WorldWideScience

Sample records for cell membrane penetration

  1. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    -penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation of their...

  2. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides. PMID:27003128

  3. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Kaljot, K.T.; Shaw, R.D.; Greenberg, H.B. (Stanford Univ. School of Medicine, CA (USA) Palo Alto Veterans Administration Medical Center, CA (USA)); Rubin, D.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-04-01

    Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 (VP3); 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. To determine whether trypsin treatment affected rotavirus internalization, the authors studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 mediated {sup 51}Cr, ({sup 14}C)choline, and ({sup 3}H)inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.

  4. Membrane Oxidation Enables the Cytosolic Entry of Polyarginine Cell-penetrating Peptides.

    Science.gov (United States)

    Wang, Ting-Yi; Sun, Yusha; Muthukrishnan, Nandhini; Erazo-Oliveras, Alfredo; Najjar, Kristina; Pellois, Jean-Philippe

    2016-04-01

    Arginine-rich peptides can penetrate cells and consequently be used as delivery agents in various cellular applications. The activity of these reagents is often context-dependent, and the parameters that impact cell entry are not fully understood, giving rise to variability and limiting progress toward their usage. Herein, we report that the cytosolic penetration of linear polyarginine peptides is dependent on the oxidation state of the cell. In particular, we find that hypoxia and cellular antioxidants inhibit cell penetration. In contrast, oxidants promote cytosolic cell entry with an efficiency proportional to the level of reactive oxygen species generated within membranes. Moreover, an antibody that binds to oxidized lipids inhibits cell penetration, whereas extracellularly administered pure oxidized lipids enhance peptide transport into cells. Overall, these data indicate that oxidized lipids are capable of mediating the transport of polyarginine peptides across membranes. These data may also explain variability in cell-penetrating peptide performance in different experimental conditions. These new findings therefore provide new opportunities for the rational design of future cell-permeable compounds and for the optimization of delivery protocols. PMID:26888085

  5. The bacteriophage ϕ29 tail possesses a pore-forming loop for cell membrane penetration.

    Science.gov (United States)

    Xu, Jingwei; Gui, Miao; Wang, Dianhong; Xiang, Ye

    2016-06-23

    Most bacteriophages are tailed bacteriophages with an isometric or a prolate head attached to a long contractile, long non-contractile, or short non-contractile tail. The tail is a complex machine that plays a central role in host cell recognition and attachment, cell wall and membrane penetration, and viral genome ejection. The mechanisms involved in the penetration of the inner host cell membrane by bacteriophage tails are not well understood. Here we describe structural and functional studies of the bacteriophage ϕ29 tail knob protein gene product 9 (gp9). The 2.0 Å crystal structure of gp9 shows that six gp9 molecules form a hexameric tube structure with six flexible hydrophobic loops blocking one end of the tube before DNA ejection. Sequence and structural analyses suggest that the loops in the tube could be membrane active. Further biochemical assays and electron microscopy structural analyses show that the six hydrophobic loops in the tube exit upon DNA ejection and form a channel that spans the lipid bilayer of the membrane and allows the release of the bacteriophage genomic DNA, suggesting that cell membrane penetration involves a pore-forming mechanism similar to that of certain non-enveloped eukaryotic viruses. A search of other phage tail proteins identified similar hydrophobic loops, which indicates that a common mechanism might be used for membrane penetration by prokaryotic viruses. These findings suggest that although prokaryotic and eukaryotic viruses use apparently very different mechanisms for infection, they have evolved similar mechanisms for breaching the cell membrane. PMID:27309813

  6. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration

    Directory of Open Access Journals (Sweden)

    Lösche Mathias

    2011-09-01

    Full Text Available Abstract Background Carbon nanotubes are increasingly being tested for use in cellular applications. Determining the mode of entry is essential to control and regulate specific interactions with cells, to understand toxicological effects of nanotubes, and to develop nanotube-based cellular technologies. We investigated cellular uptake of Pluronic copolymer-stabilized, purified ~145 nm long single wall carbon nanotubes (SWCNTs through a series of complementary cellular, cell-mimetic, and in vitro model membrane experiments. Results SWCNTs localized within fluorescently labeled endosomes, and confocal Raman spectroscopy showed a dramatic reduction in SWCNT uptake into cells at 4°C compared with 37°C. These data suggest energy-dependent endocytosis, as shown previously. We also examined the possibility for non-specific physical penetration of SWCNTs through the plasma membrane. Electrochemical impedance spectroscopy and Langmuir monolayer film balance measurements showed that Pluronic-stabilized SWCNTs associated with membranes but did not possess sufficient insertion energy to penetrate through the membrane. SWCNTs associated with vesicles made from plasma membranes but did not rupture the vesicles. Conclusions These measurements, combined, demonstrate that Pluronic-stabilized SWCNTs only enter cells via energy-dependent endocytosis, and association of SWCNTs to membrane likely increases uptake.

  7. HIV fusion peptide penetrates, disorders, and softens T-cell membrane mimics.

    Science.gov (United States)

    Tristram-Nagle, Stephanie; Chan, Rob; Kooijman, Edgar; Uppamoochikkal, Pradeep; Qiang, Wei; Weliky, David P; Nagle, John F

    2010-09-10

    This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-cell mimic), (ii) 1,2-dioleoyl-sn-glycero-3-phosphocholine, (iii) 1,2-dioleoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol, (iv) 1,2-dierucoyl-sn-glycero-3-phosphocholine, and (v) 1,2-dierucoyl-sn-glycero-3-phosphocholine/30 mol% cholesterol. Diffuse synchrotron low-angle x-ray scattering from fully hydrated samples, supplemented by volumetric data, showed that FP23 and FPtri penetrate into the hydrocarbon region and cause membranes to thin. Depth of penetration appears to depend upon a complex combination of factors including bilayer thickness, presence of cholesterol, and electrostatics. X-ray data showed an increase in curvature in hexagonal phase 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, which further indicates that FP23 penetrates into the hydrocarbon region rather than residing in the interfacial headgroup region. Low-angle x-ray scattering data also yielded the bending modulus K(C), a measure of membrane stiffness, and wide-angle x-ray scattering yielded the S(xray) orientational order parameter. Both FP23 and FPtri decreased K(C) and S(xray) considerably, while the weak effect of FPwsm suggests that it did not partition strongly into LM3 model membranes. Our results are consistent with the HIV FP disordering and softening the T-cell membrane, thereby lowering the activation energy for viral membrane fusion. PMID:20655315

  8. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles.

    Science.gov (United States)

    Torrano, Adriano A; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ∼50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ∼150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine. PMID:27341699

  9. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    Science.gov (United States)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  10. HIV Fusion Peptide Penetrates, Disorders, and Softens T-Cell Membrane Mimics

    OpenAIRE

    Tristram-Nagle, Stephanie; Chan, Rob; Kooijman, Edgar; Uppamoochikkal, Pradeep; Qiang, Wei; Weliky, David P.; Nagle, John F.

    2010-01-01

    This work investigates the interaction of N-terminal gp41 fusion peptide (FP) of human immunodeficiency virus type 1 (HIV-1) with model membranes in order to elucidate how FP leads to fusion of HIV and T-cell membranes. FP constructs were (i) wild-type FP23 (23 N-terminal amino acids of gp41), (ii) water-soluble monomeric FP that adds six lysines on the C-terminus of FP23 (FPwsm), and (iii) the C-terminus covalently linked trimeric version (FPtri) of FPwsm. Model membranes were (i) LM3 (a T-c...

  11. Membrane-Bound Dynamic Structure of an Arginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain of HIV TAT, from Solid-State NMR

    OpenAIRE

    Su, Yongchao; Alan J Waring; Ruchala, Piotr; Hong, Mei

    2010-01-01

    The protein transduction domain of HIV-1 TAT, TAT(48-60), is an efficient cell-penetrating peptide (CPP) that diffuses across the lipid membranes of cells despite eight cationic Arg and Lys residues. To understand its mechanism of membrane translocation against the free energy barrier, we have conducted solid-state NMR experiments to determine the site-specific conformation, dynamics, and lipid interaction of the TAT peptide in anionic lipid bilayers. We found that TAT(48-60) is a highly dyna...

  12. Cell-penetrating peptides mediated protein cross-membrane delivery and its use in bacterial vector vaccine.

    Science.gov (United States)

    Ma, Jimei; Xu, Jinmei; Guan, Lingyu; Hu, Tianjian; Liu, Qin; Xiao, Jingfan; Zhang, Yuanxing

    2014-07-01

    It is an attractive strategy to develop a recombinant bacterial vector vaccine by expressing exogenous protective antigen to induce the immune response, and the main concern is how to enhance the cellular internalization of antigen produced by bacterial vector. Cell-penetrating peptides (CPPs) are short cationic/amphipathic peptides which facilitate cellular uptake of various molecular cargoes and therefore have great potentials in vector vaccine design. In this work, eleven different CPPs were fused to the C-terminus of EGFP respectively, and the resultant EGFP-CPP fusion proteins were expressed and purified to assay their cross-membrane transport in macrophage J774 A.1 cells. Among the tested CPPs, TAT showed an excellent capability to deliver the cargo protein EGFP into cytoplasm. In order to establish an efficient antigen delivery system in Escherichia coli, the EGFP-TAT synthesis circuit was combined with an in vivo inducible lysis circuit PviuA-E in E. coli to form an integrated antigen delivery system, the resultant E. coli was proved to be able to lyse upon the induction of a mimic in vivo signal and thus release intracellular EGFP-TAT intensively, which were assumed to undergo a more efficient intracellular delivery by CPP to evoke protective immune responses. Based on the established antigen delivery system, the protective antigen gene flgD from an invasive intracellular fish pathogen Edwardsiella tarda EIB202, was applied to establish an E. coli recombinant vector vaccine. This E. coli vector vaccine presented superior immune protection (RPS = 63%) under the challenge with E. tarda EIB202, suggesting that the novel antigen delivery system had great potential in bacterial vector vaccine applications. PMID:24746937

  13. Cell-penetrating peptides transport therapeutics into cells.

    Science.gov (United States)

    Ramsey, Joshua D; Flynn, Nicholas H

    2015-10-01

    Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo. PMID:26210404

  14. Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides.

    Science.gov (United States)

    Herce, H D; Garcia, A E; Litt, J; Kane, R S; Martin, P; Enrique, N; Rebolledo, A; Milesi, V

    2009-10-01

    Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes. PMID:19804722

  15. Combined HLA matched limbal stem cells allograft with amniotic membrane transplantation as a prophylactic surgical procedure to prevent corneal graft rejection after penetrating keratoplasty: case report

    Directory of Open Access Journals (Sweden)

    Paolo Capozzi

    2014-09-01

    Full Text Available Purpose. To determine if the use of combined HLA matched limbal stem cells allograft with amniotic membrane transplantation (AMT is a safe and effective prophylactic surgical procedure to prevent corneal graft after penetrating keratoplasty (PK. Methods. We report the case of a 17 years old patient with a history of congenital glaucoma, trabeculectomy and multiple corneal graft rejections, presenting total limbal cell deficiency. To reduce the possibility of graft rejection in the left eye after a new PK, a two step procedure was performed. At first the patient underwent a combined HLA matched limbal stem cells allograft (LAT and AMT and then, 10 months later, a new PK. Results. During 12 months of follow-up, the corneal graft remained stable and smooth, with no sign of graft rejection. Conclusions. In our patient, the prophylactic use of LAT from HLA-matched donors and AMT before PK, may result in a better prognosis of corneal graft survival.

  16. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion

    International Nuclear Information System (INIS)

    Alphaviruses have the ability to induce cell-cell fusion after exposure to acid pH. This observation has served as an article of proof that these membrane-containing viruses infect cells by fusion of the virus membrane with a host cell membrane upon exposure to acid pH after incorporation into a cell endosome. We have investigated the requirements for the induction of virus-mediated, low pH-induced cell-cell fusion and cell-virus fusion. We have correlated the pH requirements for this process to structural changes they produce in the virus by electron cryo-microscopy. We found that exposure to acid pH was required to establish conditions for membrane fusion but that membrane fusion did not occur until return to neutral pH. Electron cryo-microscopy revealed dramatic changes in the structure of the virion as it was moved to acid pH and then returned to neutral pH. None of these treatments resulted in the disassembly of the virus protein icosahedral shell that is a requisite for the process of virus membrane-cell membrane fusion. The appearance of a prominent protruding structure upon exposure to acid pH and its disappearance upon return to neutral pH suggested that the production of a 'pore'-like structure at the fivefold axis may facilitate cell penetration as has been proposed for polio (J. Virol. 74 (2000) 1342) and human rhino virus (Mol. Cell 10 (2002) 317). This transient structural change also provided an explanation for how membrane fusion occurs after return to neutral pH. Examination of virus-cell complexes at neutral pH supported the contention that infection occurs at the cell surface at neutral pH by the production of a virus structure that breaches the plasma membrane bilayer. These data suggest an alternative route of infection for Sindbis virus that occurs by a process that does not involve membrane fusion and does not require disassembly of the virus protein shell

  17. Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides

    OpenAIRE

    Herce, H.D.; Garcia, A. E.; Litt, J.; Kane, R. S.; Martin, P.; Enrique, N.; Rebolledo, A.; Milesi, V.

    2009-01-01

    Recent molecular dynamics simulations (Herce and Garcia, PNAS, 104: 20805 (2007)) have suggested that the arginine-rich HIV Tat peptides might be able to translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, arginine residues play a fundamental role not only in the binding of the peptide to the surface of the membrane but also in the destabilization and nucleation of transient pores across the bilayer, despite being char...

  18. Lipid specific penetration of melittin into phospholipid model membranes

    NARCIS (Netherlands)

    Batenburga, A. M.; Hibbeln, J. C.L.; Kruijff, B. de

    1987-01-01

    The relative depth of penetration of melittin into egg phosphatidylcholine and bovine heart cardiolipin model membranes was investigated using fluorescence spectroscopy techniques. The tryptophan intrinsic fluorescence shift suggests a more hydrophobic surrounding of this residue in cardiolipin, whi

  19. Membrane damage as first and DNA as the secondary target for anti-candidal activity of antimicrobial peptide P7 derived from cell-penetrating peptide ppTG20 against Candida albicans.

    Science.gov (United States)

    Li, Lirong; Song, Fengxia; Sun, Jin; Tian, Xu; Xia, Shufang; Le, Guowei

    2016-06-01

    P7, a peptide analogue derived from cell-penetrating peptide ppTG20, possesses antibacterial and antitumor activities without significant hemolytic activity. In this study, we investigated the antifungal effect of P7 and its anti-Candida acting mode in Candida albicans. P7 displayed antifungal activity against the reference C. albicans (MIC = 4 μM), Aspergilla niger (MIC = 32 μM), Aspergillus flavus (MIC = 8 μM), and Trichopyton rubrum (MIC = 16 μM). The effect of P7 on the C. albicans cell membrane was examined by investigating the calcein leakage from fungal membrane models made of egg yolk l-phosphatidylcholine/ergosterol (10 : 1, w/w) liposomes. P7 showed potent leakage effects against fungal liposomes similar to Melittin-treated cells. C. albicans protoplast regeneration assay demonstrated that P7 interacted with the C. albicans plasma membrane. Flow cytometry of the plasma membrane potential and integrity of C. albicans showed that P7 caused 60.9 ± 1.8% depolarization of the membrane potential of intact C. albicans cells and caused 58.1 ± 3.2% C. albicans cell membrane damage. Confocal laser scanning microscopy demonstrated that part of FITC-P7 accumulated in the cytoplasm. DNA retardation analysis was also performed, which showed that P7 interacted with C. albicans genomic DNA after penetrating the cell membrane, completely inhibiting the migration of genomic DNA above the weight ratio (peptide : DNA) of 6. Our results indicated that the plasma membrane was the primary target, and DNA was the secondary intracellular target of the mode of action of P7 against C. albicans. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27197902

  20. Cell Penetrating Peptides: How Do They Do It?

    OpenAIRE

    Herce, Henry D.; Garcia, Angel E.

    2007-01-01

    Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recen...

  1. Lipid specific penetration of melittin into phospholipid model membranes

    OpenAIRE

    Batenburga, A. M.; Hibbeln, J. C.L.; de Kruijff, B.

    1987-01-01

    The relative depth of penetration of melittin into egg phosphatidylcholine and bovine heart cardiolipin model membranes was investigated using fluorescence spectroscopy techniques. The tryptophan intrinsic fluorescence shift suggests a more hydrophobic surrounding of this residue in cardiolipin, while the accessibility for charged and uncharged aqueous quenchers is decreased in the cardiolipin system when compared with the phosphatidylcholine-bound situation. A lipid incorporated hydrophobic,...

  2. A new microscopic insight into membrane penetration and reorganization by PETIM dendrimers.

    Science.gov (United States)

    Bhattacharya, R; Kanchi, Subbarao; C, Roobala; Lakshminarayanan, A; Seeck, Oliver H; Maiti, Prabal K; Ayappa, K G; Jayaraman, N; Basu, J K

    2014-10-14

    Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption. PMID:25115726

  3. Independent regulation of reovirus membrane penetration and apoptosis by the mu1 phi domain.

    Directory of Open Access Journals (Sweden)

    Pranav Danthi

    2008-12-01

    Full Text Available Apoptosis plays an important role in the pathogenesis of reovirus encephalitis. Reovirus outer-capsid protein mu1, which functions to penetrate host cell membranes during viral entry, is the primary regulator of apoptosis following reovirus infection. Ectopic expression of full-length and truncated forms of mu1 indicates that the mu1 phi domain is sufficient to elicit a cell death response. To evaluate the contribution of the mu1 phi domain to the induction of apoptosis following reovirus infection, phi mutant viruses were generated by reverse genetics and analyzed for the capacity to penetrate cell membranes and elicit apoptosis. We found that mutations in phi diminish reovirus membrane penetration efficiency by preventing conformational changes that lead to generation of key reovirus entry intermediates. Independent of effects on membrane penetration, amino acid substitutions in phi affect the apoptotic potential of reovirus, suggesting that phi initiates apoptosis subsequent to cytosolic delivery. In comparison to wild-type virus, apoptosis-defective phi mutant viruses display diminished neurovirulence following intracranial inoculation of newborn mice. These results indicate that the phi domain of mu1 plays an important regulatory role in reovirus-induced apoptosis and disease.

  4. Bioconjugated Gold Nanoparticles Penetrate Into Spermatozoa Depending on Plasma Membrane Status.

    Science.gov (United States)

    Barchanski, Annette; Taylor, Ulrike; Sajti, Csaba L; Gamrad, Lisa; Kues, Wilfried A; Rath, Detlef; Barcikowski, Stephan

    2015-09-01

    Spermatozoa are not only essential for animal reproduction they also represent important tools for the manipulation of animal genetics. For instance, the genetic labeling and analysis of spermatozoa could provide a prospective complementation of pre-fertilization diagnosis and could help to prevent the inheritance of defective alleles during artificial insemination or to select beneficial traits in livestock. Spermatozoa feature extremely specialized membrane organization and restricted transport mechanisms making the labeling of genetically interesting DNA-sequences, e.g., with gold nanoparticles, a particular challenge. Here, we present a systematic study on the size-related internalization of ligand-free, monovalent and bivalent polydisperse gold nanoparticles, depending on spermatozoa membrane status. While monovalent conjugates were coupled solely to either negatively-charged oligonucleotides or positively-charged cell-penetrating peptides, bivalent conjugates were functionalized with both molecules simultaneously. The results clearly indicate that the cell membrane of acrosome-intact, bovine spermatozoa was neither permeable to ligand-free or oligonucleotide-conjugated nanoparticles, nor responsive to the mechanisms of cell-penetrating peptides. Interestingly, after acrosome reaction, which comprises major changes in sperm membrane composition, fluidity and charge, high numbers of monovalent and bivalent nanoparticles were found in the postequatorial segment, depicting a close and complex correlation between particle internalization and membrane organization. Additionally, depending on the applied peptide and for nanoparticle sizes < 10 nm even a successive nuclear penetration was observed, making the bivalent conjugates promising for future genetic delivery and sorting issues. PMID:26485929

  5. Prediction of cell penetrating peptides by support vector machines.

    Directory of Open Access Journals (Sweden)

    William S Sanders

    2011-07-01

    Full Text Available Cell penetrating peptides (CPPs are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs. We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.

  6. Prediction of cell-penetrating peptides with feature selection techniques.

    Science.gov (United States)

    Tang, Hua; Su, Zhen-Dong; Wei, Huan-Huan; Chen, Wei; Lin, Hao

    2016-08-12

    Cell-penetrating peptides are a group of peptides which can transport different types of cargo molecules such as drugs across plasma membrane and have been applied in the treatment of various diseases. Thus, the accurate prediction of cell-penetrating peptides with bioinformatics methods will accelerate the development of drug delivery systems. The study aims to develop a powerful model to accurately identify cell-penetrating peptides. At first, the peptides were translated into a set of vectors with the same dimension by using dipeptide compositions. Secondly, the Analysis of Variance-based technique was used to reduce the dimension of the vector and explore the optimized features. Finally, the support vector machine was utilized to discriminate cell-penetrating peptides from non-cell-penetrating peptides. The five-fold cross-validated results showed that our proposed method could achieve an overall prediction accuracy of 83.6%. Based on the proposed model, we constructed a free webserver called C2Pred (http://lin.uestc.edu.cn/server/C2Pred). PMID:27291150

  7. Penetration of hydrogen through metal membranes in lowpressure region

    Energy Technology Data Exchange (ETDEWEB)

    Samartsev,A.A.

    1986-01-01

    The problem of penetration of hydrogen through metal membranes has been analyzed for an arbitrary number of consecutive stages of the processes of hydrogen dissolution and release at the gas/metal interfaces. The kinetic equations obtained in these studies have been used as the basis for judging the possible influence of predissociative and postdissociative stages of dissolution on the permeability to hydrogen, and also the role of the physicochemical properties of the entrance and exit surfaces. The concepts that have been developed offer a means for detailing information on the kinetics of interfacial processes in hydrogen-metal systems as obtained in experiments with membranes, particularly when hydrogen interacts with a surface that has been passivated by adsorbed layers of nonmetals.

  8. Investigation of penetration force of living cell using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Eun Young; Kim, Young Tae; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of)

    2009-07-15

    Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2{approx}22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment

  9. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.

    Science.gov (United States)

    Balázs, Boglárka; Vizserálek, Gábor; Berkó, Szilvia; Budai-Szűcs, Mária; Kelemen, András; Sinkó, Bálint; Takács-Novák, Krisztina; Szabó-Révész, Piroska; Csányi, Erzsébet

    2016-03-01

    The aim of this study was to investigate the behavior of promising penetration enhancers through the use of 2 different skin test systems. Hydrogel-based transdermal formulations were developed with ibuprofen as a nonsteroidal anti-inflammatory drug. Transcutol and sucrose esters were used as biocompatible penetration enhancers. The permeability measurements were performed with ex vivo Franz diffusion cell methods and a newly developed Skin Parallel Artificial Membrane Permeability Assays (PAMPA) model. Franz diffusion measurement is commonly used as a research tool in studies of diffusion through synthetic membranes in vitro or penetration through ex vivo human skin, whereas Skin PAMPA involves recently published artificial membrane-based technology for the fast prediction of skin penetration. It is a 96-well plate-based model with optimized artificial membrane structure containing free fatty acid, cholesterol, and synthetic ceramide analog compounds to mimic the stratum corneum barrier function. Transdermal preparations containing 2.64% of different sucrose esters and/or Transcutol and a constant (5%) of ibuprofen were investigated to determine the effects of these penetration enhancers. The study demonstrated the good correlation of the permeability data obtained through use of human skin membrane and the in vitro Skin PAMPA system. The Skin PAMPA artificial membrane serves as quick and relatively deep tool in the early stages of transdermal delivery systems, through which the enhancing efficacy of excipients can be screened so as to facilitate the choice of effective penetration components. PMID:26886318

  10. Cell penetration to nanofibrous scaffolds

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Buzgo, Matej; Chvojka, J.; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Roč. 8, č. 1 (2014), s. 36-41. ISSN 1933-6918 Grant ostatní: GA UK(CZ) 384311; GA UK(CZ) 626012; GA UK(CZ) 270513; GA UK(CZ) 330611; GA UK(CZ) 648112; GA MZd(CZ) NT12156; GA MŠk(CZ) project IPv6 Institutional support: RVO:68378041 ; RVO:61388971 Keywords : fibrous scaffold * mesenchymal stem cell s * Forcespinning (R) Subject RIV: FP - Other Medical Disciplines Impact factor: 4.505, year: 2014

  11. Cell penetrating peptides: how do they do it?

    Science.gov (United States)

    Herce, Henry D; Garcia, Angel E

    2007-12-01

    Cell penetrating peptides consist of short sequences of amino acids containing a large net positive charge that are able to penetrate almost any cell, carrying with them relatively large cargoes such as proteins, oligonucleotides, and drugs. During the 10 years since their discovery, the question of how they manage to translocate across the membrane has remained unanswered. The main discussion has been centered on whether they follow an energy-independent or an energy-dependent pathway. Recently, we have discovered the possibility of an energy-independent pathway that challenges fundamental concepts associated with protein-membrane interactions (Herce and Garcia, PNAS, 104: 20805 (2007) [1]). It involves the translocation of charged residues across the hydrophobic core of the membrane and the passive diffusion of these highly charged peptides across the membrane through the formation of aqueous toroidal pores. The aim of this review is to discuss the details of the mechanism and interpret some experimental results consistent with this view. PMID:19669523

  12. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  13. Expression and purification of Tat-GFP fusion protein and its cell membrane penetrating activity%Tat-GFP融合蛋白的表达纯化及其穿膜活性

    Institute of Scientific and Technical Information of China (English)

    关新刚; 苏维恒; 于欣; 佟海滨; 孙新

    2014-01-01

    Objective To obtain the Tat-GFP fusion proteins with penetrating activity and labeled with green fluorescence protein (GFP), and to explore the cell membrane penetrating activity of Tat-GFP in MCF-7 cells. Methods The plasmid pET-24a-Tat-GFP was transformed into Escherichia coli BL21 cells. Different concentrations (0.5 and 1.0 mmol · L-1 ) of isopropyl-β-D-thiogalactopyranoside (IPTG ) and cell culture temperatures (22℃ and 37℃)were used to optimize the protein expression.The Tat-GFP proteins in supernatant were purified using Ni-IDA resins. Western blotting analysis was used to identify the Tat-GFP protein, and confocal laser scanning microscope (CLSM ) was used to examine the cell penetration of Tat-GFP protein. Results There was no significant difference in the Tat-GFP protein production induced by 0.5 and 1.0 mmol·L-1 IPTG;however,the low temperature (22℃)-induced BL21 cells expressed more Tat-GFP proteins than that at 37℃ induction.The Western blotting analysis results showed that GFP antibody could specifically recognize the proteins in PVDF membranes in dose-dependent manner;the CLSM results indicated the distribution of green fluorescence in cytoplasm and nucleus of MCF-7 cells.Conclusion The Tat-GFP protein highly expresses in the supenatant of Escherichia coli i BL2 1 cells at low temperature;the obtained Tat-GFP protein with green fluorescence preserves the cell penetrating activity.%目的:获得具备穿膜活性与绿色荧光蛋白(GFP)标记的 Tat-GFP 融合蛋白,探讨 Tat-GFP 在MCF-7细胞中的跨膜转运特性。方法:应用 pET-24a-Tat-GFP质粒转化大肠杆菌 BL21感受态细胞,检测不同异丙基硫代半乳糖苷(IPTG)浓度(0.5和1.0 mmol·L-1)和不同温度(22℃和37℃)诱导融合蛋白的表达情况;利用 Ni-IDA树脂亲和纯化Tat-GFP蛋白,利用 GFP特异性抗体采用 Western blotting法分析洗脱液中的蛋白;激光共聚焦荧光显微镜下检测Tat-GFP融合蛋白

  14. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers

    NARCIS (Netherlands)

    Yesylevskyy, Semen; Marrink, Siewert-Jan; Mark, Alan E.

    2009-01-01

    Cell-penetrating peptides (CPPs) have recently attracted much interest due to their apparent ability to penetrate cell membranes in an energy-independent manner. Here molecular-dynamics simulation techniques were used to study the interaction of two CPPs: penetratin and the TAT peptide with 1,2-Dipa

  15. Mathematic Model of Unsteady Penetration Mass Transfer in Randomly Packed Hollow Fiber Membrane Module

    Institute of Scientific and Technical Information of China (English)

    张秀莉; 张泽廷; 张卫东; 郝欣

    2004-01-01

    Based on the membrane-based absorption experiment of CO2 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.

  16. Phacoemulsification after penetrating keratoplasty with autologous limbal transplant and amniotic membrane transplant in chemical burns

    Directory of Open Access Journals (Sweden)

    Arora Ritu

    2005-01-01

    Full Text Available We report a patient who had earlier penetrating keratoplasty with amniotic membrane transplant and autologous limbal cell transplant for chemical injury who underwent cataract surgery by phacoaspiration. A posterior limbal incision with corneal valve was made superotemporally with extreme caution to avoid damage to the limbal graft. Aspiration flow rates and vacuum were kept low to avoid any turbulence during surgery. A 6.0 mm optic diameter acrylic foldable intraocular lens was inserted in the bag. The patient achieved a best-corrected visual acuity of 6/12 at 10 months′ follow-up with a clear corneal graft. We conclude that caution during wound construction and phacoaspiration can help preserve corneal and limbal graft integrity in patients undergoing cataract surgery after corneal graft and limbal transplantation.

  17. Cationic cell-penetrating peptides induce ceramide formation via acid sphingomyelinase: implications for uptake.

    NARCIS (Netherlands)

    Verdurmen, W.P.R.; Thanos, M.; Ruttekolk, I.R.R.; Gulbins, E.; Brock, R.E.

    2010-01-01

    Cationic cell-penetrating peptides (CPP) are receiving increasing attention as molecular transporters of membrane-impermeable molecules. Import of cationic CPP occurs both via endocytosis and - at higher peptide concentrations - in an endocytosis-independent manner via localized regions of the plasm

  18. Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide

    Directory of Open Access Journals (Sweden)

    Michel De Waard

    2013-03-01

    Full Text Available Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine. The peptide appears so specialized in cell penetration that it seems hard to improve by site directed mutagenesis. A comparative analysis of the efficacies of similar peptides isolated from other toxin members of the same family leads to the identification of hadrucalcin’s hydrophobic face as an even better CPP. Protonation of the histidine residue at position 6 renders the cell penetration of MCaUF1-9 pH-sensitive. Greater cell penetration at acidic pH suggests that MCaUF1-9 can be used to specifically target cancer cells in vivo where tumor masses grow in more acidic environments.

  19. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  20. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  1. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides

    OpenAIRE

    Lättig-Tünnemann, Gisela; Prinz, Manuel; Hoffmann, Daniel; Behlke, Joachim; Palm-Apergi, Caroline; Morano, Ingo; Herce, Henry D.; Cardoso, M. Cristina

    2011-01-01

    In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of ...

  2. Backbone rigidity and static presentation of guanidinium groups increases cellular uptake of arginine-rich cell-penetrating peptides.

    Science.gov (United States)

    Lättig-Tünnemann, Gisela; Prinz, Manuel; Hoffmann, Daniel; Behlke, Joachim; Palm-Apergi, Caroline; Morano, Ingo; Herce, Henry D; Cardoso, M Cristina

    2011-01-01

    In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity. Consequently, cyclic arginine-rich cell-penetrating peptides showed enhanced cellular uptake kinetics relative to their linear and more flexible counterpart. We propose that guanidinium groups are forced into maximally distant positions by cyclization. This orientation increases membrane contacts leading to enhanced cell penetration. PMID:21878907

  3. Transduction of peptides and proteins into live cells by cell penetrating peptides.

    Science.gov (United States)

    Mussbach, Franziska; Franke, Martin; Zoch, Ansgar; Schaefer, Buerk; Reissmann, Siegmund

    2011-12-01

    Internalization of peptides and proteins into live cells is an essential prerequisite for studies on intracellular signal pathways, for treatment of certain microbial diseases and for signal transduction therapy, especially for cancer treatment. Cell penetrating peptides (CPPs) facilitate the transport of cargo-proteins through the cell membrane into live cells. CPPs which allow formation of non-covalent complexes with the cargo are used primarily in this study due to the relatively easy handling procedure. Efficiency of the protein uptake is estimated qualitatively by fluorescence microscopy and quantitatively by SDS-PAGE. Using the CPP cocktail JBS-Proteoducin, the intracellular concentrations of a secondary antibody and bovine serum albumin can reach the micromolar range. Internalization of antibodies allows mediation of intracellular pathways including knock down of signal transduction. The high specificity and affinity of antibodies makes them potentially more powerful than siRNA. Thus, CPPs represent a significant new possibility to study signal transduction processes in competition or in comparison to the commonly used other techniques. To estimate the highest attainable intracellular concentrations of cargo proteins, the CPPs are tested for cytotoxicity. Cell viability and membrane integrity relative to concentration of CPPs are investigated. Viability as estimated by the reductive activity of mitochondria (MTT-test) is more sensitive to higher concentrations of CPPs versus membrane integrity, as measured by the release of dead cell protease. Distinct differences in uptake efficiency and cytotoxic effects are found using six different CPPs and six different adhesion and suspension cell lines. PMID:21826709

  4. SAP(E) - A cell-penetrating polyproline helix at lipid interfaces.

    Science.gov (United States)

    Franz, Johannes; Lelle, Marco; Peneva, Kalina; Bonn, Mischa; Weidner, Tobias

    2016-09-01

    Cell-penetrating peptides (CPPs) are short membrane-permeating amino acid sequences that can be used to deliver cargoes, e.g. drugs, into cells. The mechanism for CPP internalization is still subject of ongoing research. An interesting family of CPPs is the sweet arrow peptides - SAP(E) - which are known to adopt a polyproline II helical secondary structure. SAP(E) peptides stand out among CPPs because they carry a net negative charge while most CPPs are positively charged, the latter being conducive to electrostatic interaction with generally negatively charged membranes. For SAP(E)s, an internalization mechanism has been proposed, based on polypeptide aggregation on the cell surface, followed by an endocytic uptake. However, this process has not yet been observed directly - since peptide-membrane interactions are inherently difficult to monitor on a molecular scale. Here, we use sum frequency generation (SFG) vibrational spectroscopy to investigate molecular interactions of SAP(E) with differently charged model membranes, in both mono- and bi-layer configurations. The data suggest that the initial binding mechanism is accompanied by structural changes of the peptide. Also, the peptide-model membrane interaction depends on the charge of the lipid headgroup with phosphocholine being a favorable binding site. Moreover, while direct penetration has also been observed for some CPPs, the spectroscopy reveals that for SAP(E), its interaction with model membranes remains limited to the headgroup region, and insertion into the hydrophobic core of the lipid layer does not occur. PMID:27237727

  5. Fuel cell with ionization membrane

    Science.gov (United States)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  6. Solitons in cell membranes

    Science.gov (United States)

    Das, Pradip; Schwarz, W. H.

