-1 and occludin were located in the intercellular junctions throughout all the epithelial layers. It was suggested that the hAE sheets consisted of highly-active proliferating cells and undifferentiated cells, and had a barrier function. These results suggested that hAE cells may be a promising cell source for the development of stratified epithelium allograft sheets using a human cell strain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek

    2016-01-01

    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  3. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    Science.gov (United States)

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  4. Membrane properties of smooth muscle cells in pulmonary hypertensive rats.

    Science.gov (United States)

    Suzuki, H; Twarog, B M

    1982-05-01

    The membrane properties of smooth muscle cells in rat main pulmonary artery (MPA) and small pulmonary artery (SPA) were investigated during chronic normobaric hypoxia and after monocrotaline injection. As chronic pulmonary hypertension developed, pronounced differences between MPA and SPA were observed. These findings may shed light on mechanisms of smooth muscle hypertrophy. 1) The resting membrane potential of smooth muscle in MPA became less negative than the normal (depolarized), whereas the resting membrane potential of smooth muscle in SPA became more negative (hyperpolarized). 2) In MPA, both the length and time constants diminished. 3) In MPA, the maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] decreased. 4) In SPA, the depolarization observed in K+-free solution was more rapid and greater in amplitude, and the transient hyperpolarization following restoration of K+-containing solution increased. 5) In SPA, initial and sustained depolarization evoked by Na+-deficient solutions were increased. 6) Depolarization in MPA was due to increased membrane permeability, perhaps to Cl-, whereas hyperpolarization in SPA could be attributed to increased activity of an electrogenic Na+-K+ pump.

  5. Measuring H+ pumping and membrane potential formation in sealed membrane vesicle systems

    DEFF Research Database (Denmark)

    Wielandt, Alex Green; Palmgren, Michael Broberg; Fuglsang, Anja Thoe

    2016-01-01

    is not converted into a product and only moves a few nanometers in space. Here, we describe two methods for the measurement of active proton pumping across lipid bilayers and the concomitant formation of a membrane potential, applying the dyes 9-amino-6-chloro-2-methoxyacridine (ACMA) and oxonol VI. The methods...... are exemplified by assaying transport of the Arabidopsis thaliana plasma membrane H(+)-ATPase (proton pump), which after heterologous expression in Saccharomyces cerevisiae and subsequent purification has been reconstituted in proteoliposomes....

  6. [Parotid basal cell adenoma of membranous type].

    Science.gov (United States)

    Farah-Klibi, Faten; Ferchiou, Malek; Kourda, Jihène; El Amine, Olfa; Ferjaoui, Mohamed; Ben Jilani, Sarrah; Zermani, Rachida

    2009-02-01

    Basal cell adenoma (BCA) is a rare benign neoplasm characterized by the basaloid appearance of the tumour cells and the lack of myxo-chondroid stromal component present in pleomorphic adenoma. We report a case of basal cell adenoma of membranous type, highly suspected of malignancy because of the presence of mediastinal lymph nodes and pulmonary nodules which finally were related to an associated sarcoidosis. Our patient was an 80-year-old woman who presented a swelling of the right parotid two years ago. The clinical examination revealed a solid, indolent and mobile mass. A chest radiography noted mediastinal lymph nodes. The CT-scan confirmed the presence of mediastinal and tracheal lymph nodes with pulmonary nodules. So the diagnosis of metastatic malignant salivary gland tumor was suspected. Finally, the histological examination concluded to a basal cell adenoma of membranous type with sarcoidosis granulomas in the parotid and in the lymph nodes. The BCA is a benign tumor located generally in the parotid gland. When the malignancy is suspected, like in our case, this tumor must be differentiated from the basal cell adenocarcinoma using histological criteria.

  7. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  8. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane......Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... curvature near the edges. We propose that curvature force is utilized together with annexin A6-mediated constriction force to pull the wound edges together for eventual fusion. We show that annexin A4 can counteract various plasma membrane disruptions including holes of several micrometers indicating...

  9. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.

    Science.gov (United States)

    Almarwani, Bashiyar; Phambu, Esther Nzuzi; Alexander, Christopher; Nguyen, Ha Aimee T; Phambu, Nsoki; Sunda-Meya, Anderson

    2018-06-01

    The cell-penetrating peptide (CPP) Pep-1 presents a great potential in drug delivery due to its intrinsic property to cross plasma membrane. However, its mechanism of entry into the cell remains unresolved. In this study, we compare the selectivity of Pep-1 towards vesicles mimicking normal and cancer cell membranes. The interaction was performed in a wide range of peptide-to-lipid molar ratios using infrared (IR), fluorescence, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. At low peptide concentration, fluorescence experiments show that lipid-phosphatidylserine (PS) seems to enable Pep-1 translocation into cancer cell membrane as evidenced by the blue shift of its maximal emission wavelength. DSC data show that Pep-1 induces segregation of lipids. At high peptide concentration, IR data indicate that the interaction of Pep-1 is relatively stronger with normal cell membrane than with cancer cell membrane through the phosphate groups, while the interaction is weaker with normal cell membrane than with cancer cell membrane through the carbonyl groups. TGA and DSC data reveal that vesicles of normal cell membrane are thermally more stable than vesicles of cancer cell membrane. This suggests that the additional lipid PS included in cancer cell membrane has a destabilizing effect on the membrane structure. SEM images reveal that Pep-1 form superstructures including spherical particles and fibrils in the presence of both model membranes. PS seems to enhance peptide transport across cellular membranes. The biophysical techniques in this study provide valuable insights into the properties of CPPs in drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  11. Membrane, action, and oscillatory potentials in simulated protocells

    Science.gov (United States)

    Syren, R. M.; Fox, S. W.; Przybylski, A. T.; Stratten, W. P.

    1982-01-01

    Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KCl) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.

  12. A Pathogenic Potential of Acinetobacter baumannii-Derived Membrane Vesicles

    Directory of Open Access Journals (Sweden)

    Jong Suk Jin

    2011-12-01

    Full Text Available Acinetobacter baumannii secretes outer membrane vesicles (OMVs. A. baumannii OMVs deliver many virulence factors to host cells and then induce cytotoxicity and innate immune response. OMVs secreted from bacteria contribute directly to host pathology during A. baumannii infection.

  13. Role of membrane potential on artificial transformation of E. coli with plasmid DNA.

    Science.gov (United States)

    Panja, Subrata; Saha, Swati; Jana, Bimal; Basu, Tarakdas

    2006-12-15

    The standard method of transformation of Escherichea coli with plasmid DNA involves two important steps: cells are first suspended in 100mM CaCl(2) at 0 degrees C (in which DNA is added), followed by the administration of a heat-pulse from 0 to 42 degrees C for 90s [Cohen, S., Chang, A., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria. Proc. Natl. Acad. Sci. U.S.A., 69, 2110-2114]. The first step makes the cells competent for uptake of DNA and the second step is believed to facilitate the DNA entry into the cells by an unknown mechanism. In this study, the measure of membrane potential of the intact competent cells, at different steps of transformation process, either by the method of spectrofluorimetry or that of flow cytometry, indicates that the heat-pulse step (0-->42 degrees C) heavily decreases the membrane potential. A subsequent cold shock (42-->0 degrees C) raises the potential further to its original value. Moreover, the efficiency of transformation of E. coli XL1 Blue cells with plasmid pUC19 DNA remains unaltered when the heat-pulse step is replaced by the incubation of the DNA-adsorbed competent cells with 10 microM carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for 90s at 0 degrees C. Since the CCCP, a well-known protonophore, reduces membrane potential by dissipating the proton-motive-force (PMF) across E. coli plasma membrane, our experimental results suggest that the heat-pulse step of the standard transformation procedure facilitates DNA entry into the cells by lowering the membrane potential.

  14. Membrane rafts of the human red blood cell.

    Science.gov (United States)

    Ciana, Annarita; Achilli, Cesare; Minetti, Giampaolo

    2014-01-01

    The cell type of election for the study of cell membranes, the mammalian non-nucleated erythrocyte, has been scarcely considered in the research of membrane rafts of the plasma membrane. However, detergent-resistant-membranes (DRM) were actually first described in human erythrocytes, as a fraction resisting solubilization by the nonionic detergent Triton X-100. These DRMs were insoluble entities of high density, easily pelleted by centrifugation, as opposed to the now accepted concept of lipid raft-like membrane fractions as material floating in low-density regions of sucrose gradients. The present article reviews the available literature on membrane rafts/DRMs in human erythrocytes from an historical point of view, describing the experiments that provided the solution to the above described discrepancy and suggesting possible avenue of research in the field of membrane rafts that, moving from the most studied model of living cell membrane, the erythrocyte's, could be relevant also for other cell types.

  15. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng

    2013-01-01

    A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1...

  16. Recording membrane potential changes through photoacoustic voltage sensitive dye

    DEFF Research Database (Denmark)

    Zhang, Haichong K.; Kang, Jeeun; Yan, Ping

    2017-01-01

    Monitoring of the membrane potential is possible using voltage sensitive dyes (VSD), where fluorescence intensity changes in response to neuronal electrical activity. However, fluorescence imaging is limited by depth of penetration and high scattering losses, which leads to low sensitivity in viv...

  17. Role of the Transmembrane Potential in the Membrane Proton Leak

    Czech Academy of Sciences Publication Activity Database

    Ruprecht, A.; Sokolenko, E. A.; Beck, V.; Ninnemann, O.; Jabůrek, Martin; Trimbuch, T.; Klishin, S. S.; Ježek, Petr; Skulachev, V. P.; Pohl, E. E.

    2010-01-01

    Roč. 98, č. 8 (2010), s. 1503-1511 ISSN 0006-3495 R&D Projects: GA MŠk ME09018; GA ČR(CZ) GA303/07/0105 Institutional research plan: CEZ:AV0Z50110509 Keywords : proton leak * membrane potential * uncoupling proteins Subject RIV: BO - Biophysics Impact factor: 4.218, year: 2010

  18. Potential applications of electron emission membranes in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bilevych, Yevgen [Fraunhofer Institute for Reliability and Microintegration (IZM), Berlin (Germany); University of Bonn, Bonn (Germany); Brunner, Stefan E. [Delft University of Technology, Delft (Netherlands); Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Vienna (Austria); Chan, Hong Wah; Charbon, Edoardo [Delft University of Technology, Delft (Netherlands); Graaf, Harry van der, E-mail: vdgraaf@nikhef.nl [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Hagen, Cornelis W. [Delft University of Technology, Delft (Netherlands); Nützel, Gert; Pinto, Serge D. [Photonis, Roden (Netherlands); Prodanović, Violeta [Delft University of Technology, Delft (Netherlands); Rotman, Daan [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); University of Amsterdam, Amsterdam (Netherlands); Santagata, Fabio [State Key Lab for Solid State Lighti Changzhou base, F7 R& D HUB 1, Science and Education Town, Changzhou 213161, Jangsu Province (China); Sarro, Lina; Schaart, Dennis R. [Delft University of Technology, Delft (Netherlands); Sinsheimer, John; Smedley, John [Brookhaven National Laboratory, Upton, NY (United States); Tao, Shuxia; Theulings, Anne M.M.G. [Delft University of Technology, Delft (Netherlands); Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2016-02-11

    With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.

  19. membrane potential change effects on cationic and neutral drug

    African Journals Online (AJOL)

    USER

    NWAFOR A AND COAKLEY W. T. 1Department of Human Physiology, College of Health Sciences University Of Port Harcourt,. Nigeria. 2School of Pure and Applied Biology University of Wales, College of Cardiff, Cathay's Park,. Cardiff, U.K.. The effect of membrane potential change of the human erythrocytes on cationic ...

  20. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra

    2006-06-01

    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  1. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Science.gov (United States)

    Meng, Yao; Liu, Man; Wang, Shao-An; Mo, An-Chun; Huang, Cui; Zuo, Yi; Li, Ji-Dong

    2008-11-01

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membrane.

  2. Ion permeability of artificial membranes evaluated by diffusion potential and electrical resistance measurements.

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-12-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and n-decane. The electrical resistance and potential difference across these membranes can be easily measured using a low-cost volt-ohm meter and home-made Ag/AgCl electrodes. The advantage of the model is the lack of ionic selectivity of the membrane, which can be modified by the introduction of different ionophores to the organic liquid mixture. A membrane treated with the mixture containing valinomycin generates voltages from -53 to -25 mV in the presence of a 10-fold KCl gradient (in to out) and from -79 to -53 mV in the presence of a bi-ionic KCl/NaCl gradient (in to out). This latter bi-ionic gradient potential reverses to a value from +9 to +20 mV when monensin is present in the organic liquid mixture. Thus, the model can be build stepwise, i.e., all factors leading to the development of diffusion potentials can be introduced sequentially, helping students to understand the quantitative relationships of ionic gradients and differential membrane permeability in the generation of cell electrical signals.

  3. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  4. Infection-Induced Thrombin Production: A Potential Novel Mechanism for Preterm Premature Rupture of Membranes (PPROM).

    Science.gov (United States)

    Feng, Liping; Allen, Terrence K; Marinello, William P; Murtha, Amy P

    2018-04-13

    decidua cells was perinuclear and cytoplasmic. Prothrombin mRNA and protein expression in fetal membranes was significantly increased by U. parvum, but not lipopolysaccharide, treatments in a dose-dependent manner. Specifically, U. parvum at a dose of 1x10 7 cfu/ml significantly increased both prothrombin mRNA (fold changes in amnion: 4.1±1.9; chorion: 5.7±4.2; decidua: 10.0±5.4; FM: 9.2±3.0) and protein expression (fold changes in amnion: 138.0±44.0; chorion: 139.6±15.1; decidua: 56.9±29.1; fetal membrane: 133.1±40.0) compared to untreated controls. U. parvum at a dose of 1x10 6 cfu/ml significantly upregulated prothrombin protein expression in chorion cells (fold change: 54.9±5.3) and prothrombin mRNA expression in decidua cells (fold change: 4.4±1.9). Our results demonstrate that prothrombin can be directly produced by fetal membrane amnion, chorion, and decidua cells. Further, prothrombin production can be stimulated by U. parvum exposure in fetal membranes. These findings represent a potential novel underlying mechanism of U. parvum-induced rupture of fetal membranes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Science.gov (United States)

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  6. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  7. The trans-membrane potential of biological membranes in computer simulation

    Czech Academy of Sciences Publication Activity Database

    Melcr, Josef; Timr, Štěpán; Jungwirth, Pavel

    2015-01-01

    Roč. 44, Suppl 1 (2015), S170 ISSN 0175-7571. [EBSA European Biophysics Congress /10./. 18.07.2015-22.07.2015, Dresden] Institutional support: RVO:61388963 Keywords : molecular dynamics * trans-membrane potential Subject RIV: CF - Physical ; Theoretical Chemistry

  8. Preparation and characterization of Nafion/titanium dioxide nanocomposite membranes for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci; Devrim, Yilser; Erkan, Serdar [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Bac, Nurcan [Yeditepe Univ., Istanbul (Turkey). Dept. of Chemical Engineering

    2010-07-01

    In the present study, Nafion/Titanium dioxide (TiO{sub 2}) nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFC) were investigated. Nafion/TiO{sub 2} membranes were prepared using the recasting procedure. The composite membranes have been characterized by thermal analysis, XRD, SEM, proton conductivity measurements and single cell performance. Thermal analysis results showed that the composite membranes have good thermal properties. The introduction of the inorganic filler supplies the composite membrane with a good thermal resistance. The physico-chemical properties studied by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques have proved the uniform and homogeneous distribution of TiO{sub 2} and the consequent enhancement of crystalline character of these membranes. The energy dispersive spectra (EDS) analysis indicated that the distribution of Ti element on the surface of the composite membrane was uniform. Performances of fabricated Membrane electrode assembly (MEA)'s measured via the PEMFC test station built at METU Fuel Cell Technology Laboratory. A single cell with a 5 cm{sup 2} active area was used in the experiments. These results should be conducive to the preparation of membranes suitable for PEMFC. We believe that Nafion/TiO{sub 2} nano composite membranes have good prospects for use in PEMFC. (orig.)

  9. Channels in cell membranes and synchrotron radiation

    International Nuclear Information System (INIS)

    Yan Xiaohui; Tian Liang; Zhang Xinyi

    2004-01-01

    For long time a lot of scientists have devoted to study how matter, such as water molecules and K + , Na + , Ca 2+ , Cl - ions, move through cell membranes and complete the matter exchange between the inside and outside of cells. Peter Agre discovered and characterized the first water channel protein in 1988 and Roderick MacKinnon elucidated the structural and mechanistic basis for ion channel function in 1998. These achievements have made it possible for us to 'see' these exquisitely designed molecular machines in action at the atomic level. The Nobel Prize in Chemistry for 2003 is shared between these two scientists. In determining the high resolution 3D structure of these channels, the synchrotron X-ray diffraction plays an important role

  10. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    Science.gov (United States)

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  11. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  12. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of ...

  13. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  14. An Unusual Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential

    Directory of Open Access Journals (Sweden)

    Joachim Michael Matz

    2018-04-01

    Full Text Available Summary: Proteins of the stomatin/prohibitin/flotillin/HfIK/C (SPFH family are membrane-anchored and perform diverse cellular functions in different organelles. Here, we investigate the SPFH proteins of the murine malaria model parasite Plasmodium berghei, the conserved prohibitin 1, prohibitin 2, and stomatin-like protein and an unusual prohibitin-like protein (PHBL. The SPFH proteins localize to the parasite mitochondrion. While the conserved family members could not be deleted from the Plasmodium genome, PHBL was successfully ablated, resulting in impaired parasite fitness and attenuated virulence in the mammalian host. Strikingly, PHBL-deficient parasites fail to colonize the Anopheles vector because of complete arrest during ookinete development in vivo. We show that this arrest correlates with depolarization of the mitochondrial membrane potential (ΔΨmt. Our results underline the importance of SPFH proteins in the regulation of core mitochondrial functions and suggest that fine-tuning of ΔΨmt in malarial parasites is critical for colonization of the definitive host. : Matz et al. present an experimental genetics study of an unusual prohibitin-like protein in the malaria parasite and find that it regulates mitochondrial membrane polarity. Ablation of this protein causes almost complete mitochondrial depolarization in the mosquito vector, which, in turn, leads to a block in malaria parasite transmission. Keywords: Plasmodium berghei, malaria, SPFH, prohibitin, stomatin-like protein, mitochondrion, membrane potential, ookinete, transmission

  15. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Haryadi,; Sugianto, D.; Ristopan, E.

    2015-01-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm −1 and 3300 cm −1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10 −2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  16. Application of the nanocomposite membrane as electrolyte of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Mahreni

    2010-01-01

    Hydrogen fuel cells proton exchange membrane fuel cell (PEMFC) is currently still in development and commercialization. Several barriers to the commercialization of these Nafion membrane as electrolyte is its very sensitive to humidity fluctuation. Nafion must be modified by making a composite Nafion-SiO 2 -HPA to increase electrolyte resistance against humidity fluctuations during the cell used. Research carried out by mixing Nafion solution with Tetra Ethoxy Ortho Silicate (TEOS) and conductive materials is phosphotungstic acid (PWA) by varying the ratio of Nafion, TEOS and PWA. The membrane is produced by heating a mixture of Nafion, TEOS and PWA by varying the evaporation temperature, time and annealing temperature to obtain the transparent membrane. The resulting membrane was analyzed its physical, chemical and electrochemical properties by applying the membrane as electrolyte of PEMFC at various humidity and temperature of operation. The results showed that at low temperatures (30-90 °C) and high humidity at 100 % RH, pure Nafion membrane is better than composite membrane (Nafion-SiO 2 -PWA), but at low humidity condition composite membrane is better than the pure Nafion membrane. It can be concluded that the composite membranes of (Nafion-SiO 2 -PWA) can be used as electrolyte of PEMFC operated at low humidity (40 % RH) and temperature between (30-90 °C). (author)

  17. Proton Exchange Membrane Fuel Cell Reversal: A Review

    Directory of Open Access Journals (Sweden)

    Congwei Qin

    2016-12-01

    Full Text Available The H2/air-fed proton exchange membrane fuel cell (PEMFC has two major problems: cost and durability, which obstruct its pathway to commercialization. Cell reversal, which would create irreversible damage to the fuel cell and shorten its lifespan, is caused by reactant starvation, load change, low catalyst performance, and so on. This paper will summarize the causes, consequences, and mitigation strategies of cell reversal of PEMFC in detail. A description of potential change in the anode and cathode and the differences between local starvation and overall starvation are reviewed, which gives a framework for comprehending the origins of cell reversal. According to the root factor of cell starvation, i.e., fuel cells do not satisfy the requirements of electrons and protons of normal anode and cathode chemical reactions, we will introduce specific methods to mitigate or prevent fuel cell damage caused by cell reversal in the view of system management strategies and component material modifications. Based on a comprehensive understanding of cell reversal, it is beneficial to operate a fuel cell stack and extend its lifetime.

  18. Pharmacological targeting of membrane rigidity: implications on cancer cell migration and invasion

    International Nuclear Information System (INIS)

    Braig, Simone; Stoiber, Katharina; Zahler, Stefan; Vollmar, Angelika M

    2015-01-01

    The invasive potential of cancer cells strongly depends on cellular stiffness, a physical quantity that is not only regulated by the mechanical impact of the cytoskeleton but also influenced by the membrane rigidity. To analyze the specific role of membrane rigidity in cancer progression, we treated cancer cells with the Acetyl-CoA carboxylase inhibitor Soraphen A and revealed an alteration of the phospholipidome via mass spectrometry. Migration, invasion, and cell death assays were employed to relate this alteration to functional consequences, and a decrease of migration and invasion without significant impact on cell death has been recorded. Fourier fluctuation analysis of giant plasma membrane vesicles showed that Soraphen A increases membrane rigidity of carcinoma cell membranes. Mechanical measurements of the creep deformation response of whole intact cells were performed using the optical stretcher. The increase in membrane rigidity was observed in one cell line without changing the creep deformation response indicating no restructuring of the cytoskeleton. These data indicate that the increase of membrane rigidity alone is sufficient to inhibit invasiveness of cancer cells, thus disclosing the eminent role of membrane rigidity in migratory processes. (paper)

  19. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  20. Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes.

    Science.gov (United States)

    Gassull, Daniel; Ulman, Abraham; Grunze, Michael; Tanaka, Motomu

    2008-05-08

    We deposit phospholipid monolayers on highly doped p-GaAs electrodes that are precoated with methyl-mercaptobiphenyl monolayers and operate such a biofunctional electrolyte-insulator-semiconductor (EIS) setup as an analogue of a metal-oxide-semiconductor setup. Electrochemical impedance spectra measured over a wide frequency range demonstrate that the presence of a lipid monolayer remarkably slows down the diffusion of ions so that the membrane-functionalized GaAs can be subjected to electrochemical investigations for more than 3 days with no sign of degradation. The biofunctional EIS setup enables us to translate changes in the surface charge density Q and bias potentials Ubias into the change in the interface capacitance Cp. Since Cp is governed by the capacitance of semiconductor space charge region CSC, the linear relationships obtained for 1/Cp2 vs Q and 1/Cp2 vs Ubias suggests that Cp can be used to detect the surface charges with a high sensitivity (1 charge per 18 nm2). Furthermore, the kinetics of phospholipids degradation by phospholipase A2 can also be monitored by a significant decrease in diffusion coefficients through the membrane by a factor of 104. Thus, the operation of GaAs membrane composites established here allows for electrochemical sensing of surface potential and barrier capability of biological membranes in a quantitative manner.

  1. Nanoscale spin sensing in artificial cell membranes

    International Nuclear Information System (INIS)

    Simpson David

    2014-01-01

    The use of the nitrogen-vacancy (NV) centre in diamond as a single spin sensor or magnetometer has attracted considerable interest in recent years because of its unique combination of sensitivity, nanoscale resolution, and optical initialisation and readout at room temperature. Nanodiamonds in particular hold great promise as an optical magnetometer probe for bio applications. In this work we employ nanodiamonds containing single NV spins to detect freely diffusing Mn2+ ions by detecting changes in the transverse relaxation time (T2) of the single spin probe. We also report the detection of gadolinium spin labels present in an artificial cell membrane by measuring changes in the longitudinal relaxation time (T1) of the probe. (author)

  2. Demineralized Freeze-Dried Bovine Cortical Bone: Its Potential for Guided Bone Regeneration Membrane

    Directory of Open Access Journals (Sweden)

    David B. Kamadjaja

    2017-01-01

    Full Text Available Background. Bovine pericardium collagen membrane (BPCM had been widely used in guided bone regeneration (GBR whose manufacturing process usually required chemical cross-linking to prolong its biodegradation. However, cross-linking of collagen fibrils was associated with poorer tissue integration and delayed vascular invasion. Objective. This study evaluated the potential of bovine cortical bone collagen membrane for GBR by evaluating its antigenicity potential, cytotoxicity, immune and tissue response, and biodegradation behaviors. Material and Methods. Antigenicity potential of demineralized freeze-dried bovine cortical bone membrane (DFDBCBM was done with histology-based anticellularity evaluation, while cytotoxicity was analyzed using MTT Assay. Evaluation of immune response, tissue response, and biodegradation was done by randomly implanting DFDBCBM and BPCM in rat’s subcutaneous dorsum. Samples were collected at 2, 5, and 7 days and 7, 14, 21, and 28 days for biocompatibility and tissue response-biodegradation study, respectively. Result. DFDBCBM, histologically, showed no retained cells; however, it showed some level of in vitro cytotoxicity. In vivo study exhibited increased immune response to DFDBCBM in early healing phase; however, normal tissue response and degradation rate were observed up to 4 weeks after DFDBCBM implantation. Conclusion. Demineralized freeze-dried bovine cortical bone membrane showed potential for clinical application; however, it needs to be optimized in its biocompatibility to fulfill all requirements for GBR membrane.

  3. K+ transport and membrane potentials in isolated rat parotid acini

    Energy Technology Data Exchange (ETDEWEB)

    Nauntofte, B.; Dissing, S.

    1988-10-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels.

  4. K+ transport and membrane potentials in isolated rat parotid acini

    International Nuclear Information System (INIS)

    Nauntofte, B.; Dissing, S.

    1988-01-01

    42K+ transport properties of isolated rat parotid acini were characterized concomitant with measurements of membrane potentials (Em) by means of the fluorescent dye diSC3-(5). In unstimulated acini suspended in a 5 mM K+ buffer, Em was governed by the K+ and Cl- gradients and amounted to about -59 mV, a value that remained unaffected on cholinergic stimulation. In unstimulated acini, 42K+ influx was largely mediated by the Na+-K+ pump, and the residual influxes were mediated by a bumetanide-sensitive component (cotransport system) and by K+ channels. Efflux of 42K+ was largely mediated by a bumetanide-sensitive component and by K+ channels. In the unstimulated state, the cotransport system was mediating K+-K+ exchange without contributing to the net uptake of K+. Within 10 s after stimulation, a approximately 10-fold increase in the acinar K+ conductance (gK) occurred, resulting in a rapid net efflux of K+ that amounted to approximately 3.8 mmol.l cells-1.s-1. Measurements of 42K+ fluxes as a function of the external K+ concentration revealed that in the stimulated state gK increases when external K+ is raised from 0.7 to 10 mM, consistent with an activation of acinar gK by the binding of external K+ to the channel. 42K+ flux ratios as well as the effect of the K+ channel inhibitor from scorpion venom (LQV) suggest that approximately 90% of K+ transport in the stimulated state is mediated by ''maxi'' K+ channels

  5. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N

    2009-01-01

    Cell surface membrane proteins are involved in central processes such as cell signaling, cell-cell interactions, ion and solute transport, and they seem to play a pivotal role in several steps of the metastatic process of cancer cells. The low abundance and hydrophobic nature of cell surface...... membrane proteins complicate their purification and identification by MS. We used two isogenic cell lines with opposite metastatic capabilities in nude mice to optimize cell surface membrane protein purification and to identify potential novel markers of metastatic cancer. The cell surface membrane...... peptides of which 622 (300 at SL80) were membrane proteins. The quantitative proteomic analysis identified 16 cell surface proteins as potential markers of the ability of breast cancer cells to form distant metastases....

  6. Roles of membrane trafficking in plant cell wall dynamics

    Directory of Open Access Journals (Sweden)

    Kazuo eEbine

    2015-10-01

    Full Text Available The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall.

  7. [Effect of extracted ZG from gardenia on Hep-2 cell membrane post infected with parainfluenza virus type 1 (PIV-1)].

    Science.gov (United States)

    Guo, Shan-Shan; Huang, Yang; Zhao, Ye; Gao, Ying-Jie; Gong, Wen-Feng; Cui, Xiao-Lan

    2007-09-01

    In order to study the anti-viral mechanism of extracted ZG from Gardenia, the effect of extracted ZG on Hep-2 cell membrane potential, Na -K+-ATPase activity and membrane fluidity post infected with parainfluenza virus type 1 (PIV-1) was observed. Acetylcholine which was fluorescent labeled with DiBAC4 (3) was taken as positive control to observe the changes of membrane potential and was measured by flow cytometer. The phosphorus determination method and spectrophotometer were used to measure the Na+-K+-ATPase activity of Hep-2 cell membrane post PIV-1 infection. Hep-2 cell membrane phospholipids was labeled with fluorescent NBD-C6-HPC and membrane fluidity was measured by confocal laser scanning microscope. The results demonstated that after PIV-1 infection the Hep-2 cell membrane potential decreased significantly and the membrane was in the state of hyperpolarization, Na+-K+-ATPase activity increased and membrane fluidity decreased significantly. There was no apparent interferring effect of extracted ZG on the changes of membrane potential and Na+-K+-ATPase activity post PIV-1 infection, while membrane fluidity was improved significantly. Acetylcholine improved the state of hyperpolarization. The changes of membrane potential, Na -K+-ATPase activity and membrane fluidity might be the biomechanism of PIV-1 infectoin. The extracted ZG improved membrane fluidity to prevent from PIV-1 infection by protecting the cell membrane, which was probably the mechanism of anti-PIV-1 activity of the extracted ZG, but ZG probably had nothing to do with membrane potential and Na+-K+-ATPase activity.

  8. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES.

    Science.gov (United States)

    Bokori-Brown, Monika; Petrov, Peter G; Khafaji, Mawya A; Mughal, Muhammad K; Naylor, Claire E; Shore, Angela C; Gooding, Kim M; Casanova, Francesco; Mitchell, Tim J; Titball, Richard W; Winlove, C Peter

    2016-05-06

    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Membrane phospholipids and radiation-induced death of mammalian cells

    International Nuclear Information System (INIS)

    Wolters, H.

    1987-01-01

    Radiation-induced cell killing is generally believed to be a consequence of residual DNA damage or damage that is mis-repaired. However, besides this DNA damage, damage to other molecules or structures of the cell may be involved in the killing. Especially membranes have been suggested as a determinant in cellular radiosensitivity. In this thesis experiments are described, dealing with the possible involvement of membranes in radiation-induced killing of mammalian cells. A general treatise of membrane structure is followed by information concerning deleterious effects of radiation on membranes. Consequences of damage to structure and function of membranes are reviewed. Thereafter evidence relating to the possible involvement of membranes in radiation-induced cell killing is presented. (Auth.)

  10. Membrane tension and cytoskeleton organization in cell motility.

    Science.gov (United States)

    Sens, Pierre; Plastino, Julie

    2015-07-15

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  11. Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane.

    Science.gov (United States)

    Bae, Sang-Ho; Son, So-Ra; Kumar Sakar, Swapan; Nguyen, Thi-Hiep; Kim, Shin-Woo; Min, Young-Ki; Lee, Byong-Taek

    2014-05-01

    A common and prevailing complication for patients with abdominal surgery is the peritoneal adhesion that follows during the post-operative recovery period. Biodegradable polymers have been suggested as a barrier to prevent the peritoneal adhesion. In this work, as a preventive method, PVA/Gelatin hydrogel-based membrane was investigated with various combinations of PVA and gelatin (50/50, 30/70/, and 10/90). Membranes were made by casting method using hot PVA-gelatin solution and the gelatin was cross-linked by exposing UV irradiation for 5 days to render stability of the produced sheathed form in the physiological environment. Physical crosslinking was chosen to avoid the problems of potential cytotoxic effect of chemical crosslinking. Their materials characterization and mechanical properties were evaluated by SEM surface characterization, hydrophilicity, biodegradation rate, and so forth. Cytocompatibility was observed by in vitro experiments with cell proliferation using confocal laser scanning microscopy and the MTT assay by L-929 mouse fibroblast cells. The fabricated PVA/Gel membranes were implanted between artificially defected cecum and peritoneal wall in rats and were sacrificed after 1 and 2 weeks post-operative to compare their tissue adhesion extents with that of control group where the defected surface was not separated by PVA/Gel membrane. The PVA/Gel membrane (10/90) significantly reduced the adhesion extent and showed to be a potential candidate for the anti-adhesion application. Copyright © 2013 Wiley Periodicals, Inc.

  12. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pivovar, B.

    2012-02-01

    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  13. Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord.

    Science.gov (United States)

    Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena

    2017-05-01

    Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells

    Directory of Open Access Journals (Sweden)

    Sokolowska Izabela

    2012-08-01

    Full Text Available Abstract Liver infection with hepatitis B virus (HBV, a DNA virus of the Hepadnaviridae family, leads to severe disease, such as fibrosis, cirrhosis and hepatocellular carcinoma. The early steps of the viral life cycle are largely obscure and the host cell plasma membrane receptors are not known. HepaRG is the only proliferating cell line supporting HBV infection in vitro, following specific differentiation, allowing for investigation of new host host-cell factors involved in viral entry, within a more robust and reproducible environment. Viral infection generally begins with receptor recognition at the host cell surface, following highly specific cell-virus interactions. Most of these interactions are expected to take place at the plasma membrane of the HepaRG cells. In the present study, we used this cell line to explore changes between the plasma membrane of undifferentiated (− and differentiated (+ cells and to identify differentially-regulated proteins or signaling networks that might potentially be involved in HBV entry. Our initial study identified a series of proteins that are differentially expressed in the plasma membrane of (− and (+ cells and are good candidates for potential cell-virus interactions. To our knowledge, this is the first study using functional proteomics to study plasma membrane proteins from HepaRG cells, providing a platform for future experiments that will allow us to understand the cell-virus interaction and mechanism of HBV viral infection.

  15. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...

  16. Electric field modulation of the membrane potential in solid-state ion channels.

    Science.gov (United States)

    Guan, Weihua; Reed, Mark A

    2012-12-12

    Biological ion channels are molecular devices that allow a rapid flow of ions across the cell membrane. Normal physiological functions, such as generating action potentials for cell-to-cell communication, are highly dependent on ion channels that can open and close in response to external stimuli for regulating ion permeation. Mimicking these biological functions using synthetic structures is a rapidly progressing yet challenging area. Here we report the electric field modulation of the membrane potential phenomena in mechanically and chemically robust solid-state ion channels, an abiotic analogue to the voltage-gated ion channels in living systems. To understand the complex physicochemical processes in the electric field regulated membrane potential behavior, both quasi-static and transient characteristics of converting transmembrane ion gradients into electric potential are investigated. It is found that the transmembrane potential can be adequately tuned by an external electrical stimulation, thanks to the unique properties of the voltage-regulated selective ion transport through a nanoscale channel.

  17. Large Deformation Mechanics of Plasma Membrane Chained Vesicles in Cells

    Science.gov (United States)

    Kosawada, Tadashi; Sanada, Kouichi; Takano, Tetsuo

    The clathrin-coated pits, vesicles and chained vesicles on the inner surface of the plasma membrane facilitate the cell to transport specific extracellular macromolecules. This cellular process is strongly involved with large mechanical deformations of the plasma membrane accompanied by changes in membrane curvature. The assembly of the clathrin coat is thought to provide curvature into the membrane. Hence, effects of in-plane shear elasticity due to these coat structure may be significant on the vesicular mechanics. In this study, large deformation mechanics of plasma membrane chained vesicles in cells have been formulated based on minimization of bending and in-plane shear strain energy of the membrane. Effects of outer surrounding cytoplasmic flat membrane upon mechanically stable shapes of the vesicles were revealed, while effects of in-plane shear elasticity were partly discussed.

  18. Mechanosensitivity of cell membranes. Ion channels, lipid matrix and cytoskeleton.

    Science.gov (United States)

    Petrov, A G; Usherwood, P N

    1994-01-01

    Physical and biophysical mechanisms of mechano-sensitivity of cell membranes are reviewed. The possible roles of the lipid matrix and of the cytoskeleton in membrane mechanoreception are discussed. Techniques for generation of static strains and dynamic curvatures of membrane patches are considered. A unified model for stress-activated and stress-inactivated ion channels under static strains is described. A review of work on stress-sensitive pores in lipid-peptide model membranes is presented. The possible role of flexoelectricity in mechano-electric transduction, e.g. in auditory receptors is discussed. Studies of flexoelectricity in model lipid membranes, lipid-peptide membranes and natural membranes containing ion channels are reviewed. Finally, possible applications in molecular electronics of mechanosensors employing some of the recognized principles of mechano-electric transduction in natural membranes are discussed.

  19. Review of cell performance in anion exchange membrane fuel cells

    Science.gov (United States)

    Dekel, Dario R.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.

  20. Transient response of a proton exchange membrane fuel cell

    Science.gov (United States)

    Weydahl, Helge; Møller-Holst, Steffen; Hagen, Georg; Børresen, Børre

    The transient response of a proton exchange membrane fuel cell (PEMFC) supplied with pure hydrogen and oxygen was investigated by load step measurements assisted by electrochemical impedance spectroscopy and chronoamperometry. Using an in-house designed resistance board, the uncontrolled response in both cell voltage and current upon step changes in a resistive load was observed. The PEMFC was found to respond quickly and reproducibly to load changes. The transient PEMFC response was limited by a cathodic charge transfer process with a potential-dependent response time. For load steps to high-current densitities, a second transient process with a constant response time was observed. This transient was offset from the charge transfer transient by a temporarily stable plateau. Results from chronoamperometry indicated that the second transient could be related to a diffusion process. Transient paths were plotted in the V- i diagram, matching a predicted pattern with overshooting cell voltage and current during a load step.

  1. High performance direct methanol fuel cell with thin electrolyte membrane

    Science.gov (United States)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  2. The Involvement of Mitochondrial Membrane Potential in Cross-Resistance Between Radiation and Docetaxel

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Yoshikazu [Department of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai (Japan); Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Roudkenar, Mehryar Habibi; Suzuki, Masatoshi; Urushihara, Yusuke; Fukumoto, Motoi [Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Saito, Yohei [Department of Radiopharmacy, Tohoku Medical and Pharmaceutical University, Sendai (Japan); Fukumoto, Manabu, E-mail: manabu.fukumoto.a8@tohoku.ac.jp [Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai (Japan); Department of Molecular Pathology, Tokyo Medical University, Tokyo (Japan)

    2016-11-01

    Purpose: To understand the molecular mechanisms underlying cancer cell radioresistance, clinically relevant radioresistant (CRR) cells that continue to proliferate during exposure to 2 Gy/day X-rays for more than 30 days were established. A modified high-density survival assay for anticancer drug screening revealed that CRR cells were resistant to an antimicrotubule agent, docetaxel (DTX). The involvement of reactive oxygen species (ROS) from mitochondria (mtROS) in the cross-resistance to X-rays and DTX was studied. Methods and Materials: Sensitivity to anticancer agents was determined by a modified high-density cell survival or water-soluble tetrazolium salt assay. DTX-induced mtROS generation was determined by MitoSOX red staining. JC-1 staining was used to visualize mitochondrial membrane potential. DTX-induced DNA double-strand breaks were determined by γ-H2AX staining. To obtain mitochondrial DNA-lacking (ρ{sup 0}) cells, the cells were cultured for 3 to 4 weeks in medium containing ethidium bromide. Results: Treatment with DTX increased mtROS in parental cells but not in CRR cells. DTX induced DNA double-strand breaks in parental cells. The mitochondrial membrane potential of CRR cells was lower in CRR cells than in parental cells. Depletion of mtDNA induced DTX resistance in parental cells. Treatment with dimethyl sulfoxide also induced DTX resistance in parental cells. Conclusions: The mitochondrial dysfunction observed in CRR cells contributes to X-ray and DTX cross-resistance. The activation of oxidative phosphorylation in CRR cells may represent an effective approach to overcome radioresistant cancers. In general, the overexpression of β-tubulin or multidrug efflux pumps is thought to be involved in DTX resistance. In the present study, we discovered another DTX resistant mechanism by investigating CRR cells.

  3. Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process

    DEFF Research Database (Denmark)

    Jahn, Patrick; Berg, Rune W; Hounsgaard, Jørn

    2011-01-01

    much better than an Ornstein-Uhlenbeck process with constant diffusion coefficient. Further, the membrane time constant decreases with increasing depolarization, as expected from the increase in synaptic conductance. The network activity, which the neuron is exposed to, can be reasonably estimated...... to be a threshold version of the nerve output from the network. Moreover, the spiking characteristics are well described by a Poisson spike train with an intensity depending exponentially on the membrane potential.......Stochastic leaky integrate-and-fire models are popular due to their simplicity and statistical tractability. They have been widely applied to gain understanding of the underlying mechanisms for spike timing in neurons, and have served as building blocks for more elaborate models. Especially...

  4. Performance enhancement of membrane electrode assemblies with plasma etched polymer electrolyte membrane in PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun; Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea); Bae, Jin Woo; Cho, Yoon-Hwan; Lim, Ju Wan; Ahn, Minjeh; Jho, Jae Young; Sung, Yung-Eun [World Class University (WCU) program of Chemical Convergence for Energy and Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), 599 Gwanak-Ro, Gwanak-gu, Seoul 151-744 (Korea); Kwon, Nak-Hyun [Fuel Cell Vehicle Team 3, Advanced Technology Center, Corporate Research and Development Division, Hyundai-Kia Motors, 104 Mabuk-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-912 (Korea)

    2010-10-15

    In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm{sup -2} at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm{sup -2}). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry. (author)

  5. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...... of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...

  6. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress.

  7. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza

    2016-12-01

    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  8. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.e. me...

  9. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    International Nuclear Information System (INIS)

    Zhang, Xiaojun; Chen, Yuan; Chen, Yong

    2014-01-01

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM) has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release

  10. Development and characterization of proton conductive membranes and membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Jiang, Ruichun

    Polymer electrolyte membrane fuel cells (PEMFCs), including hydrogen fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), are considered as attractive electrical power sources. However, there are some technical obstacles that impede the commercialization of PEMFCs. For instance, in H 2-PEMFCs, carbon monoxide (CO) poisoning of the anode catalyst causes serious performance loss; in DMFCs, methanol crossover through the membrane reduces the overall fuel cell efficiency. This work focused on: (1) developing high performance membrane electrode assemblies (MEAs) and investigating their behavior at higher temperature H2-PEMFC with H2+CO as the fuel; (2) improving DMFCs efficiency by preparing low methanol crossover/good proton conductivity membranes based on NafionRTM matrix; (3) synthesizing and modifying low cost sulfonated hydrocarbon (SPEEK) membranes for both H2-PEMFCs and DMFCs applications. High performance membrane electrode assemblies (MEAs) with composite NafionRTM-TeflonRTM-Zr(HPO 4)2 membranes were prepared, optimized and characterized at higher temperature (> 100°C)/lower relative humidity (oxidation mechanism of H2/CO in higher temperature PEMFC was investigated and simulated. Two type of membranes based on NafionRTM matrix were prepared: silica/NafionRTM membrane and palladium impregnated NafionRTM (Pd-NafionRTM) membrane. The composite silica/NafionRTM membrane was developed by in-situ sol-gel reaction followed by solution casting, while the Pd-NafionRTM was fabricated via a supercritical fluid CO2 (scCO 2) route. Reduced methanol crossover and enhanced efficiency was observed by applying each of the two membranes to DMFCs. In addition, the research demonstrated that scCO2 is a promising technique for modifying membranes or depositing nano-particle electrocatalysts onto electrolyte. Sulfonated poly(ether ether ketone) (SPEEK) was synthesized by a sulfonation reaction using poly(ether ether ketone) (PEEK). Multilayer structure SPEEK membranes with

  11. Interaction of the 106-126 prion peptide with lipid membranes and potential implication for neurotoxicity

    International Nuclear Information System (INIS)

    Dupiereux, Ingrid; Zorzi, Willy; Lins, Laurence; Brasseur, Robert; Colson, Pierre; Heinen, Ernst; Elmoualij, Benaissa

    2005-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by the accumulation in the brain of an abnormally misfolded, protease-resistant, and β-sheet rich pathogenic isoform (PrP sc ) of the cellular prion protein (PrP c ). In the present work, we were interested to study the mode of prion protein interaction with the membrane using the 106-126 peptide and small unilamellar lipid vesicles as model. As previously demonstrated, we showed by MTS assay that PrP 106-126 induces alterations in the human neuroblastoma SH-SY5Y cell line. We demonstrated for the first time by lipid-mixing assay and by the liposome vesicle leakage test that PrP 106-126, a non-tilted peptide, induces liposome fusion thus a potential cell membrane destabilization, as supported by membrane integrity assay (LDH). By circular dichroism (CD) analysis we showed that the fusogenic property of PrP 106-126 in the presence of liposome is associated with a predominantly β-sheet structure. These data suggest that the fusogenic property associated with a predominant β-sheet structure exhibited by the prion peptides contributes to the neurotoxicity of these peptides by destabilizing cellular membranes. The latter might be attached at the membrane surface in a parallel orientation as shown by molecular modeling

  12. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    Science.gov (United States)

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  13. Pyroelectricity as a possible mechanism for cell membrane permeabilization.

    Science.gov (United States)

    García-Sánchez, Tomás; Muscat, Adeline; Leray, Isabelle; Mir, Lluis M

    2018-02-01

    The effects of pyroelectricity on cell membrane permeability had never been explored. Pyroelectricity consists in the generation of an electric field in the surface of some materials when a change in temperature is produced. In the present study, tourmaline microparticles, which are known to display pyroelectrical properties, were subjected to different changes in temperature upon exposure to cells in order to induce an electric field at their surface. Then, the changes in the permeability of the cell membrane to a cytotoxic agent (bleomycin) were assessed by a cloning efficacy test. An increase in the permeability of the cell membrane was only detected when tourmaline was subjected to a change in temperature. This suggests that the apparition of an induced pyroelectrical electric field on the material could actually be involved in the observed enhancement of the cell membrane permeability as a result of cell electropermeabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential.

    Science.gov (United States)

    Chen, Ying-Bei; Aon, Miguel A; Hsu, Yi-Te; Soane, Lucian; Teng, Xinchen; McCaffery, J Michael; Cheng, Wen-Chih; Qi, Bing; Li, Hongmei; Alavian, Kambiz N; Dayhoff-Brannigan, Margaret; Zou, Shifa; Pineda, Fernando J; O'Rourke, Brian; Ko, Young H; Pedersen, Peter L; Kaczmarek, Leonard K; Jonas, Elizabeth A; Hardwick, J Marie

    2011-10-17

    Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x(L) was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x(L) reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F(1)F(O)-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase β subunit in a screen for Bcl-x(L)-binding partners, we tested and found that Bcl-x(L) failed to protect β subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x(L) may contribute importantly to cell survival independently of other Bcl-2 family proteins.

  15. [A probability wave theory on the ion movement across cell membrane].

    Science.gov (United States)

    Zhang, Hui; Xu, Jiadong; Niu, Zhongqi

    2007-04-01

    The ionic quantity across the channel of the cell membrane decides the cell in a certain life state. The theory analysis that existed on the bio-effects of the electro-magnetic field (EMF) does not unveil the relationship between the EMF exerted on the cell and the ionic quantity across the cell membrane. Based on the cell construction, the existed theory analysis and the experimental results, an ionic probability wave theory is proposed in this paper to explain the biological window-effects of the electromagnetic wave. The theory regards the membrane channel as the periodic potential barrier and gives the physical view of the ion movement across cell-membrane. The theory revises the relationship between ion's energy in cell channel and the frequency exerted EMF. After the application of the concept of the wave function, the ionic probability across the cell membrane is given by the method of the quantum mechanics. The numerical results analyze the physical factors that influences the ion's movement across the cell membrane. These results show that the theory can explain the phenomenon of the biological window-effects.

  16. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  17. Models of dynamic extraction of lipid tethers from cell membranes

    International Nuclear Information System (INIS)

    Nowak, Sarah A; Chou, Tom

    2010-01-01

    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers

  18. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  19. Carbon nanotubes based nafion composite membranes for fuel cell applications

    CSIR Research Space (South Africa)

    Cele, NP

    2009-01-01

    Full Text Available composite membranes. Keywords: Carbon Nanotubes, Conductivity, Fuel Cell, Nafion, Nanocomposite Membranes, Thermal Properties, Water Uptake FUEL CELLS 00, 0000, No. 0, 1–8 ? 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 ORIGINA L RESEAR CH PAPE... used strategies to overcome these drawbacks is the modification of Nafion by using polymer nanocomposite (PNC) technology. PNCs have recently shown a worldwide growth effort especially in the fabrication of high temperature PEM for fuel cells [18...

  20. Formation of Cell Membrane Component Domains in Artificial Lipid Bilayer.

    Science.gov (United States)

    Tero, Ryugo; Fukumoto, Kohei; Motegi, Toshinori; Yoshida, Miyu; Niwano, Michio; Hirano-Iwata, Ayumi

    2017-12-20

    The lipid bilayer environment around membrane proteins strongly affects their structure and functions. Here, we aimed to study the fusion of proteoliposomes (PLs) derived from cultured cells with an artificial lipid bilayer membrane and the distribution of the PL components after the fusion. PLs, which were extracted as a crude membrane fraction from Chinese hamster ovary (CHO) cells, formed isolated domains in a supported lipid bilayer (SLB), comprising phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cholesterol (Chol), after the fusion. Observation with a fluorescence microscope and an atomic force microscope showed that the membrane fusion occurred selectively at microdomains in the PC + PE + Chol-SLB, and that almost all the components of the PL were retained in the domain. PLs derived from human embryonic kidney 293 (HEK) cells also formed isolated domains in the PC + PE + Chol-SLB, but their fusion kinetics was different from that of the CHO-PLs. We attempted to explain the mechanism of the PL-SLB fusion and the difference between CHO- and HEK-PLs, based on a kinetic model. The domains that contained the whole cell membrane components provided environments similar to that of natural cell membranes, and were thus effective for studying membrane proteins using artificial lipid bilayer membranes.

  1. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  2. Membrane fusion-competent virus-like proteoliposomes and proteinaceous supported bilayers made directly from cell plasma membranes.

    Science.gov (United States)

    Costello, Deirdre A; Hsia, Chih-Yun; Millet, Jean K; Porri, Teresa; Daniel, Susan

    2013-05-28

    Virus-like particles are useful materials for studying virus-host interactions in a safe manner. However, the standard production of pseudovirus based on the vesicular stomatitis virus (VSV) backbone is an intricate procedure that requires trained laboratory personnel. In this work, a new strategy for creating virus-like proteoliposomes (VLPLs) and virus-like supported bilayers (VLSBs) is presented. This strategy uses a cell blebbing technique to induce the formation of nanoscale vesicles from the plasma membrane of BHK cells expressing the hemagglutinin (HA) fusion protein of influenza X-31. These vesicles and supported bilayers contain HA and are used to carry out single particle membrane fusion events, monitored using total internal reflection fluorescence microscopy. The results of these studies show that the VLPLs and VLSBs contain HA proteins that are fully competent to carry out membrane fusion, including the formation of a fusion pore and the release of fluorophores loaded into vesicles. This new strategy for creating spherical and planar geometry virus-like membranes has many potential applications. VLPLs could be used to study fusion proteins of virulent viruses in a safe manner, or they could be used as therapeutic delivery particles to transport beneficial proteins coexpressed in the cells to a target cell. VLSBs could facilitate high throughput screening of antiviral drugs or pathogen-host cell interactions.

  3. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...

  4. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  5. Effect of Adsorbed Protein on the Hydraulic Permeability, Membrane and Streaming Potential Values Measured across a Microporous Membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1998-01-01

    The effect of the adsorption of a protein, bovine serum albumin (BSA), on the membrane potential, flux reduction and streaming potential measured across a microporous polysulphone membrane with different NaCl solutions and pH values is studied. From electrokinetic phenomena, information about...... as a "composite" or two-layer membrane, and a comparison of the results obtained with both microporous polysulphone and "composite" (microporous + BSA layer) membranes could permit us to determine some parameters related to the protein sublayer. (C) 1998 Elsevier Science B.V....

  6. Membrane orientation of droplets prepared from Chara corallina internodal cells.

    Science.gov (United States)

    Berecki, G; Eijken, M; Van Iren, F; Van Duijn, B

    2001-01-01

    It is generally accepted that the membrane surrounding droplets from characean cells originates from the tonoplast, but there is some uncertainty regarding droplet membrane sidedness. This issue was addressed directly by combining two different droplet isolation methods and the patch clamp technique. Neutral red accumulation was used to demonstrate the presence of H(+)-transport over the membrane and to predict membrane orientation. Two types of droplet populations with differently oriented membranes could be formed in an iso-osmotic bath solution. Cytoplasmic droplets (cytosolic side of the tonoplast inside) contained cytoplasm, while the second type of droplet population contained vacuolar sap (vacuolar droplets, vacuolar side of the tonoplast inside). Smaller vesicels also appeared inside the droplets, with an apparently inversely oriented membrane. Confocal laser scanning microscopy indirectly demonstrated that, at least with one of the droplet isolation methods, the plasma membrane entirely remains in the internodal cell after intracellular perfusion. Both types of droplet populations allowed the formation of excised patches and single-channel measurements by the patch clamp technique. Properties of anion channels in the tonoplast could be used to prove the predicted membrane orientation, knowing that Ca2+ can only activate these channels from the cytosolic side. These results provide useful data for studies addressing ligand-binding, block and modulation, organization and interaction of proteins within the membrane or with other regulatory factors, where it is important to control membrane orientation.

  7. Radiolytic synthesis and characterization of PVA and chitosan based conductive polymer membranes for alkaline fuel cells

    Directory of Open Access Journals (Sweden)

    Stoševski Ivan D.

    2014-01-01

    Full Text Available Poly(vinyl alcohol (PVA and chitosan (CS based polymer membranes for alkaline fuel cells were synthesized by gamma irradiation method. They were swollen with 6 M KOH solution and their ionic conductivity and gas permeance were investigated as a function of temperature. They show high ionic conductivities at room temperature, which wasn't reduced over a period of few months. No gas flow through membranes was detected at any temperature and pressure. These properties show that the membranes could be potentially applied in alkaline fuel cells.

  8. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-01-01

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  9. Cubic membranes: a legend beyond the Flatland* of cell membrane organization.