    1995-04-01

    Using a two-dimensional smectic liquid crystal model, we have shown the plausibility of electrical solitary wave propagation along a bimolecular leaflet such as the cell membrane of a nerve axon which consists of chiral, lipid building blocks. Our model is a head-to-tail correlated ferroelectric, chiral Sm-C* liquid crystal, which is a unique class of substances that combines the electric polarization and anisotropy of ferroelectric crystals with the hydrodynamic properties of liquids. Polar Sm-A models can also be used with the same results. In addition to the usual transverse ferroelectricity, characteristic of the Sm-C* liquid crystal, the head-to-tail correlation ensures a longitudinal ferroelectricity component. The electric polarization due to the latter can couple to the transmembrane electric field resulting from the ionic imbalance between the two sides of the membrane-a mechanism detailed in the so-called Hodgkin-Huxley set of partial differential equations for the propagation of the action potential. We obtain a Landau-de Gennes-like free energy, which is the sum of elastic, fluctuation, and polarization terms, together with a ferroelectric term showing a direct coupling between the electric field and the mechanical deformation variable. Minimizing and equating to a viscous damping term leads to an equation similar to one equation of the Fitzhugh-Nagumo coupled set of partial differential equations, which is a simplified version of the Hodgkin-Huxley equations. The other equation of the set resembles an equation derived from the Nernst-Planck equation, which describes transmembrane ion transport and hence provides a mechanism for transmembrane potential variation. A more complete calculation of the velocity of the asymptotic wave form shows a lower wave speed than the estimate of Nagumo et al. The piezoelectric properties of the phase compete with its curvature elasticity to produce the soliton lattice of the cell membrane, which consists of juxtaposed

  7. Cell-Penetrating Peptides: A Comparative Study on Lipid Affinity and Cargo Delivery Properties

    Directory of Open Access Journals (Sweden)

    Paolo Ruzza

    2010-03-01

    Full Text Available A growing number of natural and/or synthetic peptides with cell membrane penetrating capability have been identified and described in the past years. These molecules have been considered promising tools for delivering bioactive compounds into various cell types. Although the mechanism of uptake is still unclear, it is reasonable to assume that the relative contribute of each proposed mechanism could differ for the same peptide, depending on experimental protocol and cargo molecule composition. In this work we try to connect the capability to interact with model lipid membrane and structural and chemical characteristics of CPPs in order to obtain a biophysical classification that predicts the behavior of CPP-cargo molecules in cell systems. Indeed, the binding with cell membrane is one of the primary step in the interaction of CPPs with cells, and consequently the studies on model membrane could become important for understanding peptide-membrane interaction on a molecular level, explaining how CPPs may translocate a membrane without destroying it and how this interactions come into play in shuttling CPPs via different routes with different efficiency. We analyzed by CD and fluorescence spectroscopies the binding properties of six different CPPs (kFGF, Nle54-Antp and Tat derived peptides, and oligoarginine peptides containing 6, 8 or 10 residues in absence or presence of the same cargo peptide (the 392-401pTyr396 fragment of HS1 protein. The phospholipid binding properties were correlated to the conformational and chemical characteristics of peptides, as well as to the cell penetrating properties of the CPP-cargo conjugates. Results show that even if certain physico-chemical properties (conformation, positive charge govern CPP capability to interact with the model membrane, these cannot fully explain cell-permeability properties.

  8. Cell invasion through basement membrane

    OpenAIRE

    Morrissey, Meghan A; Hagedorn, Elliott J.; Sherwood, David R.

    2013-01-01

    Cell invasion through basement membrane is an essential part of normal development and physiology, and occurs during the pathological progression of human inflammatory diseases and cancer. F-actin-rich membrane protrusions, called invadopodia, have been hypothesized to be the “drill bits” of invasive cells, mediating invasion through the dense, highly cross-linked basement membrane matrix. Though studied in vitro for over 30 y, invadopodia function in vivo has remained elusive. We have recent...

  9. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  10. Peptide Internalization Enabled by Folding: Triple Helical Cell-Penetrating Peptides

    OpenAIRE

    Shinde, Aparna; Feher, Katie M.; Hu, Chloe; Slowinska, Katarzyna

    2014-01-01

    Cell-Penetrating Peptides (CPPs) are known as efficient transporters of molecular cargo across cellular membranes. Their properties make them ideal candidates for in vivo applications. However, challenges in development of effective CPPs still exist: CPPs are often fast degraded by proteases and large concentration of CPPs required for cargo transporting can cause cytotoxicity. It was previously shown that restricting peptide flexibility can improve peptide stability against enzymatic degrada...

  11. Cell-penetrating peptides; chemical modification, mechanism of uptake and formulation development

    OpenAIRE

    Ezzat, Kariem

    2012-01-01

    Gene therapy holds the promise of revolutionizing the way we treat diseases. By using recombinant DNA and oligonucleotides (ONs), gene functions can be restored, altered or silenced according to the therapeutic need. However, gene therapy approaches require the delivery of large and charged nucleic acid-based molecules to their intracellular targets across the plasma membrane, which is inherently impermeable to such molecules. In this thesis, two chemically modified cell-penetrating peptides ...

  12. Melittin at a membrane/water interface: Effects on water orientation and water penetration

    Science.gov (United States)

    Bachar, Michal; Becker, Oren M.

    1999-11-01

    Melittin, a small peptide found in bee venom, is known to induce membrane lysis. A molecular dynamics simulation of melittin embedded in a hydrated dipalmitoylphosphatidylcholine bilayer is analyzed in order to study the peptide's effect on water molecules at the membrane/water interface. The peptide, with a protonated N-terminus, was embedded in a trans-bilayer orientation. The simulation highlights the microscopic mechanism by which melittin induces the formation of transmembrane water "pores," leading to membrane lysis. It was found that melittin has a profound effect on the behavior of the water molecules at the membrane/water interface. It modifies the orientation of the water dipoles and induces water penetration into the bilayer. In fact, melittin's residue Lys-7 and its protonated N-terminus facilitate the formation of transmembrane water pores by steering water penetration from both sides of the bilayer. The initial step towards pore formation takes about 200 ps, and the process relays on melittin's bent conformation and tilted orientation. A large body of experimental observations supports the simulation results and the suggested microscopic mechanism.

  13. Combination of photodynamic therapy with intravitreal bevacizumab for post-peribulbar anesthesia (penetrating trauma)-persistent choroidal neovascular membrane

    OpenAIRE

    Shah Nikunj; Shah Urmi

    2008-01-01

    We report a case of a choroidal neovascular membrane (CNVM) following ocular penetration during peribulbar anesthesia in a 55- year-old male patient. A combination of photodynamic therapy with intravitreal bevacizumab led to resolution of the persistent CNVM.

  14. Antimicrobial and cell-penetrating properties of penetratin analogs

    DEFF Research Database (Denmark)

    Bahnsen, Jesper Søborg; Franzyk, Henrik; Sandberg-Schaal, Anne;

    2013-01-01

    Cell-penetrating peptides (CPPs) and antimicrobial peptides (AMPs) show great potential as drug delivery vectors and new antibiotic drug entities, respectively. The current study deals with the properties of a variety of peptide analogs derived from the well-known CPP penetratin as well as...

  15. Bioportide: an emergent concept of bioactive cell-penetrating peptides

    Czech Academy of Sciences Publication Activity Database

    Howl, J.; Matou-Nasri, S.; West, D. C.; Farquhar, M.; Slaninová, Jiřina; Ostenson, C. G.; Zorko, M.; Ostlund, P.; Kumar, S.; Langel, U.; McKeating, J.; Jones, S.

    2012-01-01

    Roč. 69, č. 17 (2012), s. 2951-2966. ISSN 1420-682X Institutional research plan: CEZ:AV0Z40550506 Keywords : angiogenesis * bioportide * cell-penetrating peptide * second messenger * insulin secretion Subject RIV: CE - Biochemistry Impact factor: 5.615, year: 2012

  16. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes. With the...... thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  17. Assessment of penetration of Ascorbyl Tetraisopalmitate into biological membranes by molecular dynamics.

    Science.gov (United States)

    Machado, N C F; Dos Santos, L; Carvalho, B G; Singh, P; Téllez Soto, C A; Azoia, N G; Cavaco-Paulo, A; Martin, A A; Favero, P P

    2016-08-01

    The present work, involves the simulation of the transport of a vitamin C derivative, Ascorbyl Tetraisopalmitate (ATI), through human skin by molecular dynamics. Percutaneous absorption of the ATI molecule through the infundibulum, an important route of absorption into the hair follicle of the human skin, has been modeled and compared with the stratum corneum membrane. The comparative study was done using molecular dynamics with Martini force field. In infundibulum, a single ATI molecule require more time to penetrate, and the data obtained suggested that a high concentration of ATI molecule accelerated the process of penetration. In conclusion, the ATI molecule was found to have more affinity towards the stratum corneum as compared with the infundibulum, and it followed a straight pathway to penetrate (until 600ns of simulation). In the infundibulum, it showed less affinity, more mobility and followed a lateral pathway. Thus, this work contributes to a better understanding of the different molecular interactions during percutaneous absorption of active molecules in these two different types of biological membranes. PMID:27289538

  18. Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors.

    Directory of Open Access Journals (Sweden)

    Bruno Ramos-Molina

    Full Text Available Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.

  19. A cell penetrating peptide-integrated and enediyne-energized fusion protein shows potent antitumor activity.

    Science.gov (United States)

    Ru, Qin; Shang, Bo-Yang; Miao, Qing-Fang; Li, Liang; Wu, Shu-Ying; Gao, Rui-Juan; Zhen, Yong-Su

    2012-11-20

    Arginine-rich peptides belong to a subclass of cell penetrating peptides that are taken up by living cells and can be detected freely diffusing inside the cytoplasm and nucleoplasm. This phenomenon has been attributed to either an endocytotic mode of uptake and a subsequent release from vesicles or a direct membrane penetration. Lidamycin is an antitumor antibiotic, which consists of an active enediyne chromophore (AE) and a noncovalently bound apoprotein (LDP). In the present study, a fusion protein (Arg)(9)-LDP composed of cell penetrating peptide (Arg)(9) and LDP was prepared by DNA recombination, and the enediyne-energized fusion protein (Arg)(9)-LDP-AE was prepared by molecular reconstitution. The data in fixed cells demonstrated that (Arg)(9)-LDP could rapidly enter cells, and the results based on fluorescence activated cell sorting indicated that the major route for (Arg)(9)-mediated cellular uptake of protein molecules was endocytosis. (Arg)(9)-LDP-AE demonstrated more potent cytotoxicity against different carcinoma cell lines than lidamycin in vitro. In the mouse hepatoma 22 model, (Arg)(9)-LDP-AE (0.3mg/kg) suppressed the tumor growth by 89.2%, whereas lidamycin (0.05 mg/kg) by 74.6%. Furthermore, in the glioma U87 xenograft model in nude mice, (Arg)(9)-LDP-AE at 0.2mg/kg suppressed tumor growth by 88.8%, compared with that of lidamycin by 62.9% at 0.05 mg/kg. No obvious toxic effects were observed in all groups during treatments. The results showed that energized fusion protein (Arg)(9)-LDP-AE was more effective than lidamycin and would be a promising candidate for glioma therapy. In addition, this approach to manufacturing fusion proteins might serve as a technology platform for the development of new cell penetrating peptides-based drugs. PMID:22982402

  20. Paramagnetic particles carried by cell-penetrating peptide tracking of bone marrow mesenchymal stem cells, a research in vitro

    International Nuclear Information System (INIS)

    The ability to track the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging of the mesenchymal stem cells. The mesenchymal stem cells were isolated from rat bone marrow by Percoll and identified by osteogenic differentiation in vitro. The cell-penetrating peptides labeled with fluorescein-5-isothiocyanate and gadolinium were synthesized by a solid-phase peptide synthesis method and the relaxivity of cell-penetrating peptide-gadolinium paramagnetic conjugate on 400 MHz nuclear magnetic resonance was 5.7311 ± 0.0122 mmol-1 s-1, higher than that of diethylenetriamine pentaacetic acid gadolinium (p < 0.05). Fluorescein imaging confirmed that this new peptide could internalize into the cytoplasm and nucleus. Gadolinium was efficiently internalized into mesenchymal stem cells by the peptide in a time- or concentration-dependent fashion, resulting in intercellular T1 relaxation enhancement, which was obviously detected by 1.5 T magnetic resonance imaging. Cytotoxicity assay and flow cytometric analysis showed the intercellular contrast medium incorporation did not affect cell viability and membrane potential gradient. The research in vitro suggests that the newly constructed peptides could be a vector for tracking mesenchymal stem cells

  1. Strategies to stabilize cell penetrating peptides for in vivo applications.

    Science.gov (United States)

    Fominaya, Jesús; Bravo, Jerónimo; Rebollo, Angelita

    2015-10-01

    In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies. PMID:26448473

  2. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  3. Expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD

    Directory of Open Access Journals (Sweden)

    Fang ZHANG

    2011-01-01

    Full Text Available Objective To construct the fusion gene expression vector of penetrating peptide(PDT and the glucocorticoid receptor lack of ligand binding domain(GR-ΔLBD,and evaluate the prokaryotic expression,purification and cell penetrativity of fusion protein PDT/GR-ΔLBD.Methods The target gene fragment GR-ΔLBD was obtained from plasmid pEGFP-GR-ΔLBD by double digestion,and sub-cloned into the prokaryotic expression vector pGEX-PDT to construct the fusion gene expression vector pGEX-PDT/GR-ΔLBD.PDT/GR-ΔLBD fusion protein was obtained after the expression vector was transformed into E.coli,followed by sequential induction with IPTG,treatment with glutathione-agarose resin and elution with glutathione.SDS-PAGE was performed to determine the expression of PDT/GR-ΔLBD fusion protein,and it which was diluted into a final concentration of 0,500 and 1000nmol/L,labeled with fluorescein FITC and co-cultivated with TC-1 cells for 2 hours,and the penetrativity was observed by fluorescence microscopy.Results The successfully constructed prokaryotic expression vector pPDT/GR-ΔLBD had the capacity of expressing protein,and it was 78.6kD in molecular weight,which was consistent with the theoretical value(80kD of the fusion protein PDT/GR-ΔLBD.PDT-GR-ΔLBD,penetrating the nuclear membrane in a concentration-dependent manner,was concentrated within nuclei.Conclusion PDT/GR-ΔLBD fusion protein,with good solubility and cell penetrativity,paves the way for further research on its anti-inflammatory effects.

  4. ESI-MS method for in vitro investigation of skin penetration by copper-amino acid complexes: from an emulsion through a model membrane.

    Science.gov (United States)

    Mazurowska, Lena; Nowak-Buciak, Kinga; Mojski, Mirosław

    2007-07-01

    Copper can be found in many cosmetic formulations, mainly as complexes with peptides, hydroxyacids or amino acids. The main reason that the usage of this element in this context is still increasing is its beneficial biochemical activity, although the mechanism that enables its complexes to permeate through skin barriers is largely unknown. The ability of copper complexes with amino acids to penetrate through the stratum corneum and participate in copper ion transport processes is key to their cosmetic and pharmaceutical activities. The penetration process was studied in vitro in a model system, a Franz diffusion cell with a liposome membrane, where a liquid crystalline system with physicochemical properties similar to those of the intercellular cement of stratum corneum was used to model the skin barrier. The influences of various ligands on the model membrane migration rate of copper ions was studied, and the results highlighted the crucial roles of metal ion complex structure and stability in this process. PMID:17530231

  5. Conjugation to the cell-penetrating peptide TAT potentiates the photodynamic effect of carboxytetramethylrhodamine.

    Directory of Open Access Journals (Sweden)

    Divyamani Srinivasan

    Full Text Available BACKGROUND: Cell-penetrating peptides (CPPs can transport macromolecular cargos into live cells. However, the cellular delivery efficiency of these reagents is often suboptimal because CPP-cargo conjugates typically remain trapped inside endosomes. Interestingly, irradiation of fluorescently labeled CPPs with light increases the release of the peptide and its cargos into the cytosol. However, the mechanism of this phenomenon is not clear. Here we investigate the molecular basis of the photo-induced endosomolytic activity of the prototypical CPPs TAT labeled to the fluorophore 5(6-carboxytetramethylrhodamine (TMR. METHODOLOGY/PRINCIPAL FINDINGS: We report that TMR-TAT acts as a photosensitizer that can destroy membranes. TMR-TAT escapes from endosomes after exposure to moderate light doses. However, this is also accompanied by loss of plasma membrane integrity, membrane blebbing, and cell-death. In addition, the peptide causes the destruction of cells when applied extracellularly and also triggers the photohemolysis of red blood cells. These photolytic and photocytotoxic effects were inhibited by hydrophobic singlet oxygen quenchers but not by hydrophilic quenchers. CONCLUSIONS/SIGNIFICANCE: Together, these results suggest that TAT can convert an innocuous fluorophore such as TMR into a potent photolytic agent. This effect involves the targeting of the fluorophore to cellular membranes and the production of singlet oxygen within the hydrophobic environment of the membranes. Our findings may be relevant for the design of reagents with photo-induced endosomolytic activity. The photocytotoxicity exhibited by TMR-TAT also suggests that CPP-chromophore conjugates could aid the development of novel Photodynamic Therapy agents.

  6. Antibacterial Effects of a Cell-Penetrating Peptide Isolated from Kefir.

    Science.gov (United States)

    Miao, Jianyin; Guo, Haoxian; Chen, Feilong; Zhao, Lichao; He, Liping; Ou, Yangwen; Huang, Manman; Zhang, Yi; Guo, Baoyan; Cao, Yong; Huang, Qingrong

    2016-04-27

    Kefir is a traditional fermented milk beverage used throughout the world for centuries. A cell-penetrating peptide, F3, was isolated from kefir by Sephadex G-50 gel filtration, DEAE-52 ion exchange, and reverse-phase high-performance liquid chromatography. F3 was determined to be a low molecular weight peptide containing one leucine and one tyrosine with two phosphate radicals. This peptide displayed antimicrobial activity across a broad spectrum of organisms including several Gram-positive and Gram-negative bacteria as well as fungi, with minimal inhibitory concentration (MIC) values ranging from 125 to 500 μg/mL. Cellular penetration and accumulation of F3 were determined by confocal laser scanning microscopy. The peptide was able to penetrate the cellular membrane of Escherichia coli and Staphylococcus aureus. Changes in cell morphology were observed by scanning electron microscopy (SEM). The results indicate that peptide F3 may be a good candidate for use as an effective biological preservative in agriculture and the food industry. PMID:27003578

  7. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System

    DEFF Research Database (Denmark)

    Jing, Xiaona; Foged, Camilla; Martin-Bertelsen, Birte;

    2016-01-01

    for delivery of small interfering RNA (siRNA) to the cytosol by incorporation of a palmitoylated peptidomimetic construct into a cationic lipid-based nanocarrier system. The optimal construct was selected on the basis of the effect of palmitoylation and the influence of the length of the...... peptidomimetic on the interaction with model membranes and the cellular uptake. Palmitoylation enhanced the peptidomimetic adsorption to supported lipid bilayers as studied by ellipsometry. However, both palmitoylation and increased peptidomimetic chain length were found to be beneficial in the cellular uptake...... studies using fluorophore-labeled analogues. Thus, the longer palmitoylated peptidomimetic was chosen for further formulation of siRNA in a dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) nanocarrier system, and the resulting nanoparticles were found to mediate efficient gene...

  8. STUDYING MEMBRANE ANCHOR ORGANIZATION IN LIVING CELL MEMBRANES

    OpenAIRE

    Huang, Hector Han-Li

    2011-01-01

    The cell membrane is a complex mixture of various lipids, proteins and other biomolecules that are all organized into a fluid 2-dimensional bilayer. A rather unique trait of this organelle is the lateral mobility of the component molecules. Surprisingly, these molecules are not necessarily distributed homogeneously in the membrane. From a physical perspective, these inhomogeneities are interesting because they indicate some level of organization in the membrane. From a biological perspect...

  9. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells

    Directory of Open Access Journals (Sweden)

    Andrea-Anneliese Keller

    2013-02-01

    Full Text Available Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.

  10. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions

  11. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  12. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  13. 18F-Labeled phosphopeptide-cell-penetrating peptide dimers with enhanced cell uptake properties in human cancer cells

    International Nuclear Information System (INIS)

    Introduction: Phosphopeptides represent interesting compounds to study and elucidate cellular protein phosphorylation/dephosphorylation processes underlying various signal transduction pathways. However, studies of phosphopeptide action in cells are severely constrained by the negatively charged phosphate moiety of the phosphopeptide resulting in poor transport through the cell membrane. The following study describes the synthesis and radiopharmacological evaluation of two 18F-labeled phosphopeptide-cell-penetrating peptide dimers. The polo-like kinase-1-binding hexaphosphopeptide H-Met-Gln-Ser-pThr-Pro-Leu-OH was coupled to cell-penetrating peptides (CPPs), either sC18, a cathelicidin-derived peptide, or the human calcitonin derivative hCT(18-32)-k7. Methods: Radiolabeling was accomplished with the prosthetic group N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) using both, conventional and microfluidic-based bioconjugation of [18F]SFB to N-terminal end of phosphopeptide part of the peptide dimers. Cellular uptake studies in human cancer cell lines HT-29 and FaDu cells at 4 °C and 37 °C and small animal PET in BALB/c mice were utilized for radiopharmacological characterization. Results: Isolated radiochemical yields ranged from 2% to 4% for conventional bioconjugation with [18F]SFB. Significantly improved isolated radiochemical yields of up to 26% were achieved using microfluidic technology. Cellular uptake studies of radiolabeled phosphopeptide and phosphopeptide-CPP dimers indicate enhanced internalization of 50% ID/mg protein after 2 h for both phosphopeptide dimers compared to the phosphopeptide alone (18F-labeled peptide dimers was determined with small animal PET revealing a superior biodistribution pattern of sC18-containing peptide dimer MQSpTPL-sC18 [18F]4. Conclusion: [18F]SFB labeling of the phosphopeptide-CPP dimers using a microfluidic system leads to an improved chemoselectivity towards the N-terminal NH2 group compared to the conventional labeling

  14. Effect of the infectious laryngotracheitis virus (ILTV) glycoprotein G on virus attachment, penetration, growth curve and direct cell-to-cell spread

    Institute of Scientific and Technical Information of China (English)

    SUN; Zhaogang; ZHANG; Manfu

    2005-01-01

    The secreted alphaherpesvirus glycoprotein G (gG) works differently from other proteins. Analysis of the role of ILTV gG in virus attachment, penetration, direct cell-to-cell spread (CTCS) and the growth curve showed that gG or its antibody had no effect on ILTV attachment and penetration and that the gG antibody reduced the virus plaque size and the one-step growth curve on chicken embryo liver (CEL) cells, but gG did not affect the virus plaque size or the one-step growth curve on CEL cells. Laser scanning confocal microscopy (LSCM) detection showed that ILTV gG is located in the perinuclear region and the membrane of the CEL cells. These results suggested that ILTV gG might contribute to direct cell-to-cell transmission.

  15. Single cell membrane poration by bubble-induced microjets in a microfluidic chip.

    Science.gov (United States)

    Li, Z G; Liu, A Q; Klaseboer, E; Zhang, J B; Ohl, C D

    2013-03-21

    This paper demonstrates membrane poration of a single suspension cell due to a fast liquid microjet. The jet is formed during the collapse of a laser induced bubble created at a variable stand-off distance from the target cell. The cell is trapped by a converging structure within a microfluidic chip. The asymmetrical growth and collapse of the cavitation bubble next to the cell lead to the microjetting, which deforms and porates the cell membrane. In the experiments, the membrane porations of myeloma cells are probed with the uptake of trypan blue. Time-resolved studies of the diffusion of trypan blue show a marked dependency on the bubble dynamics, i.e. the stand-off distance. The penetration length of the dye increases with shorter distances. Numerical simulations of the diffusion process agree with larger pores formed on the cell membrane. This method allows for a fast, repeatable, and localized rupture of membranes of individual cells in suspension. PMID:23364762

  16. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  17. Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.

    Science.gov (United States)

    Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa

    2013-03-01

    Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo. PMID:23261305

  18. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  19. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    Science.gov (United States)

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  20. Cell penetrating recombinant Foxp3 protein enhances Treg function and ameliorates arthritis

    OpenAIRE

    Yomogida, Kentaro; Wu, Shili; Baravati, Bobby; Avendano, Camilo; Caldwell, Tom; Maniaci, Brian; Zhu, Yong; CHU, CONG-QIU

    2013-01-01

    Foxp3 is the master transcription factor for T regulatory (Treg) cell differentiation and function. This study aimed to test the therapeutic potential of cell penetrating recombinant Foxp3 protein in arthritis. Recombinant Foxp3 protein was fused to a cell penetrating polyarginine (Foxp3-11R) tag to facilitate intracellular transduction. In vitro Foxp3-11R treated CD4+ T cells showed a 50% increase in suppressive function compared with control protein treated cells. Severity of arthritis in F...

  1. Electrochemistry of a ferrocene-grafted cell-penetrating peptide

    International Nuclear Information System (INIS)

    A cationic cell-penetrating peptide (CPP) labeled with both a ferrocenyl (Fc) moiety and a biotin (B) was successfully synthesized and investigated by electrochemistry. This original CPP derivative noted as Fc-CPP-B could be electrochemically detected, at a micromolar concentration, at a naked gold bead electrode. The presence of a biotin tag in the Fc-CPP-B complex allowed its complexation with avidin, which was itself tethered to a thiolated self-assembled monolayer. Such an avidin-modified gold surface, characterized by atomic force microscopy (AFM), allowed the immobilization of Fc-CPP-B onto the electrode surface, which greatly enhanced its electrochemical detection. Nevertheless, under these conditions the electrogenerated ferrocenium cation could not be reduced during the backward scan, indicating its unexpected reactivity when tethered within the avidin environment. In terms of detection and redox probe regeneration the best results were obtained at a glassy carbon electrode modified with a cation-exchange polymer. Ion-exchange voltammetry, performed under these conditions, allowed the pre-concentration of the peptide at the electrode surface thanks to the net positive charge of the CPP derivative. Interestingly, the anionic character of the polymer contributed to retain the electrogenerated cation Fc+ in the film so that it could be reduced back to its original neutral form during the reverse voltammetric scans.

  2. Membrane Organization and Dynamics in Cell Polarity

    OpenAIRE

    Orlando, Kelly; Guo, Wei

    2009-01-01

    The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking...

  3. Does ATP cross the cell plasma membrane.

    OpenAIRE

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes.

  4. Functional dynamics of cell surface membrane proteins

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  5. Membrane proteomic analysis of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Xiaojun

    2010-09-01

    Full Text Available Abstract Background Pancreatic cancer is one of the most aggressive human tumors due to its high potential of local invasion and metastasis. The aim of this study was to characterize the membrane proteomes of pancreatic ductal adenocarcinoma (PDAC cells of primary and metastatic origins, and to identify potential target proteins related to metastasis of pancreatic cancer. Methods Membrane/membrane-associated proteins were isolated from AsPC-1 and BxPC-3 cells and identified with a proteomic approach based on SDS-PAGE, in-gel tryptic digestion and liquid chromatography with tandem mass spectrometry (LC-MS/MS. X! Tandem was used for database searching against the SwissProt human protein database. Results We identified 221 & 208 proteins from AsPC-1 and BxPC-3 cells, respectively, most of which are membrane or membrane-associated proteins. A hundred and nine proteins were found in both cell lines while the others were present in either AsPC-1 or BxPC-3 cells. Differentially expressed proteins between two cell lines include modulators of cell adhesion, cell motility or tumor invasion as well as metabolic enzymes involved in glycolysis, tricarboxylic acid cycle, or nucleotide/lipid metabolism. Conclusion Membrane proteomes of AsPC-1 (metastatic and BxPC-3 (primary cells are remarkably different. The differentially expressed membrane proteins may serve as potential targets for diagnostic and therapeutic interventions.

  6. [Penetration of polyene antibiotics into human embryonic kidney tissue cell cultures].

    Science.gov (United States)

    Kravchenko, L S; Sokolov, V N; Vaĭnshteĭn, V A; Diment, A V; Tereshin, I M

    1977-12-01

    Penetration of 14C-amphotericin AM-2 into the cells of the tissue culture of the human embryon kidneys was studied by means of light autoradiography after incubation with the antibiotic. Microscopic examination of the autographs of the cell slices revealed the presence of the radioactive label in the cytoplasm and nucleoplasm of the cells. The revealed intracellular localization of the label was evident of the antibiotic penetration into the cells. PMID:596858

  7. Mechanical tension drives cell membrane fusion

    OpenAIRE

    Kim, Ji Hoon; Ren, Yixin; Ng, Win Pin; Li, Shuo; Son, Sungmin; Kee, Yee-Seir; Zhang, Shiliang; Zhang, Guofeng; Fletcher, Daniel A.; Robinson, Douglas N.; Chen, Elizabeth H.

    2015-01-01

    Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an “attacking” cell drills finger-like protrusions into the “receiving” cell to promote cell fusion. Here we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its inv...

  8. Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides

    KAUST Repository

    Rydberg, Hanna A.

    2012-07-10

    Cell-penetrating peptides (CPPs) are able to traverse cellular membranes and deliver macromolecular cargo. Uptake occurs through both endocytotic and nonendocytotic pathways, but the molecular requirements for efficient internalization are not fully understood. Here we investigate how the presence of tryptophans and their position within an oligoarginine influence uptake mechanism and efficiency. Flow cytometry and confocal fluorescence imaging are used to estimate uptake efficiency, intracellular distribution and toxicity in Chinese hamster ovarian cells. Further, membrane leakage and lipid membrane affinity are investigated. The peptides contain eight arginine residues and one to four tryptophans, the tryptophans positioned either at the N-terminus, in the middle, or evenly distributed along the amino acid sequence. Our data show that the intracellular distribution varies among peptides with different tryptophan content and backbone spacing. Uptake efficiency is higher for the peptides with four tryptophans in the middle, or evenly distributed along the peptide sequence, than for the peptide with four tryptophans at the N-terminus. All peptides display low cytotoxicity except for the one with four tryptophans at the N-terminus, which was moderately toxic. This finding is consistent with their inability to induce efficient leakage of dye from lipid vesicles. All peptides have comparable affinities for lipid vesicles, showing that lipid binding is not a decisive parameter for uptake. Our results indicate that tryptophan content and backbone spacing can affect both the CPP uptake efficiency and the CPP uptake mechanism. The low cytotoxicity of these peptides and the possibilities of tuning their uptake mechanism are interesting from a therapeutic point of view. © 2012 American Chemical Society.

  9. Specialized membrane biogenesis in mammary epithelial cells

    International Nuclear Information System (INIS)

    The apical membrane of the mammary gland epithelial cell is highly differentiated and adapted to participate in the process of fat secretion. Certain of the apical membrane differentiation antigens are frequently expressed on membrane carcinoma cells, and knowledge of the normal mechanisms by which these antigens are regulated may have implications for a better understanding of tumor antigen expression. Because the apical membrane of the cell is lost during secretion, active membrane biosynthesis must accompany fat secretion, and the cell represents a good model for studying membrane biogenesis in polarized epithelial cells. Experiments have been carried out using primary cultures of cells established from mammary glands of late pregnant mice and also a mouse cell line, COMMA-1-D, that differentiates in an appropriate milieu. When fat globule membranes are purified from mouse milk and the protein composition analyzed by SDS-polyacrylamide gel electrophoresis, four major proteins are identifiable with molecular weights of 55, 67, 90, and 150 kDa. The 67-kDa component was identified as butyrophilin and the 150-kDa one as xanthine oxidase. In addition, a high molecular weight carbohydrate rich glycoprotein, PAS-O, is also present. 3 refs., 3 figs

  10. Resistance of cell membranes to different detergents

    OpenAIRE

    Schuck, Sebastian; Honsho, Masanori; Ekroos, Kim; Shevchenko, Andrej; Simons, Kai

    2003-01-01

    Partial resistance of cell membranes to solubilization with mild detergents and the analysis of isolated detergent-resistant membranes (DRMs) have been used operationally to define membrane domains. Given the multitude of detergents used for this purpose, we sought to investigate whether extraction with different detergents might reflect the same underlying principle of domain formation. We therefore compared the protein and lipid content of DRMs prepared with a variety of detergents from two...

  11. Nuclear myosin I regulates cell membrane tension

    Science.gov (United States)

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  12. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  13. Proton conducting membrane for fuel cells

    Science.gov (United States)

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  14. Precise quantification of cellular uptake of cell-penetrating peptides using fluorescence-activated cell sorting and fluorescence correlation spectroscopy.

    Science.gov (United States)

    Rezgui, Rachid; Blumer, Katy; Yeoh-Tan, Gilbert; Trexler, Adam J; Magzoub, Mazin

    2016-07-01

    Cell-penetrating peptides (CPPs) have emerged as a potentially powerful tool for drug delivery due to their ability to efficiently transport a whole host of biologically active cargoes into cells. Although concerted efforts have shed some light on the cellular internalization pathways of CPPs, quantification of CPP uptake has proved problematic. Here we describe an experimental approach that combines two powerful biophysical techniques, fluorescence-activated cell sorting (FACS) and fluorescence correlation spectroscopy (FCS), to directly, accurately and precisely measure the cellular uptake of fluorescently-labeled molecules. This rapid and technically simple approach is highly versatile and can readily be applied to characterize all major CPP properties that normally require multiple assays, including amount taken up by cells (in moles/cell), uptake efficiency, internalization pathways, intracellular distribution, intracellular degradation and toxicity threshold. The FACS-FCS approach provides a means for quantifying any intracellular biochemical entity, whether expressed in the cell or introduced exogenously and transported across the plasma membrane. PMID:27033412

  15. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  16. Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Corey Heffernan

    Full Text Available Multiple Sclerosis (MS is an autoimmune, neurodegenerative disease of the central nervous system (CNS characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i modulation of the host immune system; and/or (ii transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches. Cell penetrating peptides (CPP are short amino acid sequences with an intrinsic ability to translocate across plasma membranes, and theoretically represent an attractive vector for delivery of therapeutic peptides or nanoparticles to glia to promote cell survival or remyelination. The CPPs described to date are commonly non-selective in the cell types they transduce, limiting their therapeutic application in vivo. Here, we describe a theoretical framework for design of a novel CPP sequence that selectively transduces human glial cells (excluding non-glial cell types, and conduct preliminary screens of purified, recombinant CPPs with immature and matured human oligodendrocytes and astrocytes, and two non-glial cell types. A candidate peptide, termed TD2.2, consistently transduced glial cells, was significantly more effective at transducing immature oligodendrocytes than matured progeny, and was virtually incapable of transducing two non-glial cell types: (i human neural cells and (ii human dermal fibroblasts. Time-lapse confocal microscopy confirms trafficking of TD2.2 (fused to EGFP to mature oligodendrocytes 3-6 hours after protein application in vitro. We propose selectivity of TD2.2 for glial cells represents a new therapeutic strategy for the treatment of glial-related disease, such as MS.

  17. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  18. Antibody penetration into living cells. V. Interference between two fc gamma receptor-mediated functions: antibody penetration and antibody-dependent cellular cytotoxicity.

    Science.gov (United States)

    Llerena, J M; Ruíz-Argüelles, A; Alarcón-Segovia, D; Llorente, L; Díaz-Jouanen, E

    1981-01-01

    The same Fc gamma receptor appears to be shared for two important phenomena: antibody-dependent cellular cytotoxicity (ADCC) and antibody penetration into living cells. ADCC is inhibited through interaction with the Fc gamma receptor during the antibody penetration process, indicating that both mechanisms may modulate each other in vitro. PMID:6972908

  19. Synthesis of an artificial cell surface receptor that enables oligohistidine affinity tags to function as metal-dependent cell-penetrating peptides.

    Science.gov (United States)

    Boonyarattanakalin, Siwarutt; Athavankar, Sonalee; Sun, Qi; Peterson, Blake R

    2006-01-18

    Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes. Jurkat lymphocytes treated with the synthetic receptor (10 microM) for 1 h displayed approximately 8,400,000 [corrected]NTA groups on the cell surface. Subsequent addition of the green fluorescent protein AcGFP fused to hexahistidine or decahistidine peptides (3 microM) and Ni(OAc)(2) (100 microM) enhanced the endocytosis of AcGFP by 150-fold (hexahistidine fusion protein) or 600-fold (decahistidine fusion protein) within 4 h at 37 degrees C. No adverse effects on cellular proliferation or morphology were observed under these conditions. By enabling common oligohistidine affinity tags to function as cell-penetrating peptides, this metal-chelating cell surface receptor provides a useful tool for studies of cellular biology [corrected] PMID:16402806

  20. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.