    Science.gov (United States)

    Almsherqi, Zakaria A; Kohlwein, Sepp D; Deng, Yuru

    2006-06-19

    Cubic membranes represent highly curved, three-dimensional nanoperiodic structures that correspond to mathematically well defined triply periodic minimal surfaces. Although they have been observed in numerous cell types and under different conditions, particularly in stressed, diseased, or virally infected cells, knowledge about the formation and function of nonlamellar, cubic structures in biological systems is scarce, and research so far is restricted to the descriptive level. We show that the "organized smooth endoplasmic reticulum" (OSER; Snapp, E.L., R.S. Hegde, M. Francolini, F. Lombardo, S. Colombo, E. Pedrazzini, N. Borgese, and J. Lippincott-Schwartz. 2003. J. Cell Biol. 163:257-269), which is formed in response to elevated levels of specific membrane-resident proteins, is actually the two-dimensional representation of two subtypes of cubic membrane morphology. Controlled OSER induction may thus provide, for the first time, a valuable tool to study cubic membrane formation and function at the molecular level.

  10. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  11. Perforate on CHO cell membranes induced by electromagnetic ...

    African Journals Online (AJOL)

    Atomic force microscopy (AFM) has been used to visualize the morphological change on the surface of Chinese hamster ovary (CHO) cell membranes before and after electromagnetic pulses (EMP) irradiation. The results show that there were different sizes and shapes of membrane perforate (width ranging from 0.39 - 0.66 ...

  12. Catalytic membranes for CO oxidation in fuel cells

    Science.gov (United States)

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  13. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants.

    Science.gov (United States)

    Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M

    2016-04-29

    Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.

  14. [HOMOCYSTEINE-INDUCED MEMBRANE CURRENTS, CALCIUM RESPONSES AND CHANGES OF MITOCHONDRIAL POTENTIAL IN RAT CORTICAL NEURONS].

    Science.gov (United States)

    Abushik, P A; Karelina, T V; Sibarov, D A; Stepanenko, J D; Giniatullin, R; Antonov, S M

    2015-01-01

    Homocysteine, a sulfur-containing amino acid, exhibits neurotoxic effects and is involved in the pathogenesis of several major neurodegenerative disorders. In contrast to well studied excitoxicity of glutamate, the mechanism of homocysteine neurotoxicity is not clearly understood. By using whole-cell patch-clamp, calcium imaging (fluo-3) and measurements of mitochondrial membrane potential (rhodamine 123) we studied transmembrane currents, calcium signals and changes in mitochondrial membrane potential induced by homocysteine versus responses induced by NMDA and glutamate in cultured rat cortical neurons. L-homocysteine (50 µM) induced inward currents that could be completely blocked by the selective antagonist of NMDA receptors - AP-5. In contrast to NMDA-induced currents, homocysteine-induced currents had a smaller steady-state amplitude. Comparison of calcium responses to homocysteine, NMDA or glutamate demonstrated that in all cortical neurons homocysteine elicited short, oscillatory-type calcium responses, whereas NMDA or glutamate induced sustained increase of intracellular calcium. Analysis of mitochondrial changes demonstrated that in contrast to NMDA homocysteine did not cause a drop of mitochondrial membrane potential at the early stages of action. However, after its long-term action, as in the case of NMDA and glutamate, the changes in mitochondrial membrane potential were comparable with the full drop of respiratory chain induced by protonophore FCCP. Our data suggest that in cultured rat cortical neuron homocysteine at the first stages of action induces neurotoxic effects through activation of NMDA-type ionotropic glutamate receptors with strong calcium influx through the channels of these receptors. The long-term action of homocysteine may lead to mitochondrial disfuction and appears as a drop of mitochondrial membrane potential.

  15. Membrane properties of smooth muscle cells in pulmonary arteries of the rat.

    Science.gov (United States)

    Suzuki, H; Twarog, B M

    1982-05-01

    Electrical properties of the membrane of smooth muscle cells in the rat main pulmonary artery (MPA) and a small pulmonary artery (SPA) were compared. MPA and SPA differed in several important respects, suggesting characteristic quantitative and qualitative differences in membrane properties. 1) Resting membrane potentials were similar in both (MPA 52.2 +/- 1.3 mV; SPA 51.5 +/- 1.7 mV). The cells displayed no spontaneous electrical activity. The muscle layers in both MPA and SPA showed cablelike properties; a graded local response to outward current pulses was observed, but no action potentials were evoked. 2) Tetraethylammonium chloride (TEA, 1-5 mM) depolarized, increased membrane resistance, and suppressed rectification in MPA. TEA strongly depolarized SPA and contraction ensued. 3) The maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] was 48 mV in MPA and 47 mV in SPA. In K+-free solution gradual depolarization was observed in SPA, but the membrane potential in MPA was not modified. Restoration of K+-containing solution produced equivalent hyperpolarization in both tissues, indicating a similar degree of stimulation of electrogenic Na+-K+ pumping. 4) A Na+-deficient solution did not affect the membrane potential in MPA but depolarized SPA.

  16. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells

    International Nuclear Information System (INIS)

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-01-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9 days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. - Highlights: • A series of peptide-modified PELCL electrospun membranes were prepared. • Hemocompatibility of the membranes was greatly improved by the modification. • QK-modified PELCL membrane promoted VECs proliferation more significantly. • REDV-modified PELCL membrane was the most favorable for VEC adhesion.

  17. Selectivity of biopolymer membranes using HepG2 cells.

    Science.gov (United States)

    Lü, Dongyuan; Gao, Yuxin; Luo, Chunhua; Lü, Shouqian; Wang, Qian; Xu, Xianghong; Sun, Shujin; Wang, Chengzhi; Long, Mian

    2015-03-01

    Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor.

  18. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    Science.gov (United States)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  19. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  20. Two novel approaches targeting cancer cell membrane for tumor therapy.

    Science.gov (United States)

    Feng, Yingzhu; Wang, Bochu; Cao, Yang; He, Rui

    2013-04-01

    Disruption of normal cell function by chemicals, UV radiation or viruses can cause various cancer. Drugs that have been developed for cancer therapy bind to various targets to correct disorder cell behavior, repair damaged DNA or promote cell apoptosis. However, there is rare study that focuses on cancer cell membrane as target. We propose two approaches for achieving our goal. One is to use phospholipase A2 (PLA2) to cleave phospholipid heads of the bilayer of cancer cells. Because PLA2 has unique Ca(2+) catalytic site and the pH of healthy tissue cells should be slightly alkaline at 7.2-7.5, it can be easily protected by CO3(2-) in the form of PLA2-CaCO3. While PLA2-CaCO3 accumulate in cancer cells in the acidic microenvironment of which the pH is below 7, it could be converted to active state (PLA2-Ca(2+)) which can intensively damage the cancer cell membrane. The other one is to use both monoclonal antibodies and dimethylsulfoxide (DMSO). The internalization of targeted cancer cell antibodies could change the curvature of cell membrane from order state to disorder state, therefore strong detergent DMSO can destroy cancer cells at extreme low concentration. These two approaches present no harm for normal cells, therefore, drugs targeted cancer cell membrane might become a new and high effective clinical cancer therapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Novel High Temperature Membrane for PEM Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  2. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There

  3. Novel Membrane for Highly Efficient Fuel Cells, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton Exchange Membrane (PEM) fuel cells and electrolyzers are key technologies for NASA space systems utilizing hydrogen, oxygen, or water as reactants. In order...

  4. Nafion-based nanocomposite membranes for fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2008-11-01

    Full Text Available , mechanical properties and electrical conductivity of nafion membrane for fuel cell applications. The results showed an improvement on the thermal behaviour of prepared nation nanocomposites compared to pure Nafion with an addition of only 1 wt% MWCNTs....

  5. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  6. Hybrid proton-conducting membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Romero, Pedro [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain)]. E-mail: pedro.gomez@icmab.es; Asensio, Juan Antonio [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain); Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain); Borros, Salvador [Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain)

    2005-08-30

    The synthesis and characterization of a novel hybrid organic-inorganic material formed by phosphomolybdic acid H{sub 3}PMo{sub 12}O{sub 40} (PMo{sub 12}) and poly(2,5-benzimidazole) (ABPBI) is reported. This material, composed of two proton-conducting components, can be cast in the form of membranes from methanesulfonic acid (MSA) solutions. Upon impregnation with phosphoric acid, the hybrid membranes present higher conductivity than the best ABPBI polymer membranes impregnated in the same conditions. These electrolyte membranes are stable up to 200 deg. C, and have a proton conductivity of 3 x 10{sup -2} S cm{sup -1} at 185 deg. C without humidification. These properties make them very good candidates as membranes for polymer electrolyte membrane fuel cells (PEMFC) at temperatures of 100-200 deg. C.

  7. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells.

    Science.gov (United States)

    Xiao, Yanxin; Xiang, Yan; Xiu, Ruijie; Lu, Shanfu

    2013-10-15

    A novel composite membrane has been developed by doping cesium phosphotungstate salt (CsxH3-xPW12O40 (0≤x≤3), Csx-PTA) into chitosan (CTS/Csx-PTA) for application in direct methanol fuel cells (DMFCs). Uniform distribution of Csx-PTA nanoparticles has been achieved in the chitosan matrix. The proton conductivity of the composite membrane is significantly affected by the Csx-PTA content in the composite membrane as well as the Cs substitution in PTA. The highest proton conductivity for the CTS/Csx-PTA membranes was obtained with x=2 and Cs2-PTA content of 5 wt%. The value is 6×10(-3) S cm(-1) and 1.75×10(-2) S cm(-1) at 298 K and 353 K, respectively. The methanol permeability of CTS/Cs2-PTA membrane is about 5.6×10(-7), 90% lower than that of Nafion-212 membrane. The highest selectivity factor (φ) was obtained on CTS/Cs2-PTA-5 wt% composite membrane, 1.1×10(4)/Scm(-3)s. The present study indicates the promising potential of CTS/Csx-PTA composite membrane as alternative proton exchange membranes in direct methanol fuel cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  9. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  10. Pyro-electrification of polymer membranes for cell patterning

    Energy Technology Data Exchange (ETDEWEB)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P. [National Council of Research, Institute of Applied Science & Intelligent Systems (ISASI) ‘E. Caianiello’, Via Campi Flegrei 34, 80078 Pozzuoli (Italy)

    2016-05-18

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it’s possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  11. Process for production of electrical energy from the neutralization of acid and base in a bipolar membrane cell

    International Nuclear Information System (INIS)

    Walther, J.F.

    1982-01-01

    Electrical energy is generated from acid-base neutralization reactions in electrodialytic cells. Permselective bipolar membranes in these cells are contacted on their cation selective faces by aqueous acid streams and on their anion-selective faces by aqueous base streams. Spontaneous neutralization reactions between the basic anions and acidic cations through the bipolar membranes produce electrical potential differences between the acid and base streams. These potential differences are transmitted to electrodes to produce electrical energy which is withdrawn from the cell

  12. Simultaneous evaluation of plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential in bovine spermatozoa by flow cytometry.

    Science.gov (United States)

    Kanno, Chihiro; Kang, Sung-Sik; Kitade, Yasuyuki; Yanagawa, Yojiro; Takahashi, Yoshiyuki; Nagano, Masashi

    2016-08-01

    The present study aimed to develop an objective evaluation procedure to estimate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bull spermatozoa simultaneously by flow cytometry. Firstly, we used frozen-thawed semen mixed with 0, 25, 50, 75 or 100% dead spermatozoa. Semen was stained using three staining solutions: SYBR-14, propidium iodide (PI), and phycoerythrin-conjugated peanut agglutinin (PE-PNA), for the evaluation of plasma membrane integrity and acrosomal integrity. Then, characteristics evaluated by flow cytometry and by fluorescence microscopy were compared. Characteristics of spermatozoa (viability and acrosomal integrity) evaluated by flow cytometry and by fluorescence microscopy were found to be similar. Secondly, we attempted to evaluate the plasma membrane integrity, acrosomal integrity, and also mitochondrial membrane potential of spermatozoa by flow cytometry using conventional staining with three dyes (SYBR-14, PI, and PE-PNA) combined with MitoTracker Deep Red (MTDR) staining (quadruple staining). The spermatozoon characteristics evaluated by flow cytometry using quadruple staining were then compared with those of staining using SYBR-14, PI, and PE-PNA and staining using SYBR-14 and MTDR. There were no significant differences in all characteristics (viability, acrosomal integrity, and mitochondrial membrane potential) evaluated by quadruple staining and the other procedures. In conclusion, quadruple staining using SYBR-14, PI, PE-PNA, and MTDR for flow cytometry can be used to evaluate the plasma membrane integrity, acrosomal integrity, and mitochondrial membrane potential of bovine spermatozoa simultaneously.

  13. Membrane assisted fluidized bed reactors: Potentials and hurdles

    NARCIS (Netherlands)

    Deshmukh, S.A.R.K.; Heinrich, S.; Mörl, L.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    Recent advances in the development of more stable membranes with increased permeance have significantly enhanced the possibilities for integrating membranes into catalytic reactors in order to achieve a major increase in reactor performance by process integration and process intensification. Several

  14. Metaxin deficiency alters mitochondrial membrane permeability and leads to resistance to TNF-induced cell killing.

    Science.gov (United States)

    Ono, Koh; Wang, Xiaofei; Kim, Sung Ouk; Armstrong, Lucas C; Bornstein, Paul; Han, Jiahuai

    2010-02-01

    Metaxin, a mitochondrial outer membrane protein, is critical for TNF-induced cell death in L929 cells. Its deficiency, caused by retroviral insertion-mediated mutagenesis, renders L929 cells resistance to TNF killing. In this study, we further characterized metaxin deficiency-caused TNF resistance in parallel with Bcl-X(L) overexpression-mediated death resistance. We did not find obvious change in mitochondria membrane potential in metaxin-deficient (Met(mut)) and Bcl-X(L)-overexpressing cells, but we did find an increase in the release rate of the mitochondrial membrane potential probe rhodamine 123 (Rh123) that was preloaded into mitochondria. In addition, overexpression of a function-interfering mutant of metaxin (MetaΔTM/C) or Bcl-X(L) in MCF-7.3.28 cells also resulted in an acquired resistance to TNF killing and a faster rate of Rh123 release, indicating a close correlation between TNF resistance and higher rates of the dye release from the mitochondria. The release of Rh123 can be controlled by the mitochondrial membrane permeability transition (PT) pore, as targeting an inner membrane component of the PT pore by cyclosporin A (CsA) inhibited Rh123 release. However, metaxin deficiency and Bcl-X(L) overexpression apparently affect Rh123 release from a site(s) different from that of CsA, as CsA can overcome their effect. Though both metaxin and Bcl-X(L) appear to function on the outer mitochondrial membrane, they do not interact with each other. They may use different mechanisms to increase the permeability of Rh123, since previous studies have suggested that metaxin may influence certain outer membrane porins while Bcl-X(L) may form pores on the outer membrane. The alteration of the mitochondrial outer membrane properties by metaxin deficiency and Bcl-X(L) overexpression, as indicated by a quicker Rh123 release, may be helpful in maintaining mitochondrial integrity.

  15. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...

  16. Novel membranes for proton exchange membrane fuel cell operation above 120°C. Final report for period October 1, 1998 to December 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Supramaniam [Princeton Univ., NJ (United States); Lee, Seung-Jae [Princeton Univ., NJ (United States); Costamagna, Paola [Princeton Univ., NJ (United States); Yang, Christopher [Princeton Univ., NJ (United States); Adjemian, Kevork [Princeton Univ., NJ (United States); Bocarsly, Andrew [Princeton Univ., NJ (United States); Ogden, Joan M. [Princeton Univ., NJ (United States); Benziger, Jay [Princeton Univ., NJ (United States)

    2000-05-01

    In this project we investigated the experimental performance of three new classes of membranes, composites of perfluorosulfonic acid polymers with heteropolyacides, hydrated oxides and fast proton conducting glasses, which are promising candidates as electrolytes for proton exchange membrane fuel cells (PEMFCs), capable of operation at temperatures above 120°C. The motivations for PEMFC's operation at this temperature are to: 1) minimize the CO poisoning problem (adsorption of CO onto the platinum catalyst is greatly reduced at these temperatures), 2) find better solutions for the water and thermal management problems in proton exchange membrane fuel cells, 3) find potentially lower cost materials for proton exchange membranes. We prepared and characterized a variety of novel membrane materials. The most promising of these have been evaluated for performance in a single, small area (5cm2) fuel cell run on hydrogen and oxygen. Our results establish the technical feasibility of PEMFC operation above 120°C.

  17. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  18. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    . Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... to undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components.......During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations...

  19. Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhu Jun; Sattler, Rita R.; Garsuch, Arnd; Yepez, Omar; Pickup, Peter G.

    2006-01-01

    Acidic and neutral Nafion[reg] 115 perfluorosulphonate membranes have been modified by in situ polymerization of pyrrole using Fe(III) and H 2 O 2 as oxidizing agents, in order to decrease methanol crossover in direct methanol fuel cells. Improved selectivities for proton over methanol transport and improved fuel cell performances were only obtained with membranes that were modified while in the acid form. Use of Fe(III) as the oxidizing agent can produce a large decrease in methanol crossover, but causes polypyrrole deposition on the surface of the membrane. This increases the resistance of the membrane, and leads to poor fuel cell performances due to poor bonding with the electrodes. Surface polypyrrole deposition can be minimized, and surface polypyrrole can be removed, by using H 2 O 2 . The use of Nafion in its tetrabutylammonium form leads to very low methanol permeabilities, and appears to offer potential for manipulating the location of polypyrrole within the Nafion structure

  20. Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane

    Science.gov (United States)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Martín, A. J.; Daza, L.

    The electrospray deposition method has been used for preparation of catalyst layers for proton exchange membrane fuel cells (PEMFC) on Nafion membrane. Deposition of Pt/C + ionomer suspensions on Nafion 212 gives rise to layers with a globular morphology, in contrast with the dendritic growth observed for the same layers when deposited on the gas diffusion layer, GDL (microporous carbon black layer on carbon cloth) or on metallic Al foils. Such a change is discussed in the light of the influence of the Nafion substrate on the electrospray deposition process. Nafion, which is a proton conductor and electronic insulator, gives rise to the discharge of particles through proton release and transport towards the counter electrode, compared with the direct electron transfer that takes place when depositing on an electronic conductor. There is also a change in the electric field distribution in the needle to counter-electrode gap due to the presence of Nafion, which may alter conditions for the electrospray effect. If discharging of particles is slow enough, for instances with a low membrane protonic conductivity, the Nafion substrate may be charged positively yielding a change in the electric field profile and, with it, in the properties of the film. Single cell characterization is carried out with Nafion 212 membranes catalyzed by electrospray on the cathode side. It is shown that the internal resistance of the cell decreases with on-membrane deposited cathodic catalyst layers, with respect to the same layers deposited on GDL, giving rise to a considerable improvement in cell performance. The lower internal resistance is due to higher proton conductivity at the catalyst layer-membrane interface resulting from on-membrane deposition. On the other hand, electroactive area and catalyst utilization appear little modified by on-membrane deposition, compared with on-GDL deposition.

  1. [Potential of cell penetrating peptides for cell drug delivery].

    Science.gov (United States)

    Poillot, Cathy; De Waard, Michel

    2011-05-01

    The interest of the scientific community for cell penetrating peptides (CPP) has been growing exponentially for these last years, and the list of novel CPP is increasing. These peptides are powerful tools for the delivery of cargoes to their site of action. Indeed, several drugs that cannot translocate through the cell plasma membrane have been successfully delivered into cells when grafted to a CPP. Various cargoes have been linked to CPP, such as oligonucleotides, pharmacologically active drugs, contrast agents for imaging, or nanoparticles as platforms for multigrafting purposes… This review illustrates the fabulous potential of CPP and the diversity of their use, but their most interesting application appears their future clinical use for the treatment of various pathological conditions. © 2011 médecine/sciences - Inserm / SRMS.

  2. Proliferation and differentiation of stem cells in contact with eluate from fibrin-rich plasma membrane.

    Science.gov (United States)

    Souza, Fernanda Gimenez de; Fernandes, Beatriz Luci; Rebelatto, Carmen Lucia Kuniyoshi; Aguiar, Alessandra Melo de; Fracaro, Letícia; Brofman, Paulo Roberto Slud

    2018-01-01

    To evaluate the ability of the eluate from fibrin-rich plasma (FRP) membrane to induce proliferation and differentiation of isolated human adipose-derived stem cells (ASCs) into chondrocytes. FRP membranes were obtained by centrifugation of peripheral blood from two healthy donors, cut, and maintained in culture plate wells for 48 h to prepare the fibrin eluate. The SCATh were isolated from adipose tissue by collagenase digestion solution, and expanded in vitro . Cells were expanded and treated with DMEM-F12 culture, a commercial media for chondrogenic differentiation, and eluate from FRP membrane for three days, and labeled with BrdU for quantitative assessment of cell proliferation using the High-Content Operetta ® imaging system. For the chondrogenic differentiation assay, the SCATh were grown in micromass for 21 days and stained with toluidine blue and aggrecan for qualitative evaluation by light microscopy. The statistical analysis was performed using ANOVA and Tukey's test. There was a greater proliferation of cells treated with the eluate from FRP membrane compared to the other two treatments, where the ANOVA test showed significance ( p  membrane stimulated cell proliferation and induced differentiation of the stem cells into chondrocytes, suggesting a potential application of FRP membranes in hyaline cartilage regeneration therapies.

  3. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Bräuner-Osborne, Hans

    2004-01-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (...

  4. Integrity of the plasma membrane, the acrosomal membrane, and the mitochondrial membrane potential of sperm in Nelore bulls from puberty to sexual maturity

    Directory of Open Access Journals (Sweden)

    L.S.L.S. Reis

    2016-06-01

    Full Text Available ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion, scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot and evaluated over 280 days. Semen samples, collected every 56 days by electroejaculation, were evaluated soon after collection for motility, vigor and wave motion under an optical microscope. Sperm membrane integrity, acrosomal integrity, and mitochondrial activity were evaluated under a fluorescent microscope using probe association (FITC-PSA, PI, JC-1, H342. The sperm were classified into eight integrity categories depending on whether they exhibited intact or damaged membranes, an intact or damaged acrosomal membrane, and high or low mitochondrial potential. The results show that bulls have a low amount of sperm with intact membranes at puberty, and the sperm show low motility, vigor, and wave motion; however, in bulls at early sexual maturity, the integrity of the sperm membrane increased significantly. The rate of sperm membrane damage was negatively correlated with motility, vigor, wave motion, and testosterone in the bulls, and a positive correlation existed between sperm plasma membrane integrity and scrotal circumference. The integrity of the acrosomal membrane was not influenced by puberty. During puberty and into early sexual maturity, bulls show low sperm mitochondrial potential, but when bulls reached sexual maturity, high membrane integrity with high mitochondrial potential was evident.

  5. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  6. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    significant attention in recent years because of its potential advantages such as high CO tolerance, easy cooling, better heat utilization and possible integration with fuel processing units. However, the high temperature obviously aggravates the carbon corrosion and catalyst degradation. Based on thermally......Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...

  7. Paeonia lactiflora Inhibits Cell Wall Synthesis and Triggers Membrane Depolarization in Candida albicans.

    Science.gov (United States)

    Lee, Heung-Shick; Kim, Younhee

    2017-02-28

    Fungal cell walls and cell membranes are the main targets of antifungals. In this study, we report on the antifungal activity of an ethanol extract from Paeonia lactiflora against Candida albicans , showing that the antifungal activity is associated with the synergistic actions of preventing cell wall synthesis, enabling membrane depolarization, and compromising permeability. First, it was shown that the ethanol extract from P. lactiflora was involved in damaging the integrity of cell walls in C. albicans . In isotonic media, cell bursts of C. albicans by the P. lactiflora ethanol extract could be restored, and the minimum inhibitory concentration (MIC) of the P. lactiflora ethanol extract against C. albicans cells increased 4-fold. In addition, synthesis of (1,3)-β- D -glucan polymer was inhibited by 87% and 83% following treatment of C. albicans microsomes with the P. lactiflora ethanol extract at their 1× MIC and 2× MIC, respectively. Second, the ethanol extract from P. lactiflora influenced the function of C. albicans cell membranes. C. albicans cells treated with the P. lactiflora ethanol extract formed red aggregates by staining with a membrane-impermeable dye, propidium iodide. Membrane depolarization manifested as increased fluorescence intensity by staining P. lactiflora -treated C. albicans cells with a membrane-potential marker, DiBAC 4 (3) (( bis -1,3-dibutylbarbituric acid) trimethine oxonol). Membrane permeability was assessed by crystal violet assay, and C. albicans cells treated with the P. lactiflora ethanol extract exhibited significant uptake of crystal violet in a concentration-dependent manner. The findings suggest that P. lactiflora ethanol extract is a viable and effective candidate for the development of new antifungal agents to treat Candida -associated diseases.

  8. Helicobacter pylori Disrupts Host Cell Membranes, Initiating a Repair Response and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Hsueh-Fen Juan

    2012-08-01

    Full Text Available Helicobacter pylori (H. pylori, the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA and cytotoxin-associated gene A (CagA have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+, single mutant (ΔvacA or ΔcagA or double mutant (ΔvacA/ΔcagA strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis.

  9. Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy.

    Science.gov (United States)

    Trendowski, Matthew; Fondy, Thomas P

    2015-08-01

    Although DNA-directed alkylating agents and related compounds have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of malignant cells, their clinical utility is limited by DNA repair mechanisms and immunosuppression. However, the same destructive nature of alkylation can be reciprocated at the cell surface using novel plasma membrane alkylating agents. Plasma membrane alkylating agents have elicited long term survival in mammalian models challenged with carcinomas, sarcomas, and leukemias. Further, a specialized group of plasma membrane alkylating agents known as tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) potentiates a substantial leukocyte influx at the administration and primary tumor site, indicative of a potent immune response. The effects of plasma membrane alkylating agents may be further potentiated through the use of another novel class of chemotherapeutic agents, known as dihydroxyacetone phosphate (DHAP) inhibitors, since many cancer types are known to rely on the DHAP pathway for lipid synthesis. Despite these compelling data, preliminary clinical trials for plasma membrane-directed agents have yet to be considered. Therefore, this review is intended for academics and clinicians to postulate a novel approach of chemotherapy; altering critical malignant cell signaling at the plasma membrane surface through alkylation, thereby inducing irreversible changes to functions needed for cell survival.

  10. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Tae

    2008-12-01

    Full Text Available Abstract Background Acinetobacter baumannii is a nosocomial pathogen of increasing importance, but the pathogenic mechanism of this microorganism has not been fully explored. This study investigated the potential of A. baumannii to invade epithelial cells and determined the role of A. baumannii outer membrane protein A (AbOmpA in interactions with epithelial cells. Results A. baumannii invaded epithelial cells by a zipper-like mechanism, which is associated with microfilament- and microtubule-dependent uptake mechanisms. Internalized bacteria were located in the membrane-bound vacuoles. Pretreatment of recombinant AbOmpA significantly inhibited the adherence to and invasion of A. baumannii in epithelial cells. Cell invasion of isogenic AbOmpA- mutant significantly decreased as compared with wild-type bacteria. In a murine pneumonia model, wild-type bacteria exhibited a severe lung pathology and induced a high bacterial burden in blood, whereas AbOmpA- mutant was rarely detected in blood. Conclusion A. baumannii adheres to and invades epithelial cells. AbOmpA plays a major role in the interactions with epithelial cells. These findings contribute to the understanding of A. baumannii pathogenesis in the early stage of bacterial infection.

  11. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.

    2013-01-01

    case the side chains are synthesized and introduced in their sulfonated form onto an azide‐functionalized PSU via click chemistry. Three degrees of substitution of each architecture were prepared in order to evaluate the dependence on number of sulfonated side chains. Solution cast membranes were...

  12. The lipid organisation of the cell membrane

    Directory of Open Access Journals (Sweden)

    Ladha, S.

    2000-04-01

    Full Text Available Lipids and proteins in biological membranes are arranged in a mosaic of domains in the membrane. These domains represent small-scale heterogeneities in composition, shape and fluidity within the plane of the membrane, over the range of hundreds of nanometers to a few micrometers. They arise from the complex interactions of the heterogeneous mixtures of phospholipids, sterols, and proteins that make up all biological membranes.Los lípidos y las proteínas en las membranas biológicas están dispuestos en un mosaico de campos en la membrana. Estos campos representan heterogeneidades a pequeña escala en la composición, forma y fluidez dentro del plano de la membrana, en un rango que va de los cientos de nanómetros a los pocos micrómetros. Estos campos se originan de las complejas interacciones de las mezclas heterogéneas de fosfolípidos, esteroles y proteínas de las que están hechas todas y cada una de las membranas biológicas.

  13. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2003-04-24

    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  14. Polyunsaturation in cell membranes and lipid bilayers and its effects on membrane proteins.

    Science.gov (United States)

    Slater, S J; Kelly, M B; Yeager, M D; Larkin, J; Ho, C; Stubbs, C D

    1996-03-01

    The effect of variation of the degree of cis-unsaturation on cell membrane protein functioning was investigated using a model lipid bilayer system and protein kinase C (PKC). This protein is a key element of signal transduction. Furthermore it is representative of a class of extrinsic membrane proteins that show lipid dependent interactions with cell membranes. To test for dependence of activity on the phospholipid unsaturation, experiments were devised using a vesicle assay system consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) in which the unsaturation was systematically varied. Highly purified PKC alpha and epsilon were obtained using the baculovirus-insect cell expression system. It was shown that increased PC unsaturation elevated the activity of PKC alpha. By contrast, increasing the unsaturation of PS decreased the activity of PKC alpha, and to a lesser extent PKC epsilon. This result immediately rules out any single lipid bilayer physical parameter, such as lipid order, underlying the effect. It is proposed that while PC unsaturation effects are explainable on the basis of a contribution to membrane surface curvature stress, the effects of PS unsaturation may be due to specific protein-lipid interactions. Overall, the results indicate that altered phospholipid unsaturation in cell membranes that occurs in certain disease states such as chronic alcoholism, or by dietary manipulations, are likely to have profound effects on signal transduction pathways involving PKC and similar proteins.

  15. Bacillus thuringiensis Cyt2Aa2 toxin disrupts cell membranes by forming large protein aggregates.

    Science.gov (United States)

    Tharad, Sudarat; Toca-Herrera, José L; Promdonkoy, Boonhiang; Krittanai, Chartchai

    2016-10-01

    Bacillus thuringiensis (Bt) Cyt2Aa2 showed toxicity against Dipteran insect larvae and in vitro lysis activity on several cells. It has potential applications in the biological control of insect larvae. Although pore-forming and/or detergent-like mechanisms were proposed, the mechanism underlying cytolytic activity remains unclear. Analysis of the haemolytic activity of Cyt2Aa2 with osmotic stabilizers revealed partial toxin inhibition, suggesting a distinctive mechanism from the putative pore formation model. Membrane permeability was studied using fluorescent dye entrapped in large unilamellar vesicles (LUVs) at various protein/lipid molar ratios. Binding of Cyt2Aa2 monomer to the lipid membrane did not disturb membrane integrity until the critical protein/lipid molar ratio was reached, when Cyt2Aa2 complexes and cytolytic activity were detected. The complexes are large aggregates that appeared as a ladder when separated by agarose gel electrophoresis. Interaction of Cyt2Aa2 with Aedes albopictus cells was investigated by confocal microscopy and total internal reflection fluorescent microscopy (TIRF). The results showed that Cyt2Aa2 binds on the cell membrane at an early stage without cell membrane disruption. Protein aggregation on the cell membrane was detected later which coincided with cell swelling. Cyt2Aa2 aggregations on supported lipid bilayers (SLBs) were visualized by AFM. The AFM topographic images revealed Cyt2Aa2 aggregates on the lipid bilayer at low protein concentration and subsequently disrupts the lipid bilayer by forming a lesion as the protein concentration increased. These results supported the mechanism whereby Cyt2Aa2 binds and aggregates on the lipid membrane leading to the formation of non-specific hole and disruption of the cell membrane. © 2016 The Author(s).

  16. In situ synthesis of nanocomposite membranes: comprehensive improvement strategy for direct methanol fuel cells.

    Science.gov (United States)

    Rao, Siyuan; Xiu, Ruijie; Si, Jiangju; Lu, Shanfu; Yang, Meng; Xiang, Yan

    2014-03-01

    In situ synthesis is a powerful approach to control nanoparticle formation and consequently confers extraordinary properties upon composite membranes relative to conventional doping methods. Herein, uniform nanoparticles of cesium hydrogen salts of phosphotungstic acid (CsPW) are controllably synthesized in situ in Nafion to form CsPW–Nafion nanocomposite membranes with both improved proton conductivity and methanol-crossover suppression. A 101.3% increase of maximum power density has been achieved relative to pristine Nafion in a direct methanol fuel cell (DMFC), indicating a potential pathway for large-scale fabrication of DMFC alternative membranes.

  17. Novel fluoropolymer anion exchange membranes for alkaline direct methanol fuel cells.

    Science.gov (United States)

    Zhang, Yanmei; Fang, Jun; Wu, Yongbin; Xu, Hankun; Chi, Xianjun; Li, Wei; Yang, Yixu; Yan, Ge; Zhuang, Yongze

    2012-09-01

    A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Fei, Mingming; Lin, Ruizhi; Deng, Yuming; Xian, Hongxi; Bian, Renji; Zhang, Xiaole; Cheng, Jigui; Xu, Chenxi; Cai, Dongyu

    2018-01-01

    This report demonstrated the first study on the use of a new 2D nanomaterial (Mxene) for enhancing membrane performance of intermediate temperature (>100 °C) polymer electrolyte membrane fuel cells (ITPEMFCs). In this study, a typical Ti3C2T x -MXene was synthesized and incorporated into polybenzimidazole (PBI)-based membranes by using a solution blending method. The composite membrane with 3 wt% Ti3C2T x -MXene showed the proton conductivity more than 2 times higher than that of pristine PBI membrane at the temperature range of 100 °C-170 °C, and led to substantial increase in maximum power density of fuel cells by ˜30% tested at 150 °C. The addition of Ti3C2T x -MXene also improved the mechanical properties and thermal stability of PBI membranes. At 3 wt% Ti3C2T x -MXene, the elongation at break of phosphoric acid doped PBI remained unaffected at 150 °C, and the tensile strength and Young’s modulus was increased by ˜150% and ˜160%, respectively. This study pointed out promising application of MXene in ITPEMFCs.

  19. The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action.

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2010-01-01

    Full Text Available The nonsteroidal anti-inflammatory drug (NSAID, indomethacin (Indo, has a large number of divergent biological effects, the molecular mechanism(s for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC and cholesterol that mimics biomembranes.Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes.Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

  20. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  1. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  2. Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint)

    Science.gov (United States)

    2010-01-01

    with deionized water in an attempt to completely remove the salts and then soxhlet -extracted in methanol for 72 h. Finally, it was vacuum dried at...were evaluated us- ing methods based on ASTM-D882 and ASTM-1004. SPTES-50 and Nafion samples both dry and wet were characterized. Samples of the...four-point-probe method provides membrane resistance without the effect of charge-transfer resistance and other nonohmic resis- tances. Proton

  3. Distribution of IGF receptors in the plasma membrane of proximal tubular cells

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Rogers, S.

    1987-01-01

    To characterize the distribution of receptors for insulin-like growth factors I and II (IGF I and II) in the plasma membrane of the renal proximal tubular cell, the authors measured binding of 125 I-labeled IGF I and 125 I-labeled IGF II to proximal tubular basolateral and brush-border membranes and characterized IGF I-stimulated phosphorylation of detergent-solubilized membranes. 125 I-IGF bound primarily to a 135,000 relative molecular weight (M r ) protein and IGF II to a 260,000 M r protein in isolated membranes. Binding of 125 I-IGF I was severalfold greater in basolateral than in brush-border membranes. IGF I-stimulated phosphorylation of the 92,000 M r β-subunit of its receptors could be demonstrated only in basolateral membranes. These findings are consistent with an asymmetrical distribution of receptors for IGF I in the plasma membrane of the renal proximal tubular cell, localization being primary on the basolateral side. In contrast, binding of 125 I-IGF II to isolated basolateral and brush-border membranes was equivalent, suggesting that receptors for this peptide are distributed more symmetrically in the plasma membrane. The findings suggest that the action of IGF I in proximal tubule are mediated via interaction of circulating peptide with specific receptors in the basolateral membrane. However, the findings established the potential for actions of IGF II to be exerted in proximal tubule via interaction with both basolateral and/or brush-border membrane receptors

  4. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J

    1986-01-01

    . Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...

  5. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, M.H.

    2009-01-01

    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  6. Polymer electrolyte membrane fuel cell control with feed-forward ...

    African Journals Online (AJOL)

    Feed-forward and feedback control is developed in this work for Polymer electrolyte membrane (PEM) fuel cell stacks. The feed-forward control is achieved using different methods, including look-up table, fuzzy logic and neural network, to improve the fuel cell stack breathing control and prevent the problem of oxygen ...

  7. The influence of platelet membranes on tumour cell behaviour.

    Science.gov (United States)

    Coupland, L A; Hindmarsh, E J; Gardiner, E E; Parish, C R

    2017-06-01

    The significant role of platelets in the protection of tumour cells from immune attack and shear forces and the promotion of tumour cell extravasation from the bloodstream in the process of haematogenous metastasis have been extensively studied. The role of platelets, and in particular platelet membranes, in the promotion of a more metastatic phenotype in tumour cells is a more recent and, therefore, less well-recognised area of research. This review article summarises studies that have focused on the impact of tumour cell interactions with platelets and platelet membranes on tumour cell behaviour in vitro and in vivo. Furthermore, the gene expression changes that occur within tumour cells following contact with platelet membranes are also extensively reviewed. Overall, the interaction of platelet membranes with tumour cells results in a more invasive phenotype and the promotion of epithelial to mesenchymal transition with our own genetic studies revealing that matrix metalloproteinase-1, plasminogen activator inhibitor-1 and interleukin-8 are globally upregulated in a range of tumour cell lines.

  8. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  9. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    Science.gov (United States)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  10. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    Science.gov (United States)

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE. Copyright © 2015. Published by Elsevier B.V.

  11. Cell membrane damage by iron nanoparticles: an invitro study

    Directory of Open Access Journals (Sweden)

    Gelare Hajsalimi

    2016-12-01

    Full Text Available Application of nanotechnology in medicinal and biological fields has attracted a great interest in the recent yeras. In this paper the cell membrane leakage induced by iron nanoparticles (Fe-NP against PC12 cell line which is known as a model of nervous system cell line was investigated by the lactate dehydrogenase (LDH test. Therefore, PC12 cells were incubated with different concentration of Fe-NP and test was performed after 48h of incubation of the cells with Fe-NP. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters. The resulting data showed that the Fe-NP induced the damage of PC12 cell membrane in a concentration dependent manner. Hence, it may be concluded that the different cytotoxicty effect of NPs may be referred to the concentration of NPs, type of the NPs and the cells. Indeed, the kind of cytotoxic impacts of NPs on the cells can be reduced by the considering of above-mentioned parameters.

  12. An averaged polarizable potential for multiscale modeling in phospholipid membranes

    DEFF Research Database (Denmark)

    Witzke, Sarah; List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    is underlined for the description of larger assemblies of lipids, that is, membranes. In conclusion, we find that specially developed polarizable parameters are needed for embedding calculations in membranes, while common non-polarizable point-charge force fields usually perform well enough for structural...

  13. Connexin membrane materials as potent inhibitors of breast cancer cell migration.

    Science.gov (United States)

    Ferrati, Silvia; Gadok, Avinash K; Brunaugh, Ashlee D; Zhao, Chi; Heersema, Lara A; Smyth, Hugh D C; Stachowiak, Jeanne C

    2017-08-01

    Gap junction (GJ) channels facilitate cell-cell communication through the exchange of chemical and mechanical signals, ensuring proper tissue development and homeostasis. The complex, disease stage-dependent role of connexins in breast cancer progression has been extensively studied over the past two decades. In the early stages of breast cancer, substantial evidence supports the role of GJ channels, formed by connexins at the interfaces between neighbouring cells, as suppressors of cell migration and proliferation. These findings suggest that materials that reintroduce connexins into the tumour cell environment have the potential to inhibit cell migration. Here, we report that exposure of highly metastatic MDA-MB-231 breast tumour cells to connexin-rich biovesicle materials potently suppresses cell migration. Specifically, these biovesicles, which can form GJ interfaces with cells, were extracted from the plasma membrane of donor cells engineered to express a high concentration of functional connexin 43 channels. These connexin-rich membrane materials dramatically reduced cell migration in both a transwell migration assay and a scratch closure assay. Collectively, these results suggest that using membrane materials to reintroduce connexins into the tumour cell environment provides a novel approach for combating cell migration and invasion. © 2017 The Author(s).

  14. Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells.

    Science.gov (United States)

    Radichev, Ilian A; Remacle, Albert G; Sounni, Nor Eddine; Shiryaev, Sergey A; Rozanov, Dmitri V; Zhu, Wenhong; Golubkova, Natalya V; Postnova, Tatiana I; Golubkov, Vladislav S; Strongin, Alex Y

    2009-04-28

    Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells.

  15. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  16. Electrospun nanofibrous SF/P(LLA-CL membrane: a potential substratum for endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Chen JZ

    2015-05-01

    had different light transmittance properties. The 25:75 blended ratio membrane had the best transmittance among these scaffolds. All electrospun nanofibrous membranes showed improved speed of cell adherence when compared with the control group, especially when the P(LLA-CL ratio increased. The 25:75 blended ratio membranes also had the highest cell proliferation. B4G12 cells could form a monolayer on all scaffolds, and most functional genes were also stably expressed on all scaffolds. Only two genes showed changes in expression.Conclusion: All blended ratios of SF:P(LLA-CL scaffolds were evaluated and showed good biocompatibility for cell adherence and monolayer formation. Among them, the 25:75 blended ratio SF:P(LLA-CL scaffold had the best transmittance and the highest cell proliferation. These attributes further the potential application of the SF:P(LLA-CL scaffold for corneal endothelial transplantation. Keywords: silk fibroin, poly(L-lactic acid-co-Ɛ-caprolactone, B4G12, corneal endothelium, regeneration

  17. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when not in...

  18. In Plant and Animal Cells, Detergent-Resistant Membranes Do Not Define Functional Membrane Rafts

    Czech Academy of Sciences Publication Activity Database

    Tanner, W.; Malínský, Jan; Opekarová, Miroslava

    2011-01-01

    Roč. 23, č. 4 (2011), s. 1191-1193 ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50200510 Keywords : plasma-membrane * lipod rafts * proteins Subject RIV: EA - Cell Biology Impact factor: 8.987, year: 2011

  19. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2001-07-06

    Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for space and electric vehicle applications. Platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs. The carbon monoxide (CO) contamination of H{sub 2} greatly affects electrocatalysts used at the anode of PEMFCs and decrease the cell performance. This irreversible poisoning of the anode can happen even in CO concentrations as low as few ppm, and therefore, require expensive scrubbing of the H{sub 2}-fuel to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable CO-tolerant catalyst is needed. In this work, we have synthesized several novel electrocatalysts (Pt/C, Pt/Ru/C Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell. The concentration of CO in the H{sub 2} fuel varied from 10 ppm to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effect of temperature, catalyst compositions, and electrode film preparation methods on the performance of PEM fuel cell has also been studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalysts (10 wt % Pt/Ru/C, 20 wt % Pt/Mo/C) were more CO-tolerant than 20 wt % Pt catalyst alone. It was also observed that spraying method is better for the preparation of electrode film than the brushing technique. Some of these results are summarized in this report.

  20. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    Science.gov (United States)

    2015-12-01

    properties of nanofiber composite anion-exchange membranes for alkaline fuel cells. A new membrane fabrication strategy, utilizing polymer fiber...Approved for Public Release; Distribution Unlimited Final Report: Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional...Park, NC 27709-2211 nanofibers, electrospinning, composite membranes, alkaline fuel cells REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER

  1. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  2. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  3. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. (Lawrence Berkeley Lab., CA (United States)); Ojakian, G.K. (State Univ. of New York, Brooklyn (United States))

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  4. Multiphase transport in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  5. Intracellular Ca2+ and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells

    Science.gov (United States)

    Huang, Yijen A; Roper, Stephen D

    2010-01-01

    ATP is a transmitter secreted from taste bud receptor (Type II) cells through ATP-permeable gap junction hemichannels most probably composed of pannexin 1. The elevation of intracellular Ca2+ and membrane depolarization are both believed to be involved in transmitter secretion from receptor cells, but their specific roles have not been fully elucidated. In the present study, we show that taste-evoked ATP secretion from mouse vallate receptor cells is evoked by the combination of intracellular Ca2+ release and membrane depolarization. Unexpectedly, ATP secretion is not blocked by tetrodotoxin, indicating that transmitter release from these cells still takes place in the absence of action potentials. Taste-evoked ATP secretion is absent in receptor cells isolated from TRPM5 knockout mice or in taste cells from wild type mice where current through TRPM5 channels has been eliminated. These findings suggest that membrane voltage initiated by TRPM5 channels is required for ATP secretion during taste reception. Nonetheless, even in the absence of TRPM5 channel activity, ATP release could be triggered by depolarizing cells with KCl. Collectively, the findings indicate that taste-evoked elevation of intracellular Ca2+ has a dual role: (1) Ca2+ opens TRPM5 channels to depolarize receptor cells and (2) Ca2+ plus membrane depolarization opens ATP-permeable gap junction hemichannels. PMID:20498227

  6. Intracellular Ca(2+) and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells.

    Science.gov (United States)

    Huang, Yijen A; Roper, Stephen D

    2010-07-01

    ATP is a transmitter secreted from taste bud receptor (Type II) cells through ATP-permeable gap junction hemichannels most probably composed of pannexin 1. The elevation of intracellular Ca(2+) and membrane depolarization are both believed to be involved in transmitter secretion from receptor cells, but their specific roles have not been fully elucidated. In the present study, we show that taste-evoked ATP secretion from mouse vallate receptor cells is evoked by the combination of intracellular Ca(2+) release and membrane depolarization. Unexpectedly, ATP secretion is not blocked by tetrodotoxin, indicating that transmitter release from these cells still takes place in the absence of action potentials. Taste-evoked ATP secretion is absent in receptor cells isolated from TRPM5 knockout mice or in taste cells from wild type mice where current through TRPM5 channels has been eliminated. These findings suggest that membrane voltage initiated by TRPM5 channels is required for ATP secretion during taste reception. Nonetheless, even in the absence of TRPM5 channel activity, ATP release could be triggered by depolarizing cells with KCl. Collectively, the findings indicate that taste-evoked elevation of intracellular Ca(2+) has a dual role: (1) Ca(2+) opens TRPM5 channels to depolarize receptor cells and (2) Ca(2+) plus membrane depolarization opens ATP-permeable gap junction hemichannels.

  7. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    Science.gov (United States)

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  8. Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes

    Science.gov (United States)

    Nabil, Y.; Cavaliere, S.; Harkness, I. A.; Sharman, J. D. B.; Jones, D. J.; Rozière, J.

    2017-09-01

    Niobium carbide/carbon nanotubular porous structures have been prepared using electrospinning and used as electrocatalyst supports for proton exchange membrane fuel cells. They were functionalised with 3.1 nm Pt particles synthesised by a microwave-assisted polyol method and characterised for their electrochemical properties. The novel NbC-based electrocatalyst demonstrated electroactivity towards the oxygen reduction reaction as well as greater stability over high potential cycling than a commercial carbon-based electrocatalyst. Pt/NbC/C was integrated at the cathode of a membrane electrode assembly and characterised in a single fuel cell showing promising activity and power density.

  9. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    Science.gov (United States)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  10. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  11. Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes

    Directory of Open Access Journals (Sweden)

    Bruna Corradetti

    2017-09-01

    Full Text Available Clinical trials have demonstrated that heparan sulfate (HS could be used as a therapeutic agent for the treatment of inflammatory diseases. Its anti-inflammatory effect makes it suitable for the development of biomimetic innovative strategies aiming at modulating stem cells behavior toward a pro-regenerative phenotype in case of injury or inflammation. Here, we propose collagen type I meshes fabricated by solvent casting and further crosslinked with HS (HS-Col to create a biomimetic environment resembling the extracellular matrix of soft tissue. HS-Col meshes were tested for their capability to provide physical support to stem cells’ growth, maintain their phenotypes and immunosuppressive potential following inflammation. HS-Col effect on stem cells was investigated in standard conditions as well as in an inflammatory environment recapitulated in vitro through a mix of pro-inflammatory cytokines (tumor necrosis factor-α and interferon-gamma; 20 ng/ml. A significant increase in the production of molecules associated with immunosuppression was demonstrated in response to the material and when cells were grown in presence of pro-inflammatory stimuli, compared to bare collagen membranes (Col, leading to a greater inhibitory potential when mesenchymal stem cells were exposed to stimulated peripheral blood mononuclear cells. Our data suggest that the presence of HS is able to activate the molecular machinery responsible for the release of anti-inflammatory cytokines, potentially leading to a faster resolution of inflammation.

  12. Poly (Ethylene-Alit-Tetrafluoroethylene) Based Membranes For Fuel Cells: Synthesis And Fuel Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Alkan Guersel, S.; Gubler, L.; Scherer, G.G.

    2005-03-01

    Proton exchange membranes have been synthesized by pre-irradiation grafting of styrene onto poly (ethylene-alt-tetrafluoroethylene) (ETFE) in the presence of divinyl benzene (DVB) as the cross linker and characterized ex-situ for their fuel cell relevant properties. The optimum graft level was determined as between 20 and 30 %. ETFE based membranes exhibited encouraging fuel cell performance yet, there is room for improvement through optimization of the membrane-electrode interface. (author)

  13. Comprehensive quantitative comparison of the membrane proteome, phosphoproteome, and sialiome of human embryonic and neural stem cells

    DEFF Research Database (Denmark)

    Melo-Braga, Marcella Nunes; Schulz, Melanie; Liu, Qiuyue

    2014-01-01

    Human embryonic stem cells (hESCs) can differentiate into neural stem cells (NSCs), which can further be differentiated into neurons and glia cells. Therefore, these cells have huge potential as source for treatment of neurological diseases. Membrane-associated proteins are very important......ESCs and NSCs as well as to investigate potential new markers for these two cell stages, we performed large-scale quantitative membrane-proteomic of hESCs and NSCs. This approach employed membrane purification followed by peptide dimethyl labeling and peptide enrichment to study the membrane subproteome as well...... in which 78% of phosphopeptides were identified with ≥99% confidence in site assignment and 1810 unique formerly sialylated N-linked glycopeptides. Several proteins were identified as significantly regulated in hESCs and NSC, including proteins involved in the early embryonic and neural development...

  14. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  15. Evaluation of castor oil-based polyurethane membranes in rat bone-marrow cell culture.

    Science.gov (United States)

    Cerejo, Sofia de Amorim; Rahal, Sheila Canevese; Lima Neto, João Ferreira de; Voorwald, Fabiana Azevedo; Alvarenga, Fernanda da Cruz Landim e

    2011-10-01

    To evaluate three methods to isolate rats MSCs and to analyze the potential of a castor oil polyurethane base membrane as a scaffold for MSCs. Four male Wistar rats, aged 20-30 days were used. Bone marrow aspirates from femur and tibia were harvested using DMEM high glucose and heparin. The cell culture was performed in three different ways: direct culture and two types of density gradients. After 15 days, was made the 1st passage and analyzed cell viability with markers Hoerscht 33342 and propidium iodide. The MSCs were characterized by surface markers with the aid of flow cytometry. After this, three types of castor oil polyurethane membranes associated with the MSCs were kept on the 6-well plate for 5 days and were analyzed by optical microscopy to confirm cell aggregation and growth. Separation procedures 1 and 2 allowed adequate isolation of MSCs and favored cell growth with the passage being carried out at 70% confluence after 15 days in culture. The cells could not be isolated using procedure 3. When the 3 castor oil polyurethane membrane types were compared it was possible to observe that the growth of MSCs was around 80% in membrane type 3, 20% in type 2, and 10% in type 1. Both Ficoll-Hypaque densities allow isolation of rat MSCs, and especially castor oil-based membrane type 3 may be used as a scaffold for MSCs.

  16. Radiation effects on membranes - 1. Cellular permeability and cell survival

    International Nuclear Information System (INIS)

    Khare, S.; Jayakumar, A.; Trivedi, A.; Kesavan, P.C.; Prasad, R.

    1982-01-01

    The effect of various doses of γ radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of γ radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to γ radiation

  17. Ankyrin regulates KATP channel membrane trafficking and gating in excitable cells

    Science.gov (United States)

    Kline, Crystal F.; Hund, Thomas J.; Mohler, Peter J.

    2013-01-01

    K(ATP) channels play critical roles in many cellular functions by coupling cell metabolic status to electrical activity. First discovered in cardiomyocytes,1 KATP channels (comprised of Kir6.x and SUR subunits) have since been found in many other tissues, including pancreatic beta cells, skeletal muscle, smooth muscle, brain, pituitary and kidney. By linking cellular metabolic state with membrane potential, KATP channels are able to regulate a number of cellular functions such as hormone secretion, vascular tone and excitability. Specifically, a reduction in metabolism causes a decrease in the ATP:ADP ratio, opening of KATP channels, K+ efflux, membrane hyperpolarization, and suppression of electrical activity. Conversely, increased cellular metabolism causes an increase in the ATP:ADP ratio that leads to closure of the KATP channel, membrane depolarization, and stimulation of cell electrical activity. PMID:19901534

  18. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    Science.gov (United States)

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goñi, Félix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    Science.gov (United States)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  20. Characterizing the malignancy and drug resistance of cancer cells from their membrane resealing response

    Science.gov (United States)

    Hui, T. H.; Zhou, Z. L.; Fong, H. W.; Ngan, Roger K. C.; Lee, T. Y.; Au, Joseph S. K.; Ngan, A. H. W.; Yip, Timothy T. C.; Lin, Y.

    2016-05-01

    In this report, we showed that two tumor cell characteristics, namely the malignancy and drug-resistance status can be evaluated by their membrane resealing response. Specifically, membrane pores in a number of pairs of cancer and normal cell lines originated from nasopharynx, lung and intestine were introduced by nano-mechanical puncturing. Interestingly, such nanometer-sized holes in tumor cells can reseal ~2-3 times faster than those in the corresponding normal cells. Furthermore, the membrane resealing time in cancer cell lines exhibiting resistance to several leading chemotherapeutic drugs was also found to be substantially shorter than that in their drug-sensitive counterparts, demonstrating the potential of using this quantity as a novel marker for future cancer diagnosis and drug resistance detection. Finally, a simple model was proposed to explain the observed resealing dynamics of cells which suggested that the distinct response exhibited by normal, tumor and drug resistant cells is likely due to the different tension levels in their lipid membranes, a conclusion that is also supported by direct cortical tension measurement.

  1. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  2. EFFECT OF HIGH PH ON THE PLASMA-MEMBRANE POTENTIAL AND CONDUCTANCE IN ELODEA-DENSA

    NARCIS (Netherlands)

    MIEDEMA, H; FELLE, H; PRINS, HBA

    In leaves of Elodea densa the membrane potential measured in light equals the equilibrium potential of H+ on the morphological upper plasma membrane. The apoplastic pH on the upper side of the leaf is as high as 10.5-11.0, which indicates that alkaline pH induces an increased H+ permeability of the

  3. Membrane potential responses to ionophoretically applied alpha-adrenoceptor agonists in the mouse anococcygeus muscle.

    Science.gov (United States)

    Large, W. A.