    Science.gov (United States)

    Sharmin, Sabrina; Islam, Md Zahidul; Karal, Mohammad Abu Sayem; Alam Shibly, Sayed Ul; Dohra, Hideo; Yamazaki, Masahito

    2016-08-01

    The cell-penetrating peptide R9, an oligoarginine comprising nine arginines, has been used to transport biological cargos into cells. However, the mechanisms underlying its translocation across membranes remain unclear. In this report, we investigated the entry of carboxyfluorescein (CF)-labeled R9 (CF-R9) into single giant unilamellar vesicles (GUVs) of various lipid compositions and the CF-R9-induced leakage of a fluorescent probe, Alexa Fluor 647 hydrazide (AF647), using a method developed recently by us. First, we investigated the interaction of CF-R9 with dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) GUVs containing AF647 and small DOPG/DOPC vesicles. The fluorescence intensity of the GUV membrane due to CF-R9 (i.e., the rim intensity) increased with time to a steady-state value, and then the fluorescence intensity of the membranes of the small vesicles in the GUV lumen increased without leakage of AF647. This result indicates that CF-R9 entered the GUV lumen from the outside by translocating across the lipid membrane without forming pores through which AF647 could leak. The fraction of entry of CF-R9 at 6 min in the absence of pore formation, Pentry (6 min), increased with an increase in CF-R9 concentration, but the CF-R9 concentration in the lumen was low. We obtained similar results for dilauroyl-PG (DLPG)/ditridecanoyl-PC (DTPC) (2/8) GUVs. The values of Pentry (6 min) of CF-R9 for DLPG/DTPC (2/8) GUVs were larger than those obtained with DOPG/DOPC (2/8) GUVs at the same CF-R9 concentrations. In contrast, a high concentration of CF-R9 induced pores in DLPG/DTPC (4/6) GUVs through which CF-R9 entered the GUV lumen, so the CF-R9 concentration in the lumen was higher. However, CF-R9 could not enter DOPG/DOPC/cholesterol (2/6/4) GUVs. Analysis of the rim intensity showed that CF-R9 was located only in the outer monolayer of the DOPG/DOPC/cholesterol (2/6/4) GUVs. On the basis of analyses of these results, we discuss the elementary

  1. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  2. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  3. Evaluation of solute penetration across the polysulfone membrane with vitamin E coating.

    Science.gov (United States)

    Yamashita, Akihiro C; Masaki, Hidenori; Kobayashi, Eisuke; Sukegawa, Takeshi

    2015-10-01

    Vitamin E (vit E) is coated on polysulfone (PS) dialysis membrane for antioxidative purpose. The membrane, however, has not yet been evaluated from the mass transfer point of view. We investigated this PS membrane with and without vit E coating in vitro ultrafiltration experiments to identify whether or not the coating influences the mass transfer. Dialyzers that included PS membrane with and without vit E coating were investigated. Aqueous test solution of various solutes including vitamin B12 (VB12 , MW1355), chymotrypsin (chymo, MW25000), and albumin (alb, MW66000) was prepared, and normal ultrafiltration experiments were performed at 310 K. Reverse ultrafiltration experiments in which test solution was filtered from outside to inside the hollow fiber were also performed. Sieving coefficients (SC) were computed for evaluation. SC for VB12 was the same regardless of vit E coating; however, chymo was 0.82 ± 0.01 and 0.86 ± 0.01, respectively, for the membrane with and without vit E. Thus, it would be understood that vit E coating reduces the pore size of the membrane, resulting the reduced transport of larger solutes. Like other PS membrane, SC for alb was decreased over time regardless of vit E coating. More importantly, although the steady-state SC for alb was almost identical in two membranes, PS without vit E showed much greater decrease for the first 2 h, while that with vit E showed very little decrease over time, which suggested the reduced fouling effect due to vit E coating. All the SC values found in reverse ultrafiltration were higher than those found in normal ultrafiltration; moreover, the degree of increase with chymo was approximately 5%, whereas that with alb was approximately 430%, which may be explained by a new model in which wedge effect is taken into consideration for the membrane transport. Vit E coating not only has antioxidative effect but also reduces the fouling that is usually caused by various proteins. PMID:26448383

  4. Photothermal nanoblade for patterned cell membrane cutting

    OpenAIRE

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-mic...

  5. The Ebola Virus Matrix Protein Deeply Penetrates the Plasma Membrane: An Important Step in Viral Egress

    OpenAIRE

    Soni, Smita P.; Adu-Gyamfi, Emmanuel; Yong, Sylvia S.; Jee, Clara S.; Stahelin, Robert V.

    2013-01-01

    Ebola virus, from the Filoviridae family has a high fatality rate in humans and nonhuman primates and to date, to the best of our knowledge, has no FDA approved vaccines or therapeutics. Viral protein 40 (VP40) is the major Ebola virus matrix protein that regulates assembly and egress of infectious Ebola virus particles. It is well established that VP40 assembles on the inner leaflet of the plasma membrane; however, the mechanistic details of VP40 membrane binding that are important for viral...

  6. Cell-Penetrating Peptides as Carriers for Oral Delivery of Biopharmaceuticals.

    Science.gov (United States)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2016-02-01

    Oral delivery of biopharmaceuticals, for example peptides and proteins, constitutes a great challenge in drug delivery due to their low chemical stability and poor permeation across the intestinal mucosa, to a large extent limiting the mode of administration to injections, which is not favouring patient compliance. Nevertheless, cell-penetrating peptides (CPPs) have shown promising potential as carriers to overcome the epithelium, and this minireview highlights recent knowledge gained within the field of CPP-mediated transepithelial delivery of therapeutic peptides and proteins from the intestine. Two approaches may be pursued: co-administration of the carrier and therapeutic peptide in the form of complexes obtained by simple bulk mixing, or administration of covalent conjugates demanding more advanced production methodologies. These formulation approaches have their pros and cons, and which is to be preferred depends on the physicochemical properties of both the specific CPP and the specific cargo. In addition to the physical epithelial barrier, a metabolic barrier must be overcome in order to obtain CPP-mediated delivery of a cargo drug from the intestine, and a number of strategies have been employed to delay enzymatic degradation of the CPP. The mechanisms by which CPPs translocate across membranes are not fully understood, but possibly involve endocytosis as well as direct translocation, and the CPP-mediated transepithelial delivery of cargo drugs thus likely involves similar mechanisms for the initial membrane interaction and translocation. However, the mechanisms responsible for transcytosis of the cargo drug, if taken up by an endocytic mechanism, or direct translocation across the epithelium are so far not known. PMID:26525297

  7. Size-Dependent Penetration of Gold Nanoclusters through a Defect-Free, Nonporous NaCl Membrane.

    Science.gov (United States)

    Li, Zhe; Chen, Hsin-Yi Tiffany; Schouteden, Koen; Picot, Thomas; Houben, Kelly; Liao, Ting-Wei; Van Haesendonck, Chris; Pacchioni, Gianfranco; Lievens, Peter; Janssens, Ewald

    2016-05-11

    Membranes and their size-selective filtering properties are universal in nature and their behavior is exploited to design artificial membranes suited for, e.g., molecule or nanoparticle filtering and separation. Exploring and understanding penetration and transmission mechanisms of nanoparticles in thin-film systems may provide new opportunities for size selective deposition or embedding of the nanoparticles. Here, we demonstrate an unexpected finding that the sieving of metal nanoparticles through atomically thin nonporous alkali halide films on a metal support is size dependent and that this sieving effect can be tuned via the film thickness. Specifically, relying on scanning tunneling microscopy and spectroscopy techniques, combined with density functional theory calculations, we find that defect-free NaCl films on a Au(111) support act as size-dependent membranes for deposited Au nanoclusters. The observed sieving ability is found to originate from a driving force toward the metal support and from the dynamics of both the nanoparticles and the alkali halide films. PMID:27074132

  8. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  9. Peri-implant bone length changes and survival rates of implants penetrating the sinus membrane at the posterior maxilla in patients with limited vertical bone height

    OpenAIRE

    Kim, Hae-Young; Yang, Jin-Yong; Chung, Bo-Yoon; Kim, Jeong Chan; Yeo, In-Sung

    2013-01-01

    Purpose The aim of this study was to measure the peri-implant bone length surrounding implants that penetrate the sinus membrane at the posterior maxilla and to evaluate the survival rate of these implants. Methods Treatment records and orthopantomographs of 39 patients were reviewed and analyzed. The patients had partial edentulism at the posterior maxilla and limited vertical bone height below the maxillary sinus. Implants were inserted into the posterior maxilla, penetrating the sinus memb...

  10. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide. PMID:27576711

  11. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  12. Resting microglial cells exhibit tubular membrane protrusions

    Directory of Open Access Journals (Sweden)

    Ulrike Gimsa

    2002-11-01

    Full Text Available Nano- and microtubular structures have recently become a subject of increasing interest due to their importance in biology and medicine as well as their technological potential. Such structures have been observed in anorganic (Iijima, 1991 as well as in organic (Schnur 1993; Oda et al. 1991 systems. Micro- and nanotubular protrusions of bilayer membranes have been found in cells (Kralj-Iglic et al. 1998; Kralj-Iglic et al. 2001a and phospholipid vesicles (Kralj-Iglic et al. 2002; Kralj-Iglic et al. 2001b. In this work we describe membrane protrusions in microglial cells.

  13. Penetration Depth of Surfactant Peptide KL4 into Membranes Is Determined by Fatty Acid Saturation

    OpenAIRE

    Antharam, Vijay C.; Elliott, Douglas W.; Mills, Frank D.; Farver, R. Suzanne; Sternin, Edward; Long, Joanna R.

    2009-01-01

    KL4 is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL4 binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL4 is dep...

  14. Oligonucleotide delivery with cell surface binding and cell penetrating Peptide amphiphile nanospheres.

    Science.gov (United States)

    Mumcuoglu, Didem; Sardan, Melis; Tekinay, Turgay; Guler, Mustafa O; Tekinay, Ayse B

    2015-05-01

    A drug delivery system designed specifically for oligonucleotide therapeutics can ameliorate the problems associated with the in vivo delivery of these molecules. The internalization of free oligonucleotides is challenging, and cytotoxicity is the main obstacle for current transfection vehicles. To develop nontoxic delivery vehicles for efficient transfection of oligonucleotides, we designed a self-assembling peptide amphiphile (PA) nanosphere delivery system decorated with cell penetrating peptides (CPPs) containing multiple arginine residues (R4 and R8), and a cell surface binding peptide (KRSR), and report the efficiency of this system in delivering G-3129, a Bcl-2 antisense oligonucleotide (AON). PA/AON (peptide amphiphile/antisense oligonucleotide) complexes were characterized with regards to their size and secondary structure, and their cellular internalization efficiencies were evaluated. The effect of the number of arginine residues on the cellular internalization was investigated by both flow cytometry and confocal imaging, and the results revealed that uptake efficiency improved as the number of arginines in the sequence increased. The combined effect of cell penetration and surface binding property on the cellular internalization and its uptake mechanism was also evaluated by mixing R8-PA and KRSR-PA. R8 and R8/KRSR decorated PAs were found to drastically increase the internalization of AONs compared to nonbioactive PA control. Overall, the KRSR-decorated self-assembled PA nanospheres were demonstrated to be noncytotoxic delivery vectors with high transfection rates and may serve as a promising delivery system for AONs. PMID:25828697

  15. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian;

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology to an...... epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more...

  16. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes

    Science.gov (United States)

    Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei; Escalada, Artur; Tunuguntla, Ramya; Comolli, Luis R.; Allen, Frances I.; Shnyrova, Anna V.; Cho, Kang Rae; Munoz, Dayannara; Wang, Y. Morris; Grigoropoulos, Costas P.; Ajo-Franklin, Caroline M.; Frolov, Vadim A.; Noy, Aleksandr

    2014-10-01

    There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these `CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.

  17. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  18. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò

    2015-11-01

    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  19. Nanoformulated cell-penetrating survivin mutant and its dual actions

    Directory of Open Access Journals (Sweden)

    Sriramoju B

    2014-07-01

    Full Text Available Bhasker Sriramoju, Rupinder K Kanwar, Jagat R Kanwar Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, School of Medicine, Faculty of Health, Deakin University, Geelong, Australia Abstract: In this study, we investigated the differential actions of a dominant-negative survivin mutant (SurR9-C84A against cancerous SK-N-SH neuroblastoma cell lines and differentiated SK-N-SH neurons. In both the cases, the mutant protein displayed dual actions, where its effects were cytotoxic toward cancerous cells and proliferative toward the differentiated neurons. This can be explained by the fact that tumorous (undifferentiated SK-N-SH cells have a high endogenous survivin pool and upon treatment with mutant SuR9-C84A causes forceful survivin expression. These events significantly lowered the microtubule dynamics and stability, eventually leading to apoptosis. In the case of differentiated SK-N-SH neurons that express negligible levels of wild-type survivin, the mutant indistinguishably behaved in a wild-type fashion. It also favored cell-cycle progression, forming the chromosome-passenger complex, and stabilized the microtubule-organizing center. Therefore, mutant SurR9-C84A represents a novel therapeutic with its dual actions (cytotoxic toward tumor cells and protective and proliferative toward neuronal cells, and hence finds potential applications against a variety of neurological disorders. In this study, we also developed a novel poly(lactic-co-glycolic acid nanoparticulate formulation to surmount the hurdles associated with the delivery of SurR9-C84A, thus enhancing its effective therapeutic outcome. Keywords: survivin mutant, neurological disorders, protein therapeutics, inhibitor of apoptosis protein family, poly(lactic-co-glycolic acid

  20. Binding and Clustering of Glycosaminoglycans: A Common Property of Mono- and Multivalent Cell-Penetrating Compounds

    OpenAIRE

    Ziegler, André; Seelig, Joachim

    2007-01-01

    Recent observations in cell culture provide evidence that negatively charged glycosaminoglycans (GAGs) at the surface of biological cells bind cationic cell-penetrating compounds (CPCs) and cluster during CPC binding, thereby contributing to their endocytotic uptake. The GAG binding and clustering occur in the low-micromolar concentration range and suggest a tight interaction between GAGs and CPCs, although the relation between binding affinity and specificity of this interaction remains to b...

  1. Microfluidic microbial fuel cells: from membrane to membrane free

    Science.gov (United States)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2016-08-01

    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  2. Noncontact microsurgery of living cell membrane using femtosecond laser pulses

    Science.gov (United States)

    Ilina, I. V.; Ovchinnikov, A. V.; Sitnikov, D. S.; Chefonov, O. V.; Agranat, M. B.; Mikaelyan, A. S.

    2013-06-01

    Near-infrared femtosecond laser pulses were applied to initiate reversible permeabilization of cell membrane and inject extrinsic substances into the target cells. Successful laser-based injection of a membrane impermeable dye, as well as plasmid DNA was demonstrated.

  3. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes

    International Nuclear Information System (INIS)

    The successful transport of molecules across the cell membrane is a key point in biology and medicine. In most cases, molecules alone cannot penetrate the cell membrane, therefore an efficient carrier is needed. Calcium phosphate nanoparticles (diameter: 100–250 nm, depending on the functionalization) were loaded with fluorescent oligonucleotides, peptide, proteins, antibodies, polymers or porphyrins and characterized by dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. Any excess of molecules was removed by ultracentrifugation, and the dissolved molecules at the same concentration were used as control. The uptake of such fluorescence-labeled nanoparticles into HeLa cells was monitored by fluorescence microscopy and confocal laser scanning microscopy. Calcium phosphate nanoparticles were able to transport all molecules across the cell membrane, whereas the dissolved molecules alone were taken up only to a very small extent or even not at all.

  4. Interaction of peptides with cell membranes: insights from molecular modeling

    International Nuclear Information System (INIS)

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide–membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field. (topical review)

  5. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    Directory of Open Access Journals (Sweden)

    Mie Kristensen

    2016-01-01

    Full Text Available The hydrophilic nature of peptides and proteins renders them impermeable to cell membranes. Thus, in order to successfully deliver peptide and protein-based therapeutics across the plasma membrane or epithelial and endothelial barriers, a permeation enhancing strategy must be employed. Cell-penetrating peptides (CPPs constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB. CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate cell membranes are believed to involve both endocytosis and direct translocation, but are still widely investigated and discussed. The fact that multiple factors influence the mechanisms responsible for cellular CPP internalization and the lack of sensitive methods for detection of the CPP, and in some cases the cargo, further complicates the design and conduction of conclusive mechanistic studies.

  6. Application of Cell Penetrating Peptide in Magnetic Resonance Imaging of Bone Marrow Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Min LIU; You-Min GUO; Jun-Le YANG; Peng WANG; Lin-Yu ZHAO; Nian SHEN; Si-Cen WANG; Xiao-Juan GUO; Qi-Fei WU

    2006-01-01

    Tracking the distribution and differentiation of stem cells by high-resolution imaging techniques would have significant clinical and research implications. In this study, a model cell-penetrating peptide was used to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro. The cellpenetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by a solid-phase peptide synthesis method. Fluorescein imaging analysis confirmed that this new peptide could internalize into the cytoplasm and nucleus at room temperature, 4℃ and 37℃. Gadolinium were efficiently internalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements, which were obviously detected by 1.5 Tesla Magnetic Resonance Imaging. Cytotoxicity assay and flow cytometric analysis showed that the intercellular contrast medium incorporation did not affect cell viability at the tested concentrations. The in vitro experiment results suggested that the new constructed peptides could be a vector for tracking MSCs.

  7. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  8. A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency.

    NARCIS (Netherlands)

    Duchardt, F.; Ruttekolk, I.R.R.; Verdurmen, W.P.R.; Lortat-Jacob, H.; Burck, J.; Hufnagel, H.; Fischer, R.; Heuvel, M. van den; Lowik, D.W.; Vuister, G.W.; Ulrich, A.; Waard, M. de; Brock, R.E.

    2009-01-01

    The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformati

  9. Modelling the Penetration of Salicylates through Skin Using a Silicone Membrane

    Science.gov (United States)

    Wilkins, Andrew; Parmenter, Emily

    2012-01-01

    A diffusion cell to model the permeation of salicylate drugs through the skin using low-cost materials and a sensitive colorimetric analytical technique is described. The diffusion apparatus has been used at a further education college by a student for her AS-level Extended Project to investigate the permeation rates of salicylic acid…

  10. Penetration depth of surfactant peptide KL4 into membranes is determined by fatty acid saturation.

    Science.gov (United States)

    Antharam, Vijay C; Elliott, Douglas W; Mills, Frank D; Farver, R Suzanne; Sternin, Edward; Long, Joanna R

    2009-05-20

    KL(4) is a 21-residue functional peptide mimic of lung surfactant protein B, an essential protein for lowering surface tension in the alveoli. Its ability to modify lipid properties and restore lung compliance was investigated with circular dichroism, differential scanning calorimetry, and solid-state NMR spectroscopy. KL(4) binds fluid lamellar phase PC/PG lipid membranes and forms an amphipathic helix that alters lipid organization and acyl chain dynamics. The binding and helicity of KL(4) is dependent on the level of monounsaturation in the fatty acid chains. At physiologic temperatures, KL(4) is more peripheral and dynamic in fluid phase POPC/POPG MLVs but is deeply inserted into fluid phase DPPC/POPG vesicles, resulting in immobilization of the peptide. Substantial increases in the acyl chain order are observed in DPPC/POPG lipid vesicles with increasing levels of KL(4), and POPC/POPG lipid vesicles show small decreases in the acyl chain order parameters on addition of KL(4). Additionally, a clear effect of KL(4) on the orientation of the fluid phase PG headgroups is observed, with similar changes in both lipid environments. Near the phase transition temperature of the DPPC/POPG lipid mixtures, which is just below the physiologic temperature of lung surfactant, KL(4) causes phase separation with the DPPC remaining in a gel phase and the POPG partitioned between gel and fluid phases. The ability of KL(4) to differentially partition into lipid lamellae containing varying levels of monounsaturation and subsequent changes in curvature strain suggest a mechanism for peptide-mediated lipid organization and trafficking within the dynamic lung environment. PMID:19450480

  11. Delivering aminopyridine ligands into cancer cells through conjugation to the cell-penetrating peptide BP16

    OpenAIRE

    Soler Vives, Marta; González-Bártulos, Marta; Figueras, Eduard; Massaguer i Vall-llovera, Anna; Feliu Soley, Lídia; Planas i Grabuleda, Marta; Ribas Salamaña, Xavi; Costas Salgueiro, Miquel

    2016-01-01

    Peptide conjugates incorporating the red-ox active ligands Me2PyTACN or (S,S')-BPBP at the N- or the C-terminus of the cell-penetrating peptide BP16 were synthesized (PyTACN-BP16 (BP341), BP16-PyTACN (BP342), BPBP-BP16 (BP343), and BP16-BPBP (BP344)). Metal binding peptides bearing at the N-terminus the ligand, an additional Lys and a β-Ala were also prepared (PyTACN-βAK-BP16 (BP345) and BPBP-βAK-BP16 (BP346)). Moreover, taking into account the clathrin-dependent endocytic mechanism of BP16, ...

  12. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  13. Sticky water surfaces: helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface.

    Science.gov (United States)

    Schach, Denise; Globisch, Christoph; Roeters, Steven J; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K; Backus, Ellen H G; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias

    2014-12-14

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface. PMID:25494788

  14. Sticky water surfaces: Helix-coil transitions suppressed in a cell-penetrating peptide at the air-water interface

    Science.gov (United States)

    Schach, Denise; Globisch, Christoph; Roeters, Steven J.; Woutersen, Sander; Fuchs, Adrian; Weiss, Clemens K.; Backus, Ellen H. G.; Landfester, Katharina; Bonn, Mischa; Peter, Christine; Weidner, Tobias

    2014-12-01

    GALA is a 30 amino acid synthetic peptide consisting of a Glu-Ala-Leu-Ala repeat and is known to undergo a reversible structural transition from a disordered to an α-helical structure when changing the pH from basic to acidic values. In its helical state GALA can insert into and disintegrate lipid membranes. This effect has generated much interest in GALA as a candidate for pH triggered, targeted drug delivery. GALA also serves as a well-defined model system to understand cell penetration mechanisms and protein folding triggered by external stimuli. Structural transitions of GALA in solution have been studied extensively. However, cell penetration is an interfacial effect and potential biomedical applications of GALA would involve a variety of surfaces, e.g., nanoparticles, lipid membranes, tubing, and liquid-gas interfaces. Despite the apparent importance of interfaces in the functioning of GALA, the effect of surfaces on the reversible folding of GALA has not yet been studied. Here, we use sum frequency generation vibrational spectroscopy (SFG) to probe the structural response of GALA at the air-water interface and IR spectroscopy to follow GALA folding in bulk solution. We combine the SFG data with molecular dynamics simulations to obtain a molecular-level picture of the interaction of GALA with the air-water interface. Surprisingly, while the fully reversible structural transition was observed in solution, at the water-air interface, a large fraction of the GALA population remained helical at high pH. This "stickiness" of the air-water interface can be explained by the stabilizing interactions of hydrophobic leucine and alanine side chains with the water surface.

  15. Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides.

    Directory of Open Access Journals (Sweden)

    Caghan Kizil

    Full Text Available Zebrafish brains can regenerate lost neurons upon neurogenic activity of the radial glial progenitor cells (RGCs that reside at the ventricular region. Understanding the molecular events underlying this ability is of great interest for translational studies of regenerative medicine. Therefore, functional analyses of gene function in RGCs and neurons are essential. Using cerebroventricular microinjection (CVMI, RGCs can be targeted efficiently but the penetration capacity of the injected molecules reduces dramatically in deeper parts of the brain tissue, such as the parenchymal regions that contain the neurons. In this report, we tested the penetration efficiency of five known cell-penetrating peptides (CPPs and identified two- polyR and Trans - that efficiently penetrate the brain tissue without overt toxicity in a dose-dependent manner as determined by TUNEL staining and L-Plastin immunohistochemistry. We also found that polyR peptide can help carry plasmid DNA several cell diameters into the brain tissue after a series of coupling reactions using DBCO-PEG4-maleimide-based Michael's addition and azide-mediated copper-free click reaction. Combined with the advantages of CVMI, such as rapidness, reproducibility, and ability to be used in adult animals, CPPs improve the applicability of the CVMI technique to deeper parts of the central nervous system tissues.

  16. Proton-exchange membrane regenerative fuel cells

    Science.gov (United States)

    Swette, Larry L.; LaConti, Anthony B.; McCatty, Stephen A.

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton-exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 cm 2 electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80°C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt. Ir, Ru. Rh and Na xPt 3O 4 catalysts as well as for electrode structure variations.

  17. Solar cell preparation in thin silicon membranes

    Energy Technology Data Exchange (ETDEWEB)

    Libezny, M.; Poortmans, J.; Caymax, M.; Beaucarne, G.; Laureys, W.; Nijs, J. [IMEC, Leuven (Belgium)

    1997-12-31

    Solar cells prepared in a thin ({approx} 30 {micro}m) crystalline silicon membrane with a supporting frame allow an evaluation of the potential of c-Si thin film cells on cheap substrates. In the same time, light-weight and more radiation-hard solar cells may have direct applications in space. This paper studies the fabrication process of solar cells in {approx} 30 {micro}m thick p-Si epitaxial layers, incorporating a p{sup +2}-Si etch-stop/back-surface field layer, using KOH etching. Wax, rubber and silicon nitride were tested as masking material during the etching. It was found that both wax and silicon nitride could be used as materials for masking of supporting frames for the solar cell thinning up to 30 {micro}m. However, silicon nitride does not reliably protect the frontside structure.

  18. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress. As...

  19. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    Science.gov (United States)

    Eisman, G. A.

    1990-02-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes, useful as the proton transport medium and separator. The following work will outline some of the performance characteristics which are typical for such membranes.

  20. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  1. A specific aptamer-cell penetrating peptides complex delivered siRNA efficiently and suppressed prostate tumor growth in vivo.

    Science.gov (United States)

    Diao, Yanjun; Liu, Jiayun; Ma, Yueyun; Su, Mingquan; Zhang, Hongyi; Hao, Xiaoke

    2016-05-01

    Specific and efficient delivery of siRNA into intended tumor cells remains as a challenge, even though RNAi has been exploited as a new strategy for prostate cancer therapy. This work aims to address both specificity and efficiency of SURVIVIN-siRNA delivery by constructing a therapeutic complex using combinatorial strategies. A fusion protein STD was first expressed to serve as a backbone, consisting of streptavidin, a cell-penetrating peptide called Trans-Activator of Transcription (TAT) and a double-stranded RNA binding domain. A biotinylated Prostate Specific Membrane Antigen (PSMA) specific aptamer A10 and SURVIVIN-siRNA were then linked to STD protein to form the therapeutic complex. This complex could specifically targeted PSMA(+) tumor cells. Compared to lipofectamine and A10-siRNA chimera, it demonstrated higher efficiency in delivering siRNA into target cells by 19.2% and 59.9%, and increased apoptosis by 16.8% and 26.1% respectively. Upon systemic administration, this complex also showed significant efficacy in suppressing tumor growth in athymic mice (p efficiently deliver SURVIVIN-siRNA to target cells and suppressed tumor growth in vivo, which indicates its potential to be used as a new strategy in prostate cancer therapy. PMID:26954374

  2. Conformational analysis of Infectious bursal disease virus (IBDV derived cell penetrating peptide (CPP analogs

    Directory of Open Access Journals (Sweden)

    Vinay G. Joshi

    2013-12-01

    Full Text Available Aim: This study was designed to develop peptide analogs of Infectious Bursal Disease (IBD virus VP5 protein segment having cell penetrating ability to improve their interaction with cargo molecule (Nucleic acid without affecting the backbone conformation. Materials and Methods: IBDV VP5 protein segment designated as RATH peptide were synthesized using solid phase peptide synthesis and their solution conformation was elucidated using CD spectroscopy in polar (water and apolar (TFE solvents. Cell penetrating ability of RATH-CONH2 was observed using FITC labeled peptide internalization in to HeLa cells under fluorescent microscopy. The efficacy of RATH analog interactions with nucleic acids was evaluated using FITC labeled oligonucleotides by fluorescence spectroscopy and plasmid constructs in gel retardation assay. Results: CD spectra of RATH analogs in water and apolar trifluroethanol (TFE helped to compare their secondary structures which were almost similar with dominant beta conformations suggesting successful induction of positive charge in the analogs without affecting back bone conformation of CPP designed. Cell penetrating ability of RATH CONH2 in HeLa cell was more than 90%. The fluorescence spectroscopy and plasmid constructs in gel retardation assay demonstrated successful interaction of amide analogs with nucleic acid. Conclusion: Intentional changes made in IBDV derived peptide RATH COOH to RATH CONH2 did not showed major changes in backbone conformation and such modifications may help to improve the cationic charge in most CPPs to interact with nucleic acid. [Vet World 2013; 6(6.000: 307-312

  3. Membrane Purification Cell for Aluminum Recycling

    Energy Technology Data Exchange (ETDEWEB)

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  4. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  5. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  6. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vancini, Ricardo [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Kramer, Laura D. [Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, NY (United States); Ribeiro, Mariana; Hernandez, Raquel [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States); Brown, Dennis, E-mail: dennis_brown@ncsu.edu [Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC (United States)

    2013-01-20

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  7. Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane

    International Nuclear Information System (INIS)

    Dengue and West Nile viruses are enveloped RNA viruses that belong to genus Flavivirus (family Flaviviridae) and are considered important mosquito-borne viral pathogenic agents worldwide. A potential target for intervention strategies is the virus cell entry mechanism. Previous studies of flavivirus entry have focused on the effects of biochemical and molecular inhibitors on viral entry leading to controversial conclusions suggesting that the process is dependent upon endocytosis and low pH mediated membrane fusion. In this study we analyzed the early events in the infection process by means of electron microscopy and immuno-gold labeling of viral particles during cell entry, and used as a new approach for infecting cells with viruses obtained directly from mosquitoes. The results show that Dengue and West Nile viruses may infect cells by a mechanism that involves direct penetration of the host cell plasma membrane as proposed for alphaviruses.

  8. Origin of subdiffusion of water molecules on cell membrane surfaces

    CERN Document Server

    Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency.

  9. Cell investigation of nanostructures: zero-mode waveguides for plasma membrane studies with single molecule resolution

    International Nuclear Information System (INIS)

    Plasma membranes are highly dynamic structures, with key molecular interactions underlying their functionality occurring at nanometre scales. A fundamental challenge in biology is to observe these interactions in living cells. Although fluorescence microscopy has enabled advances in characterizing molecular distributions in cells, optical techniques are restricted by the diffraction limit. We address this limitation with an approach based on zero-mode waveguides (ZMWs), which are optical nanostructures that confine fluorescence excitation to sub-diffraction volumes. Successful use of ZMWs with cell membranes is reported in this paper. We demonstrate that plasma membranes from live cells penetrate these nanostructures. Cellular exploration of the nanoapertures depends heavily on actin filaments but not on microtubules. Thus, membranes enter the confined excitation volume, and diffusion of individual fluorescent lipids can be monitored. Through fluorescence correlation spectroscopy, we compared DiIC12 and DiIC16 fluorescent labels incorporated into plasma membranes and found distinctive diffusion behaviours. These results show that the use of optical nanostructures enables the measurement of membrane events with single molecule resolution in sub-diffraction volumes

  10. Penetration by artificial electron acceptors of the plasma membrane-bound redox system into intact Zea mays L. roots investigated by proton-induced X-ray emission

    International Nuclear Information System (INIS)

    Proton-induced X-ray emission was used to investigate the penetration of compounds of the membrane-impermeant electron acceptors hexabromoiridate IV, hexachloroiridate IV, and hexacyanoferrate III into corn (Zea mays L.) roots. Maps of the heavy element distribution in cross-sections of fixed, epoxy-embedded roots showed for hexabromoiridate IV small amounts of Br in samples treated for 24 h with concentrations normally used in physiological experiments (0.02 mM). After treatment with high concentrations (0.8 mM) of these complexes, Fe and Ir as well as Br were found in root cross-sections. In samples taken at a distance of 5 mm behind the root tip, we found an even distribution of Fe, Ir, and Br over the whole cross-section. In samples taken 15 mm behind the root tip, about 99% of both Br and Ir was confined to the rhizodermal cell layer. The distribution did not change with the complex used. These data are consistent with the view that apoplastic diffusion of the electron acceptors was blocked by the hypodermal Casparian band

  11. Membrane tension feedback on shape and motility of eukaryotic cells

    Science.gov (United States)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  12. Preparation of cell membranes for high resolution imaging by AFM

    International Nuclear Information System (INIS)

    Studies of cell membrane structure by atomic force microscopy (AFM) have been limited because of the softness of cell membranes. Here, we utilize a new technique of sample preparation to lay red blood cell membranes on the top of a mica surface to obtain high resolution images by in-situ AFM on both sides of cell membranes. Our results indicate that the location of oligosaccharides and proteins in red blood cell membranes might be different from the current membrane model. The inner membrane leaflet is covered by dense proteins with fewer free lipids than expected. In contrast, the outer membrane leaflet is quite smooth; oligosaccharides and peptides supposed to protrude out of the outer membrane leaflet surface might be actually hidden in the middle of hydrophilic lipid heads; transmembrane proteins might form domains in the membranes revealed by PNGase F and trypsin digestion. Our result could be significant to interpret some functions about red blood cell membranes and guide to heal the blood diseases related to cell membranes.

  13. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    OpenAIRE

    Jodie Lopez; Amina Bittame; Céline Massera; Virginie Vasseur; Grégory Effantin; Anne Valat; Célia Buaillon; Sophie Allart; Barbara A. Fox; Leah M. Rommereim; David J. Bzik; Guy Schoehn; Winfried Weissenhorn; Jean-François Dubremetz; Jean Gagnon

    2015-01-01

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effecto...

  14. Functional Implications of Plasma Membrane Condensation for T Cell Activation

    OpenAIRE

    Rentero, Carles; Zech, Tobias; Quinn, Carmel M.; Engelhardt, Karin; Williamson, David; Grewal, Thomas; Jessup, Wendy; Harder, Thomas; Gaus, Katharina

    2008-01-01

    The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC), which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importa...

  15. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  16. The Role of Cell-Penetrating Peptide and Transferrin on Enhanced Delivery of Drug to Brain

    OpenAIRE

    Gitanjali Sharma; Sushant Lakkadwala; Amit Modgil; Jagdish Singh

    2016-01-01

    The challenge of effectively delivering therapeutic agents to brain has led to an entire field of active research devoted to overcome the blood brain barrier (BBB) and efficiently deliver drugs to brain. This review focusses on exploring the facets of a novel platform designed for the delivery of drugs to brain. The platform was constructed based on the hypothesis that a combination of receptor-targeting agent, like transferrin protein, and a cell-penetrating peptide (CPP) will enhance the de...

  17. Resting microglial cells exhibit tubular membrane protrusions

    OpenAIRE

    Ulrike Gimsa; Veronika Kralj-Iglic; Jan Gimsa; Ales Iglic

    2002-01-01

    Nano- and microtubular structures have recently become a subject of increasing interest due to their importance in biology and medicine as well as their technological potential. Such structures have been observed in anorganic (Iijima, 1991) as well as in organic (Schnur 1993; Oda et al. 1991) systems. Micro- and nanotubular protrusions of bilayer membranes have been found in cells (Kralj-Iglic et al. 1998; Kralj-Iglic et al. 2001a) and phospholipid vesicles (Kralj-Iglic et al. 2002; Kralj-Igl...

  18. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  19. Roles of membrane trafficking in plant cell wall dynamics

    OpenAIRE

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  20. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra

    2006-06-01

    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  1. Cell-Penetrating Ability of Peptide Hormones: Key Role of Glycosaminoglycans Clustering

    Directory of Open Access Journals (Sweden)

    Armelle Tchoumi Neree

    2015-11-01

    Full Text Available Over the last two decades, the potential usage of cell-penetrating peptides (CPPs for the intracellular delivery of various molecules has prompted the identification of novel peptidic identities. However, cytotoxic effects and unpredicted immunological responses have often limited the use of various CPP sequences in the clinic. To overcome these issues, the usage of endogenous peptides appears as an appropriate alternative approach. The hormone pituitary adenylate-cyclase-activating polypeptide (PACAP38 has been recently identified as a novel and very efficient CPP. This 38-residue polycationic peptide is a member of the secretin/glucagon/growth hormone-releasing hormone (GHRH superfamily, with which PACAP38 shares high structural and conformational homologies. In this study, we evaluated the cell-penetrating ability of cationic peptide hormones in the context of the expression of cell surface glycosaminoglycans (GAGs. Our results indicated that among all peptides evaluated, PACAP38 was unique for its potent efficiency of cellular uptake. Interestingly, the abilities of the peptides to reach the intracellular space did not correlate with their binding affinities to sulfated GAGs, but rather to their capacity to clustered heparin in vitro. This study demonstrates that the uptake efficiency of a given cationic CPP does not necessarily correlate with its affinity to sulfated GAGs and that its ability to cluster GAGs should be considered for the identification of novel peptidic sequences with potent cellular penetrating properties.

  2. Mechanical properties of catalyst coated membranes: A powerful indicator of membrane degradation in fuel cells

    OpenAIRE

    Sadeghi Alavijeh, Alireza

    2015-01-01

    Mechanical durability of perfluorosulfonic acid (PFSA) ionomer membranes in polymer electrolyte fuel cells (PEFCs) is investigated in this thesis. This work contributes to a systematic characterization of the decay in mechanical properties of membranes and catalyst coated membranes (CCMs) that are subjected to controlled chemical and/or mechanical degradation mechanisms. During field operation of PEFCs, the membrane is subjected to a combination of chemical and mechanical degradation, resulti...