    1983-01-01

    1 Noradrenaline phenylephrine, naphazoline and oxymetazoline were applied by ionophoresis to the mouse anococcygeus muscle and the membrane potential was recorded with an intracellular microelectrode. 2 The ionophoretic application of noradrenaline and phenylephrine produced dose-related depolarizations in 96% of the cells tested; in contrast, naphazoline and oxymetazoline depolarized only 62% of the cells although contraction was always seen. 3 The depolarizations produced by all four drugs had similar characteristics in shape and time course except that the latency of responses induced by the imidazoline-related drugs was significantly longer than the value obtained with the phenylethanolamines. This discrepancy was not due to the difference in susceptibility to neuronal uptake of the two groups of drugs. 4 The time to peak depolarization for naphazoline and oxymetazoline was longer than that for noradrenaline and phenylephrine but was not sufficient to account for the considerably slower contraction produced by the former drugs. 5 At room temperature the sensitivity of the mouse anococcygeus to ionophoretically applied naphazoline and oxymetazoline was significantly lower than that to noradrenaline and phenylephrine but at 35 degrees C the sensitivity was similar for all drugs. 6 These results suggest that there might be two subclasses of alpha 1-adrenoceptor in the mouse anococcygeus; stimulation of one type leads to depolarization and contraction and activation of the other class produces contraction with no change in membrane potential. PMID:6135476

  4. Electrospun fiber membranes enable proliferation of genetically modified cells

    Science.gov (United States)

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  5. Investigation of water distribution in proton exchange membrane fuel cells via Terahertz imaging

    International Nuclear Information System (INIS)

    Thamboon, P.; Buaphad, P.; Thongbai, C.; Saisud, J.; Kusoljariyakul, K.; Rhodes, M.W.; Vilaithong, T.

    2011-01-01

    Coherent transition radiation in a THz regime generated from a femtosecond electron bunch is explored for its potential use in imaging applications. Due to water sensitivity, the THz imaging experiment is performed on a proton exchange membrane fuel cell (PEMFC) to assess the ability to quantify water in the flow field of the cell. In this investigation, the PEMFC design and the experimental setup for the THz imaging is described. The results of the THz images in the flow field are also discussed.

  6. Modulation of membrane potential by an acetylcholine-activated potassium current in trout atrial myocytes

    DEFF Research Database (Denmark)

    Molina, C.E.; Gesser, Hans; Llach, A.

    2007-01-01

    Application of the current-clamp technique in rainbow trout atrial myocytes has yielded resting membrane potentials that are incompatible with normal atrial function. To investigate this paradox, we recorded the whole membrane current (Im) and compared membrane potentials recorded in isolated...... cardiac myocytes and multicellular preparations. Atrial tissue and ventricular myocytes had stable resting potentials of -87 ± 2 mV and -83.9 ± 0.4 mV, respectively. In contrast, 50 out of 59 atrial myocytes had unstable depolarized membrane potentials that were sensitive to the holding current. We...... hypothesized that this is at least partly due to a small slope conductance of Im around the resting membrane potential in atrial myocytes. In accordance with this hypothesis, the slope conductance of Im was about sevenfold smaller in atrial than in ventricular myocytes. Interestingly, ACh increased Im at -120...

  7. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  8. Polymers application in proton exchange membranes for fuel cells (PEMFCs)

    Science.gov (United States)

    Walkowiak-Kulikowska, Justyna; Wolska, Joanna; Koroniak, Henryk

    2017-07-01

    This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

  9. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    in order to account for water back diffusion. Further Membrane water content is assumed to be a linear function of thickness. PEM fuel cell is working at rather low operating conditions which makes it suitable for the automotive systems. In this paper motive power part of a lift truck has been investigated...

  10. Perforate on CHO cell membranes induced by electromagnetic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... A number of studies have suggested that cell membranes may be a target of EMP irradiation (Lai et al.,. 1998). Over the past 2 decades, advances in specify instru- mentation have greatly contributed to cellular and mole- cular biology tools available to investigate nanoscaled bio- molecular structures.

  11. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  12. Salinity induced changes in cell membrane stability, protein and ...

    African Journals Online (AJOL)

    control), 4.7, 9.4 and 14.1 dS m-1 to determine the effect of salt on vegetative growth, relative water content, cell membrane stability, protein and RNA contents in sand culture experiment. Fresh and dry weights of plants, shoots and roots decreased ...

  13. hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    Administrator

    Abstract. A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a gold- plated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium boro- hydride as fuel and ...

  14. hydrogel membrane as electrolyte for direct borohydride fuel cells

    Indian Academy of Sciences (India)

    A direct borohydride fuel cell (DBFC) employing a poly (vinyl alcohol) hydrogel membrane electrolyte (PHME) is reported. The DBFC employs an AB5 Misch metal alloy as anode and a goldplated stainless steel mesh as cathode in conjunction with aqueous alkaline solution of sodium borohydride as fuel and aqueous ...

  15. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  16. The roles of membrane microdomains (rafts) in T cell activation

    Czech Academy of Sciences Publication Activity Database

    Hořejší, Václav

    2003-01-01

    Roč. 191, - (2003), s. 148-164 ISSN 0105-2896 R&D Projects: GA MŠk LN00A026 Grant - others:Wellcome Trust(GB) J1116W24Z Institutional research plan: CEZ:AV0Z5052915 Keywords : membrane microdomain * raft * T cell Subject RIV: EC - Immunology Impact factor: 7.052, year: 2003

  17. Sulfonated carbon black-based composite membranes for fuel cell ...

    Indian Academy of Sciences (India)

    Sci., Vol. 36, No. 4, August 2013, pp. 563–573. c Indian Academy of Sciences. Sulfonated carbon black-based composite membranes for fuel cell applications .... All data were collected from a second heating cycle and glass tran- sition temperatures (Tg) were calculated as a midpoint of thermogram. 2.5d FTIR studies: FTIR ...

  18. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    Science.gov (United States)

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  19. Galactosylated poly(ε-caprolactone) membrane promoted liver-specific functions of HepG2 cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Yi [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Chen, Min; Zhou, Yan [The State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [The Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2014-08-01

    The lack of pendant functional groups on the PCL backbone has been a great challenge for surface bioactivation of poly(ε-caprolactone) (PCL). In the present study, covalently galactosylated PCL (GPCL) was developed through coupling between the amino-functionalized PCL (NPCL) and the lactobionic acid (LA) and its potential application in maintenance of physiological functions of HepG2 cells was further evaluated. The structure and properties of GPCL were explored by {sup 1}H NMR, FT-IR, GPC and DSC. Moreover, the incorporation of galactose ligands onto GPCL membranes not only promoted higher wettability, but also radically changed surface morphology in comparison with PCL and NPCL according to the contact angle measurement and atomic force microscopy. When HepG2 cells were seeded onto these membranes, the cells on GPCL membranes showed more pronounced cell adhesion and tended to form aggregates during the initial adhesion stage and then progressively grew into multi-layer structures compared to those without galactose ligands by the observation with fluorescence microscope and scanning electron microscopy. Furthermore, live–dead assay and functional tests demonstrated that HepG2 cells on GPCL membranes had superior viability and maintained better liver-specific functions. Collectively, GPCL has great potential for hepatic tissue engineering scaffolds. - Graphical abstract: The specific recognition between the galactose ligands on the galactosylated poly(ε-caprolactone) membrane and the ASGPR on the HepG2 cell surface. The galactosylated poly(ε-caprolactone) membranes improved the cell-matrix interaction. The galactosylated functionalized PCL scaffold is a potential candidate for liver tissue engineering. - Highlights: • The specific recognition between the galactose ligands on the galactosylated poly(ε-caprolactone) membrane and the ASGPR on the HepG2 cell surface. • The galactosylated poly(ε-caprolactone) membranes improved the cell-matrix interaction.

  20. Innovative membrane development for fuel cells

    CSIR Research Space (South Africa)

    Vaivars, G

    2011-10-01

    Full Text Available will take time, and the first alternative commercial car will be hybrid. The critical issue is the power source for an electrical engine. The fuel cell (FC)-battery hybrid is a promising solution to replace the combustion engine. Liquid fuel (e.g. methanol...

  1. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vancini, Ricardo [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Kramer, Laura D. [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY (United States); Ribeiro, Mariana; Hernandez, Raquel [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Brown, Dennis, E-mail: dennis_brown@ncsu.edu [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States)

    2013-01-20

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  2. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    International Nuclear Information System (INIS)

    Vancini, Ricardo; Kramer, Laura D.; Ribeiro, Mariana; Hernandez, Raquel; Brown, Dennis

    2013-01-01

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  3. A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kumar, Milan; Edwards, Brian J.; Paddison, Stephen J.

    2013-02-01

    The membrane-ionomer interface is the critical interlink of the electrodes and catalyst to the polymer electrolyte membrane (PEM); together forming the membrane electrode assembly in current state-of-the-art PEM fuel cells. In this paper, proton conduction through the interface is investigated to understand its effect on the performance of a PEM fuel cell. The water containing domains at this interface were modeled as cylindrical pores/channels with the anionic groups (i.e., -SO3-) assumed to be fixed on the pore wall. The interactions of each species with all other species and an applied external field were examined. Molecular-based interaction potential energies were computed in a small test element of the pore and were scaled up in terms of macroscopic variables. Evolution equations of the density and momentum of the species (water molecules and hydronium ions) were derived within a framework of nonequilibrium thermodynamics. The resulting evolution equations for the species were solved analytically using an order-of-magnitude analysis to obtain an expression for the proton conductivity. Results show that the conductivity increases with increasing water content and pore radius, and strongly depends on the separation distance between the sulfonate groups and their distribution on the pore wall. It was also determined that the conductivity of two similar pores of different radii in series is limited by the pore with the smaller radius.

  4. Polarity governed selective amplification of through plane proton shuttling in proton exchange membrane fuel cells.

    Science.gov (United States)

    Gautam, Manu; Chattanahalli Devendrachari, Mruthyunjayachari; Thimmappa, Ravikumar; Raja Kottaichamy, Alagar; Pottachola Shafi, Shahid; Gaikwad, Pramod; Makri Nimbegondi Kotresh, Harish; Ottakam Thotiyl, Musthafa

    2017-03-15

    Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H 2 -O 2 fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix. The coexistence of strongly non-polar and polar domains in the dopant demonstrated a synergistic effect towards σ TP with the former decreasing the number of water molecules coordinated to protons by ∼3 times, diminishing the effects of electroosmotic drag exerted on ionic movements, and the latter selectively accelerating σ TP across the catalytic layers by bridging the individual GO planes via extensive host guest H-bonding interactions. When they are decoupled, the dopant with mainly non-polar or polar features only marginally enhances the σ TP, revealing that polarity factors contribute to fuel cell relevant transport properties of GO membranes only when they coexist. Fuel cell polarization and kinetic analyses revealed that these multitask dopants increased the fuel cell performance metrics of the power and current densities by ∼3 times compared to the pure GO membranes, suggesting that the functional group factors of the dopants are of utmost importance in GO-based proton exchange membrane fuel cells.

  5. Chemical Imaging of the Cell Membrane by NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  6. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    Science.gov (United States)

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  7. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for alkaline membrane fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-03-01

    Full Text Available Alkaline membrane fuel cell (AMFC) has been received increasing attention among the different types of fuel cells. Ammonium quaternized polymers such as poly (arylene ether sulfones) are being developed and studied as candidates of ionomeric...

  8. Electrolyte Composition of Mink (Mustela vison Erythrocytes and Active Cation Transporters of the Cell Membrane

    Directory of Open Access Journals (Sweden)

    Clausen TN

    2001-06-01

    Full Text Available Red blood cells from mink (Mustela vison were characterized with respect to their electrolyte content and their cell membranes with respect to enzymatic activity for cation transport. The intra- and extracellular concentrations of Na+, K+, Cl-, Ca2+ and Mg2+ were determined in erythrocytes and plasma, respectively. Plasma and red cell water content was determined, and molal electrolyte concentrations were calculated. Red cells from male adult mink appeared to be of the low-K+, high-Na+ type as seen in other carnivorous species. The intracellular K+ concentration is slightly higher than the extracellular one and the plasma-to-cell chemical gradient for Na+ is weak, though even the molal concentrations may differ significantly. Consistent with the high intracellular Na+ and low K+ concentrations, a very low or no ouabain-sensitive Na+,K+-ATPase activity and no K+-activated pNPPase activity were found in the plasma membrane fraction from red cells. The Cl- and Mg2+ concentrations expressed per liter cell water were significantly higher in red cells than in plasma whereas the opposite was the case with Ca2+. The distribution of Cl- thus does not seem compatible with an inside-negative membrane potential in mink erythrocytes. In spite of a steep calcium gradient across the red cell membrane, neither a calmodulin-activated Ca2+-ATPase activity nor an ATP-activated Ca2+-pNPPase activity were detectable in the plasma membrane fraction. The origin of a supposed primary Ca2+ gradient for sustaining of osmotic balance thus seems uncertain.

  9. Synthesis and characterization of Nafion/TiO2 nanocomposite membrane for proton exchange membrane fuel cell.

    Science.gov (United States)

    Kim, Tae Young; Cho, Sung Yong

    2011-08-01

    In this study, the syntheses and characterizations of Nafion/TiO2 membranes for a proton exchange membrane fuel cell (PEMFC) were investigated. Porous TiO2 powders were synthesized using the sol-gel method; with Nafion/TiO2 nanocomposite membranes prepared using the casting method. An X-ray diffraction analysis demonstrated that the synthesized TiO2 had an anatase structure. The specific surface areas of the TiO2 and Nafion/TiO2 nanocomposite membrane were found to be 115.97 and 33.91 m2/g using a nitrogen adsorption analyzer. The energy dispersive spectra analysis indicated that the TiO2 particles were uniformly distributed in the nanocomposite membrane. The membrane electrode assembly prepared from the Nafion/TiO2 nanocomposite membrane gave the best PEMFC performance compared to the Nafion/P-25 and Nafion membranes.

  10. Bone regeneration potential of sub-microfibrous membranes with ...

    African Journals Online (AJOL)

    Conclusion: The results indicate that biodegradable PCL sub-microfibrous membrane produced by electrospinning process seems to have excellent biocompatibility, and may be used as a scaffold for bone tissue engineering. Keywords: Biocompatibility, Hard tissue, Biomaterial availability, Bone remodeling, Polylactic acid, ...

  11. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin

    2013-01-01

    temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  12. Membrane potential plays a dual role for chloride transport across toad skin

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Rasmussen, B E

    1983-01-01

    The Cl- -current through toad skin epithelium depends on the potential in a way consistent with a potential-controlled Cl- permeability. Computer analysis of the Koefoed-Johnsen Ussing two-membrane model provided with constant membrane permeabilities indicates that the voltage- and time-dependent......The Cl- -current through toad skin epithelium depends on the potential in a way consistent with a potential-controlled Cl- permeability. Computer analysis of the Koefoed-Johnsen Ussing two-membrane model provided with constant membrane permeabilities indicates that the voltage- and time...... resemble experimental observations. This extension of the classic frog skin model implies that the Cl- permeability is activated by a voltage change caused by the inward Na+ current through the apical membrane....

  13. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    Science.gov (United States)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  14. Carnosic acid is an efflux pumps modulator by dissipation of the membrane potential in Enterococcus faecalis and Staphylococcus aureus.

    Science.gov (United States)

    Ojeda-Sana, Adriana M; Repetto, Victoria; Moreno, Silvia

    2013-01-01

    Bacterial resistance to antibiotics has become a serious problem of public health. Along with the controlled permeability by the cell-wall, active efflux systems can provide resistance by extruding antibiotics. Carnosic acid is capable to potentiate the antimicrobial activity of several antibiotics. However, the underlying molecular mechanism governing this effect remains unclear. The present study aims to investigate the effect of carnosic acid on the transport of ethidium bromide, on the permeability or the membrane potential in Enterococcus faecalis and Staphylococcus aureus. By using fluorimetric assays it was demonstrated that in E. faecalis, carnosic acid is a modulator of the uptake and efflux of ethidium bromide which does not induce cell membrane permeabilization phenomena. Such effect was sensitive to the inhibition caused by both the proton-motive force carbonyl cyanide m-chlorophenylhydrazone and the calcium antagonist verapamil, but not to vanadate, an ATPase inhibitor. In this work it was demonstrated, for the first time, that the activity of carnosic acid on the uptake/efflux of ethidium bromide is correlated with its capacity to change the membrane potential gradient in S. aureus and E. faecalis. In conclusion, carnosic acid is a natural compound, structurally unrelated to known antibiotics, which can function as an efflux pump modulator by dissipation of the membrane potential. Therefore, carnosic acid would be a good candidate to be employed as a novel therapeutic agent to be used in combination therapies against drug-resistant enterococci and S. aureus infections.

  15. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Divakara S S M Uppu

    Full Text Available Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells. The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  16. Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria.

    Science.gov (United States)

    Uppu, Divakara S S M; Konai, Mohini M; Sarkar, Paramita; Samaddar, Sandip; Fensterseifer, Isabel C M; Farias-Junior, Celio; Krishnamoorthy, Paramanandam; Shome, Bibek R; Franco, Octávio L; Haldar, Jayanta

    2017-01-01

    Chronic bacterial biofilms place a massive burden on healthcare due to the presence of antibiotic-tolerant dormant bacteria. Some of the conventional antibiotics such as erythromycin, vancomycin, linezolid, rifampicin etc. are inherently ineffective against Gram-negative bacteria, particularly in their biofilms. Here, we report membrane-active macromolecules that kill slow dividing stationary-phase and antibiotic tolerant cells of Gram-negative bacteria. More importantly, these molecules potentiate antibiotics (erythromycin and rifampicin) to biofilms of Gram-negative bacteria. These molecules eliminate planktonic bacteria that are liberated after dispersion of biofilms (dispersed cells). The membrane-active mechanism of these molecules forms the key for potentiating the established antibiotics. Further, we demonstrate that the combination of macromolecules and antibiotics significantly reduces bacterial burden in mouse burn and surgical wound infection models caused by Acinetobacter baumannii and Carbapenemase producing Klebsiella pneumoniae (KPC) clinical isolate respectively. Colistin, a well-known antibiotic targeting the lipopolysaccharide (LPS) of Gram-negative bacteria fails to kill antibiotic tolerant cells and dispersed cells (from biofilms) and bacteria develop resistance to it. On the contrary, these macromolecules prevent or delay the development of bacterial resistance to known antibiotics. Our findings emphasize the potential of targeting the bacterial membrane in antibiotic potentiation for disruption of biofilms and suggest a promising strategy towards developing therapies for topical treatment of Gram-negative infections.

  17. Nuclear myosin I regulates cell membrane tension

    Czech Academy of Sciences Publication Activity Database

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, M.; Hozák, Pavel

    2016-01-01

    Roč. 6, AUG 2 (2016), č. článku 30864. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GAP305/11/2232; GA MŠk(CZ) LO1304 Institutional support: RVO:68378050 Keywords : neuronal growth cone * rna-polymerase-ii * cancer cells * phosphatidylinositol 4,5-bisphosphate * myo1c * actin * transcription * complex * motor * afm Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  18. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  19. Isolation of a Wheat Cell Line with Altered Membrane Properties

    Science.gov (United States)

    Erdei, László; Vigh, László; Dudits, Dénes

    1982-01-01

    A spontaneous dimethylsulfoxide (DMSO)-tolerant cell line was isolated from a cell culture of wheat (Triticum monococcum L.). The tolerant cells were able to grow in the presence of 4% DMSO. Cells formed from protoplasts of the tolerant line required DMSO for division in culture medium of high osmotic value. Fatty acid composition and the molar ratio of phospholipids/sterols suggest a more ordered membrane structure in the tolerant line. Accordingly, a lower K+ influx rate was detected in the tolerant cells in comparison with the original line. These characteristics were maintained after 6 months' cultivation of the cells in DMSO-free growth medium. This suggested that genetic changes could be responsible for differences between the two cell lines. PMID:16662251

  20. Cell membrane wrapping of a spherical thin elastic shell.

    Science.gov (United States)

    Yi, Xin; Gao, Huajian

    2015-02-14

    Nanocapsules that can be tailored intelligently and specifically have drawn considerable attention in the fields of drug delivery and bioimaging. Here we conduct a theoretical study on cell uptake of a spherical nanocapsule which is modeled as a linear elastic solid thin shell in three dimensions. It is found that there exist five wrapping phases based on the stability of three wrapping states: no wrapping, partial wrapping and full wrapping. The wrapping phase diagrams are strongly dependent on the capsule size, adhesion energy, cell membrane tension, and bending rigidity ratio between the capsule and membrane. Discussion is made on similarities and differences between the cell uptake of solid nanocapsules and fluid vesicles. The reported results may have important implications for biomedical applications of nanotechnology.

  1. BNNT-mediated irreversible electroporatio: its potential on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Raffa, Cristina Riggio, Michael W. Smith, Kevin C. Jordan, Wei Cao, Alfred Cuschieri

    2012-10-01

    Tissue ablation, i.e., the destruction of undesirable tissues, has become an important minimally invasive technique alternative to resection surgery for the treatment of tumours. Several methods for tissue ablation are based on thermal techniques using cold, e.g. cryosurgery [1] or heat, e.g. radiofrequency [2] or high-intensity focused ultrasound [3] or nanoparticle-mediated irradiation [4]. Alternatively, irreversible electroporation (IRE) has been proposed as non thermal technique for minimally invasive tissue ablation based on the use of electrical pulses. When the electric field is applied to a cell, a change in transmembrane potential is induced, which can cause biochemical and physiological changes of the cell. When the threshold value of the transmembrane potential is exceeded, the cell membrane becomes permeable, thus allowing entrance of molecules that otherwise cannot cross the membrane [5]. A further increase in the electric field intensity may cause irreversible membrane permeabilization and cell death. These pulses create irreversible defects (pores) in the cell membrane lipid bilayer, causing cell death through loss of cell homeostasis [6]. This is desirable in tumour ablation in order to produce large cell death, without the use of cytostatic drugs. A study of Davalos, Mir and Rubinsky showed that IRE can ablate substantial volumes of tissue without inducing a thermal effect and therefore serve as an independent and new tissue ablation modality; this opened the way to the use of IRE in surgery [7]. Their finding was subsequently confirmed in studies on cells [8], small animal models [9] and in large animal models in the liver [10] and the heart [11]. The most important finding in these papers is that irreversible electroporation produces precisely delineated ablation zones with cell scale resolution between ablated and non-ablated areas, without zones in which the extent of damage changes gradually as during thermal ablation. Furthermore, it is

  2. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    Science.gov (United States)

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  4. Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kwon, Kyungjung; Park, Jung Ock; Yoo, Duck Young; Yi, Jung S.

    2009-01-01

    The ionomer content in electrode is one of the most important parameters for the high performance of fuel cells. The high temperature PEMFC based on phosphoric acid (PA)-doped polymer membrane with unhumidified reactant gases has a difficulty in controlling the liquid state PA ionomer content in electrode. To evaluate the PA content in electrode, the three techniques of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and acid-base titration (ABT) are carried out in situ or ex situ. The properties of membrane electrode assembly (MEA) such as electrochemical surface area (ESA), ohmic resistance, charge transfer resistance, double layer capacitance and the amount of PA in MEA components (anode, cathode and membrane) are extracted by each technique. Ex situ CV with the usage of dry gases has a limitation in assessing the reliable ESA of unhumidified PEMFC. While in situ EIS presents some informative values of resistance and capacitance for understanding the PA distribution in MEA, its sensitivity to the PA content in MEA components needs to be higher for detecting a subtle change in PA distribution. Ex situ ABT supplies a clear PA distribution in MEA at room temperature but does not seem to reflect the operating state well at high temperatures. However, it can be used as a detection tool for the loss of the initial acid content in membrane during a long-term MEA durability study.

  5. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  6. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul

    2010-07-01

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 x 10(-10) kg m s(-1) m(-2) and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 x 10(-10) kg m s(-1) m(-2) respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 x 10(-10) kg m s(-1) m(-2)). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 membranes in DEFC tests at 60 degrees C and 90 degrees C. (C) 2010 Elsevier B.V. All rights reserved.

  7. Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris

    OpenAIRE

    Oami, Kazunori

    2004-01-01

    Membrane potential responses and tentacle movement of the marine dinoflagellate Noctiluca miliaris were recorded simultaneously and their time relationships were examined. The food-gathering tentacle of Noctiluca exhibited slow extension-flexion movements in association with the spontaneously recurring membrane potential responses termed the tentacle regulating potentials (TRPs). The flexion of the tentacle began during the slow depolarization of the TRPs. The rate of the flexion increased af...

  8. Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris(Behavior Biology)

    OpenAIRE

    Kazunori, Oami; Institute of Biological Sciences, University of Tsukuba

    2004-01-01

    Membrane potential responses and tentacle movement of the marine dinoflagellate Noctiluca miliaris were recorded simultaneously and their time relationships were examined. The food-gathering tentacle of Noctiluca exhibited slow extension-flexion movements in association with the spontaneously recurring membrane potential responses termed the tentacle regulating potentials (TRPs). The flexion of the tentacle began during the slow depolarization of the TRPs. The rate of the flexion increased af...

  9. Stimulating Effect of Terfenadine on Erythrocyte Cell Membrane Scrambling

    Directory of Open Access Journals (Sweden)

    Elena Signoretto

    2016-04-01

    Full Text Available Background/Aims: The antihistaminic drug Terfenadine may trigger apoptosis of tumor cells, an effect unrelated to its effect on histamine receptors. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling triggering eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress, and ceramide. The present study explored, whether Terfenadine is capable to trigger eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS from 2′,7′-dichlorodihydrofluorescein (DCF diacetate dependent fluorescence, and ceramide abundance at the human erythrocyte surface utilizing specific antibodies. Hemolysis was quantified from haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Terfenadine (≥ 5 µM significantly increased the percentage of annexin-V-binding cells and triggered hemolysis without significantly modifying the average forward scatter. Terfenadine (7.5 µM significantly increased Fluo3-fluorescence, but did not significantly modify DCF fluorescence or ceramide abundance. The effect of Terfenadine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Exposure of human erythrocytes to Ca2+ ionophore ionomycin (1 µM, 15 min triggered annexin-V-binding, an effect augmented by Terfenadine pretreatment (10 µM, 48 hours. Conclusions: Terfenadine triggers phospholipid scrambling of the human erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+ and in part due to sensitizing human erythrocyte cell membrane scrambling to Ca2+.

  10. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  11. Engineering particle morphology and assembly for proton conducting fuel cell membrane applications

    Science.gov (United States)

    Liu, Dongxia

    The development of high performance ion conducting membranes is crucial to the commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs). This thesis work addresses some of the issues for improving the performance of ion conducting membranes in PEMFCs and SOFCs through engineering membrane microstructures. Electric-field directed particle assembly shows promise as a route to control the structure of polymer composite membranes in PEMFCs. The application of electric fields results in the aggregation of proton conducting particles into particle chains spanning the thickness of composite membranes. The field-induced structure provides improved proton conductivity, selectivity for protons over methanol, and mechanical stability compared to membranes processed without electric field. Hydrothermal deposition is developed as a route to grow electrolyte crystals into membranes (material is hydroxyapatite) with aligned proton conductive pathways that significantly enhance proton transport by eliminating grain boundary resistance. By varying deposition parameters such as reactant concentration, reaction time, or adding crystal growth modifiers, dense hydroxyapatite electrolyte membranes with a range of thickness are produced. The microstructurally engineered hydroxyapatite membranes are promising electrolyte candidates for intermediate temperature fuel cells. The microstructural engineering of ceramics by hydrothermal deposition can potentially be applied to create other ion conducting materials with optimized transport properties. To understand how to control the crystal growth habit by adding growth modifiers, growth of unusual calcite rods was investigated in a microemulsion-based synthesis prior to the investigation of hydrothermal deposition of hydroxyapatite membranes. The microemulsions act as crystal growth modifier to mediate crystal nucleation and subsequent growth. The small microemulsion droplets confine nucleation

  12. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  13. Embelin-Induced Phosphatidylserine Translocation in the Erythrocyte Cell Membrane

    Directory of Open Access Journals (Sweden)

    Ghada Bouguerra

    2015-11-01

    Full Text Available Background/Aims: The antihelminthic, contraceptive, anti-inflammatory and anticancer phytochemical embelin is at least in part effective against malignancy by inducing suicidal death or apoptosis of tumor cells. Erythrocytes are similarly able to enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+-activity ([Ca2+]i, ceramide formation, oxidative stress as well as activation of p38 kinase and protein kinase C (PKC. The present study tested, whether and how embelin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies and reactive oxygen species (ROS from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA fluorescence. Results: A 48 hours exposure of human erythrocytes to embelin (≥25 µM significantly increased the percentage of annexin-V-binding cells and hemolysis. Embelin did not significantly modify [Ca2+]i. The effect of embelin on annexin-V-binding was not blunted by removal of extracellular Ca2+, by p38 kinase inhibitor SB203580 (2 µM or by PKC inhibitor staurosporine (1 µM. Embelin did, however, significantly increase the ceramide abundance. Conclusions: Embelin stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect involving ceramide formation.

  14. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  15. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  16. A new laboratory model using bull and boar spermatozoa and fluorescent beads to assess a membrane's occlusive potential.

    Science.gov (United States)

    Szellö, M; Janett, F; Ewald, C; Music, M; Sener, B; Attin, T; Schmidlin, P R

    2016-11-01

    The objective of the present study is to assess the potential of bull and boar spermatozoa and fluorescent beads to be used as a surrogate cell model to determine the cell occlusive potential in vitro using membranes of standardized porosities. A two-chamber model system consisting of upper and lower chambers, which could be separated by membranes, was constructed. Isopore polycarbonate membranes with different standardized pore diameters were used to assess the mobile cellular penetration behavior of spermatozoa or the more passive non-cellular permeability of fluorescent particles (beads) of different diameter and color. In a first experiment, spermatozoa were placed in the lower chamber, whereas semen extender only was placed in the upper chamber. After 10 min of incubation at 37 °C, the sperm number was assessed in the latter. In a second experiment, a bead solution was drawn through resorbable collagen membranes from the upper into the lower chamber by vacuum using a syringe and bead number and size was analyzed by flow cytometry. All experiments were carried out in triplicates. A non-porous polyester membrane was used as negative control to assess the overall tightness of the setup. Boar and bull spermatozoa had average cell body lengths and widths of 9 × 5 μm and were unable to pass through pores ≤2 μm, whereas they were detectable at pore sizes ≥3 μm. Their number increased with increasing pore diameters, i.e., from minimal concentrations of 0.1 × 10 6 /ml for boar and 0.5 × 10 6 /ml for bull spermatozoa at 3 μm to maximal concentrations of 2.1 × 10 6 /ml for boar and 13.1 × 10 6 /ml for bull spermatozoa at 8 μm. The fluorescent beads followed the expected pattern of permeability reliably correlating bead and pore diameter. Within the limitations of this laboratory study and the xenogeneic cell surrogate material, the model allows to easily assess cell and particle penetration through porous structures like

  17. Highly durable direct hydrazine hydrate anion exchange membrane fuel cell

    Science.gov (United States)

    Sakamoto, Tomokazu; Serov, Alexey; Masuda, Teruyuki; Kamakura, Masaki; Yoshimoto, Koji; Omata, Takuya; Kishi, Hirofumi; Yamaguchi, Susumu; Hori, Akihiro; Horiuchi, Yousuke; Terada, Tomoaki; Artyushkova, Kateryna; Atanassov, Plamen; Tanaka, Hirohisa

    2018-01-01

    The factors influenced on degradation of direct hydrazine hydrate fuel cells (DHFCs) under operation conditions are analyzed by in situ soft X-ray radiography. A durability of DHFCs is significantly improved by multi-step reaction DHFCs (MSR-DHFCs) approach designed to decrease the crossover of liquid fuel. An open circuit voltage (OCV) as well as cell voltage at 5 mA cm-2 of MSR-DHFC construct with commercial anion exchange membrane (AEM) maintained for over of 3500 h at 60 °C. Furthermore, the commercial proton exchange membrane (PEM) is integrated into AEM of MSR-DHFCs resulting in stable power output of MSR-DHFCs for over than 2800 h at 80 °C.

  18. In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.

    Science.gov (United States)

    Caro, L H; Tettelin, H; Vossen, J H; Ram, A F; van den Ende, H; Klis, F M

    1997-12-01

    Use of the Von Heijne algorithm allowed the identification of 686 open reading frames (ORFs) in the genome of Saccharomyces cerevisiae that encode proteins with a potential N-terminal signal sequence for entering the secretory pathway. On further analysis, 51 of these proteins contain a potential glycosyl-phosphatidylinositol (GPI)-attachment signal. Seven additional ORFs were found to belong to this group. Upon examination of the possible GPI-attachment sites, it was found that in yeast the most probable amino acids for GPI-attachment as asparagine and glycine. In yeast, GPI-proteins are found at the cell surface, either attached to the plasma-membrane or as an intrinsic part of the cell wall. It was noted that plasma-membrane GPI-proteins possess a dibasic residue motif just before their predicted GPI-attachment site. Based on this, and on homologies between proteins, families of plasma-membrane and cell wall proteins were assigned, revealing 20 potential plasma-membrane and 38 potential cell wall proteins. For members of three plasma-membrane protein families, a function has been described. On the other hand, most of the cell wall proteins seem to be structural components of the wall, responsive to different growth conditions. The GPI-attachment site of yeast slightly differs from mammalian cells. This might be of use in the development of anti-fungal drugs.

  19. Internalisation of membrane progesterone receptor-α after treatment with progesterone: Potential involvement of a clathrin-dependent pathway.

    Science.gov (United States)

    Foster, Helen; Reynolds, Alan; Stenbeck, Gudrun; Dong, Jing; Thomas, Peter; Karteris, Emmanouil

    2010-01-01

    Internalisation and recycling of seven trans-membrane domain receptors is a critical regulatory event for their signalling. The mechanism(s) by which membrane progesterone receptor-α (mPRα) number is regulated on the cell surface is unclear. In this study, we investigated the cellular distribution of mPRα and mechanisms of mPRα trafficking using a cell line derived from a primary culture of human myometrial cells (M11) as an experimental model. RT-PCR and immunofluorescent analysis demonstrated expression of mPRα in M11 cells with mPRα primarily distributed on the cell surface under basal conditions. For the first time, plasma membrane localisation of mPRα was confirmed using immuno-gold transmission electron microscopy. Stimulation of M11 cells with progesterone (P4, 100 nM) resulted in internalisation of mPRα from the plasma membrane to the cytoplasm (10 min) and subsequent partial translocation back to the cell surface (20 min). We investigated potential endocytotic pathways involved in trafficking of mPRα after its internalisation. Partial co-localisation of clathrin with mPRα was obvious after 10 min of P4 treatment. Of note, chlorpromazine (inhibitor of clathrin-mediated pathway) inhibited the endocytosis of mPRα, whereas treatment with nystatin (inhibitor of caveolae-mediated pathway) did not affect internalisation. Collectively, these data suggest that mPRα is expressed on the cell surface of M11 cells and undergoes endocytosis after P4 stimulation primarily via a clathrin-mediated pathway.

  20. Sensitivity of mitochondrial DNA depleted ρ0 cells to H2O2 depends on the plasma membrane status.

    Science.gov (United States)

    Tomita, Kazuo; Kuwahara, Yoshikazu; Takashi, Yuko; Tsukahara, Takao; Kurimasa, Akihiro; Fukumoto, Manabu; Nishitani, Yoshihiro; Sato, Tomoaki

    2017-08-19

    To clarify the relationship between mitochondrial DNA (mtDNA)-depleted ρ0 cells and the cellular sensitivity to hydrogen peroxide (H 2 O 2 ), we established HeLa and SAS ρ0 cell lines and investigated their survival rate in H 2 O 2 , radical scavenging enzymes, plasma membrane potential status, and chronological change in intracellular H 2 O 2 amount under the existence of extracellular hydrogen peroxide compared with the parental cells. The results revealed that ρ0 cells had higher sensitivity to H 2 O 2 than their parental cells, even though the catalase activity of ρ0 cells was up-regulated, and the membrane potential of the ρ0 cells was lower than their parental cells. Furthermore, the internal H 2 O 2 amount significantly increased only in ρ0 cells after 50 μM H 2 O 2 treatment for 1 h. These results suggest that plasma membrane status of ρ0 cells may cause degradation, and the change could lead to enhanced membrane permeability to H 2 O 2 . As a consequence, ρ0 cells have a higher H 2 O 2 sensitivity than the parental cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane.

    Science.gov (United States)

    Ji, Hongtao; Dong, Hansong

    2015-09-01

    Many plant- and animal-pathogenic Gram-negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel-like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two-step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two-domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin-rich middle lamella by the bacterial pilus. One-domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin-type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  2. Early Zn2+-induced effects on membrane potential account for primary heavy metal susceptibility in tolerant and sensitive Arabidopsis species

    Science.gov (United States)

    Kenderešová, Lucia; Staňová, Andrea; Pavlovkin, Ján; Ďurišová, Eva; Nadubinská, Miriam; Čiamporová, Milada; Ovečka, Miroslav

    2012-01-01

    Background and Aims Uptake of heavy metals by plant root cells depends on electro-physiological parameters of the plasma membrane. In this study, responses of the plasma membrane in root cells were analysed where early reactions to the metal ion-induced stress are localized. Three different Arabidopsis species with diverse strategies of their adaptation to heavy metals were compared: sensitive Arabidopsis thaliana and tolerant A. halleri and A. arenosa. Methods Plants of A. thaliana Col-0 ecotype and plants of A. arenosa and A. halleri originating from natural metallicolous populations were exposed to high concentrations of Zn2+. Plants were tested for root growth rate, cellular tolerance, plant morphology and cell death in the root apex. In addition, the membrane potential (EM) of mature cortical root cells and changes in the pH of the liquid culture media were measured. Key Results Primary roots of A. halleri and A. arenosa plants grew significantly better at increased Zn2+ concentrations than A. thaliana plants. Elevated Zn2+ concentrations in the culture medium induced rapid changes in EM. The reaction was species-specific and concentration-dependent. Arabidopsis halleri revealed the highest insensitivity of the plasma membrane and the highest survival rate under prolonged treatment with extra-high concentrations. Plants were able to effectively adjust the pH in the control, but much less at Zn2+-induced lower pH. Conclusions The results indicate a similar mode of early reaction to Zn2+, but with different extent in tolerant and sensitive species of Arabidopsis. The sensitivity of A. thaliana and a high tolerance of A. halleri and A. arenosa were demonstrated. Plasma membrane depolarization was lowest in the hyperaccumulator A. halleri and highest in A. thaliana. This indicates that rapid membrane voltage changes are an excellent tool to monitor the effects of heavy metals. PMID:22645116

  3. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2016-01-01

    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  4. Binding of 18F by cell membranes and cell walls of Streptococcus mutans

    International Nuclear Information System (INIS)

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-01-01

    The binding of 18 F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of 18 F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. 18 F binding was stimulated by Ca 2+ (1 mM). The binding of 18 F to cellular components was dependent upon the pH, as well as the amount of 18 F and dose of the binder employed. The binding of 18 F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of 18 F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of 18 F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of 18 F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of 18 F per mg (dry weight). 18 F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of 18 F binding by cell membranes and walls of oral flora

  5. Polybenzimidazole membranes for zero gap alkaline electrolysis cells

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Christensen, Erik

    Membranes of m-PBI doped in KOH (aq), 15-35 wt%, show high ionic conductivity in the temperature range 20-80 ºC. In electrolysis cells with nickel foam electrodes m-PBI membranesprovide low internal resistance. With a 60 µm membraneat 80ºC in 20 wt% KOH,1000 mA/cm2 is achieved at 2.25....

  6. Proteomic analysis of isolated membrane fractions from superinvasive cancer cells

    OpenAIRE

    Dowling, Paul; Meleady, Paula; Dowd, Andrew; Henry, Michael; Glynn, Sharon; Clynes, Martin

    2007-01-01

    The superinvasive phenotype exhibited by paclitaxel-selected variants of an in vitro invasive clonal population of the human cancer cell line, MDA-MB-435S were examined using DIGE (Fluorescence 2-D Difference Gel Electrophoresis) and mass spectrometry. Isolation of membrane proteins from the MDA-MB-435S-F/Taxol-10p4p and parental populations was performed by temperature-dependent phase partitioning using the detergent Triton X-114. Subsequent DIGE-generated data analysed using Decyde...

  7. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes.

    Directory of Open Access Journals (Sweden)

    Chan Yuan

    Full Text Available Dimethyl sulfoxide (DMSO is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.

  8. Influence of the external conditions on salt retention and pressure-induced electrical potential measured across a composite membrane

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    1999-01-01

    Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence on these paramet......Transport on single electrolyte solutions (NaCl and MgCl2) due to pressure gradients across a commercial reverse osmosis membrane was studied by measuring volume flux (J(v)), salt rejection (S) and pressure induced electrical potential (Delta E) in a crossflow cell. The influence...... on these parameters of different external conditions due to hydrodynamic or chemical changes in the feed solutions was also studied. Changes were carried out by variation of the feed solution velocity (Reynolds numbers between 1500 and 3300) or the concentration ratio of mixed electrolytes (r = HCl/NaCl and HCl/MgCl2...

  9. Collective cell behavior on basement membranes floating in space

    Science.gov (United States)

    Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas

    The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.

  10. Fluorine NMR-based screening on cell membrane extracts.

    Science.gov (United States)

    Veronesi, Marina; Romeo, Elisa; Lambruschini, Chiara; Piomelli, Daniele; Bandiera, Tiziano; Scarpelli, Rita; Garau, Gianpiero; Dalvit, Claudio

    2014-02-01

    The possibility of measuring the action of inhibitors of specific enzymatic reactions in intact cells, cell lysates or membrane preparations represents a major advance in the lead discovery process. Despite the relevance of assaying in physiological conditions, only a small number of biophysical techniques, often requiring complex set-up, are applicable to these sample types. Here, we demonstrate the first application of n-fluorine atoms for biochemical screening (n-FABS), a homogeneous and versatile assay based on (19) F NMR spectroscopy, to the detection of high- and low-affinity inhibitors of a membrane enzyme in cell extracts and determination of their IC50 values. Our approach can allow the discovery of novel binding fragments against targets known to be difficult to purify or where membrane-association is required for activity. These results pave the way for future applications of the methodology to these relevant and complex biological systems. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  12. Oversampling method to extract excitatory and inhibitory conductances from single-trial membrane potential recordings.

    Science.gov (United States)

    Bédard, Claude; Béhuret, Sebastien; Deleuze, Charlotte; Bal, Thierry; Destexhe, Alain

    2012-09-15

    Variations of excitatory and inhibitory conductances determine the membrane potential (V(m)) activity of neurons, as well as their spike responses, and are thus of primary importance. Methods to estimate these conductances require clamping the cell at several different levels of V(m), thus making it impossible to estimate conductances from "single trial" V(m) recordings. We present here a new method that allows extracting estimates of the full time course of excitatory and inhibitory conductances from single-trial V(m) recordings. This method is based on oversampling of the V(m). We test the method numerically using models of increasing complexity. Finally, the method is evaluated using controlled conductance injection in cortical neurons in vitro using the dynamic-clamp technique. This conductance extraction method should be very useful for future in vivo applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Effects of intense noise exposure on the outer hair cell plasma membrane fluidity.

    Science.gov (United States)

    Chen, Guang-Di; Zhao, Hong-Bo

    2007-04-01

    Outer hair cells (OHCs) play an important role in cochlear amplification via their length changes (electromotility). A noise-induced cochlear amplification loss leading to a permanent threshold shift (PTS) was observed without a significant hair cell loss in rats [Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9.]. Since motor proteins are inserted in the OHC lateral membrane, any change in the OHC plasma membrane may result in a loss of OHC electromotility, leading to a loss of cochlear amplification. In this study, the lateral diffusion in the OHC plasma membrane was determined in vitro in guinea pigs by fluorescent recovery after photobleaching (FRAP) after an in vivo noise exposure. The lateral diffusion in the OHC plasma membrane demonstrated a length-dependence, which increased as OHC length increased. A reduction in the lateral diffusion was observed in those OHCs with lengths of 50-70 microm after exposure to an 8-kHz octave band noise at 110 dB SPL for 3h. This membrane fluidity change was associated with the selective PTS at frequencies around 8 kHz. The reduction of the lateral diffusion in the OHC lateral wall indicated that noise could impair the micromechanics of the OHC lateral wall and might consequently impair OHC electromotility to induce threshold shift.

  14. Dewetting transition assisted clearance of (NFGAILS) amyloid fibrils from cell membranes by graphene

    International Nuclear Information System (INIS)

    Liu, Jiajia; Yang, Zaixing; Gu, Zonglin; Li, Haotian; Garate, Jose Antonio; Zhou, Ruhong

    2014-01-01

    Clearance of partially ordered oligomers and monomers deposited on cell membrane surfaces is believed to be an effective route to alleviate many potential protein conformational diseases (PCDs). With large-scale all-atom molecular dynamics simulations, here we show that graphene nanosheets can easily and quickly win a competitive adsorption of human islet amyloid polypeptides (hIAPP 22-28 ) NFGAILS and associated fibrils against cell membrane, due to graphene's unique two-dimensional, highly hydrophobic surface with its all-sp 2 hybrid structure. A nanoscale dewetting transition was observed at the interfacial region between the fibril (originally deposited on the membrane) and the graphene nanosheet, which significantly assisted the adsorption of fibrils onto graphene from the membrane. The π–π stacking interaction between Phe23 and graphene played a crucial role, providing the driving force for the adsorption at the graphene surface. This study renders new insight towards the importance of water during the interactions between amyloid peptides, the phospholipidic membrane, and graphene, which might shed some light on future developments of graphene-based nanomedicine for preventing/curing PCDs like type II diabetes mellitus

  15. Dewetting transition assisted clearance of (NFGAILS) amyloid fibrils from cell membranes by graphene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiajia; Yang, Zaixing; Gu, Zonglin [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 (China); Li, Haotian [Bio-X Lab, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Garate, Jose Antonio [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Zhou, Ruhong, E-mail: ruhongz@us.ibm.com [Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 (China); IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Department of Chemistry, Columbia University, New York, New York 10027 (United States)

    2014-12-14

    Clearance of partially ordered oligomers and monomers deposited on cell membrane surfaces is believed to be an effective route to alleviate many potential protein conformational diseases (PCDs). With large-scale all-atom molecular dynamics simulations, here we show that graphene nanosheets can easily and quickly win a competitive adsorption of human islet amyloid polypeptides (hIAPP{sub 22-28}) NFGAILS and associated fibrils against cell membrane, due to graphene's unique two-dimensional, highly hydrophobic surface with its all-sp{sup 2} hybrid structure. A nanoscale dewetting transition was observed at the interfacial region between the fibril (originally deposited on the membrane) and the graphene nanosheet, which significantly assisted the adsorption of fibrils onto graphene from the membrane. The π–π stacking interaction between Phe23 and graphene played a crucial role, providing the driving force for the adsorption at the graphene surface. This study renders new insight towards the importance of water during the interactions between amyloid peptides, the phospholipidic membrane, and graphene, which might shed some light on future developments of graphene-based nanomedicine for preventing/curing PCDs like type II diabetes mellitus.

  16. Behavior of the P1.HTR mastocytoma cell line implanted in the chorioallantoic membrane of chick embryos

    Directory of Open Access Journals (Sweden)

    S.F. Avram

    2013-01-01

    Full Text Available The P1.HTR cell line includes highly transfectable cells derived from P815 mastocytoma cells originating from mouse breast tissue. Despite its widespread use in immunogenic studies, no data are available about the behavior of P1.HTR cells in the chick embryo chorioallantoic membrane model. The objective of the present investigation was to study the effects of P1.HTR cells implanted on the chorioallantoic membrane of chick embryos. We inoculated P1.HTR cells into the previously prepared chick embryo chorioallantoic membrane and observed the early and late effects of these cells by stereomicroscopy, histochemistry and immunohistochemistry. A highly angiotropic and angiogenic effect occurred early after inoculation and a tumorigenic potential with the development of mastocytoma keeping well mast cells immunophenotype was detected later during the development. The P1.HTR mastocytoma cell line is a good tool for the development of the chick embryo chorioallantoic membrane mastocytoma model and also for other studies concerning the involvement of blood vessels. The chick embryo chorioallantoic membrane model of mastocytoma retains the mast cell immunophenotype under experimental conditions and could be used as an experimental tool for in vivo preliminary testing of antitumor and antivascular drugs.

  17. Dynamic analysis of magnetic nanoparticles crossing cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Pedram, Maysam Z. [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of); Shamloo, Amir, E-mail: shamloo@sharif.edu [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of); Ghafar-Zadeh, Ebrahim [Biologically-Inspired Sensors and Actuators Laboratory, Department of Electrical Engineering and Computer science, York University, Keel Street, Toronto (Canada); Alasty, Aria, E-mail: aalasti@sharif.edu [Department of Mechanical Engineering, Sharif University of Tech., Azadi Ave., Tehran (Iran, Islamic Republic of)

    2017-05-01

    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of MNPs.

  18. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... that stretch and volume sensitivity can be considered two independent regulatory mechanisms....

  19. Hydrocarbon-based fuel cell membranes: Sulfonated crosslinked poly(1,3-cyclohexadiene) membranes for high temperature polymer electrolyte fuel cells

    OpenAIRE

    Deng, Suxiang; Hassan, Mohammad K.; Mauritz, Kenneth A.; Mays, Jimmy W.

    2015-01-01

    High temperature fuel cell membranes based on poly(1,3-cyclohexadiene) were prepared by a Polymerization-Crosslinking-Sulfonation (PCS) approach, and a broad range of membrane compositions were achieved using various sulfonating reagents and reaction conditions. Membranes were characterized for their proton conductivity and thermal degradation behavior. Some of the membranes showed up to a 68% increase in proton conductivity as compared to Nafion under the same conditions (100% relative humid...

  20. Experimental study on the membrane electrode assembly of a proton exchange membrane fuel cell: effects of microporous layer, membrane thickness and gas diffusion layer hydrophobic treatment

    International Nuclear Information System (INIS)

    Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.

    2017-01-01

    Highlights: • EIS is employed to investigate the MEA design of a PEM fuel cell. • Effects of MPL, membrane thickness and GDL hydrophobic treatment are studied. • MPL increases cell output at low to medium currents but reduces it at high currents. • Better results are obtained when employing a thinner Nafion membrane. • GDL hydrophobic treatment improves the cell performance. - Abstract: In this study, electrochemical impedance spectroscopy (EIS) is employed to analyze the influence of microporous layer (MPL), membrane thickness and gas diffusion layer (GDL) hydrophobic treatment in the performance of a proton exchange membrane (PEM) fuel cell. Results show that adding a MPL increases cell performance at low to medium current densities. Because lower ohmic losses are observed when applying a MPL, such improvement is attributed to a better hydration state of the membrane. The MPL creates a pressure barrier for water produced at the cathode, forcing it to travel to the anode side, therefore increasing the water content in the membrane. However, at high currents, this same phenomenon seems to have intensified liquid water flooding in the anode gas channels, increasing mass transfer losses and reducing the cell performance. Decreasing membrane thickness results into considerably higher performances, due to a decrease in ohmic resistance. Moreover, at low air humidity operation, a rapid recovery from dehydration is observed when a thinner membrane is employed. The GDL hydrophobic treatment significantly improves the cell performance. Untreated GDLs appear to act as water-traps that not only hamper reactants transport to the reactive sites but also impede the proper humidification of the cell. From the different designs tested, the highest maximum power density is obtained from that containing a MPL, a thinner membrane and treated GDLs.

  1. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui

    2015-06-01

    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  2. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ...

  3. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  4. Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate

    Energy Technology Data Exchange (ETDEWEB)

    Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

    2010-08-05

    Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

  5. Synthetic antimicrobial peptides of the halictines family disturb the membrane integrity of Candida cells.

    Science.gov (United States)

    Kodedová, Marie; Sychrová, Hana

    2017-10-01

    We compared the potency of four derivatives of the antimicrobial peptide halictine-2 against six Candida species. Observed activity was peptide and species specific. Halictines rapidly permeabilized cell membranes and caused the leakage of cytosolic components. Their killing potential was enhanced by the commercial antimicrobial agent octenidine dihydrochloride. The effect on C. glabrata cells did not depend on the activity of Cdr pumps, but was influenced by their lipid composition. The pre-treatment of cells with myriocin, an inhibitor of sphingolipid synthesis, enhanced the peptides' activity, whereas pre-treatment with terbinafine and fluconazole, inhibitors of sterol synthesis, significantly weakened their efficacy. The killing efficacy of peptides increased in combination with amphotericin B. Thus the mode of action of halictines is likely to depend on the plasma-membrane sterols, which might explain the observed differences among the tested Candida species. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  7. A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Andreadis, G.M.; Podias, A.K.M.; Tsiakaras, P.E. [Department of Mechanical and Industrial Engineering, School of Engineering, University of Thessaly, Pedion Areos, 383 34, Volos (Greece)

    2009-10-20

    In the present work, a model-based parametric analysis of the performance of a direct ethanol polymer electrolyte membrane fuel cell (DE-PEMFC) is conducted with the purpose to investigate the effect of several parameters on the cell's operation. The analysis is based on a previously validated one-dimensional mathematical model that describes the operation of a DE-PEMFC in steady state. More precisely, the effect of several operational and structural parameters on (i) the ethanol crossover rate from the anode to the cathode side of the cell, (ii) the parasitic current generation (mixed potential formation) and (iii) the total cell performance is investigated. According to the model predictions it was found that the increase of the ethanol feed concentration leads to higher ethanol crossover rates, higher parasitic currents and higher mixed potential values resulting in the decrease of the cell's power density. However there is an optimum ethanol feed concentration (approximately 1.0 mol L{sup -1}) for which the cell power density reaches its highest value. The platinum (Pt) loading of the anode and the cathode catalytic layers affects strongly the cell performance. Higher values of Pt loading of the catalytic layers increase the specific reaction surface area resulting in higher cell power densities. An increase of the anode catalyst loading compared to an equal one of the cathode catalyst loading has greater impact on the cell's power density. Another interesting finding is that increasing the diffusion layers' porosity up to a certain extent, improves the cell power density despite the fact that the parasitic current increases. This is explained by the fact that the reactants' concentrations over the catalysts are increased, leading to lower activation overpotential values, which are the main source of the total cell overpotentials. Moreover, the use of a thicker membrane leads to lower ethanol crossover rate, lower parasitic current and

  8. A direct ascorbate fuel cell with an anion exchange membrane

    Science.gov (United States)

    Muneeb, Omar; Do, Emily; Tran, Timothy; Boyd, Desiree; Huynh, Michelle; Ghosn, Gregory; Haan, John L.

    2017-05-01

    Ascorbic Acid (Vitamin C) is investigated as a renewable alternative fuel for alkaline direct liquid fuel cells (DLFCs). The environmentally- and biologically-friendly compound, L-ascorbic acid (AA) has been modeled and studied experimentally under acidic fuel cell conditions. In this work, we demonstrate that ascorbic acid is a more efficient fuel in alkaline media than in acidic media. An operating direct ascorbate fuel cell is constructed with the combination of L-ascorbic acid and KOH as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, metal or carbon black anode materials and metal cathode catalyst. Operation of the fuel cell at 60 °C using 1 M AA and 1 M KOH as the anode fuel and electrolyte, respectively, and oxygen gas at the cathode, produces a maximum power density of 73 mW cm-2, maximum current density of 497 mA cm-2 and an open circuit voltage of 0.90 V. This performance is significantly greater than that of an ascorbic acid fuel cell with a cation exchange membrane, and it is competitive with alkaline DLFCs fueled by alcohols.