  3. Parametric analysis of neutron streaming through major penetrations in the 0.914 m TFTR test cell floor

    International Nuclear Information System (INIS)

    Neutron streaming through penetrations in the 0.914 m TFTR test cell floor has two distinct features: (1) the oblique angle of incidence; and (2) the high order of anisotropy in the angular distribution for incident neutrons with energies > 10 keV. The effects of these features on the neutron streaming into the TFTR basement were studied parametrically for isolated penetrations. Variations with respect to the source energies, angular distributions, and sizes of the penetrations were made. The results form a data base from which the spatial distribution of the neutron flux in the basement due to multiple penetrations may be evaluated

  4. Parametric analysis of neutron streaming through major penetrations in the 0. 914 m TFTR test cell floor

    Energy Technology Data Exchange (ETDEWEB)

    Ku, L.P.; Liew, S.L.; Kolibal, J.G.

    1985-09-01

    Neutron streaming through penetrations in the 0.914 m TFTR test cell floor has two distinct features: (1) the oblique angle of incidence; and (2) the high order of anisotropy in the angular distribution for incident neutrons with energies > 10 keV. The effects of these features on the neutron streaming into the TFTR basement were studied parametrically for isolated penetrations. Variations with respect to the source energies, angular distributions, and sizes of the penetrations were made. The results form a data base from which the spatial distribution of the neutron flux in the basement due to multiple penetrations may be evaluated.

  5. Fusion of EBV with the surface of receptor-negative human hepatoma cell line Li7A permits virus penetration and infection.

    Science.gov (United States)

    Lisi, A; Pozzi, D; Carloni, G; Da Villa, G; Iacovacci, S; Valli, M B; Grimaldi, S

    1995-01-01

    Our preliminary data suggest that Epstein-Barr virus (EBV) is able to bind to and fuse with the surface membranes of hepatoma cell line Li7A. In order to obtain further evidence, we utilized the relief of rhodamine fluorescence to monitor whether fusion would also take place when Li7A cells were exposed to experimental conditions such as neutral or low pH. It is well known that for some viruses, protonation in the endosomal compartment is needed to trigger the fusion. We show, furthermore, that the rate and extent of fusion are not affected by pretreatment of the cells with agents known to elevate the lysosomal and ensodomal pH, such as chloroquine or NH4Cl (lysosomotropic agent). By indirect immunofluorescence assay, in addition, we confirmed the binding of the EBV to the Li7A cell surface membrane. We attempted finally to correlate the above processes with successful infection of Li7A cells by EBV detected using the polymerase chain reaction technique. In spite of the apparent lack of viral receptor CD21, these nonlymphoid cells appeared susceptible to EBV penetration and infection through fusion with the plasma membrane at the surface of the cells. PMID:8539493

  6. Penetration of fosfomycin into IPEC-J2 cells in the presence or absence of deoxynivalenol.

    Directory of Open Access Journals (Sweden)

    Guadalupe Martínez

    Full Text Available Fosfomycin (FOS is an antibiotic used in pig farms for treatment and prevention of infections caused by resistant bacteria during the post-weaning period. Antibiotics and non-toxic concentrations of mycotoxins, such as deoxynivalenol (DON are frequently found in the diet of animals. These compounds can establish interactions in the intestinal tract, which could affect and/or modify the penetration of FOS to enterocytes. The aim of this study was to determine the penetration of FOS into IPECJ-2 cells, a cell line derived from the small intestine of piglets, in the presence and absence of DON. The results from this study showed that there was statistically significant difference in the intracellular concentration of FOS between cells incubated with 580 µg/ml FOS and cells incubated with 580 µg/ml FOS and 1 µg/ml DON. The Cmax of the intracellular antibiotic in the culture plates incubated with FOS in absence of DON was 45.81 µg/ml with a tmax of 4 h. When IPEC-2 cells were incubated with FOS and DON the Cmax was 20.06 µg/ml and the tmax was 30 min. It is concluded that the non-toxic concentration of DON on IPEC-J2 cells after short-term exposure, interferes with the pharmacokinetics of the antibiotic.

  7. The relevance of membrane models to understand nanoparticles-cell membrane interactions

    Science.gov (United States)

    Rascol, Estelle; Devoisselle, Jean-Marie; Chopineau, Joël

    2016-02-01

    Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.

  8. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    Science.gov (United States)

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. PMID:26628378

  9. Exocytosis and endocytosis in neurodocrine cells: inseparable membranes !

    Directory of Open Access Journals (Sweden)

    StephaneGasman

    2013-10-01

    Full Text Available Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid towards understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval.

  10. Targeting the EGFR/PCNA signaling suppresses tumor growth of triple-negative breast cancer cells with cell-penetrating PCNA peptides.

    Directory of Open Access Journals (Sweden)

    Yung-Luen Yu

    Full Text Available Tyrosine 211 (Y211 phosphorylation of proliferation cell nuclear antigen (PCNA coincides with pronounced cancer cell proliferation and correlates with poor survival of breast cancer patients. In epidermal growth factor receptor (EGFR tyrosine kinase inhibitor (TKI-resistant cells, both nuclear EGFR (nEGFR expression and PCNA Y211 phosphorylation are increased. Moreover, the resistance to EGFR TKI is a major clinical problem in treating EGFR-overexpressing triple-negative breast cancer (TNBC. Thus, effective treatment to combat resistance is urgently needed. Here, we show that treatment of cell-penetrating PCNA peptide (CPPP inhibits growth and induces apoptosis of human TNBC cells. The Y211F CPPP specifically targets EGFR and competes directly for PCNA tyrosine Y211 phosphorylation and prevents nEGFR from binding PCNA in vivo; it also suppresses tumor growth by sensitizing EGFR TKI resistant cells, which have enhanced nEGFR function and abrogated classical EGFR membrane signaling. Furthermore, we identify an active motif of CPPP, RFLNFF (RF6 CPPP, which is necessary and sufficient to inhibit TKI-resistant TNBC cell growth of orthotopic implanted tumor in mice. Finally, the activity of its synthetic retro-inverted derivative, D-RF6 CPPP, on an equimolar basis, is more potent than RF6 CPPP. Our study reveals a drug candidate with translational potential for the future development of safe and effective therapeutic for EGFR TKI resistance in TNBC.

  11. Reassessing ecdysteroidogenic cells from the cell membrane receptors' perspective.

    Science.gov (United States)

    Alexandratos, Alexandros; Moulos, Panagiotis; Nellas, Ioannis; Mavridis, Konstantinos; Dedos, Skarlatos G

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects. PMID:26847502

  12. Reassessing ecdysteroidogenic cells from the cell membrane receptors’ perspective

    Science.gov (United States)

    Alexandratos, Alexandros; Moulos, Panagiotis; Nellas, Ioannis; Mavridis, Konstantinos; Dedos, Skarlatos G.

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects. PMID:26847502

  13. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  14. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm−1 and 3300 cm−1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10−2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  15. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  16. Selective effect of cell membrane on synaptic neurotransmission

    Science.gov (United States)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.

  17. Selective effect of cell membrane on synaptic neurotransmission.

    Science.gov (United States)

    Postila, Pekka A; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike. PMID:26782980

  18. Finite element analysis of microelectrotension of cell membranes

    OpenAIRE

    Bae, Chilman; Butler, Peter J.

    2007-01-01

    Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to me...

  19. Membrane Fouling in Microfiltration used for Cell Harvesting

    Institute of Scientific and Technical Information of China (English)

    Tahereh Kaghazchi; Farzin Zokaee; Abbas Zare

    2001-01-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  20. Multilayer amniotic membrane transplantation for corneal penetrating injury%多层羊膜移植在角膜穿孔伤中的应用研究

    Institute of Scientific and Technical Information of China (English)

    彭建军; 陈祎祎; 丁洁

    2011-01-01

    目的 评价多层羊膜移植在角膜穿孔伤后修复缺损组织的效果.方法 通过对7例单眼角膜穿孔,创口有缺损或感染糜烂,难以一期密闭缝合者行多层羊膜移植术.术后随访平均14个月.结果 7眼中6眼(85.71%)角膜穿孔创口瘢痕愈合,前房恢复,眼前段稳定;1眼因眼内感染严重,羊膜融解而摘除眼球.结论 对伴有角膜组织缺损或糜烂的较小的角膜穿孔伤,当无法行常规缝合或无条件行穿透性角膜移植术时,多层羊膜移植术,是可行的.%Objective To evaluate the effect of multilayer amniotic membrane transplantation for repairing the corneal tissue defect after corneal penetrating injury.Methods There were 7 cases (7 eyes) of corneal penetrating injury with corneal tissue defect or with infection of wound,which could not be sewed in regular methods.Multi-layer amniotic membrane transplantation were applied for them.They were followed up for an average of 14 months.Results 6 cases ( 85.71% ) of corneal perforating resulted in wound healing,anterior chamber restoration,and stable anterior segment; One patient with severe infection in the eye,the amniotic membrane dissolved and the eyeball was enucleated.Conclusion For the smaller corneal penetrating injury patients with corneal tissae defect or wound infection,a multilayer anmiotic membrane transplantation is an effective and feasible surgical approach.

  1. Nanoscale cell membrane organization : a near-field optical view

    OpenAIRE

    Koopman, Marjolein

    2006-01-01

    The cell plasma membrane of eukaryotic cells is a lipid bi-layer that separates the cell cytosol from the extracellular environment. The composition and organization of proteins and lipids within this bi-layer have a direct impact on many cellular processes, since they form the senses of the cell. Technological advances, like high resolution microscopy together with the possibility to address different membrane components via specific labeling now allows researchers to investigate cell membra...

  2. Synthesis of Glycopolymer Containing Cell-Penetrating Peptides as Inducers of Recombinant Protein Expression under the Control of Lactose Operator/Repressor Systems.

    Science.gov (United States)

    Katagiri, Kei; Takasu, Akinori; Higuchi, Masahiro

    2016-05-01

    We recently reported on newly synthesized S-galactosyl oligo(Arg) conjugates to overcome the serious problem of the passage through the E. coli cell membrane. Following in vivo expression of green fluorescent protein (GFP) induced by each of the S-galactosyl (Arg)n constructs (n = 5, 6, 8) at the T5 promoter in E. coli for 18 h, we visually observed that the cultures fluoresced green light when excited with UV light. The fluorescence intensities for these cultures were greater than that found for a control culture, indicating that the peptides had induced GFP expression. In order to accomplish higher expression efficiency, we investigated the cluster effect and structural fine-tuning of new poly(2-oxazoline) containing CysArgArg as the cell-penetrating peptide (CPP) and S-galactosides when acting as inducers of recombinant protein expression under the control of lac operator/repressor systems in this article. Quantitative fluorescence intensities (calculated per molecule) also supported the observations that the cell-penetrating glyco poly(2-oxazoline)s were better inducers of GFP expression than glyco poly(2-oxazoline) containing no CPP or isopropyl β-d-thiogalactoside. Because the level of GFP expression was directly related to the number of sugar residues in each glyco poly(2-oxazoline), we propose that a cluster effect of the S-galactosides attached to the cell-penetrating poly(2-oxazoline) is responsible for how well the galactosides inhibited the lac repressor to activate the protein expression under the control of the lac operator/repressor system. A similar tendency was observed when the T7 promoter was placed upstream of the gene for an artificial extracellular matrix protein and glyco poly(2-oxazoline)s-CPP conjugates were used as inducers. To assess how the glyco poly(2-oxazoline) penetrate the cell membrane, we labeled the glyco poly(2-oxazoline) using 1-amino pyrene and directly observed the penetration process. Furthermore, we could visualize protein

  3. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf;

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.......e. methyl (MePSU), ethyl (EtPSU) and butyl (BuPSU) imidazoliums, as revealed by 1H NMR spectra. The imidazolium polysulfone membranes are then doped with phosphoric acid and used as a proton exchange membrane electrolyte in fuel cells. An acid doping level of about 10–11mol H3PO4 per mole of the imidazolium...

  4. Engineered nanoparticles mimicking cell membranes for toxin neutralization.

    Science.gov (United States)

    Fang, Ronnie H; Luk, Brian T; Hu, Che-Ming J; Zhang, Liangfang

    2015-08-01

    Protein toxins secreted from pathogenic bacteria and venomous animals rely on multiple mechanisms to overcome the cell membrane barrier to inflict their virulence effect. A promising therapeutic concept toward developing a broadly applicable anti-toxin platform is to administer cell membrane mimics as decoys to sequester these virulence factors. As such, lipid membrane-based nanoparticulates are an ideal candidate given their structural similarity to cellular membranes. This article reviews the virulence mechanisms employed by toxins at the cell membrane interface and highlights the application of cell-membrane mimicking nanoparticles as toxin decoys for systemic detoxification. In addition, the implication of particle/toxin nanocomplexes in the development of toxoid vaccines is discussed. PMID:25868452

  5. Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange-membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Zhanli [Department of Chemical Engineering, Monash University, Clayton VIC 3182 (Australia); College of Chemistry and Chemical Engineering, Inner Mongolia University, Inner Mongolia 010021 (China); Wang, Cheng; Zhang, Hongjie [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Doherty, Cara M.; Hill, Anita J. [CSIRO Materials Science and Engineering, Locked Bag 33, Clayton South MDC, VIC 3169 (Australia); Ladewig, Bradley P.; Wang, Huanting [Department of Chemical Engineering, Monash University, Clayton VIC 3182 (Australia)

    2010-12-21

    Nafion-carbon (NC) composite membranes were prepared by hydrothermal treatment of Nafion membrane impregnated with glucose solution. The carbon loading of the NC membrane was tuned by controlling the hydrothermal carbonization time. X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and positron annihilation lifetime spectroscopy were used to characterize plain Nafion and NC composite membranes. Nafion-carbon composite membranes exhibited better proton conductivity and reduced methanol permeability than those of the plain Nafion membrane. A single cell prepared with the NC composite membrane with a carbon loading of 3.6 wt% exhibited the highest cell performance. Compared with the cell performance of plain Nafion membrane, the maximum power density of the new cell improved by 31.7% for an H{sub 2}/O{sub 2} fuel cell at room temperature, and by 44.0% for a direct methanol fuel cell at 60 C. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Membrane tension and cytoskeleton organization in cell motility

    International Nuclear Information System (INIS)

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity. (topical review)

  7. Anatomy of the red cell membrane skeleton: unanswered questions.

    Science.gov (United States)

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias. PMID:26537302

  8. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    Science.gov (United States)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  9. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.

    OpenAIRE

    Friedberg, I.; Kaback, H R

    1980-01-01

    Using the distribution of weak acids to measure the pH gradient (delta pH; interior alkaline) and the distribution of the lipophilic cation [3H]tetraphenylphosphonium+ to monitor the membrane potential (delta psi; interior negative), we studied the electrochemical gradient or protons (delta mu- H+) across the membrane of Micrococcus lysodeikticus cells and plasma membrane vesicles. With reduced phenazine methosulfate as electron donor, intact cells exhibited a relatively constant delta mu- H+...

  10. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    OpenAIRE

    Laura-Roxana Stingaciu; Hugh O’Neill; Michelle Liberton; Urban, Volker S.; Himadri B. Pakrasi; Michael Ohl

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membran...

  11. Mathematic Model of Unsteady Penetration Mass Transfer in Randomly Packed Hollow Fiber Membrane Module%随机填充中空纤维膜组件中非稳态渗透传质数学模型

    Institute of Scientific and Technical Information of China (English)

    张秀莉; 张泽廷; 张卫东; 郝欣

    2004-01-01

    Based on the membrane-based absorption experiment of C02 into water, shell-side flow distribution and mass transfer in a randomly packed hollow fiber module have been analyzed using subchannel model and unsteady penetration mass transfer theory. The cross section of module is subdivided into many small cells which contains only one hollow-fiber. The cross sectional area distribution of these cells is presented by the normal probability density distribution function. It has been obtained that there was a most serious non-ideal flow in shell side at moderate mean packing density, and the large amount of fluid flowed and transferred mass through a small number of large voids. Thus mass transfer process is dominated by the fluid through the larger void area. The mass transfer process in each cell is described by the unsteady penetration theory. The overall mass transfer coefficient equals to the probability addition of the mean mass transfer coefficient in each cell. The comparisons of the values calculated by the model established with the empirical correlations and the experimental data of this work have been done.The predicted overall mass transfer coefficients are in good agreement with experimental data.

  12. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    DEFF Research Database (Denmark)

    Ke, Peng; Sun, Honghao; Liu, Mingxing;

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental p......H-sensitive fluorophores in a same nanoparticle. The authors believe that this triple fluorescent pH sensor provides a new tool to pH measurements that can have application in cellular uptake mechanism study and new nanomedicine design....

  13. A Cell-Penetrating Peptide with a Guanidinylethyl Amine Structure Directed to Gene Delivery

    Science.gov (United States)

    Oba, Makoto; Kato, Takuma; Furukawa, Kaori; Tanaka, Masakazu

    2016-01-01

    A peptide composed of lysine with a guanidinylethyl (GEt) amine structure in the side chain [Lys(GEt)] was developed as a cell-penetrating peptide directed to plasmid DNA (pDNA) delivery. The GEt amine adopted a diprotonated form at neutral pH, which may have led to the more efficient cellular uptake of a Lys(GEt)-peptide than an arginine-peptide at a low concentration. Lys(GEt)-peptide/pDNA complexes showed the highest transfection efficiency due to efficient endosomal escape without any cytotoxicity. Lys(GEt)-peptide may be a promising candidate as a gene delivery carrier.

  14. Cell penetrating peptide delivery of splice directing oligonucleotides as a treatment for Duchenne muscular dystrophy.

    Science.gov (United States)

    Betts, Corinne A; Wood, Matthew J A

    2013-01-01

    Duchenne muscular dystrophy is a severe, X-linked muscle wasting disorder caused by the absence of an integral structural protein called dystrophin. This is caused by mutations or deletions in the dystrophin gene which disrupt the reading frame, thereby halting the production of a functional protein. A number of potential therapies have been investigated for the treatment of this disease including utrophin upregulation, 'stop-codon read through' aminoglycosides and adeno-associated virus gene replacement as well as stem cell therapy. However, the most promising treatment to date is the use of antisense oligonucleotides which cause exon skipping by binding to a specific mRNA sequence, skipping the desired exon, thereby restoring the reading frame and producing a truncated yet functional protein. The results from recent 2'OMePS and morpholino clinical trials have renewed hope for Duchenne patients; however in vivo studies in a mouse model, mdx, have revealed low systemic distribution and poor delivery of oligonucleotides to affected tissues such as the brain and heart. However a variety of cell penetrating peptides directly conjugated to antisense oligonucleotides have been shown to enhance delivery in Duchenne model systems with improved systemic distribution and greater efficacy compared to 'naked' antisense oligonucleotides. These cell penetrating peptides, combined with an optimised dose and dosing regimen, as well as thorough toxicity profile have the potential to be developed into a promising treatment which may be progressed to clinical trial. PMID:23140454

  15. Cultivation of MDCK epithelial cells on chitosan membranes.

    Science.gov (United States)

    Popowicz, P; Kurzyca, J; Dolińska, B; Popowicz, J

    1985-01-01

    Deacetylated chitin upon evaporation from aqueous acetic acid solutions forms a thin, permeable and transparent porous membrane which can be successfully used as support of cell culture. An established MDCK cell line grown as monolayer on both chitosan membrane and millipore filter generates comparable bioelectrical properties when studied in a typical transporting chamber. PMID:4084278

  16. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez;

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...

  17. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Composite membranes based on poly(2,2′(m-phenylene)-5,5′bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10 wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180 °C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160 °C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials

  18. New ETFE-based membrane for direct methanol fuel cell

    International Nuclear Information System (INIS)

    The investigated membranes are based on 35-bar μ m thick commercial poly(ethylene-alt-tetrafluoroethylene) (ETFE) films. The films were made proton conductive by means of irradiation treatment followed by sulfonation. These membranes have exceptionally low water uptake and excellent dimensional stability. The new membranes are investigated widely in a laboratory-scale direct methanol fuel cell (DMFC). The temperature range used in the fuel cell tests was 30-85-bar o C and the measurement results were compared to those of the Nafion(R)115 membrane. Also methanol permeability through the ETFE-based membrane was measured as a function of temperature, resulting in values less than 10% of the corresponding values for Nafion(R)115, which was considerably thicker than the experimental membrane. Methanol crossover was reported to decrease when the thickness of the membrane increases, so the ETFE-based membrane compares favourably to Nafion(R) membranes. The maximum power densities achieved with the experimental ETFE-based membrane were about 40-65% lower than the corresponding values of the Nafion(R)115 membrane, because of the lower conductivity and noticeably higher IR-losses. Chemical and mechanical stability of the ETFE-based membrane appeared to be promising since it was tested over 2000-bar h in the DMFC without any performance loss

  19. Potent inhibition of late stages of hepadnavirus replication by a modified cell penetrating peptide

    DEFF Research Database (Denmark)

    Abdul, Fabien; Ndeboko, Bénédicte; Buronfosse, Thierry;

    2012-01-01

    Cationic cell-penetrating peptides (CPPs) and their lipid domain-conjugates (CatLip) are agents for the delivery of (uncharged) biologically active molecules into the cell. Using infection and transfection assays we surprisingly discovered that CatLip peptides were able to inhibit replication of...... particle secretion. This is the first report showing that a CPP is able to drastically block hepadnaviral release from infected cells by altering late stages of viral morphogenesis via interference with enveloped particle formation, without affecting naked nucleocapsid egress, thus giving a view inside the...... mode of inhibition. Deca-(Arg)8 may be a useful tool for elucidating the hepadnaviral secretory pathway, which is not yet fully understood. Moreover we provide the first evidence that a modified CPP displays a novel antiviral mechanism targeting another step of viral life cycle compared to what has...

  20. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  1. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  2. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  3. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    Science.gov (United States)

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  4. Nano thermo-hydrodynamics method for investigating cell membrane fluidity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As a barrier to compartmentalize cells,mem-branes form the interface between a cell and its surround-ings.The essential function of a membrane is to maintain a relatively stable environment in the cell,exchange sub-stances selectively and transfer energy and information continually from the outside.It is intriguing that above the phase transition temperature,the membrane lipid molecule will have three modes-lateral diffusion,rotational movement and flip-flop activity.These thermodynamic processes are vital to cell existence,growth,division,differentiation and are also responsible for hundreds of thousands of phenomena in life.Previously,species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model.Therefore,detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled.Such important issues can be clarifled by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane.Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane.A correlation between nano scale hydrodynamics,non-equilibrium thermodynamics and eell membrane activities is set up.The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

  5. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells

    NARCIS (Netherlands)

    Van der Wouden, Johanna M.; Van IJzendoorn, Sven C.D.; Hoekstra, Dick

    2002-01-01

    Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent

  6. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng; Jensen, Jens Oluf; Pan, Chao; Steenberg, T.; Dai, S.; Bjerrum, Niels J.

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black and...

  7. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng;

    2013-01-01

    at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240...

  8. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  9. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    International Nuclear Information System (INIS)

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen registered or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H2O2 was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  10. Selective mono-radioiodination and characterization of a cell-penetrating peptide. L-Tyr-maurocalcine

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Mitra; Bacot, Sandrine; Perret, Pascale; Riou, Laurent; Ghezzi, Catherine [Universite Joseph Fourier, Grenoble (France); INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Poillot, Cathy; Cestele, Sandrine [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Desruet, Marie-Dominique [INSERM U1039, Grenoble (France). Radiopharmaceutiques Biocliniques; Couvet, Morgane; Bourgoin, Sandrine; Seve, Michel [CRI-INSERM U823, Grenoble (France). Inst. of Albert Bonniot; Universite Joseph Fourier, Grenoble (France); Waard, Michel de [INSERM U836, Grenoble (France). Grenoble Inst. of Neuroscience; Universite Joseph Fourier, Grenoble (France); Smartox Biotechnologies, Grenoble (France)

    2014-07-01

    Mono-and poly-iodinated peptides form frequently during radioiodination procedures. However, the formation of a single species in its mono-iodinated form is essential for quantitative studies such as determination of tissue concentration or image quantification. Therefore, the aim of the present study was to define the optimal experimental conditions in order to exclusively obtain the mono-iodinated form of L-maurocalcine (L-MCa). L-MCa is an animal venom toxin which was shown to act as a cell-penetrating peptide. In order to apply the current direct radioiodination technique using oxidative agents including chloramine T, Iodo-Gen {sup registered} or lactoperoxidase, an analogue of this peptide containing a tyrosine residue (Tyr-L-MCa) was synthesized and was shown to fold/oxidize properly. The enzymatic approach using lactoperoxidase/H{sub 2}O{sub 2} was found to be the best method for radioiodination of Tyr-L-MCa. MALDI-TOF mass spectrometry analyses were then used for identification of the chromatographic eluting components of the reaction mixtures. We observed that the production of different radioiodinated species depended upon the reaction conditions. Our results successfully described the experimental conditions of peptide radioiodination allowing the exclusive production of the mono-iodinated form with high radiochemical purity and without the need for a purification step. Mono-radioiodination of L-Tyr-MCa will be crucial for future quantitative studies, investigating the mechanism of cell penetration and in vivo biodistribution.

  11. Electron Spin Resonance Study of Fuel Cell Polymer Membrane Degradation

    Institute of Scientific and Technical Information of China (English)

    Alexander Panchenko; Elena Aleksandrova; Emil Roduner

    2005-01-01

    @@ 1Introduction The long term stability of the membrane is an important factor limiting the fuel cell lifetime. During extended use the membrane degrades, probably via reaction with hydroxyl and superoxide radicals which are regular intermediates of the oxygen reduction at the cathode. Only extremely stable membranes can withstand the aggressive chemical and physical environment in an operating fuel cell. Within a given set of operating conditions, intrinsic chemical and mechanical properties of the membrane as well as its water content impact its durability dramatically.

  12. Cell membrane potentials induced during exposure to EMP fields

    Energy Technology Data Exchange (ETDEWEB)

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  13. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    Science.gov (United States)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  14. Physical Aspects of Viral Membrane Fusion

    OpenAIRE

    Laura Wessels; Keith Weninger

    2009-01-01

    Enveloped viruses commonly employ membrane fusion during cell penetration in order to deliver their genetic material across the cell boundary. Large conformational changes in the proteins embedded in the viral membrane play a fundamental role in the membrane fusion process. Despite the tremendously wide variety of viruses that contain membranes, it appears that they all contain membrane fusion protein machinery with a remarkably conserved mechanism of action. Much of our current biochemical u...

  15. Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides

    Directory of Open Access Journals (Sweden)

    Aubin eMoutal

    2015-01-01

    Full Text Available The microtubule-associated axonal specification collapsin response mediator protein 2 (CRMP2 is a novel target for neuroprotection. A CRMP2 peptide (TAT-CBD3 conjugated to the HIV transactivator of transcription (TAT protein’s cationic cell penetrating peptide motif (CPP protected neurons in the face of toxic levels of Ca2+ influx leaked in via N-methyl-D-aspartate receptor (NMDAR hyperactivation. Here we tested whether replacing the hydrophilic TAT motif with alternative cationic (nona-arginine (R9, hydrophobic (membrane transport sequence (MTS of k-fibroblast growth factor or amphipathic (model amphipathic peptide (MAP CPPs could be superior to the neuroprotection bestowed by TAT-CBD3. In giant plasma membrane vesicles (GPMVs derived from cortical neurons, the peptides translocated across plasma membranes with similar efficiencies. Cortical neurons, acutely treated with peptides prior to a toxic glutamate challenge, demonstrated enhanced efflux of R9-CBD3 compared to others. R9-CBD3 inhibited N-methyl-D-aspartate (NMDA-evoked Ca2+ influx to a similar extent as TAT-CBD3 while MTS-CBD3 was ineffective which correlated with the ability of R9- and TAT-CBD3, but not MTS-CBD3, to block NMDAR interaction with CRMP2. Unrestricted Ca2+ influx through NMDARs leading to delayed calcium dysregulation and neuronal cell death was blocked by all peptides but MAP-CBD3. When applied acutely for 10 minutes, R9-CBD3 was more effective than TAT-CBD3 at neuroprotection while MTS- and MAP-CBD3 were ineffective. In contrast, long-term (> 24 hours treatment with MTS-CBD3 conferred neuroprotection where TAT-CBD3 failed. Neither peptide altered surface trafficking of NMDARs. Neuroprotection conferred by MTS-CBD3 peptide is likely due to its increased uptake coupled with decreased efflux when compared to TAT-CBD3. Overall, our results demonstrate that altering CPPs can bestow differential neuroprotective potential onto the CBD3 cargo.

  16. Influence of penetration enhancers and molecular weight in antifungals permeation through bovine hoof membranes and prediction of efficacy in human nails.

    Science.gov (United States)

    Miron, D; Cornelio, R; Troleis, J; Mariath, J; Zimmer, A R; Mayorga, P; Schapoval, E E S

    2014-01-23

    This work aimed to evaluate the effect of different substances on the permeation of geraniol through bovine hoof membranes. Different penetration enhancers were able to increase the permeability up to 25 times compared to control. It was demonstrated that acetilcysteine in association with ascorbic acid increased the permeation, even in acid formulations. In addition, some antifungal drugs were incorporated into a gel formulation of HPMC containing acetylcysteine 5% and ascorbic acid 0.2% and then the permeation coefficient through bovine hoof membranes was evaluated. The relationship between permeability and molecular weight was established for fluconazole, miconazole, terbinafine, butenafine, geraniol and nerol. Geraniol and nerol, the antifungals with lower molecular weight, had the better permeability results. Permeability coefficients for nail plates were estimated and geraniol demonstrated similar or even better efficacy index values against T. rubrum, T. menthagrophytes and M. canis compared with terbinafine and miconazole. PMID:23999034

  17. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg;

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) and...... penetratin(43-58), was through Fmoc (fluoren-9-ylmethoxycarbonyl) chemistry. Metabolic degradation kinetics of the tested CPP in contact with three cell-cultured epithelial models, MDCK (Madin-Darby canine kidney), Calu-3 and TR146, was evaluated by reversed-phase HPLC. Identification of the resulting...... models and the CPP. The Calu-3 model exhibited the highest proteolytic activity. The patterns of metabolic cleavage of hCT(9-32) were similar in all three models. Initial cleavage of this peptide occurred at the N-terminal domain, possibly by endopeptidase activity yielding both the N- and the C...

  18. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids.

    Science.gov (United States)

    Kato, Takuma; Yamashita, Hiroko; Misawa, Takashi; Nishida, Koyo; Kurihara, Masaaki; Tanaka, Masakazu; Demizu, Yosuke; Oba, Makoto

    2016-06-15

    Cell-penetrating peptides (CPPs) have been developed as drug, protein, and gene delivery tools. In the present study, arginine (Arg)-rich CPPs containing unnatural amino acids were designed to deliver plasmid DNA (pDNA). The transfection ability of one of the Arg-rich CPPs examined here was more effective than that of the Arg nonapeptide, which is the most frequently used CPP. The transfection efficiencies of Arg-rich CPPs increased with longer post-incubation times and were significantly higher at 48-h and 72-h post-incubation than that of the commercially available transfection reagent TurboFect. These Arg-rich CPPs were complexed with pDNA for a long time in cells and effectively escaped from the late endosomes/lysosomes into the cytoplasm. These results will be helpful for designing novel CPPs for pDNA delivery. PMID:27132868

  19. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  20. Lipid membrane domains in cell surface and vacuolar systems.

    Science.gov (United States)

    Kobayashi, T; Hirabayashi, Y

    2000-01-01

    Detergent insoluble sphingolipid-cholesterol enriched 'raft'-like membrane microdomains have been implicated in a variety of biological processes including sorting, trafficking, and signaling. Mutant cells and knockout animals of sphingolipid biosynthesis are clearly useful to understand the biological roles of lipid components in raft-like domains. It is suggested that raft-like domains distribute in internal vacuolar membranes as well as plasma membranes. In addition to sphingolipid-cholesterol-rich membrane domains, recent studies suggest the existence of another lipid-membrane domain in the endocytic pathway. This domain is enriched with a unique phospholipid, lysobisphosphatidic acid (LBPA) and localized in the internal membrane of multivesicular endosome. LBPA-rich membrane domains are involved in lipid and protein sorting within the endosomal system. Possible interaction between sphingolipids and LBPA in sphingolipid-storage disease is discussed. PMID:11201787

  1. Identification of a cell-penetrating peptide domain from human beta-defensin 3 and characterization of its anti-inflammatory activity

    Directory of Open Access Journals (Sweden)

    Lee JY

    2015-08-01

    Full Text Available Jue Yeon Lee,1,* Jin Sook Suh,2,* Jung Min Kim,1 Jeong Hwa Kim,1 Hyun Jung Park,1 Yoon Jeong Park,1,2 Chong Pyoung Chung1 1Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Chungcheongbuk-do, Republic of Korea; 2Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Human beta-defensins (hBDs are crucial factors of intrinsic immunity that function in the immunologic response to a variety of invading enveloped viruses, bacteria, and fungi. hBDs can cause membrane depolarization and cell lysis due to their highly cationic nature. These molecules participate in antimicrobial defenses and the control of adaptive and innate immunity in every mammalian species and are produced by various cell types. The C-terminal 15-mer peptide within hBD3, designated as hBD3-3, was selected for study due to its cell- and skin-penetrating activity, which can induce anti-inflammatory activity in lipopolysaccharide-treated RAW 264.7 macrophages. hBD3-3 penetrated both the outer membrane of the cells and mouse skin within a short treatment period. Two other peptide fragments showed poorer penetration activity compared to hBD3-3. hBD3-3 inhibited the lipopolysaccharide-induced production of inducible nitric oxide synthase, nitric oxide, and secretory cytokines, such as interleukin-6 and tumor necrosis factor in a concentration-dependent manner. Moreover, hBD3-3 reduced the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. Further investigation also revealed that hBD3-3 downregulated nuclear factor kappa B-dependent inflammation by directly suppressing the degradation of phosphorylated-IκBα and by downregulating active nuclear factor kappa B p65. Our findings indicate that hBD3-3 may be conjugated with drugs of interest to ensure their proper translocation to

  2. Measurement of the nonlinear elasticity of red blood cell membranes

    Science.gov (United States)

    Park, Yongkeun; Best, Catherine A.; Kuriabova, Tatiana; Henle, Mark L.; Feld, Michael S.; Levine, Alex J.; Popescu, Gabriel

    2011-05-01

    The membranes of human red blood cells (RBCs) are a composite of a fluid lipid bilayer and a triangular network of semiflexible filaments (spectrin). We perform cellular microrheology using the dynamic membrane fluctuations of the RBCs to extract the elastic moduli of this composite membrane. By applying known osmotic stresses, we measure the changes in the elastic constants under imposed strain and thereby determine the nonlinear elastic properties of the membrane. We find that the elastic nonlinearities of the shear modulus in tensed RBC membranes can be well understood in terms of a simple wormlike chain model. Our results show that the elasticity of the spectrin network can mostly account for the area compression modulus at physiological osmolality, suggesting that the lipid bilayer has significant excess area. As the cell swells, the elastic contribution from the now tensed lipid membrane becomes dominant.

  3. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Benziger, Jay; Chia, E.; Karnas, E.; Moxley, J.; Teuscher, C.; Kevrekidis, I. G.

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The S...

  4. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    Science.gov (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes. PMID:25845029

  5. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  6. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  7. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    Science.gov (United States)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  8. In vitro analysis of particle penetration of smokeless tobacco forms using egg shell membrane as a substrate

    OpenAIRE

    Nithya Jagannathan; Abilasha Ramasubra manian; Pratibha Ramani; Priya Premkumar; Anuja Natesan; Sherlin, Herald J

    2015-01-01

    Aims: The aim of the following study is to determine the particle sizes of smokeless tobacco forms and thereby evaluate the degree of diffusion of the products using an egg shell membrane as a natural substrate by scanning electron microscopy (SEM). Subjects and Methods: The particle size of smokeless tobacco forms namely mawa, gutka, khaini, and tobacco leaves was determined by image analysis and the products were subjected on an egg shell membrane subjected to artificial saliva along wit...

  9. Intercellular imaging by a polyarginine derived cell penetrating peptide labeled magnetic resonance contrast agent,diethylenetriamine pentaacetic acid gadolinium

    Institute of Scientific and Technical Information of China (English)

    GUO You-min; LIU Min; YANG Jun-le; GUO Xiao-juan; WANG Si-cen; DUAN Xiao-yi; WANG Peng

    2007-01-01

    Background The cellular plasma membrane represents a natural barrier to many exogenous molecules including magnetic resonance (MR) contrast agent. Cell penetrating peptide (CPP) is used to internalize proteins, peptides, and radionuclide. This study was undertaken to assess the value of a new intracellular MR contrast medium, CPP labeled diethylenetriamine pentaacetic acid gadolinium (Gd-DTPA) in molecular imaging in vitro. Methods Fluorescein-5-isothiocyanate (FITC) and Gd-DTPA respectively labeled with CPP (FITC-CPP, Gd-DTPA-CPP) were synthesized by the solid-phase method. Human hepatic cancer cell line-HepG2 was respectively stained by FITC-CPP and FITC to observe the uptake and intracellular distribution. HepG2 was respectively incubated with 100 nmol/ml Gd-DTPA-CPP for 0, 10, 30, 60 minutes, and imaged by MR for studying the relationship between the incubation time and T1WI signal. The cytotoxicity to NIH3T3 fibroblasts cells was measured by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide reduction assay (MTT). Results The molecular weights of CPP labeled imaging agents, which were determined by MALDI mass spectrometry (FITC-CPP MW=2163.34, Gd-DTPA-CPP MW=2285.99), were similar to the calculated molecular weights. Confocal microscopy suggested HepG2 translocated FITC-CPP in cytoplasm and nucleus independent with the incubation temperature. MR images showed HepG2 uptaken Gd-DTPA-CPP had a higher T1 weighted imaging (T1WI) signal, and that the T1WI signal intensity was increasing in a time-dependent manner (r=0.972, P=0.001), while the signal intensity between the cells incubated by Gd-DTPA for 60 minutes and the controlled cells was not significantly different (P=0.225). By MTT, all concentrations from 50 nmol/ml to 200 nmol/ml had no significant (F=0.006, P=1.000) effect on cell viability of mouse NIH3T3 fibroblasts, compared with the control group. Conclusions The newly constructed CPP based on polyarginine can translocate cells by carrying FITC

  10. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  11. Denaturation of membrane proteins and hyperthermic cell killing

    OpenAIRE

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when bound to membrane proteins, is capable of providing heat resistance to these proteins. ... Zie: Summary

  12. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  13. BLEND MEMBRANES FOR DIRECT METHANOL AND PROTON EXCHANGE MEMBRANE FUEL CELLS

    Institute of Scientific and Technical Information of China (English)

    Perurnal Bhavani; Dharmalingam Sangeetha

    2012-01-01

    Sulphonated polystyrene ethylene butylene polystyrene (SPSEBS) prepared with 35% sulphonation was found to be highly elastic and enlarged up to 300%-400% of its initial length.It absorbed over 110% of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride) (PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117 (0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.

  14. Gangliosides in cell recognition and membrane protein regulation

    OpenAIRE

    Lopez, Pablo H. H.; Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed on all vertebrate cells, and are the major glycans on nerve cells. They are anchored to the plasma membrane through their ceramide lipids with their varied glycans extending into the extracellular space. Through sugar-specific interactions with glycan binding proteins on apposing cells, gangliosides function as receptors in cell-cell recognition, regulating natural killer cell cytotoxicity via Siglec-7 binding, myelin-axon in...

  15. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes. PMID:26716283

  16. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

    Science.gov (United States)

    Park, Mi-Young; Kim, Min Young; Seo, Young Rok; Kim, Jong-Sang; Sung, Mi-Kyung

    2016-01-01

    Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in ApcMin/+ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2′-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis. PMID:27390738

  17. Therapeutic Potential of Cell Penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B

    DEFF Research Database (Denmark)

    Ndeboko, Bénédicte; Lemamy, Guy Joseph; Nielsen, Peter E;

    2015-01-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. Because current anti-HBV treatments are only virostatic, there is an urgent need for development of alternative antiviral approaches. In this context, cell-penetrating peptides (CPPs) and cationic polymers, such as...... chitosan (CS), appear of particular interest as nonviral vectors due to their capacity to facilitate cellular delivery of bioactive cargoes including peptide nucleic acids (PNAs) or DNA vaccines. We have investigated the ability of a PNA conjugated to different CPPs to inhibit the replication of duck...... hepatitis B virus (DHBV), a reference model for human HBV infection. The in vivo administration of PNA-CPP conjugates to neonatal ducklings showed that they reached the liver and inhibited DHBV replication. Interestingly, our results indicated also that a modified CPP (CatLip) alone, in the absence of its...

  18. Enhanced cellular delivery of cell-penetrating peptide-peptide nucleic acid conjugates by photochemical internalization

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    Cell-penetrating peptides (CPPs) have been widely used for a cellular delivery of biologically relevant cargoes including antisense peptide nucleic acids (PNAs). Although chemical conjugation of PNA to a variety of CPPs significantly improves the cellular uptake of the PNAs, bioavailability...... (antisense activity) is still limited by endocytotic entrapment. We have shown that this low bioavailability can be greatly improved by combining CPP-PNA conjugate administration with a photochemical internalization technique using photosensitizers such as aluminum phthalocyanine (AlPcS(2a)) or...... cellular efficacy of CPP conjugates were evaluated by measuring luciferase activity as a result of splicing correction and was also confirmed by RT-PCR analysis of luciferase pre-mRNA....

  19. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  20. Seperator membranes for redox-type electrochemical cells

    International Nuclear Information System (INIS)

    This disclosure is directed to improved redox type electrochemical cells, preferably those of the iron (+3)/iron (+2) electrolyte variety, incorporating polymeric, ion-exchange separator membranes produced by radiation grafting techniques

  1. Novel Membrane for Highly Efficient Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton Exchange Membrane (PEM) fuel cells and electrolyzers are key technologies for NASA space systems utilizing hydrogen, oxygen, or water as reactants. In order...

  2. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  3. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  4. Bipolar membranes in forward bias region for fuel cell reactors

    International Nuclear Information System (INIS)

    Three bipolar membranes, two home-made composed of commercial cation (DuPont) and anion (FuMA-Tech) exchange membranes (called Nafion/FT-FAA and Nafion/FT-FAS) and a commercial one, BP-1 from FuMA-Tech, were investigated in order to characterize their suitability to use in a H2/O2 fuel cell intended to produce hydrogen peroxide on the cathode instead of water. The Nafion/FT-FAA and Nafion/FT-FAS membranes were prepared using a hot-pressing method. The optimal hot-pressing conditions were determined by measuring the ionic conductivity of the membranes. The latter was observed to depend on the relative humidity of the bipolar membrane. Of the studied bipolar membranes, Nafion/FT-FAA showed the best performance. The transport number of protons measured in a concentration cell was observed to depend on the direction of the proton diffusion flux through these membranes so that transport numbers of ca. unity were obtained when the cation exchange side faced the solution with higher proton concentration. In the opposite case, when the higher concentration faced anion exchange side, the transport number of proton was clearly lower, indicating the usefulness of the bipolar membranes for hydrogen peroxide production in the fuel cell

  5. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez

    2015-12-01

    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  6. A membrane bending model of outer hair cell electromotility.

    OpenAIRE

    Raphael, R. M.; Popel, A S; Brownell, W. E.

    2000-01-01

    We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be ...

  7. Increased cell membrane arachidonic acid in experimental colorectal tumours.

    OpenAIRE

    Nicholson, M. L.; Neoptolemos, J P; Clayton, H A; Talbot, I C; Bell, P R

    1991-01-01

    Tumour cell membrane fatty acid composition was investigated using an animal model of colorectal carcinogenesis. Eighty six male Wistar rats were fed experimental diets containing either 5% saturated fat or 20% saturated fat. Colorectal tumours were induced by intraperitoneal injection of azoxymethane, and control rats received saline. Animals were killed at intervals up to 26 weeks after the last injection of carcinogen for histology and lipid analysis. Cell membrane fatty acids in colonic m...

  8. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes

    OpenAIRE

    Sood, Rakhi; Cavaliere, Sara; Rozière, Jacques; Jones, Deborah

    2016-01-01

    International audience Large-scale commercialisation of Proton Exchange Membrane Fuel Cell (PEMFC) technology for automotive and stationary applications demands the development of a robust, durable and cost-effective materials. In this regard, ionomer membranes being present at the core of PEMFCs are required to maintain elevated proton conductivity, high mechanical strength and low gas permeability during the lifespan of the fuel cell. These challenges are addressed by investigating novel...

  9. Calcium influx rescues adenylate cyclase-hemolysin from rapid cell membrane removal and enables phagocyte permeabilization by toxin pores.

    Directory of Open Access Journals (Sweden)

    Radovan Fiser

    Full Text Available Bordetella adenylate cyclase toxin-hemolysin (CyaA penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC⁻ toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P toxoid, unable to conduct Ca²⁺ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca²⁺ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca²⁺ influx promoted by molecules locked in a Ca²⁺-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.

  10. Endothelial cell counts after Descemet’s stripping automated endothelial keratoplasty versus penetrating keratoplasty in Asian eyes

    Directory of Open Access Journals (Sweden)

    Ang M

    2012-04-01

    Full Text Available Marcus Ang1,2, Jodhbir S Mehta1–4, Arundhati Anshu1,2, Hon Kiat Wong5, Hla M Htoon2, Donald Tan1–31Singapore National Eye Centre, 2Singapore Eye Research Institute, 3Department of Ophthalmology, National University Health Systems, 4Department of Clinical Sciences, Duke-NUS Graduate Medical School, 5Department of Ophthalmology, Tan Tock Seng Hospital, SingaporeBackground: The purpose of this study was to compare endothelial cell counts after Descemet’s stripping automated endothelial keratoplasty (DSAEK and penetrating keratoplasty in Asian eyes.Methods: This was a retrospective study of patients from our prospective Singapore Corneal Transplant Study cohort who received corneal transplantation in 2006–2008. We compared eyes that underwent DSAEK or penetrating keratoplasty for Fuchs’ endothelial dystrophy or pseudophakic and aphakic bullous keratopathy. Clinical data, and donor and recipient characteristics were recorded. Of 241 patients who met our inclusion criteria, 68 underwent DSAEK and 173 underwent penetrating keratoplasty. The main outcome measure was endothelial cell loss at 1 year. Secondary outcome measures were graft survival and visual outcomes at 1-year follow-up.Results: There were no significant differences in baseline characteristics of patients between the treatment groups. Percent endothelial cell loss at 1-year follow-up was greater in penetrating keratoplasty eyes (40.9% ± 2.9% compared with DSAEK eyes (22.4% ± 2.3%; P < 0.001. DSAEK-treated eyes had significantly superior uncorrected visual acuity (mean difference = 0.42 ± 0.0059; P < 0.001 and best spectacle-corrected visual acuity (mean difference = 0.14 ± 0.032; P < 0.001 as compared with penetrating keratoplasty-treated eyes. Penetrating keratoplasty-treated eyes had worse astigmatism as compared with DSAEK-treated eyes (-3.0 ± 2.1 versus -1.7 ± 0.8; P < 0.001. Graft survival at 1 year was comparable in both groups, ie, 66/68 (97.0% DSAEK-treated eyes

  11. Generation of GFP Native Protein for Detection of Its Intracellular Uptake by Cell-Penetrating Peptides.

    Science.gov (United States)

    Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A

    2016-01-01

    Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes. PMID:27516189

  12. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  13. The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols.

    Science.gov (United States)

    Stępnik, Katarzyna E; Malinowska, Irena

    2013-04-19

    Biopartitioning Micellar Chromatography (BMC) is a mode of micellar liquid chromatography that uses C18 stationary phases and micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic human drug absorption, blood-brain barrier distribution or partitioning processes in biological systems. BMC system can be useful in constructing good predictive models because the characteristics of the BMC system are similar to biological barriers and extracellular fluids. Immobilized Artificial Membrane (IAM) chromatography uses stationary phase which consists of a monolayer of phosphatidylcholine covalently immobilized on an inert silica support. IAM columns are thought to mimic very closely a membrane bilayer and are used in a HPLC system with a physiological buffer as eluent. In this paper the usefulness of BMC and IAM system for in silico and in vitro determination of blood-brain barrier (BBB) penetration of phenols has been demonstrated. The most important pharmacokinetic parameters of brain have been obtained for the determination of BBB penetration, i.e. BBB permeability - surface area product (PS), usually given as a logPS, brain/plasma equilibration rate (log(PS×fu,brain)) and fraction unbound in plasma (Fu). Moreover, the relationships between retention of eighteen phenols and different parameters of molecular size, lipophilicity and BBB penetration were studied. Extrapolated to pure water values of the logarithms of retention factors (logkw) have been compared with the corresponding octanol-water partition coefficient (logPo-w) values of the solutes. In addition, different physicochemical parameters from Foley's equation for BMC system have been collated with the chromatographic data. The Linear Solvation Energy Relationship (LSER) using Abraham model for the describing of phenols penetration across BBB has been used. Four equations were developed as a multiple linear regression using retention data from IAM and BMC system (QRAR

  14. Cathode degradation of the polymer electrolyte membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Morphological changes occurring in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFC's) were monitored using scanning microscopy (SEM) during the course of 600 hours testing of hydrogen/air polymer electrolyte fuel cells (PEFCs). The microstructural study suggests a structural change caused by loss of the recast ionomer could result in deterioration of the integrity of the electrode, a drop in both ionic and electronic conductivities, loss of platinum particle clusters (for carbon support), and increased resistance within the interfacial zone of the membrane and catalyst layer.(author)

  15. Mouse endometrial stromal cells produce basement-membrane components

    DEFF Research Database (Denmark)

    Wewer, U M; Damjanov, A; Weiss, J;

    1986-01-01

    During mouse pregnancy, uterine stromal cells transform into morphologically distinct decidual cells under the influence of the implanting embryo and a proper hormonal environment. Mechanical stimulation of hormonally primed uterine stromal cells leads to the same morphologic alterations. The....... Mouse decidual cells isolated from 6- to 7-day pregnant uteri explanted in vitro continue to synthesize basement-membrane-like extracellular matrix. Using immunohistochemistry and metabolic labeling followed by immunoprecipitation, SDS-PAGE, and fluorography, it was shown that the decidual cells...... undergo pseudodecidualization. We thus showed that stromal cells from pregnant and nonpregnant mouse uteri synthesize significant amounts of basement-membrane components in vitro, and hence could serve as a good model for the study of normal basement-membrane components....

  16. Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation.

    Science.gov (United States)

    Kadonosono, Tetsuya; Yamano, Akihiro; Goto, Toshiki; Tsubaki, Takuya; Niibori, Mizuho; Kuchimaru, Takahiro; Kizaka-Kondoh, Shinae

    2015-03-10

    Cell-penetrating peptides (CPPs), also referred to as protein transduction domains (PTDs), can mediate the cellular uptake of a wide range of macromolecules including peptides, proteins, oligonucleotides, and nanoparticles, and thus have received considerable attention as a promising method for drug delivery in vivo. Here, we report that CPP/PTDs facilitate the extravasation of fused proteins by binding to neuropilin-1 (NRP1), a vascular endothelial growth factor (VEGF) co-receptor expressed on the surface of endothelial and some tumor cells. In this study, we examined the capacity of the amphipathic and cationic CPP/PTDs, PTD-3 and TAT-PTD, respectively, to bind cells in vitro and accumulate in xenograft tumors in vivo. Notably, these functions were significantly suppressed by pre-treatment with NRP1-neutralizing Ab. Furthermore, co-injection of iRGD, a cyclic peptide known to increase NRP1-dependent vascular permeability, significantly reduced CPP/PTD tumor delivery. This data demonstrates a mechanism by which NRP1 promotes the extravasation of CPP/PTDs that may open new avenues for the development of more efficient CPP/PTD delivery systems. PMID:25592386

  17. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    Science.gov (United States)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  18. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  19. Mathematical modelling of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    A one-dimensional non-isothermal model of proton exchange membrane (PEM) fuel cells has been developed to investigate the effect of various design and operating conditions on the cell performance, thermal response and water management, and to understand the underlying mechanism. The model includes variable membrane hydration, ternary gas mixtures for both reactant streams, phase change of water in the electrodes with non-saturated reactant gas streams, and energy equation for the temperature distribution across the cell. It is found that temperature distribution within the PEM fuel cells is affected by water phase change in the electrodes, especially for unsaturated reactant streams. Larger peak temperature rise occurs at lower cell operating temperatures and for partially humidified reactants due to increased membrane resistance and Joule heating arising from reduced membrane hydration. The nonuniform temperature rise can be significant for fuel cell stacks. Operation on reformed fuels results in a decrease in cell performance largely due to reduced membrane hydration, which is also mainly responsible for reduced performance at high current densities for high cell operating pressures. Model predictions compare well with known experimental results. (author)

  20. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: ► HBP sequence identified from HB-EGF has cell penetration activity. ► HBP inhibits the NF-κB dependent inflammatory responses. ► HBP directly blocks phosphorylation and degradation of IκBα. ► HBP inhibits nuclear translocation of NF-κB p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  1. Accessibility Changes within Diphtheria Toxin T Domain upon Membrane Penetration Probed by Hydrogen Exchange and Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Man, Petr; Montagner, C.; Vitrac, H.; Kavan, Daniel; Pichard, S.; Gillet, D.; Forest, E.; Forge, V.

    2011-01-01

    Roč. 414, č. 1 (2011), s. 123-134. ISSN 0022-2836 Institutional research plan: CEZ:AV0Z50200510 Keywords : diphtheria toxin * translocation domain * protein/membrane interactions Subject RIV: CE - Biochemistry Impact factor: 4.001, year: 2011

  2. Creation and Reproduction of Model Cells with Semipermeable Membrane

    OpenAIRE

    Sakaguchi, Hidetsugu

    2008-01-01

    A high activity of reactions can be confined in a model cell with a semipermeable membrane in the Schl\\"ogl model. It is interpreted as a model of primitive metabolism in a cell. We study two generalized models to understand the creation of primitive cell systems conceptually from the view point of the nonlinear-nonequilibrium physics. In the first model, a single-cell system with a highly active state confined by a semipermeable membrane is spontaneously created from an inactive homogeneous ...

  3. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy

    Science.gov (United States)

    Krishnamurthy, S.; Gnanasammandhan, M. K.; Xie, C.; Huang, K.; Cui, M. Y.; Chan, J. M.

    2016-03-01

    Core-shell type `nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines.Core-shell type `nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07588b

  4. Why can hydrogen sulfide permeate cell membranes?

    Science.gov (United States)

    Riahi, Saleh; Rowley, Christopher N

    2014-10-29

    The high membrane permeability of H2S was studied using polarizable molecular dynamics simulations of a DPPC lipid bilayer. The solubility-diffusion model predicts permeability coefficients of H2S and H2O that are in good agreement with experiment. The computed diffusion coefficient profile shows H2S to diffuse at a lower rate than H2O, but the barrier for H2S permeation on the Gibbs energy profile is negligible. The hydrophobicity of H2S allows it to partition into the paraffinic interior of the membrane readily. PMID:25323018

  5. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time. PMID:22460313

  6. Membrane Targeting of P-type ATPases in Plant Cells

    International Nuclear Information System (INIS)

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems

  7. Nanocarriers Conjugated with Cell Penetrating Peptides: New Trojan Horses by Modern Ulysses.

    Science.gov (United States)

    Zappavigna, Silvia; Misso, Gabriella; Falanga, Annarita; Perillo, Emiliana; Novellino, Ettore; Galdiero, Massimiliano; Grieco, Paolo; Caraglia, Michele; Galdiero, Stefania

    2016-01-01

    Nanomedicine has opened the way to the design of more efficient diagnostics and therapeutics. Moreover, recent literature has illustrated the use of short cationic and/or amphipathic peptides, known as cell-penetrating peptides (CPPs), for mediating advanced drug delivery. CPPs exploit their ability to enter cells and enhance the uptake of many cargoes ranging from small molecules to proteins. The distinctive properties of nanocarriers (NC) based systems provide unforeseen benefits over pure drugs for biomedical applications and constitute a challenging research field particularly focused on imaging and delivery; nonetheless, several problems have to be overcome to make them a viable option in clinic. The use of CPPs improves significantly their delivery to specific intracellular targets and thus readily contributes to their use both for effective tumor therapy and gene therapy. A key issue is related to their mechanism of uptake, because although classical CPPs enhance NCs' uptake, the entry mechanism involves the endocytic pathway, which means that the delivered material is sequestered within vesicles and only a small amount will escape from this environment and reach the desired target. In this review, we will summarize recent advances in the use of CPP for enhanced delivery of nanocarriers, nucleic acids, and drugs, we will discuss their uptake mechanisms and we will describe novel approaches to improve endosomal escape of internalized nanosystems. PMID:27087493

  8. Intracellular Target-Specific Accretion of Cell Penetrating Peptides and Bioportides: Ultrastructural and Biological Correlates.

    Science.gov (United States)

    Jones, Sarah; Uusna, Julia; Langel, Ülo; Howl, John

    2016-01-20

    Cell penetrating peptide (CPP) technologies provide a viable strategy to regulate the activities of intracellular proteins that may be intractable to other biological agents. In particular, the cationic helical domains of proteins have proven to be a reliable source of proteomimetic bioportides, CPPs that modulate the activities of intracellular proteins. In this study we have employed live cell imaging confocal microscopy to determine the precise intracellular distribution of a chemically diverse set of CPPs and bioportides. Our findings indicate that, following efficient cellular entry, peptides are usually accreted at intracellular sites rather than being freely maintained in an aqueous cytosolic environment. The binding of CPPs to proteins in a relatively stable manner provides a molecular explanation for our findings. By extension, it is probable that many bioportides influence biological processes through a dominant-negative influence upon discrete protein-protein interactions. As an example, we report that bioportides derived from the leucine-rich repeat kinase 2 discretely influence the biology and stability of this key therapeutic target in Parkinson's disease. The intracellular site-specific accretion of CPPs and bioportides can also be readily modulated by the attachment of larger cargoes or, more conveniently, short homing motifs. We conclude that site-specific intracellular targeting could be further exploited to expand the scope of CPP technologies. PMID:26623479

  9. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  10. Intestinal Cell Tight Junctions Limit Invasion of Candida albicans through Active Penetration and Endocytosis in the Early Stages of the Interaction of the Fungus with the Intestinal Barrier.

    Directory of Open Access Journals (Sweden)

    Marianne Goyer

    Full Text Available C. albicans is a commensal yeast of the mucous membranes in healthy humans that can also cause disseminated candidiasis, mainly originating from the digestive tract, in vulnerable patients. It is necessary to understand the cellular and molecular mechanisms of the interaction of C. albicans with enterocytes to better understand the basis of commensalism and pathogenicity of the yeast and to improve the management of disseminated candidiasis. In this study, we investigated the kinetics of tight junction (TJ formation in parallel with the invasion of C. albicans into the Caco-2 intestinal cell line. Using invasiveness assays on Caco-2 cells displaying pharmacologically altered TJ (i.e. differentiated epithelial cells treated with EGTA or patulin, we were able to demonstrate that TJ protect enterocytes against invasion of C. albicans. Moreover, treatment with a pharmacological inhibitor of endocytosis decreased invasion of the fungus into Caco-2 cells displaying altered TJ, suggesting that facilitating access of the yeast to the basolateral side of intestinal cells promotes endocytosis of C. albicans in its hyphal form. These data were supported by SEM observations of differentiated Caco-2 cells displaying altered TJ, which highlighted membrane protrusions engulfing C. albicans hyphae. We furthermore demonstrated that Als3, a hypha-specific C. albicans invasin, facilitates internalization of the fungus by active penetration and induced endocytosis by differentiated Caco-2 cells displaying altered TJ. However, our observations failed to demonstrate binding of Als3 to E-cadherin as the trigger mechanism of endocytosis of C. albicans into differentiated Caco-2 cells displaying altered TJ.

  11. Penetration of a Single Domain of Bacillus thuringiensis Cry1Ie-Domain I to a Lipid Membrane In vitro

    Institute of Scientific and Technical Information of China (English)

    GUO Shu-yuan; LI Jie; CHEN Zhen; HE Kang-lai

    2014-01-01

    Domain I of the activated Crystal protein from Bacillus thuringiensis has a sevenα-helix bundle structure, which is responsible for membrane channel formation in its insecticidal mechanism. Cry1Ie is toxic to Asian corn borer, Ostrinia furnacalis (Guenée), and plays important roles in insect biological control. The domain I from Cry1Ie has been expressed and puriifed in its normal conformation, as embedded in the full length homologous toxin structure. The membrane insertion ability of this single domain was compared with the full length homologous toxin using a monolayer insertion experiment. The results indicated that the Cry1Ie-domain I had the ability to insert into the lipid monolayer, and this ability is greater than that of the IE648 toxin. However, the state of insertion is not stable and remains for only a short period of time. The Cry1Ie-domain I plays no role in receptor binding as it had a nonspeciifc binding with the brush border membrane vesicles of the Asian corn borer.

  12. Intracellular delivery method based on a combination of electrokinetic forces and vibration-assisted cell membrane perforation

    Science.gov (United States)

    Shibata, Takayuki; Ito, Yasuharu; Ozawa, Tatsuya; Nagai, Moeto; Kawashima, Takahiro

    2014-02-01

    The introduction of biological macromolecules such as DNA, RNA, and proteins into living cells plays a crucial role in the fundamental analysis of cellular functions and mechanisms in living systems. Therefore, we have been developing an effective platform for the in vitro manipulation and analysis of biological cells at the single-cells. In this paper, we successfully demonstrated a novel intracellular delivery method of DNA into living HeLa cells via a glass micropipette based on DC-biased AC electrokinetically driven forces. We also proposed a vibration-assisted insertion method for penetrating a cell membrane to reduce cell damage. Preliminary insertion tests on homemade SICM system and FEM simulations revealed that the application of the mechanical oscillation can reduce the deformation of cells probably due to an increase in their viscous resistance. Moreover, we also found that a change in the ion current during the insertion process allows us to detect the instant when the micropipette tip penetrates the cell membrane.

  13. Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Walker LR

    2014-10-01

    Full Text Available Leslie R Walker,1 Jung Su Ryu,1 Eddie Perkins,2 Lacey R McNally,3 Drazen Raucher1 1Department of Biochemistry, 2Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA; 3Division of Hematology and Oncology, University of Louisville, Louisville, KY, USAAbstract: Current therapies for the treatment of pancreatic cancer are limited. The limitations of this type of treatment are abundant. The majority of chemotherapeutic agents used in clinics are highly toxic to both tumor cells and normal tissues due to the lack of specificity. Resistance can develop due to overexposure of these agents. To address these issues, these agents must be made more exclusive toward the tumor site. We have developed a macromolecular carrier based on the sequence of the biopolymer elastin-like polypeptide (ELP that is able to aggregate upon reaching the externally heated tumor environment. This carrier is specific to the tumor as it only aggregates at the heated tumor site. ELP is soluble below its transition temperature but will aggregate when the temperature is raised above its transition temperature. ELP was modified by p21, a cell cycle inhibitory peptide, and the addition of Bac, a cell-penetrating peptide with nuclear localization capabilities. In this study, p21-ELP-Bac and its control, ELP-p21, were used in cell proliferation studies using the pancreatic cancer cell lines Panc-1, MiaPaca-2, and S2013. ELP-p21 had little effect on proliferation, while the half maximal inhibitory concentration of p21-ELP-Bac was ~30 µM. As translocation across the plasma membrane is a limiting step for delivery of macromolecules, these polypeptides were utilized in a pancreatic xenograft model to study the plasma clearance, biodistribution, tumor accumulation, and tumor reduction capabilities of the polypeptide with and without a cell-penetrating peptide.Keywords: elastin-like polypeptide, peptide, targeted drug delivery, macromolecule

  14. With or without rafts? Alternative views on cell membranes.

    Science.gov (United States)

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. PMID:26666984

  15. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    OpenAIRE

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    This paper presents experimental data and an analysis of a proton exchange membrane fuel cell system for electric vehicle applications. The dependence of the fuel cell system's performance on air stoichiometry, operating temperature, and reactant gas pressure was assessed in terms of the fuel cell's polarity and power density-efficiency graphs. All the experiments were performed by loading the fuel cell with resistive heater coils which could be controlled to provide a constant current or con...

  16. FM dye photo-oxidation as a tool for monitoring membrane recycling in inner hair cells.

    Directory of Open Access Journals (Sweden)

    Dirk Kamin

    Full Text Available Styryl (FM dyes have been used for more than two decades to investigate exo- and endocytosis in conventional synapses. However, they are difficult to use in the inner hair cells of the auditory pathway (IHCs, as FM dyes appear to penetrate through mechanotransducer channels into the cytosol of IHCs, masking endocytotic uptake. To solve this problem we applied to IHCs the FM dye photo-oxidation technique, which renders the dyes into electron microscopy markers. Photo-oxidation allowed the unambiguous identification of labeled organelles, despite the presence of FM dye in the cytosol. This enabled us to describe the morphologies of several organelles that take up membrane in IHCs, both at rest and during stimulation. At rest, endosome-like organelles were detected in the region of the cuticular plate. Larger tubulo-cisternal organelles dominated the top and nuclear regions. Finally, the basal region, where the IHC active zones are located, contained few labeled organelles. Stimulation increased significantly membrane trafficking in the basal region, inducing the appearance of labeled vesicles and cistern-like organelles. The latter were replaced by small, synaptic-like vesicles during recovery after stimulation. In contrast, no changes in membrane trafficking were induced by stimulation in the cuticular plate region or in the top and nuclear regions. We conclude that synaptic vesicle recycling takes place mostly in the basal region of the IHCs. Other organelles participate in abundant constitutive membrane trafficking throughout the rest of the IHC volume.

  17. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.;

    2011-01-01

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper the...... oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending on the...

  18. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    Science.gov (United States)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  19. Dynamic Structure Formation of Peripheral Membrane Proteins

    OpenAIRE

    Morozova, Diana; Guigas, Gernot; Weiss, Matthias

    2011-01-01

    Author Summary Eukaryotic cells are subdivided into a variety of compartments by membranes, i.e. by lipid bilayers into which a multitude of proteins are embedded. About 30% of all protein species in a cell are associated with membranes to perform vital functions, e.g. in signaling and transport pathways. A plethora of membrane-associated proteins, so-called peripheral membrane proteins, penetrate only one monolayer whereas transmembrane proteins span the entire thickness of a lipid bilayer. ...

  20. Cationic Nanoparticles Induce Nanoscale Disruption in Living Cell Plasma Membranes

    OpenAIRE

    Chen, Jiumei; Hessler, Jessica A.; Putchakayala, Krishna; Panama, Brian K.; Khan, Damian P.; Hong, Seungpyo; Mullen, Douglas G.; DiMaggio, Stassi C.; Som, Abhigyan; Tew, Gregory N.; Lopatin, Anatoli N.; Baker, James R.; Banaszak Holl, Mark M.; Orr, Bradford G

    2009-01-01

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper we show that non-cytotoxic concentrations of cationic nanoparticles induce 30–2000 pA currents in 293A and KB cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm2 in total area....

  1. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  2. Attachment of killed Mycoplasma gallisepticum cells and membranes to erythrocytes

    International Nuclear Information System (INIS)

    To correlate viability with attachment capacity, Mycoplasma gallisepticum cells harvested at different growth phases and treated by various agents were tested for their capacity to attach to human erythrocytes. The results show that viability per se is not essential for M. gallisepticum attachment to erythrocytes, as cells killed by ultraviolet irradiation and membranes isolated by lysing M. gallisepticum cells by various means retained attachment capacity. However, treatment of the mycoplasmas by protein-denaturing agents, such as heart, glutaraldehyde, or prolonged exposure to low pH, drastically affected or even abolished attachment, supporting the protein nature of the mycoplasma membrane components responsible for specific binding to the sialoglycoprotein receptors on the erythrocytes

  3. Altered Membrane Potential and Electrolyte in Sickle Cell Anemia

    Directory of Open Access Journals (Sweden)

    JK Nnodim

    2014-01-01

    Full Text Available Aim: This study has been to evaluate the level of membrane potential and electrolyte in sickle cell disease patients. Material and methods: 100 sickle cell patients in steady state ages 5 to 30 years attending General Hospital Owerri were used in the study while 100 normal subjects (HbAA were used as control. Also 30 HbSS in crisis have been involved. Results: The results obtained showed that the level of membrane potential was significantly lower in sickle cell anemia as compared to the controls. Also, the level of the electrolyte was found significantly decreased in HbSS when compared with HbAA at P<0.05. Conclusion: The membrane potential translates to energy which means that there is less energy in sickle cell disease which is linked to electrolyte imbalance. Hence people with sickle disease should be monitored closely for their electrolytes to avoid crisis.

  4. Membrane Mechanics of Endocytosis in Cells with Turgor

    CERN Document Server

    Dmitrieff, Serge

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane defor- mations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck cons...

  5. Interaction of injectable neurotropic drugs with the red cell membrane.

    Science.gov (United States)

    Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas

    2014-10-01

    The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. PMID:24997296

  6. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  7. Endothelial monolayers on collagen-coated nanofibrous membranes: cell-cell and cell-ECM interactions.

    Science.gov (United States)

    Kang, Donggu; Kim, Jeong Hwa; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik; Jin, Songwan

    2016-06-01

    Endothelial cells (ECs) form a monolayer lining over the entire vascular wall and play an important role in maintaining vascular homeostasis and cancer metastasis. Loss of proper endothelial function can lead to vascular diseases. Therefore, the endothelial monolayer is particularly important in tissue regeneration and mimicking vascular tissue in vitro. Numerous studies have described the effects of ECs on nanofibers made from a variety of synthetic polymer materials designed to mimic the extracellular matrix (ECM). However, little is known about maintaining the integrity of ECs in in vitro systems. Here we describe polycaprolactone nanofibrous membranes coated with collagen gel that overcome many limitations of conventional nanofibers used for engineering endothelia. We investigated cell-cell and cell-ECM junctional complexes using collagen-coated and conventional nanofibrous membranes. Conventional nanofibrous membranes alone did not form a monolayer with ECs, whereas collagen-coated nanofibrous membranes did. Several concentrations of collagen in the gel coating promoted the formation of cell-cell junctional complexes, facilitated the deposition of laminin, and increased the focal contact organization of ECs. These results suggest the possible use of collagen-coated nanofibrous membranes for vascular tissue engineering applications and a vascular platform for organ-on-a-chip systems. PMID:27186924

  8. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  9. Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)

    Science.gov (United States)

    Tixador, R.

    1992-01-01

    The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.

  10. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of [3H]thymidine or [3H]uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both [35S]methionine and [3H]leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties

  11. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  12. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    Science.gov (United States)

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes. PMID:19606833

  13. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Krauss, Ulrike; Beck-Sickinger, Annette G;

    2004-01-01

    To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers.......To investigate whether cell penetrating peptides (CPP) derived from human calcitonin (hCT) possess, in addition to cellular uptake, the capacity to deliver their cargo through epithelial barriers....

  14. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    Science.gov (United States)

    Gaspar, V. M.; Marques, J. G.; Sousa, F.; Louro, R. O.; Queiroz, J. A.; Correia, I. J.

    2013-07-01

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan-histidine-arginine (CH-H-R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy.