  9. NCAM180 regulates Ric8A membrane localization and potentiates β-adrenergic response.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Amoureux

    Full Text Available Cooperation between receptors allows integrated intracellular signaling leading to appropriate physiological responses. The Neural Cell Adhesion Molecule (NCAM has three main isoforms of 120, 140 and 180 kDa, with adhesive and signaling properties, but their respective functions remains to be fully identified. Here we show that the human NCAM180 intracellular domain is a novel interactor of the human guanosine exchange factor (GEF Ric8A using the yeast two hybrid system and immunoprecipitation. Furthermore, NCAM, Ric8A and G(αs form a tripartite complex. Colocalization experiments by confocal microscopy revealed that human NCAM180 specifically induces the recruitment of Ric8A to the membrane. In addition, using an in vitro recombinant system, and in vivo by comparing NCAM knock-out mouse brain to NCAM heterozygous and wild type brains, we show that NCAM expression dose dependently regulates Ric8A redistribution in detergent resistent membrane microdomains (DRM. Previous studies have demonstrated essential roles for Ric8 in G(α protein activity at G protein coupled receptors (GPCR, during neurotransmitter release and for asymmetric cell division. We observed that inhibition of Ric8A by siRNA or its overexpression, decreases or increases respectively, cAMP production following β-adrenergic receptor stimulation. Furthermore, in human HEK293T recombinant cells, NCAM180 potentiates the G(αs coupled β-adrenergic receptor response, in a Ric8A dependent manner, whereas NCAM120 or NCAM140 do not. Finally, in mouse hippocampal neurons expressing endogenously NCAM, NCAM is required for the agonist isoproterenol to induce cAMP production, and this requirement depends on Ric8A. These data illustrate a functional crosstalk between a GPCR and an IgCAM in the nervous system.

  10. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.

    2006-07-01

    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  11. Development of New Openers of ATP-Sensitive Potassium Channels of the Cell Membranes

    Directory of Open Access Journals (Sweden)

    Strutynskyi, R.B.

    2016-07-01

    Full Text Available Two innovative libraries (413 cyclosulfamides and 709 orthopyridine sulfamides of potential new openers of ATP-sensitive potassium channels of cell membranes were developed. It is shown experimentally that at least ten new original compounds have properties of pharmacological openers of the channels. Seven compounds, namely Z851154982, Z56762024, Z1269122570, Z31153162, Z45679561, Z756371174 and Z649723638, open channels of both types — sarcoplasmic as well as mitochondrial membranes: Simultaneously, Z734043408 compound is a potent activator of aforementioned channels of sarcolemmal membrane only. Z31197374 and Z666664306 compounds show the affinity onlyto КATP-channels of mitochondrial type. The results of the work can be used by pharmaceutical companies and scientific research institutes.

  12. Preparation of Highly Sulfonated Ultra-Thin Proton-Exchange Polymer Membranes for Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Jiang, Zhongqing; Meng, Yuedong; Jiang, Zhong-Jie; Shi, Yicai

    Sulfonated ultra-thin proton-exchange polymer membrane carrying pyridine groups was made from a plasma polymerization of styrene, 2-vinylpyridine, and trifluoromethanesulfonic acid by after-glow capacitively coupled discharge technique. Pyridine groups tethered to the polymer backbone acts as a medium through the basic nitrogen for transfer of protons between the sulfonic acid groups of proton exchange membrane. It shows that the method using present technology could effectively depress the degradation of monomers during the plasma polymerization. Spectroscopic analyses reveal that the obtained membranes are highly functionalized with proton exchange groups and have higher proton conductivity. Thus, the membranes are expected to be used in direct methanol fuel cells.

  13. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component......- and system models match experimental data from the literature. However, limited data were available for verification so further work is necessary to confirm detailed aspects of the models. It is nonetheless expected that the developed models will be useful for system modeling and optimization of PEM fuel...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  14. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose

    2002-01-01

    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  15. Paradox phenomena of proton exchange membrane fuel cells operating under dead-end anode mode

    Science.gov (United States)

    Jiang, Dong; Zeng, Rong; Wang, Shumao; Jiang, Lijun; Varcoe, John R.

    2014-11-01

    By using two spatially separated reference electrodes in a single cell proton-exchange membrane fuel cell (PEMFC), the individual potentials of the anode and cathode are recorded under realistic operating conditions. The PEMFC is operated under dead-end anode (DEA) mode, without any humidification, to mitigate water accumulation at the anode. Although N2 crossover from cathode to anode may play an important role in PEMFCs operating under DEA mode, our results unexpectedly show that the over-potentials of both the anode and cathode concomitantly increased or decreased at the same time. The increases of over-potentials correlate to the increase of the high frequency resistance of the cell (Rhf) imply that the water content in the membrane electrode assemblies is critical. However, the subsequent H2 depletion tests suggest that water may accumulate at the interface between the surface of the catalyst and the ultrathin perfluorosulfonic acid (PFSA) ionomer film and this contradicts the above (the increase in Rhf implies the drying out of the MEAs). This study highlights the need for further research into understanding the water transport properties of the ultrathin PFSA ionomer film (<60 nm): it is clear that these exhibit completely different properties to that of bulk proton-exchange membranes (PEM).

  16. Induced-Charge Enhancement of the Diffusion Potential in Membranes with Polarizable Nanopores.

    Science.gov (United States)

    Ryzhkov, I I; Lebedev, D V; Solodovnichenko, V S; Shiverskiy, A V; Simunin, M M

    2017-12-01

    When a charged membrane separates two salt solutions of different concentrations, a potential difference appears due to interfacial Donnan equilibrium and the diffusion junction. Here, we report a new mechanism for the generation of a membrane potential in polarizable conductive membranes via an induced surface charge. It results from an electric field generated by the diffusion of ions with different mobilities. For uncharged membranes, this effect strongly enhances the diffusion potential and makes it highly sensitive to the ion mobilities ratio, electrolyte concentration, and pore size. Theoretical predictions on the basis of the space-charge model extended to polarizable nanopores fully agree with experimental measurements in KCl and NaCl aqueous solutions.

  17. Trans-cis isomerization of lipophilic dyes probing membrane microviscosity in biological membranes and in live cells.

    Science.gov (United States)

    Chmyrov, Volodymyr; Spielmann, Thiemo; Hevekerl, Heike; Widengren, Jerker

    2015-06-02

    Membrane environment and fluidity can modulate the dynamics and interactions of membrane proteins and can thereby strongly influence the function of cells and organisms in general. In this work, we demonstrate that trans-cis isomerization of lipophilic dyes is a useful parameter to monitor packaging and fluidity of biomembranes. Fluorescence fluctuations, generated by trans-cis isomerization of the thiocarbocyanine dye Merocyanine 540 (MC540), were first analyzed by fluorescence correlation spectroscopy (FCS) in different alcohol solutions. Similar isomerization kinetics of MC540 in lipid vesicles could then also be monitored, and the influence of lipid polarity, membrane curvature, and cholesterol content was investigated. While no influence of membrane curvature and lipid polarity could be observed, a clear decrease in the isomerization rates could be observed with increasing cholesterol contents in the vesicle membranes. Finally, procedures to spatially map photoinduced and thermal isomerization rates on live cells by transient state (TRAST) imaging were established. On the basis of these procedures, MC540 isomerization was studied on live MCF7 cells, and TRAST images of the cells at different temperatures were found to reliably detect differences in the isomerization parameters. Our studies indicate that trans-cis isomerization is a useful parameter for probing membrane dynamics and that the TRAST imaging technique can provide spatial maps of photoinduced isomerization as well as both photoinduced and thermal back-isomerization, resolving differences in local membrane microviscosity in live cells.

  18. Nano/micro-patterning the membrane-electrocatalyst layer for fuel cell applications

    Science.gov (United States)

    Omosebi, Ayokunle O.

    Polymer electrolyte membrane fuel cells (PEMFCs) are high energy density electrochemical devices capable of directly converting stored chemical potential into electricity. Their many attributes, including low emissions, quiet operation, scalability, modularity and efficiency make them attractive alternatives to conventional portable and stationary power sources. The emergence of the PEMFC as a dominant technology for electrical power generation is however currently limited by performance losses and the cost of the membrane electrode assembly (MEA). The basic architecture of the MEA, which has remained largely unchanged for over four decades, consists of ink-based platinum supported on carbon catalyst layers dispersed on either side of a Nafion membrane. In order to generate power from the electrochemical reaction, protons, electrons, and oxidant must be available at the catalyst layer-Nafion ionomer interface. As such, to improve performance, the availability of this interface should be maximized without increasing the transport resistance for reactants accessing the reaction plane. To achieve this objective, the membrane-electrode interface could be restructured to possess a larger interfacial area by creating nano/microfeatures on the Nafion membrane. This work introduces electron beam lithography coupled with dry etching and sputtering strategies for creating membrane-electrode structures with over-potential suppression characteristics in PEMFCs. Electron beam lithography provides the ability to fabricate nano/microfeatures in an electron beam sensitive material, while pattern transfer and aspect-ratio control is achieved with dry etching. Conventional and ultra-thin catalyst layers were fabricated by spraying and sputter deposition, and methanol and hydrogen were tested as fuels. Experiments involving the patterned MEA elucidate improved properties that lead to PEMFC performance enhancement. The ability to directly pattern a Nafion membrane

  19. Performance of proton exchange membrane fuel cells at elevated temperature

    International Nuclear Information System (INIS)

    Shyu, Jin-Cherng; Hsueh, Kan-Lin; Tsau, Fanghei

    2011-01-01

    Highlights: → At 1 atm, cell has best performance (∼1300 mA/cm at 0.6 V) at 100 deg. C and RH = 100%. → The A value in Eq. increased with increases in the back pressure and RH. →R i dramatically decreased at back pressure of 1 atm. → At each RH, R i decreased and then increased as cell temperature increased at 1 atm. - Abstract: The polarization curves of a single PEMFC having a Nafion membrane fed with H 2 /O 2 with relative humidity (RH) of 35%, 70% and 100% were measured at cell temperatures ranging from 65 deg. C to 120 deg. C at back pressures of 0 atm and 1 atm, respectively. Measured results showed that the best cell performance at 0.6 V operated within 65-120 deg. C at zero back pressure was 1000 mA cm -2 at 65 deg. C and RH = 100%, while the best cell performance at 1 atm back pressure was 1300 mA cm -2 at 100 deg. C and RH = 100%. Based on the analysis of impedance data measured at anode and cathode humidification temperatures of 90 deg. C and cell temperature of 100 deg. C at back pressures of 0 and 1 atm (90-100p0 and 90-100p1), it could be found that the membrane resistance was reduced and the catalyst became more active as the back pressure increases. The present results showed that increasing back pressure was able to dramatically improve cell performance and the effect of the back pressure surpassed that of humidification in the internal resistance of cell.

  20. Liprotides kill cancer cells by disrupting the plasma membrane

    DEFF Research Database (Denmark)

    Frislev, Henriette S; Boye, Theresa Louise; Nylandsted, Jesper

    2017-01-01

    HAMLET (human α-lactalbumin made lethal to tumour cells) is a complex of α-lactalbumin (aLA) and oleic acid (OA) which kills transformed cells, while leaving fully differentiated cells largely unaffected. Other protein-lipid complexes show similar anti-cancer potential. We call such complexes lip...

  1. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Li, Jin; Li, Xiaojin; Yu, Shuchun; Hao, Jinkai; Lu, Wangting; Shao, Zhigang; Yi, Baolian

    2014-01-01

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H 3 PO 4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H 3 PO 4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm −2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  2. Surface deformation during an action potential in pearled cells

    Science.gov (United States)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  3. Cell-substrate interaction with cell-membrane-stress dependent adhesion.

    Science.gov (United States)

    Jiang, H; Yang, B

    2012-01-10

    Cell-substrate interaction is examined in a two-dimensional mechanics model. The cell and substrate are treated as a shell and an elastic solid, respectively. Their interaction through adhesion is treated using nonlinear springs. Compared to previous cell mechanics models, the present model introduces a cohesive force law that is dependent not only on cell-substrate distance but also on internal cell-membrane stress. It is postulated that a living cell would establish focal adhesion sites with density dependent on the cell-membrane stress. The formulated mechanics problem is numerically solved using coupled finite elements and boundary elements for the cell and the substrate, respectively. The nodes in the adhesion zone from either side are linked by the cohesive springs. The specific cases of a cell adhering to a homogeneous substrate and a heterogeneous bimaterial substrate are examined. The analyses show that the substrate stiffness affects the adhesion behavior significantly and regulates the direction of cell adhesion, in good agreement with the experimental results in the literature. By introducing a reactive parameter (i.e., cell-membrane stress) linking biological responses of a living cell to a mechanical environment, the present model offers a unified mechanistic vehicle for characterization and prediction of living cell responses to various kinds of mechanical stimuli including local extracellular matrix and neighboring cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Performance equations of proton exchange membrane fuel cells with feeds of varying degrees of humidification

    International Nuclear Information System (INIS)

    Hsuen, Hsiao-Kuo; Yin, Ken-Ming

    2012-01-01

    Performance equations that describe the dependence of cell potential on current density for proton exchange membrane fuel cells (PEMFCs) with feeds of varying degrees of humidification have been formulated in algebraic form. The equations are developed by the reduction of a one-dimensional multi-domain model that takes into account, in details, the transport limitations of gas species, proton migration and electron conduction, electrochemical kinetics, as well as liquid water flow within the cathode, anode, and membrane. The model equations for the anode and membrane were integrated with those of the cathode developed in the previous studies to form a complete set of equations for one-dimensional single cell model. Because the transport equations for the anode diffuser can be solved analytically, calculations of integrals are only needed in the membrane and the two-phase region of cathode diffuser. The proposed approach greatly reduces the complexity of the model equations, and only iterations of a single algebraic equation are required to obtain final solutions. Since the performance equations are originated from a mechanistic one-dimensional model, all the parameters appearing in the equations are endowed with a precise physical significance.

  5. Determine equilibrium dissociation constant of drug-membrane receptor affinity using the cell membrane chromatography relative standard method.

    Science.gov (United States)

    Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong

    2017-06-23

    The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Intracellular Delivery by Shape Anisotropic Magnetic Particle-Induced Cell Membrane Cuts.

    Science.gov (United States)

    Lin, Ming-Yu; Wu, Yi-Chien; Lee, Ji-Ann; Tung, Kuan-Wen; Zhou, Jessica; Teitell, Michael A; Yeh, J Andrew; Chiou, Pei Yu

    2016-08-01

    Introducing functional macromolecules into a variety of living cells is challenging but important for biology research and cell-based therapies. We report a novel cell delivery platform based on rotating shape anisotropic magnetic particles (SAMPs), which make very small cuts on cell membranes for macromolecule delivery with high efficiency and high survivability. SAMP delivery is performed by placing commercially available nickel powder onto cells grown in standard cell culture dishes. Application of a uniform magnetic field causes the magnetic particles to rotate because of mechanical torques induced by shape anisotropic magnetization. Cells touching these rotating particles are nicked, which generates transient membrane pores that enable the delivery of macromolecules into the cytosol of cells. Calcein dye, 3 and 40 kDa dextran polymers, a green fluorescence protein (GFP) plasmid, siRNA, and an enzyme (β-lactamase) were successfully delivered into HeLa cells, primary normal human dermal fibroblasts (NHDFs), and mouse cortical neurons that can be difficult to transfect. The SAMP approach offers several advantages, including easy implementation, low cost, high throughput, and efficient delivery of a broad range of macromolecules. Collectively, SAMP delivery has great potential for a broad range of academic and industrial applications. © 2016 Society for Laboratory Automation and Screening.

  7. Effects of cholesterol depletion on membrane nanostructure in MCF-7 cells by atomic force microscopy

    Science.gov (United States)

    Wang, Yuhua; Jiang, Ningcheng; Shi, Aisi; Zheng, Liqin; Yang, Hongqin; Xie, Shusen

    2017-02-01

    The cell membrane is composed of phospholipids, glycolipids, cholesterol and proteins that are dynamic and heterogeneous distributed in the bilayer structure and many researches have showed that the plasma membrane in eukaryotic cells contains microdomains termed "lipid raft" in which cholesterol, sphingolipids and specific membrane proteins are enriched. Cholesterol extraction induced lipid raft disruption is one of the most widely used methods for lipid raft research and MβCD is a type of solvent to extract the cholesterol from cell membranes. In this study, the effect of MβCD treatment on the membrane nanostructure in MCF-7 living cells was investigated by atomic force microscopy. Different concentrations of MβCD were selected to deplete cholesterol for 30 min and the viability of cells was tested by MTT assay to obtain the optimal concentration. Then the nanostructure of the cell membrane was detected. The results show that an appropriate concentration of MβCD can induce the alteration of cell membranes nanostructure and the roughness of membrane surface decreases significantly. This may indicate that microdomains of the cell membrane disappear and the cell membrane appears more smoothly. Cholesterol can affect nanostructure and inhomogeneity of the plasma membrane in living cells.

  8. Establishment of mouse expanded potential stem cells.

    Science.gov (United States)

    Yang, Jian; Ryan, David J; Wang, Wei; Tsang, Jason Cheuk-Ho; Lan, Guocheng; Masaki, Hideki; Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A; Campos, Lia S; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A; Tam, Patrick P L; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2017-10-19

    Mouse embryonic stem cells derived from the epiblast contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species.

  9. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    Science.gov (United States)

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    International Nuclear Information System (INIS)

    Ingermann, R.L.

    1989-01-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion

  11. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin

    Directory of Open Access Journals (Sweden)

    Morena Mischitelli

    2016-11-01

    Full Text Available Background/Aims: The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM, DCFDA fluorescence (75 µM and ceramide abundance (75 µM. The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface.

  12. Bleb Expansion in Migrating Cells Depends on Supply of Membrane from Cell Surface Invaginations.

    Science.gov (United States)

    Goudarzi, Mohammad; Tarbashevich, Katsiaryna; Mildner, Karina; Begemann, Isabell; Garcia, Jamie; Paksa, Azadeh; Reichman-Fried, Michal; Mahabaleshwar, Harsha; Blaser, Heiko; Hartwig, Johannes; Zeuschner, Dagmar; Galic, Milos; Bagnat, Michel; Betz, Timo; Raz, Erez

    2017-12-04

    Cell migration is essential for morphogenesis, organ formation, and homeostasis, with relevance for clinical conditions. The migration of primordial germ cells (PGCs) is a useful model for studying this process in the context of the developing embryo. Zebrafish PGC migration depends on the formation of cellular protrusions in form of blebs, a type of protrusion found in various cell types. Here we report on the mechanisms allowing the inflation of the membrane during bleb formation. We show that the rapid expansion of the protrusion depends on membrane invaginations that are localized preferentially at the cell front. The formation of these invaginations requires the function of Cdc42, and their unfolding allows bleb inflation and dynamic cell-shape changes performed by migrating cells. Inhibiting the formation and release of the invaginations strongly interfered with bleb formation, cell motility, and the ability of the cells to reach their target. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  14. Comparison of gas membrane separation cascades using conventional separation cell and two-unit separation cells

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    The adoption of two-unit separation cells in radioactive rare gas membrane separation equipment enhances the separation factor, but increases the required membrane area and compressive power. An analytical economic evaluation was undertaken to compare the conventional separation cell with the two-unit separation cells, adopting as parameters the number of cascade stages, the membrane area and the operating power requirements. This paper describes the models used for evaluating the separation performance and the economics of cascade embodying these different concepts of separation cell taken up for study, and the results obtained for the individual concepts are mutually compared. It proved that, in respect of the number required of cascade stages, of operating power requirements and of the annual expenditure, better performance could always be expected of the two-unit separation cells as compared with the conventional separation cell, at least in the range of parameters adopted in this study. As regards the minimum membrane area, the conventional separation cell and the series-type separation cell yielded almost the same values, with the parallel-type separation cell falling somewhat behind. (auth.)

  15. Remodelling of primary human CD4+ T cell plasma membrane order by n-3 PUFA.

    Science.gov (United States)

    Fan, Yang-Yi; Fuentes, Natividad R; Hou, Tim Y; Barhoumi, Rola; Li, Xian C; Deutz, Nicolaas E P; Engelen, Marielle P K J; McMurray, David N; Chapkin, Robert S

    2018-01-01

    Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.

  16. Noncontact microsurgery of cell membranes using femtosecond laser pulses for optoinjection of specified substances into cells

    Science.gov (United States)

    Il'ina, I. V.; Ovchinnikov, A. V.; Chefonov, O. V.; Sitnikov, D. S.; Agranat, Mikhail B.; Mikaelyan, A. S.

    2013-04-01

    IR femtosecond laser pulses were used for microsurgery of a cell membrane aimed at local and short-duration change in its permeability and injection of specified extracellular substances into the cells. The possibility of noncontact laser delivery of the propidium iodide fluorescent dye and the pEGFP plasmid, encoding the green fluorescent protein, into the cells with preservation of the cell viability was demonstrated.

  17. Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stacks and Single Cells

    Science.gov (United States)

    2000-02-01

    in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells ...financial support of this project. 12 References 1. T. F. Fuller, "Is a Fuel Cell in Your Future?" 77K Electrochemical Society Interface (Fall...ARMY RESEARCH LABORATORY mm^ n Comparative Studies of Polymer Electrolyte Membrane Fuel Cell Stacks and Single Cells Deryn Chu and Rongzhong

  18. Synthesis and characterisation of alkaline anionic-exchange membranes for direct alcohol fuel cells

    CSIR Research Space (South Africa)

    Nonjola, P

    2007-12-01

    Full Text Available , but the most important being proton exchange membrane fuel cell (PEMFC), which uses an acidic membrane like Nafion (sulfonated fluorocarbon polymers) as an electrolyte. The use of polymer electrolytes represents an interesting path to pursue...

  19. The structure and function of cell membranes studied by atomic force microscopy.

    Science.gov (United States)

    Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda

    2018-01-01

    The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Calcium pumps of plasma membrane and cell interior

    DEFF Research Database (Denmark)

    Strehler, Emanuel E; Treiman, Marek

    2004-01-01

    Calcium entering the cell from the outside or from intracellular organelles eventually must be returned to the extracellular milieu or to intracellular storage organelles. The two major systems capable of pumping Ca2+ against its large concentration gradient out of the cell or into the sarco....../endoplasmatic reticulum are the plasma membrane Ca2+ ATPases (PMCAs) and the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), respectively. In mammals, multigene families code for these Ca2+ pumps and additional isoform subtypes are generated via alternative splicing. PMCA and SERCA isoforms show developmental-, tissue......- and cell type-specific patterns of expression. Different PMCA and SERCA isoforms are characterized by different regulatory and kinetic properties that likely are optimized for the distinct functional tasks fulfilled by each pump in setting resting cytosolic or intra-organellar Ca2+ levels, and in shaping...

  1. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    Energy Technology Data Exchange (ETDEWEB)

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  2. A Simple Alkaline Method for Decellularizing Human Amniotic Membrane for Cell Culture

    Science.gov (United States)

    Saghizadeh, Mehrnoosh; Winkler, Michael A.; Kramerov, Andrei A.; Hemmati, David M.; Ghiam, Chantelle A.; Dimitrijevich, Slobodan D.; Sareen, Dhruv; Ornelas, Loren; Ghiasi, Homayon; Brunken, William J.; Maguen, Ezra; Rabinowitz, Yaron S.; Svendsen, Clive N.; Jirsova, Katerina; Ljubimov, Alexander V.

    2013-01-01

    Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol) amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to standardize

  3. A simple alkaline method for decellularizing human amniotic membrane for cell culture.

    Directory of Open Access Journals (Sweden)

    Mehrnoosh Saghizadeh

    Full Text Available Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to

  4. Toxins in botanical dietary supplements: blue cohosh components disrupt cellular respiration and mitochondrial membrane potential.

    Science.gov (United States)

    Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B; Khan, Ikhlas A; Nagle, Dale G; Zhou, Yu-Dong

    2014-01-24

    Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA "black box" warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3), exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage.

  5. Influence of Active Layer on Separation Potentials of Nanofiltration Membranes for Inorganic Ions.

    Science.gov (United States)

    Wadekar, Shardul S; Vidic, Radisav D

    2017-05-16

    Active layers of two fully aromatic and two semi-aromatic nanofiltration membranes were studied along with surface charge at different electrolyte composition and effective pore size to elucidate their influence on separation mechanisms for inorganic ions by steric, charge, and dielectric exclusion. The membrane potential method used for pore size measurement is underlined as the most appropriate measurement technique for this application owing to its dependence on the diffusional potentials of inorganic ions. Crossflow rejection experiments with dilute feed composition indicate that both fully aromatic membranes achieved similar rejection despite the differences in surface charge, which suggests that rejection by these membranes is exclusively dependent on size exclusion and the contribution of charge exclusion is weak. Rejection experiments with higher ionic strength and different composition of the feed solution confirmed this hypothesis. On the other hand, increase in the ionic strength of feed solution when the charge exclusion effects are negligible due to charge screening strongly influenced ion rejection by semi-aromatic membranes. The experimental results confirmed that charge exclusion contributes significantly to the performance of semi-aromatic membranes in addition to size exclusion. The contribution of dielectric exclusion to overall ion rejection would be more significant for fully aromatic membranes.

  6. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 300...... to 1600 mol%. Physiochemical properties of the membrane electrolyte have been investigated by measurements of water uptake, acid doping level, electric conductivity, mechanical strength and water drag coefficient. Electrical conductivity is found to be insensitive to humidity but dependent on the acid...... doping level. At 160 degrees C a conductivity as high as 0.13 S cm/sup -1/ is obtained for membranes of high doping levels. Mechanical strength measurements show, however, that a high acid doping level results in poor mechanical properties. At operational temperatures up to 190 degrees C, fuel cells...

  7. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  8. Exosomes and Their Therapeutic Potentials of Stem Cells

    Directory of Open Access Journals (Sweden)

    Chao Han

    2016-01-01

    Full Text Available Exosomes, a group of vesicles originating from the multivesicular bodies (MVBs, are released into the extracellular space when MVBs fuse with the plasma membrane. Numerous studies indicate that exosomes play important roles in cell-to-cell communication, and exosomes from specific cell types and conditions display multiple functions such as exerting positive effects on regeneration in many tissues. It is widely accepted that the therapeutic potential of stem cells may be mediated largely by the paracrine factors, so harnessing the paracrine effects of stem and progenitor cells without affecting these living, replicating, and potentially pluripotent cell populations is an advantage in terms of safety and complexity. Ascending evidence indicated that exosomes might be the main components of paracrine factors; thus, understanding the role of exosomes in each subtype of stem cells is far-reaching. In this review, we discuss the functions of exosomes from different types of stem cells and emphasize the therapeutic potentials of exosomes, providing an alternative way of developing strategies to cure diseases.

  9. Early Events in Chikungunya Virus Infection—From Virus CellBinding to Membrane Fusion

    Directory of Open Access Journals (Sweden)

    Mareike K. S. van Duijl-Richter

    2015-07-01

    Full Text Available Chikungunya virus (CHIKV is a rapidly emerging mosquito-borne alphavirus causing millions of infections in the tropical and subtropical regions of the world. CHIKV infection often leads to an acute self-limited febrile illness with debilitating myalgia and arthralgia. A potential long-term complication of CHIKV infection is severe joint pain, which can last for months to years. There are no vaccines or specific therapeutics available to prevent or treat infection. This review describes the critical steps in CHIKV cell entry. We summarize the latest studies on the virus-cell tropism, virus-receptor binding, internalization, membrane fusion and review the molecules and compounds that have been described to interfere with virus cell entry. The aim of the review is to give the reader a state-of-the-art overview on CHIKV cell entry and to provide an outlook on potential new avenues in CHIKV research.

  10. A Preliminary Study of Human Amniotic Membrane as a Potential Chondrocyte Carrier

    Directory of Open Access Journals (Sweden)

    L Boo

    2009-11-01

    Full Text Available PURPOSE: To investigate the feasibility of using processed human amniotic membrane (HAM to support the attachment and proliferation of chondrocytes in vitro which in turn can be utilised as a cell delivery vehicle in tissue engineering applications. METHODS: Fresh HAM obtained from patients undergoing routine elective caesarean sections was harvested, processed and dried using either freeze drying (FD or air drying (AD methods prior to sterilisation by gamma irradiation. Isolated, processed and characterised rabbit autologous chondrocytes were seeded on processed HAM and cultured for up to three weeks. Cell attachment and proliferation were examined qualitatively using inverted brightfield microscopy. RESULTS: Processed HAM appeared to allow cell attachment when implanted with chondrocytes. Although cells seeded on AD and FD HAM did not appear to attach as strongly as those seeded on glycerol preserved intact human amniotic membrane, these cells to be proliferated in cell culture conditions. CONCLUSION: Preliminary results show that processed HAM promotes chondrocyte attachment and proliferation.

  11. Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, Frederic [Universite de Rennes I, Institut de Chimie, UMR CNRS 6510, 35042 Rennes (France); Ferry, Yvonne; Leech, Donal [Department of Chemistry, National University of Ireland, Galway (Ireland); Rochefort, Dominic [Departement de Chimie, Universite de Montreal, C.P. 6128, Succursale Centre-ville, Montreal, Que. (Canada)

    2004-03-01

    Electrodes modified with co-immobilized redox enzymes and redox polymers can be used to form membrane-less biofuel cells. In this communication, we report on our initial studies of a membrane-less biofuel cell concept using an osmium-based redox polymer for laccase-mediated reduction of oxygen coupled to glucose oxidase-mediated oxidation of glucose. We then present a thermodynamic examination of mediators of laccase oxygen reduction, and stemming from this, target two redox polymers of potential use, an osmium-based redox polymer (E{sup 0'}+0.40 V vs. Ag/AgCl) and a ruthenium-based redox polymer (E{sup 0'}+0.63 V vs. Ag/AgCl). The former shows promise for use in membrane-less biofuel cell cathodes, whilst the latter's redox potential is too high to be an effective mediator of oxygen reduction by the Trametes versicolor laccase used in this study.

  12. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used...

  13. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity.

    Science.gov (United States)

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong

    2018-01-15

    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A highly-occupied, single-cell trapping microarray for determination of cell membrane permeability.

    Science.gov (United States)

    Weng, Lindong; Ellett, Felix; Edd, Jon; Wong, Keith H K; Uygun, Korkut; Irimia, Daniel; Stott, Shannon L; Toner, Mehmet

    2017-11-21

    Semi- and selective permeability is a fundamentally important characteristic of the cell membrane. Membrane permeability can be determined by monitoring the volumetric change of cells following exposure to a non-isotonic environment. For this purpose, several microfluidic perfusion chambers have been developed recently. However, these devices only allow the observation of one single cell or a group of cells that may interact with one another in an uncontrolled way. Some of these devices have integrated on-chip temperature control to investigate the temperature-dependence of membrane permeability, but they inevitably require sophisticated fabrication and assembly, and delicate temperature and pressure calibration. Therefore, it is highly desirable to design a simple single-cell trapping device that allows parallel monitoring of multiple separate, individual cells subjected to non-isotonic exposure at various temperatures. In this study, we developed a pumpless, single-layer microarray with high trap occupancy of single cells. The benchmark performance of the device was conducted by targeting spherical particles of 18.8 μm in diameter as a model, yielding trap occupancy of up to 86.8% with a row-to-row shift of 10-30 μm. It was also revealed that in each array the particles larger than a corresponding critical size would be excluded by the traps in a deterministic lateral displacement mode. Demonstrating the utility of this approach, we used the single-cell trapping device to determine the membrane permeability of rat hepatocytes and patient-derived circulating tumor cells (Brx-142) at 4, 22 and 37 °C. The membrane of rat hepatocytes was found to be highly permeable to water and small molecules such as DMSO and glycerol, via both lipid- and aquaporin-mediated pathways. Brx-142 cells, however, displayed lower membrane permeability than rat hepatocytes, which was associated with strong coupling of water and DMSO transport but less interaction between water and

  15. Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity

    DEFF Research Database (Denmark)

    Larsen, Anna Karina; Malinska, Dominika; Koszela-Piotrowska, Izabela

    2012-01-01

    The 25 kDa branched polyethylenimine (PEI) is a highly efficient synthetic polycation used in transfection protocols, but also triggers mitochondrial-mediated apoptotic cell death processes where the mechanistic issues are poorly understood. We now demonstrate that PEI in a concentration- and tim...

  16. Aprediction study for the behaviour of fuel cell membrane subjected to hygro and thermal stresses in running PEM fuel cell

    OpenAIRE

    Maher A.R. Sadiq Al-Baghdadi

    2016-01-01

    A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a proton exchange membrane fuel cell has been used and developed to investigate the hygro and thermal stresses in polymer membrane, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the membrane during operation of a unit cell has been studied and investigated under real cell operating conditions. The results show that the non-uniform distrib...

  17. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell.

    Science.gov (United States)

    Liu, Dongdong; Jiao, Siming; Cheng, Gong; Li, Xueming; Pei, Zhichao; Pei, Yuxin; Yin, Heng; Du, Yuguang

    2018-01-26

    Chitosan oligosaccharides (COS) have the ability to improve plant resistance to pests and diseases through activating plant immune system. However, it remains unclear whether stimulating reason of COS was associated with the plasma membrane proteins. Here, the interaction of COS with wheat leaf cell demonstrated that fluorescence-labeled COS were enriched on the cell surface and the interaction of COS with plasma membrane proteins was confirmed by quartz crystal microbalance (QCM) biosensor. What's more, HPLC and SDS-PAGE analysis showed that COS binding proteins exhibited more than three peaks and the molecular weight were 66 kDa to 97 kDa, where the COS binding proteins were fished out from wheat plasma membrane proteins by the COS affinity column. More importantly, LC-MS/MS analysis demonstrated that several candidates, including W5G2U8_WHEAT (a potential wall-associated receptor kinase protein), W5HY42_WHEAT and W5I0R4_WHEAT (potential G-type lectin S-receptor-like serine/threonine-protein kinase), have the potential to be COS receptors. Copyright © 2018. Published by Elsevier B.V.

  18. Analysis of membrane proteome and secretome in cells over-expressing ADAM17 using quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, R.; Simabuco, F.M. [Laboratorio Nacional de Biociencias - LNBIO, Campinas, SP (Brazil); Yokoo, S.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Sherman, N. [University of Virginia, Charlottesville, VA (United States)

    2012-07-01

    Full text: A disintegrin and metalloproteinase (ADAM) protease is involved in proteolytic ectodomain shedding of several membrane-associated proteins and modulation of key cell signaling pathways in the tumor microenvironment. In this study, we examined the effect of over-expressing the full length human ADAM17 in membrane and secreted proteins. To this end, we constructed a stable Flp-In T-RExHEK293 cells expressing ADAM17 by tetracycline induction. These cells were grown in Dulbeccos modified Eagles medium containing light lysine, arginine or heavy, L-Arg-13C615N4 and L-Lys -13C615N2 (SILAC: stable isotope labeling with amino acid in cell culture) media and they were treated with an ADAM17 activator, phorbolester (PMA). Controls such as Flp-In T-RExHEK293 cell without PMA treatment and without ADAM17 cloned were cultivated in light medium. The ADAM17 overexpression was induced with tetracycline 500 ng/ml for 24 hours. Cells in a heavy condition were treated with PMA 50 ng/ml for 1 hour and vehicle DMSO was used as control in a light cell condition. The extracellular media were collected, concentrated and used to evaluate the secretome and a cell surface biotinylation-based approach was used to capture cell surface-associated proteins. The biotinylated proteins were eluted with dithiothreitol, alkylated with iodoacetamide and then digested with trypsin. The resulting peptides were subjected to LC-MS/MS analysis on an ETD enabled Orbitrap Velos instrument. The results showed different proteins up or down regulated in membrane and secretome analysis which might represent potential molecules involved in signaling or ADAM17 regulation events. (author)

  19. Toward mechanical manipulations of cell membranes and membrane proteins using an atomic force microscope: an invited review.

    Science.gov (United States)

    Ikai, Atsushi; Afrin, Rehana

    2003-01-01

    Recent advances in the use of the atomic force microscope (AFM) for manipulating cell membranes and membrane proteins are reviewed. Early pioneering work on measurements of the magnitude of the force required to create indentations with defined depth on their surfaces and to separate interacting pairs of avidin-biotin, antigen-antibody, and complementary DNA pairs formed the basis of this field. The method has subsequently been applied to map the presence of cell surface receptors and polysaccharides on live cell membranes by force measurement, with promising results. Attempts to extract phospholipids and proteins from lipid bilayers and live cell surfaces have been reported, providing a new tool for the manipulation of cellular activities and biochemical analysis at the single-cell level. An increasing awareness of the effect of the pulling speed (nm/s or microm/s), or more accurately, the force loading rate (pN/s or nN/s) on the magnitude of the rupture force, has led researchers to construct energy diagrams of rupture events based on the parameters available from such studies. Information on such nature of the interplay of force and loading rate is vital for nanomanipulation of living cells and cell membranes. Some relevant work for membrane manipulation using other methods is also reviewed in relation to AFM-based methodology.

  20. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth......Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  1. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf

    2003-01-01

    by sulfonation. The sulfonated hydrocarbons and their inorganic composites are potentially promising for high-temperature operation. High conductivities have been obtained at temperatures up to 180 °C. Acid-base complex membranes constitute another class of electrolyte membranes. A high-temperature PEMFC based......The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...

  2. Alkaline anion exchange membrane fuel cells for cogeneration of electricity and valuable chemicals

    Science.gov (United States)

    Pan, Z. F.; Chen, R.; An, L.; Li, Y. S.

    2017-10-01

    Alkaline anion exchange membrane fuel cells (AAEMFCs) have received ever-increasing attentions due to the enhanced electrochemical kinetics and the absence of precious metal electrocatalysts, and thus great progress has been made in recent years. The alkaline anion exchange membrane based direct alcohol fuel cells, one type of alkaline anion exchange membrane fuel cells utilizing liquid alcohols as fuel that can be obtained from renewable biomass feedstocks, is another attractive point due to its ability to provide electricity with cogeneration of valuable chemicals. Significant development has been made to improve the selectivity towards high added-value chemicals and power output in the past few years. This review article provides a general description of this emerging technology, including fuel-cell setup and potential reaction routes, summarizes the products, performance, and system designs, as well as introduces the application of this concept in the removal of heavy-metal ions from the industrial wastewater. In addition, the remaining challenges and perspectives are also highlighted.

  3. A novel membrane-less direct alcohol fuel cell

    Science.gov (United States)

    Yi, Qingfeng; Chen, Qinghua; Yang, Zheng

    2015-12-01

    Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.

  4. Membrane dynamics and interactions in measles virus dendritic cell infections.

    Science.gov (United States)

    Avota, Elita; Koethe, Susanne; Schneider-Schaulies, Sibylle

    2013-02-01

    Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission. © 2012 Blackwell Publishing Ltd.

  5. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    Directory of Open Access Journals (Sweden)

    R R Poznanski

    Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  6. Key factors regulating the mass delivery of macromolecules to model cell membranes

    DEFF Research Database (Denmark)

    Campbell, Richard A.; Watkins, Erik B.; Jagalski, Vivien

    2014-01-01

    We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for sl...... of the aggregates to activate endocytosis pathways on specific cell types is discussed in the context of targeted drug delivery applications.......We show that both gravity and electrostatics are key factors regulating interactions between model cell membranes and self-assembled liquid crystalline aggregates of dendrimers and phospholipids. The system is a proxy for the trafficking of reservoirs of therapeutic drugs to cell membranes for slow...

  7. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  8. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-01-01

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature. PMID:26670258

  9. Diagnostic potential of PET/CT using a {sup 68}Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Sawicki, Lino M.; Buchbender, Christian; Boos, Johannes; Antoch, Gerald [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); Giessing, Markus [University Dusseldorf, Medical Faculty, Department of Urology, Dusseldorf (Germany); Ermert, Johannes [Juelich Research Center, Institute of Neuroscience and Medicine, INM-5: Nuclear Chemistry, Juelich (Germany); Antke, Christina; Hautzel, Hubertus [University Dusseldorf, Medical Faculty, Department of Nuclear Medicine, Dusseldorf (Germany)

    2017-01-15

    To evaluate the diagnostic potential of whole-body PET/CT using a {sup 68}Ga-labelled PSMA ligand in renal cell carcinoma (RCC). Six patients with histopathologically proven RCC underwent {sup 68}Ga-PSMA PET/CT. Each PET/CT scan was evaluated in relation to lesion count, location and dignity. SUVmax was measured in primary tumours and PET-positive metastases. Tumour-to-background SUVmax ratios (TBR{sub SUVmax}) were calculated for primary RCCs in relation to the surrounding normal renal parenchyma. Metastasis-to-background SUVmax ratios (MBR{sub SUVmax}) were calculated for PET-positive metastases in relation to gluteal muscle. Five primary RCCs and 16 metastases were evaluated. The mean SUVmax of the primary RCCs was 9.9 ± 9.2 (range 1.7 - 27.2). Due to high uptake in the surrounding renal parenchyma, the mean TBR{sub SUVmax} of the primary RCCs was only 0.2 ± 0.3 (range 0.02 - 0.7). Eight metastases showed focal {sup 68}Ga-PSMA uptake (SUVmax 9.9 ± 8.3, range 3.4 - 25.6). The mean MBR{sub SUVmax} of these PET-positive metastases was 11.7 ± 0.2 (range 4.4 - 28.1). All PET-negative metastases were subcentimetre lung metastases. {sup 68}Ga-PSMA PET/CT appears to be a promising method for detecting RCC metastases. However, no additional diagnostic value in assessing the primary tumour was found. (orig.)

  10. Diagnostic potential of PET/CT using a 68Ga-labelled prostate-specific membrane antigen ligand in whole-body staging of renal cell carcinoma: initial experience

    International Nuclear Information System (INIS)

    Sawicki, Lino M.; Buchbender, Christian; Boos, Johannes; Antoch, Gerald; Giessing, Markus; Ermert, Johannes; Antke, Christina; Hautzel, Hubertus

    2017-01-01

    To evaluate the diagnostic potential of whole-body PET/CT using a 68 Ga-labelled PSMA ligand in renal cell carcinoma (RCC). Six patients with histopathologically proven RCC underwent 68 Ga-PSMA PET/CT. Each PET/CT scan was evaluated in relation to lesion count, location and dignity. SUVmax was measured in primary tumours and PET-positive metastases. Tumour-to-background SUVmax ratios (TBR SUVmax ) were calculated for primary RCCs in relation to the surrounding normal renal parenchyma. Metastasis-to-background SUVmax ratios (MBR SUVmax ) were calculated for PET-positive metastases in relation to gluteal muscle. Five primary RCCs and 16 metastases were evaluated. The mean SUVmax of the primary RCCs was 9.9 ± 9.2 (range 1.7 - 27.2). Due to high uptake in the surrounding renal parenchyma, the mean TBR SUVmax of the primary RCCs was only 0.2 ± 0.3 (range 0.02 - 0.7). Eight metastases showed focal 68 Ga-PSMA uptake (SUVmax 9.9 ± 8.3, range 3.4 - 25.6). The mean MBR SUVmax of these PET-positive metastases was 11.7 ± 0.2 (range 4.4 - 28.1). All PET-negative metastases were subcentimetre lung metastases. 68 Ga-PSMA PET/CT appears to be a promising method for detecting RCC metastases. However, no additional diagnostic value in assessing the primary tumour was found. (orig.)

  11. Activation of stretch-activated channels and maxi-K+ channels by membrane stress of human lamina cribrosa cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-01-01

    The lamina cribrosa (LC) region of the optic nerve head is considered the primary site of damage in glaucomatous optic neuropathy. Resident LC cells have a profibrotic potential when exposed to cyclical stretch. However, the mechanosensitive mechanisms of these cells remain unknown. Here the authors investigated the effects of membrane stretch on cell volume change and ion channel activity and examined the associated changes in intracellular calcium ([Ca(2+)](i)).

  12. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique......, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested...

  13. The extracellular membrane-proximal domain of membrane-bound IgE restricts B cell activation by limiting B cell antigen receptor surface expression.

    Science.gov (United States)

    Vanshylla, Kanika; Opazo, Felipe; Gronke, Konrad; Wienands, Jürgen; Engels, Niklas

    2018-03-01

    Immunoglobulin E (IgE) antibodies are key mediators of allergic reactions. Due to their potentially harmful anaphylactic properties, their production is tightly regulated. The membrane-bound isoform of IgE (mIgE), which is an integral component of the B cell antigen receptor, has been shown to be critical for the regulation of IgE responses in mice. In primate species including humans, mIgE can be expressed in two isoforms that are produced by alternative splicing of the primary ε Ig heavy chain transcript, and differ in the absence or presence of an extracellular membrane-proximal domain (EMPD) consisting of 52 amino acids. However, the function of the EMPD remains unclear. Here, we demonstrate that the EMPD restricts surface expression of mIgE-containing BCRs in human and murine B cells. The EMPD does not interfere with BCR assembly but acts as an autonomous endoplasmic reticulum retention domain. Limited surface expression of EMPD-containing mIgE-BCRs caused impaired activation of intracellular signaling cascades and hence represents a regulatory mechanism that may control the production of potentially anaphylactic IgE antibodies in primate species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Liquid-Feed Methanol Fuel Cell With Membrane Electrolyte

    Science.gov (United States)

    Surampudi, Subbarao; Narayanan, S. R.; Halpert, Gerald; Frank, Harvey; Vamos, Eugene

    1995-01-01

    Fuel cell generates electricity from direct liquid feed stream of methanol/water solution circulated in contact with anode, plus direct gaseous feed stream of air or oxygen in contact with cathode. Advantages include relative simplicity and elimination of corrosive electrolytic solutions. Offers potential for reductions in size, weight, and complexity, and for increases in safety of fuel-cell systems.

  15. Adherence of Helicobacter pylori cells and their surface components to HeLa cell membranes.

    Science.gov (United States)

    Fauchère, J L; Blaser, M J

    1990-12-01

    Four Helicobacter pylori strains were used to develop in vitro methods to assess adherence to HeLa cells. Using direct detection by microscopy, adhesion scores increased with the initial bacteria-to-cell ratio. The urease method assessed H. pylori bound to HeLa cells by their urease activity. The percentage of the original inoculum adhering to HeLa cells remained constant for initial ratios from 10(2) to 10(5) bacteria per cell. An ELISA using anti-H. pylori serum assessed whole bacteria or components bound to HeLa cell fractions. By all three methods, the four H. pylori strains were adherent to HeLa cells or membranes whereas Campylobacter fetus and Providencia control strains were not. The adherence of H. pylori whole cells decreased following extraction with saline, water, or glycine buffer and most of the superficial adhering material (SAM) was present in the saline or water extracts. SAM bound better to HeLa membranes than to calf fetuin or bovine serum albumin (BSA); binding was inhibited by preincubation of SAM with HeLa membranes but not with fetuin or BSA or by pretreatment of HeLa membranes with neuraminidase. These data indicate that SAM has a specific receptor on the HeLa cell membranes. By gel exclusion chromatography of bacterial extracts, the most adherent components were found in the fractions which also contained the highest urease activity; these fractions included urease subunit antigens. We conclude that adherence of H. pylori can be assessed by microtiter assays and involves bacterial surface material which co-purifies with urease and is different from the N-acetyl-neuraminyl-lactose binding hemagglutinin.

  16. Anion exchange membrane fuel cells: Current status and remaining challenges

    Science.gov (United States)

    Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung

    2018-01-01

    The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.

  17. Reactivation System for Proton-Exchange Membrane Fuel-Cells

    Directory of Open Access Journals (Sweden)

    Roberto Giral

    2012-07-01

    Full Text Available In recent years, Proton-Exchange Membrane Fuel Cells (PEMFCs have been the focus of very intensive researches. Manufacturers of these alternative power sources propose a rejuvenation sequence after the FC has been operating at high power for a certain period of time. These rejuvenation methods could be not appropriate for the reactivation of the FC when it has been out of operation for a long period of time or after it has been repaired. Since the developed reactivation system monitors temperature, current, and the cell voltages of the stack, it could be also useful for the diagnostic and repairing processes. The limited number of published contributions suggests that systems developing reactivation techniques are an open research field. In this paper, an automated system for reactivating PEMFCs and results of experimental testing are presented.

  18. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1

    Directory of Open Access Journals (Sweden)

    Elena A. Matveeva

    2015-10-01

    Full Text Available In this study we show that binding of mitochondria to vimentin intermediate filaments (VIF is regulated by GTPase Rac1. The activation of Rac1 leads to a redoubling of mitochondrial motility in murine fibroblasts. Using double-mutants Rac1(G12V, F37L and Rac1(G12V, Y40H that are capable to activate different effectors of Rac1, we show that mitochondrial movements are regulated through PAK1 kinase. The involvement of PAK1 kinase is also confirmed by the fact that expression of its auto inhibitory domain (PID blocks the effect of activated Rac1 on mitochondrial motility. The observed effect of Rac1 and PAK1 kinase on mitochondria depends on phosphorylation of the Ser-55 of vimentin. Besides the effect on motility Rac1 activation also decreases the mitochondrial membrane potential (MMP which is detected by ∼20% drop of the fluorescence intensity of mitochondria stained with the potential sensitive dye TMRM. One of important consequences of the discovered regulation of MMP by Rac1 and PAK1 is a spatial differentiation of mitochondria in polarized fibroblasts: at the front of the cell they are less energized (by ∼25% than at the rear part.

  19. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.

    Science.gov (United States)

    York, Joanne; Nunberg, Jack H

    2018-01-01

    For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.

  20. Modelling and validation of Proton exchange membrane fuel cell (PEMFC)

    Science.gov (United States)

    Mohiuddin, A. K. M.; Basran, N.; Khan, A. A.

    2018-01-01

    This paper is the outcome of a small scale fuel cell project. Fuel cell is an electrochemical device that converts energy from chemical reaction to electrical work. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the different types of fuel cell, which is more efficient, having low operational temperature and fast start up capability results in high energy density. In this study, a mathematical model of 1.2 W PEMFC is developed and simulated using MATLAB software. This model describes the PEMFC behaviour under steady-state condition. This mathematical modeling of PEMFC determines the polarization curve, power generated, and the efficiency of the fuel cell. Simulation results were validated by comparing with experimental results obtained from the test of a single PEMFC with a 3 V motor. The performance of experimental PEMFC is little lower compared to simulated PEMFC, however both results were found in good agreement. Experiments on hydrogen flow rate also been conducted to obtain the amount of hydrogen consumed to produce electrical work on PEMFC.

  1. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes

    Science.gov (United States)

    Wang, Luda; Boutilier, Michael S. H.; Kidambi, Piran R.; Jang, Doojoon; Hadjiconstantinou, Nicolas G.; Karnik, Rohit

    2017-06-01

    Graphene and other two-dimensional materials offer a new approach to controlling mass transport at the nanoscale. These materials can sustain nanoscale pores in their rigid lattices and due to their minimum possible material thickness, high mechanical strength and chemical robustness, they could be used to address persistent challenges in membrane separations. Here we discuss theoretical and experimental developments in the emerging field of nanoporous atomically thin membranes, focusing on the fundamental mechanisms of gas- and liquid-phase transport, membrane fabrication techniques and advances towards practical application. We highlight potential functional characteristics of the membranes and discuss applications where they are expected to offer advantages. Finally, we outline the major scientific questions and technological challenges that need to be addressed to bridge the gap from theoretical simulations and proof-of-concept experiments to real-world applications.

  2. Bisphenol A Inhibits Cell Proliferation and Reduces the Motile Potential of Murine LM8 Osteosarcoma Cells.

    Science.gov (United States)

    Kidani, Teruki; Yasuda, Rie; Miyawaki, Joji; Oshima, Yusuke; Miura, Hiromasa; Masuno, Hiroshi

    2017-04-01

    The aim of this study was to examine the effect of bisphenol A (BPA) on the proliferation and motility potential of murine LM8 osteosarcoma cells. LM8 cells were treated for 3 days with or without 80 μM BPA. The effect of BPA on cell proliferation was determined by DNA measurement in the cultures and 5-bromo-2'-deoxyuridine (BrdU) incorporation study. Ethanol-fixed cells were stained with hematoxylin-eosin (H&E) to visualize cell morphology. Cell motility was assayed using inserts with uncoated membranes in invasion chambers. Expression of cell division cycle 42 (CDC42) was determined by immunofluorescence staining and western blotting. BPA reduced the DNA content of cultures and the number of BrdU-positive cells. BPA induced a change in morphology from cuboidal with multiple filopodia on the cell surface to spindle-shaped with a smooth cell surface. BPA-treated cells expressed less CDC42 and were less motile than untreated cells. BPA inhibited DNA replication and cell proliferation. BPA inhibited filopodia formation and motile potential by inhibiting CDC42 expression in LM8 cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Investigating effects of nano-particles infiltration on mechanical properties of cell membrane using atomic force microscopy

    Science.gov (United States)

    Zhang, XiaoYue; Zhang, Yong; Zheng, Yue; Wang, Biao

    2012-06-01

    In this paper, we introduce our finding of the effects of C60 nanoparticles (NP) infiltration on mechanical properties of cell and its membrane. Atomic force microscopy (AFM) is used to perform indentation on both normal and C60 infiltrated red blood cells (RBC) to gain data of mechanical characteristics of the membrane. Our results show that the mechanical properties of human RBC membrane seem to be altered due to the presence of C60 NPs. The resistance and ultimate strength of the C60 infiltrated RBC membrane significantly decrease. We also explain the mechanism of how C60 NPs infiltration changes the mechanical properties of the cell membrane by predicting the structural change of the lipid bilayer caused by the C60 infiltration at molecular level and analyze the interactions among molecules in the lipid bilayer. The potential hazards and application of the change in mechanical characteristics of the RBCs membrane are also discussed. Nanotoxicity of C60 NPs may be significant for some biological cells.

  4. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Mummery, C.L.; Krijgsveld, J.; Heck, A.

    2008-01-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological

  5. Measurement of single electrode potentials and impedances in hydrogen and direct methanol PEM fuel cells

    International Nuclear Information System (INIS)

    Li Guangchun; Pickup, Peter G.

    2004-01-01

    A commercial proton exchange membrane fuel cell has been fitted with a simple dynamic hydrogen reference electrode (DHE). Single electrode potentials and impedances measured with hydrogen and methanol as the fuel have been critically evaluated. It has been shown that the anode overpotential and impedance can be very significant in hydrogen cells operated at ambient temperature, due to dehydration of the anode. The DHE provides a powerful way of monitoring the hydration state of the membrane and electrodes, so that operating conditions can be adjusted to optimise water management. Individual electrode potentials and impedances are even more important in methanol cells, and can be conveniently measured with the DHE

  6. Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.

    Science.gov (United States)

    Meunier, F M

    1984-01-01

    The membrane potential of purely cholinergic synaptosomes isolated from Torp