  15. Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery

    International Nuclear Information System (INIS)

    Bridging the gap between nanoparticulate delivery systems and translational gene therapy is a long sought after requirement in nanomedicine-based applications. However, recent developments regarding nanoparticle functionalization have brought forward the ability to synthesize materials with biofunctional moieties that mimic the evolved features of viral particles. Herein we report the versatile conjugation of both cell penetrating arginine and pH-responsive histidine moieties into the chitosan polymeric backbone, to improve the physicochemical characteristics of the native material. Amino acid coupling was confirmed by 2D TOCSY NMR and Fourier transform infrared spectroscopy. The synthesized chitosan–histidine–arginine (CH–H–R) polymer complexed plasmid DNA biopharmaceuticals, and spontaneously assembled into stable 105 nm nanoparticles with spherical morphology and positive surface charge. The functionalized delivery systems were efficiently internalized into the intracellular compartment, and exhibited remarkably higher transfection efficiency than unmodified chitosan without causing any cytotoxic effect. Additional findings regarding intracellular trafficking events reveal their preferential escape from degradative lysosomal pathways and nuclear localization. Overall, this assembly of nanocarriers with bioinspired moieties provides the foundations for the design of efficient and customizable materials for cancer gene therapy. (paper)

  16. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  17. In Plant and Animal Cells, Detergent-Resistant Membranes Do Not Define Functional Membrane Rafts

    Czech Academy of Sciences Publication Activity Database

    Tanner, W.; Malínský, Jan; Opekarová, Miroslava

    2011-01-01

    Roč. 23, č. 4 (2011), s. 1191-1193. ISSN 1040-4651 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50200510 Keywords : plasma-membrane * lipod rafts * proteins Subject RIV: EA - Cell Biology Impact factor: 8.987, year: 2011

  18. Corona discharge in electroporation of cell membranes

    International Nuclear Information System (INIS)

    The objective of the present work is to demonstrate that electrical corona discharge is very efficient in cellular membrane electroporation due to current pulses with sharp front (2-5 ns) and to the fact that corona discharge is associated with UV radiation and micro particles emission. A comparison between DC and AC at 800 Hz and a special waveform to corona application is presented. The comparison is analyzed by means of applying all these in the maceration process (electroplasmolysis) of red wine production and in the processes of different types of the microbes.

  19. Corona discharge in electroporation of cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cramariuc, R; Nisiparu, L [Competence Centre in Electrostatics and Electrotehchnologies (Romania); Tudorache, A; Branduse, E; Fotescu, L [Research Institute of Wine Processing, Valea Mantei Street, No.l, Valea Calugareasca (Romania); Popa, M E; Mitelut, A [Biotechnology Faculty, University of Agronomical Sciences and Veterinary Medicine (Romania); Turtoi, M O

    2008-12-01

    The objective of the present work is to demonstrate that electrical corona discharge is very efficient in cellular membrane electroporation due to current pulses with sharp front (2-5 ns) and to the fact that corona discharge is associated with UV radiation and micro particles emission. A comparison between DC and AC at 800 Hz and a special waveform to corona application is presented. The comparison is analyzed by means of applying all these in the maceration process (electroplasmolysis) of red wine production and in the processes of different types of the microbes.

  20. Detecting protein association at the T cell plasma membrane.

    Science.gov (United States)

    Baumgart, Florian; Schütz, Gerhard J

    2015-04-01

    At the moment, many models on T cell signaling rely on results obtained via rather indirect methodologies, which makes direct comparison and conclusions to the in vivo situation difficult. Recently, a variety of new imaging methods were developed, which have the potential to directly shed light onto the mysteries of protein association at the T cell membrane. While the new modalities are extremely promising, for a broad readership it may be difficult to judge the results, since technological shortcomings are not always obvious. In this review article, we put key questions on the mechanism of protein interactions in the T cell plasma membrane into relation with techniques that allow to address such questions. We discuss applicability of the techniques, their strengths and weaknesses. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. PMID:25300585

  1. Role of the cell membrane in volume regulation

    International Nuclear Information System (INIS)

    The mechanism for the stimulation of Na+ efflux in swollen cells was studied in red cells with increased and decreased cell volume. Results suggest that this response is the result of an increased affinity of the system for Na+ caused by reduced inhibition by intracellular K+ resulting from simple dilution during swelling, and a direct effect of membrane stretching on conformation of the transport system. (U.S.)

  2. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  3. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

    OpenAIRE

    Song-Bin Huang; Yang Zhao; Deyong Chen; Shing-Lun Liu; Yana Luo; Tzu-Keng Chiu; Junbo Wang; Jian Chen; Min-Hsien Wu

    2015-01-01

    Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression) is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspe...

  4. Preliminary Study of Membrane Preparation for Fuel Cell Polymer Electrolyte Membrane

    International Nuclear Information System (INIS)

    Proton conducting membranes for polymer electrolyte membrane fuel cells (PEMFC) have been prepared by radiation graft copolymerization of acrylic acid onto back bone polymers such as linear low density polyethylene (LLDPE), high density polyethylene (HDPE), and polypropylene (PP). Graft copolymers are prepared by γ-radiation and electron beam irradiation. The methods used are grafting on radiation-peroxide and grafting initiated by trapped radicals, in which the grafting reaction is done after the irradiation process (pre-irradiation grafting). The influence of the preparation conditions and the role of the initial polymer matrixes are studied. The degrees of grafting are determined by the total absorbed dose during irradiation, monomer’s concentration, grafting temperature, and the time of grafting. It is found that dose rate does not have a significant effect on the yield of grafting. The best suitable conditions for the grafting are as follows: 45 kGy for total dose, 40% (v/v) for monomer’s concentration, 70 °C for temperature and 90 minutes for period of grafting. Membranes based on different polymer matrixes show differences in their water uptake from liquid water. Apparently the ability of the membranes to take in the solvent depends on matrixes of the back bone polymers. It reflects the hydrophilic membranes properties. The preliminary characterization of the prepared grafted membranes is done by the treatment of metal uptake, using atomic absorption technique. The maximum uptake of the membranes for a given metal is Fe > Cu > Co except for LLDPE-g-Aac in which the uptake of Co > Cu. The maximum uptake of the membranes for a mixture of the metals in the same feed solution is Fe > Cu > Co. (author)

  5. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  6. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    Science.gov (United States)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  7. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  8. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  9. Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings

    Science.gov (United States)

    Cuynet, S.; Caillard, A.; Kaya-Boussougou, S.; Lecas, T.; Semmar, N.; Bigarré, J.; Buvat, P.; Brault, P.

    2015-12-01

    Proton exchange membranes were nano- and micro-patterned on their cathode side by pressing them against stainless steel molds previously irradiated by a Ti:Sapphire femtosecond laser. The membranes were associated to ultra-low loaded thin catalytic layers (25 μgPt cm-2) prepared by plasma magnetron sputtering. The Pt catalyst was sputtered either on the membrane or on the porous electrode. The fuel cell performance in dry conditions were found to be highly dependent on the morphology of the membrane surface. When nanometric ripples covered by a Pt catalyst were introduced on the surface of the membrane, the fuel cell outperformed the conventional one with a flat membrane. By combining nano- and micro-patterns (nanometric ripples and 11-24 μm deep craters), the performance of the cells was clearly enhanced. The maximum power density achieved by the fuel cell was multiplied by a factor of 3.6 (at 50 °C and 3 bar): 438 mW cm-2 vs 122 mW cm-2. This improvement is due to high catalyst utilization with a high membrane conductivity. When Pt is sputtered on the porous electrode (and not on the membrane), the contribution of the patterned membrane to the fuel cell efficiency was less significant, except in the presence of nanometric ripples. This result suggests that the patterning of the membrane must be consistent with the way the catalyst is synthesized, on the membrane or on the porous electrode.

  10. Radiation effects on membranes - 1. Cellular permeability and cell survival

    International Nuclear Information System (INIS)

    The effect of various doses of γ radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of γ radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to γ radiation

  11. Isolation of plasma membranes from cultured glioma cells and application to evaluation of membrane sphingomyelin turnover

    International Nuclear Information System (INIS)

    A rapid and reliable method for the isolation of plasma membranes and microsomes of high purity and yield from cultured glioma cells is described. The procedure involves disruption by N2 cavitation, preliminary separation by centrifugation in Tricine buffer, and final separation on a gradient formed from 40% Percoll at pH 9.3. Enzyme and chemical markers indicated greater than 60% yield with six- to eightfold enrichment for plasma membranes and greater than 25% yield with three- to fourfold enrichment for a microsomal fraction consisting mainly of endoplasmic reticulum. The final fractions were obtained with high reproducibility in less than 1 h from the time of cell harvesting. Application of this procedure to human fibroblasts in culture is assessed. The isolation procedure was applied to investigations of synthesis and turnover of sphingomyelin and phosphatidylcholine in plasma membranes of glioma cells following incubation for 4-24 h with [methyl-3H]choline. These studies indicated that radioactivity from phosphatidylcholine synthesized in microsomes from exogenous choline may serve as a precursor of the head-group of sphingomyelin accumulating in the plasma membrane

  12. Solid alkaline membrane fuel cell : what are they advantages and drawbacks compared to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutanceau, C.; Baranton, S.; Simoes, M. [Univ. de Poitiers, Poitiers (France). Laboratoire de Catalyse en Chimie Organique, UMR CNRS

    2010-07-01

    Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) and direct alcohol fuel cells (DAFCs) are promising power sources for portable electronics and transportation applications. However, these fuel cells require high amounts of platinum at the anodes to achieve high cell performance. Although alkaline membrane fuel cells (AFCs) may be an alternative to PEMFCs, the technology of low temperature fuel cells is less developed than that of fuel cells working with a solid acid electrolyte. Interest in solid alkaline membrane fuel cells (SAMFCs) has increased in recent years because it is easier to activate the oxidation and reduction reactions in alkaline medium than in acidic medium. Fewer platinum based catalysts are needed due to higher electrode kinetics. The development of hydroxyl conductive membrane makes this technology available, but the fuel to be used in the system must be considered. Pure hydrogen or hydrogen-rich gases offer high electric efficiency, but their production, storage, and distribution are not sufficient for a large-scale development. This paper discussed the relatively good electroreactivity of polyols such as glycerol and ethylene glycol in a SAMFC, as well as sodium borohydride (NaBH{sub 4}) as an alternative. The working principle of SAMFCs was also presented along with considerations regarding the electrochemical reactions occurring at the electrodes, and requirements concerning the catalysts, the triple phase boundary in the electrode and the anionic membrane. Palladium based catalysts were found to be an interesting alternative to platinum in SAMFCs. In situ FTIR measurements and oxidation products analysis was used to determine the electrooxidation pathways of alcohol and NaBH{sub 4}in alkaline medium. The study also included a comparison with oxidation mechanisms in acid medium. 8 refs.

  13. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  14. Optical Trapping Techniques Applied to the Study of Cell Membranes

    Science.gov (United States)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  15. Effect of stress on the membrane capacitance of the auditory outer hair cell.

    OpenAIRE

    Iwasa, K H

    1993-01-01

    The membrane capacitance of the outer hair cell, which has unique membrane potential-dependent motility, was monitored during application of membrane tension. It was found that the membrane capacitance of the cell decreased when stress was applied to the membrane. This result is the opposite of stretching the lipid bilayer in the plasma membrane. It thus indicates the importance of some other capacitance component that decreases on stretching. It has been known that charge movement across the...

  16. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p electroporation. Viability in the primary normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment. PMID:27312328

  17. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  18. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  19. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    OpenAIRE

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, whi...

  20. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  1. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems.

    Science.gov (United States)

    Zhang, Dongdong; Wang, Jiaxi; Xu, Donggang

    2016-05-10

    Unique characteristics, such as nontoxicity and rapid cellular internalization, allow the cell-penetrating peptides (CPPs) to transport hydrophilic macromolecules into cells, thus, enabling them to execute biological functions. However, some CPPs have limitations due to nonspecificity and easy proteolysis. To overcome such defects, the CPP amino acid sequence can be modified, replaced, and reconstructed for optimization. CPPs can also be used in combination with other drug vectors, fused with their preponderances to create novel multifunctional drug-delivery systems that increase the stability during blood circulation, and also develop novel preparations capable of targeted delivery, along with sustainable and controllable release. Further improvements in CPP structure can facilitate the penetration of macromolecules into diverse biomembrane structures, such as the blood brain barrier, gastroenteric mucosa, and skin dermis. The ability of CPP to act as transmembrane vectors improves the clinical application of some biomolecules to treat central nervous system diseases, increase oral bioavailability, and develop percutaneous-delivery dosage form. PMID:26993425

  2. Effects of membrane disruption on dielectric properties of biological cells

    International Nuclear Information System (INIS)

    Disruption of the plasma membrane causes serious changes in the dielectric properties of biological cells. The changes have been simulated with spherical cell models having holes in the plasma membrane. The complex permittivity of a cubic system including a cell model was calculated by a numerical technique based on the three-dimensional finite difference method. For a cell without hole, the complex permittivity showed dielectric relaxation (β-dispersion) as predicted from interfacial polarization theories for the single-shell model. When there is one hole in the membrane, the cell has anisotropic dielectric properties depending on whether the axis through the centres of the hole and the sphere is parallel (the parallel orientation) or perpendicular (the perpendicular orientation) to the electric field direction. In the parallel orientation, dielectric relaxation (called 'α-dispersion') appeared at lower frequencies in addition to the β-dispersion, whereas only the β-dispersion was found in the perpendicular orientation. When there were two holes at the opposite poles of the cell, the 'α-dispersion' did not appear and the intensity of the β-dispersion decreased with increasing size of the holes. When two holes located in the hemisphere of the cell, however, the 'α-dispersion' appeared again. These results suggest that the occurrence of the 'α-dispersion' requires either the presence of one hole or the localization of holes

  3. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk;

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when not in...... use. This increases the time required to start the system and could lead to the destruction of the fuel cell. In this article an impedance measurement circuit is presented, which is part of a humidity status estimator for monitoring the humidity status of a fuel cell stack during standby. The...

  4. The Autohumidification Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J B; Tulyani, S; Turner, A; Bocarsly, A B; Kevrekidis, Yu G

    2003-01-01

    A PEM fuel cell was specially constructed to determine kinetics under conditions of well-defined gas phase composition and cell temperature. Steady state multiplicity was discovered in the autohumidification PEM fuel cell, resulting from a balance between water production and water removal. Ignition was observed in the PEM fuel cell for a critical water activity of about 0.1. Ignition is a consequence of the exponential increase of proton conductivity with water activity, which creates an autocatalytic feedback between the water production and the proton conduction. The steady state current in the ignited state decreases with increasing temperature between 50 to 105 deg C. At temperatures greater than 70 deg C five steady states were observed in the PEM fuel cell. The steady state performance has been followed with variable load resistance and hysteresis loops have been mapped. The dynamics of transitions between steady states are slow about 10^3 to 10^4 s. These slow dynamics are suggested to result from a c...

  5. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  6. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter;

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...

  7. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...

  8. Fuel cell characteristics of the membrane electrode assemblies using phosphoric acid-doped poly membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Liang; Sheng, Li; Guo, Xiaoxia; Fang, Jianhua; Ma, Zi-Feng

    2011-01-15

    Recently, there has been extensive research in the development of polymer electrolyte membrane fuel cells (PEMFCs) for transportation and portable power applications. Nafion has been widely used as electrolyte membranes, but it has several limitations. Thus intensive efforts have been devoted to the development of low-cost proton-conducting electrolytes used at elevated temperatures to reduce the impurities poisoning. Promising candidates are the PA-doped polybenzimidazoles, which can function at higher temperature under non-humidification conditions to eliminate the water management, promote the fuel impurities tolerance, increase the electrode kinetics and facilitate the heat recovery. In this study, the novel PA-doped OPBI membrane was chosen as the electrolyte, and one molecular weight mPBI was synthesized as the binder in catalyst layers. This optimized membrane electrode assemblies (MEAs) exhibited desirable performances in the electrochemical tests up to 160 degree C. This investigation opened up a new way to develop the practical proton-conducting fuel cell systems working at elevated temperatures.

  9. Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    The hot-pressing conditions for fabricating the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC) was investigated by using a 2n full factorial design. Time, temperature and pressure were key parameters that were varied from 500 to 1500 psi, 1 to 5 min and 100 to 160 deg. C, respectively. The results from the full factorial analysis indicated that the order of significance of the main MEA fabricating effects was temperature, pressure, time-temperature interaction and pressure-time-temperature interaction. By examining the cell performance curves, the lower fabrication conditions of temperature and pressure were suitable for MEA preparation. The conductive layer between the membrane and the catalyst layer became thin at high pressure and high temperature, as seen from scanning electron microscopy (SEM) images. In the ranges of condition studied, the most suitable hot-pressing condition for MEA fabrication was at 100 deg. C, 1000 psi and 2 min. This condition provided the highest maximum power density from the MEA and the best contact at the interfaces between the gas diffusion layer, the active layer and the electrolyte membrane. The experimental results were verified by testing with a commercial MEA in the same operating condition and with the same equipment. The performance of the fabricated MEA was better than that of the commercial one

  10. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane

    OpenAIRE

    Gerl, Mathias J.; Sampaio, Julio L; Urban, Severino; Kalvodova, Lucie; Verbavatz, Jean-Marc; Binnington, Beth; Lindemann, Dirk; Lingwood, Clifford A.; Shevchenko, Andrej; Schroeder, Cornelia; Simons, Kai

    2012-01-01

    The influenza virus (IFV) acquires its envelope by budding from host cell plasma membranes. Using quantitative shotgun mass spectrometry, we determined the lipidomes of the host Madin–Darby canine kidney cell, its apical membrane, and the IFV budding from it. We found the apical membrane to be enriched in sphingolipids (SPs) and cholesterol, whereas glycerophospholipids were reduced, and storage lipids were depleted compared with the whole-cell membranes. The virus membrane exhibited a furthe...

  11. Design & development of innovative proton exchange membrane fuel cells

    OpenAIRE

    Carton, James

    2011-01-01

    The research undertaken in this thesis is concerned with the design and development of Proton Exchange Membrane (PEM) fuel cells and provides a body of information for continued PEM fuel cell development, which will ideally aid in the future commercialisation of these electrochemical devices. Through a combination of numerical analysis, computational fluid dynamic modelling and experimental work, effective flow plate designs, flow field configurations and materials are analysed and new inn...

  12. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    OpenAIRE

    Yang Xiao; Chongdu Cho

    2014-01-01

    As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC), have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE). Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as ...

  13. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.;

    2013-01-01

    evaluated as PEMs for use in fuel cells by proton conductivity measurements, and in the case of dendronized architectures: thermal stability. The proposed synthetic strategy facilitates exploration of a non‐fluorous system with various flexible side chains where IEC is tunable by the degree of substitution....

  14. The amniotic membrane as a source of stem cells.

    Science.gov (United States)

    Insausti, Carmen L; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Majado, María J; Castellanos, Gregorio; Moraleda, José M

    2010-01-01

    Cellular therapy has emerged as a new potential tool for curing a wide range of degenerative diseases and tissue necrosis. Embryonic stem cells possess potential for differentiation into a wide range of cell lineages, but the ethical issues associated with establishment of this human cell line have to be resolved prior to any use. The bone marrow (BM) is the usual source of adult stem cells for hematopoietic stem cell transplants and cellular therapy, but the BM harvest is a surgical procedure that requires general anesthesia or sedation, and there seems to be a reduction of the proliferative potential and differentiation capacity of the marrow mesenchymal stem cells in older donors. For these reasons there is an increasing interest in other sources of stem cells from adult and fetal tissues. The amniotic membrane (AM) or amnion is a tissue of particular interest because its cells possess characteristics of stem cells with multipotent differentiation ability, and because of low immunogenicity and easy procurement from the placenta, which is a discarded tissue after parturition, thus avoiding the current controversies associated with the use of human embryonic stem cells. Therefore, amniotic membrane has been proposed as a good candidate to be used in cellular therapy and regenerative medicine. PMID:19924645

  15. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    Science.gov (United States)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  16. Chemical Imaging of the Cell Membrane by NanoSIMS

    International Nuclear Information System (INIS)

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  17. Block copolymers for alkaline fuel cell membrane materials

    Science.gov (United States)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  18. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...

  19. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin;

    2013-01-01

    temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  20. Tension Sensitivity of Prestin: Comparison with the Membrane Motor in Outer Hair Cells

    OpenAIRE

    Dong, X.-X.; Iwasa, K H

    2004-01-01

    The membrane motor in outer hair cells undergoes conformational transitions involving charge displacement of ∼0.8 e across the membrane and changes of ∼4 nm2 in its membrane area. Previous reports have established that the charge transfer in the membrane motor and that in prestin, a membrane protein in the plasma membrane of outer hair cells, are approximately equal. Here, we determine the membrane area changes based on its sensitivity to membrane tension. We found that prestin does undergo a...

  1. Fusion of a Short HA2-Derived Peptide Sequence to Cell-Penetrating Peptides Improves Cytosolic Uptake, but Enhances Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Igor Kitanovic

    2009-09-01

    Full Text Available Cell-penetrating peptides (CPP have become a widely used tool for efficient cargo delivery into cells. However, one limiting fact is their uptake by endocytosis causing the enclosure of the CPP-cargo construct within endosomes. One often used method to enhance the outflow into the cytosol is the fusion of endosome-disruptive peptide or protein sequences to CPP. But, until now, no studies exist investigating the effects of the fusion peptide to the cellular distribution, structural arrangements and cytotoxic behaviour of the CPP. In this study, we attached a short modified sequence of hemagglutinin subunit HA2 to different CPP and analysed the biologic activity of the new designed peptides. Interestingly, we observed an increased cytosolic distribution but also highly toxic activities in the micromolar range against several cell lines. Structural analysis revealed that attachment of the fusion peptide had profound implications on the whole conformation of the peptide, which might be responsible for membrane interaction and endosome disruption.

  2. Quantitative & qualitative analysis of endothelial cells of donor cornea before & after penetrating keratoplasty in different pathological conditions

    Directory of Open Access Journals (Sweden)

    Aruna K.R. Gupta

    2016-01-01

    Full Text Available Background & objectives: Endothelial cells of the donor cornea are known to be affected quantitatively and qualitatively in different pathological conditions after penetrating keratoplasty (PK and this has direct effect on the clarity of vision obtained after PK. This study was undertaken to analyze the qualitative and quantitative changes in donor endothelial cells before and after PK in different pathological conditions. Methods: A prospective investigational analysis of 100 consecutive donor corneas used for penetrating keratoplasty between June 2006 and June 2008, was conducted. The patients were evaluated on the first day, at the end of first week, first month, third and six months and one year. Results: A decrease was observed in endothelial cell count in all pathological conditions. After one year of follow up the loss was 33.1 per cent in corneal opacity, 45.9 per cent in acute infective keratitis (AIK, 58.5 per cent in regrafts, 28.5 per cent in pseudophakic bullous keratopathy (PBK, 37 per cent in descemetocele, 27 per cent in keratoconus and 35.5 per cent in aphakic bullous keratopathy (ABK cases. Interpretation & conclusions: The endothelial cell loss was highest in regraft cases which was significant (P<0.05, while the least endothelial cell loss was seen in keratoconus cases. The cell loss was associated with increase in coefficient of variation (CV, i.e. polymegathism and pleomorphism. Inspite of this polymegathism and pleomorphism, the clarity of the graft was maintained.

  3. Enhancing tumor-specific intracellular delivering efficiency of cell-penetrating peptide by fusion with a peptide targeting to EGFR.

    Science.gov (United States)

    Nguyen, Long The; Yang, Xu-Zhong; Du, Xuan; Wang, Jia-Wei; Zhang, Rui; Zhao, Jian; Wang, Fu-Jun; Dong, Yang; Li, Peng-Fei

    2015-05-01

    Cell-penetrating peptides (CPPs) are well known as intracellular delivery vectors. However, unsatisfactory delivery efficiency and poor specificity are challenging barriers to CPP applications at the clinical trial stage. Here, we showed that S3, an EGFR-binding domain derived from vaccinia virus growth factor, when fused to a CPP such as HBD or TAT can substantially enhance its internalization efficiency and tumor selectivity. The uptake of S3-HBD (S3H) recombinant molecule by tumor cells was nearly 80 folds increased compared to HBD alone. By contrast, the uptake of S3H by non-neoplastic cells still remained at a low level. The specific recognition between S3 and its receptor, EGFR, as well as between HBD and heparan sulfate proteoglycans on the cell surface was essential for these improvements, suggesting a syngeneic effect between the two functional domains in conjugation. This syngeneic effect is likely similar to that of the heparin-binding epidermal growth factor, which is highly abundant particularly in metastatic tumors. The process that S3H entered cells was dependent on time, dosage, and energy, via macropinocytosis pathway. With excellent cell-penetrating efficacy and a novel tumor-targeting ability, S3H appears as a promising candidate vector for targeted anti-cancer drug delivery. PMID:25655386

  4. Quantitative & qualitative analysis of endothelial cells of donor cornea before & after penetrating keratoplasty in different pathological conditions

    Science.gov (United States)

    Gupta, Aruna K.R.; Gupta, Roopam K.R.

    2016-01-01

    Background & objectives: Endothelial cells of the donor cornea are known to be affected quantitatively and qualitatively in different pathological conditions after penetrating keratoplasty (PK) and this has direct effect on the clarity of vision obtained after PK. This study was undertaken to analyze the qualitative and quantitative changes in donor endothelial cells before and after PK in different pathological conditions. Methods: A prospective investigational analysis of 100 consecutive donor corneas used for penetrating keratoplasty between June 2006 and June 2008, was conducted. The patients were evaluated on the first day, at the end of first week, first month, third and six months and one year. Results: A decrease was observed in endothelial cell count in all pathological conditions. After one year of follow up the loss was 33.1 per cent in corneal opacity, 45.9 per cent in acute infective keratitis (AIK), 58.5 per cent in regrafts, 28.5 per cent in pseudophakic bullous keratopathy (PBK), 37 per cent in descemetocele, 27 per cent in keratoconus and 35.5 per cent in aphakic bullous keratopathy (ABK) cases. Interpretation & conclusions: The endothelial cell loss was highest in regraft cases which was significant (P<0.05), while the least endothelial cell loss was seen in keratoconus cases. The cell loss was associated with increase in coefficient of variation (CV), i.e. polymegathism and pleomorphism. Inspite of this polymegathism and pleomorphism, the clarity of the graft was maintained. PMID:27121519

  5. A Theory for the Membrane Potential of Living Cells

    CERN Document Server

    Endresen, L P; Høye, J S; Myrheim, Jan

    1998-01-01

    We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps. We demonstrate that the work done by the pumps equals the change in potential energy of the cell, plus the energy lost in downhill ionic fluxes through the channels and exchangers. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The model predicts the experimentally observed intracellular ionic concentration of potassium, calcium, and sodium. Likewise the shapes of the simulated action potential and five membrane currents are in good agreement with experiments. We do not see any drift in the values of the concentrations in a long time simulation, and we obtain the same asymptotic values when starting from the full equilibrium situation with equal intracellular and extracellular ionic concentrations.

  6. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2014-09-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  7. Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells

    Science.gov (United States)

    Wittstadt, U.; Wagner, E.; Jungmann, T.

    Membrane electrode assemblies for regenerative polymer electrolyte fuel cells were made by hot pressing and sputtering. The different MEAs are examined in fuel cell and water electrolysis mode at different pressure and temperature conditions. Polarisation curves and ac impedance spectra are used to investigate the influence of the changes in coating technique. The hydrogen gas permeation through the membrane is determined by analysing the produced oxygen in electrolysis mode. The analysis shows, that better performances in both process directions can be achieved with an additional layer of sputtered platinum on the oxygen electrode. Thus, the electrochemical round-trip efficiency can be improved by more than 4%. Treating the oxygen electrode with PTFE solution shows better performance in fuel cell and less performance in electrolysis mode. The increase of the round-trip efficiency is negligible. A layer sputtered directly on the membrane shows good impermeability, and hence results in high voltages at low current densities. The mass transportation is apparently constricted. The gas diffusion layer on the oxygen electrode, in this case a titanium foam, leads to flooding of the cell in fuel cell mode. Stable operation is achieved after pretreatment of the GDL with a PTFE solution.

  8. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  9. Inferring maps of forces inside cell membrane microdomains

    CERN Document Server

    Masson, J -B; Tuerkcan, S; Voisinne, G; Popoff, M R; Vergassola, M; Alexandrou, A

    2015-01-01

    Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the $\\epsilon$-toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show show its general relevance for membrane compartmentation.

  10. Inorganic-organic Composite Membranes with Novel Microstructure for High Temperature Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Zhigang Ma; Jiandong Gao; Jing Guo; Zhenghua Deng; Jishuan Suo

    2007-01-01

    Nowadays,more and more fossil fuels are consumed and air pollurion has become a threat to the survival of people.Therefore,we need some other power sources to provide energy without damaging the environment.Proton exchange membrane fuel cells(PEMFCs)have received wide attention due to their advantages Such as high energy density and zero emission[1].Particularly, direct methanol fuel cells (DMFCs)were considered as the most suitable energy sources for electric vehicles(EVs)and portable electronics.

  11. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul

    2010-07-01

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 x 10(-10) kg m s(-1) m(-2) and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 x 10(-10) kg m s(-1) m(-2) respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 x 10(-10) kg m s(-1) m(-2)). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 membranes in DEFC tests at 60 degrees C and 90 degrees C. (C) 2010 Elsevier B.V. All rights reserved.

  12. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  13. Recombinant expression and purification of a MAP30-cell penetrating peptide fusion protein with higher anti-tumor bioactivity.

    Science.gov (United States)

    Lv, Qiang; Yang, Xu-Zhong; Fu, Long-Yun; Lu, Yv-Ting; Lu, Yan-Hua; Zhao, Jian; Wang, Fu-Jun

    2015-07-01

    MAP30 (Momordica Antiviral Protein 30 Kd), a single-stranded type-I ribosome inactivating protein, possesses versatile biological activities including anti-tumor abilities. However, the low efficiency penetrating into tumor cells hampers the tumoricidal effect of MAP30. This paper describes MAP30 fused with a human-derived cell penetrating peptide HBD which overcome the low uptake efficiency by tumor cells and exhibits higher anti-tumor bioactivity. MAP30 gene was cloned from the genomic DNA of Momordica charantia and the recombinant plasmid pET28b-MAP30-HBD was established and transferred into Escherichia coli BL21 (DE3). The recombinant MAP30-HBD protein (rMAP30-HBD) was expressed in a soluble form after being induced by 0.5mM IPTG for 14h at 15°C. The recombinant protein was purified to greater than 95% purity with Ni-NTA affinity chromatography. The rMAP30-HBD protein not only has topological inactivation and protein translation inhibition activity but also showed significant improvements in cytotoxic activity compared to that of the rMAP30 protein without HBD in the tested tumor cell lines, and induced higher apoptosis rates in HeLa cells analyzed by Annexin V-FITC with FACS. This paper demonstrated a new method for improving MAP30 protein anti-tumor activity and might have potential applications in cancer therapy area. PMID:25797209

  14. Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes

    OpenAIRE

    Ehrig, Jens; Petrov, Eugene P.; Schwille, Petra

    2011-01-01

    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the featu...

  15. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 30...

  16. Stimulating Effect of Terfenadine on Erythrocyte Cell Membrane Scrambling

    Directory of Open Access Journals (Sweden)

    Elena Signoretto

    2016-04-01

    Full Text Available Background/Aims: The antihistaminic drug Terfenadine may trigger apoptosis of tumor cells, an effect unrelated to its effect on histamine receptors. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling triggering eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress, and ceramide. The present study explored, whether Terfenadine is capable to trigger eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS from 2′,7′-dichlorodihydrofluorescein (DCF diacetate dependent fluorescence, and ceramide abundance at the human erythrocyte surface utilizing specific antibodies. Hemolysis was quantified from haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Terfenadine (≥ 5 µM significantly increased the percentage of annexin-V-binding cells and triggered hemolysis without significantly modifying the average forward scatter. Terfenadine (7.5 µM significantly increased Fluo3-fluorescence, but did not significantly modify DCF fluorescence or ceramide abundance. The effect of Terfenadine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Exposure of human erythrocytes to Ca2+ ionophore ionomycin (1 µM, 15 min triggered annexin-V-binding, an effect augmented by Terfenadine pretreatment (10 µM, 48 hours. Conclusions: Terfenadine triggers phospholipid scrambling of the human erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+ and in part due to sensitizing human erythrocyte cell membrane scrambling to Ca2+.

  17. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    International Nuclear Information System (INIS)

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs

  18. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm-2 at a potential of 600 mV for catalysts loading of 0,4 mg cm-2 Pt at the anode and 0,6 mg cm-2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  19. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization

    OpenAIRE

    Christian Kleusch; Bernd Hoffmann; Nils Hersch; Agnes Csiszár; Rudolf Merkel

    2012-01-01

    In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traf...

  20. Exegoeconomic Analysis On A Proton Electrolyte Membrane Fuel Cell

    International Nuclear Information System (INIS)

    The objective of this study is to perform an exergy and economic analysis on proton electrolyte membrane fuel cell power system (PEMFC) known as exegoeconomic. A 5 kW PEMFC was taken as case study. The fuel cell includes the hydrogen processing system and a fuel cell stack. The hydrogen processing system consisted of an auto-thermal reactor (ATR), a water gas shift reactor (WGS), tubular ceramic membrane module (TCR) and a pressure swing adsorber (PSA). The fuel cell stack was the main power generator. It was obseved that TCM and PSA have low energy efficiency of 0.29 % and 0.09 % respectively. Energy efficiency for the auto-thermal reactor and fuel cell stack were higher at 22.44 % and 31.97 % respectively and both values are comparable with other studies. The exergoeconomics for the 5kW fuel cell system was determined as RM4756.62 per GJ. From the analysis, it is also found that the fuel cell cost can more competitive, if the cost of operation, maintenance and fuel can be reduced. (author)

  1. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    Science.gov (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  2. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  3. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  4. Cyclization of a cell-penetrating peptide via click-chemistry increases proteolytic resistance and improves drug delivery.

    Science.gov (United States)

    Reichart, Florian; Horn, Mareike; Neundorf, Ines

    2016-06-01

    In this work we report synthesis and biological evaluation of a cell-penetrating peptide (CPP), that is partly cyclized via a triazole bridge. Recently, beneficious properties have been reported for cyclized peptides concerning their metabolic stability and intracellular uptake. A CPP based on human calcitonin was used in this study, and side chain cyclization was achieved via copper catalyzed alkyne-azide click reaction. Cell viability studies in several cell-lines revealed no cytotoxic effects. Furthermore, efficient uptake in breast cancer MCF-7 cells could be determined. Moreover, preliminary studies using this novel peptide as drug transporter for daunorubicin were performed. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27197760

  5. Cell-penetrating peptide-doxorubicin conjugate loaded NGR-modified nanobubbles for ultrasound triggered drug delivery.

    Science.gov (United States)

    Lin, Wen; Xie, Xiangyang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yang

    2016-01-01

    A new drug-targeting system for CD13(+) tumors has been developed, based on ultrasound-sensitive nanobubbles (NBs) and cell-permeable peptides (CPPs). Here, the CPP-doxorubicin conjugate (CPP-DOX) was entrapped in the asparagine-glycine-arginine (NGR) peptide modified NB (CPP-DOX/NGR-NB) and the penetration of CPP-DOX was temporally masked; local ultrasound stimulation could trigger the CPP-DOX release from NB and activate its penetration. The CPP-DOX/NGR-NBs had particle sizes of about 200 nm and drug entrapment efficiency larger than 90%. In vitro release results showed that over 85% of the encapsulated DOX or CPP-DOX would release from NBs in the presence of ultrasound, while less than 1.5% of that (30 min) without ultrasound. Cell experiments showed the higher cellular CPP-DOX uptake of CPP-DOX/NGR-NB among the various NB formulations in Human fibrosarcoma cells (HT-1080, CD13(+)). The CPP-DOX/NGR-NB with ultrasound treatment exhibited an increased cytotoxic activity than the one without ultrasound. In nude mice xenograft of HT-1080 cells, CPP-DOX/NGR-NB with ultrasound showed a higher tumor inhibition effect (3.1% of T/C%, day 24), longer median survival time (50 days) and excellent body safety compared with the normal DOX injection group. These results indicate that the constructed vesicle would be a promising drug delivery system for specific cancer treatment. PMID:26176270

  6. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  7. Cell-penetrating peptide and antibiotic combination therapy: a potential alternative to combat drug resistance in methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Randhawa, Harmandeep Kaur; Gautam, Ankur; Sharma, Minakshi; Bhatia, Rakesh; Varshney, Grish C; Raghava, Gajendra Pal Singh; Nandanwar, Hemraj

    2016-05-01

    The diverse pattern of resistance by methicillin-resistant Staphylococcus aureus (MRSA) is the major obstacle in the treatment of its infections. The key reason of resistance is the poor membrane permeability of drug molecules. Over the last decade, cell-penetrating peptides (CPPs) have emerged as efficient drug delivery vehicles and have been exploited to improve the intracellular delivery of numerous therapeutic molecules in preclinical studies. Therefore, to overcome the drug resistance, we have investigated for the first time the effects of two CPPs (P3 and P8) in combination with four antibiotics (viz. oxacillin, erythromycin, norfloxacin, and vancomycin) against MRSA strains. We found that both CPPs internalized into the MRSA efficiently at very low concentration (oxacillin, norfloxacin, and vancomycin to susceptible levels (generally <1 μg/mL) for almost all five clinical isolates. Further, the bacterial cell death was confirmed by scanning electron microscopy as well as propidium iodide uptake assay. Simultaneously, time-kill kinetics revealed the increased uptake of antibiotics. In summary, CPPs assist to restore the effectiveness of antibiotics at much lower concentration, eliminate the antibiotic toxicity, and represent the CPP-antibiotic combination therapy as a potential novel weapon to combat MRSA infections. PMID:26837216

  8. Enhanced oral bioavailability of insulin using PLGA nanoparticles co-modified with cell-penetrating peptides and Engrailed secretion peptide (Sec).

    Science.gov (United States)

    Zhu, Siqi; Chen, Shuangxi; Gao, Yuan; Guo, Feng; Li, Fengying; Xie, Baogang; Zhou, Jianliang; Zhong, Haijun

    2016-07-01

    Biodegradable polymer nanoparticle drug carriers are an attractive strategy for oral delivery of peptide and protein drugs. However, their ability to cross the intestinal epithelium membrane is largely limited. Therefore, in the present study, cell-penetrating peptides (R8, Tat, penetratin) and a secretion peptide (Sec) with N-terminal stearylation were introduced to modify nanoparticles (NPs) on the surface to improve oral bioavailability of peptide and protein drugs. In vitro studies conducted in Caco-2 cells showed the value of the apparent permeability coefficient (Papp) of the nanoparticles co-modified with Sec and penetratin (Sec-Pen-NPs) was about two-times greater than that of the nanoparticles modified with only penetratin (Pen-NPs), while the increase of transcellular transport of nanoparticles modified together with Sec and R8 (Sec-R8-NPs), or Sec and Tat (Sec-Tat-NPs), was not significant compared with nanoparticles modified with only R8 (R8-NPs) or Tat (Tat-NPs). Using insulin as the model drug, in vivo studies performed on rats indicated that compared to Pen-NPs, the relative bioavailability of insulin for Sec-Pen-NPs was 1.71-times increased after ileal segments administration, and stronger hypoglycemic effects was also observed. Therefore, the nanoparticles co-modified with penetratin and Sec could act as attractive carriers for oral delivery of insulin. PMID:26181841

  9. Melittin interaction with sulfated sugars and cell membranes

    OpenAIRE

    Klocek, Gabriela

    2008-01-01

    The presented work focused on an alternative mechanism of action of melittin on the cell membranes. The study using ITC reveals that melittin has a high affinity for several glycosaminoglycans (GAGs), i.e. heparan sulfate (HS), dermatan sulfate and heparin. The interaction between peptide and GAGs comprised both electrostatic and non-ionic components. Circular dichroism (CD) spectroscopy demonstrates that the binding of melittin to HS and other GAGs induces a conformational cha...

  10. Collaboration between primitive cell membranes and soluble catalysts

    OpenAIRE

    Adamala, Katarzyna P.; Engelhart, Aaron E.; SZOSTAK, JACK W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme...

  11. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery.

    Science.gov (United States)

    McKinlay, Colin J; Waymouth, Robert M; Wender, Paul A

    2016-03-16

    The design, synthesis, and biological evaluation of a new family of highly effective cell-penetrating molecular transporters, guanidinium-rich oligophosphoesters, are described. These unique transporters are synthesized in two steps, irrespective of oligomer length, by the organocatalytic ring-opening polymerization (OROP) of 5-membered cyclic phospholane monomers followed by oligomer deprotection. Varying the initiating alcohol results in a wide variety of cargo attachment strategies for releasable or nonreleasable transporter applications. Initiation of oligomerization with a fluorescent probe produces, upon deprotection, a transporter-probe conjugate that is shown to readily enter multiple cell lines in a dose-dependent manner. These new transporters are superior in cell uptake to previously studied guanidinium-rich oligocarbonates and oligoarginines, showing over 2-fold higher uptake than the former and 6-fold higher uptake than the latter. Initiation with a protected thiol gives, upon deprotection, thiol-terminated transporters which can be thiol-click conjugated to a variety of probes, drugs and other cargos as exemplified by the conjugation and delivery of the model probe fluorescein-maleimide and the medicinal agent paclitaxel (PTX) into cells. Of particular significance given that drug resistance is a major cause of chemotherapy failure, the PTX-transporter conjugate, designed to evade Pgp export and release free PTX after cell entry, shows efficacy against PTX-resistant ovarian cancer cells. Collectively this study introduces a new and highly effective class of guanidinium-rich cell-penetrating transporters and methodology for their single-step conjugation to drugs and probes, and demonstrates that the resulting drug/probe-conjugates readily enter cells, outperforming previously reported guanidinium-rich oligocarbonates and peptide transporters. PMID:26900771

  12. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    Directory of Open Access Journals (Sweden)

    Suh JS

    2014-03-01

    Full Text Available Jin Sook Suh,1,* Jue Yeon Lee,2,* Yoon Jung Choi,1 Hyung Keun You,3 Seong-Doo Hong,4 Chong Pyoung Chung,2 Yoon Jeong Park1,2 1Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 2Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC, Seoul, 3Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, 4Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea *These authors contributed equally to this work Abstract: Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP, and a transcriptional coactivator with a PDZ-binding motif (TAZ protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in

  13. Cooperative Transmembrane Penetration of Nanoparticles

    Science.gov (United States)

    Zhang, Haizhen; Ji, Qiuju; Huang, Changjin; Zhang, Sulin; Yuan, Bing; Yang, Kai; Ma, Yu-qiang

    2015-01-01

    Physical penetration of lipid bilayer membranes presents an alternative pathway for cellular delivery of nanoparticles (NPs) besides endocytosis. NPs delivered through this pathway could reach the cytoplasm, thereby opening the possibility of organelle-specific targeting. Herein we perform dissipative particle dynamics simulations to elucidate the transmembrane penetration mechanisms of multiple NPs. Our simulations demonstrate that NPs’ translocation proceeds in a cooperative manner, where the interplay of the quantity and surface chemistry of the NPs regulates the translocation efficiency. For NPs with hydrophilic surfaces, the increase of particle quantity facilitates penetration, while for NPs with partly or totally hydrophobic surfaces, the opposite highly possibly holds. Moreover, a set of interesting cooperative ways, such as aggregation, aggregation-dispersion, and aggregation-dispersion-reaggregation of the NPs, are observed during the penetration process. We find that the penetration behaviors of multiple NPs are mostly dominated by the changes of the NP-membrane force components in the membrane plane direction, in addition to that in the penetration direction, suggesting a different interaction mechanism between the multiple NPs and the membrane compared with the one-NP case. These results provide a fundamental understanding in the underlying mechanisms of cooperative penetration of NPs, and shed light on the NP-based drug and gene delivery. PMID:26013284

  14. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    OpenAIRE

    Yukwon Jeon; Dong Jun Kim; Jong Kwan Koh; Yunseong Ji; Jong Hak Kim; Yong-Gun Shul

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method...

  15. Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions

    OpenAIRE

    Del Piccolo, Nuala; Placone, Jesse; He, Lijuan; Agudelo, Sandra Carolina; Hristova, Kalina

    2012-01-01

    Plasma membrane derived vesicles are used as a model system for the biochemical and biophysical investigations of membrane proteins and membrane organization. The most widely used vesiculation procedure relies on formaldehyde and dithiothreitol (DTT), but these active chemicals may introduce artifacts in the experimental results. Here we describe a procedure to vesiculate Chinese hamster ovary (CHO) cells, widely used for the expression of recombinant proteins, using a hypertonic vesiculation...

  16. Stimulation of Erythrocyte Cell Membrane Scrambling by Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Leonie Frauenfeld

    2014-03-01

    Full Text Available Background: Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i and activation of sphingomyelinase with subsequent formation of ceramide. The present study explored, whether tyrosinase stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 24 h exposure to mushroom tyrosinase (7 U/mL was followed by a significant increase of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of annexin-V-binding. The annexin-V-binding following tyrosinase treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ and ceramide formation.

  17. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    Science.gov (United States)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  18. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2010-01-01

    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...... been investigated. The fuel cell stack used in this model is developed using a Ballard PEMFC [1], so that the equations used in the stack modeling are derived from the experimental data. The stack can produce 3 to 15 kilowatt electricity depending on the number of cells used in the stack. Some of the...... investigated. In addition, different stack design schemes have been proposed and their effect on system efficiency has been investigated....

  19. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  20. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  1. Single-cell resolution imaging of retinal ganglion cell apoptosis in vivo using a cell-penetrating caspase-activatable peptide probe.

    Directory of Open Access Journals (Sweden)

    Xudong Qiu

    Full Text Available Peptide probes for imaging retinal ganglion cell (RGC apoptosis consist of a cell-penetrating peptide targeting moiety and a fluorophore-quencher pair flanking an effector caspase consensus sequence. Using ex vivo fluorescence imaging, we previously validated the capacity of these probes to identify apoptotic RGCs in cell culture and in an in vivo rat model of N-methyl- D-aspartate (NMDA-induced neurotoxicity. Herein, using TcapQ488, a new probe designed and synthesized for compatibility with clinically-relevant imaging instruments, and real time imaging of a live rat RGC degeneration model, we fully characterized time- and dose-dependent probe activation, signal-to-noise ratios, and probe safety profiles in vivo. Adult rats received intravitreal injections of four NMDA concentrations followed by varying TcapQ488 doses. Fluorescence fundus imaging was performed sequentially in vivo using a confocal scanning laser ophthalmoscope and individual RGCs displaying activated probe were counted and analyzed. Rats also underwent electroretinography following intravitreal injection of probe. In vivo fluorescence fundus imaging revealed distinct single-cell probe activation as an indicator of RGC apoptosis induced by intravitreal NMDA injection that corresponded to the identical cells observed in retinal flat mounts of the same eye. Peak activation of probe in vivo was detected 12 hours post probe injection. Detectable fluorescent RGCs increased with increasing NMDA concentration; sensitivity of detection generally increased with increasing TcapQ488 dose until saturating at 0.387 nmol. Electroretinography following intravitreal injections of TcapQ488 showed no significant difference compared with control injections. We optimized the signal-to-noise ratio of a caspase-activatable cell penetrating peptide probe for quantitative non-invasive detection of RGC apoptosis in vivo. Full characterization of probe performance in this setting creates an important in

  2. Plasma membrane biogenesis in eukaryotic cells: translocation of newly synthesized lipid.

    OpenAIRE

    Mills, J T; Furlong, S T; Dawidowicz, E A

    1984-01-01

    We examined the transfer of sterols and phospholipids from their site of synthesis to the plasma membrane of Acanthamoeba castellanii. Cells were labeled with [3H]acetate, and plasma membrane fractions were isolated under conditions that minimize the nonspecific exchange of lipids between subcellular membrane fractions. Sterols and phospholipids were purified from both whole-cell homogenates and isolated plasma membrane. In whole cells, 3H-labeled lipids were formed, with no apparent time lag...

  3. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation

    DEFF Research Database (Denmark)

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength......, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the...

  4. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    peptides known as cell-penetrating peptides (CPPs) is attracting wide attention for a variety of biologically active molecules. CPP-mediated delivery is typically based on the covalent conjugation of the (therapeutic) cargo to CPPs, and is particularly relevant for the delivery of noncharged RNA...... interference agents such as peptide nucleic acids (PNAs) and morpholino oligomers. Although chemical conjugation to a variety of CPPs significantly improves the cellular uptake of PNAs, the bioavailability (and hence antisense activity) of CPP-PNA -conjugates is still highly limited by endocytotic entrapment...

  5. Combined effect of a peptide–morpholino oligonucleotide conjugate and a cell-penetrating peptide as an antibiotic

    OpenAIRE

    Wesolowski, Donna; Alonso, Dulce; Altman, Sidney

    2013-01-01

    A cell-penetrating peptide (CPP)–morpholino oligonucleotide (MO) conjugate (PMO) that has an antibiotic effect in culture had some contaminating CPPs in earlier preparations. The mixed conjugate had gene-specific and gene-nonspecific effects. An improved purification procedure separates the PMO from the free CPP and MO. The gene-specific effects are a result of the PMO, and the nonspecific effects are a result of the unlinked, unreacted CPP. The PMO and the CPP can be mixed together, as has b...

  6. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  7. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  8. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui

    2015-06-01

    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  9. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  10. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  11. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.

    2006-07-01

    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  12. Uptake of macromolecules by cercariae during skin penetration and transformation to schistosomula (Schistosoma mansoni)

    OpenAIRE

    Joyce Thornhill; John Kusel; Fabricia Alvisi de Oliviera; Fabio Ribeiro; Symone Fulgêncio Lima; Paulo Marcos Zech Coelho; Paul McVeigh; Ana Carolina Alves de Mattos

    2010-01-01

    Here, we observed the uptake of membrane-impermeant molecules by cercariae as they penetrate the skin and are transformed into schistosomula. We propose that membrane-impermeant molecules, Lucifer Yellow, Propidium iodide and Hoechst 33258 enter the parasite through both thenephridiopore and the surface membrane and then diffuse throughout the body of the parasite. We present a hypothesis that the internal cells of the body of the schistosomulum represent a new host-parasite interface, at whi...

  13. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens;

    2015-01-01

    Delivery of therapeutic peptides and proteins by the use of cell-penetrating peptides (CPPs) as carriers has been suggested as a feasible strategy. The aim of the present study was to investigate the effect of conjugating a series of well-known CPPs to the biologically active part of parathyroid...... hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative to...... covalent conjugation was compared with regards to the transepithelial permeation. CPP-conjugated PTH(1-34) fusion peptides were successfully expressed in Escherichia coli and purified from inclusion bodies. No clear correlation between the degree of secondary structure of the CPP-conjugated PTH(1...

  14. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  15. Reversible activation of pH-sensitive cell penetrating peptides attached to gold surfaces†

    OpenAIRE

    Baio, Joe E.; Schach, Denise; Fuchs, Adrian V.; Schmüser, Lars; Billecke, Nils; Bubeck, Christoph; Landfester, Katharina; Bonn, Mischa; Bruns, Michael; Weiss, Clemens K.; Weidner, Tobias

    2015-01-01

    pH-sensitive viral fusion protein mimics are widely touted as a promising route towards site-specific delivery of therapeutic compounds across lipid membranes. Here, we demonstrate that a fusion protein mimic, designed to achieve a reversible, pH-driven helix-coil transition mechanism, retains its functionality when covalently bound to a surface.

  16. Reassessing ecdysteroidogenic cells from the cell membrane receptors’ perspective

    OpenAIRE

    Alexandros Alexandratos; Panagiotis Moulos; Ioannis Nellas; Konstantinos Mavridis; Dedos, Skarlatos G.

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We ...

  17. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H3PO4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H3PO4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm−2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  18. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    International Nuclear Information System (INIS)

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion

  19. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    Directory of Open Access Journals (Sweden)

    Kishore R Mosaliganti

    Full Text Available The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1 detection of local membrane planes, 2 voting to fill structural gaps, and 3 region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is

  20. Force Balance and Membrane Shedding at the Red-Blood-Cell Surface

    Science.gov (United States)

    Sens, Pierre; Gov, Nir

    2007-01-01

    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nanovesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane and quantitatively reproduces the rate of area loss in aging red-blood cells.

  1. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  2. Membrane fluidity increases during apoptosis of sheep ileal Peyer's patch B cells

    International Nuclear Information System (INIS)

    To investigate specific plasma membrane structural changes associated with apoptosis, whole cells and purified plasma membranes of apoptotic B cells from the ileal Peyer's patch of sheep were analyzed for their 'membrane fluidity'. The ileal Peyer's patch of sheep provided a large number of B cells required for plasma membrane isolation (>5 x 109). As the incidence of apoptosis increased with time of culture, the fluidity of purified plasma membranes, as measured with the fluorophore DPH (diphenylhexatriene), increased. To evaluate this phenomenon with intact cells, B cells at different apoptotic stages were fractionated on discontinuous Percoll gradients. Similar results were obtained using the fluorophore TMA-DPH (trimethylammoniumdiphenylhexatriene), which has been shown to localize specifically to the plasma membrane. Functionally, the increase in plasma membrane fluidity associated with apoptosis may represent either a mechanism to cycle phosphatidylserine to the outer leaflet, mediating phagocytic recognition of apoptotic cells, or a consequence of this event. (author). 20 refs., 1 tab., 4 figs

  3. Investigation of interaction between the drug and cell membrane by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By introducing cell membrane into electrophoretic buffer as pseudo-stationary phase,a novel capillary electrophoresis method was established to explore the interaction between drugs and cell membrane,where the interaction between citalopram and rabbit red blood cell membrane was used as an example. A series of concentrations of cell membrane were suspended into the running buffer by peak-shift method. The binding constant of citalopram to rabbit red blood cell membrane of 0.977 g-1·L was obtained after treatment of Scatchard plot. This method could provide not only a new way for the investigation on the interactions between drugs and cell membrane,but also a new approach for high throughput screening of the drug membrane permeability,biological activity,and evaluating drugs in vivo.

  4. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage.

    Science.gov (United States)

    Stefanutti, E; Papacci, F; Sennato, S; Bombelli, C; Viola, I; Bonincontro, A; Bordi, F; Mancini, G; Gigli, G; Risuleo, G

    2014-10-01

    Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage. PMID:25017801

  5. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  6. Conjugation of doxorubicin to cell penetrating peptides sensitizes human breast MDA-MB 231 cancer cells to endogenous TRAIL-induced apoptosis.

    OpenAIRE

    Aroui, Sonia; Brahim, Souhir; Hamelin, Jocelyne; De Waard, Michel; Bréard, Jacqueline; Kenani, Abderraouf

    2009-01-01

    International audience Previous work from our laboratory has shown that coupling doxorubicin (Dox) to cell penetrating peptides (Dox-CPPs) is a good strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells. We also reported that, in contrast to unconjugated Dox-induced cell death, the increase in apoptotic response does not involve the mitochondrial apoptotic pathway. In this study, we demonstrate that both Dox and Dox-CPPs can increase the density of the TRAIL receptors DR4 a...

  7. Bordetella adenylate cyclase toxin mobilizes its beta2 integrin receptor into lipid rafts to accomplish translocation across target cell membrane in two steps.

    Directory of Open Access Journals (Sweden)

    Ladislav Bumba

    2010-05-01

    Full Text Available Bordetella adenylate cyclase toxin (CyaA binds the alpha(Mbeta(2 integrin (CD11b/CD18, Mac-1, or CR3 of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin 'translocation intermediate', which can be 'locked' in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the 'intermediate' permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca(2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the 'translocation intermediate' promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol.

  8. Cell-penetration by Co(III)cyclen-based peptide-cleaving catalysts selective for pathogenic proteins of amyloidoses.

    Science.gov (United States)

    Chei, Woo Suk; Lee, Joo-Won; Kim, Jae Bum; Suh, Junghun

    2010-07-15

    Derivatives of the Co(III) complex of 1,4,7,10-tetraazacyclododecane (cyclen) with various organic pendants have been reported as target-selective peptide-cleaving catalysts, which can be exploited as catalytic drugs. In order to provide a firm basis for the catalytic drugs based on Co(III)cyclen, the ability of the Co(III)cyclen-containing peptide-cleaving catalysts to penetrate animal cells such as mouse fibroblast NIH-3T 3 or human embryonic kidney (HEK) 293 cells is demonstrated in the present study. Since the catalysts destroy pathogenic proteins for amyloidoses, results of the present study are expected to initiate extensive efforts to obtain therapeutically safe catalytic drugs for amyloidoses such as Alzheimer's disease, type 2 diabetes mellitus, Parkinson's disease, Huntington's disease, mad cow disease, and so on. PMID:20542701

  9. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting...... splicing correction of the mutated luciferase gene in the HeLa pLuc705 cell line, reporting cellular (nuclear) uptake of the antisense PNA via luciferase activity measurement. Carrier CPP-PNA constructs were studied in terms of construct modification (with octaarginine and/or decanoic acid) and carrier PNA...... length (to adjust binding affinity). In general, the carrier CPP-PNA constructs including the ones with decanoyl modification provided significant increase of the activity of unmodified antisense PNA as well as of antisense octaarginine-PNA conjugates. Antisense activity, and by inference cellular...

  10. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos

    DEFF Research Database (Denmark)

    Kristensen, Mie; Birch, Ditlev; Mørck Nielsen, Hanne

    2016-01-01

    -penetrating peptides (CPPs) constitute a promising tool and have shown applications for peptide and protein delivery into cells as well as across various epithelia and the blood-brain barrier (BBB). CPP-mediated delivery of peptides and proteins may be pursued via covalent conjugation of the CPP to the cargo peptide...... or protein or via physical complexation obtained by simple bulk-mixing of the CPP with its cargo. Both approaches have their pros and cons, and which is the better choice likely relates to the physicochemical properties of the CPP and its cargo as well as the route of administration, the specific...... barrier and the target cell. Besides the physical barrier, a metabolic barrier must be taken into consideration when applying peptide-based delivery vectors, such as the CPPs, and stability-enhancing strategies are commonly employed to prolong the CPP half-life. The mechanisms by which CPPs translocate...

  11. Stearylated antimicrobial peptide [D]-K6L9 with cell penetrating property for efficient gene transfer.

    Science.gov (United States)

    Zhang, Wei; Song, Jingjing; Liang, Ranran; Zheng, Xin; Chen, Jianbo; Li, Guolin; Zhang, Bangzhi; Wang, Kairong; Yan, Xiang; Wang, Rui

    2013-08-01

    Stearyl-cell penetrating peptides (CPPs) have been proved to be efficient nonviral gene vectors. Due to the similarities between antimicrobial peptides and CPPs, we constructed a novel type of gene vectors by introducing stearyl moiety to the N-terminus of antimicrobial peptide [D]-K6L9. In this study, stearyl-[D]-K6L9 delivered plasmids into cells by clathrin- and caveolin-mediated endocytosis. Gratifyingly, stearyl-[D]-K6L9 exhibited high transfection efficiency and almost reached the level of Lipofectamine 2000. Taken together, the combination of the stearyl moiety with [D]-K6L9 provides a novel framework for the development of excellent nonviral gene vectors. PMID:23727033

  12. Cryptosporidia: epicellular parasites embraced by the host cell membrane.

    Science.gov (United States)

    Valigurová, Andrea; Jirků, Miloslav; Koudela, Bretislav; Gelnar, Milan; Modrý, David; Slapeta, Jan

    2008-07-01

    The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell. PMID:18158154

  13. A theory for the membrane potential of cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Hall, Kevin

    1997-01-01

    We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps based on simple energy considerations and conservation laws. We demonstrate that the work done by the pump is equal to the potential energy of the cell plus the energy loss due to the downhill ionic fluxes through the channels and the exchanger. Our equations predict osmotic pressure variations. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The simulated action potential and the five currents in the model are in excellent agreement with experiments. The model predicts the experimental observed intracellular ionic concentration of potassium, calcium and sodium. We do not see any drift of the values for the concentrations in a long time simulation, instead we can obtain the same asymptotic values starting with equal intrac...

  14. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  15. An efficient method for introducing defined lipids into the plasma membrane of mammalian cells

    OpenAIRE

    1983-01-01

    An efficient method has been devised to introduce lipid molecules into the plasma membrane of mammalian cells. This method has been applied to fuse lipid vesicles with the apical plasma membrane of Madin-Darby canine kidney cells. The cells were infected with fowl plague or influenza N virus. 4 h after infection, the hemagglutinin (HA) spike glycoprotein of the virus was present in the apical plasma membrane of the cells. Lipid vesicles containing egg phosphatidylcholine, cholesterol, and an ...

  16. Cell Spreading and Lamellipodial Extension Rate Is Regulated by Membrane Tension

    OpenAIRE

    Raucher, Drazen; Sheetz, Michael P

    2000-01-01

    Cell spreading and motility require the extension of the plasma membrane in association with the assembly of actin. In vitro, extension must overcome resistance from tension within the plasma membrane. We report here that the addition of either amphiphilic compounds or fluorescent lipids that expanded the plasma membrane increased the rate of cell spreading and lamellipodial extension, stimulated new lamellipodial extensions, and caused a decrease in the apparent membrane tension. Further, in...

  17. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla

    2009-06-01

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  18. Linewidth narrowing for 31Phosphorus MRI of cell membranes

    Science.gov (United States)

    Barrett, Sean; Frey, Merideth; Madri, Joseph; Michaud, Michael

    2011-03-01

    Most 31 P Magnetic Resonance Spectroscopy studies of tissues try to avoid contamination by a relatively large, but broad, spectral feature attributed to cell membrane phospholipids. MRI using this broad 31 P membrane spectrum is not even attempted, since the spatial resolution and signal-to-noise would be poor, relative to conventional MRI using the narrow 1 H water spectrum. This long-standing barrier has been overcome by a novel pulse sequence, recently discovered in fundamental quantum computation research, which narrows the broad 31 P spectrum by ~ 1000 × . Applying time-dependent gradients in synch with a repeating pulse block enables a new route to high spatial resolution, 3D 31 P MRI of the soft solid components of cells and tissues. So far, intact and sectioned samples of ex vivo fixed mouse organs have been imaged, with (sub-mm)3 voxels. Extending the reach of MRI to broad spectra in natural and artificial tissues opens a new window into cells, enabling progress in biomedical research. W.J. Thoma et al., J. MR 61, 141 (1985); E.J. Murphy et al., MR Med 12, 282 (1989); R. McNamara et al., NMR Biomed 7, 237 (1994).

  19. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela;

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth......Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...

  20. Geometry of the Contact Zone between Fused Membrane-Coated Beads Mimicking Cell-Cell Fusion.

    Science.gov (United States)

    Savić, Filip; Kliesch, Torben-Tobias; Verbeek, Sarah; Bao, Chunxiao; Thiart, Jan; Kros, Alexander; Geil, Burkhard; Janshoff, Andreas

    2016-05-24

    The fusion of lipid membranes is a key process in biology. It enables cells and organelles to exchange molecules with their surroundings, which otherwise could not cross the membrane barrier. To study such complex processes we use simplified artificial model systems, i.e., an optical fusion assay based on membrane-coated glass spheres. We present a technique to analyze membrane-membrane interactions in a large ensemble of particles. Detailed information on the geometry of the fusion stalk of fully fused membranes is obtained by studying the diffusional lipid dynamics with fluorescence recovery after photobleaching experiments. A small contact zone is a strong obstruction for the particle exchange across the fusion spot. With the aid of computer simulations, fluorescence-recovery-after-photobleaching recovery times of both fused and single-membrane-coated beads allow us to estimate the size of the contact zones between two membrane-coated beads. Minimizing delamination and bending energy leads to minimal angles close to those geometrically allowed. PMID:27224487

  1. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    Directory of Open Access Journals (Sweden)

    José Manuel Molina-Guijarro

    Full Text Available Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734 inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

  2. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    International Nuclear Information System (INIS)

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP2). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP2 and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl3:MeOH:15N NH4OH:H2O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated 32P/sub i/, (3H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ ∼ 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids

  3. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    has been investigated thermodynamically. The system includes a compressor, an air humidifier, set of heat exchangers and a stack which together build up the anode circuit, the cathode circuit and the cooling loop. Since fuel humidification is carried out via water cross over from cathode to anode...... equations are applied in order to account for water back diffusion. Further Membrane water content is assumed to be a linear function of thickness. PEM fuel cell is working at rather low operating conditions which makes it suitable for the automotive systems. In this paper motive power part of a lift truck...... conditions....

  4. Grafted polyelectrolyte membranes for lithium batteries and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John B.

    2003-06-24

    Polyelectrolyte materials have been developed for lithium battery systems in response to the severe problems due to salt concentration gradients that occur in composite electrodes (aka membrane-electrode assemblies). Comb branch polymer architectures are described which allow for grafting of appropriate anions on to the polymer and also for cross-linking to provide for appropriate mechanical properties. The interactions of the polymers with the electrode surfaces are critical for the performance of the system and some of the structural features that influence this will be described. Parallels with the fuel cell MEA structures exist and will also be discussed.

  5. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    Energy Technology Data Exchange (ETDEWEB)

    Batenburg, A.M.; Demel, R.A.; Verkleij, A.J.; de Kruijff, B.

    1988-07-26

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary /sup 31/P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure.

  6. Penetration of the signal sequence of Escherichia coli PhoE protein into phospholipid model membranes leads to lipid-specific changes in signal peptide structure and alterations of lipid organization

    International Nuclear Information System (INIS)

    In order to obtain more insight in the initial steps of the process of protein translocation across membranes, biophysical investigations were undertaken on the lipid specificity and structural consequences of penetration of the PhoE signal peptide into lipid model membranes and on the conformation of the signal peptide adopted upon interaction with the lipids. When the monolayer technique and differential scanning calorimetry are used, a stronger penetration is observed for negatively charged lipids, significantly influenced by the physical state of the lipid but not by temperature or acyl chain unsaturation as such. Although the interaction is principally electrostatic, as indicated also by the strong penetration of N-terminal fragments into negatively charged lipid monolayers, the effect of ionic strength suggests an additional hydrophobic component. Most interestingly with regard to the mechanism of protein translocation, the molecular area of the peptide in the monolayer also shows lipid specificity: the area in the presence of PC is consistent with a looped helical orientation, whereas in the presence of cardiolipin a time-dependent conformational change is observed, most likely leading from a looped to a stretched orientation with the N-terminus directed toward the water. This is in line also with the determined peptide-lipid stoichiometry. Preliminary 31P NMR and electron microscopy data on the interaction with lipid bilayer systems indicate loss of bilayer structure

  7. Grafting of Vinyl Pyrrolidone/Styrene onto Ethylene/Chlorotrifluoroethylene Membrane for Proton ExchangeMembrane Fuel Cell

    International Nuclear Information System (INIS)

    Highlights: • Gamma irradiation was used as a tool for membranes grafting. • Sty and VP were grafted ECTFE. • The membranes were characterized using; FT-IR, TGA and SEM. • The membranes were investigated for their ability into the PEMFCusing different techniques. • The highest fuel cell performance was at 75 °C and more durableup to 450 hours. - Abstract: Simultaneous gamma irradiation was proved to be an effective tool for ethylene/ chlorotrifluoroethylene grafting by styrene and vinyl pyrrolidone with different ratios. It was found that; the optimum grafting yield was 81% by using 40 kGy gamma irradiation dose when the binary monomers ratio was 1:1 (styrene: vinyl pyrrolidone). The grafted membranes were investigated for chemical structure by FT-IR and thermal properties by thermal gravimetric analysis. The mechanical properties were studied by measuring tensile strength while morphological structure was characterized by scanning electron microscope. The membranes’ free volume sizes were determined using positron annihilation lifetime spectroscopy (PALS). Ion exchange capacity, water uptake and membranes thickness were investigated and proton conductivity was evaluated. The optimum temperature for attaining the maximum fuel cell performance was at 75 °C while it reduced by decreasing the temperature to 50 °C or increasing it to 85 °C. The fuel cell performance based highest yield of the grafted membrane was more durable than compressed Nr.118 (commercial membranes) up to 450 hours

  8. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    CERN Document Server

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S

    2013-01-01

    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  9. The quantum casimir effect may be a universal force organizing the bilayer structure of the cell membrane.

    Science.gov (United States)

    Pawlowski, Piotr H; Zielenkiewicz, Piotr

    2013-05-01

    A mathematic-physical model of the interaction between cell membrane bilayer leaflets is proposed based on the Casimir effect in dielectrics. This model explains why the layers of a lipid membrane gently slide one past another rather than penetrate each other. The presented model reveals the dependence of variations in the free energy of the system on the membrane thickness. This function is characterized by the two close minima corresponding to the different levels of interdigitation of the lipids from neighbor layers. The energy barrier of the compressing transition between the predicted minima is estimated to be 5.7 kT/lipid, and the return energy is estimated to be 3.1 kT/lipid. The proposed model enables estimation of the value of the membrane elastic thickness modulus of compressibility, which is 1.7 × 10⁹ N/m², and the value of the interlayer friction coefficient, which is 1.9 × 10⁸ Ns/m³. PMID:23612889

  10. Adenosine-induced hyperpolarization of the membrane voltage in rat mesangial cells in primary culture.

    OpenAIRE

    Pavenstädt, H. (Hermann); Ruh, J; Greger, R; Schollmeyer, P.

    1994-01-01

    1. The effect of adenosine on membrane voltage and ion currents was studied in rat mesangial cells in primary culture. Membrane voltage was measured with the patch clamp technique in the slow- or fast whole cell configuration. The resting membrane voltage of mesangial cells was -48 +/- 0.5 mV. Adenosine (10(-8)-10(-3) M) induced a sustained and concentration-dependent hyperpolarization of membrane voltage (ED50 approximately 6 x 10(-7) M). Adenosine (10(-5) M) hyperpolarized the membrane volt...

  11. Efficient siRNA Delivery Using Novel Cell-Penetrating Peptide-siRNA Conjugate-Loaded Nanobubbles and Ultrasound.

    Science.gov (United States)

    Xie, Xiangyang; Lin, Wen; Li, Mingyuan; Yang, Yang; Deng, Jianping; Liu, Hui; Chen, Ying; Fu, Xudong; Liu, Hong; Yang, Yanfang

    2016-06-01

    Because of the absence of tolerable and effective carriers for in vivo delivery, the applications of small interfering RNA (siRNA) in the clinic for therapeutic purposes have been limited. In this study, development of a novel siRNA delivery system based on ultrasound-sensitive nanobubbles (NBs, nano-sized echogenic liposomes) and cell-permeable peptides (CPPs) is described. A CPP-siRNA conjugate was entrapped in an NB, (CPP-siRNA)-NB, and the penetration of CPP-siRNA was temporally masked; local ultrasound stimulation triggered the release of CPP-siRNA from the NBs and activated its penetration. Subsequent research revealed that the (CPP-siRNA)-NBs had a mean particle size of 201 ± 2.05 nm and a siRNA entrapment efficiency >85%. In vitro release results indicated that >90% of the encapsulated CPP-siRNA was released from NBs in the presence of ultrasound, whereas 1080). Additionally, after systemic administration in mice, (CPP-siRNA)-NBs accumulated in the tumor, augmented c-myc silencing and delayed tumor progression. In conclusion, the application of (CPP-siRNA)-NBs with ultrasound may constitute an approach to selective targeted delivery of siRNA. PMID:27012462

  12. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  13. Reactivation System for Proton-Exchange Membrane Fuel-Cells

    Directory of Open Access Journals (Sweden)

    Roberto Giral

    2012-07-01

    Full Text Available In recent years, Proton-Exchange Membrane Fuel Cells (PEMFCs have been the focus of very intensive researches. Manufacturers of these alternative power sources propose a rejuvenation sequence after the FC has been operating at high power for a certain period of time. These rejuvenation methods could be not appropriate for the reactivation of the FC when it has been out of operation for a long period of time or after it has been repaired. Since the developed reactivation system monitors temperature, current, and the cell voltages of the stack, it could be also useful for the diagnostic and repairing processes. The limited number of published contributions suggests that systems developing reactivation techniques are an open research field. In this paper, an automated system for reactivating PEMFCs and results of experimental testing are presented.

  14. Optimal microporous layer for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei-Mon; Wu, Dong-Kai [Department of Greenergy, National University of Tainan, Tainan 700 (China); Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ong, Ai-Lien [Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa (Italy); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 106 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan 300 (China)

    2010-09-01

    This study elucidates how fabrication processes (screen-printing and spraying) and constituent materials (carbon paper as backing, Acetylene Black (AB) carbon (42 nm), XC-72R carbon (30 nm) or BP2000 (15 nm) as carbon powders, and 10-50% fluorinated ethylene propylene (FEP) as hydrophobic substances) for microporous layers (MPLs) affect the performance of proton exchange membrane fuel cells. The screen-printing process produces MPLs with smaller surface fractures than does the spraying process. The effect of optimal FEP content on cell performance is noted. The presence of an optimal FEP content is due to the counterbalance between enhanced performance produced with increased gas permeability and decreased performance yielded with small contact area and electrical conductivity with excess FEP. The MPL with large carbon powders is preferred when oxygen supply is limited; otherwise, small carbon powders should be utilized. Optimal MPL design should address negative effects possibly associated with contact resistance, gas permeation resistance, and excess water resistance. (author)

  15. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  16. Pressure Measurement during Penetration Experiments

    Science.gov (United States)

    Krause, C.; Demming, J.; Flecht, T.; Heller, S.

    2014-04-01

    Penetration experiments are common tools for the investigation of physical surface properties. Additionally penetration experiments will find several applications in exploration missions in the near future. A penetration test stand has been flown for the investigation of penetration force reduction under reduced gravity in the 2nd Joint European Partial-G Parabolic Flight Campaign (JEPPF-2) of ESA, CNES and DLR [1]. The main contribution to the bearing resistance of a soil is combined of shaft and base resistance. During the penetration the grains of the granular material will be squeezed into the surrounding material. The penetration will cause a change in the pressure distribution inside the surrounding soil [2],[3]. An experimental setup has been designed and built for understanding and measurement of this induced pressure distribution. In the last year the parabolic flight test stand has been further developed for the measurement of pressure during the penetration process. The main part of the experiments stayed the same with a steel rod penetration into a sample cell measuring the penetration force and recording it in relation to the depth. The sample cell is equipped with a supporting sieving mechanism for sample preparation. The pressure sensors are mounted at the sample cell. During the last test campaigns the principle of measurement has been investigated and first measurements have been performed. In the presentation the measurement principle will be shown and its implementation into the parabolic flight setup. Pressure measurement results on ground tests of different penetrator and tip configurations will be presented.

  17. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2002-06-11

    The Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  18. Pyro-electrification of polymer membranes for cell patterning

    Science.gov (United States)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P.

    2016-05-01

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it's possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  19. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and...... performance during the H2 continuous tests, because of a decrease in the reaction kinetic resistance mainly in the cathode due to the redistribution of PA between the membrane and electrodes. The performance of both single cells decreased in the following tests, with highest performance decay rate in the...... corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  20. Gadolinium blocks membrane permeabilization induced by nanosecond electric pulses and reduces cell death

    OpenAIRE

    André, Franck M; Rassokhin, Mikhail A.; Bowman, Angela M.; Pakhomov, Andrei G.

    2009-01-01

    It has been widely accepted that nanosecond electric pulses (nsEP) are distinguished from micro-and millisecond duration pulses by their ability to cause intracellular effects and cell death with reduced effects on the cell plasma membrane. However, we found that nsEP-induced cell death is most likely mediated by the plasma membrane disruption. We showed that nsEP can cause long-lasting (minutes) increase in plasma membrane electrical conductance and disrupt electrolyte balance, followed by w...

  1. Peripheral Blood Mononuclear Cell Membrane Fluidity and Disease Outcome in Patients with Multiple Sclerosis

    OpenAIRE

    Gloudina M Hon; Hassan, Mogamat S.; van Rensburg, Susan J.; Abel, Stefan; Erasmus, Rajiv T; Matsha, Tandi

    2011-01-01

    Immune cell membrane lipids are important determinants of membrane fluidity, eicosanoid production and phagocytosis and fatty acid metabolic abnormalities have been reported in immune cells from patients with multiple sclerosis. The aim of this study was to investigate the relationship between peripheral blood mononuclear cell membrane fluidity, permeability status, and disease outcome as measured by the Kurtzke expanded disability status scale. Phospholipids, fatty acids and cholesterol comp...

  2. Cell membrane stability in two barley genotypes under water stress conditions

    OpenAIRE

    Hanna Bandurska; Halina Gniazdowska-Skoczek

    2014-01-01

    The effect of water stress induced in vitro by polyethylene glycol 6000 (PEG) and under drought stress on cell membrane stability was examined in two barley genotypes, the cultivar Aramir and line R567. The injury of cell membranes was markely influenced by leaf age, leaf position on the stem, and the degree of drought stress. The differences in percentage of injury to cell membrane between these genotypes were also found. The cv. Aramir exhibited a lower percentage injury value as compared t...

  3. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells

    OpenAIRE

    Xiang, P.; Wu, KC; Zhu, Y.; Xiang, L.; Li, C.; Chen, DL; Chen, F; Xu, G.; Wang, A.; Li, M; Jin, ZB

    2014-01-01

    © 2014 Elsevier Ltd. Various artificial membranes have been used as scaffolds for retinal pigment epithelium cells (RPE) for monolayer reconstruction, however, long-term cell viability and functionality are still largely unknown. This study aimed to construct an ultrathin porous nanofibrous film to mimic Bruch's membrane, and in particular to investigate human RPE cell responses to the resultant substrates. An ultrathin porous nanofibrous membrane was fabricated by using regenerated wild Anth...

  4. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was...... established by the acid transfer from the acid doped membrane to the electrodes and can therefore be tailored by using catalysts with varied Pt to C ratios. With a loading of ca. 0.1 mgPtcm-2 on each electrode the best performance was obtained with electrodes prepared from 10 wt.% Pt/C due to the improved Pt...

  5. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  6. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  7. Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging

    OpenAIRE

    Hua, Wei; Sheff, David; Toomre, Derek; Mellman, Ira

    2006-01-01

    Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Madin–Darby canine kidney cells. We performed a detailed quantitative kinetic analysis of trans-Golgi n...

  8. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen;

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted into...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....

  9. A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.

    Science.gov (United States)

    Movileanu, L

    1999-02-01

    This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport. PMID:10100952

  10. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. PMID:26888746

  11. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  12. Combinative effect of medium physical and chemical factors on the penetration and localization of some radionuclides in water plant cells

    International Nuclear Information System (INIS)

    As a result of the experiments, carried out with the charophytes algae Nitellopsis obtusa, gathered from lake Drukshyaj (the North-East part of the Lithuanian SSR) in 1985, it has been determined that the 90Sr, 144Ce and 137Cs radionuclides accumulation by water plant cell constituents (wall, protoplasm, vacuole) is substantially influenced by the water temperature, the chemical substances, which change the water structure, as well as the combinative effect of these factors. An identical character of the changes of the accumulation factors of 90Sr and 137Cs, which are found in the water solutions in an ionic form, and slightly different character in the case of 144Ce, which exists by 85% in the form of colloid particles, have been noted. In the case of 144Ce the influence of the physical as well as chamical factors on the cell walls is felt stronger than on the inner cell membranes

  13. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2003-04-24

    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  14. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  15. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells

    Science.gov (United States)

    Wang, Wei; Yang, Yunze; Wang, Shaopeng; Nagaraj, Vinay J.; Liu, Qiang; Wu, Jie; Tao, Nongjian

    2012-10-01

    Membrane proteins mediate a variety of cellular responses to extracellular signals. Although membrane proteins are studied intensively for their values as disease biomarkers and therapeutic targets, in situ investigation of the binding kinetics of membrane proteins with their ligands has been a challenge. Traditional approaches isolate membrane proteins and then study them ex situ, which does not reflect accurately their native structures and functions. We present a label-free plasmonic microscopy method to map the local binding kinetics of membrane proteins in their native environment. This analytical method can perform simultaneous plasmonic and fluorescence imaging, and thus make it possible to combine the strengths of both label-based and label-free techniques in one system. Using this method, we determined the distribution of membrane proteins on the surface of single cells and the local binding kinetic constants of different membrane proteins. Furthermore, we studied the polarization of the membrane proteins on the cell surface during chemotaxis.

  16. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization

    Directory of Open Access Journals (Sweden)

    Christian Kleusch

    2012-01-01

    Full Text Available In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.

  17. Measurement of the cell membrane capacitance and conductance of colonic crypt cells of the rat using the patch clamp technique

    OpenAIRE

    Schill, C.

    2005-01-01

    Using the patch clamp technique the membrane capacitance and membrane conductance of colonic crypt cells of the rat was measured. The influence of the intracellular agonists Ca++, cAMP and of osmotic changes on the membrane capacitance and conductance was studied.

  18. Microfabricated polymer electrolyte membrane fuel cells with low catalyst loadings

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, D.; Ponath, N.; Mueller, J. [Hamburg University of Technology, Hamburg (Germany). Department of Micro Systems Technology

    2005-11-01

    Miniaturized fuel cells as compact power sources fabricated in Pyrex glass using standard polymer electrolyte membrane (PEM) and electrode materials are presented. Photolithographic patterned and wet chemically etched serpentine flow channels of 1 mm in width and 250 {mu} m in depth transport the fuels to the cell of 1.44 cm{sup 2} active electrode area. Feeding H{sub 2}/O{sub 2} a maximum power density of 149 mW cm{sup -2} is attained at a very low Pt loading of 0.054 mg cm{sup -2}, ambient pressure, and room temperature. Operated with methanol and oxygen about 9 mW cm{sup -2} are achieved at ambient pressure, 60 C, and 1 mg cm{sup -2} PtRu/Pt (anode/cathode) loading. A planar two-cell stack to demonstrate and investigate the assembly of a fuel cell system on Pyrex wafers has successfully been fabricated. (author)

  19. CFD simulation of fuel cell proton exchange membrane multichannel

    International Nuclear Information System (INIS)

    Hydrogen has several applications that make the strongest candidate for implementation as an energy carrier in the future sustainable scenario. Current hydrogen production is based on fossil fuels that have a high contribution to air pollution. The imminent depletion of fossil fuels and high emissions of greenhouse gases that cause consumption has brought the world to consider energy scenarios that are more environmentally friendly and yet profitable. The use of hydrogen as an energy carrier generally occurs with good application prospects. Fuel cells have attracted great interest for its application mainly in the transport sector. The fuel cell PEM proton exchange membrane which convert chemical energy stored in hydrogen into electrical energy directly and efficiently, with water as a byproduct, have the ability to reduce emissions and dependence on fossil fuels. A model for multiple cell PEM five channels using the ANSYS software CFD occurs. Performance analysis and optimization of the thermodynamic and geometric parameters of the fuel cell is performed. It was analyzed the overall electrical performance and assessed performance by local current density, flow and temperatures. (full text)

  20. Characterisation of cell-wall polysaccharides from mandarin segment membranes.

    Science.gov (United States)

    Coll-Almela, Luis; Saura-López, Domingo; Laencina-Sánchez, José; Schols, Henk A; Voragen, Alfons G J; Ros-García, José María

    2015-05-15

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble pectin fraction (DASS), a 1M sodium hydroxide-soluble hemicellulose fraction (1MASS), a 4M sodium hydroxide-soluble hemicellulose fraction (4MASS) and a cellulose-rich residue (3.1, 0.9, 0.4, 0.7 and 1.6%w/w of fresh membrane, respectively). The ChSS pectin consisted mainly of galacturonic acid followed by arabinose and galactose. The DASS fraction contained less galacturonic acid and more neutral sugars than ChSS. Eighty-nine percent of the galacturonic acid present in the segment membranes was recovered in the above two pectin fractions. The two hemicellulosic fractions consisted of two different molecular weight populations, which also differed in their sugar composition. Arabinose, xylose, mannose, galactose and glucose were the main sugar constituents of these hemicellulose fractions. In addition to an (arabino)xylan and a xyloglucan, the presence of an arabinogalactan is suggested by the sugar composition of both hemicelluloses. The pectin fractions were also characterised by their degradability by the pectic enzymes polygalacturonase, pectinmethylesterase and rhamnogalacturonan hydrolase. However the degree of degradation of the pectin fractions by enzymes differed, and the amount of the polymeric materials resistant to further degradation and the oligomeric products also differed. Using pectic enzymes it is possible to obtain peeled mandarin segments ready to eat or for canning. PMID:25577048

  1. Differential impact of high and low penetrance TNFRSF1A gene mutations on conventional and regulatory CD4+ T cell functions in TNFR1-associated periodic syndrome.

    Science.gov (United States)

    Pucino, Valentina; Lucherini, Orso Maria; Perna, Francesco; Obici, Laura; Merlini, Giampaolo; Cattalini, Marco; La Torre, Francesco; Maggio, Maria Cristina; Lepore, Maria Teresa; Magnotti, Flora; Galgani, Mario; Galeazzi, Mauro; Marone, Gianni; De Rosa, Veronica; Talarico, Rosaria; Cantarini, Luca; Matarese, Giuseppe

    2016-05-01

    TNFR-associated periodic syndrome is an autoinflammatory disorder caused by autosomal-dominant mutations in TNFRSF1A, the gene encoding for TNFR superfamily 1A. The lack of knowledge in the field of TNFR-associated periodic syndrome biology is clear, particularly in the context of control of immune self-tolerance. We investigated how TNF-α/TNFR superfamily 1A signaling can affect T cell biology, focusing on conventional CD4(+)CD25(-) and regulatory CD4(+)CD25(+) T cell functions in patients with TNFR-associated periodic syndrome carrying either high or low penetrance TNFRSF1A mutations. Specifically, we observed that in high penetrance TNFR-associated periodic syndrome, at the molecular level, these alterations were secondary to a hyperactivation of the ERK1/2, STAT1/3/5, mammalian target of rapamycin, and NF-κB pathways in conventional T cells. In addition, these patients had a lower frequency of peripheral regulatory T cells, which also displayed a defective suppressive phenotype. These alterations were partially found in low penetrance TNFR-associated periodic syndrome, suggesting a specific link between the penetrance of the TNFRSF1A mutation and the observed T cell phenotype. Taken together, our data envision a novel role for adaptive immunity in the pathogenesis of TNFR-associated periodic syndrome involving both CD4(+) conventional T cells and Tregs, suggesting a novel mechanism of inflammation in the context of autoinflammatory disorders. PMID:26598380

  2. Membrane effects of Cocoa Procyanidins in Liposomes and Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    SANDRA V. VERSTRAETEN

    2004-01-01

    Full Text Available We investigated the effects of the interaction between flavanols and related procyanidins (dimer to hexamer with both cell and synthetic membranes, on bilayer fluidity and susceptibility to oxidation. Cocoa derived dimers (0.05 to 1 µg/ml protected Jurkat T cells from AMVN-mediated oxidation and increased plasma membrane fluidity. These effects occurred in a concentration- and chain length-dependent manner. In liposomes, procyanidins prevented the Fe2+-induced permeabilization of the membrane. Together, these results support the hypothesis that procyanidins could interact with the polar headgroup of lipids, increasing membrane fluidity and also, preventing the access of molecules that could affect membrane integrity

  3. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  4. Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells

    OpenAIRE

    Sesso, A.; Belizário, JE; Marques, MM; Higuchi, ML; Schumacher, RI; Colquhoun, A; Ito, E.; Kawakami, J.

    2012-01-01

    Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM ru...

  5. Rho-dependent membrane folding causes Shigella entry into epithelial cells.

    OpenAIRE

    Adam, T; Giry, M; Boquet, P; Sansonetti, P

    1996-01-01

    The small GTPase rho is functionally involved in the formation of cytoskeletal structures like stress fibers or focal adhesion plaques. Shigella entry into HeLa cells induces a blossom-like membrane structure at the bacterial entry site. We show here that this membrane-folding process is rho-dependent. The three rho isoforms were recruited into bacterial entry sites with differential localization relative to the membrane structure. A rho-specific inhibitor abolished Shigella-induced membrane ...

  6. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

    OpenAIRE

    Li, Qingfeng; Jensen, Jens Oluf; Savinell, Robert F; Bjerrum, Niels J.

    2009-01-01

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, acid–base polymer membranes represent an effective approach. The phosphoric acid-doped polybenzimidazole membrane seems so far the most successful system in the field. It has in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer synthesis, membrane casting, physicochemical characte...

  7. Manipulation of cell membrane using carbon nanotube scaffold as a photoresponsive stimuli generator

    International Nuclear Information System (INIS)

    We describe, for the first time, the perforation of the cell membrane in the targeted single cell based on the nanosecond pulsed near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes that act as an effective photon absorber as well as stimuli generator. When the power of NIR laser is over 17.5 μJ/pulse, the cell membrane after irradiation is irreversibly disrupted and results in cell death. In sharp contrast, the perforation of the cell membrane occurs at suitable laser power (∼15 μJ/pulse) without involving cell termination. (paper)

  8. The B-domain of factor VIII reduces cell membrane attachement to host cells in serum free conditions

    DEFF Research Database (Denmark)

    Kollind, M.P.; Lisby, P.N.; Lundgård, T.V.; Berchtold, Martin Werner; Johnsen, L.B.

    engineered extensively throughout the years to increase the low production yields that initially were obtained from mammalian cell cultures. The scope of this work was to investigate the interaction of rFVIII with the cell membrane surface of the producing cells in serum free medium. We wondered whether...... binding of rFVIII to the cell membrane could be a factor diminishing the production yield. We studied the contribution of the rFVIII B-domain to membrane attachment by transfecting several constructs containing increasing lengths of the B-domain into cells under serum free conditions. We found that 90% of...... rFVIII is attached to the cell membrane of the producing cell when the rFVIII variant contains a short B-domain (21 aa). By increasing the length of the B-domain the membrane attached fraction can be reduced to 50% of the total expressed rFVIII. Further, our studies show that the N...

  9. Cell penetrating silica nanoparticles doped with two-photon absorbing fluorophores

    NARCIS (Netherlands)

    Bertazza, Loris; Celotti, Lucia; Fabbrini, Graziano; Loi, Maria Antonietta; Maggini, Michele; Mancin, Fabrizio; Marcuz, Silvia; Menna, Enzo; Muccini, Michele; Tonellato, Umberto

    2006-01-01

    Organosilica nanoparticles, doped with two-photon absorbing distyrylbenzene derivatives, were prepared and studied as cell staining agents. Two dyes were used, bearing either two peripheral dimethylamino groups or one dimethylamino and one cyano group. Due to the internal charge transfer character o

  10. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  11. Dynamic maintenance of stochastic molecular clusters on cell membranes

    Science.gov (United States)

    Mugler, Andrew; Wehrens, Martijn; Ten Wolde, Pieter Rein

    2015-03-01

    Clustering of molecules on cell membranes is a widely observed phenomenon. A key example is the oncoprotein Ras. Maintenance of Ras clusters has been linked to proper Ras signaling. Yet, the mechanism by which Ras clusters are maintained remains unclear. Recently it was discovered that activated Ras promotes further Ras activation. We show using particle-based simulation that this positive feedback link is sufficient to produce persistent clusters of active Ras molecules via a dynamic nucleation mechanism. The cluster statistics are consistent with experimental observations. Interestingly, our model does not support a Turing regime of macroscopic reaction-diffusion patterning. This means that the clustering we observe is a purely stochastic effect, arising from the coupling of the positive feedback network with the discrete nature of individual molecules. These findings underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  12. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  13. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  14. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2014-10-01

    Full Text Available As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC, have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE. Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117, which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD and Scanning electron microscope (SEM observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.

  15. Feline immunodeficiency virus decreases cell-cell communication and mitochondrial membrane potential.

    OpenAIRE

    Danave, I R; Tiffany-Castiglioni, E; Zenger, E; Barhoumi, R.; Burghardt, R C; Collisson, E W

    1994-01-01

    The in vitro effects of viral replication on mitochondrial membrane potential (MMP) and gap junctional intercellular communication (GJIC) were evaluated as two parameters of potential cellular injury. Two distinct cell types were infected with the Petaluma strain of feline immunodeficiency virus (FIV). Primary astroglia supported acute FIV infection, resulting in syncytia within 3 days of infection, whereas immortalized Crandell feline kidney (CRFK) cells of epithelial origin supported persis...

  16. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng;

    2012-01-01

    Phosphoric acid doped polybenzimidazole (PBI) has emerged as one of the most promising electrolyte materials for proton exchange membrane (PEM) fuel cells operating under anhydrous conditions at temperatures of up to 200 °C. The limited long-term durability of the membrane electrode assemblies...... (MEAs) is currently hampering the commercial viability of the technology. In the present study, thermoset PBI membranes were prepared by curing the membranes under inert atmosphere at temperatures of up to 350 °C prior to the acid doping. The systematic membrane characterizations with respect to...... long-term durability of the corresponding fuel cell MEAs. During continuous operation for 1800 h at 160 °C and 600 mA cm−2, the average cell voltage decay rate of the MEA based on the cured membrane was 43 μV h−1. This should be compared with an average cell voltage decay rate of 308 μV h−1 which was...

  17. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  18. Plasma Membrane Lesions In Anthracycline-Resistant Tumor Cells Probed Using A Fluorescent Dye

    Science.gov (United States)

    Burke, Thomas G.; Doroshow, James H.

    1989-06-01

    Human cancer cells selected for resistance to several structurally unrelated cytotoxic drugs are known to display plasma membrane alterations such as amplified levels of a variety of glycoproteins, modifications in lipid composition, alterations in membrane fluidity and increased cellular fragility to osmotic shock. We have studied the plasma membrane fluidity of HL60 human leukemia cells and MCF-7 human breast cancer cells that have been selected for acquired resistance against the cytocidal effects of the anthracycline anticancer drug Adriamycin. Fluidity measurements were accomplished by evaluating the fluorescence anisotropy of the plasma membrane specific probe trimethylamino-1,6-dipihenylhexatriene (TMA.DPH) bound to whole, living cells. TMA.DPH anisotropy values for MCF-7 sensitive and 12-fold resistant cells were 0.306 and 0.285, respectively, while anisotropy values for HL-60 sensitive and 80-fold resistant cells lines were 0.310 and 0.295, respectively. In all cases, cell viability exceeded 97% and anisotropy values were subject to a day-to-day uncertainty of +/-2%. Our results demonstrate that increased plasma membrane fluidity apparently accompanies the development of resistance in both cell lines. Because it is known that increased membrane fluidity results in significantly decreased Adriamycin binding in artificial membrane systems, we propose here that decreased drug associations with fluidized, plasma membrane lipid bilayer regions may be a mechanism which contributes, in part, to the reduced rates of drug accumulation observed in HL60 and MCF-7 cells resistant to Adriamycin.

  19. A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells.

    Science.gov (United States)

    Xiang, Ping; Wu, Kun-Chao; Zhu, Ying; Xiang, Lue; Li, Chong; Chen, Deng-Long; Chen, Feng; Xu, Guotong; Wang, Aijun; Li, Min; Jin, Zi-Bing

    2014-12-01

    Various artificial membranes have been used as scaffolds for retinal pigment epithelium cells (RPE) for monolayer reconstruction, however, long-term cell viability and functionality are still largely unknown. This study aimed to construct an ultrathin porous nanofibrous film to mimic Bruch's membrane, and in particular to investigate human RPE cell responses to the resultant substrates. An ultrathin porous nanofibrous membrane was fabricated by using regenerated wild Antheraea pernyi silk fibroin (RWSF), polycaprolactone (PCL) and gelatin (Gt) and displayed a thickness of 3-5 μm, with a high porosity and an average fiber diameter of 166 ± 85 nm. Human RPE cells seeded on the RWSF/PCL/Gt membranes showed a higher cell growth rate (p < 0.05), and a typical expression pattern of RPE signature genes, with reduced expression of inflammatory mediators. With long-term cultivation on the substrates, RPE cells exhibited characteristic polygonal morphology and development of apical microvilli. Immunocytochemisty demonstrated RPE-specific expression profiles in cells after 12-weeks of co-culture on RWSF/PCL/Gt membranes. Interestingly, the cells on the RWSF/PCL/Gt membranes functionally secreted polarized PEDF and phagocytosed labeled porcine POS. Furthermore, RWSF/PCL/Gt membranes transplanted subsclerally exhibited excellent biocompatibility without any evidence of inflammation or rejection. In conclusion, we established a novel RWSF-based substrate for growth of RPE cells with excellent cytocompatibility in vitro and biocompatibility in vivo for potential use as a prosthetic Bruch's membrane for RPE transplantation. PMID:25220295

  20. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells

    Directory of Open Access Journals (Sweden)

    Matteo Crosera

    2015-08-01

    Full Text Available Titanium dioxide nanoparticles (TiO2NPs suspensions (concentration 1.0 g/L in synthetic sweat solution were applied on Franz cells for 24 h using intact and needle-abraded human skin. Titanium content into skin and receiving phases was determined. Cytotoxicity (MTT, AlamarBlue® and propidium iodide, PI, uptake assays was evaluated on HaCat keratinocytes after 24 h, 48 h, and seven days of exposure. After 24 h of exposure, no titanium was detectable in receiving solutions for both intact and damaged skin. Titanium was found in the epidermal layer after 24 h of exposure (0.47 ± 0.33 μg/cm2 while in the dermal layer, the concentration was below the limit of detection. Damaged skin, in its whole, has shown a similar concentration (0.53 ± 0.26 μg/cm2. Cytotoxicity studies on HaCaT cells demonstrated that TiO2NPs induced cytotoxic effects only at very high concentrations, reducing cell viability after seven days of exposure with EC50s of 8.8 × 10−4 M (MTT assay, 3.8 × 10−5 M (AlamarBlue® assay, and 7.6 × 10−4 M (PI uptake, index of a necrotic cell death. Our study demonstrated that TiO2NPs cannot permeate intact and damaged skin and can be found only in the stratum corneum and epidermis. Moreover, the low cytotoxic effect observed on human HaCaT keratinocytes suggests that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

  1. The use of nanoscale fluorescence microscopic to decipher cell wall modifications during fungal penetration

    OpenAIRE

    Dorothea eEllinger; Christian eVoigt

    2014-01-01

    Plant diseases are one of the most studied subjects in the field of plant science due to their impact on crop yield and food security. Our increased understanding of plant–pathogen interactions was mainly driven by the development of new techniques that facilitated analyses on a subcellular and molecular level. The development of labeling technologies, which allowed the visualization and localization of cellular structures and proteins in live cell imaging, promoted the use of fluorescence an...

  2. Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model

    Directory of Open Access Journals (Sweden)

    Yuan L

    2013-11-01

    Full Text Available Ling Yuan,1 Congyan Liu,2 Yan Chen,2 Zhenhai Zhang,2 Lei Zhou,1 Ding Qu2 1Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 2Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China Background: The purpose of this study was to evaluate the antitumor effect of cell-penetrating peptide-coated tripterine-loaded nanostructured lipid carriers (CT-NLC on prostate tumor cells in vitro and in vivo. Methods: CT-NLC were developed to improve the hydrophilicity of tripterine. The antiproliferative effects of CT-NLC, tripterine-loaded nanostructured lipid carriers (T-NLC, and free tripterine in a human prostatic carcinoma cell line (PC-3 and a mouse prostate carcinoma cell line (RM-1 were evaluated using an MTT assay. The advantage of CT-NLC over T-NLC and free tripterine with regard to antitumor activity in vivo was evaluated in a prostate tumor-bearing mouse model. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content was investigated by enzyme-linked immunosorbent assay to determine the effect of CT-NLC, T-NLC, and free tripterine on immune responses. Histologic and TUNEL assays were carried out to investigate the mechanisms of tumor necrosis and apoptosis. Results: CT-NLC, T-NLC, and free tripterine showed high antiproliferative activity in a dose-dependent manner, with an IC50 of 0.60, 0.81, and 1.02 µg/mL in the PC-3 cell line and 0.41, 0.54, and 0.89 µg/mL in the RM-1 cell line after 36 hours. In vivo, the tumor inhibition rates for cyclophosphamide, high-dose (4 mg/kg and low-dose (2 mg/kg tripterine, high-dose (4 mg/kg and low-dose (2 mg/kg T-NLC, high-dose (4 mg/kg and low-dose (2 mg/kg CT-NLC were 76.51%, 37.07%, 29.53%, 63.56%, 48.25%, 72.68%, and 54.50%, respectively, showing a dose-dependent pattern. The induced tumor necrosis factor-alpha and interleukin-6 cytokine content

  3. Multiphase transport in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  4. Water Management Membrane for Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an improved water management membrane for a static vapor feed electrolyzer that produces sub-saturated H2 and O2 is proposed. This improved membrane...

  5. Penetration testing

    OpenAIRE

    Zemaníková, Martina

    2010-01-01

    This work focuses on the practical demonstration of design penetration testing. Testing is carried out based on the order of a particular entity/subject which is at their request anonymous. The work is divided into two parts, theoretical and practical. We will be made in first part familiarize with the process and techniques of testing, as is now used in ethical hacking, then we can find in the end appropriate recommendations 6 how to prevent and fight against it in order to protect the...

  6. Is the surface area of the red cell membrane skeleton locally conserved?

    OpenAIRE

    Fischer, T M

    1992-01-01

    The incompressibility of the lipid bilayer keeps the total surface area of the red cell membrane constant. Local conservation of membrane surface area requires that each surface element of the membrane skeleton keeps its area when its aspect ratio is changed. A change in area would require a flow of lipids past the intrinsic proteins to which the skeleton is anchored. in fast red cell deformations, there is no time for such a flow. Consequently, the bilayer provides for local area conservatio...

  7. Selective Accumulation of Raft-Associated Membrane Protein Lat in T Cell Receptor Signaling Assemblies

    OpenAIRE

    Harder, Thomas; Kuhn, Marina

    2000-01-01

    Activation of T cell antigen receptor (TCR) induces tyrosine phosphorylations that mediate the assembly of signaling protein complexes. Moreover, cholesterol-sphingolipid raft membrane domains have been implicated to play a role in TCR signal transduction. Here, we studied the assembly of TCR with signal transduction proteins and raft markers in plasma membrane subdomains of Jurkat T leukemic cells. We employed a novel method to immunoisolate plasma membrane subfragments that were highly conc...

  8. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB

    OpenAIRE

    Schirner, Kathrin; Eun, Ye-Jin; Dion, Mike; Luo, Yun; Helmann, John D.; Garner, Ethan C.; Walker, Suzanne

    2014-01-01

    Summary The bacterial actin homolog MreB, which is critical for rod shape determination, forms filaments that rotate around the cell width on the inner surface of the cytoplasmic membrane. What determines filament association with the membranes or with other cell wall elongation proteins is not known. Using specific chemical and genetic perturbations while following MreB filament motion, we find that MreB membrane association is an actively regulated process that depends on the presence of li...

  9. Thermal Fluctuations of Red Blood Cell Membrane via a Constant-Area Particle-Dynamics Model

    OpenAIRE

    Marcelli, Gianluca; Parker, Kim H.; Winlove, C. Peter

    2005-01-01

    We describe a model of the mechanical properties of the cell plasma membrane using a finite-temperature particle-dynamics simulation of the whole cell, in which a two-dimensional network of virtual particles embedded in a three-dimensional closed surface represents the membrane. The particles interact via harmonic potential and dihedral angle potential and are subject to a constant area constraint. The evolution of the positions of the particles yields the equilibrium state of the membrane an...

  10. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    OpenAIRE

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively...

  11. Translocation of annexin Ⅰ from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Xiao-Hang Zhao; Hui-Xin Wang; Ning Lu; You-Sheng Mao; Fang Liu; Ying Wang; Hai-Rong Zhang; Kun Wang; Min Wu

    2003-01-01

    AIM: To investigate the alteration of the annexin I subcellular localization in esophageal squamous cell carcinoma (ESCC)and the correlation between the translocation and the tumorigenesis of ESCC.METHODS: The protein localization of annexin I was detected in both human ESCC tissues and cell line via the indirect immunofiuorescence strategy.RESULTS: In the normal esophageal epithelia the annexin I was mainly located on the plasma membrane and formed a consecutive typical trammels net. Annexin I protein also expressed dispersively in cytoplasm and the nuclei without specific localization on the nuclear membrane. In esophageal cancer annexin I decreased very sharply with scattered disappearance on the cellular membrane, however it translocated and highly expressed on the nuclear membrane,which was never found in normal esophageal epithelia. In cultured esophageal cancer cell line annexin I protein was also focused on the nuclear membrane, which was consistent with the result from esophageal cancer tissues.CONCLUSION: This observation suggests that the translocation of annexin I protein in ESCC may correlate with the tumorigenesis of the esophageal cancer.

  12. Improvement on light penetrability and microalgae biomass production by periodically pre-harvesting Chlorella vulgaris cells with culture medium recycling.

    Science.gov (United States)

    Huang, Yun; Sun, Yahui; Liao, Qiang; Fu, Qian; Xia, Ao; Zhu, Xun

    2016-09-01

    To improve light penetrability and biomass production in batch cultivation, a cultivation mode that periodically pre-harvesting partial microalgae cells from suspension with culture medium recycling was proposed. By daily pre-harvesting 30% microalgae cells from the suspension, the average light intensity in the photobioreactor (PBR) was enhanced by 27.05-122.06%, resulting in a 46.48% increase in total biomass production than that cultivated in batch cultivation without pre-harvesting under an incident light intensity of 160μmolm(-2)s(-1). Compared with the semi-continuous cultivation with 30% microalgae suspension daily replaced with equivalent volume of fresh medium, nutrients and water input was reduced by 60% in the proposed cultivation mode but with slightly decrease (12.82%) in biomass production. No additional nutrient was replenished when culture medium recycling. Furthermore, higher pre-harvesting ratios (40%, 60%) and lower pre-harvesting frequencies (every 2, 2.5days) were not advantageous for the pre-harvesting cultivation mode. PMID:27289058

  13. Recurrent invasive squamous cell carcinoma of the ocular surface requiring penetrating therapeutic sclerokeratoplasty

    Directory of Open Access Journals (Sweden)

    Mark J. Mannis

    2012-12-01

    Full Text Available Purpose: We review a case of invasive squamous cell carcinoma invading the cornea to discuss optimal management. Methods:  Observational case report with histopathologic analysis. Results: Histopathology demonstrates corneal invasion by the tumor that appears to have been completely excised with a large therapeutic keratoplasty and adjuvant cryotherapy. Conclusions: Successful management of ocular surface squamous neoplasia (OSSN requires removal of identifiably abnormal tissue without disruption of normal protective architecture, careful histopathologic analysis, and the employment of adjuvant therapy at the time of or subsequent to surgical excision.

  14. Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation

    Science.gov (United States)

    Santra, Tuhin Subhra; Wang, Pen-Cheng; Chang, Hwan-You; Tseng, Fan-Gang

    2013-12-01

    Interaction of electric field with biological cells is an important phenomenon for field induced drug delivery system. We demonstrate a selective and localized single cell nano-electroporation (LSCNEP) by applying an intense electric field on a submicron region of the single cell membrane, which can effectively allow high efficient molecular delivery but low cell damage. The delivery rate is controlled by adjusting transmembrane potential and manipulating membrane status. Thermal and ionic influences are deteriorated from the cell membrane by dielectric passivation. Either reversible or irreversible by LSCNEP can fully controlled with potential applications in medical diagnostics and biological studies.

  15. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    International Nuclear Information System (INIS)

    Highlights: ► Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. ► Dimer formation enhances peptiplex stability, resulting in increased transfection. ► By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes (“peptiplexes”) enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the “chelate effect” and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from its stronger binding to DNA.

  16. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    Energy Technology Data Exchange (ETDEWEB)

    Amand, Helene L., E-mail: helene.amand@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Norden, Bengt, E-mail: norden@chalmers.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden); Fant, Kristina, E-mail: kristina.fant@sp.se [Chalmers University of Technology, Department of Chemical and Biological Engineering/Physical Chemistry, SE-412 96 Gothenburg (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide

  17. Increased phorbol 12,13-dibutyrate (PDBu) receptor function associated with sickle red cell membrane ghosts

    International Nuclear Information System (INIS)

    The biological receptor for tumor-promoting phorbol esters has been identified as the Ca2+/phospholipid dependent enzyme, protein kinase C. In the red cell, this enzyme is mainly cytosolic but becomes translocated to the membrane if the cellular Ca2+ is allowed to rise. Since cellular Ca2+ in sickle red cells is high, it was reasoned that this enzyme may become more membrane-bound. In fact, the authors noticed a four-fold increase in the binding of 3H-PDBu by membrane ghosts isolated from sickle red cells compared to normal red cells (pmoles PDBu bound/mg protein; normal = 0.3 vs sickle cell = 1.4). Attempts to assay the enzyme directly as phospholipid-activated 32P incorporation into the acid-precipitable membrane proteins also indicated a two-fold increase in the radiolabelling of sickle cell membrane ghosts. Autophosphorylation of membrane proteins and analysis of the phosphorylation profile by SDS-PAGE and autoradiography revealed phosphorylation predominantly of bands 3, 4.1 and 4.9 which are known protein kinase C substrates for the red cell enzyme. The increased membrane-associated protein kinase C in sickle red cells may have a bearing on the altered membrane properties reported in this condition

  18. Changes in membrane lipid composition of Mycoplasma capricolum affect the cell volume.

    OpenAIRE

    N. Romano; Shirvan, M H; Rottem, S.

    1986-01-01

    The cellular water volume of Mycoplasma capricolum was markedly increased by a decrease in the cholesterol-to-phospholipid molar ratio in the membrane. An increase in cell volume was also observed with the increase in the phospholipid cell membrane content obtained by the incorporation of exogenous phosphatidylcholine from the growth medium.

  19. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be co

  20. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den

    1982-01-01

    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the lip